WO2004031461A1 - Process and composition for the production of carbon fiber and mats - Google Patents

Process and composition for the production of carbon fiber and mats Download PDF

Info

Publication number
WO2004031461A1
WO2004031461A1 PCT/JP2003/012261 JP0312261W WO2004031461A1 WO 2004031461 A1 WO2004031461 A1 WO 2004031461A1 JP 0312261 W JP0312261 W JP 0312261W WO 2004031461 A1 WO2004031461 A1 WO 2004031461A1
Authority
WO
WIPO (PCT)
Prior art keywords
precursor
thermoplastic
carbon
fiber
thermoplastic resin
Prior art date
Application number
PCT/JP2003/012261
Other languages
French (fr)
Japanese (ja)
Inventor
Masumi Hirata
Hiroshi Sakurai
Toru Sawaki
Tetsuo Ban
Satoru Ohmori
Shunichi Matsumura
Hideaki Nitta
Original Assignee
Teijin Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Limited filed Critical Teijin Limited
Priority to US10/529,758 priority Critical patent/US20060012061A1/en
Priority to DE60332947T priority patent/DE60332947D1/en
Priority to AT03753946T priority patent/ATE470735T1/en
Priority to AU2003272887A priority patent/AU2003272887A1/en
Priority to CNB038234033A priority patent/CN100338280C/en
Priority to EP03753946A priority patent/EP1550747B1/en
Priority to JP2005500085A priority patent/JP3971437B2/en
Publication of WO2004031461A1 publication Critical patent/WO2004031461A1/en

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/14Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments
    • D01F9/20Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products
    • D01F9/21Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products from macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D01F9/22Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products from macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds from polyacrylonitriles
    • D01F9/225Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products from macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds from polyacrylonitriles from stabilised polyacrylonitriles
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/14Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2101/00Inorganic fibres
    • D10B2101/10Inorganic fibres based on non-oxides other than metals
    • D10B2101/12Carbon; Pitch
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2401/00Physical properties
    • D10B2401/06Load-responsive characteristics
    • D10B2401/063Load-responsive characteristics high strength
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2401/00Physical properties
    • D10B2401/16Physical properties antistatic; conductive

Definitions

  • the present invention relates to methods and compositions for the production of carbon fibers and mats. More specifically, the present invention relates to a method for producing a carbon fiber having a very small fiber diameter, for example, 0.001 to 5 m, and a mat, and a composition used for the production. Background art
  • Carbon fiber is used as a filler for high-performance composite materials because of its excellent properties such as high strength, high elastic modulus, high conductivity, and light weight. Its applications are not limited to reinforcing fillers for the purpose of improving mechanical strength, but also as conductive resin fillers for electromagnetic wave shielding materials and antistatic materials, taking advantage of the high conductivity provided by carbon materials. Alternatively, it is expected to be used as a filler for electrostatic coatings on resins. It is also expected to be used as a field electron emission material such as a flat display, taking advantage of the characteristics of chemical stability, thermal stability and microstructure as a carbon material.
  • carbon fibers have been produced by heat-treating a fibrous carbon precursor such as polyacrylonitrile, pitch, or cellulose at a temperature of 100 ° C. or more to carbonize.
  • the carbon fiber formed by this method is generally a continuous fiber having a fiber diameter of 5 to 20 xm, and it is practically impossible to produce a carbon fiber having a smaller fiber diameter.
  • VGCF Vapor Carbon Fiber
  • JP-A-60-27700 discloses that an organic compound such as benzene is used as a raw material, and an organic transition metal compound such as fuecopene is introduced into a high-temperature reactor together with a carrier gas as a catalyst.
  • Japanese Patent Application Laid-Open No. 60-54998 discloses a method of generating VGCF in a floating state.
  • the method and Patent No. 277784334 disclose a method of growing on a reactor wall.
  • VGCF is physically different from conventional carbon fibers because the fiber diameter is small and not continuous, and has a fiber diameter of several hundred nm and a fiber length of several tens of meters.
  • Ultrafine carbon fibers have higher thermal and electrical conductivity and are less susceptible to corrosion, so they are functionally different from conventional carbon fibers, and are expected to have great future potential in a wide range of applications. Have been.
  • Japanese Patent Application Laid-Open No. 2001-73226 describes a method for producing ultrafine carbon fibers from a composite fiber of phenol tree J5 and polyethylene.
  • the phenol resin needs to be wet and requires a long period of time, and it is difficult to form an orientation.
  • it since it is a non-graphitizable compound, the strength and elastic modulus of the obtained ultrafine carbon fiber cannot be expected. Disclosure of the invention
  • An object of the present invention is to provide a method for producing carbon fibers.
  • Another object of the present invention is to provide a method for efficiently and inexpensively producing ultrafine carbon fibers, for example, ultrafine carbon fibers having a fiber diameter of 0.001 to 5 m.
  • Still another object of the present invention is to provide a method for efficiently and inexpensively producing a carbon fiber having a small number of branching structures, high strength and high elastic modulus.
  • Still another object of the present invention is to provide a method for efficiently and inexpensively producing a carbon fiber mat made of the above-mentioned carbon fibers, particularly a mat made of ultrafine carbon fibers.
  • Still another object of the present invention is to provide a composition for producing carbon fiber which is suitably used in the production method of the present invention.
  • Still another object of the present invention is to provide a particularly preferable use of the carbon fiber obtained by the production method of the present invention.
  • thermoplastic resin 100 parts by weight of thermoplastic resin and at least one kind of thermoplastic carbon precursor selected from the group consisting of pitch, polyacrylonitrile, polyacrylamide, polyimide, polybenzoazole and aramide 1 to 150 parts by weight
  • thermoplastic carbon precursor selected from the group consisting of pitch, polyacrylonitrile, polyacrylamide, polyimide, polybenzoazole and aramide 1 to 150 parts by weight
  • thermoplastic resin 100 parts by weight of a thermoplastic resin and at least one kind of thermoplastic carbon precursor selected from the group consisting of pitch, polyacrylonitrile, polypropylimide, polyimide, polybenzazole and aramide 1 to 150 parts by weight
  • thermoplastic carbon precursor selected from the group consisting of pitch, polyacrylonitrile, polypropylimide, polyimide, polybenzazole and aramide 1 to 150 parts by weight
  • a plurality of the stabilized precursor films are laminated to form a stabilized precursor superimposed film
  • the carbon fiber mat is formed by carbonizing or graphitizing the fibrous carbon precursor mat.
  • the above object and advantages of the present invention are, thirdly, 100 parts by weight of thermoplastic resin and pitch, acrylonitrile, polycarboimide, polyimide, polybenzoazole, and aramide.
  • At least one type of heat Plastic carbon precursor It is achieved by a composition for producing fibrous carbon comprising up to 150 parts by weight.
  • the above objects and advantages of the present invention are provided by the use of the carbon fiber obtained by the production method of the present invention for use in a battery electrode or in combination with a resin. Is done. BRIEF DESCRIPTION OF THE FIGURES
  • FIG. 1 is an SE ( ⁇ ) photograph of the resin composition of Example 1 (Al 100) ( ⁇ 10,000).
  • FIG. 2 shows the distribution of the pitch-dispersed particle diameter of the resin composition of Example 1—A1100).
  • Figure 3 shows the shear rate dependence of the melt viscosity of ⁇ ⁇ ⁇ ⁇ and pitch.
  • a precursor fiber or film is formed by spinning or forming a mixture comprising 100 parts by weight of a thermoplastic resin and 1 to 150 parts by weight of a thermoplastic carbon precursor.
  • thermoplastic resin can be easily removed in step (3) from the stabilized precursor fiber or film produced in step (2).
  • a thermoplastic resin having a weight loss of at least 90% and a weight loss at air temperature of 1,000 ° C of 97% or more is preferably used.
  • the thermoplastic resin can be easily melt-kneaded and melt-spun with the thermoplastic carbon precursor, when it is crystalline, its crystalline melting point is 100 ° C or more and 400 ° C or less, and it is amorphous. Sometimes the glass transition temperature is preferably from 100 ° C to 250 ° C. When the crystalline melting point of the crystalline resin exceeds 400 ° C., it is necessary to perform the melt kneading at 400 ° C.
  • the thermoplastic resin used in the present invention preferably has a free volume diameter of 0.50 nm or more at 20 ° C evaluated by the positron annihilation method.
  • a more preferable range of the free volume diameter at 20 ° C evaluated by the positron annihilation method is 0.52 nm or more, and more preferably 0.55 nm or more.
  • the upper limit of the diameter of the free volume is not particularly limited, but is preferably as large as possible.
  • the diameter of the free volume, when expressed in a range is preferably from 0.5 to 1 nm, more preferably from 0.5 to 2 nm.
  • the thermoplastic resin preferably has a surface tension difference with the thermoplastic carbon precursor of 15 mNZm or less.
  • the mixture in step (1) is formed by blending a thermoplastic resin with a carbon precursor. Therefore, if the surface tension difference with the carbon precursor is larger than 15 mNZm, not only the dispersibility of the carbon precursor in the thermoplastic resin is reduced, but also the problem that the carbon precursor is very easily aggregated is easily caused.
  • the difference in surface tension between the thermoplastic resin and the carbon precursor is more preferably within 1 OmN / m, and particularly preferably within 5 mNZm.
  • thermoplastic resin having the above characteristics include, for example, the following formula (I):
  • RR 2 , R 3 and R 4 are each independently a hydrogen atom, an alkyl group having 1 to 15 carbon atoms, a cycloalkyl group having 5 to 10 carbon atoms, and an aryl group having 6 to 12 carbon atoms. Or an aralkyl group having 7 to 12 carbon atoms, and n is a number of 20 or more, preferably 20 to 100,000.
  • thermoplastic resin represented by the above formula (I) examples include polyethylene, amorphous polyolefin, a homopolymer of 4-methylpentene-11, and a copolymer of 4-methylpentene-11 with other olefins, for example, poly-4 And a polymer in which a vinyl monomer is copolymerized with 1-methylpentene-1.
  • polyethylene examples include high-pressure low-density polyethylene, medium-density polyethylene, high-density polyethylene, linear low-density polyethylene, and other homopolymers of ethylene or copolymers of ethylene and ⁇ -olefin; ethylene-vinyl acetate copolymer.
  • Copolymers of ethylene and other vinyl monomers such as polymers are exemplified.
  • ⁇ -olefin copolymerized with ethylene include propylene, 1-butene, 11-hexene, and 1-octene.
  • Other vinyl monomers include, for example, vinyl esters such as biel acetate; (meth) acrylic acid, methyl (meth) acrylate, ethyl (meth) acrylate, and ⁇ -butyl (meth) acrylate. (Meth) acrylic acid and its alkyl esters.
  • thermoplastic carbon precursor used in the present invention is pitch, polyacrylonitrile, polycarboimide, polyimide, polybenzoazole, and aramide. These are susceptible to carbonization and graphitization at temperatures above 1000 ° C. Among these, pitch, polyacrylonitrile, and polyacrylamide are preferable, and pitch is more preferable. In addition, among pitches, a mesophase pitch which is generally expected to have high strength and high elastic modulus is preferable.
  • Pitch is a mixture of condensed polycyclic aromatic hydrocarbons obtained as a coal or petroleum distillation residue or raw material, and is usually amorphous and optically isotropic (this is generally called isotropic pitch). .
  • isotropic pitch having a certain property
  • it passes through various routes and finally exhibits an optically anisotropic nematic phase.
  • Mesophase pitch is made from aromatic hydrocarbons such as benzene and naphthylene. Can be manufactured.
  • the mesophase pitch is sometimes called anisotropic pitch or liquid crystal pitch due to its characteristics.
  • thermoplastic carbon precursors can be used alone or in combination of two or more.
  • the thermoplastic carbon precursor is used in an amount of 1 to 150 parts by weight, preferably 5 to 100 parts by weight, based on 100 parts by weight of the thermoplastic resin. If the amount of the carbon precursor is more than 150 parts by weight, a precursor fiber or a film having a desired dispersion diameter cannot be obtained, and if the amount is less than 1 part by weight, the intended ultrafine carbon fiber is produced at low cost. It is not preferable because problems such as inability to do so occur.
  • melt-kneaded in a range ratio (7 ⁇ /? ⁇ ) is 0.5 to 5 0 in the melt viscosity of the melt viscosity (77 M) and the thermoplastic carbon precursor in the thermoplastic resin at the time of melt kneading (7 Alpha) Is preferred. If the value of ( ⁇ ) is less than 0.5 or greater than 50, the dispersibility of the thermoplastic carbon precursor in the thermoplastic shelf will not be good, which is not preferable.
  • the more preferable range of (7? ⁇ ⁇ ⁇ 7 ⁇ ) value is from 0.7 to 5.
  • a known kneading apparatus such as a single-screw extruder, a twin-screw extruder, a mixing roll, and a Banbury mixer can be used for melt-kneading the thermoplastic resin and the thermoplastic carbon precursor.
  • a coaxial twin-screw extruder is preferably used for the purpose of micro-dispersing the thermoplastic carbon precursor in a good manner in terms of thermoplasticity.
  • the melt-kneading temperature is, for example, 100 ° C. (: up to 400 ° C.) When the melt-kneading temperature is lower than 100 ° C., the thermoplastic carbon precursor does not go into a molten state, but is converted into a thermoplastic resin.
  • the temperature exceeds 400 ° C., it is not preferable because the decomposition of the thermoplastic resin and the thermoplastic carbon precursor proceeds, and both are not preferable.
  • the melt-kneading time is 0.5 to 20 minutes, preferably 1 to 15 minutes.
  • the melt-kneading time is less than 0.5 minute. In such a case, it is not preferable because dispersion of the thermoplastic carbon precursor in the micro-mouth is difficult, while if it exceeds 20 minutes, the productivity of the ultrafine carbon fiber is remarkably reduced.
  • the melt-kneading of the plastic resin and the thermoplastic carbon precursor is preferably performed in an atmosphere having an oxygen gas content of less than 10%.
  • thermoplastic carbon precursor used in the present invention reacts with oxygen to be denatured and infused during melt-kneading, which may hinder micro-dispersion in the thermoplastic resin. For this reason, it is preferable to carry out melt-kneading while flowing an inert gas to reduce the oxygen gas content as much as possible. More preferably, the oxygen gas content at the time of melt-kneading is less than 5%, more preferably less than 1%.
  • the mixture of the thermoplastic resin and the thermoplastic carbon precursor can contain a compatibilizer between the thermoplastic resin and the thermoplastic carbon precursor.
  • the compatibilizer is preferably added during the above-mentioned melt-kneading.
  • compatibilizer examples include the following formula (1): Surface tension of polymer segment (el)
  • Polymers selected from the group consisting of homopolymers (F) satisfying the following are preferably used.
  • thermoplastic resin even when the content of the carbon precursor in the thermoplastic resin is gradually increased, it is possible to prevent the two from immediately contacting and fusing.
  • the above equation (1) for the copolymer (E) represents the ratio of the surface tension of the thermoplastic carbon precursor to the surface tension of the polymer segment (e l). That is, it shows one parameter of the interfacial energy between the polymer segment (el) and the carbon precursor. If this ratio is smaller than 0.7 or larger than 1.3, the interfacial tension between the polymer segment (el) and the carbon precursor will be high, and the interfacial adhesion between the two phases will not be good.
  • a more preferable range of the ratio of the surface tension of the carbon precursor to the surface tension of the polymer segment (el) is 0.75 to 1.25, and more preferably 0.8 to 1.2.
  • the polymer segment (el) is not particularly limited as long as it satisfies the above formula (1).
  • examples thereof include polyolefin homopolymers or copolymers such as polyethylene, polypropylene, and polystyrene, polymethacrylates, and polymethyl methacrylate.
  • Polyacrylate homopolymers or copolymers can be preferably used.
  • a styrene copolymer such as acrylonitrile-styrene-coborymer and acrylonitrile-butylene-styrene copolymer may be used. Of these, homopolymers and copolymers of styrene are preferred.
  • the above equation (2) for the copolymer (E) represents the ratio of the surface tension of the thermoplastic resin to the surface tension of the polymer segment (e 2). In other words, it shows the parameters of the interfacial energy between the polymer segment (e 2) and the thermoplastic resin. This If the ratio is less than 0.7 or greater than 1.3, the interfacial tension between the polymer segment (e 2) and the thermoplastic resin will increase, and the interfacial adhesion between the two phases will not be good.
  • a more preferable range of the ratio of the surface tension of the thermoplastic resin to the surface tension of the polymer segment (e2) is 0.75 to 1.25, and more preferably 0.8 to 1.2.
  • the polymer segment (e2) is not particularly limited as long as it satisfies the above formula (2).
  • polyolefin homopolymers or copolymers such as polyethylene, polypropylene and polystyrene, polymethacrylate, and polymethylmethacrylate
  • polyacrylate homopolymers or copolymers can be preferably used.
  • a copolymer such as an acrylonitrile-styrene copolymer or an acrylonitrile-butylene-styrene copolymer may be used.
  • homopolymers and copolymers of ethylene are preferred.
  • the above copolymer (E) can be a graft copolymer or a block copolymer.
  • the copolymer composition ratio of the polymer segments (el) and (e2) is in the range of 10 to 90% by weight for the polymer segment (el) and 90 to 90% by weight for the polymer segment (e2). Those are preferably used.
  • Such copolymers of two different polymer segments include, for example, a copolymer of polyethylene and polystyrene, a copolymer of polypropylene and polystyrene, and a copolymer of ethylene-glycidyl methacrylate copolymer and polystyrene.
  • Copolymer ethylene-ethyl acrylate copolymer and polystyrene copolymer, ethylene-vinyl acetate copolymer and polystyrene copolymer, polyethylene and polymethyl methacrylate copolymer, ethylene-daricidyl methacrylate copolymer Copolymer of polymer and polymethyl methacrylate, copolymer of ethylene-ethyl acrylate copolymer and polymethyl methacrylate, copolymer of ethylene-vinyl acetate copolymer and polymethyl methacrylate, acrylonitrile Copolymerization of Rustyrene Copolymer with Polyethylene Copolymer of acrylonitrile-styrene and polypropylene, copolymer of acrylonitrile-styrene copolymer and ethylene-daricidyl methacrylate copolymer, acrylonitrile-styrene copolymer and
  • the above formula (3) for the above homopolymer (F) can be similarly understood by replacing the polymer segment (el) in the above formula (1) with a homopolymer (F).
  • the homopolymer (F) include polyolefin homopolymers such as polyethylene, polypropylene, and polystyrene, and polyacrylate homopolymers such as polymethacrylate and polymethyl methacrylate.
  • the amount of the compatibilizer as described above is preferably 0.001 to 40 parts by weight, more preferably 0.001 to 20 parts by weight, based on 100 parts by weight of the thermoplastic resin.
  • the dispersion diameter of the carbon precursor in the thermoplastic resin is preferably 0.01 to 50 m.
  • the carbon precursor forms an island phase and becomes spherical or elliptical.
  • the term “dispersion diameter” refers to the spherical diameter of the carbon precursor or the major axis diameter of the ellipsoid in the mixture.
  • the dispersion diameter of the carbon precursor in the thermoplastic resin is outside the range of 0.01 to 50 im, it becomes difficult to produce a carbon fiber filler for high-performance composite materials, which is not preferable.
  • a more preferable range of the dispersion diameter of the carbon precursor is 0.01 to 3.
  • the dispersion diameter of the carbon precursor in the thermoplastic resin is preferably 0.01 to 50 m. preferable. If a mixture obtained by melt-kneading a thermoplastic resin and a carbon precursor is kept in a molten state, the carbon precursor will aggregate with time.
  • the degree of the agglomeration rate of the carbon precursor varies depending on the type of the thermoplastic resin and the carbon precursor used, but is more preferably 5 minutes at 300 ° C, more preferably 10 minutes or more at 300 ° C. Preferably, a dispersion diameter of ⁇ 50 m is maintained.
  • the mixture is spun to form a precursor fiber or formed into a precursor film.
  • the method for forming the precursor fiber include a method in which a mixture obtained by melt blending is melt-spun from a spinneret.
  • the spinning temperature during melt spinning is, for example, 100 to 400 ° C., preferably 150 to 400 ° C., and more preferably 180 to 350 ° C. is there.
  • the spinning take-off speed is preferably from 1 Om / min to 2,000 OmZ. Outside the above range, a fibrous molded article (precursor fiber) composed of a desired mixture cannot be obtained, which is not preferable.
  • the transfer time is within 10 minutes.
  • the cross-sectional shape of the precursor fiber can be circular or irregular, and its thickness is preferably from 1 to 100 / m in equivalent diameter converted to a circle.
  • a method of forming a precursor film for example, a method in which the mixture is sandwiched between two plates and one of the plates is rotated to create a film to which shear is applied, and a sudden stress is applied to the mixture by a compression press machine.
  • a method of producing a film to which a shear is applied a method of producing a film to which a shear is applied by a rotating roller, and the like can be given.
  • the shear is, for example, in the range of 1 to 100 , 0000 S1.
  • the precursor film can be formed by melt-extruding the mixture through a slit.
  • the melt extrusion temperature is preferably between 100 and 400 ° C.
  • a precursor fiber or a precursor film in which a carbon precursor is elongated may be produced. These treatments are preferably performed at 150 ° C. to 400 ° C., more preferably at 180 ° C. (: to 350 ° C.).
  • the thickness of the precursor film is preferably from 1 to 500 m. If the thickness is more than 500 m, in the next step (2) of contacting the precursor film with a gas containing oxygen and / or iodine gas to obtain a stabilized precursor film, the gas permeability is significantly reduced. Therefore, it takes a long time to obtain a stabilized precursor film as a result, which is not preferable. On the other hand, if it is less than 1 m, it is not preferable because handling of the precursor film is difficult.
  • thermoplastic resin 100 parts by weight of the thermoplastic resin and at least one kind selected from the group consisting of pitch, acrylonitrile, polycarboimide, polyimide, polybenzoazole and aramide
  • a composition for producing fibrous carbon comprising 1 to 150 parts by weight of a thermoplastic carbon precursor.
  • the above composition comprises a copolymer (E) of a polymer segment (e 1) satisfying the above formula (1) and a polymer segment (e 2) satisfying the above formula (2), and the above formula (3)
  • One or more homopolymers (F) satisfying (4) may further contain 0.001 to 20 parts by weight.
  • compositions may consist essentially of 100 parts by weight of the thermoplastic resin and 1-150 parts by weight of the thermoplastic carbon precursor, or may be composed of them and the copolymer (E) and Z or homopolymer.
  • Polymer (F) can consist essentially of 0.01 to 20 parts by weight.
  • compositions are preferably
  • thermoplastic carbon precursor is dispersed in a granular form in the thermoplastic resin matrix, and the average equivalent particle size of the dispersed thermoplastic carbon precursor is in the range of 0.01 to 50 m. , Or
  • the average equivalent particle size of the dispersed thermoplastic carbon precursor is in the range of 0.01 to 50 m, or
  • the precursor fiber or the film is subjected to a stabilization treatment to stabilize the thermoplastic carbon precursor in the precursor fiber or the film, thereby forming the stabilized precursor fiber or the film.
  • the stabilization of the thermoplastic carbon precursor is a necessary step to obtain carbonized or graphitized ultrafine carbon fibers. If the thermoplastic resin and copolymer are removed without performing this step However, problems such as the thermal decomposition and fusion of the thermoplastic carbon precursor occur.
  • Stabilization methods include, for example, gas flow treatment with oxygen, acidic aqueous solution And known methods such as solution treatment. From the viewpoint of productivity, stabilization (infusibility) by gas stream treatment is preferable.
  • the gas component used is selected from the viewpoints of the permeability into the thermoplastic resin and the adsorption to the thermoplastic carbon precursor, and the capability of rapidly infusing the thermoplastic carbon precursor at a low temperature. It is preferably a mixed gas containing oxygen and Z or a halogen gas.
  • halogen gas examples include fluorine gas, chlorine gas, bromine gas, and iodine gas. Among them, bromine gas and iodine gas are particularly preferable.
  • a specific method of infusibility under a gas stream preferably 50 to 350 ° (: more preferably at 80 to 300 ° C, for 5 hours or less, preferably 2 hours
  • the treatment is performed in a desired gas atmosphere, and the softening point of the thermoplastic carbon precursor contained in the precursor fiber or the film is significantly increased by the infusibilization, but is softened for the purpose of obtaining a desired ultrafine carbon fiber.
  • the temperature is preferably at least 400 ° C., and more preferably at least 500 ° C.
  • the heat can be removed from the stabilized precursor fiber or film.
  • Removal of the plastic resin to form a fibrous carbon precursor Removal of the thermoplastic resin is achieved by thermal decomposition or dissolution in a solvent, and which method is used depends on the thermoplastic resin used. Depends on the thermoplastic used.
  • the gas atmosphere a temperature of 400 to 600 ° C., more preferably 500 to 600 ° C. is used, and the gas atmosphere is, for example, an inert gas such as argon or nitrogen.
  • an oxidizing gas atmosphere containing oxygen may be used, and a solvent having a higher solubility may be used for dissolution in a solvent, depending on the thermoplastic resin used, for example, methylene chloride in polycarbonate.
  • Petrahydrofuran is preferred, and for polyethylene, decalin and toluene are preferred.
  • the fibrous carbon precursor is carbonized or graphitized to form carbon fibers.
  • the carbonization or graphitization of the fibrous carbon precursor can be performed by a method known per se.
  • a fibrous carbon precursor is subjected to high temperature treatment in an inert gas atmosphere to be carbonized or graphitized.
  • the inert gas used includes nitrogen, argon and the like, and the temperature is preferably 500 to 3,500 ° C, more preferably 700,000 to 3,000 ° C, Particularly preferably 800 ° C ⁇ 3, 0000 ° C It is.
  • the oxygen concentration during carbonization or graphitization is preferably 20 ppm or less, more preferably 1 O ppm or less.
  • the fiber diameter of the obtained ultrafine carbon fiber is preferably 0.001 zm to 5 m, and more preferably 0.001 m! ⁇ Lm.
  • ultrafine carbon fibers having a fiber diameter of 0.001 m to 5 m can be obtained.
  • the ultrafine carbon fiber obtained from the composite fiber of the phenol resin and the polyethylene was amorphous because the phenol resin was amorphous, so that the obtained ultrafine carbon fiber was also amorphous, and both the strength and the modulus were low.
  • the carbon fibers obtained by this method have extremely strong molecular chains in the direction of the fiber axis, and have low strength and high elastic modulus as compared with ultrafine carbon fibers obtained from a composite fiber of phenol resin and polyethylene.
  • the branched structure is smaller than the carbon fiber obtained by the gas phase method, it is possible to reinforce a polymer or the like by adding a smaller amount than before.
  • the method for producing a carbon fiber mat of the present invention comprises:
  • thermoplastic resin 100 parts by weight of thermoplastic resin and at least one kind of thermoplastic carbon precursor selected from the group consisting of pitch, polyacrylonitrile, polyphenolimide, polyimide, polybenzoazole and aramide
  • thermoplastic carbon precursor selected from the group consisting of pitch, polyacrylonitrile, polyphenolimide, polyimide, polybenzoazole and aramide
  • a plurality of the stabilized precursor films are laminated to form a stabilized precursor superimposed film
  • thermoplastic resin from the stabilized precursor superimposed film to form a fibrous carbon precursor mat
  • Carbon fiber mat is formed by carbonizing or graphitizing the fibrous carbon precursor mat.
  • step (1) is the same as the method for producing a precursor film in step (1) of the method for producing carbon fibers.
  • Step (2) is the same as the method for producing the stabilized precursor film in step (2) of the method for producing carbon fiber.
  • step (3) a plurality of, for example, 2 to 100,000 stabilized precursor films obtained in the step (2) are superposed to form a superimposed stabilized precursor film.
  • Step (4) removes the thermoplastic resin from the stabilized superimposed film to form a fibrous carbon precursor mat.
  • This step (4) can be performed by removing the thermoplastic resin in the same manner as in step (3) of the carbon fiber production method.
  • step (5) the fibrous carbon precursor mat is carbonized or graphitized to form a carbon fiber mat.
  • the carbonization and graphitization in this step (5) can be carried out in the same manner as in step (4) of the carbon fiber production method.
  • a carbon fiber mat made of ultrafine carbon fibers can be produced very easily.
  • Such a carbon fiber mat is very useful, for example, as a high-performance filter or a battery electrode material.
  • the dispersed particle diameter of the thermoplastic carbon precursor in the thermoplastic resin and the fiber diameter of the precursor fiber were measured with a scanning electron microscope S-2400 (Hitachi, Ltd.).
  • the strength and elastic modulus of the obtained carbon fiber were measured using Tensilon RTC-1225A (A & D / Oriental Tech).
  • the surface tensions of the polymer segment (e 1), the polymer segment (e 2), the thermoplastic carbon precursor and the thermoplastic resin are as defined in JISK 668 “Plastic film and sheet”. The test was performed using the reagents used in the "Test Method for Wetting Tension".
  • the diameter of the free volume of thermoplastic resin is Using 22 Na 2 C0 3, the long-lived components of the positron lifetime spectra were evaluated by using El spherical model equation given pore size to (Ch em. Phy s. 63 , 51 (1981)).
  • the melting point or glass transition temperature of the thermoplastic resin was measured using a DSC 2920 (manufactured by TA Instruments) at a heating rate of 10 ° C./min.
  • the soft point was measured by a trace melting point measuring device.
  • the melt viscosity (77 M) of the thermoplastic resin and the melt viscosity (7) of the thermoplastic carbon precursor at the shear rate during melt-kneading were evaluated from the shear rate dependence of the melt viscosity (Fig. 3).
  • the shear rate (SR) during melt-kneading was evaluated using the following equation (3).
  • D indicates the screw outer diameter (m)
  • n indicates the screw rotation speed (rpm)
  • C indicates the clearance (m).
  • thermoplastic resin 100 parts by weight of high density polyethylene (manufactured by Sumitomo Chemical Co., Ltd.) as a thermoplastic resin and 11.1 parts of mesophase pitch AR—HP (manufactured by Mitsubishi Gas Chemical Company) as a thermoplastic carbon precursor, and Modiper A 1100 (manufactured by NOF Corporation: 0.56 parts of a low-density polyethylene 7 Owt% and polystyrene 3 Owt% graft copolymer were melt-kneaded in a coaxial twin-screw extruder (Nippon Steel Works TEX-30, barrel temperature 290 ° C, under nitrogen flow). Thus, a resin mixture was prepared.
  • high density polyethylene manufactured by Sumitomo Chemical Co., Ltd.
  • mesophase pitch AR—HP manufactured by Mitsubishi Gas Chemical Company
  • Modiper A 1100 manufactured by NOF Corporation: 0.56 parts of a low-density polyethylene 7 Owt% and polystyrene 3 Ow
  • the shear rate (SR) generated in the resin mixture during melt-kneading was 628 s- 1 .
  • the ratio of the melt viscosity (7 ⁇ M ) of the thermoplastic resin to the melt viscosity (7? A ) of the thermoplastic carbon precursor (7) ⁇ ⁇ ⁇ ) was 1.2.
  • the dispersion diameter of the thermoplastic carbon precursor obtained under these conditions in the thermoplastic resin was 0.05 to 2 xm (see Fig. 1).
  • the particle size distribution of AR-HP was evaluated using a scanning electron microscope, the particle size of less than 1 m accounted for 90% or more (see Fig. 2).
  • the resin composition was kept at 300 ° C.
  • the surface tensions of high-density polyethylene (Sumitomo Chemical Co., Ltd.), low-density polyethylene (Sumitomo Chemical Co., Ltd.), mesophase pitch, and polystyrene are 31, 31, 22, and 24 mNZm, respectively.
  • the value (surface tension of the polymer segment (el) Z surface tension of the thermoplastic carbon precursor) is 1.1, and the value of (the surface tension of the polymer segment (e 2) Z surface tension of the thermoplastic resin) is 1.0. Met.
  • the above resin mixture was spun from a spinneret at 300 ° C to prepare a precursor fiber (composite fiber).
  • the fiber diameter of this composite fiber was 20 m, and the dispersion diameter of the mesophase pitch in the cross section was all 2 m or less.
  • 100 parts by weight of this composite fiber and 5 parts by weight of iodine were placed in a pressure-resistant glass container and kept at 100 ° C. for 10 hours to obtain a stabilized precursor fiber.
  • the temperature of the stabilized precursor fiber was gradually raised to 500 ° C. to remove high-density polyethylene and Modiper A 1100. Thereafter, the temperature was raised to 1,500 ° C in a nitrogen atmosphere and maintained for 30 minutes to perform carbonization.
  • the fiber diameter of the obtained ultrafine carbon fiber was in the range of 0.01 m to 2 m, and almost no branched structure was observed.
  • the strength and elastic modulus of the ultrafine carbon fiber having a fiber diameter of 1 m were measured, the tensile strength was 2,500 MPa and the tensile elastic modulus was 300 GPa.
  • the dispersion diameter of the thermoplastic carbon precursor obtained under these conditions in the thermoplastic resin was 0.05 to 22 m.
  • the particle size distribution of A-HP was evaluated with a scanning electron microscope, the particle size of less than 1 zm accounted for 90% or more.
  • the resin mixture was kept at 300 ° C. for 10 minutes, but no aggregation of the thermoplastic carbon precursor was observed, and the dispersion diameter was 0.05 to 2 wm.
  • the surface tension of high-density polyethylene (Sumitomo Chemical Co., Ltd.), low-density polyethylene (Sumitomo Chemical Co., Ltd.), mesophase pitch, and polystyrene are 31, 31, 22, and 24 mN "m, respectively.
  • the surface tension of the polymer segment (el) Z surface tension of the thermoplastic carbon precursor is 1.1
  • the surface tension of the polymer segment (e 2) is 1.1
  • the surface tension of the Z thermoplastic resin) was 1.0.
  • the above resin mixture was spun from a spinneret at 300 ° C to prepare a precursor fiber (composite fiber).
  • the fiber diameter of this composite fiber was 20 m, and the dispersion diameter of the mesophase pitch in the cross section was all 2 m or less.
  • 100 parts by weight of the composite fiber and 5 parts by weight of iodine were placed in a pressure-resistant glass container and kept at 100 ° C. for 10 hours to obtain a stabilized precursor fiber.
  • the temperature of the stabilized precursor fiber was gradually raised to 500 ° C to remove high-density polyethylene and Modiper A 1100. Thereafter, in a nitrogen atmosphere, the temperature was raised to 1,500 ° C., and the temperature was maintained for 30 minutes to perform carbon shading.
  • the fiber diameter of the obtained ultrafine carbon fiber was in the range of 0.01 m to 2 m, and almost no branched structure was observed.
  • the strength and elastic modulus of the ultrafine carbon fiber having a fiber diameter of 1 zm were measured, the tensile strength was 2,500 MPa and the tensile elastic modulus was 300 GPa.
  • thermoplastic resin 100 parts by weight as a thermoplastic resin and Mesophase Pitch AR-HP (Mitsubishi Gas Chemicals) as a thermoplastic carbon precursor 11.1
  • the resin mixture was melt-kneaded in a twin-screw extruder (TEX-30, Japan Steel Works, barrel temperature 290 ° C, under a nitrogen stream) to form a resin mixture.
  • the dispersion diameter of the thermoplastic carbon precursor obtained under these conditions in the thermoplastic resin was 0.05 to 2 m.
  • the resin mixture was kept at 300 ° C for 3 minutes, but no agglomeration of the thermoplastic carbon precursor was observed, and the dispersion diameter was 0.05 to 2 ⁇ m.
  • the surface tensions of poly-14-methylpentene-11 and mesophase pitch were 24 and 22 mN / m, respectively.
  • the average diameter of the free volume of poly (4-methylpentene) -11 evaluated by the positron annihilation method was 0.64 nm, and the melting point of the crystal evaluated by DSC was 238 ° C.
  • the above resin mixture was spun from a spinneret at 300 ° C to prepare a precursor fiber (composite fiber).
  • the fiber diameter of this composite fiber was 20 m, and the dispersion diameter of the mesophase pitch in the cross section was all 2 m or less.
  • 100 parts by weight of this composite fiber And 10 parts by weight of iodine were placed in a pressure-resistant glass container and kept at 190 ° C for 2 hours to obtain a stabilized precursor fiber.
  • the temperature of the stabilized precursor fiber was gradually raised to 500 ° C. to remove poly-4-methylpentene-1. Thereafter, the temperature was raised to 1,500 ° C in a nitrogen atmosphere and maintained for 30 minutes to perform carbonization.
  • the fiber diameter of the obtained ultrafine carbon fiber was in the range of 0.01 to 2 m, and almost no branched structure was observed.
  • the strength and elastic modulus of the ultrafine carbon fiber having a fiber diameter of 1 m were measured, the tensile strength was 2,500 MPa and the tensile elastic modulus was 30 OGPa.
  • thermoplastic resin 100 parts by weight of high-density polyethylene (manufactured by Sumitomo Chemical Co., Ltd.) as a thermoplastic resin and mesophase pitch AR—HP (manufactured by Mitsubishi Gas Chemical Company) as a thermoplastic carbon precursor 11.
  • a twin-screw extruder Nippon Steel Works TEX
  • LZD 42, barrel temperature 290 ° C, under a nitrogen stream
  • the dispersion diameter of the thermoplastic carbon precursor in the thermoplastic resin was 0.1 to: L 0 m.
  • the resin mixture was kept at 300 ° C for 10 minutes, but no agglomeration of the thermoplastic carbon precursor was observed, and the dispersion diameter was 0.1 to 10 m.
  • the above resin mixture was sandwiched between quartz plates heated to 300 ° C using a heating shear flow observation device (CS-450A manufactured by Japan High-Tech Co., Ltd.) and subjected to 750 s- 1 shear for 1 minute.
  • the film was rapidly cooled to room temperature to form a film having a thickness of 6 Oim.
  • the thermoplastic carbon precursor contained in the film was observed using the above equipment, it was confirmed that fibers with a fiber diameter of 0.01 to 5 / im and a fiber length of 1 to 20 mm were generated.
  • 100 parts by weight of this film and 5 parts by weight of iodine were placed in a pressure-resistant glass container and kept at 100 ° C. for 10 hours to obtain a stabilized precursor film.
  • the temperature of the stable drier precursor film was gradually raised to 500 ° C. to remove high-density polyethylene. Then, the temperature was raised to 1,500 ° C in a nitrogen atmosphere and maintained for 30 minutes to carbonize AR-HP.
  • the fiber diameter of the obtained ultrafine carbon fiber was in the range of 0.01 m to 5 m, and almost no branched structure was observed.
  • thermoplastic resin 100 parts by weight of high-density polyethylene (Sumitomo Chemical Co., Ltd.) as a thermoplastic resin and mesophase pitch AR—HP (Mitsubishi Gas Chemical Co., Ltd.) as a thermoplastic carbon precursor 11.
  • the dispersion diameter of the thermoplastic carbon precursor in the thermoplastic resin was 0.1 to 10 m. Further, the resin mixture was kept at 300 ° C for 10 minutes, but no aggregation of the thermoplastic carbon precursor was observed, and the dispersion diameter was 0.1 to 10 xm.
  • the melt viscosity of the thermoplastic resin at 300 ° C and a shear rate of 1,000 s- 1 was 10 times that of the mesophase pitch AR-HP.
  • the above resin mixture was spun from a spinneret at 300 ° C to prepare a precursor fiber (composite fiber).
  • the fiber diameter of this composite fiber was 20 xm, and the dispersion diameter of AR-HP in the cross section was all less than 10 m.
  • 100 parts by weight of this composite fiber and 5 parts by weight of iodine were placed in a pressure-resistant glass container and kept at 100 ° C. for 10 hours to obtain a stabilized precursor fiber.
  • the temperature of the stabilized precursor fiber was gradually raised to 500 ° C to remove high-density polyethylene.
  • the fiber diameter of the obtained ultrafine carbon fiber was in the range of 0.01 zm to 5 m, and almost no branched structure was observed.
  • the strength and elastic modulus of the ultrafine carbon fiber having a fiber diameter of I / m were measured, the tensile strength was 2,500 MPa and the tensile elastic modulus was 300 GPa.
  • the fiber diameter of the precursor fiber was 20 m, and the dispersion diameter of A R—HP in the cross section was all less than 10 / m.
  • the temperature of the stabilized precursor fiber is gradually raised to 500 ° C to remove the high-density polyethylene. I left. Then, the temperature was raised to 1,500 ° C in a nitrogen atmosphere and maintained for 30 minutes to carbonize AR-HP.
  • the fiber diameter of the obtained ultrafine carbon fiber was in the range of 0.01 / zm to 5 m, and the carbon fiber intended for the present invention could be obtained.
  • the strength and elastic modulus of the ultrafine carbon fiber with a fiber diameter of 1 m were measured. Table 1 shows the results.
  • Comparative Example 1 100 parts by weight of a phenolic resin was used as a thermoplastic carbon precursor, and 100 parts by weight of a high-density polyethylene were melt-kneaded with a twin-screw extruder and fed in a molten state by a gear pump to spin a spinneret. Spinning was performed to obtain a precursor fiber. The obtained precursor fiber was immersed in a hydrochloric acid-formaldehyde aqueous solution (hydrochloric acid 18 wt%, formaldehyde 10 wt%) to obtain a stabilized precursor fiber. Next, carbonization was performed in a nitrogen stream at 600 ° C for 10 minutes, and the polyethylene was removed to obtain phenolic ultrafine carbon fibers. The strength and elastic modulus of the ultrafine carbon fiber having a fiber diameter of 1 m were measured. Table 1 shows the results. Comparative Example 2
  • AR-HP alone was spun in the same manner as in the spinning method for obtaining the precursor fiber in Example 6, to obtain a fiber comprising only AR-HP.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Inorganic Fibers (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Inert Electrodes (AREA)

Abstract

A resin composition comprising 100 parts by weight of a thermoplastic resin, 1 to 150 parts by weight of a carbon- precursor organic compound (A), and 0.001 to 40 parts by weight of a copolymer constituted of polymeric segments (e1) and (e2) which have surface tensions against the thermoplastic resin and the organic compound (A) within specific ranges: and a process for the production of carbon fiber, characterized by producing a molding of a precursor fiber (B) from the composition, stabilizing the carbon-precursor organic compound (A) contained in the precursor fiber (B) to form a stabilized precursor fiber (C), removing the thermoplastic resin contained in the stabilized precursor fiber (C) to form a fibrous carbon precursor (D) free from the thermoplastic resin, and then subjecting the fibrous carbon precursor (D) to carbonization or graphitization.

Description

明 細 書 炭素繊維およびマツ卜の製造のための方法と組成物 技術分野  Description Method and composition for the production of carbon fibers and mats
本発明は炭素繊維およびマツトの製造のための方法と組成物に関する。 さらに 詳しくは、 繊維径が非常に小さい例えば 0. 001〜 5 mの炭素繊維およびマ ットの製造方法およびその製造に用いられる組成物に関する。 背景技術  The present invention relates to methods and compositions for the production of carbon fibers and mats. More specifically, the present invention relates to a method for producing a carbon fiber having a very small fiber diameter, for example, 0.001 to 5 m, and a mat, and a composition used for the production. Background art
炭素繊維は高強度、 高弾性率、 高導電性、 軽量等の優れた特性を有しているこ とから、 高性能複合材料のフイラ一として使用されている。 その用途としては従 来からの機械的強度向上を目的とした補強用フィラーに留まらず、 炭素材料に備 わった高導電性を生かし電磁波シールド材、 静電防止材用の導電性樹脂フィラー として、 あるいは樹脂への静電塗料のためのフィラーとしての用途が期待されて きている。 また炭素材料としての化学的安定性、 熱的安定性と微細構造との特徴 を生かし、 フラットディスプレー等の電界電子放出材料としての用途が期待され ている。  Carbon fiber is used as a filler for high-performance composite materials because of its excellent properties such as high strength, high elastic modulus, high conductivity, and light weight. Its applications are not limited to reinforcing fillers for the purpose of improving mechanical strength, but also as conductive resin fillers for electromagnetic wave shielding materials and antistatic materials, taking advantage of the high conductivity provided by carbon materials. Alternatively, it is expected to be used as a filler for electrostatic coatings on resins. It is also expected to be used as a field electron emission material such as a flat display, taking advantage of the characteristics of chemical stability, thermal stability and microstructure as a carbon material.
従来、 炭素繊維はポリアクリロニトリル、 ピッチ、 セルロース等の繊維状の炭 素前駆物質を 1, 00 o°c以上の温度で熱処理して炭化することにより製造され ている。 この方法により形成された炭素繊維は一般に繊維径 5〜 20 xmの連続 した繊維であり、それ以上繊維径の小さい炭素繊維の製造は実質上不可能である。 また 1980年後半より気相法での炭素繊維 (Vapo r Gr own C a r bon F i be r ;以下 V GCFと略す) の研究がなされ、 現在工業的に製 造されるに至っている。 具体的な製造法として、 特開昭 60— 27700号公報 には、 ベンゼン等の有機化合物を原料とし、 触媒としてフエ口セン等の有機遷移 金属化合物をキヤリァーガスとともに高温の反応炉に導入し、 基盤上に生成させ る方法、 特開昭 60— 54998号公報には浮遊状態で V GCFを生成させる方 法そして特許第 2 7 7 8 4 3 4号公報には反応炉壁に成長させる方法が開示され ている。 V G C Fは繊維径が細く連続していないことから従来の炭素繊維とは物 理的に異なっており、 数百 nmの繊維径、 数十; mの繊維長を有する。 極細炭素 繊維はより高い熱伝導性や電気伝導性を有しており腐蝕を受けにくいことから従 来からの炭素繊維とは機能的にも異なっており、 広範囲な用途において大きな将 来性を期待されている。 Conventionally, carbon fibers have been produced by heat-treating a fibrous carbon precursor such as polyacrylonitrile, pitch, or cellulose at a temperature of 100 ° C. or more to carbonize. The carbon fiber formed by this method is generally a continuous fiber having a fiber diameter of 5 to 20 xm, and it is practically impossible to produce a carbon fiber having a smaller fiber diameter. In the latter half of 1980, research on carbon fiber (Vapor Carbon Fiber; hereinafter abbreviated as VGCF) by the vapor phase method was carried out, and it has now been manufactured industrially. As a specific manufacturing method, JP-A-60-27700 discloses that an organic compound such as benzene is used as a raw material, and an organic transition metal compound such as fuecopene is introduced into a high-temperature reactor together with a carrier gas as a catalyst. Japanese Patent Application Laid-Open No. 60-54998 discloses a method of generating VGCF in a floating state. The method and Patent No. 277784334 disclose a method of growing on a reactor wall. VGCF is physically different from conventional carbon fibers because the fiber diameter is small and not continuous, and has a fiber diameter of several hundred nm and a fiber length of several tens of meters. Ultrafine carbon fibers have higher thermal and electrical conductivity and are less susceptible to corrosion, so they are functionally different from conventional carbon fibers, and are expected to have great future potential in a wide range of applications. Have been.
また、 特開 2 0 0 1 - 7 3 2 2 6号公報には、 フエノール樹 J5旨とポリエチレン の複合繊維から極細炭素繊維を製造する方法が記載されている。 該方法では気相 法と比べ比較的安価に極細炭素繊維を 造できる可能性があるものの、 フエノー ル樹脂は湿式でかつ長時間の安定ィ匕が必要であり、 また配向を形成しにくく、 且 つ難黒鉛化性化合物であるため得られる極細炭素繊維の強度、 弾性率の発現は期 待できない等の問題点があった。 発明の開示  Also, Japanese Patent Application Laid-Open No. 2001-73226 describes a method for producing ultrafine carbon fibers from a composite fiber of phenol tree J5 and polyethylene. Although there is a possibility that ultrafine carbon fibers can be produced relatively inexpensively in comparison with the gas phase method, the phenol resin needs to be wet and requires a long period of time, and it is difficult to form an orientation. However, since it is a non-graphitizable compound, the strength and elastic modulus of the obtained ultrafine carbon fiber cannot be expected. Disclosure of the invention
本発明の目的は炭素繊維の製造法を提供することにある。  An object of the present invention is to provide a method for producing carbon fibers.
本発明の他の目的は、 極細炭素繊維例えば繊維径 0 . 0 0 1〜 5 mの極細炭 素繊維を効率的に且つ安価に製造する方法を提供することにある。  Another object of the present invention is to provide a method for efficiently and inexpensively producing ultrafine carbon fibers, for example, ultrafine carbon fibers having a fiber diameter of 0.001 to 5 m.
本発明のさらに他の目的は、 分岐構造が少なく且つ高強度で高弾性率の炭素繊 維を効率的に且つ安価に製造する方法を提供することにある。  Still another object of the present invention is to provide a method for efficiently and inexpensively producing a carbon fiber having a small number of branching structures, high strength and high elastic modulus.
本発明のさらに他の目的は、 上記の如き炭素繊維からなる炭素繊維マット特に 極細炭素繊維からなるマツトを効率的に且つ安価に製造する方法を提供すること にある。  Still another object of the present invention is to provide a method for efficiently and inexpensively producing a carbon fiber mat made of the above-mentioned carbon fibers, particularly a mat made of ultrafine carbon fibers.
本発明のさらに他の目的は、 本発明の上記製造法に好適に用いられる炭素繊維 製造用組成物を提供することにある。  Still another object of the present invention is to provide a composition for producing carbon fiber which is suitably used in the production method of the present invention.
本発明のさらに他の目的は、 本発明の製造法により得られた炭素繊維の特に好 適な用途を提供することにある。  Still another object of the present invention is to provide a particularly preferable use of the carbon fiber obtained by the production method of the present invention.
本発明のさらに他の目的および利点は、 以下の説明から明らかになろう。 本発明によれば、 本発明の上記目的および利点は、 第 1に、 ( 1 ) 熱可塑性樹脂 1 0 0重量部並びにピッチ、 ポリアクリロニトリル、 ポリ力 ルポジイミド、 ポリイミド、 ポリべンゾァゾールおよびァラミドよりなる群から 選ばれる少なくとも 1種の熱可塑性炭素前駆体 1〜1 5 0重量部からなる混合物 を紡糸もしくは製膜して前駆体繊維もしくはフィルムを形成し、 Still other objects and advantages of the present invention will become apparent from the following description. According to the present invention, the above objects and advantages of the present invention are: (1) 100 parts by weight of thermoplastic resin and at least one kind of thermoplastic carbon precursor selected from the group consisting of pitch, polyacrylonitrile, polyacrylamide, polyimide, polybenzoazole and aramide 1 to 150 parts by weight Forming a precursor fiber or film by spinning or forming a mixture of
( 2 ) 前駆体繊維もしくはフィルムを安定化処理に付して該前駆体繊維もしくは フィルム中の熱可塑性炭素前駆体を安定化して安定化前駆体繊維もしくはフィル ムを形成し、  (2) subjecting the precursor fiber or film to a stabilization treatment to stabilize the thermoplastic carbon precursor in the precursor fiber or film to form a stabilized precursor fiber or film;
( 3 ) 安定化前駆体繊維もしくはフィルムから熱可塑性樹脂を除去して繊維状炭 素前駆体を形成し、 そして . ( 4 ) 繊維状炭素前駆体を炭素化もしくは黒鉛化して炭素繊維を形成する、 ことを特徴とする炭素繊維の製造法によって達成される。  (3) removing the thermoplastic resin from the stabilized precursor fiber or film to form a fibrous carbon precursor; and (4) carbonizing or graphitizing the fibrous carbon precursor to form carbon fibers. This is achieved by a carbon fiber manufacturing method characterized by the following.
本発明によれば、 本発明の上記目的および利点は、 第 2に、  According to the present invention, the above objects and advantages of the present invention are:
( 1 ) 熱可塑性樹脂 1 0 0重量部並びにピッチ、 ポリアクリロニトリル、 ポリ力 ルポジイミド、 ポリイミド、 ポリベンゾァゾ一ルおよびァラミドよりなる群から 選ばれる少なくとも 1種の熱可塑性炭素前駆体 1〜1 5 0重量部からなる混合物 を溶融押出しにより製膜して前駆体フィルムを形成し、  (1) 100 parts by weight of a thermoplastic resin and at least one kind of thermoplastic carbon precursor selected from the group consisting of pitch, polyacrylonitrile, polypropylimide, polyimide, polybenzazole and aramide 1 to 150 parts by weight Forming a precursor film by melt-extruding a mixture comprising
( 2 ) 前駆体フィルムを安定化処理に付して該前駆体フィルム中の熱可塑性炭素 前駆体を安定化して安定化前駆体フィルムを形成し、  (2) subjecting the precursor film to a stabilization treatment to stabilize the thermoplastic carbon precursor in the precursor film to form a stabilized precursor film,
( 3 ) 安定化前駆体フィルムを複数枚重ね合せて安定化前駆体重畳フィルムを形 成し、  (3) A plurality of the stabilized precursor films are laminated to form a stabilized precursor superimposed film,
( ) 安定化前駆体重畳フィルムから熱可塑性樹脂を除去して繊維状炭素前駆体 マットを形成し、 そして  () Removing the thermoplastic resin from the stabilized precursor superimposed film to form a fibrous carbon precursor mat; and
( 5 ) 繊維状炭素前駆体マツトを炭素化もしくは黒鉛化して炭素繊維マツトを形 成する、  (5) The carbon fiber mat is formed by carbonizing or graphitizing the fibrous carbon precursor mat.
ことを特徴とする炭素繊維マツトの製造法によって達成される。  This is achieved by a method for producing a carbon fiber mat.
本発明によれば、 本発明の上記目的および利点は、 第 3に、 熱可塑性樹 S旨 1 0 0重量部並びにピッチ、 アクリロニトリル、 ポリカルポジイミド、 ポリイミド、 ポリベンゾァゾ一ルおよびァラミドよりなる群から選ばれる少なくとも 1種の熱 可塑性炭素前駆体:!〜 150重量部からなる繊維状炭素製造用組成物によって達 成される。 According to the present invention, the above object and advantages of the present invention are, thirdly, 100 parts by weight of thermoplastic resin and pitch, acrylonitrile, polycarboimide, polyimide, polybenzoazole, and aramide. At least one type of heat Plastic carbon precursor :! It is achieved by a composition for producing fibrous carbon comprising up to 150 parts by weight.
本発明によれば、 本発明の上記目的および利点は、 第 4に、 本発明の製造法に より得られた炭素繊維の電池用電極へあるいは樹脂と配合して使用するためへの 使用が提供される。 図面の簡単な説明  According to the present invention, fourthly, the above objects and advantages of the present invention are provided by the use of the carbon fiber obtained by the production method of the present invention for use in a battery electrode or in combination with a resin. Is done. BRIEF DESCRIPTION OF THE FIGURES
図 1は実施例 1の樹脂組成物 一 Al 100) の SE ,Μ写真である (10, 000倍)。  FIG. 1 is an SE (Μ) photograph of the resin composition of Example 1 (Al 100) (× 10,000).
図 2は実施例 1の樹脂組成物 — A 1100) のピッ チ分散粒子径の分布である。  FIG. 2 shows the distribution of the pitch-dispersed particle diameter of the resin composition of Example 1—A1100).
図 3は Ρ Εとピッチの溶融粘度のせん断速度依存性を表す。 発明の好ましい実施形態  Figure 3 shows the shear rate dependence of the melt viscosity of ピ ッ チ Ρ and pitch. Preferred embodiments of the invention
以下、 本発明の好ましい実施形態について説明する。 まず、 炭素繊維の製造法 について説明する。  Hereinafter, preferred embodiments of the present invention will be described. First, the method for producing carbon fiber will be described.
工程 (1) において、 熱可塑性樹脂 100重量部と熱可塑性炭素前駆体 1〜1 50重量部からなる混合物を紡糸もしくは製膜して前駆体繊維もしくはフィルム を形成する。  In step (1), a precursor fiber or film is formed by spinning or forming a mixture comprising 100 parts by weight of a thermoplastic resin and 1 to 150 parts by weight of a thermoplastic carbon precursor.
熱可塑性樹脂としては、 工程 (2) で製造される安定化前駆体繊維もしくはフ イルムから工程 (3) で容易に除去されうるという点から、 TG A測定による空 気下 500 での重量減少率が 90 %以上、 空気下 1, 000 °Cでの重量減少率 が 97%以上である熱可塑性樹脂が好ましく使用される。 また、 熱可塑性樹脂は 熱可塑性炭素前駆体と容易に溶融混練および溶融紡糸できるという点から、 結晶 性であるときにはその結晶融点が 100°C以上 400°C以下であり、 非晶性であ るときにはそのガラス転移温度が 100°C以上 250°C以下であるのが好ましい。 結晶性樹脂の結晶融点が 400°Cを超える場合、溶融混練を 400°C以上で実 施する必要があり、樹脂の分解を引惹し易く好ましくない。また、 非晶性樹脂のガ ラス転移温度が 250°Cを超える場合、溶融混練時の樹脂の粘度が非常に高いた めにハンドリングが困難となり好ましくない。また、別の観点から、熱可塑性樹脂 は、 酸素、 ハロゲンガス等のガス透過性が高いことが好ましい。 このため、 本発 明に用いられる熱可塑性樹脂は、 好ましくは陽電子消滅法で評価した 20°Cにお ける自由体積の直径が 0. 50 nm以上である。 陽電子消滅法で評価した 20°C における自由体積の直径が 0. 50nm未満であると、 酸素、 ハロゲンガス等の ガス透過性が低下し、 前駆体繊維もしくはフィルムに含まれる炭素前駆体を安定 化処理し安定化前駆体繊維もしくはフィルムを製造する工程 (2) における時間 が非常に長くなり、 生産効率を著しく低下させるため好ましくない。 陽電子消滅 法で評価した 20°Cにおける自由体積直径のより好ましい範囲は 0. 52nm以 上、 さらには 0. 55 nm以上である。 自由体積の直径の上限は特に限定されな いが、 大きいほど好ましい。 自由体積の直径は、 範囲で表すと、 好ましくは 0. 5〜1 nm、 より好ましくは 0. 5〜2nmである。 The thermoplastic resin can be easily removed in step (3) from the stabilized precursor fiber or film produced in step (2). A thermoplastic resin having a weight loss of at least 90% and a weight loss at air temperature of 1,000 ° C of 97% or more is preferably used. Also, since the thermoplastic resin can be easily melt-kneaded and melt-spun with the thermoplastic carbon precursor, when it is crystalline, its crystalline melting point is 100 ° C or more and 400 ° C or less, and it is amorphous. Sometimes the glass transition temperature is preferably from 100 ° C to 250 ° C. When the crystalline melting point of the crystalline resin exceeds 400 ° C., it is necessary to perform the melt kneading at 400 ° C. or higher, which is not preferable because the resin is easily decomposed. In addition, the amorphous resin gas If the lath transition temperature exceeds 250 ° C, handling becomes difficult because the viscosity of the resin during melt-kneading is extremely high, which is not preferable. Further, from another viewpoint, it is preferable that the thermoplastic resin has high gas permeability such as oxygen and halogen gas. For this reason, the thermoplastic resin used in the present invention preferably has a free volume diameter of 0.50 nm or more at 20 ° C evaluated by the positron annihilation method. If the free volume diameter at 20 ° C evaluated by the positron annihilation method is less than 0.50 nm, the gas permeability of oxygen, halogen gas, etc. will decrease, stabilizing the carbon precursor contained in the precursor fiber or film. The time in the step (2) of processing to produce a stabilized precursor fiber or film is extremely long, which is not preferable because the production efficiency is significantly reduced. A more preferable range of the free volume diameter at 20 ° C evaluated by the positron annihilation method is 0.52 nm or more, and more preferably 0.55 nm or more. The upper limit of the diameter of the free volume is not particularly limited, but is preferably as large as possible. The diameter of the free volume, when expressed in a range, is preferably from 0.5 to 1 nm, more preferably from 0.5 to 2 nm.
また、 熱可塑性樹脂は、 熱可塑性炭素前駆体との表面張力差が 15 mNZm以 内であることが好ましい。 工程 (1) における混合物は熱可塑性樹脂と炭素前駆 体とのブレンドにより形成される。 このため、 炭素前駆体との表面張力差が 15 mNZmより大きいと、 熱可塑性樹脂中における炭素前駆体の分散性が低下する だけでなく、 非常に凝集しやすいといった問題を生じ易くなる。 熱可塑性樹脂と 炭素前駆体との表面張力差は、 さらに好ましくは 1 OmN/m以内、 特に好まし くは 5mNZm以内である。  The thermoplastic resin preferably has a surface tension difference with the thermoplastic carbon precursor of 15 mNZm or less. The mixture in step (1) is formed by blending a thermoplastic resin with a carbon precursor. Therefore, if the surface tension difference with the carbon precursor is larger than 15 mNZm, not only the dispersibility of the carbon precursor in the thermoplastic resin is reduced, but also the problem that the carbon precursor is very easily aggregated is easily caused. The difference in surface tension between the thermoplastic resin and the carbon precursor is more preferably within 1 OmN / m, and particularly preferably within 5 mNZm.
上記のような特徴を有する具体的な熱可塑性樹脂としては、例えば下記式( I ):  Specific examples of the thermoplastic resin having the above characteristics include, for example, the following formula (I):
Figure imgf000007_0001
ここで、 R R2、 R3および R4は、 互に独立に、 水素原子、 炭素数 1〜15の アルキル基、 炭素数 5~10のシクロアルキル基、 炭素数 6〜12のァリール基 または炭素数 7〜1 2のァラルキル基であり、 nは 2 0以上、 好ましくは 2 0〜 1 0 0 , 0 0 0の数である、
Figure imgf000007_0001
Here, RR 2 , R 3 and R 4 are each independently a hydrogen atom, an alkyl group having 1 to 15 carbon atoms, a cycloalkyl group having 5 to 10 carbon atoms, and an aryl group having 6 to 12 carbon atoms. Or an aralkyl group having 7 to 12 carbon atoms, and n is a number of 20 or more, preferably 20 to 100,000.
で表されるポリマーが挙げられる。 The polymer represented by these is mentioned.
上記式 (I ) で表される熱可塑性樹脂としては、 例えばポリエチレン、 ァモル ファスポリオレフイン、 4—メチルペンテン一 1のホモポリマ一、 4ーメチルぺ ンテン一 1と他のォレフィンとのコポリマー、 例えばポリ一 4ーメチルペンテン - 1にビニル系モノマーが共重合したポリマ一などを挙げることができる。また、 ポリエチレンとしては、 高圧法低密度ポリエチレン、 中密度ポリエチレン、 高密 度ポリェチレン、 直鎖状低密度ポリェチレンなどのェチレンの単独重合体または エチレンと α—ォレフインとの共重合体;エチレン ·酢酸ビニル共重合体などの エチレンと他のビニル系単量体との共重合体等が挙げられる。 エチレンと共重合 される α—ォレフインとしては、 例えば、 プロピレン、 1ーブテン、 1一へキセ ン、 1ーォクテンなどが挙げられる。 他のビニル系単量体としては、 例えば、 酢 酸ビエルの如きビニルエステル;(メタ)アクリル酸、 (メタ)アクリル酸メチル、 (メタ) アクリル酸ェチル、 (メタ) アクリル酸 η—ブチルの如き (メタ) ァクリ ル酸およびそのアルキルエステルなどが挙げられる。  Examples of the thermoplastic resin represented by the above formula (I) include polyethylene, amorphous polyolefin, a homopolymer of 4-methylpentene-11, and a copolymer of 4-methylpentene-11 with other olefins, for example, poly-4 And a polymer in which a vinyl monomer is copolymerized with 1-methylpentene-1. Examples of polyethylene include high-pressure low-density polyethylene, medium-density polyethylene, high-density polyethylene, linear low-density polyethylene, and other homopolymers of ethylene or copolymers of ethylene and α-olefin; ethylene-vinyl acetate copolymer. Copolymers of ethylene and other vinyl monomers such as polymers are exemplified. Examples of the α-olefin copolymerized with ethylene include propylene, 1-butene, 11-hexene, and 1-octene. Other vinyl monomers include, for example, vinyl esters such as biel acetate; (meth) acrylic acid, methyl (meth) acrylate, ethyl (meth) acrylate, and η-butyl (meth) acrylate. (Meth) acrylic acid and its alkyl esters.
本発明に用いられる熱可塑性炭素前駆体は、 ピッチ、 ポリアクリロニトリル、 ポリカルポジイミド、ボリイミド、ポリベンゾァゾール、およびァラミドである。 これらは 1 , 0 0 o °c以上の高温化で炭素化、 黒鉛化されやすい。 これらの中で ピッチ、 ポリアクリロニトリル、 ポリ力ルポジィミドが好ましく、 ピッチがさら に好ましい。 またピッチの中でも一般的に高強度、 高弾性率の期待されるメソフ ェ一ズピッチが好ましい。  The thermoplastic carbon precursor used in the present invention is pitch, polyacrylonitrile, polycarboimide, polyimide, polybenzoazole, and aramide. These are susceptible to carbonization and graphitization at temperatures above 1000 ° C. Among these, pitch, polyacrylonitrile, and polyacrylamide are preferable, and pitch is more preferable. In addition, among pitches, a mesophase pitch which is generally expected to have high strength and high elastic modulus is preferable.
ピッチとは石炭や石油の蒸留残渣もしくは原料として得られる縮合多環芳香族 炭化水素の混合物であり、 通常無定形で光学的に等方性を示す (これを一般的に 等方性ピッチという)。また一定の性状の等方性ピッチを不活性ガス雰囲気下で 3 5 0〜5 0 0 °Cに加熱すると、 様々な経路を通って最終的には光学的に異方性を 示す、 ネマチック相のピッチ液晶を含むメソフエ一ズピッチに転換されうる。 ま たメソフェーズピッチはベンゼン、 ナフ夕レン等の芳香族炭化水素を原料として 製造することができる。 メソフェーズピッチはその特性より異方性ピッチもしく は液晶ピッチと呼ばれることもある。 メソフェーズピッチとしては、 安定化や炭 素化もしくは黒鉛ィ匕のしやすさから、 ナフタレン等の芳香族炭化水素を原料とし たメソフェーズピッチが好ましい。 上記熱可塑性炭素前駆体は、 単独であるいは 2種以上一緒に用いることができる。 Pitch is a mixture of condensed polycyclic aromatic hydrocarbons obtained as a coal or petroleum distillation residue or raw material, and is usually amorphous and optically isotropic (this is generally called isotropic pitch). . When an isotropic pitch having a certain property is heated to 350 to 500 ° C. in an inert gas atmosphere, it passes through various routes and finally exhibits an optically anisotropic nematic phase. Can be converted to a mesophase pitch including a pitch liquid crystal. Mesophase pitch is made from aromatic hydrocarbons such as benzene and naphthylene. Can be manufactured. The mesophase pitch is sometimes called anisotropic pitch or liquid crystal pitch due to its characteristics. As the mesophase pitch, a mesophase pitch using an aromatic hydrocarbon such as naphthalene as a raw material is preferable from the viewpoint of stabilization, carbonization, or ease of graphitization. The above thermoplastic carbon precursors can be used alone or in combination of two or more.
熱可塑性炭素前駆体は、 熱可塑性樹脂 1 0 0重量部に対し 1〜1 5 0重量部、 好ましくは 5〜1 0 0重量部で使用される。 炭素前駆体の使用量が 1 5 0重量部 以上であると所望の分散径を有する前駆体繊維もしくはフィルムが得られず、 1 重量部以下であると目的とする極細炭素繊維を安価に製 することができない等 の問題が生じるため好ましくない。  The thermoplastic carbon precursor is used in an amount of 1 to 150 parts by weight, preferably 5 to 100 parts by weight, based on 100 parts by weight of the thermoplastic resin. If the amount of the carbon precursor is more than 150 parts by weight, a precursor fiber or a film having a desired dispersion diameter cannot be obtained, and if the amount is less than 1 part by weight, the intended ultrafine carbon fiber is produced at low cost. It is not preferable because problems such as inability to do so occur.
熱可塑性樹脂と炭素前駆体有機化合物 (A)の混合物を製造する方法としては、 溶融状態における混練が好ましい。 特に、 溶融混練時の熱可塑性樹脂の溶融粘度 ( 77 M) と熱可塑性炭素前駆体の溶融粘度 (7 Α) の比 (7 Μ/ ? Α) が 0 . 5〜5 0の範囲で溶融混練することが好ましい。 ( η Α) の値が 0 . 5未満であつ ても、 5 0より大きくても、 熱可塑性棚旨中における熱可塑性炭素前駆体の分散 性は良好とならず好ましくない。 (7? ΜΖ τ7 Α) 値のより好ましい範囲は 0 . 7〜 5である。 熱可塑性樹脂と熱可塑性炭素前駆体の溶融混練には公知の混練装置、 例えば一軸押出機、 二軸押出機、 ミキシングロール、 バンバリ一ミキサー等を用 いることができる。 これらの中で熱可塑性炭素前駆体を熱可塑性觀旨に良好にミ クロ分散させるという目的から、 同方向二軸押出機が好ましく使用される。 溶融 混練温度は、 例えば 1 0 0 ° (:〜 4 0 0 °Cである。 溶融混練温度が 1 0 0 °C未満の 場合、 熱可塑性炭素前駆体が溶融状態にならず、 熱可塑性樹脂へのミクロ分散が 困難であるため好ましくない。 一方、 4 0 0 °Cを超える場合、 熱可塑性樹脂と熱 可塑性炭素前駆体の分解が進行するためいずれも好ましくない。 溶融混練温度の より好ましい範囲は 1 5 0で〜 3 5 0 °Cである。 また、 溶融混練の時間としては 0 . 5〜 2 0分、 好ましくは 1〜 1 5分である。 溶融混練の時間が 0 . 5分未満 の場合、熱可塑性炭素前駆体のミク口分散が困難であるため好ましくない。一方、 2 0分を超える場合、 極細炭素繊維の生産性が著しく低下し好ましくない。 熱可 塑性樹脂と熱可塑性炭素前駆体との溶融混練は、 酸素ガス含有量 10%未満の雰 囲気下で行うことが好ましい。 本発明で使用される熱可塑性炭素前駆体は酸素と 反応することで溶融混練時に変性不融化してしまい、 熱可塑性樹脂中へのミクロ 分散を阻害することがある。 このため、 不活性ガスを流通させながら溶融混練を 行い、 できるだけ酸素ガス含有量を低下させることが好ましい。 より好ましい溶 融混練時の酸素ガス含有量は 5 %未満、 さらには 1 %未満である。 As a method for producing a mixture of the thermoplastic resin and the carbon precursor organic compound (A), kneading in a molten state is preferred. In particular, melt-kneaded in a range ratio (7 Μ /? Α) is 0.5 to 5 0 in the melt viscosity of the melt viscosity (77 M) and the thermoplastic carbon precursor in the thermoplastic resin at the time of melt kneading (7 Alpha) Is preferred. If the value of ( ηΑ ) is less than 0.5 or greater than 50, the dispersibility of the thermoplastic carbon precursor in the thermoplastic shelf will not be good, which is not preferable. The more preferable range of (7? Μ Ζ τ7 Α) value is from 0.7 to 5. A known kneading apparatus such as a single-screw extruder, a twin-screw extruder, a mixing roll, and a Banbury mixer can be used for melt-kneading the thermoplastic resin and the thermoplastic carbon precursor. Among them, a coaxial twin-screw extruder is preferably used for the purpose of micro-dispersing the thermoplastic carbon precursor in a good manner in terms of thermoplasticity. The melt-kneading temperature is, for example, 100 ° C. (: up to 400 ° C.) When the melt-kneading temperature is lower than 100 ° C., the thermoplastic carbon precursor does not go into a molten state, but is converted into a thermoplastic resin. On the other hand, if the temperature exceeds 400 ° C., it is not preferable because the decomposition of the thermoplastic resin and the thermoplastic carbon precursor proceeds, and both are not preferable. 150 to 350 ° C. The melt-kneading time is 0.5 to 20 minutes, preferably 1 to 15 minutes.The melt-kneading time is less than 0.5 minute. In such a case, it is not preferable because dispersion of the thermoplastic carbon precursor in the micro-mouth is difficult, while if it exceeds 20 minutes, the productivity of the ultrafine carbon fiber is remarkably reduced. The melt-kneading of the plastic resin and the thermoplastic carbon precursor is preferably performed in an atmosphere having an oxygen gas content of less than 10%. The thermoplastic carbon precursor used in the present invention reacts with oxygen to be denatured and infused during melt-kneading, which may hinder micro-dispersion in the thermoplastic resin. For this reason, it is preferable to carry out melt-kneading while flowing an inert gas to reduce the oxygen gas content as much as possible. More preferably, the oxygen gas content at the time of melt-kneading is less than 5%, more preferably less than 1%.
熱可塑性樹脂と熱可塑性炭素前駆体との上記混合物は、 該熱可塑性樹脂と熱可 塑性炭素前駆体との相溶化剤を含有することができる。 相溶化剤は好ましくは上 記溶融混練時に加えられる。 '  The mixture of the thermoplastic resin and the thermoplastic carbon precursor can contain a compatibilizer between the thermoplastic resin and the thermoplastic carbon precursor. The compatibilizer is preferably added during the above-mentioned melt-kneading. '
かかる相溶化剤としては、 例えば下記式 (1): 重合体セグメント (e l) の表面張力  Examples of such a compatibilizer include the following formula (1): Surface tension of polymer segment (el)
0. 7く <1. 3  0.7 k <1.3
熱可塑性炭素前駆体の表面張力  Surface tension of thermoplastic carbon precursor
(1)  (1)
を満足する重合体セグメント (e l) と下記式 (2) 重合体セグメント (e 2) の表面張力 Surface tension of the polymer segment (e l) satisfying the following equation and the following formula (2):
0. 7く <1. 3  0.7 k <1.3
熱可塑性樹脂の表面張力  Surface tension of thermoplastic resin
(2)  (2)
を満足する重合体セグメント (e 2) の共重合体 (E) 並びに下記式 (3) およ び (4): ホモポリマー (F) の表面張力 The surface tension of the copolymer (E) of the polymer segment (e 2) and the following formulas (3) and (4):
0. 7く <1. 3  0.7 k <1.3
熱可塑性炭素前駆体の表面張力  Surface tension of thermoplastic carbon precursor
(3) ホモポリマー (F) の表面張力 (3) Surface tension of homopolymer (F)
0. 7< く 1. 3 0.7 <1.3
熱可塑性樹脂の表面張力  Surface tension of thermoplastic resin
... (4) ... (4)
を満足するホモポリマ一 (F) よりなる群から選ばれるポリマーが好ましく用い られる。 Polymers selected from the group consisting of homopolymers (F) satisfying the following are preferably used.
上記相溶ィ匕剤を用いると、 熱可塑性樹脂中における熱可塑性炭素前駆体の分散 粒子径が小さくなりかつ粒子径分布も狭くなるため、 最終的に得られる炭素繊維 は従来よりも極細となり繊維径分布も狭くなる。 '  The use of the above-mentioned compatibilizer makes it possible to reduce the dispersion particle size and the particle size distribution of the thermoplastic carbon precursor in the thermoplastic resin, so that the finally obtained carbon fiber becomes extremely finer than before and the fiber The diameter distribution also narrows. '
また、 そのため熱可塑性樹脂に対する炭素前駆体の含有量を次第に増やしてい つても、 両者がすぐに接触、 融着してしまうことを避けることができる。  In addition, even when the content of the carbon precursor in the thermoplastic resin is gradually increased, it is possible to prevent the two from immediately contacting and fusing.
上記共重合体 (E) についての上記式 (1) は重合体セグメント (e l) の表 面張力に対する熱可塑性炭素前駆体の表面張力の比を表している。 つまり、 重合 体セグメント (e l) と炭素前駆体の界面エネルギーのパラメータ一を示す。 こ の比が 0. 7より小さくても 1. 3より大きくても、 重合体セグメント (e l) と炭素前駆体の界面張力が高くなり 2相間の界面接着性は良好とならない。 重合 体セグメント (e l) の表面張力に対する炭素前駆体の表面張力の比のより好ま しい範囲は 0. 75〜1. 25、 さらには 0. 8〜1. 2である。 重合体セグメ ント (e l) は上記式 (1) 式を満たすものであれば特に限定されないが、 例え ばポリエチレン、 ポリプロピレン、 ポリスチレンの如きポリオレフイン系ホモポ リマーもしくはコポリマー、 ポリメタクリレ一ト、 ポリメチルメタクリレートの 如きポリアクリレート系ホモポリマ一もしくはコポリマー等が好ましく使用しう る。 また、 ァクリロニトリル一スチレンコボリマ一、 アクリロニトリルーブチレ ン一スチレンコポリマーのようなスチレンコポリマーを用いてもよい。 これらの うち、 スチレンのホモポリマーおよびコポリマーが好ましい。  The above equation (1) for the copolymer (E) represents the ratio of the surface tension of the thermoplastic carbon precursor to the surface tension of the polymer segment (e l). That is, it shows one parameter of the interfacial energy between the polymer segment (el) and the carbon precursor. If this ratio is smaller than 0.7 or larger than 1.3, the interfacial tension between the polymer segment (el) and the carbon precursor will be high, and the interfacial adhesion between the two phases will not be good. A more preferable range of the ratio of the surface tension of the carbon precursor to the surface tension of the polymer segment (el) is 0.75 to 1.25, and more preferably 0.8 to 1.2. The polymer segment (el) is not particularly limited as long as it satisfies the above formula (1). Examples thereof include polyolefin homopolymers or copolymers such as polyethylene, polypropylene, and polystyrene, polymethacrylates, and polymethyl methacrylate. Polyacrylate homopolymers or copolymers can be preferably used. Further, a styrene copolymer such as acrylonitrile-styrene-coborymer and acrylonitrile-butylene-styrene copolymer may be used. Of these, homopolymers and copolymers of styrene are preferred.
また、 共重合体 (E) についての上記式 (2) は重合体セグメント (e 2) の 表面張力に対する熱可塑性樹脂の表面張力の比を表している。 つまり、 重合体セ グメント (e 2) と熱可塑性樹脂の界面エネルギーのパラメ一夕一を示す。 この 比が 0. 7より小さくても 1. 3より大きくても、 重合体セグメント (e 2) と 熱可塑性樹脂の界面張力が高くなり 2相間の界面接着性は良好とならない。 重合 体セグメント (e 2) の表面張力に対する熱可塑性樹脂の表面張力の比のより好 ましい範囲は 0. 75〜1. 25、 さらには 0. 8〜1. 2である。 重合体セグ メント (e 2) は上記 (2) 式を満たすものであれば特に限定されないが、 例え ばポリエチレン、 ポリプロピレン、 ポリスチレンの如きポリオレフイン系ホモポ リマーまたはコポリマ一、 ポリメタクリレート、 ポリメチルメ夕クリレー卜の如 きポリアクリレート系ホモポリマーもしくはコポリマー等が好ましく使用しうる。 また、 アクリロニトリル一スチレンコポリマー、 アクリロニトリルーブチレン一 スチレンコポリマーのようなコポリマーを用いてもよい。 これらのうち、 ェチレ ンのホモポリマ一およびコポリマーが好ましい。 The above equation (2) for the copolymer (E) represents the ratio of the surface tension of the thermoplastic resin to the surface tension of the polymer segment (e 2). In other words, it shows the parameters of the interfacial energy between the polymer segment (e 2) and the thermoplastic resin. this If the ratio is less than 0.7 or greater than 1.3, the interfacial tension between the polymer segment (e 2) and the thermoplastic resin will increase, and the interfacial adhesion between the two phases will not be good. A more preferable range of the ratio of the surface tension of the thermoplastic resin to the surface tension of the polymer segment (e2) is 0.75 to 1.25, and more preferably 0.8 to 1.2. The polymer segment (e2) is not particularly limited as long as it satisfies the above formula (2). For example, polyolefin homopolymers or copolymers such as polyethylene, polypropylene and polystyrene, polymethacrylate, and polymethylmethacrylate Such polyacrylate homopolymers or copolymers can be preferably used. Further, a copolymer such as an acrylonitrile-styrene copolymer or an acrylonitrile-butylene-styrene copolymer may be used. Of these, homopolymers and copolymers of ethylene are preferred.
上記共重合体 (E) はグラフト共重合体またはブロック共重合体であることが できる。 重合体セグメント (e l) および (e 2) の共重合組成比は、 重合体セ グメント (e l) が 10〜90重量%、 重合体セグメント (e 2) が 90〜: L 0 重量%の範囲のものが好ましく使用される。 このような 2つの異なる重合体セグ メントの共重合体としては、 例えばポリエチレンとポリスチレンの共重合体、 ポ リプロピレンとポリスチレンの共重合体、 エチレンーグリシジルメ夕クリレート 共重合体とポリスチレンの共重合体、 エチレン一ェチルァクリレート共重合体と ポリスチレンの共重合体、 エチレン一酢酸ビニル共重合体とポリスチレンの共重 合体、 ポリエチレンとポリメチルメタクリレートとの共重合体、 エチレン一ダリ シジルメタクリレート共重合体とポリメチルメタクリレートの共重合体、 ェチレ ン一ェチルァクリレ一ト共重合体とポリメチルメタクリレートの共重合体、 ェチ レン—酢酸ビニル共重合体とポリメチルメタクリレートの共重合体、 ァクリロ二 トリルースチレン共重合体とポリエチレンの共重合体、 アクリロニトリルースチ レン共重合体とポリプロピレンとの共重合体、 アクリロニトリル一スチレン共重 合体とエチレン一ダリシジルメタクリレート共重合体との共重合体、 ァクリロニ トリル一スチレン共重合体とエチレンーェチルァクリレート共重合体との共重合 体、 ァクリロニトリルースチレン共重合体とエチレン一酢酸ビエル共重合体との 共重合体などを挙げることができる。 The above copolymer (E) can be a graft copolymer or a block copolymer. The copolymer composition ratio of the polymer segments (el) and (e2) is in the range of 10 to 90% by weight for the polymer segment (el) and 90 to 90% by weight for the polymer segment (e2). Those are preferably used. Such copolymers of two different polymer segments include, for example, a copolymer of polyethylene and polystyrene, a copolymer of polypropylene and polystyrene, and a copolymer of ethylene-glycidyl methacrylate copolymer and polystyrene. Copolymer, ethylene-ethyl acrylate copolymer and polystyrene copolymer, ethylene-vinyl acetate copolymer and polystyrene copolymer, polyethylene and polymethyl methacrylate copolymer, ethylene-daricidyl methacrylate copolymer Copolymer of polymer and polymethyl methacrylate, copolymer of ethylene-ethyl acrylate copolymer and polymethyl methacrylate, copolymer of ethylene-vinyl acetate copolymer and polymethyl methacrylate, acrylonitrile Copolymerization of Rustyrene Copolymer with Polyethylene Copolymer of acrylonitrile-styrene and polypropylene, copolymer of acrylonitrile-styrene copolymer and ethylene-daricidyl methacrylate copolymer, acrylonitrile-styrene copolymer and ethylene-ethyl acetate Copolymer with acrylate copolymer, copolymer of acrylonitrile styrene copolymer and ethylene monoacetate biel copolymer Copolymers and the like can be mentioned.
さらに、 上記ホモポリマー (F) についての上記式 (3) は、 上記式 (1) に おける重合体セグメント (e l) をホモポリマ一 (F) に置き換えて同様に理解 でき、 また上記式 (4) は上記式 (2) における重合体セグメント (e 2) をホ モポリマ一(F) に置き換えて同様に理解することができる。 ホモポリマー (F) としては、 例えばポリエチレン、 ポリプロピレン、 ポリスチレンの如きポリオレ フィン系ホモポリマーおよびポリメタクリレート、 ポリメチルメタクリレー卜の 如きポリアクリレ一ト系ホモポリマ一を挙げることができる。  Furthermore, the above formula (3) for the above homopolymer (F) can be similarly understood by replacing the polymer segment (el) in the above formula (1) with a homopolymer (F). Can be similarly understood by replacing the polymer segment (e 2) in the above formula (2) with a homopolymer (F). Examples of the homopolymer (F) include polyolefin homopolymers such as polyethylene, polypropylene, and polystyrene, and polyacrylate homopolymers such as polymethacrylate and polymethyl methacrylate.
上記の如き相溶化剤の使用量は、 熱可塑性樹脂 100重量部に対して、 好まし くは 0. 001〜40重量部、 より好ましくは 0. 001〜20重量部である。 工程 (1) において用いられる、 上記の如くして形成された混合物中では、 炭 素前駆体の熱可塑性樹脂中への分散径は、好ましくは 0.01〜50 mである。 混合物中で炭素前駆体は島相を形成し、球状あるいは楕円状となる。ここで言う、 分散径とは混合物中で炭素前駆体の球形の直径または楕円体の長軸径を意味する。 炭素前駆体の熱可塑性樹脂中への分散径が 0. 01〜 50 imの範囲を外れる と、 高性能複合材料用としての炭素繊維フィラ一を製造することが困難となり好 ましくない。 炭素前駆体の分散径のより好ましい範囲は 0. 01〜3 であ る。 また、 熱可塑性樹脂と炭素前駆体からなる混合物を、 300°Cで 3分保持し た後においても、 炭素前駆体の熱可塑性樹脂中への分散径は 0. 01〜50 m であるのが好ましい。 熱可塑性樹脂と炭素前駆体の溶融混練で得た混合物を、 溶 融状態で保持しておくと時間と共に炭素前駆体が凝集するようになる。 炭素前駆 体の凝集により、 分散径が 5 O/^mを超えると、 高性能複合材料用としての炭素 繊維フィラーを製造することが困難となるため好ましくない。 炭素前駆体の凝集 速度の程度は、 使用する熱可塑性樹脂と炭素前駆体の種類により変動するが、 よ り好ましくは 300°Cで 5分、 さらに好ましくは 300°Cで 10分以上 0. 01 〜50 mの分散径を維持していることが好ましい。  The amount of the compatibilizer as described above is preferably 0.001 to 40 parts by weight, more preferably 0.001 to 20 parts by weight, based on 100 parts by weight of the thermoplastic resin. In the mixture formed as described above used in the step (1), the dispersion diameter of the carbon precursor in the thermoplastic resin is preferably 0.01 to 50 m. In the mixture, the carbon precursor forms an island phase and becomes spherical or elliptical. As used herein, the term “dispersion diameter” refers to the spherical diameter of the carbon precursor or the major axis diameter of the ellipsoid in the mixture. If the dispersion diameter of the carbon precursor in the thermoplastic resin is outside the range of 0.01 to 50 im, it becomes difficult to produce a carbon fiber filler for high-performance composite materials, which is not preferable. A more preferable range of the dispersion diameter of the carbon precursor is 0.01 to 3. Also, even after the mixture of the thermoplastic resin and the carbon precursor is kept at 300 ° C for 3 minutes, the dispersion diameter of the carbon precursor in the thermoplastic resin is preferably 0.01 to 50 m. preferable. If a mixture obtained by melt-kneading a thermoplastic resin and a carbon precursor is kept in a molten state, the carbon precursor will aggregate with time. If the dispersion diameter exceeds 5 O / ^ m due to the aggregation of the carbon precursor, it becomes difficult to produce a carbon fiber filler for high-performance composite materials, which is not preferable. The degree of the agglomeration rate of the carbon precursor varies depending on the type of the thermoplastic resin and the carbon precursor used, but is more preferably 5 minutes at 300 ° C, more preferably 10 minutes or more at 300 ° C. Preferably, a dispersion diameter of ~ 50 m is maintained.
工程 (1) では、 上記混合物を、 紡糸して前駆体繊維を形成するかまたは製膜 して前駆体フィルムを形成する。 前駆体繊維を形成する方法としては、 溶融混線で得た混合物を紡糸口金より溶 融紡糸する方法を例示することができる。 溶融紡糸する際の紡糸温度としては、 例えば 1 0 0〜4 0 0 °C、 好ましくは 1 5 0 °C〜4 0 0 °C, より好ましくは 1 8 0 °C〜3 5 0 °Cである。 紡糸引取り速度としては 1 O m/分〜 2 , 0 0 O mZ分 が好ましい。 上記範囲を逸脱すると所望の混合物からなる繊維状成型体 (前駆体 繊維) が得られないため好ましくない。 混合物を溶融混練し、 その後紡糸口金よ り溶融紡糸する際、 溶融混練した後溶融状態のままで配管内を送液し紡糸口金よ り溶融紡糸することが好ましく、 溶融混練から紡糸口金吐出までの移送時間は 1 0分以内であることが好ましい。 In the step (1), the mixture is spun to form a precursor fiber or formed into a precursor film. Examples of the method for forming the precursor fiber include a method in which a mixture obtained by melt blending is melt-spun from a spinneret. The spinning temperature during melt spinning is, for example, 100 to 400 ° C., preferably 150 to 400 ° C., and more preferably 180 to 350 ° C. is there. The spinning take-off speed is preferably from 1 Om / min to 2,000 OmZ. Outside the above range, a fibrous molded article (precursor fiber) composed of a desired mixture cannot be obtained, which is not preferable. When the mixture is melt-kneaded and then melt-spun from a spinneret, it is preferable to melt-knead and then send the liquid in the pipe in a molten state and melt-spin from the spinneret. Preferably, the transfer time is within 10 minutes.
前駆体繊維の断面形状は円形あるいは異形であることができ、 その太さは円形 に換算した相当直径が 1〜1 0 0 / mであるのが好ましい。  The cross-sectional shape of the precursor fiber can be circular or irregular, and its thickness is preferably from 1 to 100 / m in equivalent diameter converted to a circle.
前駆体フィルムの形成方法としては、 例えば 2枚の板に混合物を挟んでおき、 片方の板を回転させることでせん断が付与されたフィルムを作成する方法、 圧縮 プレス機により混合物に急激に応力を加えてせん断が付与されたフィルムを作成 する方法、 回転ローラーによりせん断が付与されたフィルムを作成する方法など を挙げることができる。せん断は、例えば 1〜1 0 0 , 0 0 0 S 1の範囲にある。 また、 前駆体フィルムの形成は、 混合物をスリットから溶融押出しして行うこと もできる。 溶融押出し温度は好ましくは 1 0 0〜4 0 0 °Cである。 As a method of forming a precursor film, for example, a method in which the mixture is sandwiched between two plates and one of the plates is rotated to create a film to which shear is applied, and a sudden stress is applied to the mixture by a compression press machine. In addition, a method of producing a film to which a shear is applied, a method of producing a film to which a shear is applied by a rotating roller, and the like can be given. The shear is, for example, in the range of 1 to 100 , 0000 S1. The precursor film can be formed by melt-extruding the mixture through a slit. The melt extrusion temperature is preferably between 100 and 400 ° C.
また、 溶融状態または軟化状態にある繊維状またはフィルム状の成型体を延伸 することで、 炭素前駆体が伸長された前駆体繊維あるいは前駆体フィルムを製造 してもよい。 これらの処理は、 好ましくは 1 5 0 °C〜4 0 0 °C、 より好ましくは 1 8 0 ° (:〜 3 5 0でで行われる。  Further, by stretching a fibrous or film-like molded body in a molten state or a softened state, a precursor fiber or a precursor film in which a carbon precursor is elongated may be produced. These treatments are preferably performed at 150 ° C. to 400 ° C., more preferably at 180 ° C. (: to 350 ° C.).
前駆体フィルムの厚みは 1〜 5 0 0 mが好ましい。 厚みが 5 0 0 mより厚 い場合、 前駆体フィルムを酸素および/または沃素ガスを含むガスと接触させて 安定化前駆体フィルムを得る次工程 (2 ) において、 ガス浸透性が著しく低下す るため、結果として安定化前駆体フィルムを得るのに長時間を要し好ましくない。 また、 1 m未満であると前駆体フィルムのハンドリングが難しいため好ましく ない。 さて、 本発明によれば、 工程 (1 ) に関して上記の如く、 熱可塑性樹脂 1 0 0 重量部並びにピッチ、 アクリロニトリル、 ポリカルポジイミド、 ポリイミド、 ポ リベンゾァゾールおよびァラミドよりなる群から選ばれる少なくとも 1種の熱可 塑性炭素前駆体 1〜1 5 0重量部からなる繊維状炭素製造用組成物が提供される。 上記組成物は、前記式 ( 1 )を満足する重合体セグメント( e 1 )と前記式( 2 ) を満足する重合体セグメント (e 2 )の共重合体 (E)並びに前記式(3 ) と(4 ) を満足するホモポリマー (F) の 1種または 2種以上を 0 . 0 0 1〜2 0重量部 をさらに含有することができる。 The thickness of the precursor film is preferably from 1 to 500 m. If the thickness is more than 500 m, in the next step (2) of contacting the precursor film with a gas containing oxygen and / or iodine gas to obtain a stabilized precursor film, the gas permeability is significantly reduced. Therefore, it takes a long time to obtain a stabilized precursor film as a result, which is not preferable. On the other hand, if it is less than 1 m, it is not preferable because handling of the precursor film is difficult. Now, according to the present invention, as described above with respect to the step (1), 100 parts by weight of the thermoplastic resin and at least one kind selected from the group consisting of pitch, acrylonitrile, polycarboimide, polyimide, polybenzoazole and aramide There is provided a composition for producing fibrous carbon, comprising 1 to 150 parts by weight of a thermoplastic carbon precursor. The above composition comprises a copolymer (E) of a polymer segment (e 1) satisfying the above formula (1) and a polymer segment (e 2) satisfying the above formula (2), and the above formula (3) One or more homopolymers (F) satisfying (4) may further contain 0.001 to 20 parts by weight.
これらの組成物は、 前記熱可塑性樹脂 1 0 0重量部および熱可塑性炭素前駆体 1〜1 5 0重量部から実質的になるか、 あるいはそれらと前記共重合体 (E) お よび Zまたはホモポリマー (F) 0. 0 0 1〜2 0重量部から実質的になること ができる。  These compositions may consist essentially of 100 parts by weight of the thermoplastic resin and 1-150 parts by weight of the thermoplastic carbon precursor, or may be composed of them and the copolymer (E) and Z or homopolymer. Polymer (F) can consist essentially of 0.01 to 20 parts by weight.
また、 これらの組成物は、 好ましくは、  Also, these compositions are preferably
( i ) 熱可塑性樹脂のマトリックス中に熱可塑性炭素前駆体が粒状に分散されて おり、 そして分散された熱可塑性炭素前駆体の平均相当粒径が 0 . 0 1〜 5 0 mの範囲にあり、 あるいは  (i) The thermoplastic carbon precursor is dispersed in a granular form in the thermoplastic resin matrix, and the average equivalent particle size of the dispersed thermoplastic carbon precursor is in the range of 0.01 to 50 m. , Or
(i i) 3 0 0 で 3分間保持した後において、 分散された熱可塑性炭素前駆体の 平均相当粒径が 0 . 0 1〜5 0 mの範囲にあり、 あるいは  (ii) after holding at 300 for 3 minutes, the average equivalent particle size of the dispersed thermoplastic carbon precursor is in the range of 0.01 to 50 m, or
(i i i) シェアレート 1 , 0 0 0 S 1において熱可塑性樹脂の溶融粘度が熱可塑 性炭素前駆体の溶融粘度の 0 . 5〜3 0倍となるような温度で熱可塑性樹脂と熱 可塑性炭素前駆体を混合して調製されている。 (iii) shear rate 1, 0 0 0 0 The melt viscosity of the thermoplastic resin melt viscosity of the thermoplastic carbon precursor in S 1. 5 to 3 Thermoplastic resin 0 times become such temperatures and the thermoplastic carbon It is prepared by mixing precursors.
次に、 本発明の工程 (2 ) では、 前駆体繊維もしくはフィルムを安定化処理に 付して該前駆体繊維もしくはフィルム中の熱可塑性炭素前駆体を安定化して安定 化前駆体繊維もしくはフィルムを形成する。  Next, in the step (2) of the present invention, the precursor fiber or the film is subjected to a stabilization treatment to stabilize the thermoplastic carbon precursor in the precursor fiber or the film, thereby forming the stabilized precursor fiber or the film. Form.
熱可塑性炭素前駆体の安定化は炭素化もしくは黒鉛化された極細炭素繊維を得 るために必要な工程であり、 これを実施せずに熱可塑性樹脂および共重合体の除 去を行つた場合、 熱可塑性炭素前駆体が熱分解したり融着したりするなどの問題 が生じる。 安定化の方法としては、 例えば酸素などのガス気流処理、 酸性水溶液 などの溶液処理の如き公知の方法を挙げることができる。 生産性の面からガス気 流処理による安定化 (不融化) が好ましい。 使用するガス成分としては上記熱可 塑性樹脂への浸透性および熱可塑性炭素前駆体への吸着性の点から、 また熱可塑 性炭素前駆体を低温で速やかに不融ィ匕させうるという点から酸素および Zまたは ハロゲンガスを含む混合ガスであることが好ましい。 ハロゲンガスとしては、 フ ッ素ガス、 塩素ガス、 臭素ガス、 沃素ガスを挙げることができる。 これらの中で も臭素ガス、 沃素ガスが特に好ましい。 ガス気流下での不融化の具体的な方法と しては、 好ましくは 5 0〜3 5 0 ° (:、 より好ましくは 8 0〜3 0 0 °Cで、 5時間 以下、 好ましくは 2時間以下、 所望のガス雰囲気中で処理する。 また上記不融化 により前駆体繊維もしくはフィルム中に含まれる熱可塑性炭素前駆体の軟化点は 著しく上昇するが、 所望の極細炭素繊維を得るという目的から軟化点が 4 0 0 °C 以上であるのが好ましく、 5 0 0 °C以上であるのがさらに好ましい。- 次に、 本発明の工程 (3 ) では、 安定化前駆体繊維もしくはフィルムから熱可 塑性樹脂を除去して繊維状炭素前駆体を形成する。 熱可塑性樹脂の除去は熱分解 もしくは溶媒による溶解により達成され、 いずれの方法を取るかは使用する熱可 塑性樹脂により決まる。熱分解には、使用される熱可塑性樹脂によつて異なるが、 ガス雰囲気中で 4 0 0〜6 0 0 °C、 より好ましくは 5 0 0 ~ 6 0 0 °Cの温度が用 いられる。 ガス雰囲気は、 例えばアルゴン、 窒素の如き不活性ガスあるいは酸素 を含有する酸化性ガス雰囲気であってもよい。 また溶媒による溶解には、 使用さ れる熱可塑性樹脂によって異なり、 より溶解性の高い溶媒が使用される。 例えば ポリカーボネー卜においては塩化メチレンゃテ卜ラヒドロフランが好ましく、 ポ リエチレンにおいてはデカリンやトルエンが好ましい。 The stabilization of the thermoplastic carbon precursor is a necessary step to obtain carbonized or graphitized ultrafine carbon fibers.If the thermoplastic resin and copolymer are removed without performing this step However, problems such as the thermal decomposition and fusion of the thermoplastic carbon precursor occur. Stabilization methods include, for example, gas flow treatment with oxygen, acidic aqueous solution And known methods such as solution treatment. From the viewpoint of productivity, stabilization (infusibility) by gas stream treatment is preferable. The gas component used is selected from the viewpoints of the permeability into the thermoplastic resin and the adsorption to the thermoplastic carbon precursor, and the capability of rapidly infusing the thermoplastic carbon precursor at a low temperature. It is preferably a mixed gas containing oxygen and Z or a halogen gas. Examples of the halogen gas include fluorine gas, chlorine gas, bromine gas, and iodine gas. Among them, bromine gas and iodine gas are particularly preferable. As a specific method of infusibility under a gas stream, preferably 50 to 350 ° (: more preferably at 80 to 300 ° C, for 5 hours or less, preferably 2 hours The treatment is performed in a desired gas atmosphere, and the softening point of the thermoplastic carbon precursor contained in the precursor fiber or the film is significantly increased by the infusibilization, but is softened for the purpose of obtaining a desired ultrafine carbon fiber. The temperature is preferably at least 400 ° C., and more preferably at least 500 ° C. Next, in the step (3) of the present invention, the heat can be removed from the stabilized precursor fiber or film. Removal of the plastic resin to form a fibrous carbon precursor Removal of the thermoplastic resin is achieved by thermal decomposition or dissolution in a solvent, and which method is used depends on the thermoplastic resin used. Depends on the thermoplastic used. In the gas atmosphere, a temperature of 400 to 600 ° C., more preferably 500 to 600 ° C. is used, and the gas atmosphere is, for example, an inert gas such as argon or nitrogen. Alternatively, an oxidizing gas atmosphere containing oxygen may be used, and a solvent having a higher solubility may be used for dissolution in a solvent, depending on the thermoplastic resin used, for example, methylene chloride in polycarbonate. Petrahydrofuran is preferred, and for polyethylene, decalin and toluene are preferred.
最後に、 本発明の工程 (4 ) では、 繊維状炭素前駆体を炭素化もしくは黒鉛化 して炭素繊維を形成する。 繊維状炭素前駆体の炭素化もしくは黒鉛化は、 それ自 体公知の方法で行うことができる。 例えば繊維状炭素前駆体を不活性ガス雰囲気 下で高温処理に付して炭素化もしくは黒鉛化する。 使用される不活性ガスとして は窒素、 アルゴン等が挙げられ、 温度は、 好ましくは 5 0 0 〜 3 , 5 0 0 °C、 より好ましくは 7 0 0 °C〜3 , 0 0 0 °C,特に好ましくは 8 0 0 °C~ 3 , 0 0 0 °C である。 なお、 炭素化もしくは黒鉛化する際の、 酸素濃度は 2 0 p p m以下、 さ らには 1 O p p m以下が好ましい。 得られる極細炭素繊維の繊維径は、 好ましく は 0 . 0 0 1 z m〜5 mであり、 より好ましくは 0 . Ο Ο Ι Π!〜 l mであ る。 Finally, in step (4) of the present invention, the fibrous carbon precursor is carbonized or graphitized to form carbon fibers. The carbonization or graphitization of the fibrous carbon precursor can be performed by a method known per se. For example, a fibrous carbon precursor is subjected to high temperature treatment in an inert gas atmosphere to be carbonized or graphitized. The inert gas used includes nitrogen, argon and the like, and the temperature is preferably 500 to 3,500 ° C, more preferably 700,000 to 3,000 ° C, Particularly preferably 800 ° C ~ 3, 0000 ° C It is. The oxygen concentration during carbonization or graphitization is preferably 20 ppm or less, more preferably 1 O ppm or less. The fiber diameter of the obtained ultrafine carbon fiber is preferably 0.001 zm to 5 m, and more preferably 0.001 m! ~ Lm.
上記の方法を実施することで、 分岐構造が少なくかつ高強度 ·高弾性率の炭素 繊維を製造することができる。  By performing the above method, it is possible to produce carbon fibers having a small number of branch structures and high strength and high elastic modulus.
上記方法により、 例えば繊維径 0 . 0 0 1 m~ 5 mの極細炭素繊維が得ら れる。 フエノール樹脂とポリエチレンの複合繊維から得られる極細炭素繊維は、 フエノール樹脂が非晶であるため、 得られる極細炭素繊維も非晶となり強度、 弹 性率ともにいずれも低いものであった。ところが、本方法で得られる炭素繊維は、 繊維軸方向に分子鎖が極度に配向しており、 フエノール樹脂とポリェチレンの複 合繊維から得られる極細炭素繊維に比べ髙強度、 高弾性率となる。 また、 気相法 で得られる炭素繊維に比べ分岐構造が少ないため、 従来よりも少量の添加でポリ マー等の補強を行うことができる。  By the above method, for example, ultrafine carbon fibers having a fiber diameter of 0.001 m to 5 m can be obtained. The ultrafine carbon fiber obtained from the composite fiber of the phenol resin and the polyethylene was amorphous because the phenol resin was amorphous, so that the obtained ultrafine carbon fiber was also amorphous, and both the strength and the modulus were low. However, the carbon fibers obtained by this method have extremely strong molecular chains in the direction of the fiber axis, and have low strength and high elastic modulus as compared with ultrafine carbon fibers obtained from a composite fiber of phenol resin and polyethylene. In addition, since the branched structure is smaller than the carbon fiber obtained by the gas phase method, it is possible to reinforce a polymer or the like by adding a smaller amount than before.
本発明によればさらに、 上記本発明方法をさらに発展させて独立した炭素繊維 ではなく、 炭素繊維の集合体としての炭素繊維マツトの製造法が提供される。 すなわち、 本発明の炭素繊維マットの製造法は、  According to the present invention, there is further provided a method for producing a carbon fiber mat as an aggregate of carbon fibers instead of independent carbon fibers by further developing the above method of the present invention. That is, the method for producing a carbon fiber mat of the present invention comprises:
( 1 ) 熱可塑性樹脂 1 0 0重量部並びにピッチ、 ポリアクリロニトリル、 ポリ力 ルポジイミド、 ポリイミド、 ポリベンゾァゾールおよびァラミドょりなる群から 選ばれる少なくとも 1種の熱可塑性炭素前駆体 1〜1 5 0重量部からなる混合物 を溶融押出しにより製膜して前駆体フィルムを形成し、  (1) 100 parts by weight of thermoplastic resin and at least one kind of thermoplastic carbon precursor selected from the group consisting of pitch, polyacrylonitrile, polyphenolimide, polyimide, polybenzoazole and aramide A mixture consisting of parts by weight is formed by melt extrusion to form a precursor film,
( 2 ) 前駆体フィルムを安定化処理に付して該前駆体フィルム中の熱可塑性炭素 前駆体を安定化して安定化前駆体フィルムを形成し、  (2) subjecting the precursor film to a stabilization treatment to stabilize the thermoplastic carbon precursor in the precursor film to form a stabilized precursor film,
( 3 ) 安定化前駆体フィルムを複数枚重ね合せて安定化前駆体重畳フィルムを形 成し、  (3) A plurality of the stabilized precursor films are laminated to form a stabilized precursor superimposed film,
( 4 ) 安定化前駆体重畳フィルムから熱可塑性樹脂を除去して繊維状炭素前駆体 マツトを形成し、 そして  (4) removing the thermoplastic resin from the stabilized precursor superimposed film to form a fibrous carbon precursor mat, and
( 5 ) 繊維状炭素前駆体マツトを炭素化もしくは黒鉛化して炭素繊維マツトを形 成する、 (5) Carbon fiber mat is formed by carbonizing or graphitizing the fibrous carbon precursor mat. Make,
ことからなる。 Consisting of
上記工程 (1 ) は炭素繊維の製造法の工程 (1 ) における前駆体フィルムの製 造法と同じである。  The above step (1) is the same as the method for producing a precursor film in step (1) of the method for producing carbon fibers.
工程 (2 ) は、 炭素繊維の製造法の工程 (2 ) における安定化前駆体フィルム の製造法と同じである。  Step (2) is the same as the method for producing the stabilized precursor film in step (2) of the method for producing carbon fiber.
工程 (3 ) は、 工程 (2 ) で得られた安定化前駆体フィルムを複数枚例えば 2 〜1, 0 0 0枚重ね合せて安定化前駆体重畳フィルムを形成する。  In the step (3), a plurality of, for example, 2 to 100,000 stabilized precursor films obtained in the step (2) are superposed to form a superimposed stabilized precursor film.
工程 (4 ) は安定化重畳フィルムから熱可塑性樹脂を除去して繊維状炭素前駆 体マットを形成する。 この工程 (4) は炭素繊維の製造法の工程 (3 ) と同様に して熱可塑性樹脂を除去して実施することができる。  Step (4) removes the thermoplastic resin from the stabilized superimposed film to form a fibrous carbon precursor mat. This step (4) can be performed by removing the thermoplastic resin in the same manner as in step (3) of the carbon fiber production method.
工程 (5 ) は繊維状炭素前駆体マットを炭素化もしくは黒鉛ィヒして炭素繊維マ ットを形成する。 この工程 (5 ) の炭素化および黒鉛化は炭素繊維の製造法のェ 程 (4) と同様にして実施することができる。  In step (5), the fibrous carbon precursor mat is carbonized or graphitized to form a carbon fiber mat. The carbonization and graphitization in this step (5) can be carried out in the same manner as in step (4) of the carbon fiber production method.
本発明の上記方法によれば、 極細の炭素繊維からなる炭素繊維マツトが極めて 容易に製造できる。 このような炭素繊維マットは例えば高機能フィルター、 電池 用電極材として非常に有用である。 実施例  According to the method of the present invention, a carbon fiber mat made of ultrafine carbon fibers can be produced very easily. Such a carbon fiber mat is very useful, for example, as a high-performance filter or a battery electrode material. Example
以下に本発明の実施例を述べる。 なお、 以下に記載される内容により本発明が 限定されるものではない。  Hereinafter, examples of the present invention will be described. The present invention is not limited by the contents described below.
熱可塑性樹脂中の熱可塑性炭素前駆体の分散粒子径および前駆体繊維の繊維径 は、 走査電子顕微鏡 S— 2 4 0 0 (日立製作所) にて測定した。 得られた炭素繊 維の強度、 弾性率はテンシロン R T C— 1 2 2 5 A (A&D/オリエンテック) にて測定を実施した。また、重合体セグメント(e 1 )、重合体セグメント(e 2 )、 熱可塑性炭素前駆体および熱可塑性樹脂の表面張力は、 J I S K 6 7 6 8に規定 されている "プラスチック一フィルムおよびシ一ト一ぬれ張力試験方法" に使用 する試薬を用い評価した。 熱可塑性樹脂の自由体積の直径は、 陽電子線源として 22Na2C03を用い、陽電子寿命スペクトルの長寿命成分から、 ポアサイズを与 える球体モデル式 (Ch em. Phy s . 63, 51 (1981)) を用いること で評価した。また、熱可塑性樹脂の融点またはガラス転移温度は、 DSC 2920 (TA I n s t r ume n t s製) を用い、 10°C/分の昇温速度にて測定し た。 The dispersed particle diameter of the thermoplastic carbon precursor in the thermoplastic resin and the fiber diameter of the precursor fiber were measured with a scanning electron microscope S-2400 (Hitachi, Ltd.). The strength and elastic modulus of the obtained carbon fiber were measured using Tensilon RTC-1225A (A & D / Oriental Tech). The surface tensions of the polymer segment (e 1), the polymer segment (e 2), the thermoplastic carbon precursor and the thermoplastic resin are as defined in JISK 668 “Plastic film and sheet”. The test was performed using the reagents used in the "Test Method for Wetting Tension". The diameter of the free volume of thermoplastic resin is Using 22 Na 2 C0 3, the long-lived components of the positron lifetime spectra were evaluated by using El spherical model equation given pore size to (Ch em. Phy s. 63 , 51 (1981)). The melting point or glass transition temperature of the thermoplastic resin was measured using a DSC 2920 (manufactured by TA Instruments) at a heating rate of 10 ° C./min.
軟ィ匕点は微量融点測定装置にて測定した。 また、 溶融混練時のせん断速度にお ける熱可塑性樹脂の溶融粘度(77 M)と熱可塑性炭素前駆体の溶融粘度(7] は、 溶融粘度のせん断速度依存性 (図 3) より評価した。 なお、 溶融混練時のせん断 速度 (SR) は下記式 (3) を用いることで評価した。 '  The soft point was measured by a trace melting point measuring device. The melt viscosity (77 M) of the thermoplastic resin and the melt viscosity (7) of the thermoplastic carbon precursor at the shear rate during melt-kneading were evaluated from the shear rate dependence of the melt viscosity (Fig. 3). The shear rate (SR) during melt-kneading was evaluated using the following equation (3).
(SR) =[2 π · DZ (η/60) ] C (3)  (SR) = [2πDZ (η / 60)] C (3)
ここで、 Dはスクリュウ外径 (m)、 nはスクリュウ回転数 (r pm)、 Cはクリ ァランス (m) を示す。 Here, D indicates the screw outer diameter (m), n indicates the screw rotation speed (rpm), and C indicates the clearance (m).
実施例 1  Example 1
熱可塑性樹脂として高密度ポリエチレン (住友化学社製) 100重量部と熱可 塑性炭素前駆体としてメソフェーズピッチ AR— HP (三菱ガス化学社製) 11. 1部、およびモディパー A 1100 (日本油脂製:低密度ポリエチレン 7 Owt % とポリスチレン 3 Owt %のグラフト共重合体) 0. 56部を同方向二軸押出機 (日本製鋼所 TEX— 30、 バレル温度 290°C、 窒素気流下) で溶融混練して 樹脂混合物を作成した。 溶融混練時の樹脂混合物に生じるせん断速度 (SR) は 628 s— 1であった。 このせん断速度における熱可塑性樹脂の溶融粘度 (7?M) と熱可塑性炭素前駆体の溶融粘度 (7?A) の比 (7]ΜΖΤ) Α) は 1. 2であった。 この条件で得られた熱可塑性炭素前駆体の熱可塑性樹脂中への分散径は 0. 05 〜2 xmであった(図 1参照)。なお、走査型電子顕微鏡で AR— HPの粒子径分 布を評価したところ、 1 m未満の粒子径が 90%以上を占めた(図 2参照)。 ま た、 樹脂組成物を 300°Cで 10分保持したが、 熱可塑性炭素前駆体の凝集は認 められず、 分散径は 0. 05〜2; mであった。 なお、 高密度ポリエチレン (住 友化学社製)、 低密度ポリエチレン (住友化学社製)、 メソフェーズピッチ、 およ びポリスチレンの表面張力はそれぞれ、 31、 31、 22、 24mNZmであり、 (重合体セグメント (e l) の表面張力 Z熱可塑性炭素前駆体の表面張力) 値は 1. 1、 (重合体セグメント (e 2) の表面張力 Z熱可塑性樹脂の表面張力)値は 1. 0であった。 100 parts by weight of high density polyethylene (manufactured by Sumitomo Chemical Co., Ltd.) as a thermoplastic resin and 11.1 parts of mesophase pitch AR—HP (manufactured by Mitsubishi Gas Chemical Company) as a thermoplastic carbon precursor, and Modiper A 1100 (manufactured by NOF Corporation: 0.56 parts of a low-density polyethylene 7 Owt% and polystyrene 3 Owt% graft copolymer were melt-kneaded in a coaxial twin-screw extruder (Nippon Steel Works TEX-30, barrel temperature 290 ° C, under nitrogen flow). Thus, a resin mixture was prepared. The shear rate (SR) generated in the resin mixture during melt-kneading was 628 s- 1 . At this shear rate, the ratio of the melt viscosity (7 樹脂M ) of the thermoplastic resin to the melt viscosity (7? A ) of the thermoplastic carbon precursor (7) Μ ΖΤ Α ) was 1.2. The dispersion diameter of the thermoplastic carbon precursor obtained under these conditions in the thermoplastic resin was 0.05 to 2 xm (see Fig. 1). When the particle size distribution of AR-HP was evaluated using a scanning electron microscope, the particle size of less than 1 m accounted for 90% or more (see Fig. 2). The resin composition was kept at 300 ° C. for 10 minutes, but no aggregation of the thermoplastic carbon precursor was observed, and the dispersion diameter was 0.05 to 2 m. The surface tensions of high-density polyethylene (Sumitomo Chemical Co., Ltd.), low-density polyethylene (Sumitomo Chemical Co., Ltd.), mesophase pitch, and polystyrene are 31, 31, 22, and 24 mNZm, respectively. The value (surface tension of the polymer segment (el) Z surface tension of the thermoplastic carbon precursor) is 1.1, and the value of (the surface tension of the polymer segment (e 2) Z surface tension of the thermoplastic resin) is 1.0. Met.
上記樹脂混合物を 300°Cで紡糸口金より紡糸し、 前駆体繊維 (複合繊維) を 作成した。 この複合繊維の繊維径は 20 mであり、 断面におけるメソフェーズ ピッチの分散径はすべて 2 m以下であった。 次に、 この複合繊維 100重量部 とヨウ素 5重量部を耐圧ガラス容器に入れ 100°Cで 10時間保持して安定化前 駆体繊維を得た。 この安定化前駆体繊維を徐々に 500°Cまで昇温し、 高密度ポ リエチレンおよびモディパー A 1100の除去を行った。 その後窒素雰囲気中で 1, 500°Cまで昇温して 30分保持し、 炭素化を行った。 得られた極細炭素繊 維の繊維径は 0. 01 m〜2 mの範囲にあり、 分岐構造はほとんど認められ なかつた。繊維径 1 mの極細炭素繊維について強度、弾性率を測定したところ、 引っ張り強度は 2, 500MPa、 引っ張り弾性率は 300 GP aであった。  The above resin mixture was spun from a spinneret at 300 ° C to prepare a precursor fiber (composite fiber). The fiber diameter of this composite fiber was 20 m, and the dispersion diameter of the mesophase pitch in the cross section was all 2 m or less. Next, 100 parts by weight of this composite fiber and 5 parts by weight of iodine were placed in a pressure-resistant glass container and kept at 100 ° C. for 10 hours to obtain a stabilized precursor fiber. The temperature of the stabilized precursor fiber was gradually raised to 500 ° C. to remove high-density polyethylene and Modiper A 1100. Thereafter, the temperature was raised to 1,500 ° C in a nitrogen atmosphere and maintained for 30 minutes to perform carbonization. The fiber diameter of the obtained ultrafine carbon fiber was in the range of 0.01 m to 2 m, and almost no branched structure was observed. When the strength and elastic modulus of the ultrafine carbon fiber having a fiber diameter of 1 m were measured, the tensile strength was 2,500 MPa and the tensile elastic modulus was 300 GPa.
実施例 2  Example 2
熱可塑性樹脂として高密度ポリエチレン (住友化学社製) 100重量部と熱可 塑性炭素前駆体としてメソフェーズピッチ AR— HP (三菱ガス化学社製) 66. 7部、およびモディパ一 A 1100 (日本油脂製:低密度ポリエチレン 7 Owt % とポリスチレン 3 Owt %のグラフト共重合体) 0. 56部を同方向二軸押出機 (日本製鋼所 TEX— 30、 バレル温度 290°C、 窒素気流下) で溶融混練して 樹脂混合物を作成した。 溶融混練時の樹脂混合物に生じるせん断速度 (SR) は 100 parts by weight of high density polyethylene (manufactured by Sumitomo Chemical Co., Ltd.) as a thermoplastic resin and Mesophase Pitch AR—HP (manufactured by Mitsubishi Gas Chemical Company) 66.7 parts as a thermoplastic carbon precursor, and Modipa A 1100 (manufactured by NOF Corporation) : Graft copolymer of 7 Owt% of low-density polyethylene and 3 Owt% of polystyrene) 0.56 parts are melt-kneaded in a co-axial twin screw extruder (Nippon Steel Works TEX-30, barrel temperature 290 ° C, under nitrogen flow) Thus, a resin mixture was prepared. The shear rate (SR) generated in the resin mixture during melt-kneading is
628 s—1であった。 このせん断速度における熱可塑性樹脂の溶融粘度 (77M) と熱可塑性炭素前駆体の溶融粘度 (77A) の比 (τ?Μ/τ7Α) は 1. 2であった。 この条件で得られた熱可塑性炭素前駆体の熱可塑性樹脂中への分散径は 0. 05 〜 2 2 mであった。 なお、 走査型電子顕微鏡で A -HPの粒子径分布を評価し たところ、 1 zm未満の粒子径が 90%以上を占めた。 また、 樹脂混合物を 30 0 °Cで 10分保持したが、熱可塑性炭素前駆体の凝集は認められず、分散径は 0. 05〜2wmであった。 なお、 高密度ポリエチレン(住友化学社製)、 低密度ポリ エチレン(住友化学社製)、 メソフェーズピッチ、およびポリスチレンの表面張力 はそれぞれ、 31、 31、 22、 24mN "mであり、 (重合体セグメント (e l) の表面張力 Z熱可塑性炭素前駆体の表面張力)値は 1.1、 (重合体セグメント( e 2) の表面張力 Z熱可塑性樹脂の表面張力) 値は 1. 0であった。 628 s— one . The ratio of the melt viscosity (77 M) and the melt viscosity of the thermoplastic carbon precursor in the thermoplastic resin in the shear rate (77 A) (τ? Μ / τ7 Α) 1. was 2. The dispersion diameter of the thermoplastic carbon precursor obtained under these conditions in the thermoplastic resin was 0.05 to 22 m. When the particle size distribution of A-HP was evaluated with a scanning electron microscope, the particle size of less than 1 zm accounted for 90% or more. The resin mixture was kept at 300 ° C. for 10 minutes, but no aggregation of the thermoplastic carbon precursor was observed, and the dispersion diameter was 0.05 to 2 wm. The surface tension of high-density polyethylene (Sumitomo Chemical Co., Ltd.), low-density polyethylene (Sumitomo Chemical Co., Ltd.), mesophase pitch, and polystyrene Are 31, 31, 22, and 24 mN "m, respectively. The surface tension of the polymer segment (el) Z surface tension of the thermoplastic carbon precursor is 1.1, and the surface tension of the polymer segment (e 2) is 1.1. The surface tension of the Z thermoplastic resin) was 1.0.
上記樹脂混合物を 300°Cで紡糸口金より紡糸し、 前駆体繊維 (複合繊維) を 作成した。 この複合繊維の繊維径は 20 mであり、 断面におけるメソフェーズ ピッチの分散径はすべて 2 m以下であった。 次に、 複合繊維 100重量部とョ ゥ素 5重量部を耐圧ガラス容器に入れ 100°Cで 10時間保持して安定化前駆体 繊維を得た。 安定化前駆体繊維を徐々に 500°Cまで昇温し、 高密度ポリエチレ ンおよびモディパー A 1100の除去を行った。 その後窒素雰囲気中で 1 , 50 0°Cまで昇温、 30分保持し、 炭素ィ匕を行った。 得られた極細炭素繊維の繊維径 は 0. 01 m〜 2 mの範囲にあり、 分岐構造はほとんど認められなかつた。 繊維径 1 zmの極細炭素繊維について強度、 弾性率を測定したところ、 引っ張り 強度は 2, 500MPa、 引っ張り弾性率は 300 GP aであった。  The above resin mixture was spun from a spinneret at 300 ° C to prepare a precursor fiber (composite fiber). The fiber diameter of this composite fiber was 20 m, and the dispersion diameter of the mesophase pitch in the cross section was all 2 m or less. Next, 100 parts by weight of the composite fiber and 5 parts by weight of iodine were placed in a pressure-resistant glass container and kept at 100 ° C. for 10 hours to obtain a stabilized precursor fiber. The temperature of the stabilized precursor fiber was gradually raised to 500 ° C to remove high-density polyethylene and Modiper A 1100. Thereafter, in a nitrogen atmosphere, the temperature was raised to 1,500 ° C., and the temperature was maintained for 30 minutes to perform carbon shading. The fiber diameter of the obtained ultrafine carbon fiber was in the range of 0.01 m to 2 m, and almost no branched structure was observed. When the strength and elastic modulus of the ultrafine carbon fiber having a fiber diameter of 1 zm were measured, the tensile strength was 2,500 MPa and the tensile elastic modulus was 300 GPa.
実施例 3  Example 3
熱可塑性樹脂としてポリ一 4ーメチルペンテン一 1 (TPX :グレード RT- 18 [三井化学社製]) 100重量部と熱可塑性炭素前駆体としてメソフェーズピ ツチ AR— HP (三菱ガス化学社製) 11. 1部を同方向二軸押出機 (日本製鋼 所 TEX— 30、 バレル温度 290°C、 窒素気流下) で溶融混練して榭脂混合物 を作成した。 この条件で得られた熱可塑性炭素前駆体の熱可塑性樹脂中への分散 径は 0. 05〜 2 mであつた。また、樹脂混合物を 300 °Cで 3分保持したが、 熱可塑性炭素前駆体の凝集は認められず、 分散径は 0. 05〜2^mであった。 なお、 ポリ一 4—メチルペンテン一 1、 メソフェーズピッチの表面張力はそれぞ れ、 24、 22mN/mであった。 なお、 陽電子消滅法で評価したポリ一 4—メ チルペンテン一 1の自由体積の平均直径は 0. 64nm、 DSCで評価した結晶 融点は 238°Cであった。  Poly-1-methylpentene-1 (TPX: Grade RT-18 [Mitsui Chemicals]) 100 parts by weight as a thermoplastic resin and Mesophase Pitch AR-HP (Mitsubishi Gas Chemicals) as a thermoplastic carbon precursor 11.1 The resin mixture was melt-kneaded in a twin-screw extruder (TEX-30, Japan Steel Works, barrel temperature 290 ° C, under a nitrogen stream) to form a resin mixture. The dispersion diameter of the thermoplastic carbon precursor obtained under these conditions in the thermoplastic resin was 0.05 to 2 m. The resin mixture was kept at 300 ° C for 3 minutes, but no agglomeration of the thermoplastic carbon precursor was observed, and the dispersion diameter was 0.05 to 2 ^ m. The surface tensions of poly-14-methylpentene-11 and mesophase pitch were 24 and 22 mN / m, respectively. The average diameter of the free volume of poly (4-methylpentene) -11 evaluated by the positron annihilation method was 0.64 nm, and the melting point of the crystal evaluated by DSC was 238 ° C.
上記樹脂混合物を 300°Cで紡糸口金より紡糸し、 前駆体繊維 (複合繊維) を 作成した。 この複合繊維の繊維径は 20 mであり、 断面におけるメソフェーズ ピッチの分散径はすべて 2 m以下であった。 次に、 この複合繊維 100重量部 とヨウ素 10重量部を耐圧ガラス容器に入れ 190°Cで 2時間保持して安定化前 駆体繊維を得た。 安定化前駆体繊維を徐々に 500°Cまで昇温し、 ポリ— 4ーメ チルペンテン— 1の除去を行った。その後窒素雰囲気中で 1, 500°Cまで昇温、 30分保持し、 炭素化を行った。 得られた極細炭素繊維の繊維径は 0. 01 zm 〜 2 mの範囲にあり、 分岐構造はほとんど認められなかつた。 繊維径 1 mの 極細炭素繊維について強度、 弾性率を測定したところ、 引っ張り強度は 2, 50 0MPa、 引っ張り弾性率は 30 OGP aであった。 The above resin mixture was spun from a spinneret at 300 ° C to prepare a precursor fiber (composite fiber). The fiber diameter of this composite fiber was 20 m, and the dispersion diameter of the mesophase pitch in the cross section was all 2 m or less. Next, 100 parts by weight of this composite fiber And 10 parts by weight of iodine were placed in a pressure-resistant glass container and kept at 190 ° C for 2 hours to obtain a stabilized precursor fiber. The temperature of the stabilized precursor fiber was gradually raised to 500 ° C. to remove poly-4-methylpentene-1. Thereafter, the temperature was raised to 1,500 ° C in a nitrogen atmosphere and maintained for 30 minutes to perform carbonization. The fiber diameter of the obtained ultrafine carbon fiber was in the range of 0.01 to 2 m, and almost no branched structure was observed. When the strength and elastic modulus of the ultrafine carbon fiber having a fiber diameter of 1 m were measured, the tensile strength was 2,500 MPa and the tensile elastic modulus was 30 OGPa.
実施例 4  Example 4
熱可塑性樹脂として高密度ポリエチレン (住友化学社製) 100重量部と熱可 塑性炭素前駆体としてメソフェーズピッチ AR— HP (三菱ガス化学社製) 11. 1部を二軸押出機(日本製鋼所 TEX— 30、LZD = 42、バレル温度 290°C、 窒素気流下) で溶融混練して樹脂混合物を作成した。 熱可塑性炭素前駆体の熱可 塑性榭脂中への分散径は 0. 1〜: L 0 mであった。また、樹脂混合物を 300°C で 10分保持したが、 熱可塑性炭素前駆体の凝集は認められず、 分散径は 0. 1 〜10 mであった。 上記樹脂混合物を、 加熱せん断流動観察装置 (ジャパンハ ィテック (株) 製 CSS— 450A) を用いて、 300°Cに加熱された石英板に 挟み 750 s—1のせん断を 1分間付与した後、室温まで急冷して厚さ 6 O imの フィルムを作成した。 フィルムに含まれる熱可塑性炭素前駆体の観察を、 上記装 置を用いて行なったところ、 繊維径 0. 01〜5/im、 繊維長 1〜20 ΠΙの繊 維を生成していることが確認された。 次に、 このフィルム 100重量部とヨウ素 5重量部を耐圧ガラス容器に入れ 100°Cで 10時間保持して安定化前駆体フィ ルムを得た。 この安定ィ匕前駆体フィルムを徐々に 500°Cまで昇温して、 高密度 ポリエチレンの除去を行った。 その後窒素雰囲気中で 1, 500°Cまで昇温して 30分保持し、 AR— HPの炭素化を行った。 得られた極細炭素繊維の繊維径は 0. 01 m〜5 mの範囲にあり、 分岐構造はほとんど認められなかった。 100 parts by weight of high-density polyethylene (manufactured by Sumitomo Chemical Co., Ltd.) as a thermoplastic resin and mesophase pitch AR—HP (manufactured by Mitsubishi Gas Chemical Company) as a thermoplastic carbon precursor 11. 1 part of a twin-screw extruder (Nippon Steel Works TEX) — 30, LZD = 42, barrel temperature 290 ° C, under a nitrogen stream) to form a resin mixture. The dispersion diameter of the thermoplastic carbon precursor in the thermoplastic resin was 0.1 to: L 0 m. The resin mixture was kept at 300 ° C for 10 minutes, but no agglomeration of the thermoplastic carbon precursor was observed, and the dispersion diameter was 0.1 to 10 m. The above resin mixture was sandwiched between quartz plates heated to 300 ° C using a heating shear flow observation device (CS-450A manufactured by Japan High-Tech Co., Ltd.) and subjected to 750 s- 1 shear for 1 minute. The film was rapidly cooled to room temperature to form a film having a thickness of 6 Oim. When the thermoplastic carbon precursor contained in the film was observed using the above equipment, it was confirmed that fibers with a fiber diameter of 0.01 to 5 / im and a fiber length of 1 to 20 mm were generated. Was done. Next, 100 parts by weight of this film and 5 parts by weight of iodine were placed in a pressure-resistant glass container and kept at 100 ° C. for 10 hours to obtain a stabilized precursor film. The temperature of the stable drier precursor film was gradually raised to 500 ° C. to remove high-density polyethylene. Then, the temperature was raised to 1,500 ° C in a nitrogen atmosphere and maintained for 30 minutes to carbonize AR-HP. The fiber diameter of the obtained ultrafine carbon fiber was in the range of 0.01 m to 5 m, and almost no branched structure was observed.
実施例 5  Example 5
熱可塑性樹脂として高密度ポリエチレン (住友化学社製) 100重量部と熱可 塑性炭素前駆体としてメソフェーズピッチ AR— HP (三菱ガス化学社製) 11. 1部を二軸押出機(日本製鋼所 TEX— 30、LZD=42、バレル温度 290° 窒素気流下) で溶融混線して樹脂混合物を作成した。 熱可塑性炭素前駆体の熱可 塑性樹脂中への分散径は 0. 1〜 10 mであった。また、樹脂混合物を 300 °C で 10分保持したが、 熱可塑性炭素前駆体の凝集は認められず、 分散径は 0. 1 〜10 xmであった。 また、 300°C、 シェアレート 1, 000 s— 1における熱 可塑性樹脂の溶融粘度はメソフェーズピッチ A R— H Pの 10倍であつた。 上述の樹脂混合物を 300°Cで紡糸口金より紡糸し、 前駆体繊維 (複合繊維) を作成した。 この複合繊維の繊維径は 20 xmであり、 断面における AR— HP の分散径はすべて 10 m以下であつた。 次に、 この複合繊維 100重量部とョ ゥ素 5重量部を耐圧ガラス容器に入れ 100 °Cで 10時間保持して安定化前駆体 繊維を得た。 安定化前駆体繊維を徐々に 500°Cまで昇温し、 高密度ポリエチレ ンの除去を行った。その後窒素雰囲気中で 1, 500°Cまで昇温、 30分保持し、 AR— HPの炭素化を行った。 得られた極細炭素繊維の繊維径は 0. 01 zm〜 5 mの範囲にあり、 分岐構造はほとんど認められなかった。 繊維径 I / mの極 細炭素繊維について強度、 弾性率を測定したところ、 引っ張り強度は 2, 500 MPa、 引っ張り弾性率は 300 GP aであった。 100 parts by weight of high-density polyethylene (Sumitomo Chemical Co., Ltd.) as a thermoplastic resin and mesophase pitch AR—HP (Mitsubishi Gas Chemical Co., Ltd.) as a thermoplastic carbon precursor 11. One part was melt-blended with a twin-screw extruder (Nippon Steel Works TEX-30, LZD = 42, barrel temperature 290 ° under a nitrogen stream) to prepare a resin mixture. The dispersion diameter of the thermoplastic carbon precursor in the thermoplastic resin was 0.1 to 10 m. Further, the resin mixture was kept at 300 ° C for 10 minutes, but no aggregation of the thermoplastic carbon precursor was observed, and the dispersion diameter was 0.1 to 10 xm. The melt viscosity of the thermoplastic resin at 300 ° C and a shear rate of 1,000 s- 1 was 10 times that of the mesophase pitch AR-HP. The above resin mixture was spun from a spinneret at 300 ° C to prepare a precursor fiber (composite fiber). The fiber diameter of this composite fiber was 20 xm, and the dispersion diameter of AR-HP in the cross section was all less than 10 m. Next, 100 parts by weight of this composite fiber and 5 parts by weight of iodine were placed in a pressure-resistant glass container and kept at 100 ° C. for 10 hours to obtain a stabilized precursor fiber. The temperature of the stabilized precursor fiber was gradually raised to 500 ° C to remove high-density polyethylene. Thereafter, the temperature was raised to 1,500 ° C in a nitrogen atmosphere and maintained for 30 minutes to carbonize the AR-HP. The fiber diameter of the obtained ultrafine carbon fiber was in the range of 0.01 zm to 5 m, and almost no branched structure was observed. When the strength and elastic modulus of the ultrafine carbon fiber having a fiber diameter of I / m were measured, the tensile strength was 2,500 MPa and the tensile elastic modulus was 300 GPa.
実施例 6  Example 6
熱可塑性樹脂として高密度ポリエチレン (住友化学社製) 100重量部と熱可 塑性炭素前駆体としてメソフェーズピッチ AR— HP (三菱ガス化学社製) 10 重量部を二軸押出機 (日本製鋼所 TEX— 30、 L/D = 42、 バレル温度 29 0°C、 窒素気流下) にて溶融混練し、 溶融状態のままギアポンプで送液し紡糸口 金より紡糸し前駆体繊維を得た。 前駆体繊維の繊維径は 20 mであり、 断面に おける A R— HPの分散径はすべて 10 / m以下であった。  100 parts by weight of high density polyethylene (manufactured by Sumitomo Chemical Co., Ltd.) as a thermoplastic resin and 10 parts by weight of mesophase pitch AR—HP (manufactured by Mitsubishi Gas Chemical Company) as a thermoplastic carbon precursor are twin-screw extruders (Nippon Steel Works TEX— 30, L / D = 42, barrel temperature 290 ° C, under a nitrogen stream), melt-kneaded, fed with a gear pump in a molten state, and spun from a spinneret to obtain a precursor fiber. The fiber diameter of the precursor fiber was 20 m, and the dispersion diameter of A R—HP in the cross section was all less than 10 / m.
この前駆体繊維 100重量部と沃素 5重量部を耐圧ガラス容器に入れ、 10 0°C、 10時間保持した。 得られた安定化前駆体繊維に含まれる高密度ポリェチ レンを熱トルエンにより溶媒除去し、 AR— HPの軟化点を調べたところ 50 0°C以上であった。  100 parts by weight of this precursor fiber and 5 parts by weight of iodine were placed in a pressure-resistant glass container and kept at 100 ° C. for 10 hours. The high-density polyethylene contained in the obtained stabilized precursor fiber was subjected to solvent removal with hot toluene, and the softening point of AR-HP was determined to be 500 ° C or higher.
この安定化前駆体繊維を徐々に 500°Cまで昇温し、 高密度ポリエチレンの除 去を行った。 その後窒素雰囲気中で 1, 500°Cまで昇温し 30分保持し、 AR — HPの炭素化を行った。 得られた極細炭素繊維の繊維径は 0. 01 /zm〜5 mの範囲であり、 本発明の目的とする炭素繊維を得る事ができた。 繊維径 1 m の極細炭素繊維について強度、 弾性率を測定した。 結果を表 1に示す。 The temperature of the stabilized precursor fiber is gradually raised to 500 ° C to remove the high-density polyethylene. I left. Then, the temperature was raised to 1,500 ° C in a nitrogen atmosphere and maintained for 30 minutes to carbonize AR-HP. The fiber diameter of the obtained ultrafine carbon fiber was in the range of 0.01 / zm to 5 m, and the carbon fiber intended for the present invention could be obtained. The strength and elastic modulus of the ultrafine carbon fiber with a fiber diameter of 1 m were measured. Table 1 shows the results.
比較例 1 , 熱可塑性炭素前駆体としてフエノール樹脂 100重量部を用い、 これと高密度 ポリエチレン 100重量部を二軸押出機にて溶融混練し、 溶融状態のままでギア ポンプで送液し紡糸口金より紡糸し前駆体繊維を得た。 得られた前駆体繊維を塩 酸—ホルムアルデヒド水溶液 (塩酸 18w t %、 ホルムアルデヒド 10w t %) 中に浸漬し安定化前駆体繊維を得た。 次に窒素気流中、 600°C、 10分の条件 で炭素化し、 ポリエチレンを除去しフエノール系極細炭素繊維を得た。 繊維径 1 mの極細炭素繊維について強度、 弾性率を測定した。 結果を表 1に示す。 比較例 2  Comparative Example 1 100 parts by weight of a phenolic resin was used as a thermoplastic carbon precursor, and 100 parts by weight of a high-density polyethylene were melt-kneaded with a twin-screw extruder and fed in a molten state by a gear pump to spin a spinneret. Spinning was performed to obtain a precursor fiber. The obtained precursor fiber was immersed in a hydrochloric acid-formaldehyde aqueous solution (hydrochloric acid 18 wt%, formaldehyde 10 wt%) to obtain a stabilized precursor fiber. Next, carbonization was performed in a nitrogen stream at 600 ° C for 10 minutes, and the polyethylene was removed to obtain phenolic ultrafine carbon fibers. The strength and elastic modulus of the ultrafine carbon fiber having a fiber diameter of 1 m were measured. Table 1 shows the results. Comparative Example 2
AR— HPのみを、 実施例 6における前駆体繊維を得る紡糸法と同様の方法で 紡糸し、 A R— HPのみの繊維を得た。  AR-HP alone was spun in the same manner as in the spinning method for obtaining the precursor fiber in Example 6, to obtain a fiber comprising only AR-HP.
これを実施例 6と同様の条件にて安定ィ匕および黒鉛化を行い、 繊維径 15 の炭素繊維を得た。 結果を表 1に示す。  This was subjected to stabilization and graphitization under the same conditions as in Example 6 to obtain carbon fibers having a fiber diameter of 15. Table 1 shows the results.
表 1 table 1
繊維径 引張り強度 引張り弾性率 Fiber diameter Tensile strength Tensile modulus
( m) (MP a) (GP a) 実施例 6 1 2500 300 比較例 1 1 700 25 比較例 2 15 2000 200 (m) (MPa) (GPa) Example 6 1 2500 300 Comparative Example 1 1 700 25 Comparative Example 2 15 2000 200

Claims

請 求 の 範 囲 1. (1) 熱可塑性樹脂 100重量部並びにピッチ、 ポリアクリロニトリル、 ポ リカルポジイミド、ポリイミド、ポリべンゾァゾールおよびァラミドよりなる 群から選ばれる少なくとも 1種の熱可塑性炭素前駆体 1〜 150重量部から なる混合物を紡糸もしくは製膜して前駆体繊維もしくはフィルムを形成し、 Scope of Claim 1. (1) 100 parts by weight of a thermoplastic resin and at least one thermoplastic carbon precursor selected from the group consisting of pitch, polyacrylonitrile, polycarbonate, polyimide, polybenzoazole and aramide 1-150 By spinning or forming a mixture consisting of parts by weight to form a precursor fiber or film;
( 2 )前駆体繊維もしくはフィルムを安定化処理に付して該前駆体繊維もしく はフィルム中の熱可塑性炭素前駆体を安定化して安定化前駆体繊維もしくは フィルムを形成し、 ''' (2) subjecting the precursor fiber or film to a stabilization treatment to stabilize the precursor fiber or the thermoplastic carbon precursor in the film to form a stabilized precursor fiber or film;
· ( 3 )安定化前駆体繊維もしくはフィルムから熱可塑性樹脂を除去して繊維状 炭素前駆体を形成し、 そして  · (3) removing the thermoplastic resin from the stabilized precursor fiber or film to form a fibrous carbon precursor; and
(4) 繊維状炭素前駆体を炭素化もしくは黒鉛化して炭素繊維を形成する、 ことを特徴とする炭素繊維の製造法。 2. 熱可塑性樹脂が陽電子消滅法により測定した 20°Cにおける自由体積の直径 が 0. 5 nm以上のものである請求項 1に記載の方法。  (4) A method for producing carbon fiber, comprising forming a carbon fiber by carbonizing or graphitizing a fibrous carbon precursor. 2. The method according to claim 1, wherein the thermoplastic resin has a free volume diameter of 0.5 nm or more at 20 ° C measured by a positron annihilation method.
3. 熱可塑性樹脂が下記式 (I) 3. The thermoplastic resin has the following formula (I)
Figure imgf000025_0001
ここで、 R1 R2、 R3および R4は、 互に独立に、 水素原子、 炭素数 1〜15の アルキル基、 炭素数 5〜10のシクロアルキル基、 炭素数 6~12のァリール基 または炭素数 7〜12のァラルキル基であり、 nは 20以上の数である、 で表される請求項 1に記載の方法。
Figure imgf000025_0001
Here, R 1 R 2 , R 3 and R 4 are each independently a hydrogen atom, an alkyl group having 1 to 15 carbon atoms, a cycloalkyl group having 5 to 10 carbon atoms, and an aryl group having 6 to 12 carbon atoms. Or the aralkyl group having 7 to 12 carbon atoms, and n is a number of 20 or more.
4. 熱可塑性樹脂が 4—メチルペンテン一 1のホモポリマーおよびコポリマー並 びにエチレンのホモポリマーおよびコポリマーよりなる群から選ばれる少なくと も 1種である請求項 1に記載の方法。 4. The method according to claim 1, wherein the thermoplastic resin is at least one selected from the group consisting of homopolymers and copolymers of 4-methylpentene-11 and homopolymers and copolymers of ethylene.
5. 熱可塑性炭素前駆体のピッチがメソフェーズピッチである請求項 1に記載の 方法。 5. The method according to claim 1, wherein the pitch of the thermoplastic carbon precursor is a mesophase pitch.
6. 熱可塑性樹脂の表面張力と熱可塑性炭素前駆体の表面張力の差が 15mNZ m以下である請求項 1'に記載の方法。 6. The method according to claim 1, wherein the difference between the surface tension of the thermoplastic resin and the surface tension of the thermoplastic carbon precursor is 15 mNZm or less.
7. 前駆体繊維もしくはフィルムの断面における熱可塑性炭素前駆体の平均相当 直径が 0. 01〜 50; mの範囲にある請求項 1に記載の方法。 7. The method according to claim 1, wherein the average equivalent diameter of the thermoplastic carbon precursor in the cross section of the precursor fiber or film is in the range of 0.01 to 50; m.
8. 工程 (1) における混合物が、 下記式 (1) および (2) : 重合体セグメント (e l) の表面張力 8. The mixture in step (1) is obtained by the following formulas (1) and (2): Surface tension of polymer segment (el)
0. 7< <1. 3  0.7 <<1.3
熱可塑性炭素前駆体の表面張力  Surface tension of thermoplastic carbon precursor
• · · (1)  • · · (1)
を満足する重合体セグメント (e l) および下記式 (2): 重合体セグメント (e 2) の表面張力 And the surface tension of the polymer segment (e 2) satisfying the following formula (2):
0. 7く く 1. 3  0.7 7 1.3
熱可塑性樹脂の表面張力  Surface tension of thermoplastic resin
…(2)  … (2)
を満足する重合体セグメント (e 2) の共重合体 (E) 並びに下記式 (3) およ び (4) : ホモポリマ一 (F) の表面張力 The copolymer (E) of the polymer segment (e 2) satisfying the following conditions and the following formulas (3) and (4): Surface tension of homopolymer (F)
0. 7く <1. 3  0.7 k <1.3
熱可塑性炭素前駆体の表面張力  Surface tension of thermoplastic carbon precursor
…(3) ホモポリマー (F) の表面張力  … (3) Surface tension of homopolymer (F)
0. 7く ·■ く 1. 3  0.7 × 1.3
熱可塑性樹脂の表面張力  Surface tension of thermoplastic resin
…(4)  …(Four)
を満足するホモポリマー (F) よりなる群から選ばれるポリマーを 0. 001〜 20重量部でさらに含有する請求項 1に記載の方法。 The method according to claim 1, further comprising 0.0001 to 20 parts by weight of a polymer selected from the group consisting of homopolymers (F) satisfying the following.
9. 重合体セグメント (e l) がスチレンのホモポリマーまたはコポリマーであ る請求項 8に記載の方法。 9. The method according to claim 8, wherein the polymer segment (el) is a homopolymer or copolymer of styrene.
10. 重合体セグメント (e 2) がエチレンのホモポリマ一またはコポリマーで ある請求項 8に記載の方法。 10. The method according to claim 8, wherein the polymer segment (e2) is a homopolymer or copolymer of ethylene.
11. 共重合体 (E) がグラフト共重合体またはブロック共重合体である請求項 8に記載の方法。 11. The method according to claim 8, wherein the copolymer (E) is a graft copolymer or a block copolymer.
12. 工程 (1) の紡糸および製膜を溶融押出しにより行う請求項 1に記載の方 法。 12. The method according to claim 1, wherein the spinning and film formation in the step (1) are performed by melt extrusion.
13. 溶融押出しを 100〜 400 °Cの範囲の温度で行う請求項 12に記載の方 法。 13. The method according to claim 12, wherein the melt extrusion is performed at a temperature in the range of 100 to 400 ° C.
14. 製膜を 1〜100, 000 S—1の範囲の剪断を付与して行う請求項 12に 記載の方法。 14. The method according to claim 12, wherein the film is formed by applying a shear force in the range of 1 to 100,000 S- 1 .
15.工程( 1 )において、相当直径 1〜: 100 mの前駆体繊維または厚み 0. 1〜 500 mの前駆体フィルムを形成する請求項 1に記載の方法。 15. The method according to claim 1, wherein in step (1), a precursor fiber having an equivalent diameter of 1 to: 100 m or a precursor film having a thickness of 0.1 to 500 m is formed.
16. 工程 (2) の安定化処理を前駆体繊維もしくはフィルムを酸素および/ま たはハロゲンガスを含むガスと接触させて行う請求項 1に記載の方法。 16. The method according to claim 1, wherein the stabilizing treatment in step (2) is performed by bringing the precursor fiber or film into contact with a gas containing oxygen and / or a halogen gas.
17. 工程 (1) と工程 (2) の間で、 前駆体繊維もしくはフィルムを延伸する 請求項 1に記載の方法。 · 17. The method according to claim 1, wherein the precursor fiber or film is drawn between step (1) and step (2). ·
18. 工程 (3) における熱可塑性樹脂の除去を、 400〜600°Cの範囲の温 度で、 熱可塑性樹脂を熱分解させてガス化せしめて行う請求項 1に記載の方法。 18. The method according to claim 1, wherein the removal of the thermoplastic resin in the step (3) is performed by thermally decomposing and gasifying the thermoplastic resin at a temperature in a range of 400 to 600 ° C.
19. 工程 (4) における炭素化もしくは黒鉛ィ匕を、 不活性雰囲気下、 700〜 3, 000°Cの範囲の温度で行う請求項 1に記載の方法。 19. The method according to claim 1, wherein the carbonization or graphitizing in step (4) is performed in an inert atmosphere at a temperature in the range of 700 to 3,000 ° C.
20. (1) 熱可塑性樹脂 100重量部並びにピッチ、 ポリアクリロニトリル、 ポリカルポジイミド、ポリイミド、ポリべンゾァゾールおよびァラミドよりな る群から選ばれる少なくとも 1.種の熱可塑性炭素前駆体 1〜 150重量部か らなる混合物を溶融押出しにより製膜して前駆体フィルムを形成し、20. (1) 100 parts by weight of thermoplastic resin and at least one kind of thermoplastic carbon precursor selected from the group consisting of pitch, polyacrylonitrile, polycarboimide, polyimide, polybenzoazole and aramide 1 to 150 parts by weight The precursor mixture is formed by melt-extrusion of the resulting mixture to form a precursor film,
( 2 )前駆体フィルムを安定化処理に付して該前駆体フィルム中の熱可塑性炭 素前駆体を安定化して安定化前駆体フィルムを形成し、 (2) subjecting the precursor film to a stabilization treatment to stabilize the thermoplastic carbon precursor in the precursor film to form a stabilized precursor film,
( 3 )安定化前駆体フィルムを複数枚重ね合せて安定化前駆体重畳フィルムを 形成し、  (3) stacking a plurality of stabilized precursor films to form a stabilized precursor superimposed film,
(4)安定化前駆体重畳フィルムから熱可塑性棚旨を除去して繊維状炭素前駆 体マツトを形成し、 そして  (4) removing the thermoplastic shelf from the stabilized precursor superimposed film to form a fibrous carbon precursor mat, and
(5)繊維状炭素前駆体マツトを炭素化もしくは黒鉛化して炭素繊維マツトを 形成する、 ことを特徴とする炭素繊維マツトの製造法。 (5) carbonizing or graphitizing the fibrous carbon precursor mat to form a carbon fiber mat; A method for producing a carbon fiber mat.
21. 熱可塑性樹脂 100重量部並びにピッチ、 アクリロニトリル、 ポリカルボ ジイミド、 ポリイミド、 ポリべンゾァゾールおよびァラミドよりなる群から選ば れる少なくとも 1種の熱可塑性炭素前駆体 1〜 150重量部からなる繊維状炭素 製造用組成物。 21. For the production of fibrous carbon comprising 100 parts by weight of a thermoplastic resin and 1 to 150 parts by weight of at least one thermoplastic carbon precursor selected from the group consisting of pitch, acrylonitrile, polycarbodiimide, polyimide, polybenzoazole and aramide Composition.
22. 下記式 ( 1 ): 重合体セグメント (e l) の表面張力 22. The following formula (1): Surface tension of polymer segment (e l)
0. 7く く 1. 3  0.7 7 1.3
熱可塑性炭素前駆体の表面張力  Surface tension of thermoplastic carbon precursor
…(1) を満足する重合体セグメント (e l) および下記式 (2) : 重合体セグメント (e 2) の表面張力  ... Surface tension of polymer segment (e l) satisfying (1) and the following formula (2): polymer segment (e 2)
0. 7< く 1. 3  0.7 <1.3
熱可塑性樹脂の表面張力  Surface tension of thermoplastic resin
· · · (2)  · · · (2)
を満足する重合体セグメント (e 2) の共重合体 (E) 並びに下記式 (3) およ び (4): ホモポリマー (F) の表面張力 The surface tension of the copolymer (E) of the polymer segment (e 2) and the following formulas (3) and (4):
0. 7< く 1. 3  0.7 <1.3
熱可塑性炭素前駆体の表面張力  Surface tension of thermoplastic carbon precursor
…(3) ホモポリマー (F) の表面張力 … (3) Surface tension of homopolymer (F)
0. 7く <1. 3  0.7 k <1.3
熱可塑性樹脂の表面張力  Surface tension of thermoplastic resin
…(4)  …(Four)
を満足するホモポリマー (F) よりなる群から選ばれるポリマーを 0. 001〜 20重量部でさらに含有する請求項 21に記載の組成物。 22. The composition according to claim 21, further comprising 0.0001 to 20 parts by weight of a polymer selected from the group consisting of homopolymers (F) satisfying the following.
23. 前記熱可塑性樹脂 100重量部および熱可塑性炭素前駆体 1〜 150重量 部から実質的になるか、 あるいはそれらと前記共重合体 (E) および/またはホ モポリマー (F) 0. 001〜20重量部から実質的になる請求項 21または 2 2に記載の組成物。 23. It consists essentially of 100 parts by weight of the thermoplastic resin and 1 to 150 parts by weight of the thermoplastic carbon precursor, or consists of them and the copolymer (E) and / or the homopolymer (F) 0.001 to 20. 23. The composition according to claim 21 or 22 consisting essentially of parts by weight.
24. 熱可塑性樹脂のマトリックス中に熱可塑性炭素前駆体が粒状に分散されて おり、 そして分散された熱可塑性炭素前駆体の平均相当粒径が 0. 01〜50 mの範囲にある請求項 21に記載の組成物。 24. The thermoplastic carbon precursor is dispersed in a granular form in a thermoplastic resin matrix, and the average equivalent particle size of the dispersed thermoplastic carbon precursor is in the range of 0.01 to 50 m. A composition according to claim 1.
25. 300°Cで 3分間保持した後において、 分散された熱可塑性炭素前駆体の 平均相当粒径が 0. 01〜 50 mの範囲にある請求項 21に記載の組成物。 25. The composition according to claim 21, wherein after holding at 300 ° C for 3 minutes, the dispersed thermoplastic carbon precursor has an average equivalent particle size in the range of 0.01 to 50 m.
26. シェアレート 1, 000 S 1において熱可塑性樹脂の溶融粘度が熱可塑性 炭素前駆体の溶融粘度の 0. 5〜30倍となるような温度で熱可塑性樹脂と熱可 塑性炭素前駆体を混合して調製された請求項 21に記載の組成物。 26. mixing a thermoplastic resin and Netsuka plastic carbon precursor at shear rate 1, in 000 S 1 melt viscosity of the thermoplastic resin is 0.5 to 30 times the melt viscosity of the thermoplastic carbon precursor such temperatures 22. The composition of claim 21 prepared by:
27. 請求項 1の製造法により得られた炭素繊維の電池用電極への使用。 27. Use of the carbon fiber obtained by the method according to claim 1 for an electrode for a battery.
28. 請求項 1の製造法により得られた炭素繊維の樹脂と配合して使用するため の用途。 28. Use for blending with the carbon fiber resin obtained by the method of claim 1 for use.
29. 請求項 21の組成物の炭素繊維の製造用原料としての用途。 29. Use of the composition of claim 21 as a raw material for producing carbon fibers.
PCT/JP2003/012261 2002-09-30 2003-09-25 Process and composition for the production of carbon fiber and mats WO2004031461A1 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
US10/529,758 US20060012061A1 (en) 2002-09-30 2003-09-25 Process and composition for the production of carbon fiber and mats
DE60332947T DE60332947D1 (en) 2002-09-30 2003-09-25 METHOD FOR THE PRODUCTION OF CARBON FIBERS AND CARBON FIBER MATS
AT03753946T ATE470735T1 (en) 2002-09-30 2003-09-25 METHOD FOR PRODUCING CARBON FIBERS AND CARBON FIBER MATS
AU2003272887A AU2003272887A1 (en) 2002-09-30 2003-09-25 Process and composition for the production of carbon fiber and mats
CNB038234033A CN100338280C (en) 2002-09-30 2003-09-25 Carbon fiber and process and composition for the production of felt
EP03753946A EP1550747B1 (en) 2002-09-30 2003-09-25 Process for the production of carbon fiber and mats
JP2005500085A JP3971437B2 (en) 2002-09-30 2003-09-25 Process for the manufacture of carbon fibers and mats

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
JP2002-285209 2002-09-30
JP2002285209 2002-09-30
JP2002-317286 2002-10-31
JP2002317286 2002-10-31
JP2002-324959 2002-11-08
JP2002324959 2002-11-08
JP2002-359120 2002-12-11
JP2002359120 2002-12-11
JP2003-018513 2003-01-28
JP2003018513 2003-01-28
JP2003-173031 2003-06-18
JP2003173031 2003-06-18

Publications (1)

Publication Number Publication Date
WO2004031461A1 true WO2004031461A1 (en) 2004-04-15

Family

ID=32074818

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/012261 WO2004031461A1 (en) 2002-09-30 2003-09-25 Process and composition for the production of carbon fiber and mats

Country Status (10)

Country Link
US (1) US20060012061A1 (en)
EP (1) EP1550747B1 (en)
JP (1) JP3971437B2 (en)
KR (1) KR101031207B1 (en)
CN (1) CN100338280C (en)
AT (1) ATE470735T1 (en)
AU (1) AU2003272887A1 (en)
DE (1) DE60332947D1 (en)
TW (1) TW200412380A (en)
WO (1) WO2004031461A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006214033A (en) * 2005-02-03 2006-08-17 Teijin Ltd Spinneret for melt blend spinning and method for producing ultrafine fiber using the same
WO2006100783A1 (en) * 2005-03-24 2006-09-28 Kuraray Co., Ltd. Extrafine carbon fiber and process for producing the same
JP2006324133A (en) * 2005-05-19 2006-11-30 Nitto Denko Corp Electrolyte membrane and solid polymer fuel cell
WO2009125857A1 (en) * 2008-04-08 2009-10-15 帝人株式会社 Carbon fiber and method for production thereof
JP2010031439A (en) * 2008-06-30 2010-02-12 Teijin Ltd Production method of carbon fiber
CN101724922B (en) * 2009-11-26 2012-09-05 中复神鹰碳纤维有限责任公司 Method for preparing high-strength polyacrylonitrile-based precursor for carbon fiber
JP2016534252A (en) * 2013-09-19 2016-11-04 ダウ グローバル テクノロジーズ エルエルシー Polyolefin-derived carbon fiber containing boron

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101176807B1 (en) * 2003-11-10 2012-08-24 데이진 가부시키가이샤 Carbon fiber nonwoven fabric,and production method and use thereof
EP1724380B1 (en) * 2004-03-11 2016-06-15 Teijin Limited Carbon fiber
DE102006026549A1 (en) * 2006-06-08 2007-12-13 Audi Ag Process for producing friction discs of ceramic materials with improved friction layer
KR100995154B1 (en) * 2010-02-11 2010-11-18 전남대학교산학협력단 Method of preparing porous carbon nanofibers, porous carbon nanofibers thereby and applications including the same
CN103339555B (en) * 2010-09-17 2018-03-02 三菱瓦斯化学株式会社 The front panel of TN liquid crystal panels
TWI460330B (en) * 2010-11-02 2014-11-11 Concrete Invest Co Ltd Carbon fiber bundle dispersion method and the carbon fiber bundle obtained by the method
KR101396035B1 (en) 2011-12-23 2014-05-19 한국생산기술연구원 Method for manufacturing activated carbon fibers using electro spinning and manufacturing
JP5696813B2 (en) * 2013-03-22 2015-04-08 東レ株式会社 Porous carbon material, porous carbon material precursor, method for producing porous carbon material precursor, and method for producing porous carbon material
CN103469369B (en) * 2013-05-31 2016-05-11 中简科技股份有限公司 The preparation method of high-performance polyacrylonitrile charcoal fiber
WO2015197815A1 (en) * 2014-06-27 2015-12-30 Koninklijke Kpn N.V. Determining a region of interest on the basis of a hevc-tiled video stream
CN104047066B (en) * 2014-07-01 2016-08-17 陕西天策新材料科技有限公司 A kind of mesophase pitch melt spinning method
JP6808937B2 (en) * 2014-07-15 2021-01-06 東レ株式会社 Manufacturing method of electrode material
CN104118158B (en) * 2014-07-17 2016-10-05 航天特种材料及工艺技术研究所 One receives micron carbon fiber composite felt and preparation method thereof
CN104953086B (en) * 2015-06-11 2017-06-16 贵州新碳高科有限责任公司 The preparation method of graphite fibre electrode material
KR102220779B1 (en) * 2015-06-26 2021-02-25 코오롱인더스트리 주식회사 Method of manufacturing graphite film
CN105954342A (en) * 2016-04-26 2016-09-21 兰州蓝星纤维有限公司 Method for testing density of polyacrylonitrile protofilament fibers
CN108396408A (en) * 2018-01-30 2018-08-14 东莞市联洲知识产权运营管理有限公司 A kind of preparation method of the multistage hole carbon fiber of aramid fiber base enhancing of N doping

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6236465A (en) * 1985-08-12 1987-02-17 Unitika Ltd Composition for formation of carbide having fine optical texture
JPH0364525A (en) * 1989-07-28 1991-03-19 Toyobo Co Ltd Production of pitch-based carbon yarn
US5100937A (en) * 1989-08-31 1992-03-31 Nippon Oil Co., Ltd. Thermoplastic resin compositions
JP2002173308A (en) * 2000-12-04 2002-06-21 Mitsubishi Chemicals Corp Carbon nano-tube
JP2003336130A (en) * 2002-03-15 2003-11-28 Mitsubishi Rayon Co Ltd Carbon fiber, carbon nanofiber obtained from the same and method of production for carbon fiber and precursor fiber for the same

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3639953A (en) * 1969-08-07 1972-02-08 Kanegafuchi Spinning Co Ltd Method of producing carbon fibers
GB1356567A (en) * 1970-09-08 1974-06-12 Coal Industry Patents Ltd Manufacture of carbon fibres
US3984514A (en) * 1972-01-24 1976-10-05 Gulf Research & Development Company Process for producing fine polyamide/polystyrene fibers
US3995014A (en) * 1973-12-11 1976-11-30 Union Carbide Corporation Process for producing carbon fibers from mesophase pitch
KR870000534B1 (en) * 1983-10-13 1987-03-14 미쓰비시 레이욘 가부시끼가이샤 Carbon fiber and it's making method
JPH0382822A (en) * 1989-08-25 1991-04-08 Tonen Corp Production of pitch-based carbon fiber
JP2001073226A (en) 1999-08-30 2001-03-21 Gun Ei Chem Ind Co Ltd Conjugate fiber, phenolic ultrafine carbon fiber and production of them
US6583075B1 (en) * 1999-12-08 2003-06-24 Fiber Innovation Technology, Inc. Dissociable multicomponent fibers containing a polyacrylonitrile polymer component

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6236465A (en) * 1985-08-12 1987-02-17 Unitika Ltd Composition for formation of carbide having fine optical texture
JPH0364525A (en) * 1989-07-28 1991-03-19 Toyobo Co Ltd Production of pitch-based carbon yarn
US5100937A (en) * 1989-08-31 1992-03-31 Nippon Oil Co., Ltd. Thermoplastic resin compositions
JP2002173308A (en) * 2000-12-04 2002-06-21 Mitsubishi Chemicals Corp Carbon nano-tube
JP2003336130A (en) * 2002-03-15 2003-11-28 Mitsubishi Rayon Co Ltd Carbon fiber, carbon nanofiber obtained from the same and method of production for carbon fiber and precursor fiber for the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ASAO OYA, NAOTO KASAHARA: "Preparation of thin carbon fibers from phenol-formaldehyde polymer micro-beads dispersed in polyethylene matrix", CARBON, vol. 38, 2000, pages 1141 - 1144, XP004203316 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006214033A (en) * 2005-02-03 2006-08-17 Teijin Ltd Spinneret for melt blend spinning and method for producing ultrafine fiber using the same
WO2006100783A1 (en) * 2005-03-24 2006-09-28 Kuraray Co., Ltd. Extrafine carbon fiber and process for producing the same
JP2006324133A (en) * 2005-05-19 2006-11-30 Nitto Denko Corp Electrolyte membrane and solid polymer fuel cell
WO2009125857A1 (en) * 2008-04-08 2009-10-15 帝人株式会社 Carbon fiber and method for production thereof
JP5451595B2 (en) * 2008-04-08 2014-03-26 帝人株式会社 Carbon fiber and method for producing the same
TWI479056B (en) * 2008-04-08 2015-04-01 Teijin Ltd Carbon fiber and its manufacturing method
US9376765B2 (en) 2008-04-08 2016-06-28 Teijin Limited Carbon fiber and method for producing the same
JP2010031439A (en) * 2008-06-30 2010-02-12 Teijin Ltd Production method of carbon fiber
CN101724922B (en) * 2009-11-26 2012-09-05 中复神鹰碳纤维有限责任公司 Method for preparing high-strength polyacrylonitrile-based precursor for carbon fiber
JP2016534252A (en) * 2013-09-19 2016-11-04 ダウ グローバル テクノロジーズ エルエルシー Polyolefin-derived carbon fiber containing boron

Also Published As

Publication number Publication date
JPWO2004031461A1 (en) 2006-02-02
KR20050061495A (en) 2005-06-22
KR101031207B1 (en) 2011-04-27
CN100338280C (en) 2007-09-19
DE60332947D1 (en) 2010-07-22
EP1550747B1 (en) 2010-06-09
TWI325450B (en) 2010-06-01
ATE470735T1 (en) 2010-06-15
US20060012061A1 (en) 2006-01-19
EP1550747A1 (en) 2005-07-06
AU2003272887A1 (en) 2004-04-23
TW200412380A (en) 2004-07-16
EP1550747A4 (en) 2006-05-31
CN1685095A (en) 2005-10-19
JP3971437B2 (en) 2007-09-05

Similar Documents

Publication Publication Date Title
WO2004031461A1 (en) Process and composition for the production of carbon fiber and mats
US9376765B2 (en) Carbon fiber and method for producing the same
KR101159088B1 (en) Carbon fiber
Mei et al. Magnetic‐field‐assisted electrospinning highly aligned composite nanofibers containing well‐aligned multiwalled carbon nanotubes
Wang Carbon fibers and their thermal transporting properties
JP2004176236A (en) Method for producing carbon fiber
JP4342871B2 (en) Extra fine carbon fiber and method for producing the same
US11104834B2 (en) Heat dissipation sheet
JP2010031439A (en) Production method of carbon fiber
JP5554656B2 (en) Method for producing ultrafine carbon fiber cotton
KR102016272B1 (en) Carbon material and its manufacturing method
KR102247155B1 (en) Carbon filament made from the hybrid precursor fiber and manufacturing method thereof
JP4339727B2 (en) Carbon fiber manufacturing method
JP2006063487A (en) Method for producing carbon fiber
JP2003327836A (en) High heat conductive material and molded product
JP4155936B2 (en) Method for producing ultrafine carbon fiber
JP4263122B2 (en) Carbon fiber and method for producing the same
JP2005264346A (en) Carbon fiber and method for producing the same
JP2005248371A (en) Very fine carbon fiber and method for producing the same
JP4429765B2 (en) Carbon fiber and method for producing the same
JP2005273069A (en) Carbon fiber and method for producing the same
JP2006063476A (en) Method for producing carbon fiber

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005500085

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1020057005404

Country of ref document: KR

ENP Entry into the national phase

Ref document number: 2006012061

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 504/CHENP/2005

Country of ref document: IN

Ref document number: 20038234033

Country of ref document: CN

Ref document number: 10529758

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2003753946

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020057005404

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2003753946

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10529758

Country of ref document: US