WO2004039968A1 - Immortalized dendritic cell line originating in bone marrow - Google Patents

Immortalized dendritic cell line originating in bone marrow Download PDF

Info

Publication number
WO2004039968A1
WO2004039968A1 PCT/JP2003/013951 JP0313951W WO2004039968A1 WO 2004039968 A1 WO2004039968 A1 WO 2004039968A1 JP 0313951 W JP0313951 W JP 0313951W WO 2004039968 A1 WO2004039968 A1 WO 2004039968A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell line
cells
dendritic cell
immortalized
antigen
Prior art date
Application number
PCT/JP2003/013951
Other languages
French (fr)
Japanese (ja)
Inventor
Toshiyuki Takai
Masuo Oginata
Yumi Ito
Kozue Ito
Shin Ebihara
Original Assignee
Japan Science And Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science And Technology Agency filed Critical Japan Science And Technology Agency
Publication of WO2004039968A1 publication Critical patent/WO2004039968A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0634Cells from the blood or the immune system
    • C12N5/0639Dendritic cells, e.g. Langherhans cells in the epidermis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/46Cellular immunotherapy
    • A61K39/461Cellular immunotherapy characterised by the cell type used
    • A61K39/4615Dendritic cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/46Cellular immunotherapy
    • A61K39/462Cellular immunotherapy characterized by the effect or the function of the cells
    • A61K39/4622Antigen presenting cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/46Cellular immunotherapy
    • A61K39/464Cellular immunotherapy characterised by the antigen targeted or presented
    • A61K39/4643Vertebrate antigens
    • A61K39/4644Cancer antigens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/46Cellular immunotherapy
    • A61K39/464Cellular immunotherapy characterised by the antigen targeted or presented
    • A61K39/464838Viral antigens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2239/00Indexing codes associated with cellular immunotherapy of group A61K39/46
    • A61K2239/38Indexing codes associated with cellular immunotherapy of group A61K39/46 characterised by the dose, timing or administration schedule
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/20Cytokines; Chemokines
    • C12N2501/22Colony stimulating factors (G-CSF, GM-CSF)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2510/00Genetically modified cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2510/00Genetically modified cells
    • C12N2510/04Immortalised cells

Definitions

  • the present invention relates to an immortalized dendritic cell line derived from bone marrow. More specifically, the present invention relates to a transgenic mouse transfected with the large T antigen gene of a temperature-sensitive mutant tsA58 of SV40 (tMs s SV40). Dendritic cells (DCs) derived from the bone marrow of LTT g mice)
  • the present invention relates to an immortalized dendritic cell line that can be established, a method for producing the cell line, and use thereof.
  • the immortalized dendritic cell line of the present invention can be applied to in vitro analysis of dendritic cells, development of vaccine therapy using dendritic cells, and study of modification and enhancement of immune response. Background art
  • immortalized cells that have acquired the ability to proliferate indefinitely while avoiding cell senescence during repeated passage of primary culture will have stable and uniform characteristics. Many cells lose some or all of the morphology and functions that cells originally have in living organisms. Therefore, it has been considered difficult to accurately reflect the original characteristics of the tissue from which the cell line is derived in a test using such an immortalized cell line.
  • oncogenes such as the ras gene and the c-myc gene, the adenovirus ElA gene, the SV40 virus large T antigen gene, and the human papillomavirus HPV16 gene were introduced into primary cells.
  • Dendritic cells are dendritic cell populations derived from hematopoietic stem cells and are widely distributed in vivo. Immature dendritic cells recognize and take in foreign substances, such as viruses and bacteria, that have invaded their tissues, and generate peptides by digestion and degradation in the process of migrating to lymphoid organ T cells. By binding to MHC molecules and presenting them on the cell surface, they act as antigen-presenting cells that activate antigen-specific T cells and induce an immune response (Ann. Rev. Immunol. 9, 271-296, 1991, J.
  • DCs are very important for the initiation of T cell responses that can elicit T cell-dependent early immune responses.
  • the immature DCs take up the antigen, mature and migrate to secondary lymphoid organs. It accumulates in the T cell area and selectively activates antigen-specific T cells circulating in the body to drive an immune response.
  • these detailed mechanisms in DC in vivo are still unknown and need to be analyzed in vitro.
  • GM-CSF granulocyte-macophage phage colony-stimulating factor
  • Dendritic cells are important cells that drive the immune response.
  • DCs can be cultured by preparing them from living organisms, but their lifespan is limited.Even if they are cultured in the presence of cytokines such as GM-CSF, they can survive for as long as about one month and then die. I do.
  • cytokines such as GM-CSF
  • an object of the present invention is to provide an immortalized dendritic cell line that retains the functions and characteristics inherent to dendritic cells, a method for establishing the same, a method for screening a useful substance using the immortalized dendritic cell line, and a method for screening the same.
  • An object of the present invention is to provide a cell vaccine containing an immortalized dendritic cell line as a main component.
  • the present inventors have conducted intensive studies to solve the above problems, and after hemolyzing bone marrow cells of ts SV40 LTT g mice, removing lymphocytes and Ia-positive cells, and obtaining the obtained cells.
  • Dendritic cells are induced by culturing in the presence of GM-CSF, and subculture is repeated 10 times or more.
  • the established immortalized dendritic cell line expresses myeloid and leucosite molecules on the cell surface.
  • the present inventors have confirmed that DCs have inherent properties such as an ability to take up an antigen, an ability to present an antigen, and an ability to induce CTL activity, thereby completing the present invention. Disclosure of the invention
  • the present invention provides an immortalized dendritic cell characterized by being derived from bone marrow.
  • the strain (Claim 1) which expresses a myeloid molecule and a leucosite molecule on the cell surface, and has an antigen uptake ability, an antigen presentation ability, and an ability to induce CTL activity.
  • the immortalized cell line according to claim 1 or 2 A dendritic cell line (Claim 3), an immortalized dendritic cell line according to any one of claims 1 to 3, which has an ability to respond to LPS stimulation (Claim 4), and a rodent
  • the immortalized dendritic cell line according to any one of claims 1 to 4 which is characterized in that it is an origin (claim 5), and the immortalized cell line according to claim 5, wherein the rodent is a mouse.
  • the present invention relates to a dendritic cell line (Claim 6) and an immortalized dendritic cell line TDC (FE RM BP-08527) (Claim 7).
  • the present invention also provides a method for removing lymphocytes and Ia-positive cells after hemolyzing bone marrow cells of a transgenic mouse into which the large T antigen gene of the temperature-sensitive mutant tsA58 of SV40 has been introduced.
  • the obtained cells are cultured in the presence of GM-CSF to induce dendritic cells.Subculture is repeated at least 10 times, expressing myeloid molecules and leucosite molecules on the cell surface, and taking up antigen.
  • a method for producing an immortalized dendritic cell line which comprises establishing a cell line having the ability to present antigen, the ability to present antigen, and the ability to induce CTL activity (claim 8), and growth at 33 ° C.
  • a method for screening a substance that promotes or suppresses maturation of dendritic cells, comprising culturing a denatured dendritic cell line, and measuring and evaluating the expression level of the maturation marker protein in the cell line (claim 10).
  • a method for screening a substance that promotes or suppresses maturation of dendritic cells according to claim 10 (claim 11), and the immortalized tree according to any one of claims 1 to 7, in the presence of a test substance.
  • a method for screening a substance that promotes or suppresses cell growth in dendritic cells (Claim 12), which comprises culturing a dendritic cell line, and measuring and evaluating the degree of proliferation of the cell.
  • an LPS stimulation of the immortalized dendritic cell line according to any one of claims 1 to 7, and measurement and evaluation of the amount of IL-112 produced by the cell, whereby the activation of dendritic cells is promoted.
  • the present invention relates to a method for screening an inhibitor (Claim 13).
  • the present invention further provides a substance for promoting maturation of dendritic cells obtained by the screening method according to claim 10 or 11 (claim 14), and the screening method according to claim 12.
  • a cell growth promoting substance in dendritic cells (Claim 15), a dendritic cell activation promoting substance obtained by the screening method according to Claim 13 (Claim 16), and Claims 1 to 7
  • the immortalized dendritic cell line according to claim 17, wherein the cell vaccine is an immortalized dendritic cell line in which proliferation is suppressed in 37, and the immortalized dendritic cell line is an antigen.
  • FIG. 1 is a photograph showing the results of Wit-Giemsa staining of dendritic cells of the immortalized dendritic cell line of the present invention and dendritic cells of B6 mouse.
  • FIG. 2 shows the MTT assay for the immortalized dendritic cell line of the present invention.
  • FIG. 4 is a view showing the results of measuring the proliferation ability while changing the temperature conditions according to the present invention.
  • FIG. 3 is a view showing the results of measuring the requirement of GM-CSF by MTT assay in the growth of the immortalized dendritic cell line of the present invention.
  • FIG. 4 is a diagram showing the results of analysis of the expression levels of representative myeloid molecules on the immortalized dendritic cell line of the present invention and dendritic cells of B6 mice by FACS.
  • FIG. 5 is a diagram showing the results of analysis of the expression levels of representative leucocyte molecules on the dendritic cell surface of the immortalized dendritic cell line of the present invention and the B6 mouse by FACS.
  • FIG. 6 shows the results of FACS analysis of the antigen uptake ability of the immortalized dendritic cell line of the present invention and the dendritic cells of B6 mice.
  • FIG. 7 is a graph showing the results of FACS analysis of dendritic cell maturity in response to LPS stimulation of immortalized dendritic cell lines of the present invention and dendritic cells of B6 mice.
  • FIG. 8 shows the results of measuring the amount of IL-12p70 produced by dendritic cells of the immortalized dendritic cell line of the present invention and the dendritic cells of B6 mice in response to LPS stimulation by ELISA.
  • FIG. 9 is a diagram showing the results of FVAS analysis of the maturity 2 days after OVA was incorporated into the immortalized dendritic cell line of the present invention and the dendritic cells of B6 mice.
  • FIG. 10 shows the results of the ability of the immortalized dendritic cell line of the present invention and dendritic cells of B6 mice to present antigen to OVA-T cells.
  • FIG. 11 is a diagram showing the time-course anti-OVA antibody titer of OVA transferred to the immortalized dendritic cell line of the present invention and the dendritic cells of B6 mice.
  • FIG. 12 shows the results of immunohistochemical staining (anti-GL-7 antibody) of the spleen germinal center approximately three weeks after the transfer of the dendritic cells of the dendritic cell line of the present invention. It is a photograph.
  • FIG. 13 is a diagram showing the results of comparative examination of the in vivo CTL activity by transferring the dendritic cells of the dendritic cell line of the present invention.
  • FIG. 14 is a diagram showing the results of comparing the expression levels of MHC class I / OVA peptide complexes in the immortalized dendritic cell line of the present invention and dendritic cells of B6 mice.
  • FIG. 15 is a view showing the results of enhanced antitumor activity in vivo by transferring the immortalized dendritic cell line of the present invention.
  • the immortalized dendritic cell line of the present invention may be any immortalized dendritic cell line derived from bone marrow, and can be grown at 33 ° C, and can grow at 37 ° C.
  • a cell line to be suppressed is preferable, and a cell line having characteristics inherent to DC is more preferable except for this temperature sensitivity.
  • cell lines that express myeloid and leucosite molecules on the cell surface and have antigen uptake, antigen presentation, and CTL activity induction, or dendritic cells mature by stimulation with LPS Suitable examples include a cell line that is activated and has the ability to respond to LPS stimulation, such as producing IL-112, and a cell line having these properties in combination.
  • an immortalized dendritic cell line is the immortalized dendritic cell line TDC.
  • This TDC line is deposited at the National Institute of Advanced Industrial Science and Technology, Patent Organism Depositary under the depository number.
  • FE RM BP—085-27 (transferred from FE RM P—19044 deposited on September 26, 2002) has been deposited under the Budapest Treaty.
  • the origin of the immortalized dendritic cell line of the present invention is not particularly limited, but the immortalized dendritic cell line obtained from an animal such as a rodent such as a mouse has an abundant disease model in a mouse, Pharmacological review It is preferred because it is widely used for its value.
  • a method for producing the immortalized dendritic cell line of the present invention will be described by taking a mouse method as an example.
  • the immortalized dendritic cell line of the present invention derived from a mouse can be obtained, for example, by subjecting bone marrow cells of a ts SV40 LTT g mouse to hemolysis using ammonium chloride, for example, an anti-CD4 antibody, an anti-CD8 antibody, an anti-I one a b antibody, anti-rat I g using antibody and Usagi complement, complete R PM I medium cells depleted lymphocytes and I a-positive cells containing the mouse recombinant GM- CSF of 2 0 ng / mL (5% FCS) to induce dendritic cells (DC), repeat subculture 10 times or more, express myeloid molecules and leucosite molecules on the cell surface, It can be obtained by establishing a cell line having the ability to present antigen and the ability to induce CTL activity.
  • ammonium chloride for example, an anti-CD4 antibody, an anti-CD8 antibody, an anti-I one a b antibody, anti-rat I g using antibody and Us
  • the ts SV 40 LTT g mouse can be produced as follows. Plasmid p SV in which ts A58 ori (I) deleted the SV40 replication origin (ori) and opened into pBR322 by opening all 12 DNAs with the restriction oxygen BamHI ts A58 (-) — 2 (O noT. et al., Cytotechnology 7, 165-172, 1991) was amplified in large amounts in E. coli according to a conventional method, and the amplified plasmid was digested with the restriction enzyme BamHI. To remove a portion of the vector to prepare a DNA fragment having the large T ⁇ protogene of tsA58.
  • the DNA fragment containing the promoter of the large T antigen gene was transfected into mouse totipotent cells according to a conventional method, whereby the large T antigen gene of the temperature-sensitive mutant tsA58 of SV40 was transferred to all cells.
  • a transgenic mouse ie, a transgenic mouse, can be produced.
  • the tsA58 large T antigen gene is expressed in all its somatic cells.
  • Specific examples of the totipotent cells include fertilized eggs and early embryos, as well as ES cells having pluripotency. '' And all
  • known gene transfer methods such as a microinjection method, an electric pulse method, a ribosome method, and a calcium phosphate method can be used.
  • the nuclei of the totipotent cells (cultured cells) of the above mice are transplanted into non-fertilized enucleated eggs and initialized (nuclear transfer).
  • An antigen gene can be introduced.
  • the eggs obtained by microinjecting the large T antigen gene of tsA58, a temperature-sensitive mutant of SV40, into the male pronucleus of fertilized eggs at the pronuclear stage were transplanted into the oviduct of the foster mother. After obtaining the offspring, the offspring having the injected gene are selected, and an individual having the gene integrated stably is obtained.
  • transgenic mice ie, transgenic mice, that have been integrated into the chromosomes of these cells can be efficiently produced.
  • the immortalized dendritic cell line of the present invention retains a permanent growth ability at 33 ° C, suppresses growth at 37 ° C, and stops growth at 39 ° C. It has the characteristic of being able to control the expression of the differentiation traits of the plant. In addition, this immortalized dendritic cell line shows good proliferation at 33 ° C. even after being subcultured for 7 months or more, and retains its function as a dendritic cell.
  • the immortalized dendritic cell line of the present invention can continue to proliferate stably, and can activate T cells due to the antigen uptake ability and antigen presentation ability of the dendritic cells. In addition to being useful as a vaccine, it can be used to study the induction and modification of immunity and therapy using dendritic cells. Further, as shown below, it can be used for screening useful substances for dendritic cells.
  • the above-described immortalized dendritic cell line of the present invention is cultured in the presence of a test substance;
  • the present invention also includes a substance for promoting maturation in dendritic cells, a substance for promoting cell growth in dendritic cells, and a substance for promoting activation of dendritic cells, which are obtained by the above-described screening method.
  • the screening of substances for promoting or inhibiting maturation in dendritic cells is performed by culturing immortalized dendritic cell lines in the presence of various concentrations of a test substance, and measuring the amount of marker protein expressed after culturing for a certain period of time. It is performed by detecting and measuring, and comparing and evaluating with a control cultured in the absence of the test substance.
  • myeloid molecules and leucosite molecules which are maturity marker proteins expressed on the surface of dendritic cells, can be measured by immunochemical detection using a specific antibody in a conventional manner. In addition, it can also be measured by detecting the expression level of mRNA corresponding to these by a conventional method.
  • the screening for substances that promote or suppress cell growth in dendritic cells is performed by culturing immortalized dendritic cell lines in the presence of various concentrations of test substances, and measuring the number of cells and cell morphology after culturing for a certain period of time. ⁇ Analyzed and compared with that of a control cultured in the absence of the test substance. Screening for dendritic cell activation-promoting or -suppressing substances is performed by culturing immortalized dendritic cell lines in the presence of various concentrations of test substances, and culturing for a certain period of time. Is measured and compared with that of a control cultured in the absence of the test substance.
  • the cell vaccine of the present invention is not particularly limited as long as it comprises the above-mentioned immortalized dendritic cell line of the present invention as a main component.
  • a dendritic cell line is preferable, and such a human-derived immortalized dendritic cell line is obtained by isolating a dendritic cell line from human peripheral blood or bone marrow, and obtaining a large T of a temperature-sensitive mutant tsA58 of SV40.
  • the large T antigen gene of the temperature-sensitive mutant tsA58 of SV40 was introduced into the human embryonic stem cells (ES cells) by introducing the antigen gene and repeating subculture, or The cells can be differentiated into dendritic cell strains and established by repeating subculture.
  • immortalized dendritic cell lines can grow at 33 ° C, but growth is suppressed at 37 ° C, or immortalized dendritic cell lines Or an antigen-IgG immune complex is preferred.
  • the cellular vaccine of the present invention can be used as an antigen-presenting cell that stimulates T cells, which takes up an antigen in vivo or in vitro and presents an antigenic peptide on the cell surface after modification.
  • a cell vaccine of the present invention comprising a suspension of the immortalized dendritic cell line of the present invention is to be inoculated as a therapeutic vaccine into the human body, but growth is suppressed in 37. Therefore, safety is high.
  • the immortalized dendritic cell line of the present invention requires such cell inactivation treatment. It is unnecessary and can be grown at 33 ° C, but it can be said that it is an extremely safe vaccine because growth is suppressed at 37.
  • the cell vaccine of the present invention in particular, a cell vaccine mainly comprising a human-derived immortalized dendritic cell line, is a cell vaccine that can be transferred to humans, and is used for various tumors such as leukemia, liver cancer, lung cancer, gastric cancer, and colon cancer, and It can be advantageously used for infectious diseases caused by various viruses and bacteria.
  • Cell of the present invention The dose of Kuching varies depending on the patient's age, weight, gender, type of cancer, degree of progression of the cancer, symptoms, etc., and cannot be determined unconditionally. A small amount can be administered to the patient.
  • the cell vaccine of the present invention can be used for patients themselves, but can be administered to a large number of MHC-compatible patients of the same type due to the development of bone marrow banks and cord blood banks.
  • the present invention will be described more specifically with reference to examples, but the technical scope of the present invention is not limited to these examples.
  • Example 1 Production of transgenic mouse
  • mice transfected with the DNA of the temperature sensitive mutant tsA58 of SV40 were created by the following procedure.
  • a genomic DNA of SV40 temperature-sensitive mutant tsA58 modified by genetic engineering was used.
  • the genomic DNA of tsA58 was opened with the restriction enzyme BamHI, introduced into the BamHI site of pBR322, and the S ⁇ iI sequence was converted to SacII to convert SV40 to A DNA clone with an origin of replication (ori) deleted, ori (-) p SV ts A58 ori (-)-2 (Ohno T. et al., Cytotechnolgy, 165-172, 1991)
  • the DNA for introduction was prepared according to the procedure described above.
  • This DNA solution was diluted with a buffer for injection (10 mM Tris-HCl containing 0.1 mM EDTA; pH 7.6) to a concentration of 5 g / m 1 and diluted with DNA for injection. A solution was prepared. The prepared DNA solution was stored at -20 until injection.
  • a buffer for injection 10 mM Tris-HCl containing 0.1 mM EDTA; pH 7.6
  • Microinjection of the above prepared DNA solution for injection into mouse pronucleus fertilized eggs was performed as follows. Sex-matured 8-week-old Wistar mice are bred under a light-dark cycle of 12 hours (4: 00 to 16: 00 light hours), temperature of 23 ⁇ 2 C, humidity of 55 ⁇ 5%, and vaginal smear. The female estrous cycle was observed by, and the date of hormone treatment was selected. First, 150 IU Zkg of pregnant serum serum gonadotropin (PMS gonadotropin (PMS G), manufactured by Nippon Zenjak) was intraperitoneally administered to female mice for 48 hours.
  • PMS gonadotropin PMS gonadotropin
  • human chorionic gonadotropin manufactured by Sankyo Organ Co., Ltd .; human chorionic gonadotropin: hCG
  • hCG human chorionic gonadotropin
  • Pronuclear stage fertilized eggs were collected by tubal perfusion 32 hours after hCG administration.
  • mK RB solution Toyoda Y. and Chang M., J. Reprod. Fertil., 36, 9-22, 1974
  • the collected fertilized eggs were enzymatically treated at 37 ° C for 5 minutes in mKRB solution containing 0.1% hyaluronidase (Sigma; Hyaluronidase Typel-S) to remove cumulus cells. and washed 3 times with a liquid to remove the enzyme, to DNA injection operation C 0 2 - and stored in - (95% of a ir, 3 7 ° C, saturated humidity 5% C_ ⁇ 2) incubator.
  • the DNA solution was injected into the male pronucleus of the mouse fertilized eggs prepared in this manner. Transplanted 2 2 8 eggs into 9 foster parents And gave birth to obtain 80 offspring.
  • the injected DNA was introduced into mice by PCR using DNA prepared from tails obtained by cutting the tails immediately after weaning.
  • mice Male lines: # 07-2, # 07-7-5, # 09-19-6, # 12-23, # 19-19, female lines: # 09-9-7, # 11) 1, # 1 2—5, # 1 2—7, # 1 8—5, # 1 9—8).
  • G. Generation transgenic mice and Wistar mice were bred, and two lines (# 07-7-2, # 07-7-5) of male huaunda and three lines of female founder (# 09-9-7, # 11-16) , # 1918), confirmed the gene transfer to the next generation and beyond.
  • Example 2 Separation and preparation of DC from mouse bone marrow
  • mice Two strains of mice were used, C57BL / 6 (B6 mouse) and temperature-sensitive SV40T antigen transgenic mouse (ts SV40 LTT g mouse; B6 background). All the mice were 6-8 week old females.
  • Mouse bone marrow cells Te to 0. 1 44 M chloride
  • Anmoniumu to erythrocyte lysis treatment, anti-CD 4 antibodies, anti-CD 8 antibodies, anti-I one A b antibody, anti-rat I g antibody (respectively TIB 2 0 7, 2 Lymphocytes and Ia-positive cells were removed using 11, 15 4 and 2 16: Amerikan Type Culture Collection) and Egret complement (Cedarlane).
  • DC dendritic cells
  • Example 2 The DC obtained in Example 2 was stained with Wright-Giemsa. DCs originating from two strains, B6 mouse and ts SV40 LTT g mouse, were adhered to slide glass by site spin, and the light Giemsa method (light stain and Giemsa stain, both manufactured by Merck) ) And visualized. The results are shown in Figure 1. As a result, the cell size of tsSV40LTTg DC (SV40TB6) was larger than that of B6 mouse DC (primary culture B6). Example 4 (Proliferation ability at different temperatures)
  • MTT (3- (4,5-dimethyltiazol-2-yl) -2,5-diphenyltetrazo-1ium bromide) is cleaved by the dehydrogenase of the inner mitochondrial membrane and has a purple-red MT. Generate T-iormazan. Based on the fact that this color reaction is proportional to the proliferative capacity of the cells, the MTT assay at ts SV40 LTT g at different temperatures (33 ° C, 37 ° C, 39 ° C) was measured for its proliferation ability.
  • MTT Atsushi was prepared by adding 10 L of a 5 mg / mL MTT (Sigma) solution to the above-mentioned 2 ng / mL mouse recombinant GM—CSF (Peprotech
  • MTT assay was performed under the same conditions as in Example 4. That is, 10 L of a 5 mg / mL MTT (Sigma) solution was added to a cell suspension containing mouse recombinant GM-CSF (Peprotech) at concentrations of 20, 10, 2, and OngZmL, respectively. was added to 0 t L, 9 to 6 well plates 7. plated cells at 5 X 1 0 3/1 0 0 n L / well, MT T solution was added 1 0 x L / well at the time of measurement, over time A measurement was made. The results are shown in Figure 3.
  • MTT granulocyte macrophage colony stimulating factor
  • the immortalized cells were found to be cells that proliferate in a GM-CSF-dependent manner.
  • Example 6 (Examination of proteins expressed on the cell surface)
  • ts SV 40 LT T g mice (SV 40 TB 6) and B 6 mice (primary culture B 6) were used as DCs, and 10 / g / mL antigen (OVA-FI On the second day after addition of TC (Molecule Probes), the uptake capacity was compared by FACS. Fig. 6 shows the results. As a result, DC of tsSV40LTTg showed stronger uptake ability than DC of B6 mouse.
  • Example 8 Comparative study of maturation of dendritic cells to LPS stimulation
  • ts SV 40 LTT g mouse S V40 TB 6
  • B 6 mouse primary culture B 6
  • p70 production was measured by ELISA.
  • Fig. 8 shows the results. As a result, 2 g / mL of LPS was added to each DC culture well, and 24 hours later, the amount of IL-12p70 produced in the supernatant did not change between the two strains.
  • ts SV 40 LT T g mice (SV 40 TB 6) and B 6 mice (primary culture B 6) originated from 10 strains of DCs, respectively. After incorporation, their maturity was analyzed by FACS two days later. The results are shown in FIG. As a result, DC of B6 mouse (primary culture 6) showed stronger maturity.
  • Example 11 1 Comparative study of the ability of dendritic cells to present antigen to OVA-T cells
  • ts SV40 LTT g mice SV The antigen presenting ability of each DC derived from two strains, 40 TB 6) and B 6 mouse (primary culture B 6) was measured.
  • the IL-14 production and proliferation of T cells were measured as presentation ability.
  • X-ray irradiated DC 5 X 1 0 3 / well
  • OVA or OVA-I g G immune complexes (IC) 9 6-well in the presence Co-culture was performed on the plate. It is said that highly efficient antigen presentation occurs when an immune complex incorporates an antigen through the Fc ⁇ receptor (J. Immunol., 161, 6059-6067, 1998, J. Exp. Med. , 189, 371-380, 1999, Eur. J. Immunol., 30, 848-857, 2000, J. Exp. Med., 195, F1-F3, '2002).
  • the OVA-IgG immune complex was prepared by mixing ovalbumin (OVA; Sigma) with Egret Anti-OVAI gG (BioDesign) in a weight ratio of 1:10, It was prepared for one hour with a computer. Twenty-four hours later, the culture supernatant was collected, and the amount of IL-14 produced by the T cells was measured by ELISA. T cell proliferation was determined by measuring [ 3 H] —T dR incorporation after 48 hours of co-culture. The results are shown in FIG. As a result, each of the DCs originating from the two lines both had the same leprosy T cell proliferation and IL-14 production.
  • mice SV 40 TB 6 and B6 mice (primary culture B 6) were loaded with OVA or OVA A-IgG immune complex on each DC. Then, the anti-OVA antibody titer over time after the transfer was examined.
  • mature DCs with antigen were recovered two days after replacement of the culture medium with fresh medium containing OVA or OVA_IgG immune complex at 10 ⁇ g / mL.
  • PBS (-) was washed with and populate the recipient to become B 6 mice DC 1 X 1 0 6 cells per animal into the tail vein. After immunization, blood was collected from the fundus, and the anti-OVA antibody titer over time was measured by ELISA.
  • mice The in vivo CTL activity by DC transfer into mice was compared. Spleen cells of mice after transfection 7 days were taken to remove the adherent cells by incubating for 30 minutes at C_ ⁇ 2 incubator 3 7 ° C, and the T cell-rich. This nonadherent cells 1 X 1 0 7, E. G 7 stopping the X-ray irradiation proliferate - the OVA 1 X 1 0 6 were co-cultured in 24-well plates.
  • E. G 7 -0 VA (CRL2113; ATCC) is a transfection of OVA cDNA into EL-14, a thymoma derived from B6, and the OVA peptide is always loaded on its MHC class I. Have been.
  • Example 14 when OVA was added to DC of ts SV 40 LTT g, compared to DC of B6 mouse (primary culture B6), it was almost the same as when the immune complex was incorporated.
  • the reason for the induction of the rather strong CTL activity was that more antigen-derived peptides were presented on the DC MHC class I molecule, and the specificity of the MHC class I / OVA peptide complex Site using typical monoclonal antibodies
  • FIG. 14 shows the result of histogram showing the amount of MHC I or MHC I / ⁇ VA peptide cell surface expression of dendritic cells (CD1lc positive cells).
  • Ts SV40 LTT g mice SV40T ⁇ 6 mice and ⁇ 6 mice (primary culture ⁇ 6), which were given OVA stimulation (10 g / m 1, 48 hours)
  • Each DC (5 ⁇ 10 5 / mouse) or saline (200 1) was administered through the tail vein of naive mice (7 to 8), and after 7 days, DC or After administration of saline, tumor cells expressing OVA (E. G 7) planting in 1 X 1 0 5 Nomausu the left thigh, the day tumor formation was additionally connexion observed, those tumor diameter of more than 5 mm is determined that the tumor is formed.
  • the tumor suppression rate in FIG. 15 is the percentage of mice in which no tumor was formed, expressed as a percentage. Mice to which ts SV40 LTT g DC had been transferred had slower tumor formation than mice to which wild-type B6 mouse DC had been transferred, and efficiently suppressed tumor formation. That is, it was found that ts SV40 LTT g DCs are cells that induce antitumor activity more efficiently in vivo than wild-type DCs. (Discussion)
  • DCs derived from bone marrow cells of ts SV 40 LTT g mice, passaged at least 10 times, and subjected to long-term culture for at least 7 months at 33 were slightly larger in size than those in the initial culture, and Although the ability was high, it was found that the ability to present Bobara in the mouth of the mouth had the same function as that via MHC class II. From this, it is considered that the cell line is useful for use in the analysis of DC in vitro. In addition, when used as a vaccine in vivo, it induced CTLs particularly strongly via MHC class I. This is consistent with the report that high-efficiency MHC class I-mediated presentation depends on high antigen uptake (Annu. Rev. Immunol., 19, 47-64, 2001). From this, DC of tsSV40LTTg can efficiently induce a vaccine effect against cancers and viruses in vivo.
  • the dendritic cell line can be used for induction and modification of immunity, development of a therapeutic method using the dendritic cell line, and the like. Further, according to the present invention, a method for screening a useful substance against dendritic cells and a substance that enhances an immune response using the cell line are provided, since the cell line retains its original function and characteristics in a tissue derived from the cell line. can do.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Cell Biology (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • General Health & Medical Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Microbiology (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Medicinal Chemistry (AREA)
  • Public Health (AREA)
  • Mycology (AREA)
  • Epidemiology (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • Oncology (AREA)
  • Hematology (AREA)
  • Virology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

It is intended to provide an immortalized dendritic cell line sustaining the functions and properties inherent to dendritic cells, a method of establishing the same, a method of screening a useful substance by using the above immortalized dendritic cell line, and a cell vaccine comprising the above immortalized dendritic cell line as the main component. Namely, an immortalized dendritic cell line having an ability to take up an antigen, an ability to present an antigen and an ability to introduce CTL activity is established by hemolyzing bone marrow cells of a transgenic mouse carrying a large T antigen gene of a temperature-sensitive SV40 mutant strain tsA58 transferred thereinto, removing lymphocytes and Ia-positive cells therefrom, culturing the thus obtained cells in the presence of GM-CSF to induce dendritic cells, repeatedly subculturing the cells 10 times or more, and thus expressing myeloid molecules and leukocyte molecules on the cell surface.

Description

骨髄由来の不死化樹状細胞株 技術分野 Immortalized dendritic cell line derived from bone marrow
本発明は、 骨髄に由来する不死化樹状細胞株に関し、 詳しくは S V 4 0の温度感受性突然変異株 t s A 5 8のラージ T抗原遺伝子を導入した トランスジエニックマウス ( t明s S V 4 0 L T T gマウス) の骨髄に 由来する樹状細胞 (Dendr i t i c c e l l ; D C ) を継代培養することにより 田  The present invention relates to an immortalized dendritic cell line derived from bone marrow. More specifically, the present invention relates to a transgenic mouse transfected with the large T antigen gene of a temperature-sensitive mutant tsA58 of SV40 (tMs s SV40). Dendritic cells (DCs) derived from the bone marrow of LTT g mice)
樹立することができる不死化樹状細胞株及びその製法や、 その利用に関 する。 本発明の不死化樹状細胞株は、 樹状細胞のインビトロにおける解 析ゃ樹状細胞を用いたワクチン療法の開発並びに免疫応答の修飾、 増強 の研究に応用できる。 背景技術 The present invention relates to an immortalized dendritic cell line that can be established, a method for producing the cell line, and use thereof. The immortalized dendritic cell line of the present invention can be applied to in vitro analysis of dendritic cells, development of vaccine therapy using dendritic cells, and study of modification and enhancement of immune response. Background art
従来、 医薬品の安全性や有効性に関する試験研究には主として動物が 用いられていたが、 動物愛護の観点から動物を使用する代わりに、 培養 細胞等を用いてィンビトロで医薬品の有効性や安全性を試験研究する技 術の実用化レベルでの研究が行われている。 例えば、 生体組織から採取 した初代培養細胞や無限増殖する不死化細胞 (樹立細胞) 系を用いる方 法で予め試験した後に動物試験が行われている。 しかし、 初代細胞は初 期段階ではよく増殖するが、 継代培養とともに次第に増殖が停止し、 や がては死滅す,る (この現象を細胞老化という)。 さらに、 初代細胞は、 そ の特性が生体組織から採取する度に異なるという危惧に加え、 継代とと もに変化することが指摘されている。 特に、 増殖速度が非常に遅い場合 や微小器官に由来する場合には、 試験に供するに足る初代細胞を得るこ とは非常に困難であるとされている。 In the past, animals were mainly used for testing and researching the safety and efficacy of pharmaceuticals.However, instead of using animals from the viewpoint of animal welfare, the efficacy and safety of pharmaceuticals were studied in vitro using cultured cells. Research is being conducted at the practical level of technology for testing and researching the technology. For example, animal tests have been carried out after preliminarily testing using primary cultured cells collected from biological tissues or immortalized cells (established cells) that grow indefinitely. However, primary cells proliferate well in the early stage, but gradually stop growing with subculture and eventually die (this phenomenon is called cell senescence). In addition, it has been pointed out that the characteristics of primary cells change with passage, in addition to the fear that their characteristics will differ each time they are collected from living tissue. In particular, if the growth rate is very slow or derived from micro-organs, primary cells that are sufficient for testing may be obtained. And is said to be very difficult.
一方、 初代培養の継代を重ねるなかで、 細胞老化を免れて無限増殖す る能力を獲得した不死化細胞では、 安定して均一の特性を有することに なるが、 このような不死化細胞の多くは、 その細胞が生体において本来 有していた形態や機能の一部又はその全てを喪失する。 そのため、 この ような不死化細胞株を用いた試験では、 その細胞株の由来する組織での 本来の特性を正確に反映することは難しいとされていた。 そこで、 初代 細胞に r a s遺伝子や c 一 m y c遺伝子などの発癌遺伝子、 アデノウィ ルスの E l A遺伝子、 S V 4 0ウィルスのラ一ジ T抗原遺伝子、 ヒトパ ピロ一マウィルスの H P V 1 6遺伝子等を導入して細胞を形質転換し、 初代細胞の有する活発な増殖能を継続的に保持し、 さらに継代すること によってその細胞固有の特性を喪失しない不死化細胞を樹立する試みが なされている。 ところが、 このような不死化細胞においても、 対象とす る臓器によっては、 その初代細胞を調製し、 これらの癌遺伝子やラージ T抗原遺伝子を導入する時点で、 すでに幾つかの機能を喪失するため、 本来の機能を保持する厳密な意味での不死化細胞の取得は困難であった。 特に、 増殖速度が非常に遅い場合や微小器官に由来する場合の初代細胞 を調製して株化することは極めて困難であった。  On the other hand, immortalized cells that have acquired the ability to proliferate indefinitely while avoiding cell senescence during repeated passage of primary culture will have stable and uniform characteristics. Many cells lose some or all of the morphology and functions that cells originally have in living organisms. Therefore, it has been considered difficult to accurately reflect the original characteristics of the tissue from which the cell line is derived in a test using such an immortalized cell line. Thus, oncogenes such as the ras gene and the c-myc gene, the adenovirus ElA gene, the SV40 virus large T antigen gene, and the human papillomavirus HPV16 gene were introduced into primary cells. Attempts have been made to establish immortalized cells by transforming the cells, maintaining the vigorous proliferative ability of the primary cells continuously, and further subculturing the cells without losing the inherent characteristics of the cells. However, even in such immortalized cells, some functions have already been lost when primary cells are prepared and these oncogenes and large T antigen genes are introduced, depending on the target organ. However, it was difficult to obtain immortalized cells in the strict sense of maintaining the original function. In particular, it has been extremely difficult to prepare and establish primary cells when the growth rate is very slow or derived from micro-organs.
これに対し、 近年確立された動物個体への遺伝子導入技術を用いて、 個々の細胞に癌遺伝子やラージ T抗原遺伝子を導入するかわりに、 これ らの遺伝子を安定的に染色体に組み込んだ遺伝子導入動物を作出し、 個 体の発生時点において既に癌遺伝子やラージ T抗原遺伝子を細胞の中に 保有する動物の臓器から初代細胞を調製して、 これを継代することによ つて不死化細胞を樹立する方法が報告されている。 特に t s S V 4 0 L T T gマウスの臓器から得られる不死化細胞は、その増殖や分化形質 の発現を温度を変えることによって操作することができるため、 非常に 有効であるとされている (Transgenic Research 4, 215-225, 1995、 Genes to Cells, 2, 235-244, 1997、 Exp. Cell Res. , 197, 50-56, 1991、 Exp. Cell Res. , 209, 382-387, 1993、 Exp. Cell Res., 218, 424-429, 1995、 Blood, 86, 2590-2597, 1995、 J. Cell. Physiol. , 164, 55-64, 1995、 Exp. Hematol. , 27, 1087-1096, 1999)。 On the other hand, instead of introducing oncogenes and large T antigen genes into individual cells using gene transfer technology for animal individuals that has been established in recent years, gene transfer that stably integrates these genes into chromosomes An animal is created, primary cells are prepared from an organ of an animal that already has an oncogene or a large T antigen gene in the cell at the time of generation of the individual, and immortalized cells are obtained by subculture. Methods for establishing have been reported. In particular, immortalized cells obtained from ts SV40 LTT g mouse organs can be manipulated by changing the temperature to control their growth and development of differentiation traits. (Transgenic Research 4, 215-225, 1995, Genes to Cells, 2, 235-244, 1997, Exp.Cell Res., 197, 50-56, 1991, Exp.Cell Res., 209, 382-387, 1993, Exp.Cell Res., 218, 424-429, 1995, Blood, 86, 2590-2597, 1995, J. Cell.Physiol., 164, 55-64, 1995, Exp.Hematol , 27, 1087-1096, 1999).
他方、 樹状細胞 (D C) は造血幹細胞由来の樹枝状形態をとる細胞集 団で、 生体内に広く分布している。 未成熟樹状細胞は、 それぞれの組織 に侵入したウィルスや細菌をはじめとする異物を認識して取り込み、 リ ンパ系器官 T細胞領域への移動の過程でぺプチドを消化分解によって生 成し、 MHC分子に結合させて細胞表面に提示することにより、 抗原特 異的な T細胞を活性化して免疫応答を誘導する抗原提示細胞としての役 割を担っている (Ann. Rev. Immunol. 9, 271-296, 1991、 J. Exp. Med. , 185, 2133-2141, 1997) 0 このように、 D Cは T細胞依存性の初期免疫応 答を惹起できるという T細胞応答の始動にとって非常に重要な役割を果 たしている (Nature, 392, 245-252, 1998、 Annu. Rev. Immunol. , 18, 767-811, 2000)。 骨髄で生まれた D Cは未熟な状態で、 生体内の様々な 組織に飲食作用をもって分布する。 その未熟 D Cは抗原を取り込み成熟 し、 2次リンパ性器官へと移動する。そしてその T細胞領域に蓄積して、 体内を循環している T細胞のうち抗原特異的なものを選択的に活性化し て免疫応答を駆動する。 しかし、 D Cのインビポにおけるこれらの詳し いメカニズムは未だ分かっておらず、 インビトロにて解析する必要があ る。 マウスのインビト口のシステムにおいて顆粒球マク口ファージコロ ニー剌激因子 (GM— C S F) を用いることにより、 機能的な D Cの誘 導が初期培養で可能であるが、その寿命は長くても 2ヶ月である(J. Exp. Med. , 175, 1157-1167, 1992)。 近年、 マウスの 2次リンパ性器官である 脾臓から、 D Cが GM— C S F依存的に長期培養 ( 1 2ヶ月以上) でき ることが報告されたが (D 1細胞: J . Exp. Med., 185, 317-328, 1997)、 未熟で抗原を取り込んでいない、 骨髄などの 1次リンパ組織からは D C 細胞株が樹立されていない。 Dendritic cells (DCs), on the other hand, are dendritic cell populations derived from hematopoietic stem cells and are widely distributed in vivo. Immature dendritic cells recognize and take in foreign substances, such as viruses and bacteria, that have invaded their tissues, and generate peptides by digestion and degradation in the process of migrating to lymphoid organ T cells. By binding to MHC molecules and presenting them on the cell surface, they act as antigen-presenting cells that activate antigen-specific T cells and induce an immune response (Ann. Rev. Immunol. 9, 271-296, 1991, J. Exp.Med., 185, 2133-2141, 1997) 0 Thus, DCs are very important for the initiation of T cell responses that can elicit T cell-dependent early immune responses. (Nature, 392, 245-252, 1998; Annu. Rev. Immunol., 18, 767-811, 2000). DCs born in the bone marrow are immature and are phagocytosically distributed to various tissues in the body. The immature DCs take up the antigen, mature and migrate to secondary lymphoid organs. It accumulates in the T cell area and selectively activates antigen-specific T cells circulating in the body to drive an immune response. However, these detailed mechanisms in DC in vivo are still unknown and need to be analyzed in vitro. The use of granulocyte-macophage phage colony-stimulating factor (GM-CSF) in the mouse in vitro mouth system allows the induction of functional DCs in the initial culture, but has a longevity of at least 2 months. (J. Exp. Med., 175, 1157-1167, 1992). Recently, long-term culture (more than 12 months) of DC from the spleen, a secondary lymphoid organ of mice, has been performed in a GM-CSF dependent manner. (D1 cells: J. Exp. Med., 185, 317-328, 1997), but DC cell lines have been established from primary lymphoid tissues such as bone marrow that are immature and do not take up antigen. It has not been.
樹状細胞(D C )は免疫応答の駆動を行う重要な細胞である。 しかし、 D Cの生体内での動態の解析や、 癌免疫賦活への応用は始まったばかり であり、 未解明な点が多く残されている。 D Cは生体から調製すること で培養可能であるが、 その寿命は限られており、 G M— C S F等のサイ トカイン存在下で培養しても、 長くて 1ヶ月程度しか存続できず、 その 後死滅する。 これまでは、 安定的に増殖し続ける樹状細胞の作製は非常 に困難であって、樹状細胞の簡便な株化方法もなく、免疫の誘導や修飾、 樹状細胞を用いた治療などに目処が立っていなかった。 すなわち本発明 の課題は、 樹状細胞が本来有する機能 ·特性を保持する不死化樹状細胞 株やその樹立方法、 かかる不死化榭状細胞株を用いた有用物質のスクリ 一二ング方法及びかかる不死化樹状細胞株を主成分とする細胞ワクチン を提供することにある。  Dendritic cells (D C) are important cells that drive the immune response. However, the analysis of the dynamics of DC in vivo and its application to cancer immunostimulation have just begun, and many unclear points remain. DCs can be cultured by preparing them from living organisms, but their lifespan is limited.Even if they are cultured in the presence of cytokines such as GM-CSF, they can survive for as long as about one month and then die. I do. Until now, it has been extremely difficult to produce dendritic cells that continue to proliferate stably, and there is no simple method for establishing dendritic cells. The prospect was not standing. That is, an object of the present invention is to provide an immortalized dendritic cell line that retains the functions and characteristics inherent to dendritic cells, a method for establishing the same, a method for screening a useful substance using the immortalized dendritic cell line, and a method for screening the same. An object of the present invention is to provide a cell vaccine containing an immortalized dendritic cell line as a main component.
本発明者らは、上記課題を解決するために鋭意研究し、 t s S V 4 0 L T T gマウスの骨髄細胞を溶血処理した後、リンパ球及び I a陽性細 胞を除去し、 得られた細胞を G M— C S Fの存在下培養することにより 樹状細胞を誘導し、 継代培養を 1 0回以上繰り返し、 樹立した不死化樹 状細胞株が、細胞表面にミエロイ ド分子及びロイコサイ ト分子を発現し、 抗原の取込み能、抗原の提示能、及び C T L活性の誘導能を有するなど、 D Cが本来有している性質を備えていることを確認し、 本発明を完成す るに至った。 発明の開示  The present inventors have conducted intensive studies to solve the above problems, and after hemolyzing bone marrow cells of ts SV40 LTT g mice, removing lymphocytes and Ia-positive cells, and obtaining the obtained cells. Dendritic cells are induced by culturing in the presence of GM-CSF, and subculture is repeated 10 times or more.The established immortalized dendritic cell line expresses myeloid and leucosite molecules on the cell surface. The present inventors have confirmed that DCs have inherent properties such as an ability to take up an antigen, an ability to present an antigen, and an ability to induce CTL activity, thereby completing the present invention. Disclosure of the invention
すなわち本発明は、 骨髄に由来することを特徴とする不死化樹状細胞 株 (請求項 1 ) や、 細胞表面にミエロイ ド分子及びロイコサイ ト分子を 発現し、 抗原の取込み能、 抗原の提示能、 及び CTL活性の誘導能を有 することを特徴とする請求項 1記載の不死化榭状細胞株(請求項 2 )や、 3 3 °Cで増殖することができるが、 3 7 °Cでは増殖が抑制されることを 特徴とする請求項 1又は 2記載の不死化樹状細胞株 (請求項 3) や、 L P S刺激に応答能を有することを特徴とする請求項 1〜 3のいずれか記 載の不死化樹状細胞株 (請求項 4) や、 齧歯類起源であることを特徴と する請求項 1〜4のいずれか記載の不死化樹状細胞株 (請求項 5) や、 齧歯類がマウスであることを特徴とする請求項 5記載の不死化榭状細胞 株 (請求項 6 ) や、 不死化樹状細胞株 TD C (F E RM B P - 0 8 5 2 7 ) (請求項 7 ) に関する。 That is, the present invention provides an immortalized dendritic cell characterized by being derived from bone marrow. The strain (Claim 1), which expresses a myeloid molecule and a leucosite molecule on the cell surface, and has an antigen uptake ability, an antigen presentation ability, and an ability to induce CTL activity. The immortalized dendritic cell line (Claim 2) or can be grown at 33 ° C, but the growth is suppressed at 37 ° C, The immortalized cell line according to claim 1 or 2, A dendritic cell line (Claim 3), an immortalized dendritic cell line according to any one of claims 1 to 3, which has an ability to respond to LPS stimulation (Claim 4), and a rodent The immortalized dendritic cell line according to any one of claims 1 to 4, which is characterized in that it is an origin (claim 5), and the immortalized cell line according to claim 5, wherein the rodent is a mouse. The present invention relates to a dendritic cell line (Claim 6) and an immortalized dendritic cell line TDC (FE RM BP-08527) (Claim 7).
また本発明は、 S V 4 0の温度感受性突然変異株 t s A 5 8のラージ T抗原遺伝子を導入したトランスジエニックマウスの骨髄細胞を溶血処 理した後、 リンパ球及び I a陽性細胞を除去し、 得られた細胞を GM— C S Fの存在下培養することにより樹状細胞を誘導し、 継代培養を 1 0 回以上繰り返し、 細胞表面にミエロイ ド分子及びロイコサイ ト分子を発 現し、 抗原の取込み能、 抗原の提示能、 及び C T L活性の誘導能を有す る細胞株を樹立することを特徴とする不死化樹状細胞株の製造方法 (請 求項 8 ) や、 3 3 °Cで増殖することができるが、 3 7 °Cでは増殖が抑制 され、 L P S刺激に応答能を有する細胞株を樹立することを特徵とする 請求項 8記載の不死化樹状細胞株の製造方法 (請求項 9) や、 被検物質 の存在下、 .請求項 1〜 7のいずれか記載の不死化樹状細胞株を培養し、 該細胞株における成熟マーカータンパク質の発現の程度を測定 ·評価す ることを特徴とする樹状細胞における成熟促進又は抑制物質のスクリ一 ニング方法(請求項 1 0)や、 マーカ一タンパク質が、 ミエロイ ド分子、 ロイコサイ ト分子、 I 一 Ab、 C D 8 6及ぴ Z又は C D 4 0であること を特徴とする請求項 1 0記載の樹状細胞における成熟促進又は抑制物質 のスクリーニング方法 (請求項 1 1 ) や、 被検物質の存在下、 請求項 1 〜 7のいずれか記載の不死化樹状細胞株を培養し、 該細胞の増殖の程度 を測定 ·評価することを特徴とする樹状細胞における細胞増殖促進又は 抑制物質のスクリーニング方法 (請求項 1 2 ) や、 被検物質の存在下、 請求項 1〜 7のいずれか記載の不死化樹状細胞株を L P S刺激し、 該細 胞の I L一 1 2産生量を測定、 評価することを特徴とする樹状細胞の活 性化促進又は抑制物質のスクリーニング方法 (請求項 1 3 ) に関する。 The present invention also provides a method for removing lymphocytes and Ia-positive cells after hemolyzing bone marrow cells of a transgenic mouse into which the large T antigen gene of the temperature-sensitive mutant tsA58 of SV40 has been introduced. The obtained cells are cultured in the presence of GM-CSF to induce dendritic cells.Subculture is repeated at least 10 times, expressing myeloid molecules and leucosite molecules on the cell surface, and taking up antigen. A method for producing an immortalized dendritic cell line, which comprises establishing a cell line having the ability to present antigen, the ability to present antigen, and the ability to induce CTL activity (claim 8), and growth at 33 ° C. The method for producing an immortalized dendritic cell line according to claim 8, characterized in that the growth is suppressed at 37 ° C, and a cell line capable of responding to LPS stimulation is established. 9) The immortality according to any one of claims 1 to 7, in the presence of a test substance. A method for screening a substance that promotes or suppresses maturation of dendritic cells, comprising culturing a denatured dendritic cell line, and measuring and evaluating the expression level of the maturation marker protein in the cell line (claim 10). ) and the marker one protein, Mieroi de molecules, Roikosai preparative molecular, I one a b, that CD 8 6 is及Pi Z or CD 4 0 A method for screening a substance that promotes or suppresses maturation of dendritic cells according to claim 10 (claim 11), and the immortalized tree according to any one of claims 1 to 7, in the presence of a test substance. A method for screening a substance that promotes or suppresses cell growth in dendritic cells (Claim 12), which comprises culturing a dendritic cell line, and measuring and evaluating the degree of proliferation of the cell. An LPS stimulation of the immortalized dendritic cell line according to any one of claims 1 to 7, and measurement and evaluation of the amount of IL-112 produced by the cell, whereby the activation of dendritic cells is promoted. Alternatively, the present invention relates to a method for screening an inhibitor (Claim 13).
さらに本発明は、 請求項 1 0又は 1 1記載のスクリーニング方法によ り得られる榭状細胞における成熟促進物質 (請求項 1 4 ) や、 請求項 1 2記載のスクリ一二ング方法により得られる樹状細胞における細胞増殖 促進物質 (請求項 1 5 ) や、 請求項 1 3記載のスクリーニング方法によ り得られる樹状細胞の活性化促進物質 (請求項 1 6 ) や、 請求項 1〜 7 のいずれか記載の不死化樹状細胞株を主成分とすることを特徴とする細 胞ワクチン (請求項 1 7 ) や、 不死化樹状細胞株が、 3 3 °Cで増殖する ことができるが、 3 7ででは増殖が抑制される不死化樹状細胞株である ことを特徴とする請求項 1 7記載の細胞ワクチン (請求項 1 8 ) や、 不 死化樹状細胞株が、 抗原又は抗原一 I g G免疫複合体を取り込ませた不 死化樹状細胞株であることを特徴とする請求項 1 7又は 1 8記載の細胞 ワクチン (請求項 1 9 ) や、 抗原が腫瘍抗原であることを特徴とする請 求項 1 9記載の細胞ワクチン (請求項 2 0 ) に関する。 図面の簡単な説明  The present invention further provides a substance for promoting maturation of dendritic cells obtained by the screening method according to claim 10 or 11 (claim 14), and the screening method according to claim 12. A cell growth promoting substance in dendritic cells (Claim 15), a dendritic cell activation promoting substance obtained by the screening method according to Claim 13 (Claim 16), and Claims 1 to 7 The immortalized dendritic cell line according to any one of the above, wherein the cell vaccine (claim 17) or the immortalized dendritic cell line can grow at 33 ° C. The immortalized dendritic cell line according to claim 17, wherein the cell vaccine is an immortalized dendritic cell line in which proliferation is suppressed in 37, and the immortalized dendritic cell line is an antigen. Or an immortalized dendritic cell line into which an antigen-IgG immune complex has been incorporated. That claims 1-7 or 1-8 wherein the cell vaccines (claims 1-9) and relates 請 Motomeko 1 9, wherein the cell vaccine antigen is characterized in that the tumor antigen (0 Claim 2). BRIEF DESCRIPTION OF THE FIGURES
第 1図は、 本発明の不死化した榭状細胞株の榭状細胞と B 6マウスの 樹状細胞をライ トギムザ染色した結果を示す写真である。  FIG. 1 is a photograph showing the results of Wit-Giemsa staining of dendritic cells of the immortalized dendritic cell line of the present invention and dendritic cells of B6 mouse.
第 2図は、 本発明の不死化した樹状細胞株について、 M T Tアツセィ により温度条件を変えて増殖能を測定した結果を示す図である。 FIG. 2 shows the MTT assay for the immortalized dendritic cell line of the present invention. FIG. 4 is a view showing the results of measuring the proliferation ability while changing the temperature conditions according to the present invention.
第 3図は、 本発明の不死化した樹状細胞株の増殖において、 GM— C S Fの要求性を MTTアツセィにより測定した結果を示す図である。 第 4図は、 本発明の不死化した樹状細胞株と B 6マウスの樹状細胞上 の代表的なミエロイ ド分子の発現量を F AC Sで解析した結果を示す図 である。  FIG. 3 is a view showing the results of measuring the requirement of GM-CSF by MTT assay in the growth of the immortalized dendritic cell line of the present invention. FIG. 4 is a diagram showing the results of analysis of the expression levels of representative myeloid molecules on the immortalized dendritic cell line of the present invention and dendritic cells of B6 mice by FACS.
第 5図は、 本発明の不死化した樹状細胞株と B 6マウスの樹状細胞表 面上の代表的なロイコサイ ト分子の発現量を F AC Sで解析した結果を 示す図である。  FIG. 5 is a diagram showing the results of analysis of the expression levels of representative leucocyte molecules on the dendritic cell surface of the immortalized dendritic cell line of the present invention and the B6 mouse by FACS.
第 6図は、 本発明の不死化した樹状細胞株と B 6マウスの樹状細胞の 抗原取り込み能を F AC Sで解析した結果を示す図である。  FIG. 6 shows the results of FACS analysis of the antigen uptake ability of the immortalized dendritic cell line of the present invention and the dendritic cells of B6 mice.
第 7図は、 本発明の不死化した樹状細胞株と B 6マウスの榭状細胞の L P S刺激に対する、 樹状細胞の成熟度を F AC Sで解析した結果を示 す図である。  FIG. 7 is a graph showing the results of FACS analysis of dendritic cell maturity in response to LPS stimulation of immortalized dendritic cell lines of the present invention and dendritic cells of B6 mice.
第 8図は、 本発明の不死化した樹状細胞株と B 6マウスの樹状細胞の L P S剌激に対する、 樹状細胞の I L一 1 2 p 7 0産生量を E L I S A 法にて測定した結果を示す図である。  FIG. 8 shows the results of measuring the amount of IL-12p70 produced by dendritic cells of the immortalized dendritic cell line of the present invention and the dendritic cells of B6 mice in response to LPS stimulation by ELISA. FIG.
第 9図は、 本発明の不死化した樹状細胞株と B 6マウスの樹状細胞に OVAを取り込ませ、 2 日後の成熟度を F AC Sで解析した結果を示す 図である。  FIG. 9 is a diagram showing the results of FVAS analysis of the maturity 2 days after OVA was incorporated into the immortalized dendritic cell line of the present invention and the dendritic cells of B6 mice.
第 1 0図は、 本発明の不死化した樹状細胞株と B 6マウスの樹状細胞 の OVA— T細胞への抗原提示能の結果を示す図である。  FIG. 10 shows the results of the ability of the immortalized dendritic cell line of the present invention and dendritic cells of B6 mice to present antigen to OVA-T cells.
第 1 1図は、 本発明の不死化した樹状細胞株と B 6マウスの榭状細胞 に OVAを移入し、 経時的抗 OVA抗体価を示す図である。  FIG. 11 is a diagram showing the time-course anti-OVA antibody titer of OVA transferred to the immortalized dendritic cell line of the present invention and the dendritic cells of B6 mice.
第 1 2図は、 本発明の樹状細胞株の樹状細胞を移入した後、 約 3週間 後の、 脾臓胚中心の免疫組織化学染色 (抗 GL— 7抗体) した結果を示 す写真である。 FIG. 12 shows the results of immunohistochemical staining (anti-GL-7 antibody) of the spleen germinal center approximately three weeks after the transfer of the dendritic cells of the dendritic cell line of the present invention. It is a photograph.
第 1 3図は、 本発明の樹状細胞株の樹状細胞を移入したことによる、 生体内の C T L活性を比較検討した結果を示す図である。  FIG. 13 is a diagram showing the results of comparative examination of the in vivo CTL activity by transferring the dendritic cells of the dendritic cell line of the present invention.
第 1 4図は、 本発明の不死化した樹状細胞株と B 6マウスの樹状細胞 における MHCクラス I /OVAぺプチド複合体の発現量を比較した結 果を示す図である。  FIG. 14 is a diagram showing the results of comparing the expression levels of MHC class I / OVA peptide complexes in the immortalized dendritic cell line of the present invention and dendritic cells of B6 mice.
第 1 5図は、 本発明の不死化した樹状細胞株を移入したことによる、 生体内での増強された抗腫瘍活性の結果を示す図である。 発明を実施するための最良の形態  FIG. 15 is a view showing the results of enhanced antitumor activity in vivo by transferring the immortalized dendritic cell line of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
本発明の不死化樹状細胞株としては、 骨髄に由来する不死化樹状細胞 株であればどのようなものでもよく、 3 3 °Cで増殖することができ、 3 7 °Cでは増殖が抑制される細胞株が好ましく、 この温度感受性の点を除 いては、 D Cが本来備えている性質を有するものがより好ましい。 例え ば、 細胞表面にミエロイ ド分子及びロイコサイ ト分子を発現し、 抗原の 取込み能、 抗原の提示能、 及び C TL活性の誘導能を有する細胞株や、 L P Sによる刺激により樹状細胞が成熟化、 活性化され、 I L一 1 2を 産生するなど L P S刺激に応答能を有する細胞株や、 これらの性質を合 わせ有する細胞株を好適に例示することができる。 また、 かかる不死化 樹状細胞株の具体例として、 不死化樹状細胞株 TD Cを挙げることがで き、 この TD C株は独立行政法人産業技術総合研究所特許生物寄託セン ターに寄託番号 F E RM B P— 0 8 5 2 7 (平成 1 4年 9月 2 6 日に 寄託された F E RM P— 1 9 0 44号より移管) として、 ブダペスト 条約に基づく寄託がなされている。 また、 本発明の不死化樹状細胞株の 由来は特に限定されないが、 マウス等の齧歯類などの動物から得られた 不死化樹状細胞株は、 マウスが豊富な病態モデルを有し、 薬理作用の評 価に広く用いられていることから好ましい。 以下、 本発明の不死化樹状 細胞株の製造方法を、 マウスを用いた方法を例にとって説明する。 The immortalized dendritic cell line of the present invention may be any immortalized dendritic cell line derived from bone marrow, and can be grown at 33 ° C, and can grow at 37 ° C. A cell line to be suppressed is preferable, and a cell line having characteristics inherent to DC is more preferable except for this temperature sensitivity. For example, cell lines that express myeloid and leucosite molecules on the cell surface and have antigen uptake, antigen presentation, and CTL activity induction, or dendritic cells mature by stimulation with LPS Suitable examples include a cell line that is activated and has the ability to respond to LPS stimulation, such as producing IL-112, and a cell line having these properties in combination. Further, a specific example of such an immortalized dendritic cell line is the immortalized dendritic cell line TDC. This TDC line is deposited at the National Institute of Advanced Industrial Science and Technology, Patent Organism Depositary under the depository number. FE RM BP—085-27 (transferred from FE RM P—19044 deposited on September 26, 2002) has been deposited under the Budapest Treaty. The origin of the immortalized dendritic cell line of the present invention is not particularly limited, but the immortalized dendritic cell line obtained from an animal such as a rodent such as a mouse has an abundant disease model in a mouse, Pharmacological review It is preferred because it is widely used for its value. Hereinafter, a method for producing the immortalized dendritic cell line of the present invention will be described by taking a mouse method as an example.
マウス由来の本発明の不死化樹状細胞株は、例えば、 t s S V 4 0 L T T gマウスの骨髄細胞を塩化アンモニゥムを用いて溶血処理した後、 例えば抗 C D 4抗体、 抗 C D 8抗体、 抗 I 一 Ab抗体、 抗ラッ ト I g抗 体とゥサギ補体を用いて、 リンパ球と I a陽性細胞を除去した細胞を 2 0 n g/mLのマウスリコンビナント GM— C S Fを含む完全 R PM I 培地 ( 5 % F C S) を用いて培養し、 榭状細胞 (D C) を誘導し、 継代 培養を 1 0回以上繰り返し、 細胞表面にミエロイ ド分子及びロイコサイ ト分子を発現し、 抗原の取込み能、 抗原の提示能、 及び CTL活性の誘 導能を有する細胞株を樹立することにより得ることができる。 The immortalized dendritic cell line of the present invention derived from a mouse can be obtained, for example, by subjecting bone marrow cells of a ts SV40 LTT g mouse to hemolysis using ammonium chloride, for example, an anti-CD4 antibody, an anti-CD8 antibody, an anti-I one a b antibody, anti-rat I g using antibody and Usagi complement, complete R PM I medium cells depleted lymphocytes and I a-positive cells containing the mouse recombinant GM- CSF of 2 0 ng / mL (5% FCS) to induce dendritic cells (DC), repeat subculture 10 times or more, express myeloid molecules and leucosite molecules on the cell surface, It can be obtained by establishing a cell line having the ability to present antigen and the ability to induce CTL activity.
また、 t s S V 4 0 L T T gマウスは、 次のようにして作製するこ とができる。 S V 4 0の複製起点 ( o r i ) を欠失させた t s A 5 8 o r i (一) 一 2の全 D N Aを制限酸素 B amH Iで開環して p B R 3 2 2に導入したプラスミ ド p S V t s A 5 8 (―) — 2 (O noT. et al. , Cytotec nology 7, 165-172, 1991) を常法に従い大腸菌内で大量に増幅 させ、 この増幅したプラスミ ドを制限酵素 B amH Iで切断してベクタ 一部位を除去し、 t s A 5 8のラージ T钪原遺伝子を有する DN A断片 を調製する。 このラージ T抗原遺伝子のプロモーターが内在する D N A 断片を常法に従いマウスの全能性細胞に遺伝子導入することにより、 S V 4 0の温度感受性突然変異株 t s A 5 8のラージ T抗原遺伝子を全て の細胞内に有する遺伝子導入マウス、 すなわち トランスジエニックマウ スを作出することができる。 かかるトランスジエニックマウスは、 その 全ての体細胞において t s A 5 8のラ一ジ T抗原遺伝子が発現すること になる。 そして、 上記全能性細胞としては、 受精卵や初期胚のほか、 多 分化能を有する E S細胞などを具体的に挙げることができる。' また、 全 能性細胞への D N Aの導入方法としては、マイクロインジェクション法、 電気パルス法、 リボソーム法、 リン酸カルシウム法等の公知の遺伝子導 入法を用いることができる。 The ts SV 40 LTT g mouse can be produced as follows. Plasmid p SV in which ts A58 ori (I) deleted the SV40 replication origin (ori) and opened into pBR322 by opening all 12 DNAs with the restriction oxygen BamHI ts A58 (-) — 2 (O noT. et al., Cytotechnology 7, 165-172, 1991) was amplified in large amounts in E. coli according to a conventional method, and the amplified plasmid was digested with the restriction enzyme BamHI. To remove a portion of the vector to prepare a DNA fragment having the large T 钪 protogene of tsA58. The DNA fragment containing the promoter of the large T antigen gene was transfected into mouse totipotent cells according to a conventional method, whereby the large T antigen gene of the temperature-sensitive mutant tsA58 of SV40 was transferred to all cells. A transgenic mouse, ie, a transgenic mouse, can be produced. In such a transgenic mouse, the tsA58 large T antigen gene is expressed in all its somatic cells. Specific examples of the totipotent cells include fertilized eggs and early embryos, as well as ES cells having pluripotency. '' And all As a method for introducing DNA into competent cells, known gene transfer methods such as a microinjection method, an electric pulse method, a ribosome method, and a calcium phosphate method can be used.
上記マウスの全能性細胞 (培養細胞) の核を、 除核未受精卵に移植し て初期化すること (核移植) で卵子に S V 4 0の温度感受性突然変異株 t s A 5 8のラージ T抗原遺伝子を導入することができる。 また、 前核 期受精卵の雄性前核に S V 4 0の温度感受性突然変異株 t s A 5 8のラ —ジ T抗原遺伝子をマイクロインジヱクションして得られる卵子を仮親 の卵管に移植して産仔を得た後、 注入した遺伝子を持つ産仔を選出し、 安定的にかかる遺伝子が組み込まれた個体を得ることで、 個体発生時に すでに t s A 5 8のラージ T抗原遺伝子が各組織の細胞の染色体に組み 込まれた遺伝子導入マウス、 すなわちトランスジエニックマウスを効率 よく作出することができる。  The nuclei of the totipotent cells (cultured cells) of the above mice are transplanted into non-fertilized enucleated eggs and initialized (nuclear transfer). An antigen gene can be introduced. In addition, the eggs obtained by microinjecting the large T antigen gene of tsA58, a temperature-sensitive mutant of SV40, into the male pronucleus of fertilized eggs at the pronuclear stage were transplanted into the oviduct of the foster mother. After obtaining the offspring, the offspring having the injected gene are selected, and an individual having the gene integrated stably is obtained. Thus, transgenic mice, ie, transgenic mice, that have been integrated into the chromosomes of these cells can be efficiently produced.
本発明の不死化樹状細胞株は、 3 3 °Cにおいて永久的増殖能を保持し、 3 7 °Cにおいては増殖が抑制され、 3 9 °Cにおいては増殖を停止するた め、 細胞固有の分化形質の発現を制御することができるという特色を有 している。 また、 この不死化樹状細胞株は、 7ヶ月以上継代培養行って も 3 3 °Cで良好な増殖性を示し、樹状細胞としての機能を保持している。 本発明の不死化樹状細胞株は、安定的に増殖し続けることができ、また、 該榭状細胞の有する抗原取り込み能及び抗原提示能により、 T細胞を活 性化させることができるので細胞ワクチンとして有用である上に、 免疫 の誘導や修飾、 樹状細胞を用いた治療の研究に用いることができる。 ま た、 以下に示すように、 樹状細胞に対する有用物質のスクリーニングに 用いることができる。  The immortalized dendritic cell line of the present invention retains a permanent growth ability at 33 ° C, suppresses growth at 37 ° C, and stops growth at 39 ° C. It has the characteristic of being able to control the expression of the differentiation traits of the plant. In addition, this immortalized dendritic cell line shows good proliferation at 33 ° C. even after being subcultured for 7 months or more, and retains its function as a dendritic cell. The immortalized dendritic cell line of the present invention can continue to proliferate stably, and can activate T cells due to the antigen uptake ability and antigen presentation ability of the dendritic cells. In addition to being useful as a vaccine, it can be used to study the induction and modification of immunity and therapy using dendritic cells. Further, as shown below, it can be used for screening useful substances for dendritic cells.
本発明におけるスクリーニング方法としては、 被検物質の存在下、 上 記本発明の不死化樹状細胞株を培養し、 該細胞株におけるミエロイ ド分  As a screening method in the present invention, the above-described immortalized dendritic cell line of the present invention is cultured in the presence of a test substance;
0 子、 ロイコサイ ト分子、 I 一 A b、 C D 8 6、 C D 4 0等の成熟マーカ 一夕ンパク質の発現の程度を測定 ·評価する樹状細胞における成熟促進 又は抑制物質のスクリーニング方法や、 該細胞株の増殖の程度を測定 - 評価する樹状細胞における細胞増殖促進又は抑制物質のスクリ一二ング 方法や、 該細胞株を L P S刺激し、 該細胞の I L一 1 2産生量を測定、 評価する樹状細胞の活性化促進又は抑制物質のスクリ一二ング方法等を 挙げることができる。 そして、 上記スクリーニング方法により得られる 樹状細胞における成熟促進物質や、 樹状細胞における細胞増殖促進物質 や、 樹状細胞の活性化促進物質も本発明に含まれる。 0 Child, Roikosai preparative molecular, I one A b, and a screening method of the mature promoting or inhibiting substances in dendritic cells to measure and assess the degree of expression of CD 8 6, CD 4 mature markers Isseki protein such as 0, the Measuring the degree of cell line proliferation-screening method for cell growth promoting or inhibiting substances in dendritic cells to be evaluated, LPS stimulation of the cell line, measuring and evaluating the amount of IL-12 produced by the cell And a method for screening a substance that promotes or suppresses the activation of dendritic cells. The present invention also includes a substance for promoting maturation in dendritic cells, a substance for promoting cell growth in dendritic cells, and a substance for promoting activation of dendritic cells, which are obtained by the above-described screening method.
上記樹状細胞における成熟促進又は抑制物質のスクリーニングは、 不 死化樹状細胞株を種々の濃度の被検物質の存在下でそれぞれ培養し、 一 定時間培養後に発現したマーカ一タンパク質の量を検出 ·測定し、 被検 物質の非存在下で培養した対照のものと比較 ·評価することにより行わ れる。 例えば、 樹状細胞の表面に発現する成熟度マーカータンパク質で あるミエロイ ド分子やロイコサイ ト分子は、 それぞれ特異抗体を用いて 常法により免疫化学的に検出することにより測定することができる。 ま た、 これらに相当する m R N Aの発現量を常法により検出することによ り測定することもできる。 上記樹状細胞における細胞増殖促進又は抑制 物質のスクリーニングは、 不死化樹状細胞株を種々の濃度の被検物質の 存在下でそれぞれ培養し、 一定時間培養後に細胞数や細胞の形態を測 定 ·解析し、 被検物質の非存在下に培養した対照のものと比較 ·評価す ることにより行われる。 また、 上記榭状細胞の活性化促進又は抑制物質 のスクリーニングは、 不死化樹状細胞株を種々の濃度の被検物質の存在 下でそれぞれ培養し、 一定時間培養後に I L一 1 2の産生量を測定し、 被検物質の非存在下に培養した対照のものと比較 ·評価することにより 行われる。 本発明の細胞ワクチンとしては、 上記本発明の不死化樹状細胞株を主 成分とするものであれば特に制限されるものではないが、 上記不死化樹 状細胞株としてはヒト由来の不死化樹状細胞株が好ましく、 かかるヒト 由来の不死化樹状細胞株は、 ヒト末梢血又は骨髄より樹状細胞株を単離 し、 S V 4 0の温度感受性突然変異株 t s A 5 8のラージ T抗原遺伝子 を導入し、 継代培養を繰り返すことにより、 あるいはヒトの胚性幹細胞 ( E S細胞) に S V 4 0の温度感受性突然変異株 t s A 5 8のラージ T 抗原遺伝子を導入し、 これをインビトロで樹状細胞株に分化させ、 継代 培養を繰り返すことにより樹立することができる。 また、 不死化樹状細 胞株としては、 3 3 °Cで増殖することができるが、 3 7 °Cでは増殖が抑 制されるものや、 不死化樹状細胞株が腫瘍抗原等の抗原や抗原一 I g G 免疫複合体を取り込ませたものが好ましい。 本発明の細胞ワクチンは、 インビボ又はインビトロで抗原を取り込ませ、 修飾後細胞表面に抗原性 のべプチドを提示する、 T細胞を刺激する抗原提示細胞として用いるこ とができる。 例えば、 本発明の不死化樹状細胞株の懸濁液からなる本発 明の細胞ワクチンは、 ヒト体内に治療用のワクチンとして接種されるこ とになるが、 3 7 では増殖が抑制されることから安全性が高い。通常、 細胞ワクチンとしての安全性を高めるために、 加熱処理、 放射線処理、 あるいはマイ 卜マイシン C処理などが必要とされるが、 本発明の不死化 樹状細胞株は、 かかる細胞不活化処理が不要で、 かつ、 3 3 °Cで増殖す ることができるが、 3 7ででは増殖が抑制されることから極めて安全性 が高いワクチンということができる。 The screening of substances for promoting or inhibiting maturation in dendritic cells is performed by culturing immortalized dendritic cell lines in the presence of various concentrations of a test substance, and measuring the amount of marker protein expressed after culturing for a certain period of time. It is performed by detecting and measuring, and comparing and evaluating with a control cultured in the absence of the test substance. For example, myeloid molecules and leucosite molecules, which are maturity marker proteins expressed on the surface of dendritic cells, can be measured by immunochemical detection using a specific antibody in a conventional manner. In addition, it can also be measured by detecting the expression level of mRNA corresponding to these by a conventional method. The screening for substances that promote or suppress cell growth in dendritic cells is performed by culturing immortalized dendritic cell lines in the presence of various concentrations of test substances, and measuring the number of cells and cell morphology after culturing for a certain period of time. · Analyzed and compared with that of a control cultured in the absence of the test substance. Screening for dendritic cell activation-promoting or -suppressing substances is performed by culturing immortalized dendritic cell lines in the presence of various concentrations of test substances, and culturing for a certain period of time. Is measured and compared with that of a control cultured in the absence of the test substance. The cell vaccine of the present invention is not particularly limited as long as it comprises the above-mentioned immortalized dendritic cell line of the present invention as a main component. A dendritic cell line is preferable, and such a human-derived immortalized dendritic cell line is obtained by isolating a dendritic cell line from human peripheral blood or bone marrow, and obtaining a large T of a temperature-sensitive mutant tsA58 of SV40. The large T antigen gene of the temperature-sensitive mutant tsA58 of SV40 was introduced into the human embryonic stem cells (ES cells) by introducing the antigen gene and repeating subculture, or The cells can be differentiated into dendritic cell strains and established by repeating subculture. In addition, immortalized dendritic cell lines can grow at 33 ° C, but growth is suppressed at 37 ° C, or immortalized dendritic cell lines Or an antigen-IgG immune complex is preferred. The cellular vaccine of the present invention can be used as an antigen-presenting cell that stimulates T cells, which takes up an antigen in vivo or in vitro and presents an antigenic peptide on the cell surface after modification. For example, a cell vaccine of the present invention comprising a suspension of the immortalized dendritic cell line of the present invention is to be inoculated as a therapeutic vaccine into the human body, but growth is suppressed in 37. Therefore, safety is high. Usually, heat treatment, radiation treatment, mitomycin C treatment, etc. are required to enhance the safety as a cell vaccine, but the immortalized dendritic cell line of the present invention requires such cell inactivation treatment. It is unnecessary and can be grown at 33 ° C, but it can be said that it is an extremely safe vaccine because growth is suppressed at 37.
本発明の細胞ワクチン、 特にヒト由来の不死化樹状細胞株を主成分と する細胞ワクチンは、 ヒトに移入可能な細胞ワクチンとして、 白血病、 肝癌、 肺癌、 胃癌、 大腸癌などの各種腫瘍、 及び各種ウィルス、 細菌等 による感染症等に対して有利に利用することができる。 本発明の細胞ヮ クチンの投与量は、患者の年齢、体重、 性別、癌の種類及び癌の進行度、 症状等により異なり、 一概に決定できないが、 現在行われている細胞ヮ クチン療法で注入されるのと同程度の量が患者に投与することができる。 本発明の細胞ワクチンは、 患者本人に使用することもできるが、 骨髄バ ンク、 臍帯血バンクの発達により、 MHC適合の同種の多数の患者に投 与することができる。 以下、 実施例により本発明をより具体的に説明するが、 本発明の技術 的範囲はこれらの例示に限定されるものではない。 実施例 1 (トランスジエニックマウスの作出) The cell vaccine of the present invention, in particular, a cell vaccine mainly comprising a human-derived immortalized dendritic cell line, is a cell vaccine that can be transferred to humans, and is used for various tumors such as leukemia, liver cancer, lung cancer, gastric cancer, and colon cancer, and It can be advantageously used for infectious diseases caused by various viruses and bacteria. Cell of the present invention The dose of Kuching varies depending on the patient's age, weight, gender, type of cancer, degree of progression of the cancer, symptoms, etc., and cannot be determined unconditionally. A small amount can be administered to the patient. The cell vaccine of the present invention can be used for patients themselves, but can be administered to a large number of MHC-compatible patients of the same type due to the development of bone marrow banks and cord blood banks. Hereinafter, the present invention will be described more specifically with reference to examples, but the technical scope of the present invention is not limited to these examples. Example 1 (Production of transgenic mouse)
S V 40の温度感受性突然変異株 t s A 5 8の DN Aを導入したトラ ンスジエニックマウスは、 下記の手順で作出した。  Transgenic mice transfected with the DNA of the temperature sensitive mutant tsA58 of SV40 were created by the following procedure.
(導入遺伝子の調製)  (Preparation of transgene)
マイクロインジェクションには S V 4 0の温度感受性突然変異株 t s A 5 8のゲノム DN Aを遺伝子工学的手法で改変したものを使用した。 t s A 5 8のゲノム DN Aを制限酵素 B amH Iで開環し、 p B R 3 2 2の B amH I部位に導入し、 S ί i I配列を S a c II に変換して S V 4 0の複製起点 ( o r i ) を欠失する o r i (—) とした DNAクロー ン p S V t s A 5 8 o r i (-) - 2 (Ohno T. et al. , Cytotechnol ogy, 165-172, 1991 ) から常法に従い導入用 D N Aを調製した。 すなわち、 大 腸菌内で大量に増幅させることにより得られたプラスミ ド D N Aの p S V t s A 5 8 0 r i (一) - 2を制限酵素 B a mH I (宝酒造社製) で 消化した後、 ァガロース電気泳動法 ( 1 %ゲル; ベーリンガー社製) に より分離し、 ゲルを溶解した後、 フエノール · クロロホルム処理及びェ 夕ノール沈殿処理を行い DN Aを回収した。 回収した精製 DN Aを T E ノ ッファー ( I mMの EDTAを含む 1 0 mMの T r i s _HC l ; p H 7. 6)に溶解して 1 7 0 g/m 1 の精製 D N Aを含む溶液を得た。 この DNA溶液を注入用バッファ一 ( 0. 1 mMの E D T Aを含む 1 0 mMの T r i s -HC l ; p H 7. 6 ) で 5 g/m 1 となるように希 釈して注入用 DNA溶液を調製した。 なお、 調製した DNA溶液は注入 操作まで— 2 0 で保存した。 For microinjection, a genomic DNA of SV40 temperature-sensitive mutant tsA58 modified by genetic engineering was used. The genomic DNA of tsA58 was opened with the restriction enzyme BamHI, introduced into the BamHI site of pBR322, and the SίiI sequence was converted to SacII to convert SV40 to A DNA clone with an origin of replication (ori) deleted, ori (-) p SV ts A58 ori (-)-2 (Ohno T. et al., Cytotechnolgy, 165-172, 1991) The DNA for introduction was prepared according to the procedure described above. That is, after digesting pSVtsA580ri (1) -2 of plasmid DNA obtained by large-scale amplification in Escherichia coli with a restriction enzyme BamHI (Takara Shuzo), After separation by agarose electrophoresis (1% gel; Boehringer), the gel was dissolved, and then subjected to phenol / chloroform treatment and ethanol precipitation treatment to recover DNA. The recovered purified DNA is It was dissolved in a buffer (10 mM Tris_HCl containing I mM EDTA; pH 7.6) to obtain a solution containing 170 g / m 1 of purified DNA. This DNA solution was diluted with a buffer for injection (10 mM Tris-HCl containing 0.1 mM EDTA; pH 7.6) to a concentration of 5 g / m 1 and diluted with DNA for injection. A solution was prepared. The prepared DNA solution was stored at -20 until injection.
(トランスジエニックマウスの作出)  (Creation of transgenic mouse)
マウス前核期受精卵への上記調製した注入用 DN A溶液のマイクロイ ンジェクシヨンは下記の要領で行つた。 性成熟した 8週齢のウィスター マウスを明暗サイクル 1 2時間 (4 : 0 0〜 1 6 : 0 0を明時間)、 温度 2 3 ± 2 C、 湿度 5 5 ± 5 %で飼育し、 膣スメァにより雌の性周期を観 察して、 ホルモン処理日を選択した。 まず、 雌マウスにより 1 5 0 I U Zk gの妊馬血清性性腺刺激ホルモン (日本ゼンャク社製; PMSゴナ ド卜ロピン (pregnanto mare serum gonadotropin : PMS G)) を腹腔 内投与し、 その 4 8時間後に 7 5 I U/k gのヒト絨毛性性腺刺激ホル モン (三共臓器社製; プべロ一ケン (human chorionic gonadotropin: h C G)) を投与して過剰排卵処理を行った後、雄との同居により交配を 行った。 h C G投与 3 2時間後に卵管灌流により前核期受精卵を採取し た。 卵管灌流及び卵の培養には mK R B液 (Toyoda Y. and Chang M. , J. Reprod. Fertil. , 36, 9-22, 1974) を使用した。 採取した受精卵を 0. 1 %のヒアルロニダーゼ (シグマ社製; Hyaluronidase Typel-S) を 含む mKRB液中で 3 7 °C, 5分間の酵素処理を行い卵丘細胞を除去し た後、 mKR B液で 3回洗浄して酵素を除去し、 DNA注入操作まで C 02—インキュベーター内 ( 5 %の C〇2— 9 5 %の A i r, 3 7 °C、 飽 和湿度) に保存した。 この様にして準備したマウス受精卵の雄性前核に 前記 DN A溶液を注入した。 注入した 2 2 8個の卵を 9匹の仮親に移植 して出産させ 8 0匹の産仔を得た。 注入 D N Aのマウスへの導入は、 離 乳直後に断尾して得た尾より調製した DN Aを P C R法により検定した [使用プライマー ; t s A 5 8 _ l A, 5 ' 一 TC CTAATGTGC AGT CAGGT G— 3, ( 1 3 6 5〜 1 3 8 4部位に相当 : 配列番号 1 )、 t s A 5 8 - 1 B , 5 ' - ATGAC GAGCTTTGGC ACT TG— 3 ' ( 1 5 7 1〜 1 5 9 0部位に相当 :配列番号 2)]。 その結果、 遺伝子導入の認められた 2 0匹 (雄 6匹、 雌 8匹、 性別不明 6匹) の産 仔の中から性成熟期間を経過する 1 2週齢まで生存した 1 1ラインのト ランスジエニックマウス (雄ライン : # 0 7— 2 , # 0 7— 5, # 0 9 一 6, # 1 2— 3, # 1 9一 5, 雌ライン : # 0 9— 7, # 1 1一 6 , # 1 2— 5 , # 1 2— 7 , # 1 8— 5 , # 1 9— 8) を得た。 これらの G。世代のトランスジエニックマウスとウイスターマウスを交配し、 雄 フアウンダ一の 2ライン (# 0 7— 2, # 0 7— 5 ) と雌フアウンダー の 3ライン (# 0 9— 7, # 1 1一 6, # 1 9一 8 ) において次世代以 降への遺伝子の伝達を確認した。 実施例 2 (マウス骨髄からの D Cの分離,調整) Microinjection of the above prepared DNA solution for injection into mouse pronucleus fertilized eggs was performed as follows. Sex-matured 8-week-old Wistar mice are bred under a light-dark cycle of 12 hours (4: 00 to 16: 00 light hours), temperature of 23 ± 2 C, humidity of 55 ± 5%, and vaginal smear. The female estrous cycle was observed by, and the date of hormone treatment was selected. First, 150 IU Zkg of pregnant serum serum gonadotropin (PMS gonadotropin (PMS G), manufactured by Nippon Zenjak) was intraperitoneally administered to female mice for 48 hours. Later, 75 IU / kg of human chorionic gonadotropin (manufactured by Sankyo Organ Co., Ltd .; human chorionic gonadotropin: hCG) was administered, followed by superovulation and cohabitation with males. The mating was performed. Pronuclear stage fertilized eggs were collected by tubal perfusion 32 hours after hCG administration. For fallopian tube perfusion and egg culture, mK RB solution (Toyoda Y. and Chang M., J. Reprod. Fertil., 36, 9-22, 1974) was used. The collected fertilized eggs were enzymatically treated at 37 ° C for 5 minutes in mKRB solution containing 0.1% hyaluronidase (Sigma; Hyaluronidase Typel-S) to remove cumulus cells. and washed 3 times with a liquid to remove the enzyme, to DNA injection operation C 0 2 - and stored in - (95% of a ir, 3 7 ° C, saturated humidity 5% C_〇 2) incubator. The DNA solution was injected into the male pronucleus of the mouse fertilized eggs prepared in this manner. Transplanted 2 2 8 eggs into 9 foster parents And gave birth to obtain 80 offspring. The injected DNA was introduced into mice by PCR using DNA prepared from tails obtained by cutting the tails immediately after weaning. [Primers used: tsA58_lA, 5'-TCCTAATGTGC AGT CAGGT G—3, (corresponding to 1365 to 1384 sites: SEQ ID NO: 1), tsA58-1B, 5′-ATGAC GAGCTTTGGC ACT TG—3 ′ (1571 to 1559 Equivalent to 0 site: SEQ ID NO: 2)]. As a result, out of the 20 offspring (6 males, 8 females, and 6 sexes unknown) in which the gene was transfected, survived until the age of 12 weeks after the sexual maturity period. Transgenic mice (male lines: # 07-2, # 07-7-5, # 09-19-6, # 12-23, # 19-19, female lines: # 09-9-7, # 11) 1, # 1 2—5, # 1 2—7, # 1 8—5, # 1 9—8). These G. Generation transgenic mice and Wistar mice were bred, and two lines (# 07-7-2, # 07-7-5) of male huaunda and three lines of female founder (# 09-9-7, # 11-16) , # 1918), confirmed the gene transfer to the next generation and beyond. Example 2 (Separation and preparation of DC from mouse bone marrow)
マウスは C 5 7 B L/ 6 (B 6マウス) と温度感受性 S V 4 0 T抗原 卜ランスジエニックマウス ( t s S V 4 0 L T T gマウス; B 6バッ クグラウンド) の 2系統を用いた。 また、 これらマウスは全て 6〜 8週 齢の雌を用いた。 マウスの骨髄細胞を 0. 1 44 M塩化アンモニゥムに て赤血球 l y s i s処理し、 抗 CD 4抗体、 抗 CD 8抗体、 抗 I 一 Ab 抗体、 抗ラッ ト I g抗体 (それぞれ T I B 2 0 7、 2 1 1、 1 5 4、 2 1 6 : Amerikan Type Culture Collection) とゥサギ補体 (Cedarlane 社 製) を用いて、 リンパ球と I a陽性細胞の除去を行った。 この細胞 I X 1 0 6 /well を 2 0 n g/mLのマウスリコンビナント GM— C S F Two strains of mice were used, C57BL / 6 (B6 mouse) and temperature-sensitive SV40T antigen transgenic mouse (ts SV40 LTT g mouse; B6 background). All the mice were 6-8 week old females. Mouse bone marrow cells Te to 0. 1 44 M chloride Anmoniumu to erythrocyte lysis treatment, anti-CD 4 antibodies, anti-CD 8 antibodies, anti-I one A b antibody, anti-rat I g antibody (respectively TIB 2 0 7, 2 Lymphocytes and Ia-positive cells were removed using 11, 15 4 and 2 16: Amerikan Type Culture Collection) and Egret complement (Cedarlane). Mouse recombinant GM- CSF in the cells IX 1 0 6 / well 2 0 ng / mL
5 (Peprotech 社製) を含む完全 R P M I培地 ( 5 % F C S) を用い、 2 4穴プレートで培養し、 6日後に樹状細胞 (D C) を誘導した。 t s S V 4 0 L T T gマウスからの D Cは 3 3 ° (:、 5 % C〇 2条件下で誘導 後、 継代を 5 X 1 05/mL/well で 1 0回以上繰り返し (4〜 5 日ご とに培地交換、 3週ごとに継代)、 7ヶ月以上培養したものを用いた。 な お、 B 6マウスからの D Cは上記の方法により骨髄細胞を単離し、 D C を誘導した後、 3 7°C、 5 % C〇 2条件下で培養し、 その時点で解析に 用いた。 実施例 3 (ライ トギムザ染色による形態観察) Five Using a complete RPMI medium (5% FCS) containing (Peprotech), the cells were cultured in a 24-well plate, and dendritic cells (DC) were induced 6 days later. DC is 3 3 ° from ts SV 4 0 LTT g mouse (:, after induction with 5% C_〇 2 conditions, more than 1 0 times passaged 5 X 1 0 5 / mL / well repeated (4-5 Culture medium was changed every day, subcultured every 3 weeks), and cultured for more than 7 months.DCs from B6 mice were isolated by isolating bone marrow cells by the above method and inducing DCs. , 3 7 ° C, 5% C_〇 cultured in 2 conditions, used for the analysis at that point. example 3 (embodiment according Lai Togimuza staining observed)
実施例 2で得られた D Cのライ トギムザ(Wright-Giemsa)染色を行つ た。 B 6マウスと t s S V 4 0 L T T gマウスの 2系統を起源とする それぞれの D Cをサイ トスピンでスライ ドグラスに接着させ、 ライ トギ ムザ法(ライ ト染色液 ·ギムザ染色液、 ともにメルク社製) にて染色し、 可視化した。 結果を図 1に示す。 この結果、 細胞の大きさは、 t s S V 4 0 L T T gの D C (S V4 0 T B 6 ) の方が B 6マウスの D C (初 代培養 B 6 ) より大きかった。 実施例 4 (異なる温度での増殖能)  The DC obtained in Example 2 was stained with Wright-Giemsa. DCs originating from two strains, B6 mouse and ts SV40 LTT g mouse, were adhered to slide glass by site spin, and the light Giemsa method (light stain and Giemsa stain, both manufactured by Merck) ) And visualized. The results are shown in Figure 1. As a result, the cell size of tsSV40LTTg DC (SV40TB6) was larger than that of B6 mouse DC (primary culture B6). Example 4 (Proliferation ability at different temperatures)
MTT (3- (4, 5-dimethyl t iazol-2-yl)-2, 5-di phenyl tet razo-1 ium bromide)はミ トコンドリア内膜の脱水素酵素などにより開裂されて赤紫 色の MT T- iormazan を生成する。 この呈色反応が細胞の増殖能に比例 するこ.とに基づいた MTTアツセィにより、 t s S V 4 0 L T T gの D Cの異なる温度 ( 3 3°C、 3 7 °C, 3 9 °C) での増殖能を測定した。 MTTアツセィは、 5mg/mLのMTT (シグマ社製) 溶液 1 0 L を前記 2 O n g/mLのマウスリコンビナント GM— C S F (Peprotech  MTT (3- (4,5-dimethyltiazol-2-yl) -2,5-diphenyltetrazo-1ium bromide) is cleaved by the dehydrogenase of the inner mitochondrial membrane and has a purple-red MT. Generate T-iormazan. Based on the fact that this color reaction is proportional to the proliferative capacity of the cells, the MTT assay at ts SV40 LTT g at different temperatures (33 ° C, 37 ° C, 39 ° C) Was measured for its proliferation ability. MTT Atsushi was prepared by adding 10 L of a 5 mg / mL MTT (Sigma) solution to the above-mentioned 2 ng / mL mouse recombinant GM—CSF (Peprotech
6 社製) を含む細胞懸濁液 1 0 0 2 Lに添加し、 9 6穴プレートに 7. 5 X 1 03/ 1 0 0 L/ ell で細胞をまき、 測定時に MTT溶液を 1 0 /well添加し、 経時的に測定を行った。 結果を図 2に示す。 この結 果、 S V4 0 T抗原が発現する 3 3 °Cで最も増殖能が高かった。 実施例 5 (GM— C S F要求性) 6 It was added to the cell suspension 1 0 0 2 L containing Company Ltd.), 9 6 well plates 7. plated cells at 5 X 1 0 3/1 0 0 L / ell, 1 MTT solution during measurement 0 / Wells were added and measurements were made over time. The result is shown in figure 2. As a result, the cells had the highest proliferative ability at 33 ° C at which the SV40 T antigen was expressed. Example 5 (GM—CSF requirement)
t s S V 40 L T T gの D Cについて、顆粒球マクロファージコロ ニー刺激因子 (GM— C S F) 要求性を検討するため、 実施例 4と同様 な条件で、 MTTアツセィを行った。 すなわち、 5mg/mLの MTT (シグマ社製) 溶液 1 0 Lをそれぞれ 2 0、 1 0、 2、 O n gZmL 濃度のマウスリコンビナント GM— C S F (Peprotech 社製) を含む細 胞懸濁液 1 0 0 t Lに添加し、 9 6穴プレートに 7. 5 X 1 03/ 1 0 0 n L/wellで細胞をまき、測定時に MT T溶液を 1 0 x L/well添加 し、 経時的に測定を行った。 結果を図 3に示す。 この結果、 通常の初代 培養の D C誘導に用いる濃度の 2 0 n g /m Lで一番増殖が良かった。 この不死化細胞は GM— C S F依存的に増殖する細胞であることが分か つた 実施例 6 (細胞表面に発現するタンパク質の検討) For examining the requirement of granulocyte macrophage colony stimulating factor (GM-CSF) for DC of ts SV 40 LTT g, MTT assay was performed under the same conditions as in Example 4. That is, 10 L of a 5 mg / mL MTT (Sigma) solution was added to a cell suspension containing mouse recombinant GM-CSF (Peprotech) at concentrations of 20, 10, 2, and OngZmL, respectively. was added to 0 t L, 9 to 6 well plates 7. plated cells at 5 X 1 0 3/1 0 0 n L / well, MT T solution was added 1 0 x L / well at the time of measurement, over time A measurement was made. The results are shown in Figure 3. As a result, the growth was best at the concentration of 20 ng / mL used for DC induction in normal primary culture. The immortalized cells were found to be cells that proliferate in a GM-CSF-dependent manner. Example 6 (Examination of proteins expressed on the cell surface)
t s S V 4 0 L T T gマウス(S V4 0 T B 6) と B 6マウス(初 代培養 B 6) の 2系統を起源とするそれぞれの D Cを用いて、 細胞表面 上に発現する代表的なタンパク質であるミエロイ ド分子及びロイコサイ ト分子の発現を F AC Sにて解析した。 結果を図 4及び図 5に示す。 こ の結果、 上記 2系統を起源とする D Cにおけるミエロイ ド分子及びロイ コサイ ト分子の発現量は共に変わらなかった。 実施例 7 (抗原の取込み能の比較検討) ts SV40 LTT g mouse (SV40 TB6) and B6 mouse (primary culture B6). The expression of certain myeloid and leucosite molecules was analyzed by FACS. The results are shown in FIGS. As a result, the expression levels of myeloid molecules and leucosite molecules in DCs derived from the above two lines did not change. Example 7 (Comparison of antigen uptake ability)
t s S V 40 LT T gマウス(S V 40 T B 6) と B 6マウス(初 代培養 B 6) の 2系統を起源とするそれぞれの D Cを用いて、 1 0 / g /mLの抗原 (OVA— F I TC ; Molecule Probes 社製) を添加後 2 日目に取込み能の比較検討を F AC Sにて行った。 結果を図 6に示す。 この結果、 t s S V 40 LT T gの D Cは B 6マウスの D Cよりも強 い取込み能を示した。 実施例 8 (L P S刺激に対する樹状細胞の成熟化の比較検討)  ts SV 40 LT T g mice (SV 40 TB 6) and B 6 mice (primary culture B 6) were used as DCs, and 10 / g / mL antigen (OVA-FI On the second day after addition of TC (Molecule Probes), the uptake capacity was compared by FACS. Fig. 6 shows the results. As a result, DC of tsSV40LTTg showed stronger uptake ability than DC of B6 mouse. Example 8 (Comparative study of maturation of dendritic cells to LPS stimulation)
t s S V 40 LT T gマウス(S V 40 T B 6) と B 6マウス(初 代培養 B 6) の 2系統を起源とするそれぞれの D Cについて、 それぞれ の D Cの培養ゥエルに L P Sを 2 H gZmL添加して、 24時間後の細 胞表面上の成熟度マーカ一である I 一 Ab、 CD 8 6と CD 4 0の発現 量を F A C Sにて解析した。 結果を図 7に示す。 この結果、 t s S V 4 0 LT T gの D Cにおける成熟度マーカーのアップレギュレーション、 つまり成熟度は B 6マウス (初代培養 B 6 ) の D Cと変わらず起こるこ とが分かった。 実施例 9 (L P S刺激に対する樹状細胞の活性化の比較検討) For each DC originating from two lines, ts SV 40 LT T g mouse (SV 40 TB 6) and B 6 mouse (primary culture B 6), add 2 HgZmL LPS to the culture wells of each DC. Te, and analyzed a maturity markers one on cell surface after 24 hours I one a b, the expression level of CD 8 6 and CD 4 0 at FACS. Fig. 7 shows the results. As a result, it was found that upregulation of the maturity marker in DC of tsSV40LTTg, that is, maturity occurred as in DC of B6 mouse (primary culture B6). Example 9 (Comparative study of activation of dendritic cells to LPS stimulation)
t s S V 4 0 L T T gマウス(S V4 0 T B 6 ) と B 6マウス(初 代培養 B 6 ) の 2系統を起源とするそれぞれの D Cにおける、 L P S剌 激に対する D Cの活性化として I L一 1 2 p 7 0産生量を E L I S Aに て測定した。 結果を図 8に示す。 この結果、 それぞれの D Cの培養ゥェ ルに L P Sを 2 g/mL添加して、 2 4時間後の上清中の I L一 1 2 p 7 0産生量は 2系統間で変わらなかった。  ts SV 40 LTT g mouse (S V40 TB 6) and B 6 mouse (primary culture B 6). p70 production was measured by ELISA. Fig. 8 shows the results. As a result, 2 g / mL of LPS was added to each DC culture well, and 24 hours later, the amount of IL-12p70 produced in the supernatant did not change between the two strains.
8 実施例 1 0 (抗原を取り込ませた場合の樹状細胞の成熟化) 8 Example 10 (Maturation of dendritic cells when antigen is incorporated)
t s S V 4 0 LT T gマウス(S V 4 0 T B 6 ) と B 6マウス(初 代培養 B 6 ) の 2系統を起源とするそれぞれの D Cに、 抗原として 1 0 fi gZmLの〇 VA— F I T Cを取り込ませて、 2日後にそれらの成熟 度を F AC Sにて解析した。 結果を図 9に示す。 この結果、 B 6マウス (初代培養 6 ) の D Cの方が強い成熟度を示した。 実施例 1 1 (榭状細胞による OVA— T細胞への抗原提示能の比較検討) 本発明者らが以前樹立した OVA特異的 CD 4 T細胞を用いて、 t s S V 4 0 L T T gマウス (S V 4 0 T B 6 ) と B 6マウス (初代培養 B 6 ) の 2系統を起源とするそれぞれの D Cの抗原提示能を測定した。 提示能として T細胞の I L一 4産生と増殖を測定した。 X線照射した D C ( 5 X 1 03/well) を 1 X 1 05の O V A特異的 T細胞と様々な濃度 の OVA又は OVA— I g G免疫複合体 ( I C) 存在下で 9 6穴プレー トにて共培養した。 免疫複合体は F c γレセプターを介して抗原を取り 込ませると、 高効率な抗原提示が起きると言われている (J. Immunol. , 161, 6059-6067, 1998、 J. Exp. Med., 189, 371-380, 1999、 Eur. J. Immunol. , 30, 848-857, 2000、 J. Exp. Med. , 195, F1-F3,' 2002) こと から、 比較検討に用いた。 なお、 OVA— I g G免疫複合体 ( I C) は、 卵白アルブミ ン (O V A ; Sigma 社製) をゥサギ抗 O V A I g G (BioDesign 社製) を重量比 1 : 1 0で混合し、 3 7でで 1時間ィンキ ュペートして作製した。 2 4時間後、 その培養上清を回収し、 T細胞の I L一 4産生量を E L I S Aにて測定した。 T細胞の増殖は、 4 8時間 の共培養後、 〔3H] — T d Rの取り込みを測定した。 結果を図 1 0に示 す。 この結果、 2系統を起源とするそれぞれの D Cは、 共に同じく らい の T細胞の増殖、 I L一 4産生を起こした。 ただ、 I L一 4産生におい て添加した OVAが 1 a gZmLの場合、 OVA— I g G免疫複合体( I C) を抗原に用いたときに、 t s S V 40 L T T gの D Cによる I L 一 4産生量は B 6マウス (初代培養 B 6) の D Cに比べて少なかった。 実施例 1 2 (経時的抗 OVA抗体価) ts SV 40 LT T g mice (SV 40 TB 6) and B 6 mice (primary culture B 6) originated from 10 strains of DCs, respectively. After incorporation, their maturity was analyzed by FACS two days later. The results are shown in FIG. As a result, DC of B6 mouse (primary culture 6) showed stronger maturity. Example 11 1 (Comparative study of the ability of dendritic cells to present antigen to OVA-T cells) Using OVA-specific CD4 T cells previously established by the present inventors, ts SV40 LTT g mice (SV The antigen presenting ability of each DC derived from two strains, 40 TB 6) and B 6 mouse (primary culture B 6) was measured. The IL-14 production and proliferation of T cells were measured as presentation ability. X-ray irradiated DC (5 X 1 0 3 / well) for 1 X 1 0 5 of OVA-specific T cells with various concentrations OVA or OVA-I g G immune complexes (IC) 9 6-well in the presence Co-culture was performed on the plate. It is said that highly efficient antigen presentation occurs when an immune complex incorporates an antigen through the Fcγ receptor (J. Immunol., 161, 6059-6067, 1998, J. Exp. Med. , 189, 371-380, 1999, Eur. J. Immunol., 30, 848-857, 2000, J. Exp. Med., 195, F1-F3, '2002). The OVA-IgG immune complex (IC) was prepared by mixing ovalbumin (OVA; Sigma) with Egret Anti-OVAI gG (BioDesign) in a weight ratio of 1:10, It was prepared for one hour with a computer. Twenty-four hours later, the culture supernatant was collected, and the amount of IL-14 produced by the T cells was measured by ELISA. T cell proliferation was determined by measuring [ 3 H] —T dR incorporation after 48 hours of co-culture. The results are shown in FIG. As a result, each of the DCs originating from the two lines both had the same leprosy T cell proliferation and IL-14 production. However, IL-1-4 production smell When the OVA added at 1 agZmL was used, when OVA-IgG immune complex (IC) was used as an antigen, the amount of IL-14 produced by DC of ts SV 40 LTT g was increased by B6 mice (primary culture B 6) It was less than DC. Example 1 2 (Timely anti-OVA antibody titer)
t s S V 40 LT T gマウス(S V 4 0 T B 6) と B 6マウス(初 代培養 B 6) の 2系統を起源とするそれぞれの D Cに、 OVA又は OV A— I g G免疫複合体を負荷して、 移入した後の経時的抗 OVA抗体価 を調べた。 インビポの実験において、 D Cを培養しているゥエルに O V A又は OVA_ I g G免疫複合体を 1 0 β g/mL含む新鮮培地と交換 後 2日目に、 抗原を取り込んだ成熟 D Cを回収して P B S (―) で洗浄 し、 レシピエントとなる B 6マウス 1匹あたり D C 1 X 1 06 cellsを尾 静脈に移入した。 免疫後、 眼底より採血し、 経時的な抗 OVA抗体価を E L I S Aにより測定した。 結果を図 1 1に示す。 この結果、 OVA— I g G免疫複合体 ( I C) では、 2系統とも I g G l、 I g G 2 a、 I g G 2 bいずれにおいても効果的な抗体産生が見られた。 抗原に OVA を用いたとき、 I g G 2 aにおいて t s S V 4 0 L T T gの D Cによ る抗体産生が有意な差をもって高かった ( 2週間後)。 実施例 1 3 (抗 GL— 7抗体による脾臓組織の免疫組織化学染色) ts SV 40 LT T g mice (SV 40 TB 6) and B6 mice (primary culture B 6) were loaded with OVA or OVA A-IgG immune complex on each DC. Then, the anti-OVA antibody titer over time after the transfer was examined. In the in vivo experiment, mature DCs with antigen were recovered two days after replacement of the culture medium with fresh medium containing OVA or OVA_IgG immune complex at 10 βg / mL. PBS (-) was washed with and populate the recipient to become B 6 mice DC 1 X 1 0 6 cells per animal into the tail vein. After immunization, blood was collected from the fundus, and the anti-OVA antibody titer over time was measured by ELISA. The results are shown in FIG. As a result, in the OVA-IgG immune complex (IC), effective antibody production was observed in both IgGI, IgG2a and IgG2b. When OVA was used as an antigen, antibody production by DC of tsSV 40 LTT g was significantly higher in IgG 2a (after 2 weeks). Example 13 (Immunohistochemical staining of spleen tissue with anti-GL-7 antibody)
マウスに D Cを移入し、 約 3週後にそのマウスの脾臓を採取し、 活性 化した胚中心の指標である GL— 7の発現を免疫組織化学染色法にて検 鏡した。 結果を図 1 2 (参考写真 2 ) に示す。 この結果、 B 6マウス及 び t s S V 4 0 L T T gマウス共に免疫複合体( I C) を抗原に用い たとき、 その形成が効果的だった。 これら 2系統間に差は無かった。 実施例 1 4 (生体内 CTL活性) DC were transferred to the mouse, and about 3 weeks later, the spleen of the mouse was collected, and the expression of GL-7, an indicator of activated germinal centers, was examined by immunohistochemical staining. The results are shown in Fig. 12 (Reference Photo 2). As a result, when the immune complex (IC) was used as an antigen for both the B6 mouse and the ts SV40 LTT g mouse, the formation was effective. There was no difference between these two lines. Example 14 (in vivo CTL activity)
マウスへの D C移入による生体内の C T L活性を比較検討した。 移入 7 日後のマウスの脾臓細胞を採取し、 3 7 °Cの C〇2インキュベーター にて 3 0分間インキュベートすることで付着性細胞を取り除き、 T細胞 リッチな状態にした。 この非付着性細胞 1 X 1 07と、 X線照射し増殖 を止めた E. G 7 - OVA 1 X 1 06を 24穴プレートにて共培養し た。 E. G 7 -0 V A (CRL2113;ATCC) は B 6由来の thymomaである E L一 4に OVAの c DNAをトランスフエク 卜したものであり、 その M H Cクラス I上には常に O V Aのペプチドがロードされている。 培養 5 日目に、 E . G 7 — O VAを N a 2 5 1 C r 〇 4 ( Amer sham Pharmacia Biotech 社製) で 1時間かけてラベルした。 様々な濃度の生脾細胞とそ の5 1 C rラベルした E. G 7 - 0 V A 1 X 1 04とを 9 6穴 Uボトム プレートにて共培養し、 4時間後に上清中の51 C rの放出をオートゥェ ルガンマシステム (Aloka 社製) にて測定した。 結果を図 1 3に示す。 この結果、 t s S V 4 0 L T T gの D Cに OVAを添加したときに、 B 6マウス (Primary) の D Cと比較すると、 免疫複合体を取り込ませた ときと同程度の、 かなり強力な CTL活性を誘導した。 実施例 1 5 (樹状細胞における MH Cクラス I Z OVAぺプチド複合体 の発現) The in vivo CTL activity by DC transfer into mice was compared. Spleen cells of mice after transfection 7 days were taken to remove the adherent cells by incubating for 30 minutes at C_〇 2 incubator 3 7 ° C, and the T cell-rich. This nonadherent cells 1 X 1 0 7, E. G 7 stopping the X-ray irradiation proliferate - the OVA 1 X 1 0 6 were co-cultured in 24-well plates. E. G 7 -0 VA (CRL2113; ATCC) is a transfection of OVA cDNA into EL-14, a thymoma derived from B6, and the OVA peptide is always loaded on its MHC class I. Have been. On day 5 culture, E G 7 -. And the O VA over N a 2 5 1 C r 〇 4 (Amer sham Pharmacia Biotech Co.) at 1 hour to label. And 5 1 C r label viable splenocytes and its various concentrations E. G 7 - 0 and VA 1 X 1 0 4 were co-cultured in 9 6-well U bottom plate, in the supernatant after 4 hours 51 The release of Cr was measured with an automatic gamma system (Aloka). The results are shown in FIG. As a result, when OVA was added to ts SV40 LTT g DC, when compared with DC of B6 mouse (Primary), considerably stronger CTL activity was obtained at the same level as when the immune complex was incorporated. Induced. Example 15 (Expression of MHC class IZ OVA peptide complex in dendritic cells)
上記実施例 1 4において、 t s S V 40 L T T gの D Cに OVAを 添加したときに、 B 6マウス (初代培養 B 6) の D Cと比較すると、 免 疫複合体を取り込ませたときと同程度の、 かなり強力な C T L活性を誘 導した理由として、 D Cの MHCクラス I分子上により多くの抗原由来 ぺプチドが提示されているのではないかと考え、 MHCクラス I /OV Aぺプチド複合体に特異的なモノクローナル抗体を用いてフローサイ 卜  In Example 14 above, when OVA was added to DC of ts SV 40 LTT g, compared to DC of B6 mouse (primary culture B6), it was almost the same as when the immune complex was incorporated. The reason for the induction of the rather strong CTL activity was that more antigen-derived peptides were presented on the DC MHC class I molecule, and the specificity of the MHC class I / OVA peptide complex Site using typical monoclonal antibodies
2 メ トリーにより解析した。 5 0 w g/m 1 の OVA存在下で、 t s S V 4 0 L T T gマウス(S V 4 0 T B 6 ) と B 6マウス(初代培養 B 6 ) の 2系統を起源とするそれぞれの D Cを 4 8時間培養した。 次いで、 抗 F c r RIIZIII抗体で F cレセプ夕一をブロックした後、抗 C D 1 1 c — P E抗体及び抗 MHC I — F I T C抗体、又は抗 CD 1 1 c — P E抗 体及び抗 MHC I Z〇 V Aぺプチド抗体を用いて染色した。なお、抗 M HC I / OVAぺプチド抗体染色の場合、 2次抗体(抗マウス I g G 1 _ F I T C抗体) で染色した。 染色後、 フローサイ トメ トリ一 (B D L S R) で測定し、 データは BD CellQuestで解析した。 樹状細胞 (CD 1 l c陽性細胞) の MHC I又は MHC I /〇 V Aペプチド細胞表面発 現量をヒストグラムで示した結果を図 1 4に示す。 この結果、 t s S V 4 0 L T T gの D Cの MH Cクラス Iの発現レベルは野生型の B 6マ ウス (初代培養 B 6) とほぼ同等であつたが、 MHCクラス I ZOVA ペプチド複合体の発現は t s S V 4 0 L T T gの D Cにおいて劇的 に高くなつていた。すなわち、 t s S V 4 0 L T T gの D Cは MHC クラス I に効率良く〇 V Aぺプチドを提示することで C T Lに対する効 率良い抗原提示ができる細胞であることがわかった。 実施例 1 6 (インビポにおける抗腫瘍活性) Two The analysis was performed by the measurement. In the presence of 50 wg / m 1 OVA, DCs originating from two strains of ts SV 40 LTT g mouse (SV 40 TB 6) and B 6 mouse (primary culture B 6) were treated for 48 hours. Cultured. Then, after blocking the Fc receptor with an anti-Fcr RIIZIII antibody, the anti-CD11c—PE antibody and anti-MHC I—FITC antibody, or the anti-CD11c—PE antibody and anti-MHC IZ〇VA Staining was performed using a peptide antibody. In the case of anti-MHC I / OVA peptide antibody staining, staining was performed with a secondary antibody (anti-mouse IgG1_FITC antibody). After staining, measurement was performed by flow cytometry (BDLSR), and the data was analyzed by BD CellQuest. FIG. 14 shows the result of histogram showing the amount of MHC I or MHC I / 〇VA peptide cell surface expression of dendritic cells (CD1lc positive cells). As a result, the expression level of MHC class I in DC of ts SV40 LTT g was almost the same as that of wild-type B6 mouse (primary culture B6), but the expression of MHC class I ZOVA peptide complex Was dramatically higher in DCs with ts SV 40 LTT g. In other words, it was found that ts SV 40 LTT g DC was a cell capable of efficiently presenting antigen to CTL by efficiently displaying ΔVA peptide to MHC class I. Example 16 (antitumor activity in in vivo)
t s S V 4 0 L T T gの D Cの生体内における増強された C T L 応答を具体的に評価するために、 抗腫瘍実験を行った。 OVA刺激 ( 1 0 g /m 1 , 4 8時間) を与えた t s S V 4 0 L T T gマウス (S V 4 0 T Β 6 ) と Β 6マウス (初代培養 Β 6 ) の 2系統を起源とするそ れぞれの D C ( 5 X 1 05/マウス)、 又は生理食塩水( 2 0 0 1 ) を、 未感作マウス ( 7〜 8匹) の尾静脈より投与し、 7日後に再度 D C又は 生理食塩水を投与し、 さらに 7 日後に OVAを発現する腫瘍細胞 (E. G 7 ) を左大腿部に 1 X 1 05ノマウスで植え付け、 腫瘍形成を日を追 つて観察し、 腫瘍の直径が 5 mm以上のものを腫瘍が形成されたと判定 した。 結果を図 1 5に示す。 図 1 5における腫瘍抑制率は、 腫瘍が形成 されていないマウスの割合を%で表示したものである。 t s S V 4 0 L T T gの D Cを移入したマウスは野生型の B 6マウスの D Cを移入 したマウスよりも腫瘍形成が遅く、 効率良く腫瘍形成を抑制した。 すな はち、 t s S V 4 0 L T T gの D Cは生体内において野生型 D Cより も効率良く抗腫瘍活性を誘導する細胞であることが判つた。 (考察) To specifically evaluate the enhanced CTL response of ts SV 40 LTT g DC in vivo, anti-tumor experiments were performed. Ts SV40 LTT g mice (SV40T Β6) and Β6 mice (primary culture Β6), which were given OVA stimulation (10 g / m 1, 48 hours) Each DC (5 × 10 5 / mouse) or saline (200 1) was administered through the tail vein of naive mice (7 to 8), and after 7 days, DC or After administration of saline, tumor cells expressing OVA (E. G 7) planting in 1 X 1 0 5 Nomausu the left thigh, the day tumor formation was additionally connexion observed, those tumor diameter of more than 5 mm is determined that the tumor is formed. The results are shown in FIG. The tumor suppression rate in FIG. 15 is the percentage of mice in which no tumor was formed, expressed as a percentage. Mice to which ts SV40 LTT g DC had been transferred had slower tumor formation than mice to which wild-type B6 mouse DC had been transferred, and efficiently suppressed tumor formation. That is, it was found that ts SV40 LTT g DCs are cells that induce antitumor activity more efficiently in vivo than wild-type DCs. (Discussion)
t s S V 40 L T T gマウスの骨髄細胞から誘導して、 1 0回以上 継代し、 7ヶ月以上 3 3 で長期培養を繰り返した D Cは初期培養のそ れに比べ、 大きさが少々大きく、 取り込み能が高いが、 インビト口にお いての坊原提示能では MHCクラス II を介した場合で変わらない機能 を持つことが分かった。 このことから、 インビトロにおける D Cの解析 に用いるのに有用な細胞株であると考えられる。 また、 インビボにおい てワクチンとして用いると、 特に MH Cクラス I を介して強力に CTL を誘導した。 これは高効率の MHCクラス I を介した提示能は高い抗原 の取り込み量に依存するという報告 (Annu. Rev. Immunol. , 19, 47-64, 2001) と一致する。 このことから、 t s S V 4 0 L T T gの D Cは癌 やウィルスなどに対するワクチン効果を生体内で効率よく起こすことが できる。  DCs derived from bone marrow cells of ts SV 40 LTT g mice, passaged at least 10 times, and subjected to long-term culture for at least 7 months at 33 were slightly larger in size than those in the initial culture, and Although the ability was high, it was found that the ability to present Bobara in the mouth of the mouth had the same function as that via MHC class II. From this, it is considered that the cell line is useful for use in the analysis of DC in vitro. In addition, when used as a vaccine in vivo, it induced CTLs particularly strongly via MHC class I. This is consistent with the report that high-efficiency MHC class I-mediated presentation depends on high antigen uptake (Annu. Rev. Immunol., 19, 47-64, 2001). From this, DC of tsSV40LTTg can efficiently induce a vaccine effect against cancers and viruses in vivo.
産業上の利用可能性 Industrial applicability
本発明によれば、 安定的に増殖し続ける不死化榭状細胞株を得ること ができ、 該樹状細胞株を用いて免疫の誘導や修飾、 樹状細胞株を用いた 治療法の開発など利用することができる。 また、 本発明によれば、 当該 細胞株の由来する組織における本来の機能 ·特性を保持しているので、 これを用いた樹状細胞に対する有用物質のスクリーニング方法及び免疫 応答を増強する物質を提供することができる。 According to the present invention, it is possible to obtain an immortalized 榭 -shaped cell line that keeps growing stably. The dendritic cell line can be used for induction and modification of immunity, development of a therapeutic method using the dendritic cell line, and the like. Further, according to the present invention, a method for screening a useful substance against dendritic cells and a substance that enhances an immune response using the cell line are provided, since the cell line retains its original function and characteristics in a tissue derived from the cell line. can do.

Claims

請 求 の 範 囲 The scope of the claims
1. 骨髄に由来することを特徴とする不死化樹状細胞株。 1. An immortalized dendritic cell line characterized by being derived from bone marrow.
2. 細胞表面にミエロイ ド分子及びロイコサイ ト分子を発現し、 抗原の 取込み能、 抗原の提示能、 及び CTL活性の誘導能を有することを特徴 とする請求項 1記載の不死化樹状細胞株。 2. The immortalized dendritic cell line according to claim 1, wherein the immortal dendritic cell line expresses a myeloid molecule and a leucosite molecule on a cell surface and has an antigen uptake ability, an antigen presenting ability, and a CTL activity inducing ability. .
3. 3 3 °Cで増殖することができるが、 3 7 °Cでは増殖が抑制されるこ とを特徴とする請求項 1又は 2記載の不死化樹状細胞株。  3. The immortalized dendritic cell line according to claim 1, which is capable of growing at 33 ° C., but is suppressed at 37 ° C.
4. L P S刺激に応答能を有することを特徴とする請求項 1〜 3のいず れか記載の不死化樹状細胞株。  4. The immortalized dendritic cell line according to any one of claims 1 to 3, which has an ability to respond to LPS stimulation.
5. 齧歯類起源であることを特徴とする請求項 1〜 4のいずれか記載の 不死化樹状細胞株。  5. The immortalized dendritic cell line according to any one of claims 1 to 4, which is of rodent origin.
6. 齧歯類がマウスであることを特徴とする請求項 5記載の不死化樹状 細胞株。  6. The immortalized dendritic cell line according to claim 5, wherein the rodent is a mouse.
7. 不死化樹状細胞株 T D C (F E RM B P— 0 8 5 2 7)。  7. Immortalized dendritic cell line TDC (FERMBP-085-27).
8. S V 4 0の温度感受性突然変異株 t s A 5 8のラージ T抗原遺伝子 を導入したトランスジエニックマウスの骨髄細胞を溶血処理した後、 リ ンパ球及び I a陽性細胞を除去し、 得られた細胞を GM— C S Fの存在 下培養することにより樹状細胞を誘導し、 継代培養を 1 0回以上繰り返 し、 細胞表面にミエロイ ド分子及びロイコサイ ト分子を発現し、 抗原の 取込み能、 抗原の提示能、 及び CTL活性の誘導能を有する細胞株を樹 立することを特徴とする不死化樹状細胞株の製造方法。  8. After hemolyzing the bone marrow cells of the transgenic mouse into which the large T antigen gene of the SV40 temperature-sensitive mutant tsA58 was introduced, the lymphocytes and Ia-positive cells were removed. Cultured cells in the presence of GM-CSF to induce dendritic cells, repeat subculture 10 times or more, express myeloid molecules and leucosite molecules on the cell surface, and A method for producing an immortalized dendritic cell line, comprising establishing a cell line having an antigen-presenting ability and an ability to induce CTL activity.
9. 3 3 °Cで増殖することができるが、 3 7 °Cでは増殖が抑制され、 L P S刺激に応答能を有する細胞株を樹立することを特徴とする請求項 8 記載の不死化榭状細胞株の製造方法。  9. The immortalized bacterium according to claim 8, wherein the cell is capable of growing at 33 ° C, but the growth is suppressed at 37 ° C, and a cell line capable of responding to LPS stimulation is established. A method for producing a cell line.
1 0. 被検物質の存在下、 請求項 1〜 7のいずれか記載の不死化樹状細 胞株を培養し、 該細胞株における成熟マーカータンパク質の発現の程度 を測定 ·評価することを特徴とする樹状細胞における成熟促進又は抑制 物質のスクリーニング方法。 10. An immortalized dendritic cell according to any one of claims 1 to 7, in the presence of a test substance. A method for screening a substance that promotes or suppresses maturation in dendritic cells, comprising culturing a cell line and measuring and evaluating the expression level of a maturation marker protein in the cell line.
1 1 . マーカータンパク質が、 ミエロイ ド分子、 ロイコサイト分子、 I 一 A b、 C D 8 6及び Z又は C D 4 0であることを特徴とする請求項 1 0記載の樹状細胞における成熟促進又は抑制物質のスクリーニング方法。 • 1 2 . 被検物質の存在下、 請求項 1〜 7のいずれか記載の不死化樹状細 胞株を培養し、 該細胞の増殖の程度を測定 ·評価することを特徴とする 樹状細胞における細胞増殖促進又は抑制物質のスクリ一二ング方法。 1 3 . 被検物質の存在下、 請求項 1〜 7のいずれか記載の不死化樹状細 胞株を L P S刺激し、 該細胞の I L一 1 2産生量を測定、 評価すること を特徴とする樹状細胞の活性化促進又は抑制物質のスクリーニング方法。 1 4 . 請求項 1 0又は 1 1記載のスクリ一二ング方法により得られる樹 状細胞における成熟促進物質。 1 1. Marker protein, Mieroi de molecules, leukocyte molecule, I one A b, accelerated maturation or suppressed in dendritic cells of claim 1 0, wherein it is a CD 8 6 and Z or CD 4 0 A method for screening substances. • 12. The dendritic cell characterized by culturing the immortalized dendritic cell strain according to any one of claims 1 to 7 in the presence of a test substance, and measuring and evaluating the degree of proliferation of the cell. A method for screening a cell growth promoting or inhibiting substance in a cell. 13.In the presence of a test substance, the immortalized dendritic cell strain according to any one of claims 1 to 7 is stimulated with LPS, and the amount of IL-11 produced by the cells is measured and evaluated. A method for screening a substance that promotes or suppresses dendritic cell activation. 14. A substance for promoting maturation in dendritic cells obtained by the screening method according to claim 10 or 11.
1 5 . 請求項 1 2記載のスクリーニング方法により得られる樹状細胞に おける細胞増殖促進物質。  15. A cell growth promoting substance in dendritic cells obtained by the screening method according to claim 12.
1 6 . 請求項 1 3記載のスクリーニング方法により得られる樹状細胞の 活性化促進物質。  16. A substance for promoting dendritic cell activation obtained by the screening method according to claim 13.
1 7 . 請求項 1〜 7のいずれか記載の不死化樹状細胞株を主成分とする ことを特徴とする細胞ワクチン。  17. A cell vaccine comprising the immortalized dendritic cell line according to any one of claims 1 to 7 as a main component.
1 8 . 不死化樹状細胞株が、 3 3 :で増殖することができるが、 3 7 °C では増殖が抑制される不死化樹状細胞株であることを特徴とする請求項 1 7記載の細胞ワクチン。  18. The immortalized dendritic cell line, wherein the immortalized dendritic cell line is an immortalized dendritic cell line that can proliferate at 33: but is inhibited from growing at 37 ° C. Cell vaccine.
1 9 . 不死化樹状細胞株が、 抗原又は抗原一 I g G免疫複合体を取り込 ませた不死化樹状細胞株であることを特徴とする請求項 1 7又は 1 8記 載の細胞ワクチン。 19. The cell according to claim 17 or 18, wherein the immortalized dendritic cell line is an immortalized dendritic cell line that has not taken up an antigen or an antigen-IgG immune complex. vaccine.
2 0. 抗原が腫瘍抗原であることを特徴とする請求項 1 9記載の細胞ヮ クチン。 20. The cellular actin according to claim 19, wherein the antigen is a tumor antigen.
PCT/JP2003/013951 2002-10-30 2003-10-30 Immortalized dendritic cell line originating in bone marrow WO2004039968A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002-316871 2002-10-30
JP2002316871 2002-10-30

Publications (1)

Publication Number Publication Date
WO2004039968A1 true WO2004039968A1 (en) 2004-05-13

Family

ID=32211699

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/013951 WO2004039968A1 (en) 2002-10-30 2003-10-30 Immortalized dendritic cell line originating in bone marrow

Country Status (1)

Country Link
WO (1) WO2004039968A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2292267B1 (en) * 2004-05-31 2014-07-23 Almirall S.A. Combinations comprising antimuscarinic agents and beta-adrenergic agonists
EP3350318A4 (en) * 2015-09-15 2019-11-13 NorthWest Biotherapeutics, Inc. Methods relating to activated dendritic cell compositions and immunotherapeutic treatments for subjects with advanced cancers

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
INABA, K. ET AL: "Generation of large numbers of dendritic cells from mouse bone marrow cultures supplemented with granulocyte/macrophage colony-stimulating factor", J.EXP.MED, vol. 176, 1992, pages 1693 - 1702, XP000386312 *
LUTZ, M.B. ET AL: "Retroviral immortalization of phagocytic and dendritic cell clones as a tool to investigate functionnal heterogeneity", J.IMMUNOL.METHODS, vol. 174, no. 1-2, 1994, pages 269 - 279, XP002986709 *
MASUO TATEWAKI: "transgenic Mouse o Mochiita Bunka Kino Hoji Saibokabu no Juritsu", SEIKAGAKU, vol. 67, no. 12, 1995, pages 1391 - 1396, XP002986706 *
MASUO TATEWAKI: "Zoketsu Kansaibo no Zoshoku to Bunka no Kotsuzui- Kanshitsu Saibo ni yoru Seigyo", JAPANESE JOURNAL OF TRANSFUSION MEDICINE, vol. 44, no. 3, 1998, pages 418 - 420, XP002986707 *
NOBLE, M. ET AL: "the H-2KbtsA58 transgenic mouse: a new tool for the rapid generation of novel cell lines", TRANSGENIC RES, vol. 4, no. 4, 1995, pages 215 - 225, XP001005996 *
SCHEICHER, C. ET AL: "Dendritic cells from mouse bone marrow: in vitro differentiation using low doses of recombinant granulocyte-macrophage colony-stimulating factor", J.IMMUNOL.METHODS, vol. 154, no. 2, 1992, pages 253 - 264, XP002986708 *
VOLKMANN, A. ET AL: "A conditionally immortalized dendritic cell line which differentiates in contact with T cells or T cell-derived cytokines", EUR.J.IMMUNOL, vol. 26, no. 11, 1996, pages 2565 - 2572, XP008022329 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2292267B1 (en) * 2004-05-31 2014-07-23 Almirall S.A. Combinations comprising antimuscarinic agents and beta-adrenergic agonists
EP3350318A4 (en) * 2015-09-15 2019-11-13 NorthWest Biotherapeutics, Inc. Methods relating to activated dendritic cell compositions and immunotherapeutic treatments for subjects with advanced cancers
EP3971285A3 (en) * 2015-09-15 2022-06-22 NorthWest Biotherapeutics, Inc. Activated dendritic cell compositions and immunotherapeutic treatments for subjects with advanced cancers

Similar Documents

Publication Publication Date Title
CN103502439B (en) Method for T cells with antigenic specificity propagation
EP0866655B1 (en) Murine model for human carcinoma
JP2012531896A (en) Method for producing a humanized non-human mammal
CN101951945A (en) Compositions and methods for treatment of microbial disorders
CN111485002A (en) Preparation method and application of transgenic mouse with severe immunodeficiency
CN107920498A (en) The non-human animal destroyed with C9ORF72 locus
CN113930446A (en) Method for gene modification of non-human animal and constructed immunodeficiency animal model
JP5542928B2 (en) Method for producing transformed earthworm using worm's gonad regeneration ability, transformed earthworm produced thereby, and method for producing recombinant protein from body fluid of transformed earthworm
JP4609855B2 (en) Method for producing human-derived immunocompetent cells
CN102596234A (en) Dendritic cell vaccines for asparaginyl-beta-hydroxylase expressing tumors
US20060067914A1 (en) Immortalized natural killer cell line
WO2004039968A1 (en) Immortalized dendritic cell line originating in bone marrow
JP4219789B2 (en) Bone marrow-derived immortalized dendritic cell line
CN107148470A (en) Raise method of the cancer stem cell mark to produce antigen-specific cytotoxic effector T cell
CN113355355B (en) Construction method and application of IL23A and/or IL12B gene humanized non-human animal
AU2002362474B8 (en) Nonhuman mammal model of autoimmune disease having OX40L gene transferred thereinto
WO2016208532A1 (en) Method for producing blood chimeric animal
Joannou et al. γδ thymocyte maturation and emigration in adult mice
JP2001526043A (en) TGC-methods for inducing targeted somatic cell transgenesis
CN113564203B (en) Preparation method and application of HSV1-tk/GCV induced blood system defect mouse model
Benjamin Polyoma viruses
WO2022050082A1 (en) AGENT FOR INCREASING CONTENT OF IgA ANTIBODY IN MILK
US20030044398A1 (en) Methods for producing antibodies in mammals
WO2001060984A1 (en) Immortalized vascular adventitial cell line
GOODMAN et al. Nonspecific activation of murine lymphocytes

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase