WO2004036659A1 - Optical semiconductor device - Google Patents

Optical semiconductor device Download PDF

Info

Publication number
WO2004036659A1
WO2004036659A1 PCT/JP2003/011755 JP0311755W WO2004036659A1 WO 2004036659 A1 WO2004036659 A1 WO 2004036659A1 JP 0311755 W JP0311755 W JP 0311755W WO 2004036659 A1 WO2004036659 A1 WO 2004036659A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
zno
band gap
semiconductor device
optical semiconductor
Prior art date
Application number
PCT/JP2003/011755
Other languages
French (fr)
Japanese (ja)
Inventor
Yoshihiro Ito
Michio Kadota
Original Assignee
Murata Manufacturing Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co., Ltd. filed Critical Murata Manufacturing Co., Ltd.
Priority to AU2003264432A priority Critical patent/AU2003264432A1/en
Publication of WO2004036659A1 publication Critical patent/WO2004036659A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/28Materials of the light emitting region containing only elements of Group II and Group VI of the Periodic Table

Definitions

  • the present invention relates to an optical semiconductor device, and more particularly, to an optical semiconductor device such as a light emitting device that emits light in a blue / ultraviolet region and a multilayer reflector.
  • ⁇ (zinc oxide) a type of ⁇ -VI compound semiconductor, has a very large exciton binding energy, and the electrons and holes recombine directly to efficiently emit light. Research on light-emitting elements has been actively conducted.
  • a light emitting element has a so-called double hetero structure in which an active layer that emits light by current injection is sandwiched between a pair of cladding layers having a larger band gap energy Eg than the active layer, thereby improving luminous efficiency.
  • the band gap difference ⁇ Eg between the active layer and the cladding layer must be increased.
  • the wavelength of the emitted light depends on the band gap energy of the active layer, light of a desired wavelength can be emitted by changing the band gap energy of the active layer.
  • a transparent oxide having a band gap energy Eg of 3.5 eV or more for example, containing 1 to 10 wt% of BaO or S ⁇ 0 in a ⁇ 110 film is included.
  • JP 2000-1 59547 JP sigma 00 8 3 Ya 3 r was allowed to 0.5 containing 5% to 20% against Shi atomic concentration Zn 2+ technology has also been proposed (Japanese Patent Kaihei 8–1 99343).
  • a group VI element other than O for example, S or Se is used to partially replace O, thereby obtaining a mixed crystal compound having a small bandgap energy E g.
  • the electronegativity of O is 3.5
  • the electronegativities of S and Se are 2.5 and 2.4, respectively, and the difference in electronegativity is 1.0 or more. Very large.
  • ZnO-based mixed crystal compound ZnO-based mixed crystal compound
  • JP-A-2002-16285 is considered to be able to produce a ⁇ -based mixed crystal compound in terms of bowing characteristics.
  • a ZnO-based mixed crystal compound is actually used. There is a problem that it is difficult to generate the compound semiconductor, and thus it is difficult to obtain a compound semiconductor having a smaller band gap energy Eg than that of ZnO.
  • JP-A-10-270749 and JP-A-2001-77420 attempt to increase the band gap energy Eg of the Z ⁇ -based thin film, and reduce the band gap energy E g of the active layer. It's not a trivial one.
  • Japanese Patent Application Laid-Open No. 2000-155954 relates to a low-reflection heat ray shielding glass in which a zinc oxide thin film and a silver film are laminated on a glass substrate, and not to an optical semiconductor element such as a light emitting element. Different uses.
  • Japanese Patent Application Laid-Open No. 8-199343 relates to a transparent conductive film used for a transparent electrode of a liquid crystal display device, and performs etching with low resistance by adding Ba or Sr to ZnO. It is intended to obtain a transparent conductive film having excellent characteristics, and is not intended to modulate the bandgap energy as in an optical semiconductor device such as a light-emitting device. Disclosure of the invention
  • band modulation a solid solution of B a or S r in Z n O, band gap depending on the content and the deposition temperature of the B a or S r
  • the optical semiconductor device according to the present invention has at least one of Ba and Sr dissolved in ZnO, and these Ba and Sr It is characterized by having at least one or more compound semiconductor layers whose band gap energy is modulated according to the content of Sr.
  • the optical semiconductor device has at least one layer in which at least one of Ba and Sr is dissolved in ZnO and the band gap energy is modulated according to the film formation temperature. It is characterized by having the above compound semiconductor layer.
  • a compound semiconductor layer having a desired band gap energy Eg can be easily obtained by the band modulation action.
  • optical semiconductor element such as a light emitting element having a desired compound semiconductor layer having a band gap energy smaller than that of ZnO or a multilayer reflector.
  • the optical semiconductor device of the present invention is characterized in that at least one of the compound semiconductor layers is an active layer that emits light by current injection.
  • the active layer is formed of the band-modulated compound semiconductor layer, the band gap energy of the active layer can be reduced.
  • the optical semiconductor device of the present invention is characterized in that it comprises a multilayer film in which a plurality of the compound semiconductor layers having different band gap energies are alternately stacked.
  • a light-emitting element or a multilayer film having a compound semiconductor layer having a desired band gap energy smaller than ZnO depending on the film formation temperature can be obtained.
  • the optical semiconductor device of the present invention is characterized in that the multilayer film forms an active layer that emits light by current injection.
  • the band gap energy of the multilayer film is compared with the band gap energy of the active layer.
  • the active layer is formed of a multilayer film including a plurality of band-modulated compound semiconductor layers, it is possible to obtain an active layer having a multiple quantum well structure with good luminous efficiency.
  • optical semiconductor device of the present invention is characterized in that the active layer is sandwiched between cladding layers having a bandgap energy larger than that of the active layer.
  • an active layer having a small band gap energy can be sandwiched by a clad layer having a large band gap energy, and a semiconductor device having a double hetero structure having excellent luminous efficiency can be obtained.
  • the cladding layer is formed of a semiconductor material containing ZnO as a main component, or is formed of a semiconductor material in which Mg is dissolved in Z ⁇ , or It is characterized by being formed of a semiconductor material containing G a N as a main component.
  • a cladding layer having a larger band gap energy Eg than the active layer can be easily obtained.
  • the compound semiconductor layer may have a composition formula of B axZn 1 - ⁇ (0 ⁇ x ⁇ 1) and a composition formula of SryZn 1 ⁇ y O (0 ⁇ y ⁇ 1)
  • a compound semiconductor layer composed of a ternary mixed crystal compound can be obtained.
  • the inventors of the present invention have conducted intensive research. As a result, by setting the mole fraction of the Ba component or the Sr component to the Zn component to be less than 0.55, the pouring characteristics are remarkably exhibited, and the eutectic is formed. It has been found that a desired mixed crystal compound can be obtained without being generated.c.Therefore, in the optical semiconductor device of the present invention, X and y are 0 ⁇ x ⁇ 0.55 and 0 ⁇ y, respectively. ⁇ 0.55. BRIEF DESCRIPTION OF THE FIGURES
  • FIG. 1 is a schematic sectional view of one embodiment (first embodiment) of an optical semiconductor device according to the present invention.
  • FIG. 2 is a characteristic diagram showing a relationship between the composition molar ratio X of the elements to be dissolved and the band gap energy Eg.
  • FIG. 3 is a schematic cross-sectional view showing a second embodiment of the optical semiconductor device according to the present invention.
  • FIG. 4 is an enlarged sectional view of a main part of FIG.
  • FIG. 5 is a schematic sectional view showing an optical semiconductor device according to a third embodiment of the present invention.
  • FIG. 6 is an enlarged sectional view of a main part of FIG.
  • FIG. 7 is a measurement diagram showing a relationship between the molar composition ratio X of the Ba component and the c-axis length of the Ba x Zn—X O thin film.
  • FIG. 8 is an X-ray spectrum when the molar composition ratio X of the Ba component is 0.41.
  • FIG. 9 is a characteristic diagram showing the relationship between the molar composition ratio X of the Ba component and the band gap energy Eg.
  • FIG. 10 is a characteristic diagram showing the relationship between the substrate temperature T and the bandgap energy Eg. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 is a schematic cross-sectional view of a light emitting diode (hereinafter, referred to as “LEDJ”) as one embodiment (first embodiment) of an optical semiconductor device according to the present invention.
  • LEDJ light emitting diode
  • reference numeral 1 denotes a single crystal substrate containing ZnO as a main component (hereinafter referred to as ⁇ ⁇ ⁇ substrate), wherein the ⁇ ⁇ substrate 1 is conductive and has a zinc polar surface 1 a And an oxygen polar surface 1b.
  • a light emitting layer 2 is formed on a zinc polar surface 1 a of a ZnO substrate 1, and the surface of the light emitting layer 2 is made of indium tin oxide (hereinafter referred to as “IT OJ”).
  • I OJ indium tin oxide
  • a transparent electrode 3 having a thickness of about 150 nm is formed, and a Ni film, an AI film, and an Au film are sequentially laminated at approximately the center of the surface of the transparent electrode 3 to form a total thickness of about 30 nm.
  • a 0 nm p-side electrode 4 is formed.
  • an n-side electrode 5 having a total thickness of about 300 nm in which a Ti film and an Au film are sequentially laminated is formed.
  • the light emitting layer 2 is specifically composed of a multilayer film in which an n-type contact layer 6, an n-type cladding layer 7, an active layer 8, a p-type cladding layer 9, and a p-type contact layer 10 are sequentially laminated. ing.
  • the active layer 8 is sandwiched between the ⁇ -type cladding layer 7 and the ⁇ -type cladding layer 9, and the ⁇ -type cladding layer 7 is connected to the ⁇ -side electrode 5 via the ⁇ -type contact layer 6 and the ⁇ substrate 1.
  • the ⁇ -type cladding layer 9 is connected to the transparent electrode 3 via the ⁇ -type contact layer 10.
  • Each layer forming the light emitting layer 2 is formed of a material having ZnO as a base material.
  • the active layer 8 emits light by recombination of electrons as n-type carriers and holes as p-type carriers, and the wavelength of emitted light is determined by the bandgap energy E g of the active layer 8. .
  • the active layer 8 is made of a mixed crystal compound of ZnO and BaO, that is, a composition formula Ba xZn l- It is formed of BaZn O-based mixed crystal compound represented by ⁇ . ;
  • a mixed crystal compound is generally represented by the composition formula A X B 1 -X C (or A B 1 -X Cx), and its band gap energy Eg is represented by the following equation (1).
  • the second term ce on the right side is a term caused by the non-uniformity of the lattice, and is expressed by equation (3).
  • Figure 2 shows the relationship between the molar composition ratio X of the solid solution element (element A or element C) and the band gap energy Eg.
  • the horizontal axis is the molar composition ratio of the solid solution element x, and the vertical axis is the band.
  • the gap energy E g is shown.
  • the molar composition ratio X and the band gap energy E g are directly proportional to the dashed line, and the gang gap energy E g increases linearly as the molar composition ratio X increases. I do.
  • the difference in electronegativity Ac is not excessively large, so that a eutectic of ZnO and BaO is not generated, and a BaZnO-based mixed crystal compound can be generated with high efficiency.
  • the molar composition ratio x is set such that the mathematical formula (4) is satisfied by the above composition formula B a x Zn l ⁇ .
  • the molar composition ratio X in order to obtain a BaZnO-based mixed crystal compound, the molar composition ratio X must be larger than 0, but when X becomes 0.55, the point S As shown in the figure, when the mixed crystal compound has the same value as the band gap energy E g 1 of ZnO and the molar composition ratio X of the Ba component is increased to 0.55 or more, the band gap energy E of the active layer 8 is increased. g becomes larger than the band gap energy Eg 1 of ZnO.
  • a BaZ ⁇ -based mixed crystal compound is generated such that the molar composition ratio X is 0 ⁇ x and 0.55, for example, 0.3.
  • n-type cladding layer 7 and the p-type cladding layer 9 need to have a band gap energy Eg larger than that of the active layer 8 to effectively confine carriers in the active layer 8.
  • 1-ZO ( z is 0 ⁇ z ⁇ 1, for example, 0.2) mixed with ZnO and n-type cladding layer 7 is about 2000 nm thick
  • p-type cladding layer 9 Is formed to a thickness of about 600 nm.
  • the n-type contact layer 6 and the p-type contact layer 10 are both formed with a thickness of about 200 nm with a thickness of about ⁇ . Next, a method for manufacturing the LED will be described.
  • a ZnO single crystal is prepared by the SCVT (Seeded Chemical Vapor Transport) method, etc., and the ZnO single crystal is cut out into a plane perpendicular to the c-axis direction of the crystal axis and mirror-polished. It is prepared and its polarity is confirmed by SNDM (Scanning Nonlinear Dielectric Microscopy).
  • a ZnO thin film is laminated on the zinc polar surface 1a of the ZnO substrate 1 using a sputtering device (hereinafter referred to as “ECRJ”).
  • ECRJ a sputtering device
  • an ECR sputtering apparatus divided into a plasma generation chamber and a film formation chamber is prepared, and the ZnO substrate 1 is set at a predetermined position in the film formation chamber so that the zinc polar surface 1a is the upper surface.
  • the substrate 1 is heated to a temperature of 300 to 800 ° C.
  • a reactive gas such as oxygen and a gas for plasma generation such as argon are supplied to the plasma generation chamber, and microwave discharge is performed at a frequency (2.45 GHz) at which the cyclotron resonates.
  • a plasma is generated in the generation chamber.
  • high-frequency power for example, 150 W
  • high-frequency power for example, 150 W
  • the target ZnO
  • an active layer 8 composed of Ba x Zn l- ⁇ (0 ⁇ x ⁇ 0.55) and a p-type clad composed of gz Zn 1 -zO (0 ⁇ z ⁇ 1) are sequentially formed.
  • a layer 9 and a p-type contact layer 10 made of ZnO are formed.
  • the thickness of each thin film is set to a desired thickness by controlling the reaction time.
  • a Ti film and an Au film are sequentially formed on the surface of the oxygen polar surface 1b of the ZnO substrate 1 by a vacuum evaporation method to form an n-side electrode 5, and then a p-type contact is formed by a vacuum evaporation method.
  • a transparent electrode 3 is formed by forming an ITO film on the surface of the layer 10, and then a NA is formed by a lift-off method, and Au is sequentially laminated to form a P-side electrode 4.
  • the band gap energy E g of the active layer 8 is made smaller than the band gap energy E g of the cladding layers 7 and 9 by mixing BaO and Z ⁇ . Therefore, a light-emitting element having good luminous efficiency can be obtained.
  • an ECR sputtering apparatus is used, and a sputtering process is performed. Since a ZnO-based thin film is formed according to the theory, it is not necessary to separately provide an expensive apparatus, and the thin film can be formed at a low cost.
  • Figure 3 is a schematic cross-sectional view of an LED according to a second embodiment of the optical semiconductor device according to the present invention, in this second embodiment, the We 0 0 substrate 1 and ⁇ shape contactor Bok layer 6 A multilayer reflector 11 is interposed between them.
  • the active layer 8 emits light according to its band-cap energy E g due to recombination of electrons, which are ⁇ -type carriers, and holes, which are ⁇ -type carriers. Light is emitted not only to the transparent electrode 3 side but also to the ZnO substrate 1 side.
  • the light emitted to the ZnO substrate 1 side is absorbed by the ZnO substrate 1 and the like and disappears, thereby causing energy loss.
  • the multilayer reflector 1 1 having a thickness of 20-30 0 interposed between the ZnO substrate 1 and the n-type contact layer 6, emitted in ZnO substrate 1 side Light is reflected by the multilayer film reflecting mirror 11 and radiated to the transparent electrode 3 side to prevent energy loss and avoid a decrease in light emission efficiency.
  • the multilayer mirror "I1" has a band gap energy Eg larger than that of the active layer 8, and alternately includes two types of compound semiconductor layers having different band gap energies Eg. It is formed of a multi-layered multilayer film.
  • the active layer 8 is formed of BaXZn1-XO (x is, for example, 0.4)
  • the first compound semiconductor layer 1 la Ba x Zn l— ⁇ (x is, for example, 0.2)
  • the second compound semiconductor layer 11 b is formed of Ba x Zn 1 - ⁇ ( ⁇ is, for example, 0.1).
  • a large number of thin films 11 1, 1 12, 11 m-1, and 11 m each having a compound semiconductor layer 11 a and a second compound semiconductor layer 11 b are stacked.
  • the thicknesses t 1 and t 2 of the first and second compound semiconductor layers 11 a and 11 b are determined by Expressions (5) and (6).
  • the number of stacked layers of each of the laminated films 11 1, 11 2, 11 1 m -1 and 11 m is 20 to 30.
  • is the emission wavelength
  • ⁇ 1 is the first compound semiconductor layer 11 a
  • n 2 is the refractive index of the first compound semiconductor layer 11 b.
  • the multilayer mirror 11 is formed of a multilayer film in which a large number of two types of compound semiconductor layers are alternately stacked, but a large number of three or more types of compound semiconductor layers are sequentially formed. It may be formed by a laminated multilayer film. Also, the second embodiment can be easily manufactured by the ECR sputtering method similarly to the first embodiment.
  • FIG. 5 shows a laser diode as an optical semiconductor device according to a third embodiment of the present invention.
  • the active layer 20 has a multiple quantum well structure.
  • a light emitting layer 14 is formed on a zinc polar surface 13 a of a conductive ZnO substrate 13, and a Ni film, an AI film, and an A film are formed on the surface of the light emitting layer 14.
  • a p-side electrode 15 having a total film thickness of about 300 nm in which u films are sequentially stacked is formed.
  • an n-side electrode 16 having a total thickness of about 300 nm in which a Ti film and an Au film are sequentially laminated is formed on the oxygen polar surface 13 b of the ZnO substrate 13.
  • the light emitting layer 14 is, specifically, a ⁇ -type contact layer 17, an n-type cladding layer 18, an r> -type light guiding layer 19, an active layer 20, a p-type light guiding layer 21, and a p-type cladding layer. 22, a current limiting layer 23 and a p-type contact layer 24 are formed of a multilayer film sequentially laminated.
  • the active layer 20 is sandwiched between the n-type cladding layer 18 and the p-type cladding layer 22 via the n-type guide layer 19 and the p-type guide layer 21, respectively.
  • the n-type cladding layer 18 is connected to the ⁇ -side electrode 16 via the ⁇ -type contact layer 17 and the ⁇ substrate 13, and the ⁇ -type cladding layer 22 is connected to the current limiting layer 23 and the ⁇ -type contact layer 24. Connected to the ⁇ side electrode 15 via
  • the active layer 20 is formed of Ba ⁇ ⁇ 1— ⁇ , and as shown in FIG. 6, the barrier layers 20 a (X is, for example, 0.1) and the ⁇ layer 20 b ( X has a multi-quantum well structure in which 2 to 5 layers, for example, 0.3) are alternately laminated with a thickness of 3 nm each.
  • the active layer 20 When the refractive index of the active layer 20 is larger than that of the n-type cladding layer 18 and the p-type cladding layer 22, light can be confined in the active layer 20, but since the active layer 20 is a thin film, it can be sufficiently filled. When light cannot be confined, it is necessary to prevent light from leaking from the active layer 20. Therefore, the active layer 20 and the r> -type cladding layer 18 and p An n-type light guide layer 19 and a p-type light guide layer 21 having an intermediate refractive index between the cladding layers 18 and 22 and the active layer 20 are interposed between the cladding layers 22 and 22.
  • an n-type contact layer 17 having a thickness of about 1,500 nm made of Z ⁇ is formed on the zinc polar surface 13 a of the Z ⁇ substrate 13, and the surface of the n-type contact layer 17 is formed on the surface of the n-type contact layer 17.
  • a film consisting of Z ⁇ An n-type light guide layer 19 having a thickness of about 40 nm is formed.
  • an active layer 20 having the above-mentioned multiple quantum well structure is laminated, and on the surface of the active layer 20, MgzZn1-zO (z is O ⁇ z
  • a p-type light guide layer 21 having a thickness of about 40 nm made of, for example, 0.2) is formed, and the surface of the p-type light guide layer 21 further includes Mg z Zn 1 —z O (z 0 ⁇ z ⁇ 1, and a p-type cladding layer 22 of, for example, 0.2) and having a thickness of about 2,000 nm is formed.
  • a current of 400 nm in thickness consisting of Mg z Z n 1 - ⁇ (z is 0 ⁇ z ⁇ 1, for example, 0.2) is applied so that current flows only in the oscillation region.
  • a limiting layer 23 is formed in a predetermined shape so as to have a groove 23a, and then a p-type contact layer 24 is formed on the surface of the p-type cladding layer 22 so as to cover the current limiting layer 23 in a cross-sectional shape of a letter. I have.
  • the LD is also manufactured by a method and a procedure substantially similar to those of the first embodiment.
  • a ⁇ 00 single crystal is prepared by a thirty method or the like, a ZnO single crystal is cut into a plane perpendicular to the c-axis direction of the crystal axis, and mirror-polished to prepare a ZnO substrate. Confirm by SN DM method.
  • an ECR sputtering apparatus is prepared, and the ZnO substrate 13 is set at a predetermined position in the film forming chamber so that the zinc polar surface 13 a is the upper surface.
  • the substrate 1 is heated to a temperature of 300 to 800 ° C.
  • a reactive gas such as oxygen and a plasma generation gas such as argon are supplied to the plasma generation chamber, and microwave discharge is performed to generate plasma in the plasma generation chamber, and the target (ZnO) is sputtered.
  • a plasma generation gas such as argon
  • an n-type contact layer 17 made of ZnO is formed on the surface of the ZnO substrate 13 by reactive sputtering.
  • reactive sputtering is sequentially performed while appropriately changing the target to a desired substance, and the n-type contact layer 17, the ⁇ -type cladding layer 18, the n-type light guide layer 19, the active layer 20, A p-type light guide layer 21, a p-type cladding layer 22, and a current limiting layer 23 are sequentially formed.
  • the formed ZnO substrate 13 is once taken out of the ECR sputtering apparatus, a photoresist is applied to the surface of the current limiting layer 23, and a known photolithography technique is used.
  • the resist film is patterned and subjected to etching with an alkaline solution such as NaOH to form the current limiting layer 23 in a predetermined shape.
  • the ZnO substrate 13 is returned to a predetermined position in the ECF sputtering apparatus again, and reactive sputtering is performed to form a p-type contact layer 24 having a T-shaped cross section and Z ⁇ .
  • a Ti film and an Au film are sequentially formed on the surface of the oxygen-polar surface 13 b of the ZnO substrate 13 by a vacuum evaporation method, and n A side electrode 16 is formed, and then Ni, AI, and Au are sequentially laminated on the surface of the P-type contact layer 24 by vacuum evaporation to form a p-side electrode.
  • the third embodiment also includes two types of compound semiconductor layers having different band gap energies E g in which 830 and ⁇ 0 O are mixed and crystallized. That is, the active layer 20 having a multiple quantum well structure formed by the barrier layer 20 a and the p-type layer 20 b is provided, and the band gap energy E g of the active layer 20 is changed to the band gap energy E g of the cladding layers 19 and 21. Since it is smaller than that, a light-emitting element having good luminous efficiency can be obtained.
  • Ba O and ZnO are mixed crystals.
  • S r electrowetting: 1 ⁇ 0
  • S ry O ⁇ 1-y O 0.25
  • E g desired band gap energy
  • a layer can be obtained, and a light emitting element and a multilayer reflector having excellent luminous efficiency can be obtained.
  • the film formation is performed by heating the substrate temperature to an arbitrary constant temperature selected from 300 to 800 ° C., but by changing the substrate temperature for each layer, An optical semiconductor device such as a light-emitting device having a band-modulated compound semiconductor layer can be obtained.
  • the bandgap energy Eg is modulated by the ternary mixed crystal compound composed of the composition formula BaXZn1-X0 or SryZn1-yO. It is not limited to crystals.
  • Ga, AI, or N may be contained as a dopant.
  • the cladding layer is formed of a mixed crystal compound consisting of M gz Z n 1— Z O (0 ⁇ z ⁇ 1), but the band gap energy E g is 3.46 to 33. Even when is used, an optical semiconductor device with improved luminous efficiency can be obtained by using the above-described active layers 8 and 20 of the present invention.
  • the compound semiconductor layer is formed on the ZnO substrate, but instead of the ZnO substrate, a sapphire substrate, a S ⁇ substrate, a SiC substrate, a GaN substrate, or the like may be used. May be used.
  • MOCVD metal organic chemical vapor phase
  • laser ablation or the like may be used.
  • the present inventors performed sputtering using a mixture of ⁇ 00 and 830 as a sputter target using a capacitively coupled RF sputtering apparatus to form a BaZnO-based thin film on a C-plane sapphire substrate.
  • the crystal state and band gap energy E g were measured.
  • the molar composition ratio x of the Ba component in the BaZnO-based thin film was measured by wavelength-dispersive X-ray analysis (WDX), the molar composition ratio X was 0, 0.10, 0.1. 29, 0.41, and 0.55.
  • the c-axis length was determined by the peak of ZnO (002) in XRD.
  • FIG. 7 shows the measurement results.
  • the abscissa indicates the molar composition ratio X of the Ba component, and the ordinate indicates the c-axis length (nm) of the BaXZn1-xO thin film.
  • the c-axis length is 0.52065 nm, but as the molar composition ratio x of the Ba component increases, the c-axis The length has become shorter, which indicates that the Ba component is incorporated in the ZnO crystal lattice.
  • FIG. 8 is an X-ray spectrum showing the measurement results, with the horizontal axis representing the diffraction angle 20 / ⁇ and the vertical axis representing the X-ray intensity (cps).
  • the peak of X-ray intensity is only the peak derived from ZnO and the C-plane sapphire substrate, and the peak derived from BaO does not exist. Therefore, it can be seen that Ba is incorporated into the ZnO crystal lattice without the formation of a eutectic, and a mixed crystal compound represented by the composition formula Ba x Zn 1 x O is generated .
  • the present inventors measured the band gap energy of each thin film at room temperature (25 ° C.) by a photoluminescence method.
  • Fig. 9 shows the measurement results.
  • the horizontal axis shows the molar composition ratio X of the Ba component, and the vertical axis shows the band gap energy Eg (eV).
  • the pouring characteristics increase as the molar composition ratio X of the Ba component increases.
  • the band gap energy E g changes parabolically, and the band gap energy E g can be made smaller than that of ZnO.
  • the present inventors changed the substrate temperature (film formation temperature) and examined the relationship between the substrate temperature T and the bandgap energy Eg.
  • the mixing ratio of ZnO and BaO is 90:
  • the capacitively coupled RF sputtering device BaZnO-based thin films with a thickness of 500 nm were fabricated on a C-plane sapphire substrate using, and the band gap energy E g of each thin film was measured by photoluminescence method.
  • FIG. 10 shows the measurement results.
  • the horizontal axis represents the substrate temperature T (° C.), and the vertical axis represents the band gap energy Eg (eV).
  • the optical semiconductor device according to the present invention is useful as a pickup unit used when writing information to a storage device or reading information stored in the storage device. It is suitable for a pickup unit that writes to and reads data from a storage device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)
  • Semiconductor Lasers (AREA)

Abstract

An optical semiconductor device comprising a desired compound semiconductor layer having a band gap energy (Eg) smaller than that of ZnO. An n-type contact layer (6), an n-type cladding layer (7), an active layer (8), a p-type cladding layer (9) and a p-type contact layer (10) are formed in this order on a ZnO monocrystal substrate (1). The active layer (8) is expressed by a composition formula of BaxZn1-xO (wherein 0 < x < 0.55), and made of a mixed crystal compound wherein ZnO is dissolved in the Ba component so that the band gap energy (Eg) becomes smaller than that of ZnO. The n-type cladding layer (7) and the p-type cladding layer (9) are made of a compound semiconductor which has a larger band gap energy (Eg) than the active layer (8) and is expressed by a composition formula of MgzZn1-zO (wherein 0 ≤z <1).

Description

明 細 書 光半導体素子 技術分野  Description Optical semiconductor device technology
本発明は光半導体素子に関し、 より詳しくは青色■紫外領域で発光する発光素子や多 層膜反射鏡等の光半導体素子に関する。 背景技術  The present invention relates to an optical semiconductor device, and more particularly, to an optical semiconductor device such as a light emitting device that emits light in a blue / ultraviolet region and a multilayer reflector. Background art
Π-VI族化合物半導体の一種である ΖπΟ (酸化亜鉛) は、励起子の結合エネルギが非 常に大きく、 電子と正孔とが直接再結合して効率良く発光するため、 ΖηΟを母材とした 発光素子の研究が盛んに行われている。  ΖπΟ (zinc oxide), a type of Π-VI compound semiconductor, has a very large exciton binding energy, and the electrons and holes recombine directly to efficiently emit light. Research on light-emitting elements has been actively conducted.
ところで、 発光素子では、 電流注入により発光する活性層を、 該活性層よりもバンド ギャップエネルギー Egの大きい一対のクラッド層で挟持し、 これにより発光効率を向上 させるようにした所謂ダブルへテロ構造を有するものが知られている。  By the way, a light emitting element has a so-called double hetero structure in which an active layer that emits light by current injection is sandwiched between a pair of cladding layers having a larger band gap energy Eg than the active layer, thereby improving luminous efficiency. Are known.
そして、 前記発光素子では、 発光効率を向上させるためには、 活性層とクラッド層と のバンドギャップ差△ Egを大きくしなけらばならず、 そのためには  In the light emitting device, in order to improve the luminous efficiency, the band gap difference △ Eg between the active layer and the cladding layer must be increased.
( i ) 活性層のバンドギヤップエネルギー E gを小さくするか、  (i) Decrease the band gap energy E g of the active layer, or
(ii) クラッド層のバンドギャップエネルギー Egを大きくするか、 或いは、  (ii) increase the band gap energy Eg of the cladding layer, or
(iii) 活性層のバンドギヤップエネルギー E を小さくし且つクラッド層のバンドギヤッ プエネルギー E gを大きくする必要がある。  (iii) It is necessary to reduce the band gap energy E of the active layer and increase the band gap energy E g of the cladding layer.
また、 発光する光の波長は、 活性層のパンドギャップエネルギーに依存するため、 該 活性層のバンドギヤップエネルギーを変化させることで所望波長の光を発光させることが できる。  Further, since the wavelength of the emitted light depends on the band gap energy of the active layer, light of a desired wavelength can be emitted by changing the band gap energy of the active layer.
そして、 ZnOを母材とした発光素子においても、 バンドギャップ差 AEgを大きく しょうとした技術が既に提案されている。  Technologies for increasing the band gap difference AEg have already been proposed for light emitting devices based on ZnO.
例えば、 C dを Z n Oに固溶させて活性層を C d Zn O系混晶化合物で形成し、 活性 層のバンドギヤップエネルギー E gを ZnOよりも小さくしょうとした技術や (国際公開 00/1 641 1パンフレツト)、 Oの一部を O以外の VI族元素、例えば Sや S eで置換し た Z n O系混晶化合物を活性層とし、 活性層のバンドギヤップエネルギー E gを Z n Oよ リも小さくしょうとした技術が知られている (特開 2002—1 6285号公報)。  For example, a technique in which Cd is dissolved in ZnO to form an active layer of a CdZnO-based mixed crystal compound, and the band gap energy Eg of the active layer is set to be smaller than that of ZnO. / 1 641 1 pan fret), a ZnO-based mixed crystal compound in which part of O is replaced with a group VI element other than O, for example, S or Se, is used as the active layer, and the band gap energy E g of the active layer is set to Z A technology that attempts to reduce the size of nO is known (Japanese Patent Application Laid-Open No. 2002-16285).
また、 クラッド層のバンドギャップエネルギー Egを ZnOよりも大きくしょうとし た技術としては、 例えば、 M gを Z h Oに固溶させた技術や (特開平 1 0— 270749 号公報)、 VI族元素、 特に Cを Z n Oに固溶させた技術が提案されている (特開 2001 -77420号公報)。 As a technique for increasing the bandgap energy Eg of the cladding layer to be larger than that of ZnO, for example, a technique of dissolving Mg in ZhO or a technique disclosed in Japanese Patent Application Laid-Open No. 10-270749. Japanese Patent Application Laid-Open No. 2001-77420), and a technique in which a group VI element, particularly C is dissolved in ZnO is proposed.
また、 ZnO中に他成分を含有させた技術としては、 パンドギャップエネルギー Eg が 3. 5 eV以上の透明酸化物、例えば BaOや S「 0をヱ110膜中に1〜1 0 w t %含 有させた技術や(特開 2000—1 59547号公報)、∑ 00に83ゃ3 rを Zn2+に対 し原子濃度で 0. 5~ 20%含有させた技術も提案されている (特開平 8— 1 99343 号公報)。 In addition, as a technique in which other components are contained in ZnO, a transparent oxide having a band gap energy Eg of 3.5 eV or more, for example, containing 1 to 10 wt% of BaO or S 「0 in a ヱ 110 film is included. technically and allowed (JP 2000-1 59547 JP), sigma 00 8 3 Ya 3 r was allowed to 0.5 containing 5% to 20% against Shi atomic concentration Zn 2+ technology has also been proposed (Japanese Patent Kaihei 8–1 99343).
し力、しながら、国際公開 00/1 641 1パンフレツ卜では、 C d Z n O系混晶化合物 を活性層に使用することにより、 該活性層のバンドギャップエネルギー Egを小さくしょ うとしているが、 Cdは毒性を有するため、 環境面を考慮すると問題がある。  However, in the international publication 00/1 641 1 broth, the band gap energy Eg of the active layer is being reduced by using a CdZnO-based mixed crystal compound for the active layer. However, Cd is toxic, so there is a problem when considering environmental aspects.
また、 特開 2002— 1 6285号公報では、 O以外の VI族元素、 例えば Sや S e で Oの一部を置換し、 これによリバンドギャップエネルギー E gの小さい混晶化合物を得 ようとしているが、 Oの電気陰性度は 3. 5であるのに対し、 S及び S eの電気陰性度は それぞれ 2. 5及び 2. 4であり、 電気陰性度の差が 1. 0以上であり非常に大きい。  In Japanese Patent Application Laid-Open No. 2002-16628, a group VI element other than O, for example, S or Se is used to partially replace O, thereby obtaining a mixed crystal compound having a small bandgap energy E g. Although the electronegativity of O is 3.5, the electronegativities of S and Se are 2.5 and 2.4, respectively, and the difference in electronegativity is 1.0 or more. Very large.
そして、 このように電気陰性度の差が非常に大きいため、 ポーイング特性は顕著に現 れるものの固溶度が小さく、 このため、 ZnOとZnS (或いは ZnS e) との共晶 (共 融混合物)が容易に生成され、 ZnOSや ZnOS e (以下、 「ZnO系混晶化合物」 とい う) を生成するのが困難であるという問題点があつた。  Since the difference in electronegativity is very large, the poling characteristics are remarkable, but the solid solubility is small. Therefore, the eutectic (eutectic mixture) of ZnO and ZnS (or ZnSe) is obtained. Is easily generated, and it is difficult to generate ZnOS or ZnOS e (hereinafter, referred to as “ZnO-based mixed crystal compound”).
すなわち、 特開 2002— 1 6285号公報は、 ボーイング特性上は Ζ η Ο系混晶化 合物を生成できると考えられるが、 実際は固溶度が非常に小さいため、 ZnO系混晶化合 物を生成するのは困難であり、 したがって Z n Oよりもバンドギヤップエネルギー E gの 小さい化合物半導体を得るのは困難であるという問題点があった。  That is, JP-A-2002-16285 is considered to be able to produce a {η} -based mixed crystal compound in terms of bowing characteristics. However, since the solid solubility is very small, a ZnO-based mixed crystal compound is actually used. There is a problem that it is difficult to generate the compound semiconductor, and thus it is difficult to obtain a compound semiconductor having a smaller band gap energy Eg than that of ZnO.
また、 特開平 1 0— 270749号公報及ぴ特開 2001— 77420号公報は、 Z ηθ系薄膜のバンドギャップネルギー Egを大きくしょうとしたものであって、 活性層の バンドギヤップエネルギー E gを小さくしょうとしたものではない。  Also, JP-A-10-270749 and JP-A-2001-77420 attempt to increase the band gap energy Eg of the Z ηθ-based thin film, and reduce the band gap energy E g of the active layer. It's not a trivial one.
また、 特開 2000— 1 5954フ号公報は、 ガラス基板上に酸化亜鉛薄膜と銀膜を 積層した低反射熱線遮蔽ガラスに関するものであり、 発光素子等の光半導体素子に関する ものではなく、 目的■用途が異なる。  Also, Japanese Patent Application Laid-Open No. 2000-155954 relates to a low-reflection heat ray shielding glass in which a zinc oxide thin film and a silver film are laminated on a glass substrate, and not to an optical semiconductor element such as a light emitting element. Different uses.
さらに、 特開平 8— 1 99343号公報は、 液晶表示装置の透明電極に使用される透 明導電膜に関するものであって、 ZnOに Baや S rを含有させることによリ低抵抗でェ ツチング特性に優れた透明導電膜を得ようとしたものであり、 発光素子等の光半導体素子 のようにバンドギャップエネルギ一を変調させようとするものではなく、 目的 -用途も異 なる。 発明の開示 Further, Japanese Patent Application Laid-Open No. 8-199343 relates to a transparent conductive film used for a transparent electrode of a liquid crystal display device, and performs etching with low resistance by adding Ba or Sr to ZnO. It is intended to obtain a transparent conductive film having excellent characteristics, and is not intended to modulate the bandgap energy as in an optical semiconductor device such as a light-emitting device. Disclosure of the invention
本発明者らは、 上記目的を達成すべく鋭意研究したところ、 Z n OにB a又はS rを 固溶させた場合、 B a又は S rの含有量や成膜温度に応じてバンドギャップエネルギー E gを変調 (以下、 このような変調を 「バンド変調」 という) させることができるという知 見を得た。 The present inventors have made intensive studies to achieve the above object, when a solid solution of B a or S r in Z n O, band gap depending on the content and the deposition temperature of the B a or S r We have learned that the energy E g can be modulated (hereinafter, such modulation is called “band modulation”).
本発明はこのような知見に基づきなされたものであって、 本発明に係る光半導体素子 は、 少なくとも B a及び S rのうちのいずれか一方が Z n Oに固溶され、 これら B a及び S rの含有量に応じてバンドギャップエネルギーが変調された少なくとも 1層以上の化合 物半導体層を備えていることを特徴としている。  The present invention has been made based on such findings, and the optical semiconductor device according to the present invention has at least one of Ba and Sr dissolved in ZnO, and these Ba and Sr It is characterized by having at least one or more compound semiconductor layers whose band gap energy is modulated according to the content of Sr.
また、 本発明に係る光半導体素子は、 少なくとも B a及び S rのうちのいずれか一方 が Z n Oに固溶され、 成膜温度に応じてバンドギャップエネルギーが変調された少なくと も 1層以上の化合物半導体層を備えていることを特徴としている。  Further, the optical semiconductor device according to the present invention has at least one layer in which at least one of Ba and Sr is dissolved in ZnO and the band gap energy is modulated according to the film formation temperature. It is characterized by having the above compound semiconductor layer.
上記光半導体素子によれば、 バンド変調作用によリ所望のバンドギヤップエネルギー E gを有する化合物半導体層を容易に得ることができる。  According to the optical semiconductor element, a compound semiconductor layer having a desired band gap energy Eg can be easily obtained by the band modulation action.
また、 上記光半導体素子によれは、 バンドギヤップエネルギーが Z n Oよりも小さい 所望の化合物半導体層を有する発光素子や多層膜反射鏡等の光半導体素子を得ることが可 能となる。  Further, according to the optical semiconductor element, it is possible to obtain an optical semiconductor element such as a light emitting element having a desired compound semiconductor layer having a band gap energy smaller than that of ZnO or a multilayer reflector.
また、 本発明の光半導体素子は、 前記化合物半導体層のうちの少なくとも 1層は、 電 流注入により発光する活性層であることを特徴としている。  The optical semiconductor device of the present invention is characterized in that at least one of the compound semiconductor layers is an active layer that emits light by current injection.
上記構成によれば、 活性層が、 バンド変調された化合物半導体層で形成されているの で、 活性層のバンドギャップエネルギーを小さくすることが可能となる。  According to the above configuration, since the active layer is formed of the band-modulated compound semiconductor layer, the band gap energy of the active layer can be reduced.
また、 本発明の光半導体素子は、異なるパンドギャップエネルギーを有する複数の前 記化合物半導体層が交互に多数積層された多層膜を備えていることを特徴としている。  Further, the optical semiconductor device of the present invention is characterized in that it comprises a multilayer film in which a plurality of the compound semiconductor layers having different band gap energies are alternately stacked.
また、 たとえ B aや S rの含有量が一定の場合であっても、 成膜温度に応じて Z n O よリも小さい所望のバンドギヤップエネルギーを有する化合物半導体層を有する発光素子 や多層膜反射鏡等の光半導体素子を得ることができる。  Further, even when the content of Ba and Sr is constant, a light-emitting element or a multilayer film having a compound semiconductor layer having a desired band gap energy smaller than ZnO depending on the film formation temperature. An optical semiconductor device such as a reflecting mirror can be obtained.
上記構成によれば、 多層膜のバンドギヤップエネルギーを活性層のパンドギヤップェ ネルギ一よリも大きくすることにより、 活性層から放射された光を多層膜で反射させるこ とが可能となる。  According to the above configuration, by increasing the band gap energy of the multilayer film to be larger than the band gap energy of the active layer, light emitted from the active layer can be reflected by the multilayer film.
また、 本発明の光半導体素子は、前記多層膜が、 電流注入により発光する活性層を構 成していることを特徴としている。  Further, the optical semiconductor device of the present invention is characterized in that the multilayer film forms an active layer that emits light by current injection.
また、 多層膜のバンドギャップエネルギーを活性層のバンドギャップエネルギーよリ も大きくすることにより、 活性層から放射された光を反射させることが可能な多層膜反射 鏡を得ることができ、 エネルギー損失を防止して発光効率の向上した光半導体素子を得る ことができる。 In addition, the band gap energy of the multilayer film is compared with the band gap energy of the active layer. By increasing the size, it is possible to obtain a multilayer mirror capable of reflecting light emitted from the active layer, and it is possible to obtain an optical semiconductor device having improved luminous efficiency by preventing energy loss.
上記構成によれば、 活性層が、 バンド変調された複数の化合物半導体層からなる多層 膜で形成されるので、 発光効率の良好な多重量子井戸構造の活性層を得ることが可能とな る。  According to the above configuration, since the active layer is formed of a multilayer film including a plurality of band-modulated compound semiconductor layers, it is possible to obtain an active layer having a multiple quantum well structure with good luminous efficiency.
また、 本発明の光半導体素子は、 前記活性層が、 該活性層よりも大きなバンドギヤッ プェネルギーを有するクラッド層で挟持されていることを特徴としている。  Further, the optical semiconductor device of the present invention is characterized in that the active layer is sandwiched between cladding layers having a bandgap energy larger than that of the active layer.
上記構成によれば、 バンドギヤップエネルギーの小さな活性層をバンドギヤップエネ ルギ一の大きなクラッド層で挟持することが可能となり、 発光効率の優れたダブルへテロ 構造の半導体デ/ スを得ることができる。  According to the above configuration, an active layer having a small band gap energy can be sandwiched by a clad layer having a large band gap energy, and a semiconductor device having a double hetero structure having excellent luminous efficiency can be obtained. .
また、前記クラッド層は、 Z n Oを主成分とした半導体材料で形成されていることを 特徴とし、 又は Mgが Z ηθに固溶された半導体材料で形成されていることを特徴とし、 或いは G a Nを主成分とした半導体材料で形成されていることを特徴としている。  Further, the cladding layer is formed of a semiconductor material containing ZnO as a main component, or is formed of a semiconductor material in which Mg is dissolved in Zηθ, or It is characterized by being formed of a semiconductor material containing G a N as a main component.
上記構成によれば、 活性層よリもバンドギヤップエネルギー E gの大きなクラッド層 を容易に得ることができる。  According to the above configuration, a cladding layer having a larger band gap energy Eg than the active layer can be easily obtained.
また、 本発明の光半導体素子は、 前記化合物半導体層は、 組成式 B a xZn 1 -χθ (0<x<1 )、及び組成式 S r y Z n 1— y O (0<y < 1 )のいずれかで表されること を特徴としておリ、 これによリ三元混晶化合物からなる化合物半導体層を得ることができ る。  In the optical semiconductor device of the present invention, the compound semiconductor layer may have a composition formula of B axZn 1 -χθ (0 <x <1) and a composition formula of SryZn 1−y O (0 <y <1) Thus, a compound semiconductor layer composed of a ternary mixed crystal compound can be obtained.
また、 本発明者らが銳意研究を進めたところ、 Ba成分、 或いは S r成分の Zn成分 に対するモル分率を 0. 55未満とすることにより、 ポーイング特性が顕著に現われ、 し か 共晶が生成されることもなく所望の混晶化合物を得ることができるという知見を得た c そこで、 本発明の光半導体素子は、前記 X及び yは、 それぞれ 0<x<0. 55、 0 <y<0. 55であることを特徴としている。 図面の簡単な説明  In addition, the inventors of the present invention have conducted intensive research. As a result, by setting the mole fraction of the Ba component or the Sr component to the Zn component to be less than 0.55, the pouring characteristics are remarkably exhibited, and the eutectic is formed. It has been found that a desired mixed crystal compound can be obtained without being generated.c.Therefore, in the optical semiconductor device of the present invention, X and y are 0 <x <0.55 and 0 <y, respectively. <0.55. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明に係る光半導体素子の一実施の形態 (第 1の実施の形態) の模式断面 図である。  FIG. 1 is a schematic sectional view of one embodiment (first embodiment) of an optical semiconductor device according to the present invention.
図 2は、 固溶される元素の組成モル比 Xとバンドギャップエネルギー Egとの関係を 示す特性図である。  FIG. 2 is a characteristic diagram showing a relationship between the composition molar ratio X of the elements to be dissolved and the band gap energy Eg.
図 3は、 本発明に係る光半導体素子の第 2の実施の形態を示す模式断面図である。 図 4は、 図 3の要部拡大断面図である。 図 5は、 本発明に係る光半導体素子の第 3の実施の形態を示す模式断面図である。 図 6は、 図 5の要部拡大断面図である。 FIG. 3 is a schematic cross-sectional view showing a second embodiment of the optical semiconductor device according to the present invention. FIG. 4 is an enlarged sectional view of a main part of FIG. FIG. 5 is a schematic sectional view showing an optical semiconductor device according to a third embodiment of the present invention. FIG. 6 is an enlarged sectional view of a main part of FIG.
図 7は、 B a成分のモル組成比 Xと B a x Z n l— X O薄膜の c軸長との関係を示す 測定図である。  FIG. 7 is a measurement diagram showing a relationship between the molar composition ratio X of the Ba component and the c-axis length of the Ba x Zn—X O thin film.
図 8は、 B a成分のモル組成比 Xが 0 . 4 1のときの X線スペクトルである。  FIG. 8 is an X-ray spectrum when the molar composition ratio X of the Ba component is 0.41.
図 9は、 B a成分のモル組成比 Xとバンドギャップエネルギー E gとの関係を示す特 性図である。  FIG. 9 is a characteristic diagram showing the relationship between the molar composition ratio X of the Ba component and the band gap energy Eg.
図 1 0は、基板温度 Tとバンドギャップエネルギー E gとの関係を示す特性図である。 発明を実施する為の最良の形態  FIG. 10 is a characteristic diagram showing the relationship between the substrate temperature T and the bandgap energy Eg. BEST MODE FOR CARRYING OUT THE INVENTION
次に、 本発明の実施の形態を図面に基づいて詳説する。  Next, embodiments of the present invention will be described in detail with reference to the drawings.
図 1は本発明に係る光半導体素子の一実施の形態 (第 1の実施の形態) としての発光 ダイオード (Light Emitting Diode ;以下、 「L E D J という) の模式断面図である。  FIG. 1 is a schematic cross-sectional view of a light emitting diode (hereinafter, referred to as “LEDJ”) as one embodiment (first embodiment) of an optical semiconductor device according to the present invention.
同図において、 1は Z n Oを主成分とする単結晶基板 (以下、 Γ Ζ η Ο基板」 という) であって、 該 Ζ η Ο基板 1は導電性を有し、 亜鉛極性面 1 aと酸素極性面 1 bとを備えて いる。  In the figure, reference numeral 1 denotes a single crystal substrate containing ZnO as a main component (hereinafter referred to as η Ο Ο substrate), wherein the Ζ Ο substrate 1 is conductive and has a zinc polar surface 1 a And an oxygen polar surface 1b.
そして、 該 L E Dでは、 Z n O基板 1の亜鉛極性面 1 a上に発光層 2が形成され、 該 発光層 2の表面には酸化インジウムスズ(Indium Tin Oxide ;以下、 「I T OJ という) から なる膜厚約 1 5 0 n mの透明電極 3が形成され、 さらに該透明電極 3の表面略中央部には N i膜、 A I膜、 及び A u膜が順次積層された膜厚総計約 3 0 0 n mの p側電極 4が形成 されている。  In the LED, a light emitting layer 2 is formed on a zinc polar surface 1 a of a ZnO substrate 1, and the surface of the light emitting layer 2 is made of indium tin oxide (hereinafter referred to as “IT OJ”). A transparent electrode 3 having a thickness of about 150 nm is formed, and a Ni film, an AI film, and an Au film are sequentially laminated at approximately the center of the surface of the transparent electrode 3 to form a total thickness of about 30 nm. A 0 nm p-side electrode 4 is formed.
また、 Z n O基板 1の酸素極性面 1 b上には T i膜及び A u膜が順次積層された膜厚 総計約 3 0 0 n mの n側電極 5が形成されている。  On the oxygen polarity surface 1b of the ZnO substrate 1, an n-side electrode 5 having a total thickness of about 300 nm in which a Ti film and an Au film are sequentially laminated is formed.
上記発光層 2は、 具体的には、 n形コンタクト層 6、 n形クラッド層 7、 活性層 8、 p形クラッド層 9、及び p形コンタクト層 1 0が順次積層された多層膜で構成されている。  The light emitting layer 2 is specifically composed of a multilayer film in which an n-type contact layer 6, an n-type cladding layer 7, an active layer 8, a p-type cladding layer 9, and a p-type contact layer 10 are sequentially laminated. ing.
すなわち、 活性層 8は、 Π形クラッド層 7及び ρ形クラッド層 9に挟持され、 また、 η形クラッド層 7は η形コンタクト層 6及び Ζ η θ基板 1を介して η側電極 5に接続され、 ρ形クラッド層 9は ρ形コンタクト層 1 0を介して透明電極 3に接続されている。 That is, the active layer 8 is sandwiched between the Π -type cladding layer 7 and the ρ-type cladding layer 9, and the η-type cladding layer 7 is connected to the η-side electrode 5 via the η-type contact layer 6 and the Ζηθ substrate 1. The ρ-type cladding layer 9 is connected to the transparent electrode 3 via the ρ-type contact layer 10.
また、 発光層 2を形成する各層は Z n Oを母材とした材料で形成されている。  Each layer forming the light emitting layer 2 is formed of a material having ZnO as a base material.
活性層 8は、 n形のキャリアである電子と p形のキャリアである正孔とが再結合して 発光し、 発光する光の波長は該活性層 8のバンドキャップエネルギー E gによって決定さ れる。  The active layer 8 emits light by recombination of electrons as n-type carriers and holes as p-type carriers, and the wavelength of emitted light is determined by the bandgap energy E g of the active layer 8. .
そして、 活性層 8のバンドキャップエネルギー E gとクラッド層 7、 9のバンドギヤ ップエネルギー E gとのバンドギャップ差 ΔΕ gが大きいほど発光効率を向上させること ができるため、 活性層 8のバンドギヤップエネルギー E gを小さくする必要がある。 The bandgap energy Eg of the active layer 8 and the bandgear of the cladding layers 7 and 9 Since the luminous efficiency can be improved as the band gap difference ΔΕ g from the gap energy E g increases, the band gap energy E g of the active layer 8 needs to be reduced.
そこで、本実施の形態では、 ZnOのバンドギャップエネルギー Eg (=3. 3 e V) よりも小さなバンドギャップエネルギー Egを得るべく、 活性層 8は、 ZnOと BaOと の混晶化合物、 すなわち組成式 B a xZn l— χθで表される BaZn O系混晶化合物で 形成されている。 ; Therefore, in the present embodiment, in order to obtain a band gap energy Eg smaller than the band gap energy Eg (= 3.3 eV) of ZnO, the active layer 8 is made of a mixed crystal compound of ZnO and BaO, that is, a composition formula Ba xZn l- It is formed of BaZn O-based mixed crystal compound represented by χθ. ;
Z n Oは B a Oと混晶させることによリ大きなボーイング特性を得ることができ、 こ れによりパンドギヤップエネルギー E gが Z n Oより小さい活性層 8を得ることができる。 By mixing ZnO with BaO, a large bowing characteristic can be obtained, whereby an active layer 8 having a bandgap energy Eg smaller than ZnO can be obtained.
以下、 その理由を詳述する。  Hereinafter, the reason will be described in detail.
混晶化合物は、 一般に、 組成式 A X B 1— X C (又は A B 1 - X Cx) で表され、 そ のバンドギャップエネルギー Egは数式 (1) で表される。  A mixed crystal compound is generally represented by the composition formula A X B 1 -X C (or A B 1 -X Cx), and its band gap energy Eg is represented by the following equation (1).
Eg ( X) =a + b x + c x2…(1) ここで、 a、 bは定数である。  Eg (X) = a + bx + cx2 (1) where a and b are constants.
また、 cはポーイングパラメータと呼称される定数であり、 数式 (2) で表される。 c = ci+ce - (2) ここで、 右辺第 1項 ciは仮想結晶近似して求められるバンド ギャップエネルギー Egを示し、 固溶元素である元素 A (又は元素 C) のモル組成比 Xに 対して比例配分される項である。  C is a constant called a poing parameter, and is expressed by Equation (2). c = ci + ce-(2) where the first term ci on the right-hand side indicates the band gap energy Eg obtained by approximating the virtual crystal, and the molar composition ratio X of element A (or element C), which is a solid solution element, This is a term that is proportionally distributed.
また、右辺第 2項 ceは格子の不均一性に起因する項で、 式 (3) で表される。  The second term ce on the right side is a term caused by the non-uniformity of the lattice, and is expressed by equation (3).
ce = Ac2ZT ■■■ (3) ここで、 厶 cは元素 Aと元素 B (又は元素 Bと元素 C) の 電気陰性度の差、 Tはバンド幅パラメータである。  ce = Ac2ZT ■■■ (3) where, c is the difference in electronegativity between element A and element B (or element B and element C), and T is the bandwidth parameter.
図 2は固溶元素 (元素 A又は元素 C) のモル組成比 Xとパンドギャップエネルギー E gとの関係を示す図であって、 横軸は固溶元素のモル組成比 x、 縦軸はバンドギャップェ ネルギー E gを示している。  Figure 2 shows the relationship between the molar composition ratio X of the solid solution element (element A or element C) and the band gap energy Eg. The horizontal axis is the molar composition ratio of the solid solution element x, and the vertical axis is the band. The gap energy E g is shown.
すなわち、 ポーイングパラメータ cが Γο」 のときは、 破線に示すようにモル組成比 Xとバンドギヤップエネルギー E gは正比例し、 モル組成比 Xが増加するに伴いパンドギ ャップエネルギー E gも線形的に増加する。  That is, when the pouring parameter c is Γο, the molar composition ratio X and the band gap energy E g are directly proportional to the dashed line, and the gang gap energy E g increases linearly as the molar composition ratio X increases. I do.
しかしながら、 ボーイングパラメータ cが Γ0」 以外のときは、 モル組成比 Xとバン ドギャップエネルギー E gとの関係は線形とはならずに非線形となる。  However, when the bowing parameter c is other than Γ0 ”, the relationship between the molar composition ratio X and the band gap energy E g is not linear but non-linear.
すなわち、 この場合、 ボーイングパラメータ。は、 数式 (2)、 (3) から明らかなよ うに、 元素 Aと元素 B (又は元素 Bと元素 C) の電気陰性度の差 Δ cに依存する。  That is, in this case, the Boeing parameter. Depends on the difference Δc in electronegativity between element A and element B (or element B and element C), as is clear from equations (2) and (3).
つまり、 差 Δ cが大きければ、 c e値が大きくなリ、 したがってボーイングパラメ一 タ cが大きくなリ、 ボーイング特性が顕著に現われることとなる。 In other words, if the difference Δc is large, the value of c e is large, and accordingly the bowing parameter c is large, and the bowing characteristic is conspicuous.
例えば、 Z n Oと同様の結晶構造を有する G a N系半導体化合物では G a Nと A I N とを混晶させることによ1 J、組成式 A I xGa 1一 xNで表される混晶化合物を生成する ことができるが、 G aの電気陰性度は 1. 6であり、 A Iの電気陰性度は 1. 5であるた め、 その差△ cは 0. 1と小さく、 このため十分なボーイング特性を得ることができず、 一点鎖線に示すようにバンドギヤップエネルギー E gを小さくすることができない。 For example, Z n O and G a N type G a N and O and AIN to be mixed 1 J a semiconductor compound having the same crystal structure, a mixed crystal compound represented by the composition formula AI XGA 1 one xN Generate However, since the electronegativity of Ga is 1.6 and the electronegativity of AI is 1.5, the difference △ c is as small as 0.1. Cannot be obtained, and the band gap energy E g cannot be reduced as shown by the dashed line.
—方、 例えば、 特許文献 2のように ZnOに Sを混晶させようとした場合、 Sの電気 陰性度は 2. 5であるのに対し、 Oの電気陰性度は 3. 5であり、 差 Acは 1. 0と大き いため、 二点鎖線に示すように放物線状の大きなボーイング特性を得ることができる。  On the other hand, for example, when attempting to mix S in ZnO as in Patent Document 2, the electronegativity of S is 2.5, whereas the electronegativity of O is 3.5. Since the difference Ac is as large as 1.0, a large parabolic bowing characteristic can be obtained as shown by the two-dot chain line.
しかしながら、 この場合、 電気陰性度の差 Acが大きすぎるため、 ∑ 00と2^5と の共晶が生成され易く、 中間生成物としての混晶化合物 (Z π O 1— X S X ) を得るのが 困難となる。  However, in this case, since the difference in electronegativity Ac is too large, a eutectic of ∑00 and 2 ^ 5 is easily formed, and a mixed crystal compound (Z π O 1—XSX) as an intermediate product is obtained. Becomes difficult.
同様に、 Z ηθに S eを混晶させようとした場合も S eの電気陰性度は 2. 4であり、 Similarly, when trying to mix Se with Z ηθ, the electronegativity of Se is 2.4,
Oとの電気陰性度の差△ cが 1. 1と大きく、 所望の混晶化合物 (ZnO I— xS e x) を得るのが困難となる。 Difference △ c of electronegativity of O is 1.1 and greater, it becomes difficult to obtain the desired mixed crystal compound (ZnO I- xS ex).
これに対し BaOと ZnOとを混晶させる場合は、 B aの電気陰性度は 0. 9であり、 Znの電気陰性度は 1. 6であり、 その差 Acは 0. 7と適度に大きく、 実線に示すよう に、 放物線状にボーイング特性が顕著に現われる。  On the other hand, when BaO and ZnO are mixed crystals, the electronegativity of Ba is 0.9, the electronegativity of Zn is 1.6, and the difference Ac is 0.7, which is moderately large. However, as shown by the solid line, the bowing characteristic appears remarkably in a parabolic shape.
しかも、 電気陰性度の差 Acが過度に大きくもなく、 したがって ZnOと BaOとの 共晶が生成されることもなく、 B a Z n O系混晶化合物を高効率で生成することができる。  In addition, the difference in electronegativity Ac is not excessively large, so that a eutectic of ZnO and BaO is not generated, and a BaZnO-based mixed crystal compound can be generated with high efficiency.
また、本実施の形態では、上記組成式 B a x Zn l— χθで、モル組成比 xは数式( 4 ) が成立するように設定されている。  Further, in the present embodiment, the molar composition ratio x is set such that the mathematical formula (4) is satisfied by the above composition formula B a x Zn l−χθ.
0<x<0. 55- (4) すなわち、 Ba ZnO系混晶化合物を得るためには、 モル 組成比 Xは 0より大きいことが必要となるが、 Xが 0. 55になると、点 Sに示すように、 混晶化合物が Z n Oのバンドギヤップエネルギー E g 1と同値となり、 B a成分のモル組 成比 Xを 0. 55以上に増加させると、 活性層 8のバンドギャップエネルギー E gが Z n Oのバンドギャップエネルギー Eg 1よりも大きくなつてしまう。  0 <x <0.55− (4) That is, in order to obtain a BaZnO-based mixed crystal compound, the molar composition ratio X must be larger than 0, but when X becomes 0.55, the point S As shown in the figure, when the mixed crystal compound has the same value as the band gap energy E g 1 of ZnO and the molar composition ratio X of the Ba component is increased to 0.55 or more, the band gap energy E of the active layer 8 is increased. g becomes larger than the band gap energy Eg 1 of ZnO.
そこで、 本実施の形態では、 モル組成比 Xが 0< xく 0. 55、 例えば 0. 3となる ように Ba Z ηθ系混晶化合物を生成している。  Therefore, in the present embodiment, a BaZηθ-based mixed crystal compound is generated such that the molar composition ratio X is 0 <x and 0.55, for example, 0.3.
尚、 n形クラッド層 7及び p形クラッド層 9は、 前記活性層 8よりバンドギャップェ ネルギー Egを大きくして、 キャリアを活性層 8内に有効に閉じ込める必要があることか ら、 例えば、 MgOと ZnOとを混晶させた MgZZn 1— ZO ( zは、 0≤z<1で、 例えば 0. 2) からなリ、 n形クラッド層 7の膜厚は約 2000 nm、 p形クラッド層 9 の膜厚は約 600 nmに形成されている。 The n-type cladding layer 7 and the p-type cladding layer 9 need to have a band gap energy Eg larger than that of the active layer 8 to effectively confine carriers in the active layer 8. 1-ZO ( z is 0≤z <1, for example, 0.2) mixed with ZnO and n-type cladding layer 7 is about 2000 nm thick, p-type cladding layer 9 Is formed to a thickness of about 600 nm.
また、 n形コンタクト層 6及び p形コンタクト層 1 0は、 共に膜厚約 200 nmの Z ηθで形成されている。 次に、 上記 LEDの製造方法を説明する。 The n-type contact layer 6 and the p-type contact layer 10 are both formed with a thickness of about 200 nm with a thickness of about ηθ. Next, a method for manufacturing the LED will be described.
まず、 SCVT (Seeded Chemical Vapor Transport) 法等で Z n O単結晶を作製し、 Z n O単結晶を結晶軸の c軸方向に垂直な面に切出して鏡面研磨を施し、 Z n O基板を作製 し、 その極性を SN DM (Scanning Nonlinear DielectricMicroscopy) 法等で確認する。  First, a ZnO single crystal is prepared by the SCVT (Seeded Chemical Vapor Transport) method, etc., and the ZnO single crystal is cut out into a plane perpendicular to the c-axis direction of the crystal axis and mirror-polished. It is prepared and its polarity is confirmed by SNDM (Scanning Nonlinear Dielectric Microscopy).
そして、 Z n O基板 1の極性を判別した後、 電子サイクロトロン共鳴 (Electron After determining the polarity of the ZnO substrate 1, the electron cyclotron resonance (Electron cyclotron)
Cyclotron Resonance; Cyclotron Resonance;
以下、 「ECRJという)スパッタ装置を使用し、 Z n O基板 1の亜鉛極性面 1 a上に ZnO薄膜を積層する。  Hereinafter, a ZnO thin film is laminated on the zinc polar surface 1a of the ZnO substrate 1 using a sputtering device (hereinafter referred to as “ECRJ”).
すなわち、 プラズマ生成室と成膜室とに区分された ECRスパッタ装置を準備し、 亜 鉛極性面 1 aが上面となるように ZnO基板 1を成膜室の所定位置にセッティングし、 Z n O基板 1を温度 300~800°Cに加熱する。  That is, an ECR sputtering apparatus divided into a plasma generation chamber and a film formation chamber is prepared, and the ZnO substrate 1 is set at a predetermined position in the film formation chamber so that the zinc polar surface 1a is the upper surface. The substrate 1 is heated to a temperature of 300 to 800 ° C.
次いで、 酸素等の反応性ガス及びアルゴン等のプラズマ生成用ガスをプラズマ生成室 に供給すると共に、 サイクロ卜ロンが共鳴する周波数 (2. 45GH z) でマイクロ波放 電を行い、 これによリプラズマ生成室でプラズマを生成する。  Next, a reactive gas such as oxygen and a gas for plasma generation such as argon are supplied to the plasma generation chamber, and microwave discharge is performed at a frequency (2.45 GHz) at which the cyclotron resonates. A plasma is generated in the generation chamber.
そしてこの後、 スパッタターゲットに高周波電力 (例えば、 1 50W) を印加し、 プ ラズマ生成室で生成されたプラズマを使用してターゲッ卜(ZnO)をスパッタリングし、 反応性スパッタリングによリ Z n O基板 1の表面に Z n Oからなる n形コンタクト層 6を 形成する。  After that, high-frequency power (for example, 150 W) is applied to the sputter target, and the target (ZnO) is sputtered using plasma generated in the plasma generation chamber. An n-type contact layer 6 made of ZnO is formed on the surface of the substrate 1.
次に、 MgOと ZnOとを所望の混晶比にて焼結したターゲットを使用して反応性ス パッタリングを行い、 Mg z Zn l—zO (0≤z<1 ) からなる n形クラッド層 7を形 成する。  Next, reactive sputtering was performed using a target obtained by sintering MgO and ZnO at a desired mixed crystal ratio, and an n-type cladding layer composed of Mg z Zn l-zO (0≤z <1) Form 7.
以下、 同様にして反応性スパッタリングを施し、 順次 Ba x Zn l— χθ (0<x< 0. 55) からなる活性層 8、 g z Zn 1 -zO (0≤z<1) からなる p形クラッド 層 9、 ZnOからなる p形コンタクト層 10を形成する。  Thereafter, reactive sputtering is performed in the same manner, and an active layer 8 composed of Ba x Zn l- χθ (0 <x <0.55) and a p-type clad composed of gz Zn 1 -zO (0≤z <1) are sequentially formed. A layer 9 and a p-type contact layer 10 made of ZnO are formed.
尚、 各薄膜の膜厚は反応時間を制御することにより所望膜厚に設定される。  The thickness of each thin film is set to a desired thickness by controlling the reaction time.
次に、 真空蒸着法により ZnO基板 1の酸素極性面 1 bの表面に T i膜及び A u膜を 順次成膜して n側電極 5を形成し、 次いで、 真空蒸着法により p形コンタク卜層 1 0の表 面に I TO膜を成膜して透明電極 3を形成し、 その後、 リフトオフ法により N Aし A uを順次積層して P側電極 4を形成する。  Next, a Ti film and an Au film are sequentially formed on the surface of the oxygen polar surface 1b of the ZnO substrate 1 by a vacuum evaporation method to form an n-side electrode 5, and then a p-type contact is formed by a vacuum evaporation method. A transparent electrode 3 is formed by forming an ITO film on the surface of the layer 10, and then a NA is formed by a lift-off method, and Au is sequentially laminated to form a P-side electrode 4.
このように本第 1の実施の形態では、 B a Oと Z ηθとを混晶させることにより活性 層 8のバンドギヤップエネルギー E gをクラッド層 7、 9のバンドギヤップエネルギー E gよりも小さくしているので、 発光効率の良好な発光素子を得ることができる。  As described above, in the first embodiment, the band gap energy E g of the active layer 8 is made smaller than the band gap energy E g of the cladding layers 7 and 9 by mixing BaO and Zηθ. Therefore, a light-emitting element having good luminous efficiency can be obtained.
また、 上記第 1の実施の形態では、 ECRスパッタ装置を使用し、 スパッタリング処 理により ZnO系薄膜を形成しているので、 別途に高価な装置を設ける必要もなく、 安価 に薄膜形成を行うことができる。 In the first embodiment, an ECR sputtering apparatus is used, and a sputtering process is performed. Since a ZnO-based thin film is formed according to the theory, it is not necessary to separately provide an expensive apparatus, and the thin film can be formed at a low cost.
しかも、 プラズマ生成室と成膜室とが区分されているので、 ΖηΟ薄膜がプラズマダ メ一ジを受けるのを極力回避して良質の薄膜を得ることができる。  In addition, since the plasma generation chamber and the film formation chamber are separated from each other, it is possible to obtain a high quality thin film while minimizing the plasma damage of the {η} thin film.
図 3は本発明に係る光半導体素子の第 2の実施の形態としての L E Dの模式断面図で あって、 本第 2の実施の形態では、 ヱ00基板1と η形コンタク卜層 6との間に多層膜反 射鏡 1 1が介装されている。 Figure 3 is a schematic cross-sectional view of an LED according to a second embodiment of the optical semiconductor device according to the present invention, in this second embodiment, the We 0 0 substrate 1 and η shape contactor Bok layer 6 A multilayer reflector 11 is interposed between them.
すなわち、 活性層 8は、 上述したように、 π形キャリアである電子と ρ形キャリアで ある正孔との再結合によリそのバンドキヤップエネルギー E gに応じた光を発光するが、 発光した光は透明電極 3側に放射するのみではなく、 Z n O基板 1側にも放射する。  That is, as described above, the active layer 8 emits light according to its band-cap energy E g due to recombination of electrons, which are π-type carriers, and holes, which are ρ-type carriers. Light is emitted not only to the transparent electrode 3 side but also to the ZnO substrate 1 side.
そして、 該 Z n O基板 1側に放射された光は該 Z n O基板 1等に吸収されて消滅する ため、 エネルギー損失を引き起こすことになる。  Then, the light emitted to the ZnO substrate 1 side is absorbed by the ZnO substrate 1 and the like and disappears, thereby causing energy loss.
そこで、 本第 2の実施の形態では、 ZnO基板 1と n形コンタクト層 6との間に膜厚 20~300 の多層膜反射鏡1 1を介装し、 ZnO基板 1側に放射された光を該多層膜 反射鏡 1 1で反射させ、 透明電極 3側に放射するようにしてエネルギー損失を防止し、 発 光効率が低下するのを回避している。 Accordingly, in the second embodiment, the multilayer reflector 1 1 having a thickness of 20-30 0 interposed between the ZnO substrate 1 and the n-type contact layer 6, emitted in ZnO substrate 1 side Light is reflected by the multilayer film reflecting mirror 11 and radiated to the transparent electrode 3 side to prevent energy loss and avoid a decrease in light emission efficiency.
該多層膜反射鏡" I 1は、 具体的には図 4に示すように、 活性層 8よりバンドキャップ エネルギー E gが大きく、 しかもバンドキヤップエネルギー E gの異なる 2種類の化合物 半導体層を交互に多数積層した多層膜で形成されている。  As shown in FIG. 4, the multilayer mirror "I1" has a band gap energy Eg larger than that of the active layer 8, and alternately includes two types of compound semiconductor layers having different band gap energies Eg. It is formed of a multi-layered multilayer film.
すなわち、該多層膜反射鏡 1 1は、例えば、活性層 8が、 B a X Z n 1— X O ( xは、 例えば 0. 4) で形成されるときは、 第 1の化合物半導体層 1 l aは Ba x Zn l— χθ (xは、例えば 0. 2)、第 2の化合物半導体層 1 1 bは Ba x Zn 1 -χθ ( χは、例え ば 0. 1) で形成され、 これら第 1の化合物半導体層 1 1 aと第 2の化合物半導体層 1 1 bとを 1組とした薄膜 1 1 1、 1 1 2、 1 1 m—1、 1 1 mが多数積層されている。  That is, for example, when the active layer 8 is formed of BaXZn1-XO (x is, for example, 0.4), the first compound semiconductor layer 1 la Ba x Zn l— χθ (x is, for example, 0.2), and the second compound semiconductor layer 11 b is formed of Ba x Zn 1 -χθ (χ is, for example, 0.1). A large number of thin films 11 1, 1 12, 11 m-1, and 11 m each having a compound semiconductor layer 11 a and a second compound semiconductor layer 11 b are stacked.
また、第 1及び第 2の化合物半導体層 1 1 a、 1 1 bの各膜厚 t 1、 t 2は、数式(5) 及び数式(6)で決定され、膜厚が 20~30 nmとなるように各積層膜 1 1 1、 1 1 2、 ■■■1 1m-1 , 1 1 mの積層数は 20〜30とされる。  The thicknesses t 1 and t 2 of the first and second compound semiconductor layers 11 a and 11 b are determined by Expressions (5) and (6). Thus, the number of stacked layers of each of the laminated films 11 1, 11 2, 11 1 m -1 and 11 m is 20 to 30.
t 1 =λ/ (4 x η 1 ) … (5) t 2 = λ/ (4 X η 2) … (6) ここで、 λは発光 波長、 η 1は第 1の化合物半導体層 1 1 aの屈折率、 n 2は第 1の化合物半導体層 1 1 b の屈折率である。  t 1 = λ / (4 x η 1) ... (5) t 2 = λ / (4 X η 2) ... (6) where λ is the emission wavelength, and η 1 is the first compound semiconductor layer 11 a And n 2 is the refractive index of the first compound semiconductor layer 11 b.
尚、 本第 2の実施の形態では、 多層膜反射鏡 1 1は、 2種類の化合物半導体層を交互 に多数積層した多層膜で形成されているが、 3種類以上の化合物半導体層を順次多数積層 した多層膜で形成してもよい。 また、 本第 2の実施の形態も第 1の実施の形態と同様、 ECRスパッタ法により容易 に製造することができる。 In the second embodiment, the multilayer mirror 11 is formed of a multilayer film in which a large number of two types of compound semiconductor layers are alternately stacked, but a large number of three or more types of compound semiconductor layers are sequentially formed. It may be formed by a laminated multilayer film. Also, the second embodiment can be easily manufactured by the ECR sputtering method similarly to the first embodiment.
図 5は本発明に係る光半導体素子の第 3の実施の形態としてのレーザーダイォード (Laser Diode;  FIG. 5 shows a laser diode as an optical semiconductor device according to a third embodiment of the present invention.
以下、 「LDJという)の模式断面図であって、本第 3の実施の形態では活性層 20が 多重量子井戸構造とされている。  Hereafter, this is a schematic cross-sectional view of “LDJ”. In the third embodiment, the active layer 20 has a multiple quantum well structure.
すなわち、 該 LDは、 導電性を有する Z n O基板 1 3の亜鉛極性面 1 3 a上に発光層 14が形成され、 該発光層 1 4の表面には N i膜、 A I膜、 及び A u膜が順次積層された 膜厚総計約 300 nmの p側電極 1 5が形成されている。  That is, in the LD, a light emitting layer 14 is formed on a zinc polar surface 13 a of a conductive ZnO substrate 13, and a Ni film, an AI film, and an A film are formed on the surface of the light emitting layer 14. A p-side electrode 15 having a total film thickness of about 300 nm in which u films are sequentially stacked is formed.
また、 Z n O基板 1 3の酸素極性面 1 3 b上には T i膜及び Au膜が順次積層された 膜厚総計約 300 n mの n側電極 1 6が形成されている。  Further, an n-side electrode 16 having a total thickness of about 300 nm in which a Ti film and an Au film are sequentially laminated is formed on the oxygen polar surface 13 b of the ZnO substrate 13.
上記発光層 1 4は、 具体的には、 π形コンタクト層 1 7、 n形クラッド層 1 8、 r>形 光ガイド層 1 9、 活性層 20、 p形光ガイド層 21、 p形クラッド層 22、 電流制限層 2 3及び p形コンタクト層 24が順次積層された多層膜で構成されている。  The light emitting layer 14 is, specifically, a π-type contact layer 17, an n-type cladding layer 18, an r> -type light guiding layer 19, an active layer 20, a p-type light guiding layer 21, and a p-type cladding layer. 22, a current limiting layer 23 and a p-type contact layer 24 are formed of a multilayer film sequentially laminated.
すなわち、 活性層 20は、 n形ガイド層 1 9及び p形ガイド層 21を介して夫々 n形 クラッド層 1 8及び p形クラッド層 22に挟持されている。  That is, the active layer 20 is sandwiched between the n-type cladding layer 18 and the p-type cladding layer 22 via the n-type guide layer 19 and the p-type guide layer 21, respectively.
また、 n形クラッド層 1 8は η形コンタク卜層 1 7及び ΖηΟ基板 1 3を介して π側 電極 1 6と接続され、 ρ形クラッド層 22は電流制限層 23及び ρ形コンタクト層 24を 介して Ρ側電極 1 5に接続されている。  The n-type cladding layer 18 is connected to the π-side electrode 16 via the η-type contact layer 17 and the ΖηΟ substrate 13, and the ρ-type cladding layer 22 is connected to the current limiting layer 23 and the ρ-type contact layer 24. Connected to the 電極 side electrode 15 via
しかして、 活性層 20は Ba χ Ζη 1— χθで形成され、 図 6に示すように、 バンド ギャップエネルギー Egが互いに異なるバリア層 20 a ( Xが、 例えば 0. 1〉 とゥエル 層 20 b ( Xが、 例えば 0. 3) とをそれぞれ 3 nmづっ交互に 2〜 5層積層した多重量 子井戸構造とされている。  Thus, the active layer 20 is formed of Ba χ Ζη 1— χθ, and as shown in FIG. 6, the barrier layers 20 a (X is, for example, 0.1) and the ゥ layer 20 b ( X has a multi-quantum well structure in which 2 to 5 layers, for example, 0.3) are alternately laminated with a thickness of 3 nm each.
そして、 活性層 20の屈折率が n形クラッド層 1 8及び p形クラッド層 22より大き い場合は、 活性層 20に光を閉じ込めることができるが、 活性層 20が薄膜であるため充 分に光を閉じ込めることができないときは、 活性層 20からの光の漏出を防止する必要が あリ、 このため光導波路の一部を構成するように活性層 20と r>形クラッド層 1 8及び p 形クラッド層 22との間には該クラッド層 1 8、 22と活性層 20との間の中間の屈折率 を有する n形光ガイド層 19及び p形光ガイド層 21が介装されている。  When the refractive index of the active layer 20 is larger than that of the n-type cladding layer 18 and the p-type cladding layer 22, light can be confined in the active layer 20, but since the active layer 20 is a thin film, it can be sufficiently filled. When light cannot be confined, it is necessary to prevent light from leaking from the active layer 20. Therefore, the active layer 20 and the r> -type cladding layer 18 and p An n-type light guide layer 19 and a p-type light guide layer 21 having an intermediate refractive index between the cladding layers 18 and 22 and the active layer 20 are interposed between the cladding layers 22 and 22.
そして、 Z ηθ基板 1 3の亜鉛極性面 1 3 a上には Z ηθからなる膜厚約 1 500 n mの n形コンタクト層 1 7が形成され、 また、 該 n形コンタクト層 1 7の表面には Mg z Z n 1 - Z O (zは、 0≤z<1で、 例えば 0. 2 ) からなる膜厚約 2000 n mの n形 クラッド層 1 8が形成され、 さらに、 該 n形クラッド層 1 8の表面には Z ηθからなる膜 厚約 40 nmの n形光ガイド層 1 9が形成されている。 Then, an n-type contact layer 17 having a thickness of about 1,500 nm made of Zηθ is formed on the zinc polar surface 13 a of the Zηθ substrate 13, and the surface of the n-type contact layer 17 is formed on the surface of the n-type contact layer 17. Is formed as an n-type cladding layer 18 having a thickness of about 2000 nm made of Mg z Z n 1 -ZO (z is 0≤z <1, for example, 0.2). On the surface of 8, a film consisting of Z ηθ An n-type light guide layer 19 having a thickness of about 40 nm is formed.
そして、 n形光ガイド層 1 9の表面には上記多重量子井戸構造の活性層 20が積層さ れ、 該活性層 20の表面には Mg z Z n 1— z O ( zは、 O^zく 1で、 例えば 0. 2) からなる膜厚約 40 nmの p形光ガイド層 21が形成され、 さらに該 p形光ガイド層 21 の表面には Mg z Z n 1 — z O (zは、 0≤z < 1で、 例えば 0. 2) からなる膜厚約 2 000 nmの p形クラッド層 22が形成されている。  On the surface of the n-type light guide layer 19, an active layer 20 having the above-mentioned multiple quantum well structure is laminated, and on the surface of the active layer 20, MgzZn1-zO (z is O ^ z For example, a p-type light guide layer 21 having a thickness of about 40 nm made of, for example, 0.2) is formed, and the surface of the p-type light guide layer 21 further includes Mg z Zn 1 —z O (z 0 ≦ z <1, and a p-type cladding layer 22 of, for example, 0.2) and having a thickness of about 2,000 nm is formed.
さらに、 P形クラッド層 22の表面には発振領域にのみ電流を流すべく Mg z Z n 1 -ζθ (zは、 0≤ z< 1で、 例えば 0. 2) からなる膜厚 400 nmの電流制限層 23 が溝部 23 aを有するように所定形状に形成され、 次いで、 p形クラッド層 22の表面に は電流制限層 23を覆うように断面丁字状に p形コンタク卜層 24が形成されている。  Furthermore, on the surface of the P-type cladding layer 22, a current of 400 nm in thickness consisting of Mg z Z n 1 -ζθ (z is 0≤z <1, for example, 0.2) is applied so that current flows only in the oscillation region. A limiting layer 23 is formed in a predetermined shape so as to have a groove 23a, and then a p-type contact layer 24 is formed on the surface of the p-type cladding layer 22 so as to cover the current limiting layer 23 in a cross-sectional shape of a letter. I have.
そして、 上記 LDも、 第 1の実施の形態と略同様の方法,手順で製造される。  Then, the LD is also manufactured by a method and a procedure substantially similar to those of the first embodiment.
すなわち、 まず、 30 丁法等で∑ 00単結晶を作製し、 Z nO単結晶を結晶軸の c 軸方向に垂直な面に切出して鏡面研磨を施し、 Z nO基板を作製し、 その極性を S N DM 法等で確認する。  That is, first, a ∑00 single crystal is prepared by a thirty method or the like, a ZnO single crystal is cut into a plane perpendicular to the c-axis direction of the crystal axis, and mirror-polished to prepare a ZnO substrate. Confirm by SN DM method.
次いで、 第 1の実施の形態と同様、 ECRスパッタ装置を準備し、 亜鉛極性面 1 3 a が上面となるように Z n O基板 1 3を成膜室の所定位置にセッティングし、 ∑ >10基板1 を温度 300〜 800°Cに加熱する。  Next, similarly to the first embodiment, an ECR sputtering apparatus is prepared, and the ZnO substrate 13 is set at a predetermined position in the film forming chamber so that the zinc polar surface 13 a is the upper surface. The substrate 1 is heated to a temperature of 300 to 800 ° C.
次いで、 酸素等の反応性ガス及びアルゴン等のプラズマ生成用ガスをプラズマ生成室 に供給すると共に、 マイクロ波放電を行って、 プラズマ生成室でプラズマを生成し、 ター ゲット (Z nO) をスパッタリングして反応性スパッタリングにより、 Z nO基板 1 3の 表面に Z n Oからなる n形コンタクト層 1 7を形成する。  Next, a reactive gas such as oxygen and a plasma generation gas such as argon are supplied to the plasma generation chamber, and microwave discharge is performed to generate plasma in the plasma generation chamber, and the target (ZnO) is sputtered. Then, an n-type contact layer 17 made of ZnO is formed on the surface of the ZnO substrate 13 by reactive sputtering.
以下同様にして、 ターゲットを適宜所望物質に変更しながら順次反応性スパッタリン グを施し、 n形コンタクト層 1 7、 π形クラッド層 1 8、 n形光ガイド層 1 9、 活性層 2 0、 p形光ガイド層 21、 p形クラッド層 22、 電流制限層 23を順次成膜する。  In the same manner as above, reactive sputtering is sequentially performed while appropriately changing the target to a desired substance, and the n-type contact layer 17, the π-type cladding layer 18, the n-type light guide layer 19, the active layer 20, A p-type light guide layer 21, a p-type cladding layer 22, and a current limiting layer 23 are sequentially formed.
そして、 電流制限層 23を形成した後、 成膜された Z nO基板 1 3を ECRスパッタ 装置から一旦取り出し、 前記電流制限層 23の表面にフォトレジストを塗布し、 周知のフ ォトリソグラフィー技術によってレジスト膜をパターン化し、 N a OHなどのアルカリ溶 液でエッチング処理を施し、 電流制限層 23を所定形状に形成する。  Then, after forming the current limiting layer 23, the formed ZnO substrate 13 is once taken out of the ECR sputtering apparatus, a photoresist is applied to the surface of the current limiting layer 23, and a known photolithography technique is used. The resist film is patterned and subjected to etching with an alkaline solution such as NaOH to form the current limiting layer 23 in a predetermined shape.
次いで、 前記 Z nO基板 1 3を再び EC F スパッタ装置の所定位置に戻し、 反応性ス パッタリングを行い、 断面 T字状の Z η θからなる p形コンタクト層 24を成膜する。  Next, the ZnO substrate 13 is returned to a predetermined position in the ECF sputtering apparatus again, and reactive sputtering is performed to form a p-type contact layer 24 having a T-shaped cross section and Zηθ.
そしてこの後、 第 1の実施の形態と同様、 真空蒸着法によリ Z n O基板 1 3の酸素極 性面 1 3 bの表面に T i膜及び A u膜を順次成膜して n側電極 1 6を形成し、 次いで、 真 空蒸着法により P形コンタクト層 24の表面に N i、 A I、 A uを順次積層して p側電極 1 5を形成する。 Then, similarly to the first embodiment, a Ti film and an Au film are sequentially formed on the surface of the oxygen-polar surface 13 b of the ZnO substrate 13 by a vacuum evaporation method, and n A side electrode 16 is formed, and then Ni, AI, and Au are sequentially laminated on the surface of the P-type contact layer 24 by vacuum evaporation to form a p-side electrode. Form 1 5
このように本第 3の実施の形態も、 第 1及び第 2の実施の形態と同様、 830と∑0 Oとを混晶させたバンドギャップエネルギー E gの異なる 2種類の化合物半導体層、 すな わちパリア層 20 aとゥエル層 20 bとで多重量子井戸構造を形成した活性層 20を設け、 かつ該活性層 20のバンドギヤップエネルギー E gをクラッド層 1 9、 21のバンドギヤ ップエネルギー E gよりも小さくしているので、 発光効率の良好な発光素子を得ることが できる。 Thus, similarly to the first and second embodiments, the third embodiment also includes two types of compound semiconductor layers having different band gap energies E g in which 830 and ∑ 0 O are mixed and crystallized. That is, the active layer 20 having a multiple quantum well structure formed by the barrier layer 20 a and the p-type layer 20 b is provided, and the band gap energy E g of the active layer 20 is changed to the band gap energy E g of the cladding layers 19 and 21. Since it is smaller than that, a light-emitting element having good luminous efficiency can be obtained.
尚、 本発明は上記実施の形態に限定されるものではない。  Note that the present invention is not limited to the above embodiment.
上記実施の形態では B a Oと Z n Oとを混晶させているが、 電気陰性度が B aと略同 等の S r (電気陰性度: 1 · 0)についても略同様にして、組成式 S r y Ζ η 1— y O (0 <y<0. 55) からなる混晶化合物を活性層に使用することにより、 Z nOよりも小さ な所望のパンドギャップエネルギー E gを有する化合物半導体層を得ることができ、 発光 効率の優れた発光素子や多層膜反射鏡を得ることができる。  In the above embodiment, Ba O and ZnO are mixed crystals. However, S r (electronegativity: 1 · 0) having an electronegativity approximately equal to that of Ba is substantially the same, By using a mixed crystal compound having the composition formula S ry O η 1-y O (0 <y <0.55) for the active layer, a compound semiconductor having a desired band gap energy E g smaller than ZnO can be obtained. A layer can be obtained, and a light emitting element and a multilayer reflector having excellent luminous efficiency can be obtained.
また、 上記実施の形態では、 基板温度を 300~ 800°Cから選択された任意の一定 温度に加熱して成膜処理を行なっているが、 各層毎に基板温度を変化させることにより、 所望のバンド変調された化合物半導体層を有する発光素子等の光半導体素子を得ることが できる。  Further, in the above embodiment, the film formation is performed by heating the substrate temperature to an arbitrary constant temperature selected from 300 to 800 ° C., but by changing the substrate temperature for each layer, An optical semiconductor device such as a light-emitting device having a band-modulated compound semiconductor layer can be obtained.
また、 上記実施の形態では組成式 B a X Z n 1— X 0、 又は S r y Z n 1— y Oから なる三元混晶化合物でバンドギヤップエネルギー E gを変調させているが、 三元混晶に限 られることはない。  Further, in the above embodiment, the bandgap energy Eg is modulated by the ternary mixed crystal compound composed of the composition formula BaXZn1-X0 or SryZn1-yO. It is not limited to crystals.
また、 その他の元素、 例えばドーパントとして G a、 A I、 或いは Nを含んでいても よい。  Further, other elements, for example, Ga, AI, or N may be contained as a dopant.
また、 上記実施の形態では、 クラッド層を M g z Z n 1— Z O (0≤ z< 1 ) からな る混晶化合物で形成しているが、 バンドギャップエネルギー E gが 3. 46 の33 を 使,用した場合であっても、 上述した本発明の活性層 8、 20を使用することにより、 発光 効率の向上した光半導体素子を得ることができる。 Further, in the above embodiment, the cladding layer is formed of a mixed crystal compound consisting of M gz Z n 1— Z O (0≤z <1), but the band gap energy E g is 3.46 to 33. Even when is used, an optical semiconductor device with improved luminous efficiency can be obtained by using the above-described active layers 8 and 20 of the present invention.
また、 上記実施の形態では、 Z nO基板上に化合物半導体層を形成しているが、 Z n O基板に代えて、 サファイア基板、 S ί基板、 S i C基板、 或いは G a N基板等を使用し てもよい。  Further, in the above embodiment, the compound semiconductor layer is formed on the ZnO substrate, but instead of the ZnO substrate, a sapphire substrate, a Sί substrate, a SiC substrate, a GaN substrate, or the like may be used. May be used.
また、 成膜方法についても ECRスパッタ法の他、 MBE (分子線ェピタキシ) 法、 In addition to the ECR sputtering method, MBE (molecular beam epitaxy) method,
MOCVD (有機金属化学気相) 法、 レーザアブレーシヨン法などを用いてもよい。 MOCVD (metal organic chemical vapor phase), laser ablation, or the like may be used.
次に、 本発明の実施例を具体的に説明する。  Next, examples of the present invention will be specifically described.
(第 1の実施例) 本発明者らは、 容量結合型 RFスパッタ装置を使用し、 ∑ 00と830との混合物を スパッタタ一ゲットとしてスパッタリングを行い、 C面サファイア基板上に B a Z n O系 薄膜を形成し、 混晶状態及びバンドギヤップエネルギー E gを測定した。 (First embodiment) The present inventors performed sputtering using a mixture of ∑00 and 830 as a sputter target using a capacitively coupled RF sputtering apparatus to form a BaZnO-based thin film on a C-plane sapphire substrate. The crystal state and band gap energy E g were measured.
すなわち、 まず、 ZnOと B a Oとの混合比が異なる 5種類の混合物の焼結体を用意 した。  That is, first, sintered bodies of five types of mixtures having different mixing ratios of ZnO and BaO were prepared.
次いで、 基板温度 Tを 650°C、 プラズマ生成用ガスとしてアルゴン (A r) 及び反 応ガスとして酸素を使用し、それぞれ 5 Osccmのアルゴン及び酸素を前記スパッタ装置に 供給すると共に、 1 OOWの高周波電力を印加し、 前記混合物をターゲットとしてスパッ タリングを行い、 C面サフアイャ基板上に膜厚 5 OO nmの Ba Zn O系薄膜を形成した。  Next, using a substrate temperature T of 650 ° C., argon (Ar) as a plasma generation gas, and oxygen as a reaction gas, 5 Osccm of argon and oxygen were supplied to the sputtering apparatus, and a high frequency of 1 OOW was supplied. Electric power was applied, and sputtering was performed using the mixture as a target to form a BaZnO-based thin film having a thickness of 5 OO nm on a C-plane sapphire substrate.
尚、 B a Z n O系薄膜中の B a成分のモル組成比 xを波長分散型 X線分析法(WD X) で測定したところ、 モル組成比 Xは 0、 0. 1 0、 0. 29、 0. 41、 0. 55であつ た。  When the molar composition ratio x of the Ba component in the BaZnO-based thin film was measured by wavelength-dispersive X-ray analysis (WDX), the molar composition ratio X was 0, 0.10, 0.1. 29, 0.41, and 0.55.
次に、 X線回折 (XRD) 法により B a X Z n 1—χθ薄膜の c軸長と B aのモル組 成比 Xとの関係を調べた。  Next, the relationship between the c-axis length of the Ba XZn 1-χθ thin film and the molar composition ratio X of Ba was examined by the X-ray diffraction (XRD) method.
尚、 c軸長は XRDにおける ZnO (002) のピークにより決定した。  The c-axis length was determined by the peak of ZnO (002) in XRD.
図 7はその測定結果であリ、 横軸は B a成分のモル組成比 X、 縦軸は B a X Z n 1 - xO薄膜の c軸長 (nm) を示している。  FIG. 7 shows the measurement results. The abscissa indicates the molar composition ratio X of the Ba component, and the ordinate indicates the c-axis length (nm) of the BaXZn1-xO thin film.
この図 7から明らかなように、薄膜中に B a成分が含まれていない場合は c軸長は 0. 52065 nmであるが、 B a成分のモル組成比 xが増加するに伴い、 c軸長は短くなつ ており、 ZnO結晶格子中に B a成分が取り込まれていることが分かる。  As is clear from FIG. 7, when the Ba component is not contained in the thin film, the c-axis length is 0.52065 nm, but as the molar composition ratio x of the Ba component increases, the c-axis The length has become shorter, which indicates that the Ba component is incorporated in the ZnO crystal lattice.
次に、 B a成分のモル組成比 Xが 0. 41のときの回折角と X線強度との関係を調べ た。  Next, the relationship between the diffraction angle and the X-ray intensity when the molar composition ratio X of the Ba component was 0.41 was examined.
図 8はその測定結果を示す X線スぺクトルであり、 横軸は回折角 20/ω、 縦軸は X 線強度 (c p s) を示している。  FIG. 8 is an X-ray spectrum showing the measurement results, with the horizontal axis representing the diffraction angle 20 / ω and the vertical axis representing the X-ray intensity (cps).
この図 8から明らかなように、 X線強度のピークは、 ZnOと C面サファイア基板に 起因するピークのみで B a Oに起因したピークが存在しないことから、 B a Oは Z ηθに 固溶しておリ、 したがって共晶が生成されることもなく B aが Z n O結晶格子に取り込ま れ、 組成式 Ba xZn 1一 x Oで表される混晶化合物が生成されていることが分かる。  As is evident from Fig. 8, the peak of X-ray intensity is only the peak derived from ZnO and the C-plane sapphire substrate, and the peak derived from BaO does not exist. Therefore, it can be seen that Ba is incorporated into the ZnO crystal lattice without the formation of a eutectic, and a mixed crystal compound represented by the composition formula Ba x Zn 1 x O is generated .
次に、 本発明者らは、 室温 (25°C) で各薄膜のバンドギャップエネルギーをフォト ルミネッセンス法で測定した。  Next, the present inventors measured the band gap energy of each thin film at room temperature (25 ° C.) by a photoluminescence method.
図 9はその測定結果であリ、 横軸は B a成分のモル組成比 X、 縦軸はバンドギヤップ エネルギー Eg (e V) を示している。  Fig. 9 shows the measurement results. The horizontal axis shows the molar composition ratio X of the Ba component, and the vertical axis shows the band gap energy Eg (eV).
この図 9から明らかなように、 B a成分のモル組成比 Xが増加するとポーイング特性 が顕著に現われ、 バンドギヤップエネルギー E gは放物線状に変化し、 Z n Oに比べバン ドギヤップエネルギー E gを小さくすることのできる。 As is evident from Fig. 9, the pouring characteristics increase as the molar composition ratio X of the Ba component increases. The band gap energy E g changes parabolically, and the band gap energy E g can be made smaller than that of ZnO.
しかしながら、 B a成分のモル組成比 Xが 0. 55を超えるとバンドギャップェネル ギー Egは ZnO単体よりも増加する。  However, when the molar composition ratio X of the Ba component exceeds 0.55, the bandgap energy Eg increases as compared with ZnO alone.
すなわち、 Ba成分のモル組成比 Xを 0< x<0. 55とすることにより、 ZnOよ リもパンドギヤップエネルギー E gの小さい化合物半導体層を得ることのできることが分 かる。  That is, it is understood that by setting the molar composition ratio X of the Ba component to 0 <x <0.55, a compound semiconductor layer having a smaller band gap energy Eg than ZnO can be obtained.
(第 2の実施例)  (Second embodiment)
本発明者らは、 基板温度 (成膜温度) を変化させてゆき、 基板温度 Tとバンドギヤッ プエネルギー Egとの関係を調べた。  The present inventors changed the substrate temperature (film formation temperature) and examined the relationship between the substrate temperature T and the bandgap energy Eg.
すなわち、 ZnOとBaOとの混合比を重量比で90 :  That is, the mixing ratio of ZnO and BaO is 90:
1 0に調製したターゲットを使用し、 基板温度を 400°C、 500°C、 600°C、 及 び 650°Cにそれぞれれ設定し、 第 1の実施例と同様、 容量結合型 RFスパッタ装置を使 用し、 C面サファイア基板上に膜厚 500 nmの Ba ZnO系薄膜を作製し、 各薄膜のバ ンドギャップエネルギー E gをフォ卜ルミネッセンス法で測定した。  Using the target prepared in 10 and setting the substrate temperature to 400 ° C, 500 ° C, 600 ° C, and 650 ° C, respectively, as in the first embodiment, the capacitively coupled RF sputtering device BaZnO-based thin films with a thickness of 500 nm were fabricated on a C-plane sapphire substrate using, and the band gap energy E g of each thin film was measured by photoluminescence method.
図 1 0はその測定結果を示し、横軸は基板温度 T (°C)、縦軸はパンドギャップェネル ギ一 Eg (e V) である。  FIG. 10 shows the measurement results. The horizontal axis represents the substrate temperature T (° C.), and the vertical axis represents the band gap energy Eg (eV).
この図 1 0から明らかなように、 B aの含有量を一定にした場合であっても、 基板温 度 Tを低く変化させることにより、 所望のバンドギヤップエネルギー E gを有する薄膜を 得ることができることが分かった。 産業上の利用可能性  As is clear from FIG. 10, even when the content of Ba is kept constant, a thin film having a desired band gap energy E g can be obtained by changing the substrate temperature T low. I knew I could do it. Industrial applicability
以上のように、 本発明にかかる光半導体素子は、 情報を記憶装置に書き込み、 または 記憶装置に記憶されている情報を読み込む時に使用するピックアップ部として有用であり、 特に、 大容量の情報を小型の記憶装置に書き込み、 読み込みを行うピックアップ部に適し ている。  As described above, the optical semiconductor device according to the present invention is useful as a pickup unit used when writing information to a storage device or reading information stored in the storage device. It is suitable for a pickup unit that writes to and reads data from a storage device.

Claims

請 求 の 範 囲 The scope of the claims
1. 少なくとも B a及び S rのうちのいずれか一方が ZnOに固溶され、 これら B a及び S rの含有量に応じてバンドギヤップエネルギーが変調された少なくとも 1層以上の 化合物半導体層を備えていることを特徴とする光半導体素子。 1. At least one of Ba and Sr is formed as a solid solution in ZnO, and at least one compound semiconductor layer in which band gap energy is modulated according to the content of Ba and Sr is provided. An optical semiconductor device, comprising:
2. 少なくとも Ba及び S rのうちのいずれか一方が ZnOに固溶され、 成膜温度に応じ てバンドギャップエネルギーが変調された少なくとも 1層以上の化合物半導体層を備 えていることを特徴とする光半導体素子。  2. At least one of Ba and Sr is formed as a solid solution in ZnO and has at least one compound semiconductor layer whose band gap energy is modulated according to the film formation temperature. Optical semiconductor device.
3. 前記化合物半導体層のうちの少なくとも 1層は、 電流注入によリ発光する活性層を構 成していることを特徴とする請求項 1又は請求項 2記載の光半導体素子。  3. The optical semiconductor device according to claim 1, wherein at least one of the compound semiconductor layers constitutes an active layer that emits light by current injection.
4. 異なるバンドギャップエネルギーを有する複数の前記化合物半導体層が交互に多数積 層された多層膜を備えていることを特徴としている請求項 1又は請求項 2記載の光半 導体素子。  4. The optical semiconductor device according to claim 1, wherein a plurality of the compound semiconductor layers having different band gap energies are provided with a multilayer film in which a large number of layers are alternately stacked.
5. 前記多層膜は、 電流注入により発光する活性層を構成していることを特徴とする請求 項 4記載の光半導体素子。  5. The optical semiconductor device according to claim 4, wherein the multilayer film forms an active layer that emits light by current injection.
6. 前記活性層は、 該活性層よリも大きなバンドギヤップエネルギーを有するクラッド層 で挟持されていることを特徴とする請求項 3又は請求項 5記載の光半導体素子。  6. The optical semiconductor device according to claim 3, wherein the active layer is sandwiched between cladding layers having a band gap energy larger than that of the active layer.
7. 前記クラッド層は、 ZnOを主成分とした半導体材料で形成されていることを特徴と する請求項 6記載の光半導体素子。  7. The optical semiconductor device according to claim 6, wherein the cladding layer is formed of a semiconductor material containing ZnO as a main component.
8. 前記クラッド層は、 Mgが ZnOに固溶された半導体材料で形成されていることを特 徴とする請求項 6記載の光半導体素子。  8. The optical semiconductor device according to claim 6, wherein the cladding layer is formed of a semiconductor material in which Mg is dissolved in ZnO.
9. 前記クラッド層は、 G a Nを主成分とした半導体材料で形成されていることを特徴と する請求項 6記載の光半導体素子。  9. The optical semiconductor device according to claim 6, wherein the cladding layer is formed of a semiconductor material containing GaN as a main component.
1 0. 前記化合物半導体層は、組成式 Ba χ Ζη 1 -χΟ (0<χ<1)、又は組成式 S r y Z n 1 -y O (0<y<1 ) のいずれかで表されることを特徴とする請求項 1乃 至請求項 9のいずれかに記載の光半導体素子。  10. The compound semiconductor layer is represented by either a composition formula Ba χ Ζη 1 -χΟ (0 <χ <1) or a composition formula S ry Z n 1 -y O (0 <y <1). 10. The optical semiconductor device according to claim 1, wherein:
1 1. 前記 X及び yは、 それぞれ 0<x<0. 55、 0<y <0. 55であることを特徴 とする請求項 1 0記載の光半導体素子。  11. The optical semiconductor device according to claim 10, wherein X and y satisfy 0 <x <0.55 and 0 <y <0.55, respectively.
PCT/JP2003/011755 2002-10-01 2003-09-16 Optical semiconductor device WO2004036659A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2003264432A AU2003264432A1 (en) 2002-10-01 2003-09-16 Optical semiconductor device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002288289A JP2004128106A (en) 2002-10-01 2002-10-01 Optical semiconductor device
JP2002-288289 2002-10-01

Publications (1)

Publication Number Publication Date
WO2004036659A1 true WO2004036659A1 (en) 2004-04-29

Family

ID=32104950

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/011755 WO2004036659A1 (en) 2002-10-01 2003-09-16 Optical semiconductor device

Country Status (3)

Country Link
JP (1) JP2004128106A (en)
AU (1) AU2003264432A1 (en)
WO (1) WO2004036659A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7943927B2 (en) 2007-01-15 2011-05-17 Stanley Electric Co., Ltd. ZnO based semiconductor light emitting device and its manufacture method

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008078460A (en) * 2006-09-22 2008-04-03 Fujikura Ltd Semiconductor light emitting element
JP5603546B2 (en) * 2008-10-22 2014-10-08 パナソニック株式会社 Semiconductor light emitting element and light emitting device
JP6657992B2 (en) * 2016-01-22 2020-03-04 富士通株式会社 Thin film laminate, method for producing the same, and water splitting system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0863555A2 (en) * 1997-03-07 1998-09-09 Japan Science and Technology Corporation Optical semiconductor element and fabricating method therefor
JP2001077420A (en) * 1999-08-31 2001-03-23 Japan Science & Technology Corp Ultraviolet light-emitting body and manufacture thereof
EP1178543A1 (en) * 2000-06-27 2002-02-06 National Institute of Advanced Industrial Science and Technology Semiconductor light emitting device
JP2002076356A (en) * 2000-09-01 2002-03-15 Japan Science & Technology Corp Semiconductor device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3380422B2 (en) * 1997-03-25 2003-02-24 科学技術振興事業団 Optical semiconductor device containing group II-oxide
JP2002118328A (en) * 2000-10-10 2002-04-19 Ricoh Co Ltd Semiconductor light emitting element

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0863555A2 (en) * 1997-03-07 1998-09-09 Japan Science and Technology Corporation Optical semiconductor element and fabricating method therefor
JP2001077420A (en) * 1999-08-31 2001-03-23 Japan Science & Technology Corp Ultraviolet light-emitting body and manufacture thereof
EP1178543A1 (en) * 2000-06-27 2002-02-06 National Institute of Advanced Industrial Science and Technology Semiconductor light emitting device
JP2002076356A (en) * 2000-09-01 2002-03-15 Japan Science & Technology Corp Semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7943927B2 (en) 2007-01-15 2011-05-17 Stanley Electric Co., Ltd. ZnO based semiconductor light emitting device and its manufacture method

Also Published As

Publication number Publication date
AU2003264432A1 (en) 2004-05-04
JP2004128106A (en) 2004-04-22

Similar Documents

Publication Publication Date Title
JP4865773B2 (en) Semiconductor light emitting device
JP3719613B2 (en) Semiconductor light emitting device
US6057561A (en) Optical semiconductor element
EP1178543A1 (en) Semiconductor light emitting device
US5610413A (en) Group II-VI compound semiconductor light emitting devices and an ohmic contact therefor
US7741637B2 (en) ZnO-based semiconductor device
WO2003107428A1 (en) Semiconductor device and method for fabricating the same
Herve et al. Microgun‐pumped blue lasers
US5616937A (en) Compound semiconductor luminescent device
JP2001043977A (en) Light emitting diode
JP5187634B2 (en) ZnO single crystal layer, semiconductor light emitting device and method of manufacturing the same
WO2004036659A1 (en) Optical semiconductor device
JP2000058911A (en) Semiconductor light-emitting device
JP2005026465A (en) Oxide semiconductor light emitting element
US7943927B2 (en) ZnO based semiconductor light emitting device and its manufacture method
US6206962B1 (en) Semiconductor light emitting device and method of manufacturing same
JP2002118328A (en) Semiconductor light emitting element
JP2008160057A (en) Method of manufacturing semiconductor light emitting element
JP3326833B2 (en) Semiconductor laser and light emitting diode
JP2000173775A (en) Ultraviolet emission electroluminescent element and its manufacture
JPH11204834A (en) Manufacture of semiconductor light emitting device
JP4157091B2 (en) Thin film manufacturing method, compound semiconductor, thin film phosphor, and anode panel of field emission display
EP0523597B1 (en) Semiconductor laser
JPH11145520A (en) Semiconductor light-emitting element and its manufacturing method
JP2004031635A (en) White light emitting diode

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase