WO2004030607A2 - Peptide-based passive immunization therapy for treatment of atherosclerosis - Google Patents

Peptide-based passive immunization therapy for treatment of atherosclerosis Download PDF

Info

Publication number
WO2004030607A2
WO2004030607A2 PCT/SE2003/001547 SE0301547W WO2004030607A2 WO 2004030607 A2 WO2004030607 A2 WO 2004030607A2 SE 0301547 W SE0301547 W SE 0301547W WO 2004030607 A2 WO2004030607 A2 WO 2004030607A2
Authority
WO
WIPO (PCT)
Prior art keywords
seq
antibody
region
variable light
variable heavy
Prior art date
Application number
PCT/SE2003/001547
Other languages
French (fr)
Other versions
WO2004030607A3 (en
Inventor
Jan Nilsson
Roland Carlsson
Jenny Bengtsson
Leif Strandberg
Original Assignee
Forskarpatent I Syd Ab
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from SE0202959A external-priority patent/SE0202959D0/en
Priority claimed from SE0302312A external-priority patent/SE0302312D0/en
Priority to CA002500895A priority Critical patent/CA2500895A1/en
Priority to DE60336068T priority patent/DE60336068D1/en
Priority to EEP200500012A priority patent/EE200500012A/en
Priority to ES03748843T priority patent/ES2387423T3/en
Priority to BR0315042-9A priority patent/BR0315042A/en
Priority to AT03748843T priority patent/ATE498407T1/en
Application filed by Forskarpatent I Syd Ab filed Critical Forskarpatent I Syd Ab
Priority to EP03748843A priority patent/EP1545609B1/en
Priority to AU2003267905A priority patent/AU2003267905B2/en
Priority to JP2005500961A priority patent/JP2006506450A/en
Priority to SI200331982T priority patent/SI1545609T1/en
Priority to DK03748843.4T priority patent/DK1545609T3/en
Priority to CN200380104103.2A priority patent/CN1717251B/en
Publication of WO2004030607A2 publication Critical patent/WO2004030607A2/en
Publication of WO2004030607A3 publication Critical patent/WO2004030607A3/en
Priority to HK06107155.0A priority patent/HK1087018A1/en
Priority to AU2009201260A priority patent/AU2009201260B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/505Medicinal preparations containing antigens or antibodies comprising antibodies
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/20Immunoglobulins specific features characterized by taxonomic origin
    • C07K2317/21Immunoglobulins specific features characterized by taxonomic origin from primates, e.g. man
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/60Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments
    • C07K2317/62Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments comprising only variable region components
    • C07K2317/622Single chain antibody (scFv)

Definitions

  • the present invention relates to new isolated human antibodies raised against peptides being derivatives of apolipoprotein B, in particular antibodies to be used for immunization therapy for treatment of atherosclerosis, method for their preparation, and method for passive immunization using said antibodies.
  • the invention includes:
  • Antibodies initiate their biological activity by binding to antigens. Antibody binding to antigens is generally specific for one antigen and the binding is usually of high affinity. Antibodies are produced by B- lymphocytes. Blood contains many different antibodies, each derived from a clone of B- cells and each having a distinct structure and specificity for antigen. Antibodies are present on the surface of B-lymphocytes, in the plasma, in interstitial fluid of the tissues and in secretory fluids such as saliva and mucous on mucosal surfaces.
  • All antibodies are similar in their overall structure, accounting for certain similarities in physico-chemical features such as charge and solubility. All antibodies have a common core structure of two identical light chains, each about 24 kilo Daltons, and two identical heavy chains of about 55-70 kilo Daltons each. One light chain is attached to each heavy chain, and the two heavy chains are attached to each other. Both the light and heavy chains contain a series of repeating homologous units, each of about 110 amino acid residues in length which fold independently in a common globular motif, called an immunoglobulin (Ig) domain. The region of an antibody formed by the association of the two heavy chains is hydrophobic.
  • Ig immunoglobulin
  • Antibodies and especially monoclonal antibodies, are known to cleave at the site where the light chain attaches to the heavy chain when they are subjected to adverse physical or chemical conditions. Because antibodies contain numerous cysteine residues, they have many cysteine-cysteine disulfide bonds. All Ig domains contain two layers of beta-pleated sheets with three or four strands of anti- parallel polypeptide chains.
  • antibody molecules can be divided into a small number of distinct classes and subclasses based on physicochemical characteristics such as size, charge and solubility, and on their behavior in binding to antigens.
  • the classes of antibody molecules are: IgA, IgD, IgE, IgG and IgM. Members of each class are said to be of the same isotype.
  • IgA and IgG isotypes are further subdivided into subtypes called IgAl, IgA2 and IgGl, IgG2, IgG3 and IgG4.
  • the heavy chains of all antibodies in an isotype share extensive regions of amino acid sequence identity, but differ from antibodies belonging to other isotypes or subtypes.
  • Heavy chains are designated by the letters of the Greek alphabet corresponding to the overall isotype of the antibody, e.g., IgA contains .alpha., IgD contains .delta., IgE contains .epsilon., IgG contains .gamma., and IgM contains .mu. heavy chains.
  • IgG, IgE and IgD circulate as monomers, whereas secreted forms of IgA and IgM are dimers or pentamers, respectively, stabilized by the J chain.
  • Atherosclerosis is a chronic disease that causes a thickening of the innermost layer (the intima) of large and medium-sized arteries. It decreases blood flow and may cause ischemia and tissue destruction in organs supplied by the affected vessel.
  • Atherosclerosis is the major cause of cardiovascular disease including myocardial infarction, stroke and peripheral artery disease. It is the major cause of death in the western world and is predicted to become the leading cause of death in the entire world within two decades.
  • LDL low-density lipoprotein
  • Antibodies against oxidized LDL were present in both patients with cardiovascular disease and in healthy controls. Although some early studies reported associations between oxidized LDL antibody titers and cardiovascular disease, others were unable to find such associations. A major weakness of these studies was that the ELISA tests used to determine antibody titers used oxidized LDL particles as ligand. LDL composition is different in different individuals, the degree of oxidative modification is difficult both to control and assess and levels of antibodies against the different epitopes in the oxidized LDL particles can not be determined.
  • epitopes are likely to be responsible for activating the anti- atherogenic immune response observed in animals immunized with oxidized LDL.
  • Peptides containing these epitopes may therefore represent a possibility for development of an immune therapy or "atherosclerosis vaccine" in man. Further, they can be used for therapeutic treatment of atheroschlerosis developed in man.
  • peptides containing the identified epitopes can be used to develop ELISAs able to detect antibodies against specific structure in oxidized LDL.
  • ELISAs would be more precise and reliable than ones presently available using oxidized LDL particles as antigen. It would also allow the analyses of immune responses against different epitopes in oxidized LDL associated with cardiovascular disease.
  • US patent 5,972,890 relates to a use of peptides for diagnosing atherosclerosis.
  • the technique presented in said US patent is as a principle a form of radiophysical diagnosis.
  • a peptide sequence is radioactively labelled and is injected into the bloodstream. If this peptide sequence should be identical with sequences present in apolipoprotein B it will bind to the tissue where there are receptors present for apolipoprotein B. In vessels this is above all atherosclerotic plaque.
  • the concentration of radioactivity in the wall of the vessel can then be determined e.g., by means of a gamma camera.
  • the technique is thus a radiophysical diagnostic method based on that radioactively labelled peptide sequences will bound to their normal tissue receptors present in atherosclerotic plaque and are detected using an external radioactivity analysis. It is a direct analysis method to identify atherosclerotic plaque. It requires that the patient be given radioactive compounds.
  • the technique of the present invention is based on quite different principles and methods.
  • the invention relates to antibodies raised against oxidized fragments of apolipoprotein B, which antibodies are used for immunisation against cardiovascular disease.
  • the first approach comprised technology to make so called chimearic antibodies where the murine variable domains of the antibody were transferred to human constant regions resulting in an antibody that was mainly human (Neuberger et al. 1985, Nature 314: 268-70).
  • CDRs Complementarity Determining Regions
  • Today also completely human antibodies may be produced using recombinant technologies. Typically large libraries comprising billions of different antibodies are used. In contrast to the previous technologies employing chimearisation or humanisation of e.g. murine antibodies this technology does not rely on immunisation of animals to generate the specific antibody. In stead the recombinant libraries comprise a huge number of pre-made antibody variants why it is likely that the library will have at least one antibody specific for any antigen. Thus, using such libraries the problem becomes the one to find the specific binder already existing in the library, and not to generate it through immunisations. In order to find the good binder in a library in an efficient manner, various systems where phenotype i.e. the antibody or antibody fragment is linked to its genotype i.e.
  • phage display system where antibody fragments are expressed, displayed, as fusions with phage coat proteins on the surface of filamentous phage particles, while simultaneously carrying the genetic information encoding the displayed molecule.
  • Phage displaying antibody fragments specific for a particular antigen may be selected through binding to the antigen in question. Isolated phage may then be amplified and the gene encoding the selected antibody variable domains may optionally be transferred to other antibody formats as e.g. full length immunoglobulin and expressed in high amounts using appropriate vectors and host cells well known in the art.
  • the format of displayed antibody specificities on phage particles may differ.
  • the most commonly used formats are Fab (Griffiths et al., 1994. EMBO J. i3:3245-3260) and single chain (scFv) (Hoogenboom et al., 1992, J Mol Biol. 227:381-388) both comprising the variable antigen binding domains of antibodies.
  • the single chain format is composed of a variable heavy domain (VH) linked to a variable light domain (VL) via a flexible linker (US 4,946,778).
  • VH variable heavy domain
  • VL variable light domain
  • US 4,946,778 flexible linker
  • PCT/SE02/00679 could be used as antigens for generation of fully human antibodies with predetermined properties.
  • the antigenic structures i.e. the peptides used in the present invention were identified as being particularly relevant as target sequences for therapeutic antibodies (PCT/SE02/00679).
  • the antibodies are derived from antibody libraries omitting the need for immunisation of lipoprotein deficient mice to raise murine antibodies (US 6,225,070).
  • the resulting antibodies are fully human and are not expected to generate any undesired immunological reaction when administered into patients.
  • the present invention relates to the use of at least one isolated human antibody or an antibody fragment thereof directed towards at least one oxidized fragment of apolipoprotein B in the manufacture of a pharmaceutical composition for therapeutical or prophylactical treatment of atherosclerosis by means of passive immunization.
  • the invention relates to the recombinant preparation of such antibodies, as well as the invention relates to method for passive immunization using such antibodies raised using an oxidized apolipoprotein B fragment, as antigen, in particular a fragment as identified above.
  • the present invention utilises an isolated antibody fragment library to generate specific human antibody fragments against oxidized, in particular MDA modified peptides derived from Apo B100. Identified antibody fragments with desired characteristics may then be rebuilt into full length human immunoglobulin to be used for therapeutic purposes.
  • CDRs are isolated from human immunoglobulin genes and are shuffled into a fixed framework.
  • variability in the resulting immunoglobulin variable regions is a consequence of recombination of all six CDRs into the fixed framework.
  • the framework regions are all germline and are identical in all antibodies.
  • variability is restricted to the CDRs, which are all natural, and of human origin.
  • the library contains approximately 2 x 10 10 independent clones and a 2000 fold excess of clones was used as input for each selection. Selections were performed in three rounds.
  • Immunotubes (NUNC maxisorb 444202) were coated with 1.2 ml of 20 ⁇ g/ml MDA-modified target peptides in PBS (137 mM NaCl, 2.7 mM KCI, 4.3 mM Na 2 HP0 4 , 1.4 mM KH 2 P0 4 ) with end over end agitation at +4°C over night.
  • the tubes were then blocked with TPBSB5% (5 % BSA, 0.05% Tween 20, 0.02 % sodium Azide in PBS) for 30 minutes and washed twice with TPBSB3% (3 % BSA, 0.05% Tween 20, 0.02 % sodium Azfde in PBS) before use.
  • Each target tube was then incubated with approximately 2 x 10 13 CFU phages from the n-CodeRTM library in 1.8 ml TPBSB3% for 2 h at room temperature, using end over end agitation.
  • the tubes were then washed with 15 x 3 ml TPBSB3% and 2 x 1 ml PBS before the bound phages were eluted with 1 ml/tube of 2 mg/ml trypsin (Roche, 109819) for 30 minutes at room temperature.
  • This procedure takes advantage of a specific trypsin site in the scFv-fusion protein to release the phage from the target.
  • the reaction was stopped by the addition of 100 ⁇ l of Aprotein (0.2 mg/ml, Roche, cat.236624), and the immunotubes were washed with 300 ⁇ l PBS, giving a final volume of 1.4 ml.
  • the resulting phage supernatant was then precipitated by addition of 1/4 volume of 20% PEG 600 o in 2.5 M NaCl and incubated for 5 h at +4°C.
  • the phages were then pelleted by centrifugation for 30 minutes, 13000 x g, re-suspended in 500 ⁇ l PBS and used in selection round 2.
  • the amplified phagestock was used in selection round 2 in a final volume of 1.5 ml of 5 % BSA, 0.05% Tween 20, 0.02 % sodium Azide in PBS.
  • Peptide without MDA modification (4 x 10 "7 M) was also included for competition against binders to MDA- unmodified target peptide.
  • the mixture was incubated in immunotubes prepared with antigen as described above, except that the tubes were blocked with 1 % Casein instead of TPBSB3%. The incubations and washing of the immunotubes were as described for selection 1. Bound phages were then eluted for 30 minutes using 600 ⁇ l of 100 mM Tris- Glycine buffer, pH 2.2.
  • the tubes were washed with additional 200 ⁇ l glycin buffer and the eluates were pooled and then neutralised with 96 ⁇ l of 1 M Tris-HCI, pH 8.0. The samples were re-natured for 1 h at room temperature and used for selection round 3.
  • BSA, Tween 20 and Sodium Azide were added to the renaturated phage pool to a final concentration of 3 %, 0.05% and 0.02%, respectively.
  • Competitor peptides, MDA modified unrelated peptides as well as native target peptides without modification were added to a concentration of 1 x 10 "7 M.
  • the phage mixtures (1100 ⁇ l) were added to immunotubes coated with target antigen as described in selection 1 and incubated over night at 4°C with agitation. The tubes were then washed with 3 x 3 ml TPBSB 3%, 5 x 3 ml PBS and eventually bound phages were eluted using trypsin as described in selection round 1 above.
  • Each eluate was infected to 10 ml of logarithmically growing HB101F' in LB containing 100 ⁇ g/ml ampicillin, 15 ⁇ g/ml tetracycline, 0.1% glucose, and grown over night at 30°C, 200 rpm in a shaker incubator.
  • the over night cultures were used for mini scale preparation of plasmid DNA, using Biorad mini prep Kit (Cat. 732 6100).
  • Biorad mini prep Kit Cat. 732 6100.
  • 0.25 ⁇ g of the plasmid DNA was cut for 2 h at 37°C using 2.5 U Eag- 1 (New England Biolabs, cat. R050) in the buffer recommended by the supplier.
  • the samples were then heat inactivated for 20 minutes at 65°C and ligated over night at
  • Bacterial PCR was performed with the Boeringer Mannheim Expand kit using primers (5'- CCC AGT CAC GAC GTT GTA AAA CG-3') and (5'-GAA ACA GCT ATG AAA TAC CTA TTG C- 3') and a GeneAmp PCR system 9700 (PE Applied system) using the temperature cycling program 94°C 5 min, 30 cycles of 94°C 30s, 52°C for 30s and 68°C for 2min and finally 5 min at 68 min.
  • the sequencing reaction was performed with the bacterial PCR product (five fold diluted) as template, using Big Dye Terminator mix from PE Applied Biosystems and the GeneAmp PCR system 9700 (PE Applied system) and the temperature cycling program 25 cycles of 96°C 10s, 50°C for 5s and 60°C for 4 min.
  • the extension products were purified according to the supplier's instructions and the separation and detection of extension products was done by using a 3100 Genetic analyser (PE Applied Biosystems). The sequences were analysed by the in house computer program. From the sequence information homologous clones and clones with inappropriate restriction sites were excluded, leaving six clones for IgG conversion.
  • the DNA sequences of the variable heavy (VH) and variable light (VL) domains of the finally selected clones are shown in Figure 3.
  • Plasmid DNA was prepared from over night cultures using the Quantum Prep, plasmid miniprep kit from Biorad (# 732-6100). The DNA concentration was estimated by measuring absorbance at 260nm, and the DNA was diluted to a concentration of 2 ng/ ⁇ l. VH and VL from the different scFv-plasmids were PCR amplified in order to supply these segments with restriction sites compatible with the expression vectors (see below). 5' primers contain a Bsml and 3' primers contain a BsiWI restriction enzyme cleavage site (shown in italics). 3' primers also contained a splice donor site (shown in bold).
  • 5 H 5'-GGTGTGC .7TCCGAGGTGCAGCTGTTGGAG (SEQ. ID. NO: 13)
  • PCR was conducted in a total volume of 50 ⁇ l, containing lOng template DNA, 0.4 ⁇ M 5' primer, 0.4 ⁇ M 3' primer and 0.6 mM dNTP (Roche, #1 969 064).
  • the polymerase used was Expand long template PCR system (Roche # 1 759 060), 3.5 u per reaction, together with each of the supplied buffers in 3 separate reactions.
  • Each PCR amplification cycle consisted of a denaturing step at 94°C for 30 seconds, an annealing step at 55°C for 30 seconds, and an elongating step at 68°C for 1.5 minutes. This amplification cycle was repeated 25 times.
  • Plasmids containing VH and VL segments without mutations were restriction enzyme digested.
  • Dral Roche # 1 417 983
  • Digestions were heat inactivated at 70°C for 20 minutes and purified by spin column chromatography using S400-HR columns (Amersham-Pharmacia Biotech # 27-5240-01).
  • the purified Dral digestions were subsequently digested with Bsml (Roche # 1 292 307) and BsiWI (Roche # 1 388 959) at 55°C over night. Digestions were purified using phenol extraction and precipitation. The precipitated DNA was dissolved in 10 ⁇ l H 2 0 and used for ligation.
  • the expression vectors were obtained from Lars Norderhaug (J. Immunol. Meth. 204 (1997) 77-87). After some modifications, the vectors ( Figure 4) contain a CMV promoter, an Ig-leader peptide, a cloning linker containing Bsml and BsiWI restriction sites for cloning of VH/VL, genomic constant regions of IgGl (heavy chain (HC) vector) or lambda (light chain (LC) vector), neomycin (HC vector) or methotrexate (LC vector) resistance genes for selection in eukaryotic cells, SV40 and ColEI origins of replication and ampicillin (HC vector) or kanamycin (LC vector) resistance genes for selection in bacteria.
  • HC heavy chain
  • LC light chain
  • LC vector methotrexate
  • the HC and LC vectors were digested with Bsml and BsiWI, phosphatase treated and purified using phenol extraction and precipitation. Ligation were set up at 16°C over night in a volume of 10 ⁇ l, containing 100 ng digested vector, 2 ⁇ l digested VH/VL-pCR 2.1 TOPO vector (see above), 1 U T4 DNA ligase (Life Technologies, # 15224-025) and the supplied buffer. 2 ⁇ l of the ligation mixture were subsequently transformed into 50 ⁇ l chemo competent toplOF' bacteria, and plated on selective (100 ⁇ g/ml ampicillin or 20 ⁇ g/ml kanamycin) agar plates.
  • Colonies containing HC/LC plasmids with VH/VL inserts were identified by colony PCR: Forward primer: 5'-ATGGGTGACAATGACATC Reverse primer: 5'-AAGCTTGCTAGCGTACG PCR was conducted in a total volume of 20 ⁇ l, containing bacteria, 0.5 ⁇ M forward primer, 0.5 ⁇ M reverse primer and 0.5 mM dNTP (Roche, #1 969 064). The polymerase used was Expand long template PCR system (Roche # 1 759 060), 0.7 U per reaction, together with the supplied buffer #3.
  • Each PCR amplification cycle consisted of a denaturing step at 94°C for 30 seconds, an annealing step at 52°C for 30 seconds, and an elongating step at 68°C for 1.5 minutes. This amplification cycle was repeated 30 times. Each reaction began with a single denaturing step at 94°C for 2 minutes and ended with a single elongating step at 68°C for 5 minutes. The existence of PCR product was checked by agarose gel electrophoresis. Colonies containing HC/LC plasmids with VH/VL inserts were grown over night in LB supplemented with 100 ⁇ g/ml ampicillin or 20 ⁇ g/ml kanamycin.
  • Plasmid DNA was prepared from over night cultures using the Quantum Prep, plasmid miniprep kit from Biorad (# 732-6100). Plasmid preparations were purified by spin column chromatography using S400-HR columns (Amersham- Pharmacia Biotech # 27-5240-01). To confirm the integrity of the DNA sequence, three plasmids from each individual VH and VL were subjected to sequence analysis using BigDye Cycle Sequencing (Perkin Elmer Applied Biosystem, # 4303150). The cycle sequencing program consisted of a denaturing step at 96°C for 10 seconds, an annealing step at 50°C for 15 seconds, and an elongating step at 60°C for 4 minutes. This cycle was repeated 25 times.
  • Each reaction began with a single denaturing step at 94°C for 1 minute.
  • the reactions were performed in a volume of 10 ⁇ l consisting of 1 ⁇ M primer (5'-AGACCCAAGCTAGCTTGGTAC), 3 ⁇ l plasmid DNA and 4 ⁇ l Big Dye reaction mix.
  • the reactions were precipitated according to the manufacturers recommendations, and samples were run on an ABI PRISM 3100 Genetic Analyzer. Sequences were analysed using the OMIGA sequence analysis software (Oxford Molecular Ltd).
  • the plasmid DNA was used for transient transfection of COS-7 cells (see below) and was digested for production of a joined vector, containing heavy- and light chain genes on the same plasmid.
  • Heavy and light chain vectors containing VH and VL segments originating from the same scFv were cleaved by restriction enzymes and ligated: HC- and LC-vectors were initially digested with Muni (Roche # 1 441 337) after which digestions were heat inactivated at 70°C for 20 minutes and purified by spin column chromatography using S200-HR columns (Amersham-Pharmacia Biotech # 27-5120-01). HC-vector digestions were subsequently digested with Nrul (Roche # 776 769) and LC-vector digestions with Bstll07I (Roche # 1 378 953).
  • Digestions were then heat inactivated at 70°C for 20 minutes and purified by spin column chromatography using S400-HR columns (Amersham-Pharmacia Biotech # 27-5240-01).
  • 5 ⁇ l of each digested plasmid were ligated at 16°C over night in a total volume of 20 ⁇ l, containing 2 U T4 DNA ligase (Life Technologies, # 15224-025) and the supplied buffer.
  • 2 ⁇ l of the ligation mixture were subsequently transformed into 50 ⁇ l chemo competent toplOF' bacteria, and plated on selective (100 ⁇ g/ml ampicillin and 20 ⁇ g/ml kanamycin) agar plates.
  • Plasmid DNA was prepared from over night cultures using the Quantum Prep, plasmid miniprep kit from Biorad (# 732-6100). Correctly joined vectors were identified by restriction enzyme digestion followed by analyses of fragment sizes by agarose gel-electrophoreses
  • Plasmid preparations were purified by spin column chromatography using S400-HR columns (Amersham-Pharmacia Biotech # 27-5240-01) and used for transient transfection of COS-7 cells.
  • COS-7 cells (ATCC # CRL-1651) were cultured at 37°C with 5% C0 2 in Dulbeccos MEM, high glucose + Glutamaxl (Invitrogen # 31966021), supplemented with 0.1 mM non- essential amino acids (Invitrogen # 11140035) and 10% fetal bovine sera (Invitrogen # 12476-024, batch # 1128016). The day before transfection, the cells were plated in 12- well plates (Nunc, # 150628) at a density of 1.5xl0 5 cells per well.
  • the plasmid DNA Prior to transfection, the plasmid DNA was heated at 70°C for 15 minutes. Cells were transfected with 1 ⁇ g HC-plasmid + 1 ⁇ g LC-plasmid, or 2 ⁇ g joined plasmid per well, using Lipofectamine 2000 Reagent (Invitrogen, # 11668019) according to the manufacturers recommendations. 24 hours post transfection, cell culture media was changed and the cells were allowed to grow for 5 days. After that, medium was collected and protein production was assayed for using ELISA.
  • sample buffer lx PBS containing 2% BSA and 0.5% rabbit serum (Sigma # R4505). Subsequently, plates were washed as described above and 100 ⁇ l/well of rabbit anti- human IgG ( ⁇ -chain) HARP-conjugated antibody (DAKO, # P214) diluted 8000 times in sample buffer was added and incubated at room temperature for 1 hour. After washing 8 times with PBS containing 0.05% Tween 20, 100 ⁇ l/well of a substrate solution containing one OPD tablet (10 mg, Sigma # P8287,) dissolved in 15 ml citric acid buffer and 4.5 ⁇ l H 2 0 2 (30%) was added. After 10 minutes, the reaction was terminated by adding 150 ⁇ l/well of IM HCl. Absorbance was measured at 490-650 nm and data was analyzed using the Softmax software.
  • Plasmid DNA was prepared from over night cultures using the Quantum Prep, plasmid maxiprep kit from Biorad (# 732-6130). Vectors were linearized using Pvul restriction enzyme (Roche # 650 129). Prior to transfection, the linearized DNA was purified by spin column chromatography using S400-HR columns (Amersham-Pharmacia Biotech # 27-5240-01) and heated at 70°C for 15 minutes.
  • NSO cells (ECACC no. 85110503) were cultured in DMEM (cat nr 31966-021, Invitrogen) supplemented with 10% Fetal Bovine Serum (cat no. 12476-024, lot: 1128016, Invitrogen) and IX NEAA (non-essential amino acids, cat no. 11140-053, Invitrogen). Cell cultures are maintained at 37°C with 5% C0 2 in humidified environment.
  • DNA constructs to be transfected were four constructs of IEI specific antibodies (IEI-A8, IEI-D8, IEI-E3, IEI-G8), two of KTT specific antibodies (KTT-B8, KTT-D6) and one control antibody (JFPA12).
  • IEI-A8, IEI-D8, IEI-E3, IEI-G8 two of KTT specific antibodies
  • KTT-B8, KTT-D6 two of KTT specific antibodies
  • JFPA12 control antibody
  • OPTI-MEM I Reduced Serum Medium (Cat no. 51985-026, lot: 3062314, Invitrogen) without serum.
  • 114 ⁇ l of Lipofectamine 2000 Reagent (Cat nr. 11668-019, lot: 1116546, Invitrogen) were diluted into 1.9 ml OPTI-MEM I Reduced Serum Medium in another tube and incubated for 5 min at room temperature.
  • the diluted DNA was combined with the diluted Lipofectamine 2000 Reagent (within 30 min) and incubated at room temperature for 20 min to allow DNA-LF2000 Reagent complexes to form.
  • the cells were washed with medium once and 11 ml DMEM + IX NEAA + 10 % FBS were added.
  • the DNA-LF2000 Reagent complexes (3.8 ml) were then added directly to each flask and gently mixed by rocking the flask back and forth. The cells were incubated at 37 °C in a 5% C0 2 incubator for 24 h.
  • the cells were then trypsinized and counted, and subsequently plated in 96-well plates at 2xl0 4 cells/well using five 96-well plates/construct.
  • Cells were plated in 100 ⁇ l/well of DMEM + IX NEAA + 10 % FBS (as above) containing G418-sulphate (cat nr.10131-027, lot: 3066651, Invitrogen) at 600 ⁇ g/ml. The selection pressure was kept unchanged until harvest of the cells.
  • the cells were grown for 12 days and assayed for antibody production using ELISA. From each construct cells from the 24 wells containing the highest amounts of IgG were transferred to 24-well plates and were allowed to reach confluency. The antibody production from cells in these wells was then assayed with ELISA and 5-21 pools/construct were selected for re-screening (Table 3). Finally cells from the best 1-4 wells for each construct were chosen. These cells were expanded successively in cell culture flasks and finally transferred into triple layer flasks (500 cm2) in 200 ml of (DMEM + lxNEAA + 10% Ultra low IgG FBS (cat. no. 16250-078, lot. no.
  • Bound human IgGl was eluted with HCL-glycine buffer pH 2.8. The eluate was collected in 0.5 ml fractions and OD 280 was used to determine presence of protein. The peak fractions were pooled and absorbance was measured at 280nm and 320nm. Buffer was changed through dialysis against a large volume of PBS. The presence of endotoxins in the purified IgG-1 preparations was tested using a LAL test (QCL-1000 R , cat. No. 50- 647U Bio Whittaker). The samples contained between 1 and 12 EU/ml endotoxin. The purity of the preparations was estimated to exceed 98% by PAGE analysis. Table 3 Summary of Production and Purification of human IgGl
  • the purified IgGl preparations were tested in ELISA for reactivity to MDA modified and un-modified peptides ( Figure 5) and were then used in functional in vitro and in vivo studies.
  • apo E- mice Effect of antibodies on atherosclerosis in apolipoprotein E knockout (apo E-) mice. Five weeks old apo E- mice are fed a cholesterol-rich diet for 15 weeks. This treatment is known to produce a significant amount of atherosclerotic plaques in the aorta and carotid arteries. The mice are then given an intraperitoneal injection containing 500 ⁇ g of the respective antibody identified above. Control mice are given 500 ⁇ g of an irrelevant control antibody or PBS alone. Treatments are repeated after 1 and 2 weeks. The mice are sacrificed 4 weeks after the initial antibody injection.
  • the severity of atherosclerosis in the aorta is determined by Oil Red O staining of flat preparations and by determining the size of subvalvular atherosclerotic plaques.
  • Collagen, macrophage and T cell content of subvalvular atherosclerotic plaques is determined by Masson trichrome staining and cell-specific immunohistochemistry. Quantification of Oil Red O staining, the size of the subvalvular plaques, trichrome staining and immunohistochemical staining is done using computer-based image analysis.
  • mice fed a high-cholesterol diet.
  • the mice were given three intraperitoneal injections of 0.5 mg antibody with week intervals starting at 21 weeks of age, using PBS as control. They were sacrificed two weeks after the last antibody injection, and the extent of atherosclerosis was assessed by Oil Red O staining of descending aorta flat preparations.
  • the treatment is repeated after 7 days and the surgical placement of the plastic collar is performed 1 day later.
  • a last injection of antibodies or PBS is given 6 days after surgery and the animals are sacrificed 15 days later.
  • the injured carotid artery is fixed, embedded in paraffin and sectioned.
  • the size of the neo-intimal plaque is measured using computer-based image analysis.
  • the cells are then incubated with medium containing antibody/oxidized LDL complexes for 6 hours, washed and cell-associated radioactivity determined in a gamma-counter.
  • Oxidized LDL is highly cytotoxic. It is believed that much of the inflammatory activity in atherosclerotic plaques is explained by cell injury caused by oxidized LDL. Inhibition of oxidized LDL cytotoxicity thus represents another possible target for treatment of atherosclerosis.
  • cultured human arterial smooth muscle cells are exposed to 100 ng/ml of human oxidized LDL in the presence of increasing concentrations of antibodies (0-200 ng/ml) for 48 hours. The rate of cell injury is determined by measuring the release of the enzyme LDH.
  • the antibodies of the present invention are used in pharmaceutical compositions for passive immunization, whereby the pharmaceutical compositions primarily are intended for injection, comprising a solution, suspension, or emulsion of a single antibody or a mixture of antibodies of the invention in a dosage to provide a therapeutically or prophylactically active level in the body treated.
  • the compositions may be provided with commonly used adjuvants to enhance absorption of the antibody or mixture of antibodies.
  • Other routes of administration may be the nasal route by inhaling the antibody/antibody mixture in combination with inhalable excipients.
  • Such pharmaceutical compositions may contain the active antibody in an amount of 0.5 to 99.5 % by weight, or 5 to 90 % by weight, or 10 to 90 % by weight, or 25 to 80 % by weight, or 40 to 90 % by weight.
  • the daily dosage of the antibody, or a booster dosage shall provide for a therapeutically or prophylactically active level in the body treated to reduce or prevent signs and symptoms of atherosclerosis by way of passive immunization.
  • a dosage of antibody according to the invention may be 1 ⁇ g to 1 mg per kg bodyweight, or more.
  • the antibody composition can be supplemented with other drugs for treating or preventing atherosclerosis or heart-vascular diseases, such as blood pressure lowering drugs, such as beta-receptor blockers, calcium antagonists, diurethics, and other antihypertensive agents.
  • FIG. 9 shows binding of isolated scFv to MDA modified ApoBlOO derived peptides and to a MDA modified control peptide of irrelevant sequence. Also depicted are the ratios between binding of the scFv to MDA modified and native ApoBlOO protein and human LDL respectively. Columns appear in the order they are defined from top to bottom in right hand column of the respective subfigure.
  • Hypercholesterolemia is associated with a T helper (Th) 1/Th2 switch of the autoimmune response in atherosclerotic apo E-knockout Mice. Journal of Clinical Investigation 101: 1717-1725.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Urology & Nephrology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Genetics & Genomics (AREA)
  • Immunology (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • Vascular Medicine (AREA)
  • Cardiology (AREA)
  • Molecular Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Peptides Or Proteins (AREA)

Abstract

The present invention relates to passive immunization for treating or preventing atherosclerosis using an isolated human antibody directed towards at least one oxidized fragment of apolipoprotein B in the manufacture of a pharmaceutical composition for therapeutical of prophylactical treatment of atherosclerosis by means of passive immunization, as well as method for preparing such antibodies, and a method for treating a mammal, preferably a human using such an antibody to provide for passive immunization.

Description

TITLE
PEPTIDE-BASED PASSIVE IMMUNIZATION THERAPY FOR TREATMENT OF ATHEROSCLEROSIS
DESCRIPTION
Technical field
The present invention relates to new isolated human antibodies raised against peptides being derivatives of apolipoprotein B, in particular antibodies to be used for immunization therapy for treatment of atherosclerosis, method for their preparation, and method for passive immunization using said antibodies.
In particular the invention includes:
The use of any isolated antibody raised against an oxidized form of the peptides listed in table 1, in particular MDA-modified peptides, preferably together with a suitable carrier and adjuvant as an immunotherapy or "anti-atherosclerosis "vaccine" for prevention and treatment of ischemic cardiovascular disease.
Background of the invention
The protective effects of humoral immunity are known to be mediated by a family of structurally related glycoproteins called antibodies. Antibodies initiate their biological activity by binding to antigens. Antibody binding to antigens is generally specific for one antigen and the binding is usually of high affinity. Antibodies are produced by B- lymphocytes. Blood contains many different antibodies, each derived from a clone of B- cells and each having a distinct structure and specificity for antigen. Antibodies are present on the surface of B-lymphocytes, in the plasma, in interstitial fluid of the tissues and in secretory fluids such as saliva and mucous on mucosal surfaces.
All antibodies are similar in their overall structure, accounting for certain similarities in physico-chemical features such as charge and solubility. All antibodies have a common core structure of two identical light chains, each about 24 kilo Daltons, and two identical heavy chains of about 55-70 kilo Daltons each. One light chain is attached to each heavy chain, and the two heavy chains are attached to each other. Both the light and heavy chains contain a series of repeating homologous units, each of about 110 amino acid residues in length which fold independently in a common globular motif, called an immunoglobulin (Ig) domain. The region of an antibody formed by the association of the two heavy chains is hydrophobic. Antibodies, and especially monoclonal antibodies, are known to cleave at the site where the light chain attaches to the heavy chain when they are subjected to adverse physical or chemical conditions. Because antibodies contain numerous cysteine residues, they have many cysteine-cysteine disulfide bonds. All Ig domains contain two layers of beta-pleated sheets with three or four strands of anti- parallel polypeptide chains.
Despite their overall similarity, antibody molecules can be divided into a small number of distinct classes and subclasses based on physicochemical characteristics such as size, charge and solubility, and on their behavior in binding to antigens. In humans, the classes of antibody molecules are: IgA, IgD, IgE, IgG and IgM. Members of each class are said to be of the same isotype. IgA and IgG isotypes are further subdivided into subtypes called IgAl, IgA2 and IgGl, IgG2, IgG3 and IgG4. The heavy chains of all antibodies in an isotype share extensive regions of amino acid sequence identity, but differ from antibodies belonging to other isotypes or subtypes. Heavy chains are designated by the letters of the Greek alphabet corresponding to the overall isotype of the antibody, e.g., IgA contains .alpha., IgD contains .delta., IgE contains .epsilon., IgG contains .gamma., and IgM contains .mu. heavy chains. IgG, IgE and IgD circulate as monomers, whereas secreted forms of IgA and IgM are dimers or pentamers, respectively, stabilized by the J chain. Some IgA molecules exist as monomers or trimers.
There are between 108 and 1010 structurally different antibody molecules in every individual, each with a unique amino acid sequence in their antigen combining sites. Sequence diversity in antibodies is predominantly found in three short stretches within the amino terminal domains of the heavy and light chains called variable (V) regions, to distinguish them from the more conserved constant (C) regions.
Atherosclerosis is a chronic disease that causes a thickening of the innermost layer (the intima) of large and medium-sized arteries. It decreases blood flow and may cause ischemia and tissue destruction in organs supplied by the affected vessel.
Atherosclerosis is the major cause of cardiovascular disease including myocardial infarction, stroke and peripheral artery disease. It is the major cause of death in the western world and is predicted to become the leading cause of death in the entire world within two decades.
The disease is initiated by accumulation of lipoproteins, primarily low-density lipoprotein (LDL), in the extracellular matrix of the vessel. These LDL particles aggregate and undergo oxidative modification. Oxidized LDL is toxic and cause vascular injury. Atherosclerosis represents in many respects a response to this injury including inflammation and fibrosis.
In 1989 Palinski and coworkers identified circulating autoantibodies against oxidized LDL in humans. This observation suggested that atherosclerosis may be an autoimmune disease caused by immune reactions against oxidized lipoproteins. At this time several laboratories began searching for associations between antibody titers against oxidized LDL and cardiovascular disease. However, the picture that emerged from these studies was far from clear. Antibodies existed against a large number of different epitopes in oxidized LDL, but the structure of these epitopes was unknown. The term "oxidized LDL antibodies" thus referred to an unknown mixture of different antibodies rather than to one specific antibody. T cell- independent IgM antibodies were more frequent than T-cell dependent IgG antibodies.
Antibodies against oxidized LDL were present in both patients with cardiovascular disease and in healthy controls. Although some early studies reported associations between oxidized LDL antibody titers and cardiovascular disease, others were unable to find such associations. A major weakness of these studies was that the ELISA tests used to determine antibody titers used oxidized LDL particles as ligand. LDL composition is different in different individuals, the degree of oxidative modification is difficult both to control and assess and levels of antibodies against the different epitopes in the oxidized LDL particles can not be determined. To some extent, due to the technical problems it has been difficult to evaluate the role of antibody responses against oxidized LDL using the techniques available so far, but however, it is not possible to create well defined and reproducible components of a vaccine if one should use intact oxidized LDL particles.
Another way to investigate the possibility that autoimmune reactions against oxidized LDL in the vascular wall play a key role in the development of atherosclerosis is to immunize animals against its own oxidized LDL. The idea behind this approach is that if autoimmune reactions against oxidized LDL are reinforced using classical immunization techniques this would result in increased vascular inflammation and progression of atherosclerosis. To test this hypothesis rabbits were immunized with homologous oxidized LDL and then induced atherosclerosis by feeding the animals a high-cholesterol diet for 3 months.
However, in contrast to the original hypothesis immunization with oxidized LDL had a protective effect reducing atherosclerosis with about 50%. Similar results were also obtained in a subsequent study in which the high-cholesterol diet was combined with vascular balloon- injury to produce a more aggressive plaque development. In parallel with our studies several other laboratories reported similar observations. Taken together the available data clearly demonstrates that there exist immune reactions that protect against the development of atherosclerosis and that these involves autoimmunity against oxidized LDL. These observations also suggest the possibility of developing an immune therapy or "vaccine" for treatment of atherosclerosis-based cardiovascular disease in man. One approach to do this would be to immunize an individual with his own LDL after it has been oxidized by exposure to for example copper. However, this approach is complicated by the fact that it is not known which structure in oxidized LDL that is responsible for inducing the protective immunity and if oxidized LDL also may contain epitopes that may give rise to adverse immune reactions.
The identification of epitopes in oxidized LDL is important for several aspects:
First, one or several of these epitopes are likely to be responsible for activating the anti- atherogenic immune response observed in animals immunized with oxidized LDL. Peptides containing these epitopes may therefore represent a possibility for development of an immune therapy or "atherosclerosis vaccine" in man. Further, they can be used for therapeutic treatment of atheroschlerosis developed in man.
Secondly, peptides containing the identified epitopes can be used to develop ELISAs able to detect antibodies against specific structure in oxidized LDL. Such ELISAs would be more precise and reliable than ones presently available using oxidized LDL particles as antigen. It would also allow the analyses of immune responses against different epitopes in oxidized LDL associated with cardiovascular disease.
US patent 5,972,890 relates to a use of peptides for diagnosing atherosclerosis. The technique presented in said US patent is as a principle a form of radiophysical diagnosis. A peptide sequence is radioactively labelled and is injected into the bloodstream. If this peptide sequence should be identical with sequences present in apolipoprotein B it will bind to the tissue where there are receptors present for apolipoprotein B. In vessels this is above all atherosclerotic plaque. The concentration of radioactivity in the wall of the vessel can then be determined e.g., by means of a gamma camera. The technique is thus a radiophysical diagnostic method based on that radioactively labelled peptide sequences will bound to their normal tissue receptors present in atherosclerotic plaque and are detected using an external radioactivity analysis. It is a direct analysis method to identify atherosclerotic plaque. It requires that the patient be given radioactive compounds.
Published studies (Palinski et al., 1995, and George et al., 1998) have shown that immunisation against oxidised LDL reduces the development of atherosclerosis. This would indicate that immuno reactions against oxidised LDL in general have a protecting effect. The results given herein have, however, surprisingly shown that this is not always the case. E.g., immunisation using a mixture of peptides #10, 45, 154, 199, and 240 gave rise to an increase of the development of atherosclerosis. Immunisation using other peptide sequences, e.g., peptide sequences #1, and 30 to 34 lacks total effect on the development of atherosclerosis. The results are surprising because they provide basis for the fact that immuno reactions against oxidised LDL, can protect against the development, contribute to the development of atherosclerosis, and be without any effect at all depending on which structures in oxidised LDL they are directed to. These findings make it possible to develop immunisation methods, which isolate the activation of protecting immuno reactions. Further, they show that immunisation using intact oxidised LDL could have a detrimental effect if the particles used contain a high level of structures that give rise to atherogenic immuno reactions.
The technique of the present invention is based on quite different principles and methods. In accordance with claim 1 the invention relates to antibodies raised against oxidized fragments of apolipoprotein B, which antibodies are used for immunisation against cardiovascular disease.
As an alternative to active immunisation, using the identified peptides described above, passive immunisation with pre-made antibodies directed to the same peptides is an attractive possibility. Such antibodies may be given desired properties concerning e.g. specificity and cross reactivity, isotype, affinity and plasma half-life. The possibility to develop antibodies with predetermined properties became apparent already with the advent of the monoclonal antibody technology (Milstein and Kδhler, 1975 Nature, 256:495-7). This technology used murine hybridoma cells producing large amounts of identical, but murine, antibodies. In fact, a large number of preclinical, and also clinical trials were started using murine monoclonal antibodies for treatment of e.g. cancers. However, due to the fact that the antibodies were of non-human origin the immune system of the patients recognised them as foreign and developed antibodies to them. As a consequence the efficacy and plasma half-lives of the murine antibodies were decreased, and often side effects from allergic reactions, caused by the foreign antibody, prevented successful treatment.
To solve these problems several approaches to reduce the murine component of the specific and potentially therapeutic antibody were taken. The first approach comprised technology to make so called chimearic antibodies where the murine variable domains of the antibody were transferred to human constant regions resulting in an antibody that was mainly human (Neuberger et al. 1985, Nature 314: 268-70). A further refinement of this approach was to develop humanised antibodies where the regions of the murine antibody that contacted the antigen, the so called Complementarity Determining Regions (CDRs) were transferred to a human antibody framework. Such antibodies are almost completely human and seldom cause any harmful antibody responses when administered to patients. Several chimearic or humanised antibodies have been registered as therapeutic drugs and are now widely used within various indications (Borrebaeck and Carlsson, 2001, Curr. Opin. Pharmacol. 1 :404-408).
Today also completely human antibodies may be produced using recombinant technologies. Typically large libraries comprising billions of different antibodies are used. In contrast to the previous technologies employing chimearisation or humanisation of e.g. murine antibodies this technology does not rely on immunisation of animals to generate the specific antibody. In stead the recombinant libraries comprise a huge number of pre-made antibody variants why it is likely that the library will have at least one antibody specific for any antigen. Thus, using such libraries the problem becomes the one to find the specific binder already existing in the library, and not to generate it through immunisations. In order to find the good binder in a library in an efficient manner, various systems where phenotype i.e. the antibody or antibody fragment is linked to its genotype i.e. the encoding gene have been devised. The most commonly used such system is the so called phage display system where antibody fragments are expressed, displayed, as fusions with phage coat proteins on the surface of filamentous phage particles, while simultaneously carrying the genetic information encoding the displayed molecule (McCafferty et al., 1990, Nature 348: 552-554). Phage displaying antibody fragments specific for a particular antigen may be selected through binding to the antigen in question. Isolated phage may then be amplified and the gene encoding the selected antibody variable domains may optionally be transferred to other antibody formats as e.g. full length immunoglobulin and expressed in high amounts using appropriate vectors and host cells well known in the art.
The format of displayed antibody specificities on phage particles may differ. The most commonly used formats are Fab (Griffiths et al., 1994. EMBO J. i3:3245-3260) and single chain (scFv) (Hoogenboom et al., 1992, J Mol Biol. 227:381-388) both comprising the variable antigen binding domains of antibodies. The single chain format is composed of a variable heavy domain (VH) linked to a variable light domain (VL) via a flexible linker (US 4,946,778). Before use as analytical reagents, or therapeutic agents, the displayed antibody specificity is transferred to a soluble format e.g. Fab or scFv and analysed as such. In later steps the antibody fragment identified to have desirable characteristics may be transferred into yet other formats such as full length antibodies.
Recently a novel technology for generation of variability in antibody libraries was presented (W098/32845, Soderlind et al., 2000, Nature BioTechnol. 18:852-856). Antibody fragments derived from this library all have the same framework regions and only differ in their CDRs. Since the framework regions are of germline sequence the immunogenicity of antibodies derived from the library, or similar libraries produced using the same technology, are expected to be particularly low (Soderlind et al., 2000, Nature BioTechnol. 18:852-856). This property is expected to be of great value for therapeutic antibodies reducing the risk for the patient to form antibodies to the administered antibody thereby reducing risks for allergic reactions, the occurrence of blocking antibodies, and allowing a long plasma half-life of the antibody. Several antibodies derived from recombinant libraries have now reached into the clinic and are expected to provide therapeutic drugs in the near future.
Thus, when met with the challenge to develop therapeutic antibodies to be used in humans the art teaches away from the earlier hybridoma technology and towards use of modern recombinant library technology (Soderlind et al., 2001, Comb. Chem. & High Throughput Screen. 4:409-416). It was realised that the peptides identified
(PCT/SE02/00679), and being a integral part of this invention, could be used as antigens for generation of fully human antibodies with predetermined properties. In contrast to earlier art (US 6,225,070) the antigenic structures i.e. the peptides used in the present invention were identified as being particularly relevant as target sequences for therapeutic antibodies (PCT/SE02/00679). Also, in the present invention the antibodies are derived from antibody libraries omitting the need for immunisation of lipoprotein deficient mice to raise murine antibodies (US 6,225,070). Moreover, the resulting antibodies are fully human and are not expected to generate any undesired immunological reaction when administered into patients.
The peptides used, and previously identified (PCT/SE02/00679) are the following : Table 1
A. High IgG, MDA-difference
P 11. FLDT GNCSTHFTVKTRKG P 25. PQCSTHILQWLKRVHANPLL
P 74. VISIPRLQAEARSEILAHWS
B. High IgM, no MDA-difference
P 40. KLVKEALKESQLPTVMDFRK P 68. LKFVTQAEGAKQTEATMTFK
P 94. DGSLRHKFLDSNIKFSHVEK
P 99. KGTYGLSCQRDPNTGRLNGE
P 100. RLNGESNLRFNSSYLQGTNQ
P 102. SLTSTSDLQSGIIKNTASLK P 103. TASLKYENYELTLKSDTNGK
P 105. DMTFSKQNALLRSEYQADYE
P 177. MKVKIIRTIDQMQNSELQWP
C. High IgG, no MDA difference
P 143. IALDDAKINFNEKLSQLQTY
P 210. KTTKQSFDLSVKAQYKKNKH
D. NHS/AHP, IgG-ak > 2, MDA-difference
PI. EEEMLENVSLVCPKDATRFK
P 129. GSTSHHLVSRKSISAALEHK
P 148. IENIDFNKSGSSTASWIQNV
P 162. IREVTQRLNGEIQALELPQK P 252. EVDVLTKYSQPEDSLIPFFE
E. NHS/AHP, IgM-ak > 2, MDA-difference
P 301. HTFLIYITELLKKLQSTTVM
P 30. LLDIANYLMEQIQDDCTGDE P 31. CTGDEDYTYKIKRVIGNMGQ
P 32. GNMGQTMEQLTPELKSSILK
P 33. SSILKCVQSTKPSLMIQKAA
P 34. IQKAAIQALRKMEPKDKDQE
P 100. RLNGESNLRFNSSYLQGTNQ P 107. SLNSHGLELNADILGTDKIN
P 149. WIQNVDTKYQIRIQIQEKLQ
P 169. TYISDWWTLAAKNLTDFAEQ
P 236. EATLQRIYSLWEHSTKNHLQ
F. NHS/AHP, IgG-ak < 0.5, no MDA-difference
P 10. ALLVPPETEEAKQVLFLDTV
P 45. IEIGLEGKGFEPTLEALFGK
P 111. SGASMKLTTNGRFREHNAKF
P 154. NLIGDFEVAEKINAFRAKVH P 199. GHSVLTAKGMALFGEGKAEF
P 222. FKSSVITLNTNAELFNQSDI
P 240. FPDLGQEVALNANTKNQKIR or an active site of one or more of these peptides.
In Table 1 above, the following is due: (A) Fragments that produce high levels of IgG antibodies to MDA-modified peptides (n=3),
(B) Fragments that produce high levels of IgM antibodies, but no difference between native and MDA-modified peptides (n=9),
(C) Fragments that produce high levels of IgG antibodies, but no difference between native and MDA-modified peptides (n=2),
(D) Fragments that produce high levels of IgG antibodies to MDA-modified peptides and at least twice as much antibodies in the NHP-pool as compared to the AHP-pool (n=5),
(E) Fragments that produce high levels of IgM antibodies to MDA-modified peptides and at least twice as much antibodies in the NHP-pool as compared to the AHP-pool (n= ll), and (F) Fragments that produce high levels of IgG antibodies, but no difference between intact and MDA-modified peptides but at least twice as much antibodies in the AHP-pool as compared to the NHP-pool (n=7).
Summary of the invention The present invention relates to the use of at least one isolated human antibody or an antibody fragment thereof directed towards at least one oxidized fragment of apolipoprotein B in the manufacture of a pharmaceutical composition for therapeutical or prophylactical treatment of atherosclerosis by means of passive immunization.
Further the invention relates to the recombinant preparation of such antibodies, as well as the invention relates to method for passive immunization using such antibodies raised using an oxidized apolipoprotein B fragment, as antigen, in particular a fragment as identified above.
The present invention utilises an isolated antibody fragment library to generate specific human antibody fragments against oxidized, in particular MDA modified peptides derived from Apo B100. Identified antibody fragments with desired characteristics may then be rebuilt into full length human immunoglobulin to be used for therapeutic purposes.
Detailed description of the invention
Below will follow a detailed description of the invention exemplified by, but not limited to, human antibodies derived from an isolated antibody fragment library and directed towards two MDA modified peptides from ApoB 100.
Example 1.
Selection of scFv aαainst MDA modified peptides IEIGL EGKGF EPTLE ALFGK f P45, Table 1 and KTTKO SFDLS VKAOY KKNKH (P210. Table I L The target antigens were chemically modified to carry Malone-dialdehyde (MDA) groups on lysines and histidines. The modified peptides were denoted IEI (P45) and KTT (P210).
Selections were performed using Biolnvent's n-CoDeR™scFv library for which the principle of construction and production have been described in Soderlind et al. 2000, Nature BioTechnology. 18, 852-856. Briefly, CDRs are isolated from human immunoglobulin genes and are shuffled into a fixed framework. Thus variability in the resulting immunoglobulin variable regions is a consequence of recombination of all six CDRs into the fixed framework. The framework regions are all germline and are identical in all antibodies. Thus variability is restricted to the CDRs, which are all natural, and of human origin. The library contains approximately 2 x 1010 independent clones and a 2000 fold excess of clones was used as input for each selection. Selections were performed in three rounds. In selection round 1, Immunotubes (NUNC maxisorb 444202) were coated with 1.2 ml of 20 μg/ml MDA-modified target peptides in PBS (137 mM NaCl, 2.7 mM KCI, 4.3 mM Na2HP04, 1.4 mM KH2P04 ) with end over end agitation at +4°C over night. The tubes were then blocked with TPBSB5% (5 % BSA, 0.05% Tween 20, 0.02 % sodium Azide in PBS) for 30 minutes and washed twice with TPBSB3% (3 % BSA, 0.05% Tween 20, 0.02 % sodium Azfde in PBS) before use. Each target tube was then incubated with approximately 2 x 1013 CFU phages from the n-CodeR™ library in 1.8 ml TPBSB3% for 2 h at room temperature, using end over end agitation. The tubes were then washed with 15 x 3 ml TPBSB3% and 2 x 1 ml PBS before the bound phages were eluted with 1 ml/tube of 2 mg/ml trypsin (Roche, 109819) for 30 minutes at room temperature. This procedure takes advantage of a specific trypsin site in the scFv-fusion protein to release the phage from the target. The reaction was stopped by the addition of 100 μl of Aprotein (0.2 mg/ml, Roche, cat.236624), and the immunotubes were washed with 300 μl PBS, giving a final volume of 1.4 ml.
For amplification of the selected phage E. Coli HB101F' cells were grown exponentially in 10 ml of LB medium (Merck, cat. 1.10285) to OD600 = 0.5 and infected with the selected and eluted phage principally as described (Soderlind et al., 2000, Nature BioTechnol. 18, 852-856. The resulting phage supernatant was then precipitated by addition of 1/4 volume of 20% PEG600o in 2.5 M NaCl and incubated for 5 h at +4°C. The phages were then pelleted by centrifugation for 30 minutes, 13000 x g, re-suspended in 500 μl PBS and used in selection round 2.
The amplified phagestock was used in selection round 2 in a final volume of 1.5 ml of 5 % BSA, 0.05% Tween 20, 0.02 % sodium Azide in PBS. Peptide without MDA modification (4 x 10"7 M) was also included for competition against binders to MDA- unmodified target peptide. The mixture was incubated in immunotubes prepared with antigen as described above, except that the tubes were blocked with 1 % Casein instead of TPBSB3%. The incubations and washing of the immunotubes were as described for selection 1. Bound phages were then eluted for 30 minutes using 600 μl of 100 mM Tris- Glycine buffer, pH 2.2. The tubes were washed with additional 200 μl glycin buffer and the eluates were pooled and then neutralised with 96 μl of 1 M Tris-HCI, pH 8.0. The samples were re-natured for 1 h at room temperature and used for selection round 3.
For selection round 3, BSA, Tween 20 and Sodium Azide were added to the renaturated phage pool to a final concentration of 3 %, 0.05% and 0.02%, respectively. Competitor peptides, MDA modified unrelated peptides as well as native target peptides without modification were added to a concentration of 1 x 10"7M. The phage mixtures (1100 μl) were added to immunotubes coated with target antigen as described in selection 1 and incubated over night at 4°C with agitation. The tubes were then washed with 3 x 3 ml TPBSB 3%, 5 x 3 ml PBS and eventually bound phages were eluted using trypsin as described in selection round 1 above. Each eluate was infected to 10 ml of logarithmically growing HB101F' in LB containing 100 μg/ml ampicillin, 15 μg/ml tetracycline, 0.1% glucose, and grown over night at 30°C, 200 rpm in a shaker incubator.
The over night cultures were used for mini scale preparation of plasmid DNA, using Biorad mini prep Kit (Cat. 732 6100). To remove the phage gene III part from the expression vector, 0.25 μg of the plasmid DNA was cut for 2 h at 37°C using 2.5 U Eag- 1 (New England Biolabs, cat. R050) in the buffer recommended by the supplier. The samples were then heat inactivated for 20 minutes at 65°C and ligated over night at
16°C using 1 U T4 DNA ligase in 30 μl of 1 x ligase buffer (Gibco/BRL). This procedure will join two Eag-1 sites situated on opposite sides of the phage gene III fragment, thus creating a free scFv displaying a terminal 6xhis tag. After ligation the material was digested for 2 h at 37°C in a solution containing 30 μl ligation mix, 3.6 μl 10 x REACT3 stock, 0.4 μl 1 M NaCl, 5 μl H202, in order to destroy clones in which the phage gene III segment had been religated. Twenty (20) ng of the final product were transformed into chemical competent ToplOF' and spread on 500 cm2 Q-tray LA-plates (100 μg/ml Amp, 1% glucose), to enable the picking of single colonies for further screening.
Screening of the n-CoDeR™scFv library for specific antibody fragments binding tO MDA modified peptides from Apolipoprotein B-100 In order to identify scFv that could discriminate between MDA modified IEI (P45) peptide and native IEI and between MDA modified KTT (P210) and native KTT respectively screenings were performed on bacterial supernatants from selected scFv expressing clones.
Colony picking of single clones, expression of scFv and screening number 1 was performed on Biolnvent's automatic system according to standard methods. 1088 and 831 single clones selected against the MDA modified IEI and KTT peptides respectively were picked and cultured and expressed in micro titre plates in 100 μl LB containing 100 μg ampicillin/ml.
For screening number 1 white Assay plates (Greiner 655074) were coated with 54 pmol peptide/well in coating buffer (0.1 M Sodium carbonate, pH 9.5), either with MDA modified peptide which served as positive target or with corresponding unmodified peptide which served as non target. In the ELISA the expressed scFv were detected through a myc-tag situated C-terminal to the scFv using 1 μg/ml of anti-c-myc monoclonal (9E10 Roche 1667 149) in wash buffer. As a secondary antibody Goat-anti- mouse alkaline phosphatase conjugate (Applied Biosystems Cat # AC32ML) was used at 25000 fold dilution. For luminescence detection CDP-Star Ready to use with Emerald II Tropix (Applied Biosystems Cat # MS100RY) were used according to supplier's recommendation.
ScFv clones that bound MDA modified peptide but not native peptide were re expressed as described above and to screening another time in a luminescent ELISA (Table 2 and Figure 1). Tests were run both against directly coated peptides (108 pmol/well coated with PBS) and the more physiological target; LDL particles (1 μg/well coated in PBS + 1 mM EDTA) containing the ApoB-100 protein with and without MDA modification were used as targets. Positive clones were those that bound oxidised LDL and MDA modified peptide but not native LDL or peptide. The ELISA was performed as above except that the anti-His antibody (MaB050 RαD) was used as the detection antibody. Twelve IEI clones and 2 KTT clones were found to give more than three fold higher luminescence signal at 700 nm for the MDA modified form than for the native form both for the peptide and LDL.
The identified clones were further tested through titration against a fixed amount (1 μg/well) of MDA LDL and native LDL in order to evaluate the dose response of the scFv (Figure 2). Table 2. Screening results. The number of clones tested in each screening step for each tar et. The scored hits in ercent are shown within brackets.
Figure imgf000014_0001
The sequences of the chosen scFv clones were determined in order to find unique clones. Bacterial PCR was performed with the Boeringer Mannheim Expand kit using primers (5'- CCC AGT CAC GAC GTT GTA AAA CG-3') and (5'-GAA ACA GCT ATG AAA TAC CTA TTG C- 3') and a GeneAmp PCR system 9700 (PE Applied system) using the temperature cycling program 94°C 5 min, 30 cycles of 94°C 30s, 52°C for 30s and 68°C for 2min and finally 5 min at 68 min. The sequencing reaction was performed with the bacterial PCR product (five fold diluted) as template, using Big Dye Terminator mix from PE Applied Biosystems and the GeneAmp PCR system 9700 (PE Applied system) and the temperature cycling program 25 cycles of 96°C 10s, 50°C for 5s and 60°C for 4 min. The extension products were purified according to the supplier's instructions and the separation and detection of extension products was done by using a 3100 Genetic analyser (PE Applied Biosystems). The sequences were analysed by the in house computer program. From the sequence information homologous clones and clones with inappropriate restriction sites were excluded, leaving six clones for IgG conversion. The DNA sequences of the variable heavy (VH) and variable light (VL) domains of the finally selected clones are shown in Figure 3.
Example 2.
Transfer of genes encoding the variable parts of selected scFv to full length human IoGl vectors.
Bacteria containing scFv clones to be converted to Ig-format were grown over night in LB supplemented with 100 μg/ml ampicillin. Plasmid DNA was prepared from over night cultures using the Quantum Prep, plasmid miniprep kit from Biorad (# 732-6100). The DNA concentration was estimated by measuring absorbance at 260nm, and the DNA was diluted to a concentration of 2 ng/μl. VH and VL from the different scFv-plasmids were PCR amplified in order to supply these segments with restriction sites compatible with the expression vectors (see below). 5' primers contain a Bsml and 3' primers contain a BsiWI restriction enzyme cleavage site (shown in italics). 3' primers also contained a splice donor site (shown in bold).
Primers for amplification of VH-segments:
5 H: 5'-GGTGTGC .7TCCGAGGTGCAGCTGTTGGAG (SEQ. ID. NO: 13)
3 H: 5'-GACG74CGACTCACCTGAGCTCACGGTGACCAG (SEQ. ID. NO: 14)
Primers for amplification of VL-segments:
5'VL: 5'-GGTG7GC .7TCCCAGTCTGTGCTGACTCAG (SEQ. ID. NO: 15) 3'VL: 5'-GACGr .CGTTCTACTCACCTAGGACCGTCAGCTT (SEQ. ID. NO: 16)
PCR was conducted in a total volume of 50 μl, containing lOng template DNA, 0.4 μM 5' primer, 0.4 μM 3' primer and 0.6 mM dNTP (Roche, #1 969 064). The polymerase used was Expand long template PCR system (Roche # 1 759 060), 3.5 u per reaction, together with each of the supplied buffers in 3 separate reactions. Each PCR amplification cycle consisted of a denaturing step at 94°C for 30 seconds, an annealing step at 55°C for 30 seconds, and an elongating step at 68°C for 1.5 minutes. This amplification cycle was repeated 25 times. Each reaction began with a single denaturing step at 94°C for 2 minutes and ended with a single elongating step at 68°C for 10 minutes. The existence of PCR product was checked by agarose gel electrophoresis, and reactions containing the same amplified material (from reactions with different buffers) were pooled. The PCR amplification products were subsequently purified by spin column chromatography using S400-HR columns (Amersham-Pharmacia Biotech # 27-5240-01).
Four (4) μl of from each pool of PCR products were used for TOPO TA cloning (pCR 2.1 TOPO, InVitrogen #K4550-01) according to the manufacturers recommendations. Bacterial colonies containing plasmids with inserts were grown over night in LB supplemented with 100 μg/ml ampicillin and 20 μg/ml kanamycin. Plasmid DNA was prepared from over night cultures using the Quantum Prep, plasmid miniprep kit from Biorad (# 732-6100). Plasmid preparations were purified by spin column chromatography using S400-HR columns (Amersham-Pharmacia Biotech # 27-5240-01). Three plasmids from each individual VH and VL cloning were subjected to sequence analysis using BigDye Cycle Sequencing (Perkin Elmer Applied Biosystem, # 4303150). The cycle sequencing program consisted of a denaturing step at 96°C for 10 seconds, an annealing step at 50°C for 15 seconds, and an elongating step at 60°C for 4 minutes. This cycle was repeated 25 times. Each reaction began with a single denaturing step at 94°C for 1 minute. The reactions were performed in a volume of 10 μl consisting of 1 μM primer (5'-CAGGAAACAGCTATGAC), 3 μl plasmid DNA and 4 μl Big Dye reaction mix. The reactions were precipitated according to the manufacturers recommendations, and samples were run on an ABI PRISM 3100 Genetic Analyzer. Sequences were compared to the original scFv sequence using the alignment function of the OMIGA sequence analysis software (Oxford Molecular Ltd).
Plasmids containing VH and VL segments without mutations were restriction enzyme digested. To disrupt the pCR 2.1 TOPO vector, plasmids were initially digested with Dral (Roche # 1 417 983) at 37°C for 2 hours. Digestions were heat inactivated at 70°C for 20 minutes and purified by spin column chromatography using S400-HR columns (Amersham-Pharmacia Biotech # 27-5240-01). The purified Dral digestions were subsequently digested with Bsml (Roche # 1 292 307) and BsiWI (Roche # 1 388 959) at 55°C over night. Digestions were purified using phenol extraction and precipitation. The precipitated DNA was dissolved in 10 μl H20 and used for ligation.
The expression vectors were obtained from Lars Norderhaug (J. Immunol. Meth. 204 (1997) 77-87). After some modifications, the vectors (Figure 4) contain a CMV promoter, an Ig-leader peptide, a cloning linker containing Bsml and BsiWI restriction sites for cloning of VH/VL, genomic constant regions of IgGl (heavy chain (HC) vector) or lambda (light chain (LC) vector), neomycin (HC vector) or methotrexate (LC vector) resistance genes for selection in eukaryotic cells, SV40 and ColEI origins of replication and ampicillin (HC vector) or kanamycin (LC vector) resistance genes for selection in bacteria.
The HC and LC vectors were digested with Bsml and BsiWI, phosphatase treated and purified using phenol extraction and precipitation. Ligation were set up at 16°C over night in a volume of 10 μl, containing 100 ng digested vector, 2 μl digested VH/VL-pCR 2.1 TOPO vector (see above), 1 U T4 DNA ligase (Life Technologies, # 15224-025) and the supplied buffer. 2 μl of the ligation mixture were subsequently transformed into 50 μl chemo competent toplOF' bacteria, and plated on selective (100 μg/ml ampicillin or 20 μg/ml kanamycin) agar plates.
Colonies containing HC/LC plasmids with VH/VL inserts were identified by colony PCR: Forward primer: 5'-ATGGGTGACAATGACATC Reverse primer: 5'-AAGCTTGCTAGCGTACG PCR was conducted in a total volume of 20 μl, containing bacteria, 0.5 μM forward primer, 0.5 μM reverse primer and 0.5 mM dNTP (Roche, #1 969 064). The polymerase used was Expand long template PCR system (Roche # 1 759 060), 0.7 U per reaction, together with the supplied buffer #3. Each PCR amplification cycle consisted of a denaturing step at 94°C for 30 seconds, an annealing step at 52°C for 30 seconds, and an elongating step at 68°C for 1.5 minutes. This amplification cycle was repeated 30 times. Each reaction began with a single denaturing step at 94°C for 2 minutes and ended with a single elongating step at 68°C for 5 minutes. The existence of PCR product was checked by agarose gel electrophoresis. Colonies containing HC/LC plasmids with VH/VL inserts were grown over night in LB supplemented with 100 μg/ml ampicillin or 20 μg/ml kanamycin. Plasmid DNA was prepared from over night cultures using the Quantum Prep, plasmid miniprep kit from Biorad (# 732-6100). Plasmid preparations were purified by spin column chromatography using S400-HR columns (Amersham- Pharmacia Biotech # 27-5240-01). To confirm the integrity of the DNA sequence, three plasmids from each individual VH and VL were subjected to sequence analysis using BigDye Cycle Sequencing (Perkin Elmer Applied Biosystem, # 4303150). The cycle sequencing program consisted of a denaturing step at 96°C for 10 seconds, an annealing step at 50°C for 15 seconds, and an elongating step at 60°C for 4 minutes. This cycle was repeated 25 times. Each reaction began with a single denaturing step at 94°C for 1 minute. The reactions were performed in a volume of 10 μl consisting of 1 μM primer (5'-AGACCCAAGCTAGCTTGGTAC), 3μl plasmid DNA and 4μl Big Dye reaction mix. The reactions were precipitated according to the manufacturers recommendations, and samples were run on an ABI PRISM 3100 Genetic Analyzer. Sequences were analysed using the OMIGA sequence analysis software (Oxford Molecular Ltd). The plasmid DNA was used for transient transfection of COS-7 cells (see below) and was digested for production of a joined vector, containing heavy- and light chain genes on the same plasmid.
Heavy and light chain vectors containing VH and VL segments originating from the same scFv were cleaved by restriction enzymes and ligated: HC- and LC-vectors were initially digested with Muni (Roche # 1 441 337) after which digestions were heat inactivated at 70°C for 20 minutes and purified by spin column chromatography using S200-HR columns (Amersham-Pharmacia Biotech # 27-5120-01). HC-vector digestions were subsequently digested with Nrul (Roche # 776 769) and LC-vector digestions with Bstll07I (Roche # 1 378 953). Digestions were then heat inactivated at 70°C for 20 minutes and purified by spin column chromatography using S400-HR columns (Amersham-Pharmacia Biotech # 27-5240-01). 5 μl of each digested plasmid were ligated at 16°C over night in a total volume of 20 μl, containing 2 U T4 DNA ligase (Life Technologies, # 15224-025) and the supplied buffer. 2 μl of the ligation mixture were subsequently transformed into 50 μl chemo competent toplOF' bacteria, and plated on selective (100 μg/ml ampicillin and 20 μg/ml kanamycin) agar plates.
Bacterial colonies were grown over night in LB supplemented with 100 μg/ml ampicillin and 20 μg/ml kanamycin. Plasmid DNA was prepared from over night cultures using the Quantum Prep, plasmid miniprep kit from Biorad (# 732-6100). Correctly joined vectors were identified by restriction enzyme digestion followed by analyses of fragment sizes by agarose gel-electrophoreses
Plasmid preparations were purified by spin column chromatography using S400-HR columns (Amersham-Pharmacia Biotech # 27-5240-01) and used for transient transfection of COS-7 cells.
COS-7 cells (ATCC # CRL-1651) were cultured at 37°C with 5% C02 in Dulbeccos MEM, high glucose + Glutamaxl (Invitrogen # 31966021), supplemented with 0.1 mM non- essential amino acids (Invitrogen # 11140035) and 10% fetal bovine sera (Invitrogen # 12476-024, batch # 1128016). The day before transfection, the cells were plated in 12- well plates (Nunc, # 150628) at a density of 1.5xl05 cells per well.
Prior to transfection, the plasmid DNA was heated at 70°C for 15 minutes. Cells were transfected with 1 μg HC-plasmid + 1 μg LC-plasmid, or 2 μg joined plasmid per well, using Lipofectamine 2000 Reagent (Invitrogen, # 11668019) according to the manufacturers recommendations. 24 hours post transfection, cell culture media was changed and the cells were allowed to grow for 5 days. After that, medium was collected and protein production was assayed for using ELISA.
Ninetysix (96)-well plates (Costar # 9018, flat bottom, high binding) were coated at 4°C over night by adding 100 μl/well rabbit anti-human lambda light chain antibody (DAKO, # A0193) diluted 4000 times in coating buffer (0.1M sodium carbonate, pH 9.5). Plates were washed 4 times in PBS containing 0.05% Tween 20 and thereafter blocked with 100 μl/well PBS+3% BSA (Albumin, fraction V, Roche # 735108) for 1 h. at room temperature. After washing as above, 100 μl/well of sample were added and incubated in room temperature for 1 hour. As a standard for estimation of concentration, human purified IgGl (Sigma, # 15029) was used. Samples and standard were diluted in sample buffer (lx PBS containing 2% BSA and 0.5% rabbit serum (Sigma # R4505). Subsequently, plates were washed as described above and 100 μl/well of rabbit anti- human IgG (γ-chain) HARP-conjugated antibody (DAKO, # P214) diluted 8000 times in sample buffer was added and incubated at room temperature for 1 hour. After washing 8 times with PBS containing 0.05% Tween 20, 100 μl/well of a substrate solution containing one OPD tablet (10 mg, Sigma # P8287,) dissolved in 15 ml citric acid buffer and 4.5 μl H202 (30%) was added. After 10 minutes, the reaction was terminated by adding 150 μl/well of IM HCl. Absorbance was measured at 490-650 nm and data was analyzed using the Softmax software.
Bacteria containing correctly joined HC- and LC-vectors were grown over night in 500 ml LB supplemented with ampicillin and kanamycin. Plasmid DNA was prepared from over night cultures using the Quantum Prep, plasmid maxiprep kit from Biorad (# 732-6130). Vectors were linearized using Pvul restriction enzyme (Roche # 650 129). Prior to transfection, the linearized DNA was purified by spin column chromatography using S400-HR columns (Amersham-Pharmacia Biotech # 27-5240-01) and heated at 70°C for 15 minutes.
Example 3
Stable transfection of NSO cells expressing antibodies against MDA modified peptides form Apolipoprotein B-100.
NSO cells (ECACC no. 85110503) were cultured in DMEM (cat nr 31966-021, Invitrogen) supplemented with 10% Fetal Bovine Serum (cat no. 12476-024, lot: 1128016, Invitrogen) and IX NEAA (non-essential amino acids, cat no. 11140-053, Invitrogen). Cell cultures are maintained at 37°C with 5% C02 in humidified environment.
DNA constructs to be transfected were four constructs of IEI specific antibodies (IEI-A8, IEI-D8, IEI-E3, IEI-G8), two of KTT specific antibodies (KTT-B8, KTT-D6) and one control antibody (JFPA12). The day before transfection, the cells were trypsinized and counted, before plating them in a T-75 flask at 12xl06cells/flask. On the day of transfection, when the cells were 85-90% confluent, the cells were plated in 15 ml DMEM + IX NEAA + 10 % FBS (as above). For each flask of cells to be transfected, 35- 40 μg of DNA were diluted into 1.9 ml of OPTI-MEM I Reduced Serum Medium (Cat no. 51985-026, lot: 3062314, Invitrogen) without serum. For each flask of cells, 114 μl of Lipofectamine 2000 Reagent (Cat nr. 11668-019, lot: 1116546, Invitrogen) were diluted into 1.9 ml OPTI-MEM I Reduced Serum Medium in another tube and incubated for 5 min at room temperature. The diluted DNA was combined with the diluted Lipofectamine 2000 Reagent (within 30 min) and incubated at room temperature for 20 min to allow DNA-LF2000 Reagent complexes to form. The cells were washed with medium once and 11 ml DMEM + IX NEAA + 10 % FBS were added. The DNA-LF2000 Reagent complexes (3.8 ml) were then added directly to each flask and gently mixed by rocking the flask back and forth. The cells were incubated at 37 °C in a 5% C02 incubator for 24 h.
The cells were then trypsinized and counted, and subsequently plated in 96-well plates at 2xl04 cells/well using five 96-well plates/construct. Cells were plated in 100 μl/well of DMEM + IX NEAA + 10 % FBS (as above) containing G418-sulphate (cat nr.10131-027, lot: 3066651, Invitrogen) at 600 μg/ml. The selection pressure was kept unchanged until harvest of the cells.
The cells were grown for 12 days and assayed for antibody production using ELISA. From each construct cells from the 24 wells containing the highest amounts of IgG were transferred to 24-well plates and were allowed to reach confluency. The antibody production from cells in these wells was then assayed with ELISA and 5-21 pools/construct were selected for re-screening (Table 3). Finally cells from the best 1-4 wells for each construct were chosen. These cells were expanded successively in cell culture flasks and finally transferred into triple layer flasks (500 cm2) in 200 ml of (DMEM + lxNEAA + 10% Ultra low IgG FBS (cat. no. 16250-078, lot. no. 113466, Invitrogen) + G418 (600 μg/ml)) for antibody production. The cells were incubated for 7-10 days and the supernatants were assayed by ELISA, harvested and sterile filtered for purification.
Example 4.
Production and purification of human IgGl
Supernatants from NSO cells transfected with the different IgGl antibodies were sterile filtered using a 0.22 μm filter and purified using an affinity medium MabSelect™ with recombinant protein A, (Cat. No. 17519901 Amersham Biosciences).
Bound human IgGl was eluted with HCL-glycine buffer pH 2.8. The eluate was collected in 0.5 ml fractions and OD280 was used to determine presence of protein. The peak fractions were pooled and absorbance was measured at 280nm and 320nm. Buffer was changed through dialysis against a large volume of PBS. The presence of endotoxins in the purified IgG-1 preparations was tested using a LAL test (QCL-1000R, cat. No. 50- 647U Bio Whittaker). The samples contained between 1 and 12 EU/ml endotoxin. The purity of the preparations was estimated to exceed 98% by PAGE analysis. Table 3 Summary of Production and Purification of human IgGl
Figure imgf000021_0001
The purified IgGl preparations were tested in ELISA for reactivity to MDA modified and un-modified peptides (Figure 5) and were then used in functional in vitro and in vivo studies.
Example 5.
Analysis of possible anti-atherogenic effect of antibodies is performed both in experimental animals and in cell culture studies.
1. Effect of antibodies on atherosclerosis in apolipoprotein E knockout (apo E-) mice. Five weeks old apo E- mice are fed a cholesterol-rich diet for 15 weeks. This treatment is known to produce a significant amount of atherosclerotic plaques in the aorta and carotid arteries. The mice are then given an intraperitoneal injection containing 500 μg of the respective antibody identified above. Control mice are given 500 μg of an irrelevant control antibody or PBS alone. Treatments are repeated after 1 and 2 weeks. The mice are sacrificed 4 weeks after the initial antibody injection.
The severity of atherosclerosis in the aorta is determined by Oil Red O staining of flat preparations and by determining the size of subvalvular atherosclerotic plaques. Collagen, macrophage and T cell content of subvalvular atherosclerotic plaques is determined by Masson trichrome staining and cell-specific immunohistochemistry. Quantification of Oil Red O staining, the size of the subvalvular plaques, trichrome staining and immunohistochemical staining is done using computer-based image analysis.
In a first experiment the effect of the antibodies on development of atherosclerosis was analysed in apo E-/- mice fed a high-cholesterol diet. The mice were given three intraperitoneal injections of 0.5 mg antibody with week intervals starting at 21 weeks of age, using PBS as control. They were sacrificed two weeks after the last antibody injection, and the extent of atherosclerosis was assessed by Oil Red O staining of descending aorta flat preparations. A pronounced effect was observed in mice treated with the IEI-E3 antibody, with more than 50% reduction of atherosclerosis as compared to the PBS group (P=0.02) and to a control group receiving a human IgGl antibody (FITC8) directed against a non-relevant fluorescein isothiocyanate (FITC) antigen (P=0.03) (Fig. 6). The mice tolerated the human antibodies well and no effects on the general health status of the mice were evident.
To verify the inhibitory effect of the IEI-E3 antibody on development of atherosclerosis we then performed a dose-response study. The schedule was identical to that of the initial study. In mice treated with IEI-E3 antibodies atherosclerosis was reduced by 2% in the 0.25 mg group (n.s.), by 25% in the 0.5 mg group (n.s.) and by 41% (P=0.02) in the 2.0 mg group as compared to the corresponding FITC antibody-treated groups (Fig. 7).
2. Effect of antibodies on neo-intima formation following mechanical injury of carotid arteries in apo E- mice. Mechanical injury of arteries results in development of fibro- muscular neo-intimal plaque within 3 weeks. This plaque resembles morphologically a fibro-muscular atherosclerotic plaque and has been used as one model for studies of the development of raised lesion. Placing a plastic collar around the carotid artery causes the mechanical injury. Five weeks old apo E- mice are fed a cholesterol-rich diet for 14 weeks. The mice are then given an intraperitoneal injection containing 500 μg of the respective antibody. Control mice are given 500 μg of an irrelevant control antibody or PBS alone. The treatment is repeated after 7 days and the surgical placement of the plastic collar is performed 1 day later. A last injection of antibodies or PBS is given 6 days after surgery and the animals are sacrificed 15 days later. The injured carotid artery is fixed, embedded in paraffin and sectioned. The size of the neo-intimal plaque is measured using computer-based image analysis.
3. Effect of antibodies on uptake of oxidized LDL in cultured human macrophages. Uptake of oxidized LDL in arterial macrophages leading to formation of cholesterol- loaded macrophage foam cells is one of the most characteristic features of the atherosclerotic plaque. Several lines of evidence suggest that inhibiting uptake of oxidized LDL in arterial macrophages represent a possible target for treatment of atherosclerosis. To study the effect of antibodies on macrophage uptake of oxidized c are pre-incubated with 125I-labeled human oxidized LDL for 2 hours. Human macrophages are isolated from blood donor buffy coats by centrifugation in Ficoll hypaque followed by culture in presence of 10% serum for 6 days. The cells are then incubated with medium containing antibody/oxidized LDL complexes for 6 hours, washed and cell-associated radioactivity determined in a gamma-counter. Addition of IEI-E3 antibodies resulted in a five-fold increase in the binding (P=0.001) and uptake (P=0.004) of oxidized LDL compared to FITC-8 into macrophages, but had no effect on binding or uptake of native LDL (Fig. 8a and 8b).
4. Effect of antibodies on oxidized LDL-dependent cytotoxicity. Oxidized LDL is highly cytotoxic. It is believed that much of the inflammatory activity in atherosclerotic plaques is explained by cell injury caused by oxidized LDL. Inhibition of oxidized LDL cytotoxicity thus represents another possible target for treatment of atherosclerosis. To study the effect of antibodies on oxidized LDL cytotoxicity cultured human arterial smooth muscle cells are exposed to 100 ng/ml of human oxidized LDL in the presence of increasing concentrations of antibodies (0-200 ng/ml) for 48 hours. The rate of cell injury is determined by measuring the release of the enzyme LDH.
The experiment shown discloses an effect for a particular antibody raised against a particular peptide, but it is evident to the one skilled in the art that all other antibodies raised against the peptides disclosed will behave in the same manner.
The antibodies of the present invention are used in pharmaceutical compositions for passive immunization, whereby the pharmaceutical compositions primarily are intended for injection, comprising a solution, suspension, or emulsion of a single antibody or a mixture of antibodies of the invention in a dosage to provide a therapeutically or prophylactically active level in the body treated. The compositions may be provided with commonly used adjuvants to enhance absorption of the antibody or mixture of antibodies. Other routes of administration may be the nasal route by inhaling the antibody/antibody mixture in combination with inhalable excipients.
Such pharmaceutical compositions may contain the active antibody in an amount of 0.5 to 99.5 % by weight, or 5 to 90 % by weight, or 10 to 90 % by weight, or 25 to 80 % by weight, or 40 to 90 % by weight.
The daily dosage of the antibody, or a booster dosage shall provide for a therapeutically or prophylactically active level in the body treated to reduce or prevent signs and symptoms of atherosclerosis by way of passive immunization. A dosage of antibody according to the invention may be 1 μg to 1 mg per kg bodyweight, or more. The antibody composition can be supplemented with other drugs for treating or preventing atherosclerosis or heart-vascular diseases, such as blood pressure lowering drugs, such as beta-receptor blockers, calcium antagonists, diurethics, and other antihypertensive agents.
FIG. 9 shows binding of isolated scFv to MDA modified ApoBlOO derived peptides and to a MDA modified control peptide of irrelevant sequence. Also depicted are the ratios between binding of the scFv to MDA modified and native ApoBlOO protein and human LDL respectively. Columns appear in the order they are defined from top to bottom in right hand column of the respective subfigure.
REFERENCES
Dimayuga, P., B. Cercek, et al. (2002).
"Inhibitory effect on arterial injury-induced neointimal formation by adoptive B-cell transfer in Rag-1 knockout mice." Arteriosclerosis. Thrombosis and Vascular Biology 22: 644-649.
Jovinge, S., M. Crisby, et al. (1997).
"DNA fragmentation and ultrastructural changes of degenerating cells in atherosclerotic lesions and smooth muscle cells exposed to oxidized LDL in vitro." Arteriosclerosis, Thrombosis and Vascular Biology 17: 2225-2231.
Regnstrδm, J., G. Walldius, et al. (1990).
"Effect of probucol treatment on suspectibility of low density lipoprotein isolated from hypercholesterolemic patients to become oxidativery modified in vitro." Atherosclerosis 82: 43-51.
Steinberg, D., S. Parthasarathy, et al. (1989).
"Beyond cholesterol modifications of low-density lipoprotein that increase its atherogenicity." New England Journal of Medicine 320(14) : 915-924.
Zhou, X., G. Paulsson, et al. (1998).
"Hypercholesterolemia is associated with a T helper (Th) 1/Th2 switch of the autoimmune response in atherosclerotic apo E-knockout Mice." Journal of Clinical Investigation 101: 1717-1725.

Claims

1. Use of at least one isolated human antibody or antibody fragment directed towards at least one oxidized fragment of apolipoprotein B in the manufacture of a pharmaceutical composition for therapeutical or prophylactical treatment of atherosclerosis by means of passive immunization.
2. Use according to claim 1, wherein the oxidized fragment is selected from one or more of the group consisting of FLDTVYGNCSTHFTVKTRKG
PQCSTHILQWLKRVHANPLL
VISIPRLQAEARSEILAHWS
KLVKEALKESQLPTVMDFRK
LKFVTQAEGAKQTEATMTFK DGSLRHKFLDSNIKFSHVEK
KGTYGLSCQRDPNTGRLNGE
RLNGESNLRFNSSYLQGTNQ
SLTSTSDLQSGIIKNTASLK
TASLKYENYELTLKSDTNGK DMTFSKQNALLRSEYQADYE
MKVKIIRTIDQMQNSELQWP
IALDDAKINFNEKLSQLQTY
KTTKQSFDLSVKAQYKKNKH
EEEMLENVSLVCPKDATRFK GSTSHHLVSRKSISAALEHK
IENIDFNKSGSSTASWIQNV
IREVTQRLNGEIQALELPQK
EVDVLTKYSQPEDSLIPFFE
HTFLIYITELLKKLQSTTVM LLDIANYLMEQIQDDCTGDE
CTGDEDYTYKIKRVIGNMGQ
GNMGQTMEQLTPELKSSILK
SSILKCVQSTKPSLMIQKAA
IQKAAIQALRKMEPKDKDQE RLNGESNLRFNSSYLQGTNQ
SLNSHGLELNADILGTDKIN
WIQNVDTKYQIRIQIQEKLQ
TYISDWWTLAAKNLTDFAEQ EATLQRIYSLWEHSTKNHLQ
ALLVPPETEEAKQVLFLDTV
IEIGLEGKGFEPTLEALFGK
SGASMKLTTNGRFREHNAKF
NLIGDFEVAEKINAFRAKVH
GHSVLTAKGMALFGEGKAEF
FKSSVITLNTNAELFNQSDI
FPDLGQEVALNANTKNQKIR, or an active site thereof. 0
3. Use according to claims 1-2, wherein the fragment has been oxidized using malone dealdehyde.
4. Use according to claims 1-2, wherein the fragment has been oxidized using copper. 5
5. Use according to claims 1-4, wherein the antibody is characterized in that it comprises the variable heavy region (VH) selected from the group of nucleic acid sequences consisting of
o GAGGTGCAGCTGTTGGAGTCTGGGGGAGGCTTGGTACAGCCTGGGGGGTCCCTGAGACTCTCC
TGTGCAGCCTCTGGATTCACCTTCAATAACGCCTGGATGAGCTGGGTCCGCCAGGCTCCAGGGA AGGGGCTGGAGTGGGTCTCATCCATTAGTAGTAGTAGTAGTTACATATACTACGCAGACTCAGT GAAGGGCCGATTCACCATCTCCAGAGACAATTCCAAGAACACGCTGTATCTGCAAATGAACAGC CTGAGAGCCGAGGACACTGCCGTGTATTACTGTGCGAGAGTCAGTAGGTACTACTACGGACCAT 5 CΠTTCTACTTTGACTCCTGGGGCCAGGGTACACTGGTCACCGTGAGCAGC (SEQ. ID. NO. 1)
GAGGTGCAGCTGTTGGAGTCTGGGGGAGGCTTGGTACAGCCTGGGGGGTCCCTGAGACTCTCC TGTGCGGCCTCTGGATTCACCTTCAGTGACTACTACATGAGCTGGGTCCGCCAGGCTCCCGGGA AGGGGCTGGAGTGGGTATCGGGTGTTAGTTGGAATGGCAGTAGGACGCACTATGCAGACTCTG 0 TGAAGGGCCGATTCACCATCTCCAGAGACAATTCCAAGAACACGCTGTATCTGCAAATGAACAG CCTGAGAGCCGAGGACACTGCCGTGTATTACTGTGCGAGAGCGGCTAGGTACTCCTACTACTAC TACGGTATGGACGTCTGGGGCCAAGGTACACTGGTCACCGTGAGCAGC (SEQ. ID. NO. 3)
GAGGTGCAGCTGTTGGAGTCTGGGGGAGGCTTGGTACAGCCTGGGGGGTCCCTGAGACTCTCC 5 TGTGCAGCCTCTGGATTCACCTTTAGTAGCTATTGGATGAGCTGGGTCCGCCAGGCTCCAGGGA
AGGGGCTGGAGTGGGTCTCAAGTATCAGTGGTAGTGGTCGTAGGACATACTACGCAGACTCCGT GCAGGGCCGGTTCACCATCTCCAGAGACAATTCCAAGAACACGCTGTATCTGCAAATGAACAGC CTGAGAGCCGAGGACACTGCCGTGTATTACTGTGCGAGATTGGTCTCCTATGGTTCGGGGAGTT TCGGTTTTGACTACTGGGGCCAAGGTACACTGGTCACCGTGAGCAGC(SEQ. ID. NO. 5)
GAGGTGCAGCTGTTGGAGTCTGGGGGAGGCTTGGTACAGCCTGGGGGGTCCCTGAGACTCTCC TGTGCAGCCTCTGGATTCACCTTCAGTAACGCCTGGATGAGCTGGGTCCGCCAGGTTCCAGGGA AGGGGCTGGAGTGGGTCTCAACTCTTGGTGGTAGTGGTGGTGGTAGCACATACTACGCAGACTC CGTGAAGGGCCGGTTCACCATCTCCAGAGACAATTCCAAGAACACGCTGTATCTGCAAATGAAC AGCCTGAGAGCCGAGGACACTGCCGTGTATTACTGTGCGAAGTTAGGGGGGCGATCCCGATAT GGGCGGTGGCCCCGCCAATTTGACTACTGGGGCCAAGGTACACTGGTCACCGTGAGCAGC (SEQ. ID. NO. 7)
GAGGTGCAGCTGTTGGAGTCTGGGGGAGGCTTGGTACAGCCTGGGGGGTCCCTGAGACTCTCC TGTGCAGCCTCTGGATTCACCTTCAGTGACTACTACATGAGCTGGATCCGCCAGGCTCCAGGGA AGGGGCTGGAGTGGGTCTCAAGTATCAGTGGCCGTGGGGGTAGTTCCTACTACGCAGACTCCG TGAGGGGCCGGTTCACCATCTCCAGAGACAATTCCAAGAACACGCTGTATCTGCAAATGAACAG CCTGAGAGCCGAGGACACTGCCGTGTATTACTGTGCGAGACTTTCCTACAGCTATGGTTACGAG GGGGCCTACTACTTTGACTACTGGGGCCAGGGTACACTGGTCACCGTGAGCAGC (SEQ. ID. NO. 9)
GAGGTGCAGCTGTTGGAGTCTGGGGGAGGCTTGGTACAGCCTGGGGGGTCCCTGAGACTCTCC TGTGCAGCCTCTGGATTCACCTTTAGCAGCTATGCCATGAGCTGGGTCCGCCAGGCTCCAGGGA AGGGGCTGGAGTGGGTCTCATCCATTAGTAGTAGTGGTCGTTTCATTTACTACGCAGACTCAATG AAGGGCCGCTTCACCATCTCCAGAGACAATTCCAAGAACACGCTGTATCTGCAAATGAACAGCCT GAGAGCCGAGGACACTGCCGTGTATTACTGTACGAGGCTCCGGAGAGGGAGCTACTTCTGGGC TTTTGATATCTGGGGCCAAGGTACACTGGTCACCGTGAGCAGC (SEQ. ID. NO. 11)
GAGGTGCAGCTGTTGGAGTCTGGGGGAGGCTTGGTACAGCCTGGGGGGTCCCTGAGACTC
TCCTGTGCAGCCTCTGGATTCACCTTTAGAACGTATTGGATGACCTGGGTCCGCCAGGCT
CCAGGGAAGGGGCTGGAGTGGGTCTCATCTATTAGCAGTAGCAGTAATTACATATTCTAC GCAGACTCAGTGAAGGGCCGATTCACCATCTCCAGAGACAATTCCAAGAACACGCTGTAT
CTGCAAATGAACAGCCTGAGAGCCGAGGACACTGCCGTGTATTACTGTGCGAGACTCAGA CGGAGCAGCTGGTACGGGGGGTACTGGTTCGACCCCTGGGGCCAAGGTACACTGGTCACC GTGAGCTCA (SEQ. ID. NO. 19)
GAGGTGCAGCTGTTGGAGTCTGGGGGAGGCTTGGTACAGCCTGGGGGGTCCCTGAGACTCT CCTGTGCAGCCTCTGGATTCACCTTCAGTAGCAACTACATGAGCTGGGTCCGCCAGGCTCC AGGGAAGGGGCTGGAGTGGGTCTCATCCATTAGTAGTAGTAGTAGTTACATATACTACGCA GACTCAGTGAAGGGCCGATTCACCATCTCCAGAGACAATTCCAAGAACACGCTGTATCTGC AAATGAACAGCCTGAGAGCCGAGGACACTGCCGTGTATTACTGTGCGAGAGTAGGCCGGTA TAACTGGAAGACGGGGCATGL I I I I GATATCTGGGGCCAGGGTACACTGGTCACCGTGAGC TCA (SEQ. ID. NO. 21)
GAGGTGCAGCTGTTGGAGTCTGGGGGAGGCTTGGTACAGCCTGGGGGGTCCCTGAGACTC TCCTGTGCAGCCTCTGGATTCACCTTCCGTGACTACTACGTGAGCTGGATCCGCCAGGCT CCAGGGAAGGGGCTGGAGTGGGTCTCAAGTATTAGTGGTAGTGGGGGTAGGACATACTAC GCAGACTCCGTGGAGGGCCGGTTCACCATCTCCAGAGACAATTCCAAGAACACGCTGTAT CTGCAAATGAACAGCCTGAGAGCCGAGGACACTGCCATGTATTACTGTGCCAGAGTATCC GCCCTTCGGAGACCCATGACTACAGTAACTACTTACTGGTTCGACCCCTGGGGCCAAGGT ACACTGGTCACCGTGAGCTCA (SEQ. ID. NO. 23)
GAGGTGCAGCTGTTGGAGTCTGGGGGAGGCTTGGTACAGCCTGGGGGGTCCCTGAGACTC TCCTGTGCAGCCTCTGGATTCACCTTCAGTAACGCCTGGATGAGCTGGGTCCGCCAGGCT CCAGGGAAGGGGCTGGAGTGGGTCTCCGCTATTAGTGGTAGTGGTAACACATACTATGCA GACTCCGTGAAGGGCCGGTTCACCATCTCCAGAGACAATTCCAAGAACACGCTGTATCTG CAAATGAACAGCCTGAGAGCCGAGGACACTGCCGTGTATTACTGTGCGAGAGCCTCCCAC CGTATATTAGGTTATGCTTTTGATATCTGGGGCCAGGGTACACTGGTCACCGTGAGCTCA (SEQ. ID. NO. 25)
GAGGTGCAGCTGTTGGAGTCTGGGGGAGGCTTGGTACAGCCTGGGGGGTCCCTGAGACTC TCCTGTGCAGCCTCTGGATTCACCTTCAGTAACGCCTGGATGAGCTGGGTCCGCCAGGCT CCAGGGAAGGGGCTGGAGTGGGTCTCAAGTATTAGTGTTGGTGGACATAGGACATATTAT GCAGATTCCGTGAAGGGCCGGTCCACCATCTCCAGAGACAATTCCAAGAACACGCTGTAT CTGCAAATGAACAGCCTGAGAGCCGAGGACACTGCCGTGTATTACTGTGCACGGATACGG
GTGGGTCCGTCCGGCGGGGCCTTTGACTACTGGGGCCAGGGTACACTGGTCACCGTGAGC TCA (SEQ. ID. NO. 27)
GAGGTGCAGCTGTTGGAGTCTGGGGGAGGCTTGGTACAGCCTGGGGGGTCCCTGAGACTC TCCTGTGCAGCCTCTGGATTCACCTTCAGTAACGCCTGGATGAGCTGGGTCCGCCAGGCT
CCAGGGAAGGGGCTGGAGTGGGTCTCATCCATTAGTAGTAGTAGTAGTTACATATACTAC GCAGACTCAGTGAAGGGCCGATCCACCATCTCCAGAGACAATTCCAAGAACACGCTGTAT CTGCAAATGAACAGCCTGAGAGCCGAGGACACTGCCGTGTATTACTGTGCGAGGCTCACA AATATTTTGACTGGTTATTATACCTCAGGATATGCTTTTGATATCTGGGGCCAAGGTACA CTGGTCACCGTGAGCTCA (SEQ. ID. NO. 29)
GAGGTGCAGCTGTTGGAGTCTGGGGGAGGCTTGGTACAGCCTGGGGGGTCCCTGAGACTC TCCTGTGCAGCCTCTGGATTCACCTTCAGTAGTTCTTGGATGAGTTGGGTCCGCCAGGCT CCAGGGAAGGGGCTGGAGTGGGTCTCATCCATTAGTAGTAGTAGTAGTTACATATACTAC
GCAGACTCAGTGAAGGGCCGATTCACCATCTCCAGAGACAATTCCAAGAACACGCTGTAT
CTGCAAATGAACAGCCTGAGAGCCGAGGACACTGCCGTGTATTACTGTGCGAGAGTAGGG
AACTACGGTTTCTACCACTACATGGACGTCTGGGGCCAAGGTACACTGGTCACCGTGAGC TCA (SEQ. ID. NO. 31)
GAGGTGCAGCTGTTGGAGTCTGGGGGAGGCTTGGTACAGCCTGGGGGGTCCCTGAGACTC
TCCTGTGCAGCCTCTGGATTCACCTTTAGTAGCTATTGGATGAGCTGGGTCCGCCAGGCT
CCAGGGAAGGGGCTGGAGTGGGTCTCATCCATTAGTAGTAGTAGTAGTTACATATACTAC GCAGACTCAGTGAAGGGCCGATTCACCATCTCCAGAGACAATTCCAAGAACACGCTGTAT
CTGCAAATGAACAGCCTGAGAGCCGAGGACACTGCCGTGTATTACTGTGCGAGAATTAAA CGGTTACGATTCGGCTGGACCCCTTTTGACTACTGGGGCCAGGGTACACTGGTCACCGTG AGCTCA (SEQ. ID. NO. 33)
TCCTGTGCAGCCTCTGGATTCACCTTCAGTAACGCCTGGATGAGCTGGGTCCGCCAGGCT CCAGGGAAGGGGCTGGAGTGGGTCTCATCCATTAGTAGTAGTAGTAGTTACATATACTAC GCAGACTCAGTGAAGGGCCGATTCACCATCTCCAGAGACAATTCCAAGAACACGCTGTAT CTGCAAATGAACAGCCTGAGAGCCGAGGACACTGCCGTGTATTACTGTGCGAGAGTCAAT AGCAAAAAGTGGTATGAGGGCTACTTCTTTGACTACTGGGGCCAGGGTACACTGGTCACC GTGAGCTCA (SEQ. ID. NO. 35)
GAGGTGCAGCTGTTGGAGTCTGGGGGAGGCTTGGTACAGCCTGGGGGGTCCCTGAGACTC
TCCTGTGCAGCCTCTGGATTCACCTTCAGTAACGCCTGGATGAGCTGGGTCCGCCAGGCT
CCAGGGAAGGGGCTGGAGTGGGTCTCATCCATTAGTACTAGTAGTAATTACATATACTAC GCAGACTCAGTGAAGGGCCGGTTCACCATCTCCAGAGACAATTCCAAGAACACGCTGTAT
CTGCAAATGAACAGCCTGAGAGCCGAGGACACTGCCGTGTATTACTGTGCGAGAGTCAAG AAGTATAGCAGTGGCTGGTACTCGAATTATGCTTTTGATATCTGGGGCCAAGGTACACTG GTCACCGTGAGCTCA (SEQ. ID. NO. 37).
6. Use according to claims 1-4, wherein the antibody is characterized in that it comprises the variable light region (VL) selected from the group of nucleic acid sequences consisting of
CAGTCTGTGCTGACTCAGCCACCCTCAGCGTCTGGGACCCCCGGGCAGAGGGTCACCATCTCCT GCTCTGGAAGCAGGTCCAACATTGGGAATAATTATGTATCCTGGTATCAGCAGCTCCCAGGAAC GGCCCCCAAACTCCTCATCTATGGTAACAACAATCGGCCCTCAGGGGTCCCTGACCGATTCTCTG GCTCCAAGTCTGGCACCTCAGCCTCCCTGGCCATCAGTGGGCTCCGGTCCGAGGATGAGGCTG ATTATTACTGTGCAGCATGGGATGACAGCCTGAATGGTCATTGGGTGTTCGGCGGAGGAACCAA
GCTGACGGTCCTAGGT (SEQ. ID. NO. 2)
CAGTCTGTGCTGACTCAGCCACCCTCAGCGTCTGGGACCCCCGGGCAGAGGGTCACCATCTCCT GTTCTGGAAGCAGCTCCAACATCGGAAATAATGCTGTAAACTGGTATCAGCAGCTCCCAGGAAC GGCCCCCAAACTCCTCATCTATGGGAATGATCGGCGGCCCTCAGGGGTCCCTGACCGATTCTCT GGCTCCAAGTCTGGCACCTCAGCCTCCCTGGCCATCAGTGGGCTCCGGTCCGAGGATGAGGCT GATTATTACTGTCAGACCTGGGGCACTGGCCGGGGGGTATTCGGCGGAGGAACCAAGCTGACG GTCCTAGGT (SEQ. ID. NO. 4)
CAGTCTGTGCTGACTCAGCCACCCTCAGCGTCTGGGACCCCCGGGCAGAGGGTCACCATCTCTT GTTCTGGAAGCAGCTCCAATATCGGAAGTAATTATGTATCCTGGTATCAGCAGCTCCCAGGAACG GCCCCCAAACTCCTCATCTATGGTAACTACAATCGGCCCTCAGGGGTCCCTGACCGATTCTCTGG CTCCAAGTCTGGCACCTCAGCCTCCCTGGCCATCAGTGGGCTCCGGTCCGAGGATGAGGCTGAT TATTACTGTGCAGCATGGGATGACAGCCTGAGTGGTTGGGTGTTCGGCGGAGGAACCAAGCTG ACGGTCCTAGGT (SEQ. ID. NO. 6)
CAGTCTGTGCTGACTCAGCCACCCTCAGCGTCTGGGACCCCCGGGCAGAGGGTCACCATCTCCT GCTCTGGAAGCAGCTCCAACATTGGAAATAACTATGTATCCTGGTATCAGCAGCTCCCAGGAAC GGCCCCCAAACTCCTCATCTATAGTAATAATCAGCGGCCCTCAGGGGTCCCTGACCGATTCTCTG
GCTCCAAGTCTGGCACCTCAGCCTCCCTGGCCATCAGTGGGCTCCGGTCCGAGGATGAGGCTG ATTATTACTGTGCAGCATGGGATGACAGCCTGAGTCATTGGCTGTTCGGCGGAGGAACCAAGCT GACGGTCCTAGGT (SEQ. ID. NO. 8)
CAGTCTGTGCTGACTCAGCCACCCTCAGCGTCTGGGACCCCCGGGCAGAGGGTCACCATCTCCT GCTCTGGAAGCAGCTCCAACATTGGGAATAATTATGTATCCTGGTATCAGCAGCTCCCAGGAAC GGCCCCCAAACTCCTCATCTATAGGAATAATCAGCGGCCCTCAGGGGTCCCTGACCGATTCTCT GGCTCCAAGTCTGGCACCTTAGCCTCCCTGGCCATCAGTGGGCTCCGGTCCGAGGATGAGGCT GATTATTACTGTGCAACCTGGGATGACAGCCTGAATGGTTGGGTGTTCGGCGGAGGAACCAAGC TGACGGTCCTAGGT (SEQ. ID. NO. 10)
CAGTCTGTGCTGACTCAGCCACCCTCAGCGTCTGGGACCCCCGGGCAGAGGGTCACCATCTCCT GTTCTGGAAGCAGCTCCAACATTGGCGGTGAGTCTGTATCCTGGTATCAGCAGCTCCCAGGAAC GGCCCCCAAACTCCTCATCTATAGTAATAATCAGCGGCCCTCAGGGGTCCCTGACCGATTCTCTG GCTCCAAGTCTGGCACCTCAGCCTCCCTGGCCATCAGTGGGCTCCGGTCCGAGGATGAGGCTG ATTATTACTGTGCAGCATGGGATGACAGCCTGAATGGTTGGGTGTTCGGCGGAGGAACCAAGCT GACGGTCCTAGGT (SEQ. ID. NO. 12) CAGTCTGTGCTGACTCAGCCACCCTCAGCGTCTGGGACCCCCGGGCAGAGGGTCACCATC
TCCTGCTCTGGAAGCAGCTCCAACATTGGGAATAATTATGTATCCTGGTATCAGCAGCTC
CCAGGAACGGCCCCCAAACTCCTCATCTATAGGAATAATCAGCGGCCCTCAGGGGTCCCT
GACCGATTCTCTGGCTCCAAGTCTGGCACCTCAGCCTCCCTGGCCATCAGTGGGCTCCGG TCCGAGGATGAGGCTGATTATTACTGTGCAGCATGGGATGACAGCCTGAATGGTCATTGG
GTGTTCGGCGGAGGAACCAAGCTGACGGTCCTAGGT (SEQ. ID. NO. 20)
CAGTCTGTGCTGACTCAGCCACCCTCAGCGTCTGGGACCCCCGGGCAGAGGGTCACCATCT CCTGCTCTGGAAGGACCTACAACATTGGAAATAATTATGTATCGTGGTATCAGCAGCTCCC AGGAACGGCCCCCAAACTCCTCATCTATGGTAACATCAATCGGCCCTCAGGGGTCCCTGAC CGATTCTCTGGCTCCAAGTCTGGCACCTCAGCCTCCCTGGCCATCAGTGGGCTCCGGTCCG AGGATGAGGCTGATTATTACTGTGCAGCATGGGATGTCAGGCTGAATGGTTGGGTGTTCGG CGGAGGAACCAAGCTGACGGTCCTAGGT (SEQ. ID. NO. 22)
CAGTCTGTGCTGACTCAGCCACCCTCAGCGTCTGGGACCCCCGGGCAGAGGGTCACCATC TCCTGCTCTGGAAGGAGCTCCAACATTGGGAATAGTTATGTCTCCTGGTATCAGCAGCTC CCAGGAACGGCCCCCAAACTCCTCATCTATAGGAATAATCAGCGGCCCTCAGGGGTCCCT GACCGATTCTCTGGCTCCAAGTCTGGCACCTCAGCCTCCCTGGCCATCAGTGGGCTCCGG TCCGAGGATGAGGCTGATTATTACTGTGCAGGATGGGATGACACCCTGCGTGCTTGGGTG TTCGGCGGAGGAACCAAGCTGACGGTCCTAGGT (SEQ. ID. NO. 24)
CAGTCTGTGCTGACTCAGCCACCCTCAGCGTCTGGGACCCCCGGGCAGAGGGTCACCATC
TCTTGTTCTGGAAGCCGCTCCAACATCGGGAGAAATGCTGTTAGTTGGTATCAGCAGCTC
CCAGGAACGGCCCCCAAACTCCTCATCTATGCTAACAGCAATCGGCCCTCAGGGGTCCCT GACCGATTCTCTGGCTCCAAGTCTGGCACCTCAGCCTCCCTGGCCATCAGTGGGCTCCGG
TCCGAGGATGAGGCTGATTATTACTGTGCAGCATGGGATGGCAGCCTGAATGGTTGGGTG TTCGGCGGAGGAACCAAGCTGACGGTCC (SEQ. ID. NO. 26)
CAGTCTGTGCTGACTCAGCCACCCTCAGCGTCTGGGACCCCCGGGCAGAGGGTCACCAT CTCCTGCTCTGGAAGCAACACCAACATTGGGAAGAACTATGTATCTTGGTATCAGCAGC
TCCCAGGAACGGCCCCCAAACTCCTCATCTATGCTAATAGCAATCGGCCCTCAGGGGTC CCTGACCGATTCTCTGGCTCCAAGTCTGGCACCTCAGCCTCCCTGGCCATCAGTGGGCT CCGGTCCGAGGATGAGGCTGATTATTACTGTGCGTCATGGGATGCCAGCCTGAATGGTT GGGTATTCGGCGGAGGAACCAAGCTGACGGTCCTAGGT (SEQ. ID. NO. 28)
CAGTCTGTGCTGACTCAGCCACCCTCAGCGTCTGGGACCCCCGGGCAGAGGGTCACCATC
TCCTGCTCTGGAAGCACCTCCAACATTGGGAAGAATTATGTATCCTGGTATCAGCAGCTC
CCAGGAACGGCCCCCAAACTCCTCATCTATGGTAACAGCAATCGGCCCTCAGGGGTCCCT GACCGATTCTCTGGCTCCAAGTCTGGCACCTCAGCCTCCCTGGCCATCAGTGGGCTCCGG TCCGAGGATGAGGCTGATTATTACTGTGCAGCATGGGATGCCAGCCTCAGTGGTTGGGTG TTCGGCGGAGGAACCAAGCTGACGGTCCTAGGT (SEQ. ID. NO.30)
5 CAGTCTGTGCTGACTCAGCCACCCTCAGCGTCTGGGACCCCCGGGCAGAGGGTCACCATC TCTTGTTCTGGAGGCAGCTCAAACATCGGAAAAAGAGGTGTAAATTGGTATCAGCAGCTC CCAGGAACGGCCCCCAAACTCCTCATCTATGGTAACAGAAATCGGCCCTCAGGGGTCCCT GACCGATTCTCTGGCTCCAAGTCTGGCACCTCAGCCTCCCTGGCCATCAGTGGGCTCCGG TCCGAGGATGAGGCTGATTATTACTGTGCTACATGGGATTACAGCCTCAATGCTTGGGTG 0 TTCGGCGGAGGAACCAAGCTGACGGTCCTAGGT (SEQ. ID. NO.32)
CAGTCTGTTCTGACTCAGCCACCCTCAGCGTCTGGGACCCCCGGGCAGAGGGTCACCATC TCCTGTTCTGGAAGCAGCTCCAACATCGGAAATAATGGTGTAAACTGGTATCAGCAGCTC CCAGGAACGGCCCCCAAACTCCTCATCTATGGTAACAACAATCGGCCCTCAGGGGTCCCT 5 GACCGATTCTCTGGCTCCAAGTCTGGCACCTCAGCCTCCCTGGCCATCAGTGGGCTCCGG TCCGAGGATGAGGCTGATTATTACTGTGCAGCATGGGATGACAGCCTGCGTGGTTGGCTG TTCGGCGGAGGAACCAAGCTGACGGTCCTAGGT (SEQ. ID. NO.34)
CAGTCTGTGCTGACTCAGCCACCCTCAGCGTCTGGGACCCCCGGGCAGAGGGTCACCATC 0 TCCTGCTCTGGAAGCAGCTCCAACATTGGGAATAATTATGTATCCTGGTATCAGCAGCTC CCAGGAACGGCCCCCAAACTCCTCATCTATGGTAACAGCAATCGGCCCTCAGGGGTCCCT GACCGATTCTCTGGCTCCAAGTCTGGCACCTCAGCCTCCCTGGCCATCAGTGGGCTCCGG TCCGAGGATGAGGCTGATTATTACTGTGCAGCATGGGATGACAGTCTGAGTGGTTGGGTG TTCGGCGGAGGAACCAAGCTGACGGTCCTAGGT (SEQ. ID. NO.36) 5
CAGTCTGTGCTGACTCAGCCACCCTCAGCGTCTGGGACCCCCGGGCAGAGGGTCACCATC TCCTGCΓCTGGAAGCAGCΓCCAGCATTGGGAATAATTTTGTATCCTGGTATCAGCAGCTC CCAGGAACGGCCCCCAAACTCCTCATCTATGACAATAATAAGCGACCCTCAGGGGTCCCT GACCGATTCTCTGGCTCCAAGTCTGGCACCTCAGCCTCCCTGGCCATCAGTGGGCTCCGG O TCCGAGGATGAGGCTGATTATTACTGTGCAGCATGGGATGACAGCCTGAATGGTTGGGTG TTCGGCGGAGGAACCAAGCTGACGGTCCTAGGT (SEQ. ID. NO. 38)
7. Use according to claims 1-6, wherein the antibody is characterized in that it comprises the variable heavy region (VH) selected from the group of nucleic acid sequences 5 consisting of
GAGGTGCAGCTGTTGGAGTCTGGGGGAGGCTTGGTACAGCCTGGGGGGTCCCTGAGACTCTCC TGTGCAGCCTCTGGATTCACCTTCAATAACGCCTGGATGAGCTGGGTCCGCCAGGCTCCAGGGA AGGGGCTGGAGTGGGTCTCATCCATTAGTAGTAGTAGTAGTTACATATACTACGCAGACTCAGT
GAAGGGCCGATTCACCATCTCCAGAGACAATTCCAAGAACACGCTGTATCTGCAAATGAACAGC CTGAGAGCCGAGGACACTGCCGTGTATTACTGTGCGAGAGTCAGTAGGTACTACTACGGACCAT CTTTCTACTTTGACTCCTGGGGCCAGGGTACACTGGTCACCGTGAGCAGC (SEQ. ID. NO. 1)
GAGGTGCAGCTGTTGGAGTCTGGGGGAGGCTTGGTACAGCCTGGGGGGTCCCTGAGACTCTCC TGTGCGGCCTCTGGATTCACCTTCAGTGACTACTACATGAGCTGGGTCCGCCAGGCTCCCGGGA AGGGGCTGGAGTGGGTATCGGGTGTTAGTTGGAATGGCAGTAGGACGCACTATGCAGACTCTG TGAAGGGCCGATTCACCATCTCCAGAGACAATTCCAAGAACACGCTGTATCTGCAAATGAACAG CCTGAGAGCCGAGGACACTGCCGTGTATTACTGTGCGAGAGCGGCTAGGTACTCCTACTACTAC TACGGTATGGACGTCTGGGGCCAAGGTACACTGGTCACCGTGAGCAGC (SEQ. ID. NO. 3)
GAGGTGCAGCTGTTGGAGTCTGGGGGAGGCTTGGTACAGCCTGGGGGGTCCCTGAGACTCTCC TGTGCAGCCTCTGGATTCACCTTTAGTAGCTATTGGATGAGCTGGGTCCGCCAGGCTCCAGGGA AGGGGCTGGAGTGGGTCTCAAGTATCAGTGGTAGTGGTCGTAGGACATACTACGCAGACTCCGT GCAGGGCCGGTTCACCATCTCCAGAGACAATTCCAAGAACACGCTGTATCTGCAAATGAACAGC CTGAGAGCCGAGGACACTGCCGTGTATTACTGTGCGAGATTGGTCTCCTATGGTTCGGGGAGTT TCGGTTTTGACTACTGGGGCCAAGGTACACTGGTCACCGTGAGCAGC(SEQ. ID. NO. 5)
GAGGTGCAGCTGTTGGAGTCTGGGGGAGGCTTGGTACAGCCTGGGGGGTCCCTGAGACTCTCC TGTGCAGCCTCTGGATTCACCTTCAGTAACGCCTGGATGAGCTGGGTCCGCCAGGTTCCAGGGA AGGGGCTGGAGTGGGTCTCAACTCTTGGTGGTAGTGGTGGTGGTAGCACATACTACGCAGACTC CGTGAAGGGCCGGTTCACCATCTCCAGAGACAATTCCAAGAACACGCTGTATCTGCAAATGAAC AGCCTGAGAGCCGAGGACACTGCCGTGTATTACTGTGCGAAGTTAGGGGGGCGATCCCGATAT GGGCGGTGGCCCCGCCAATTTGACTACTGGGGCCAAGGTACACTGGTCACCGTGAGCAGC
(SEQ. ID. NO. 7)
GAGGTGCAGCTGTTGGAGTCTGGGGGAGGCTTGGTACAGCCTGGGGGGTCCCTGAGACTCTCC TGTGCAGCCTCTGGATTCACCTTCAGTGACTACTACATGAGCTGGATCCGCCAGGCTCCAGGGA AGGGGCTGGAGTGGGTCTCAAGTATCAGTGGCCGTGGGGGTAGTTCCTACTACGCAGACTCCG
TGAGGGGCCGGTTCACCATCTCCAGAGACAATTCCAAGAACACGCTGTATCTGCAAATGAACAG CCTGAGAGCCGAGGACACTGCCGTGTATTACTGTGCGAGACTTTCCTACAGCTATGGTTACGAG GGGGCCTACTACTTTGACTACTGGGGCCAGGGTACACTGGTCACCGTGAGCAGC (SEQ. ID. NO. 9)
GAGGTGCAGCTGTTGGAGTCTGGGGGAGGCTTGGTACAGCCTGGGGGGTCCCTGAGACTCTCC TGTGCAGCCTCTGGATTCACCTTTAGCAGCTATGCCATGAGCTGGGTCCGCCAGGCTCCAGGGA AGGGGCTGGAGTGGGTCTCATCCATTAGTAGTAGTGGTCGTTTCATTTACTACGCAGACTCAATG AAGGGCCGCTTCACCATCTCCAGAGACAATTCCAAGAACACGCTGTATCTGCAAATGAACAGCCT
GAGAGCCGAGGACACTGCCGTGTATTACTGTACGAGGCTCCGGAGAGGGAGCTACTTCTGGGC
TTTTGATATCTGGGGCCAAGGTACACTGGTCACCGTGAGCAGC (SEQ. ID. NO. 11)
GAGGTGCAGCTGTTGGAGTCTGGGGGAGGCTTGGTACAGCCTGGGGGGTCCCTGAGACTC TCCTGTGCAGCCTCTGGATTCACCTTTAGAACGTATTGGATGACCTGGGTCCGCCAGGCT CCAGGGAAGGGGCTGGAGTGGGTCTCATCTATTAGCAGTAGCAGTAATTACATATTCTAC GCAGACTCAGTGAAGGGCCGATTCACCATCTCCAGAGACAATTCCAAGAACACGCTGTAT CTGCAAATGAACAGCCTGAGAGCCGAGGACACTGCCGTGTATTACTGTGCGAGACTCAGA CGGAGCAGCTGGTACGGGGGGTACTGGTTCGACCCCTGGGGCCAAGGTACACTGGTCACC GTGAGCTCA (SEQ. ID. NO. 19)
GAGGTGCAGCTGTTGGAGTCTGGGGGAGGCTTGGTACAGCCTGGGGGGTCCCTGAGACTCT CCTGTGCAGCCTCTGGATTCACCTTCAGTAGCAACTACATGAGCTGGGTCCGCCAGGCTCC AGGGAAGGGGCTGGAGTGGGTCTCATCCATTAGTAGTAGTAGTAGTTACATATACTACGCA GACTCAGTGAAGGGCCGATTCACCATCTCCAGAGACAATTCCAAGAACACGCTGTATCTGC AAATGAACAGCCTGAGAGCCGAGGACACTGCCGTGTATTACTGTGCGAGAGTAGGCCGGTA TAACTGGAAGACGGGGCATG I I I I GATATCTGGGGCCAGGGTACACTGGTCACCGTGAGC TCA (SEQ. ID. NO. 21)
GAGGTGCAGCTGTTGGAGTCTGGGGGAGGCTTGGTACAGCCTGGGGGGTCCCTGAGACTC TCCTGTGCAGCCTCTGGATTCACCTTCCGTGACTACTACGTGAGCTGGATCCGCCAGGCT CCAGGGAAGGGGCTGGAGTGGGTCTCAAGTATTAGTGGTAGTGGGGGTAGGACATACTAC GCAGACTCCGTGGAGGGCCGGTTCACCATCTCCAGAGACAATTCCAAGAACACGCTGTAT CTGCAAATGAACAGCCTGAGAGCCGAGGACACTGCCATGTATTACTGTGCCAGAGTATCC
GCCCTTCGGAGACCCATGACTACAGTAACTACTTACTGGTTCGACCCCTGGGGCCAAGGT ACACTGGTCACCGTGAGCTCA (SEQ. ID. NO. 23)
GAGGTGCAGCTGTTGGAGTCTGGGGGAGGCTTGGTACAGCCTGGGGGGTCCCTGAGACTC TCCTGTGCAGCCTCTGGATTCACCTTCAGTAACGCCTGGATGAGCTGGGTCCGCCAGGCT
CCAGGGAAGGGGCTGGAGTGGGTCTCCGCTATTAGTGGTAGTGGTAACACATACTATGCA GACTCCGTGAAGGGCCGGTTCACCATCTCCAGAGACAATTCCAAGAACACGCTGTATCTG CAAATGAACAGCCTGAGAGCCGAGGACACTGCCGTGTATTACTGTGCGAGAGCCTCCCAC CGTATATTAGGTTATGCTTTTGATATCTGGGGCCAGGGTACACTGGTCACCGTGAGCTCA (SEQ. ID. NO. 25)
GAGGTGCAGCTGTTGGAGTCTGGGGGAGGCTTGGTACAGCCTGGGGGGTCCCTGAGACTC TCCTGTGCAGCCTCTGGATTCACCTTCAGTAACGCCTGGATGAGCTGGGTCCGCCAGGCT CCAGGGAAGGGGCTGGAGTGGGTCTCAAGTATTAGTGTTGGTGGACATAGGACATATTAT
GCAGATTCCGTGAAGGGCCGGTCCACCATCTCCAGAGACAATTCCAAGAACACGCTGTAT
CTGCAAATGAACAGCCTGAGAGCCGAGGACACTGCCGTGTATTACTGTGCACGGATACGG
GTGGGTCCGTCCGGCGGGGCCTTTGACTACTGGGGCCAGGGTACACTGGTCACCGTGAGC TCA (SEQ. ID. NO. 27)
GAGGTGCAGCTGTTGGAGTCTGGGGGAGGCTTGGTACAGCCTGGGGGGTCCCTGAGACTC TCCTGTGCAGCCTCTGGATTCACCTTCAGTAACGCCTGGATGAGCTGGGTCCGCCAGGCT CCAGGGAAGGGGCTGGAGTGGGTCTCATCCATTAGTAGTAGTAGTAGTTACATATACTAC GCAGACTCAGTGAAGGGCCGATCCACCATCTCCAGAGACAATTCCAAGAACACGCTGTAT CTGCAAATGAACAGCCTGAGAGCCGAGGACACTGCCGTGTATTACTGTGCGAGGCTCACA AATATTTTGACTGGTTATTATACCTCAGGATATGCTTTTGATATCTGGGGCCAAGGTACA CTGGTCACCGTGAGCTCA (SEQ. ID. NO. 29)
GAGGTGCAGCTGTTGGAGTCTGGGGGAGGCTTGGTACAGCCTGGGGGGTCCCTGAGACTC TCCTGTGCAGCCTCTGGATTCACCTTCAGTAGTTCTTGGATGAGTTGGGTCCGCCAGGCT CCAGGGAAGGGGCTGGAGTGGGTCTCATCCATTAGTAGTAGTAGTAGTTACATATACTAC GCAGACTCAGTGAAGGGCCGATTCACCATCTCCAGAGACAATTCCAAGAACACGCTGTAT CTGCAAATGAACAGCCTGAGAGCCGAGGACACTGCCGTGTATTACTGTGCGAGAGTAGGG AACTACGGTTTCTACCACTACATGGACGTCTGGGGCCAAGGTACACTGGTCACCGTGAGC TCA (SEQ. ID. NO. 31)
GAGGTGCAGCTGTTGGAGTCTGGGGGAGGCTTGGTACAGCCTGGGGGGTCCCTGAGACTC TCCTGTGCAGCCTCTGGATTCACCTTTAGTAGCTATTGGATGAGCTGGGTCCGCCAGGCT CCAGGGAAGGGGCTGGAGTGGGTCTCATCCATTAGTAGTAGTAGTAGTTACATATACTAC
GCAGACTCAGTGAAGGGCCGATTCACCATCTCCAGAGACAATTCCAAGAACACGCTGTAT CTGCAAATGAACAGCCTGAGAGCCGAGGACACTGCCGTGTATTACTGTGCGAGAATTAAA CGGTTACGATTCGGCTGGACCCCTTTTGACTACTGGGGCCAGGGTACACTGGTCACCGTG AGCTCA (SEQ. ID. NO. 33)
TCCTGTGCAGCCTCTGGATTCACCTTCAGTAACGCCTGGATGAGCTGGGTCCGCCAGGCT CCAGGGAAGGGGCTGGAGTGGGTCTCATCCATTAGTAGTAGTAGTAGTTACATATACTAC GCAGACTCAGTGAAGGGCCGATTCACCATCTCCAGAGACAATTCCAAGAACACGCTGTAT CTGCAAATGAACAGCCTGAGAGCCGAGGACACTGCCGTGTATTACTGTGCGAGAGTCAAT AGCAAAAAGTGGTATGAGGGCTACTTCTTTGACTACTGGGGCCAGGGTACACTGGTCACC
GTGAGCTCA (SEQ. ID. NO. 35)
GAGGTGCAGCTGTTGGAGTCTGGGGGAGGCTTGGTACAGCCTGGGGGGTCCCTGAGACTC TCCTGTGCAGCCTCTGGATTCACCTTCAGTAACGCCTGGATGAGCTGGGTCCGCCAGGCT
CCAGGGAAGGGGCTGGAGTGGGTCTCATCCATTAGTACTAGTAGTAATTACATATACTAC
GCAGACTCAGTGAAGGGCCGGTTCACCATCTCCAGAGACAATTCCAAGAACACGCTGTAT
CTGCAAATGAACAGCCTGAGAGCCGAGGACACTGCCGTGTATTACTGTGCGAGAGTCAAG AAGTATAGCAGTGGCTGGTACTCGAATTATGL I I I I GATATCTGGGGCCAAGGTACACTG
GTCACCGTGAGCTCA (SEQ. ID. NO. 37)
in combination with at least one variable light region (V ) selected from the group of nucleic acid sequences consisting of
CAGTCTGTGCTGACTCAGCCACCCTCAGCGTCTGGGACCCCCGGGCAGAGGGTCACCATCTCCT GCTCTGGAAGCAGGTCCAACATTGGGAATAATTATGTATCCTGGTATCAGCAGCTCCCAGGAAC GGCCCCCAAACTCCTCATCTATGGTAACAACAATCGGCCCTCAGGGGTCCCTGACCGATTCTCTG GCTCCAAGTCTGGCACCTCAGCCTCCCTGGCCATCAGTGGGCTCCGGTCCGAGGATGAGGCTG ATTATTACTGTGCAGCATGGGATGACAGCCTGAATGGTCATTGGGTGTTCGGCGGAGGAACCAA GCTGACGGTCCTAGGT (SEQ. ID. NO. 2)
CAGTCTGTGCTGACTCAGCCACCCTCAGCGTCTGGGACCCCCGGGCAGAGGGTCACCATCTCCT GTTCTGGAAGCAGCTCCAACATCGGAAATAATGCTGTAAACTGGTATCAGCAGCTCCCAGGAAC GGCCCCCAAACTCCTCATCTATGGGAATGATCGGCGGCCCTCAGGGGTCCCTGACCGATTCTCT GGCTCCAAGTCTGGCACCTCAGCCTCCCTGGCCATCAGTGGGCTCCGGTCCGAGGATGAGGCT GATTATTACTGTCAGACCTGGGGCACTGGCCGGGGGGTATTCGGCGGAGGAACCAAGCTGACG GTCCTAGGT (SEQ. ID. NO. 4)
CAGTCTGTGCTGACTCAGCCACCCTCAGCGTCTGGGACCCCCGGGCAGAGGGTCACCATCTCTT
GTTCTGGAAGCAGCTCCAATATCGGAAGTAATTATGTATCCTGGTATCAGCAGCTCCCAGGAACG GCCCCCAAACTCCTCATCTATGGTAACTACAATCGGCCCTCAGGGGTCCCTGACCGATTCTCTGG CTCCAAGTCTGGCACCTCAGCCTCCCTGGCCATCAGTGGGCTCCGGTCCGAGGATGAGGCTGAT TATTACTGTGCAGCATGGGATGACAGCCTGAGTGGTTGGGTGTTCGGCGGAGGAACCAAGCTG ACGGTCCTAGGT
(SEQ. ID. NO. 6)
CAGTCTGTGCTGACTCAGCCACCCTCAGCGTCTGGGACCCCCGGGCAGAGGGTCACCATCTCCT GCTCTGGAAGCAGCTCCAACATTGGAAATAACTATGTATCCTGGTATCAGCAGCTCCCAGGAAC GGCCCCCAAACTCCTCATCTATAGTAATAATCAGCGGCCCTCAGGGGTCCCTGACCGATTCTCTG GCTCCAAGTCTGGCACCTCAGCCTCCCTGGCCATCAGTGGGCTCCGGTCCGAGGATGAGGCTG ATTATTACTGTGCAGCATGGGATGACAGCCTGAGTCATTGGCTGTTCGGCGGAGGAACCAAGCT GACGGTCCTAGGT (SEQ. ID. NO. 8)
CAGTCTGTGCTGACTCAGCCACCCTCAGCGTCTGGGACCCCCGGGCAGAGGGTCACCATCTCCT GCTCTGGAAGCAGCTCCAACATTGGGAATAATTATGTATCCTGGTATCAGCAGCTCCCAGGAAC GGCCCCCAAACTCCTCATCTATAGGAATAATCAGCGGCCCTCAGGGGTCCCTGACCGATTCTCT GGCTCCAAGTCTGGCACCTTAGCCTCCCTGGCCATCAGTGGGCTCCGGTCCGAGGATGAGGCT GATTATTACTGTGCAACCTGGGATGACAGCCTGAATGGTTGGGTGTTCGGCGGAGGAACCAAGC TGACGGTCCTAGGT (SEQ. ID. NO. 10)
CAGTCTGTGCTGACTCAGCCACCCTCAGCGTCTGGGACCCCCGGGCAGAGGGTCACCATCTCCT GTTCTGGAAGCAGCTCCAACATTGGCGGTGAGTCTGTATCCTGGTATCAGCAGCTCCCAGGAAC GGCCCCCAAACTCCTCATCTATAGTAATAATCAGCGGCCCTCAGGGGTCCCTGACCGATTCTCTG GCTCCAAGTCTGGCACCTCAGCCTCCCTGGCCATCAGTGGGCTCCGGTCCGAGGATGAGGCTG ATTATTACTGTGCAGCATGGGATGACAGCCTGAATGGTTGGGTGTTCGGCGGAGGAACCAAGCT GACGGTCCTAGGT (SEQ. ID. NO. 12)
CAGTCTGTGCTGACTCAGCCACCCTCAGCGTCTGGGACCCCCGGGCAGAGGGTCACCATC TCCTGCTCTGGAAGCAGCTCCAACATTGGGAATAATTATGTATCCTGGTATCAGCAGCTC
CCAGGAACGGCCCCCAAACTCCTCATCTATAGGAATAATCAGCGGCCCTCAGGGGTCCCT GACCGATTCTCTGGCTCCAAGTCTGGCACCTCAGCCTCCCTGGCCATCAGTGGGCTCCGG TCCGAGGATGAGGCTGATTATTACTGTGCAGCATGGGATGACAGCCTGAATGGTCATTGG GTGTTCGGCGGAGGAACCAAGCTGACGGTCCTAGGT (SEQ. ID. NO. 20)
CAGTCTGTGCTGACTCAGCCACCCTCAGCGTCTGGGACCCCCGGGCAGAGGGTCACCATCT CCTGCTCTGGAAGGACCTACAACATTGGAAATAATTATGTATCGTGGTATCAGCAGCTCCC AGGAACGGCCCCCAAACTCCTCATCTATGGTAACATCAATCGGCCCTCAGGGGTCCCTGAC CGATTCTCTGGCTCCAAGTCTGGCACCTCAGCCTCCCTGGCCATCAGTGGGCTCCGGTCCG AGGATGAGGCTGATTATTACTGTGCAGCATGGGATGTCAGGCTGAATGGTTGGGTGTTCGG
CGGAGGAACCAAGCTGACGGTCCTAGGT (SEQ. ID. NO. 22)
CAGTCTGTGCTGACTCAGCCACCCTCAGCGTCTGGGACCCCCGGGCAGAGGGTCACCATC TCCTGCTCTGGAAGGAGCTCCAACATTGGGAATAGTTATGTCTCCTGGTATCAGCAGCTC CCAGGAACGGCCCCCAAACTCCTCATCTATAGGAATAATCAGCGGCCCTCAGGGGTCCCT GACCGATTCTCTGGCTCCAAGTCTGGCACCTCAGCCTCCCTGGCCATCAGTGGGCTCCGG TCCGAGGATGAGGCTGATTATTACTGTGCAGGATGGGATGACACCCTGCGTGCTTGGGTG TTCGGCGGAGGAACCAAGCTGACGGTCCTAGGT (SEQ. ID. NO. 24) CAGTCTGTGCTGACTCAGCCACCCTCAGCGTCTGGGACCCCCGGGCAGAGGGTCACCATC TCTTGTTCTGGAAGCCGCTCCAACATCGGGAGAAATGCTGTTAGTTGGTATCAGCAGCTC CCAGGAACGGCCCCCAAACTCCTCATCTATGCTAACAGCAATCGGCCCTCAGGGGTCCCT 5 GACCGATTCTCTGGCTCCAAGTCTGGCACCTCAGCCTCCCTGGCCATCAGTGGGCTCCGG TCCGAGGATGAGGCTGATTATTACTGTGCAGCATGGGATGGCAGCCTGAATGGTTGGGTG TTCGGCGGAGGAACCAAGCTGACGGTCC (SEQ. ID. NO. 26)
CAGTCTGTGCTGACTCAGCCACCCTCAGCGTCTGGGACCCCCGGGCAGAGGGTCACCAT 0 CTCCTGCTCTGGAAGCAACACCAACATTGGGAAGAACTATGTATCTTGGTATCAGCAGC TCCCAGGAACGGCCCCCAAACTCCTCATCTATGCTAATAGCAATCGGCCCTCAGGGGTC CCTGACCGATTCTCTGGCTCCAAGTCTGGCACCTCAGCCTCCCTGGCCATCAGTGGGCT CCGGTCCGAGGATGAGGCTGATTATTACTGTGCGTCATGGGATGCCAGCCTGAATGGTT GGGTATTCGGCGGAGGAACCAAGCTGACGGTCCTAGGT (SEQ. ID. NO. 28) 5
CAGTCTGTGCTGACTCAGCCACCCTCAGCGTCTGGGACCCCCGGGCAGAGGGTCACCATC TCCTGCTCTGGAAGCACCTCCAACATTGGGAAGAATTATGTATCCTGGTATCAGCAGCTC CCAGGAACGGCCCCCAAACTCCTCATCTATGGTAACAGCAATCGGCCCTCAGGGGTCCCT GACCGATTCTCTGGCTCCAAGTCTGGCACCTCAGCCTCCCTGGCCATCAGTGGGCTCCGG o TCCGAGGATGAGGCTGATTATTACTGTGCAGCATGGGATGCCAGCCTCAGTGGTTGGGTG TTCGGCGGAGGAACCAAGCTGACGGTCCTAGGT (SEQ. ID. NO. 30)
CAGTCTGTGCTGACTCAGCCACCCTCAGCGTCTGGGACCCCCGGGCAGAGGGTCACCATC TCTTGTTCTGGAGGCAGCTCAAACATCGGAAAAAGAGGTGTAAATTGGTATCAGCAGCTC 5 CCAGGAACGGCCCCCAAACTCCTCATCTATGGTAACAGAAATCGGCCCTCAGGGGTCCCT
GACCGATTCTCTGGCTCCAAGTCTGGCACCTCAGCCTCCCTGGCCATCAGTGGGCTCCGG TCCGAGGATGAGGCTGATTATTACTGTGCTACATGGGATTACAGCCTCAATGCTTGGGTG TTCGGCGGAGGAACCAAGCTGACGGTCCTAGGT (SEQ. ID. NO. 32)
o CAGTCTGTTCTGACTCAGCCACCCTCAGCGTCTGGGACCCCCGGGCAGAGGGTCACCATC
TCCTGTTCTGGAAGCAGCTCCAACATCGGAAATAATGGTGTAAACTGGTATCAGCAGCTC CCAGGAACGGCCCCCAAACTCCTCATCTATGGTAACAACAATCGGCCCTCAGGGGTCCCT GACCGATTCTCTGGCTCCAAGTCTGGCACCTCAGCCTCCCTGGCCATCAGTGGGCTCCGG TCCGAGGATGAGGCTGATTATTACTGTGCAGCATGGGATGACAGCCTGCGTGGTTGGCTG 5 TTCGGCGGAGGAACCAAGCTGACGGTCCTAGGT (SEQ. ID. NO. 34)
CAGTCTGTGCTGACTCAGCCACCCTCAGCGTCTGGGACCCCCGGGCAGAGGGTCACCATC TCCTGCTCTGGAAGCAGCTCCAACATTGGGAATAATTATGTATCCTGGTATCAGCAGCTC CCAGGAACGGCCCCCAAACTCCTCATCTATGGTAACAGCAATCGGCCCTCAGGGGTCCCT
GACCGATTCTCTGGCTCCAAGTCTGGCACCTCAGCCTCCCTGGCCATCAGTGGGCTCCGG
TCCGAGGATGAGGCTGATTATTACTGTGCAGCATGGGATGACAGTCTGAGTGGTTGGGTG
TTCGGCGGAGGAACCAAGCTGACGGTCCTAGGT (SEQ. ID. NO. 36)
CAGTCTGTGCTGACTCAGCCACCCTCAGCGTCTGGGACCCCCGGGCAGAGGGTCACCATC TCCTGCTCTGGAAGCAGCTCCAGCATTGGGAATAATTTTGTATCCTGGTATCAGCAGCTC CCAGGAACGGCCCCCAAACTCCTCATCTATGACAATAATAAGCGACCCTCAGGGGTCCCT GACCGATTCTCTGGCTCCAAGTCTGGCACCTCAGCCTCCCTGGCCATCAGTGGGCTCCGG TCCGAGGATGAGGCTGATTATTACTGTGCAGCATGGGATGACAGCCTGAATGGTTGGGTG TTCGGCGGAGGAACCAAGCTGACGGTCCTAGGT (SEQ. ID. NO. 38)
8. Use according to claims 7, wherein the antibody is characterized in that it comprises the variable heavy region(VH)
GAGGTGCAGCTGTTGGAGTCTGGGGGAGGCTTGGTACAGCCTGGGGGGTCCCTGAGACTCTCC TGTGCAGCCTCTGGATTCACCTTCAATAACGCCTGGATGAGCTGGGTCCGCCAGGCTCCAGGGA AGGGGCTGGAGTGGGTCTCATCCATTAGTAGTAGTAGTAGTTACATATACTACGCAGACTCAGT GAAGGGCCGATTCACCATCTCCAGAGACAATTCCAAGAACACGCTGTATCTGCAAATGAACAGC CTGAGAGCCGAGGACACTGCCGTGTATTACTGTGCGAGAGTCAGTAGGTACTACTACGGACCAT CTTTCTACTTTGACTCCTGGGGCCAGGGTACACTGGTCACCGTGAGCAGC (SEQ. ID. NO. 1)
and the variable light region (V )
CAGTCTGTGCTGACTCAGCCACCCTCAGCGTCTGGGACCCCCGGGCAGAGGGTCACCATCTCCT GCTCTGGAAGCAGGTCCAACATTGGGAATAATTATGTATCCTGGTATCAGCAGCTCCCAGGAAC GGCCCCCAAACTCCTCATCTATGGTAACAACAATCGGCCCTCAGGGGTCCCTGACCGATTCTCTG GCTCCAAGTCTGGCACCTCAGCCTCCCTGGCCATCAGTGGGCTCCGGTCCGAGGATGAGGCTG ATTATTACTGTGCAGCATGGGATGACAGCCTGAATGGTCATTGGGTGTTCGGCGGAGGAACCAA GCTGACGGTCCTAGGT (SEQ. ID. NO. 2).
9. Use according to claims 7, wherein the antibody is characterized in that it comprises the variable heavy region (VH)
GAGGTGCAGCTGTTGGAGTCTGGGGGAGGCTTGGTACAGCCTGGGGGGTCCCTGAGACTCTCC TGTGCGGCCTCTGGATTCACCTTCAGTGACTACTACATGAGCTGGGTCCGCCAGGCTCCCGGGA AGGGGCTGGAGTGGGTATCGGGTGTTAGTTGGAATGGCAGTAGGACGCACTATGCAGACTCTG TGAAGGGCCGATTCACCATCTCCAGAGACAATTCCAAGAACACGCTGTATCTGCAAATGAACAG CCTGAGAGCCGAGGACACTGCCGTGTATTACTGTGCGAGAGCGGCTAGGTACTCCTACTACTAC
TACGGTATGGACGTCTGGGGCCAAGGTACACTGGTCACCGTGAGCAGC (SEQ. ID. NO. 3)
and the variable light region (VL)
5
CAGTCTGTGCTGACTCAGCCACCCTCAGCGTCTGGGACCCCCGGGCAGAGGGTCACCATCTCCT GTTCTGGAAGCAGCTCCAACATCGGAAATAATGCTGTAAACTGGTATCAGCAGCTCCCAGGAAC GGCCCCCAAACTCCTCATCTATGGGAATGATCGGCGGCCCTCAGGGGTCCCTGACCGATTCTCT GGCTCCAAGTCTGGCACCTCAGCCTCCCTGGCCATCAGTGGGCTCCGGTCCGAGGATGAGGCT 0 GATTATTACTGTCAGACCTGGGGCACTGGCCGGGGGGTATTCGGCGGAGGAACCAAGCTGACG GTCCTAGGT (SEQ. ID. NO. 4)
10. Use according to claims 7, wherein the antibody is characterized in that it comprises the variable heavy region (VH) 5
GAGGTGCAGCTGTTGGAGTCTGGGGGAGGCTTGGTACAGCCTGGGGGGTCCCTGAGACTCTCC TGTGCAGCCTCTGGATTCACCTTTAGTAGCTATTGGATGAGCTGGGTCCGCCAGGCTCCAGGGA AGGGGCTGGAGTGGGTCTCAAGTATCAGTGGTAGTGGTCGTAGGACATACTACGCAGACTCCGT GCAGGGCCGGTTCACCATCTCCAGAGACAATTCCAAGAACACGCTGTATCTGCAAATGAACAGC o CTGAGAGCCGAGGACACTGCCGTGTATTACTGTGCGAGATTGGTCTCCTATGGTTCGGGGAGTT
TCGGTTTTGACTACTGGGGCCAAGGTACACTGGTCACCGTGAGCAGC (SEQ. ID. NO. 5)
and the variable light region (VL)
5 CAGTCTGTGCTGACTCAGCCACCCTCAGCGTCTGGGACCCCCGGGCAGAGGGTCACCATCTCTT GTTCTGGAAGCAGCTCCAATATCGGAAGTAATTATGTATCCTGGTATCAGCAGCTCCCAGGAACG GCCCCCAAACTCCTCATCTATGGTAACTACAATCGGCCCTCAGGGGTCCCTGACCGATTCTCTGG CTCCAAGTCTGGCACCTCAGCCTCCCTGGCCATCAGTGGGCTCCGGTCCGAGGATGAGGCTGAT TATTACTGTGCAGCATGGGATGACAGCCTGAGTGGTTGGGTGTTCGGCGGAGGAACCAAGCTG 0 ACGGTCCTAGGT (SEQ. ID. NO. 6)
11. Use according to claims 7, wherein the antibody is characterized in that it comprises the variable heavy region (VH)
5 GAGGTGCAGCTGTTGGAGTCTGGGGGAGGCTTGGTACAGCCTGGGGGGTCCCTGAGACTCTCC TGTGCAGCCTCTGGATTCACCTTCAGTAACGCCTGGATGAGCTGGGTCCGCCAGGTTCCAGGGA AGGGGCTGGAGTGGGTCTCAACTCTTGGTGGTAGTGGTGGTGGTAGCACATACTACGCAGACTC CGTGAAGGGCCGGTTCACCATCTCCAGAGACAATTCCAAGAACACGCTGTATCTGCAAATGAAC AGCCTGAGAGCCGAGGACACTGCCGTGTATTACTGTGCGAAGTTAGGGGGGCGATCCCGATAT
GGGCGGTGGCCCCGCCAATTTGACTACTGGGGCCAAGGTACACTGGTCACCGTGAGCAGC
(SEQ. ID. NO. 7)
and the variable light region (VL)
CAGTCTGTGCTGACTCAGCCACCCTCAGCGTCTGGGACCCCCGGGCAGAGGGTCACCATCTCCT GCTCTGGAAGCAGCTCCAACATTGGAAATAACTATGTATCCTGGTATCAGCAGCTCCCAGGAAC GGCCCCCAAACTCCTCATCTATAGTAATAATCAGCGGCCCTCAGGGGTCCCTGACCGATTCTCTG GCTCCAAGTCTGGCACCTCAGCCTCCCTGGCCATCAGTGGGCTCCGGTCCGAGGATGAGGCTG ATTATTACTGTGCAGCATGGGATGACAGCCTGAGTCATTGGCTGTTCGGCGGAGGAACCAAGCT GACGGTCCTAGGT (SEQ. ID. NO. 8)
12. Use according to claims 7, wherein the antibody is characterized in that it comprises the variable heavy region (VH)
GAGGTGCAGCTGTTGGAGTCTGGGGGAGGCTTGGTACAGCCTGGGGGGTCCCTGAGACTCTCC TGTGCAGCCTCTGGATTCACCTTCAGTGACTACTACATGAGCTGGATCCGCCAGGCTCCAGGGA AGGGGCTGGAGTGGGTCTCAAGTATCAGTGGCCGTGGGGGTAGTTCCTACTACGCAGACTCCG TGAGGGGCCGGTTCACCATCTCCAGAGACAATTCCAAGAACACGCTGTATCTGCAAATGAACAG CCTGAGAGCCGAGGACACTGCCGTGTATTACTGTGCGAGACTTTCCTACAGCTATGGTTACGAG GGGGCCTACTACTTTGACTACTGGGGCCAGGGTACACTGGTCACCGTGAGCAGC (SEQ. ID. NO. 9)
and the variable light region (V
CAGTCTGTGCTGACTCAGCCACCCTCAGCGTCTGGGACCCCCGGGCAGAGGGTCACCATCTCCT GCTCTGGAAGCAGCTCCAACATTGGGAATAATTATGTATCCTGGTATCAGCAGCTCCCAGGAAC GGCCCCCAAACTCCTCATCTATAGGAATAATCAGCGGCCCTCAGGGGTCCCTGACCGATTCTCT GGCTCCAAGTCTGGCACCTTAGCCTCCCTGGCCATCAGTGGGCTCCGGTCCGAGGATGAGGCT GATTATTACTGTGCAACCTGGGATGACAGCCTGAATGGTTGGGTGTTCGGCGGAGGAACCAAGC TG ACGGTCCTAGGT (SEQ. ID. NO. 10)
13. Use according to claims 7, wherein the antibody is characterized in that it comprises the variable heavy region (VH)
GAGGTGCAGCTGTTGGAGTCTGGGGGAGGCTTGGTACAGCCTGGGGGGTCCCTGAGACTCTCC TGTGCAGCCTCTGGATTCACCTTTAGCAGCTATGCCATGAGCTGGGTCCGCCAGGCTCCAGGGA AGGGGC GGAGTGGGTCTCATCCATTAGTAGTAGTGGTCGTTTCATTTACTACGCAGACTCAATG
AAGGGCCGCTTCACCATCTCCAGAGACAATTCCAAGAACACGCTGTATCTGCAAATGAACAGCCT
GAGAGCCGAGGACACTGCCGTGTATTACTGTACGAGGCTCCGGAGAGGGAGCTACTTCTGGGC
TTTTGATATCTGGGGCCAAGGTACACTGGTCACCGTGAGCAGC (SEQ. ID. NO. 11)
5 and the variable light region (V
CAGTCTGTGCTGACTCAGCCACCCTCAGCGTCTGGGACCCCCGGGCAGAGGGTCACCATCTCCT GTTCTGGAAGCAGCTCCAACATTGGCGGTGAGTCTGTATCCTGGTATCAGCAGCTCCCAGGAAC 0 GGCCCCCAAACTCCTCATCTATAGTAATAATCAGCGGCCCTCAGGGGTCCCTGACCGATTCTCTG GCTCCAAGTCTGGCACCTCAGCCTCCCTGGCCATCAGTGGGCTCCGGTCCGAGGATGAGGCTG ATTATTACTGTGCAGCATGGGATGACAGCCTGAATGGTTGGGTGTTCGGCGGAGGAACCAAGCT GACGGTCCTAGGT (SEQ. ID. NO. 12)
5 14. Use according to claims 7, wherein the antibody is characterized in that it comprises the variable heavy region (VH)
GAGGTGCAGCTGTTGGAGTCTGGGGGAGGCTTGGTACAGCCTGGGGGGTCCCTGAGACTC TCCTGTGCAGCCTCTGGATTCACCTTTAGAACGTATTGGATGACCTGGGTCCGCCAGGCT o CCAGGGAAGGGGCTGGAGTGGGTCTCATCTATTAGCAGTAGCAGTAATTACATATTCTAC
GCAGACTCAGTGAAGGGCCGATTCACCATCTCCAGAGACAATTCCAAGAACACGCTGTAT CTGCAAATGAACAGCCTGAGAGCCGAGGACACTGCCGTGTATTACTGTGCGAGACTCAGA CGGAGCAGCTGGTACGGGGGGTACTGGTTCGACCCCTGGGGCCAAGGTACACTGGTCACC GTGAGCTCA SEQ. ID. NO. 19) 5 and the variable light region (V )
CAGTCTGTGCTGACTCAGCCACCCTCAGCGTCTGGGACCCCCGGGCAGAGGGTCACCATC
TCCTGCTCTGGAAGCAGCTCCAACATTGGGAATAATTATGTATCCTGGTATCAGCAGCTC
CCAGGAACGGCCCCCAAACTCCTCATCTATAGGAATAATCAGCGGCCCTCAGGGGTCCCT o GACCGATTCTCTGGCTCCAAGTCTGGCACCTCAGCCTCCCTGGCCATCAGTGGGCTCCGG
TCCGAGGATGAGGCTGATTATTACTGTGCAGCATGGGATGACAGCCTGAATGGTCATTGG GTGTTCGGCGGAGGAACCAAGCTGACGGTCCTAGGT (SEQ. ID. NO. 20)
15. Use according to claims 7, wherein the antibody is characterized in that it comprises 5 the variable heavy region (VH)
GAGGTGCAGCTGTTGGAGTCTGGGGGAGGCTTGGTACAGCCTGGGGGGTCCCTGAGACTCT CCTGTGCAGCCTCTGGATTCACCTTCAGTAGCAACTACATGAGCTGGGTCCGCCAGGCTCC AGGGAAGGGGCTGGAGTGGGTCTCATCCATTAGTAGTAGTAGTAGTTACATATACTACGCA
GACTCAGTGAAGGGCCGATTCACCATCTCCAGAGACAATTCCAAGAACACGCTGTATCTGC
AAATGAACAGCCTGAGAGCCGAGGACACTGCCGTGTATTACTGTGCGAGAGTAGGCCGGTA
TAACTGGAAGACGGGGCATGCTTTTGATATCTGGGGCCAGGGTACACTGGTCACCGTGAGC
5 TCA (SEQ. ID. NO. 21)
and the variable light region (V )
CAGTCTGTGCTGACTCAGCCACCCTCAGCGTCTGGGACCCCCGGGCAGAGGGTCACCATCT 0 CCTGCTCTGGAAGGACCTACAACATTGGAAATAATTATGTATCGTGGTATCAGCAGCTCCC AGGAACGGCCCCCAAACTCCTCATCTATGGTAACATCAATCGGCCCTCAGGGGTCCCTGAC CGATTCTCTGGCTCCAAGTCTGGCACCTCAGCCTCCCTGGCCATCAGTGGGCTCCGGTCCG AGGATGAGGCTGATTATTACTGTGCAGCATGGGATGTCAGGCTGAATGGTTGGGTGTTCGG CGGAGGAACCAAGCTGACGGTCCTAGGT (SEQ. ID. NO. 22) 5
16. Use according to claims 7, wherein the antibody is characterized in that it comprises the variable heavy region (VH)
GAGGTGCAGCTGTTGGAGTCTGGGGGAGGCTTGGTACAGCCTGGGGGGTCCCTGAGACTC 0 TCCTGTGCAGCCTCTGGATTCACCTTCCGTGACTACTACGTGAGCTGGATCCGCCAGGCT
CCAGGGAAGGGGCTGGAGTGGGTCTCAAGTATTAGTGGTAGTGGGGGTAGGACATACTAC GCAGACTCCGTGGAGGGCCGGTTCACCATCTCCAGAGACAATTCCAAGAACACGCTGTAT CTGCAAATGAACAGCCTGAGAGCCGAGGACACTGCCATGTATTACTGTGCCAGAGTATCC GCCCTTCGGAGACCCATGACTACAGTAACTACTTACTGGTTCGACCCCTGGGGCCAAGGT 5 ACACTGGTCACCGTGAGCTCA (SEQ. ID. NO. 23)
and the variable light region (VL)
CAGTCTGTGCTGACTCAGCCACCCTCAGCGTCTGGGACCCCCGGGCAGAGGGTCACCATC o TCCTGCTCTGGAAGGAGCTCCAACATTGGGAATAGTTATGTCTCCTGGTATCAGCAGCTC
CCAGGAACGGCCCCCAAACTCCTCATCTATAGGAATAATCAGCGGCCCTCAGGGGTCCCT GACCGATTCTCTGGCTCCAAGTCTGGCACCTCAGCCTCCCTGGCCATCAGTGGGCTCCGG TCCGAGGATGAGGCTGATTATTACTGTGCAGGATGGGATGACACCCTGCGTGCTTGGGTG TTCGGCGGAGGAACCAAGCTGACGGTCCTAGGT (SEQ. ID. NO. 24) 5
17. Use according to claims 7, wherein the antibody is characterized in that it comprises the variable heavy region (VH)
GAGGTGCAGCTGTTGGAGTCTGGGGGAGGCTTGGTACAGCCTGGGGGGTCCCTGAGACTC TCCTGTGCAGCCTCTGGATTCACCTTCAGTAACGCCTGGATGAGCTGGGTCCGCCAGGCT CCAGGGAAGGGGCTGGAGTGGGTCTCCGCTATTAGTGGTAGTGGTAACACATACTATGCA GACTCCGTGAAGGGCCGGTTCACCATCTCCAGAGACAATTCCAAGAACACGCTGTATCTG CAAATGAACAGCCTGAGAGCCGAGGACACTGCCGTGTATTACTGTGCGAGAGCCTCCCAC CGTATATTAGGTTATGCTTTTGATATCTGGGGCCAGGGTACACTGGTCACCGTGAGCTCA (SEQ. ID. NO. 25) and the variable light region (V )
CAGTCTGTGCTGACTCAGCCACCCTCAGCGTCTGGGACCCCCGGGCAGAGGGTCACCATC TCTTGTTCTGGAAGCCGCTCCAACATCGGGAGAAATGCTGTTAGTTGGTATCAGCAGCTC CCAGGAACGGCCCCCAAACTCCTCATCTATGCTAACAGCAATCGGCCCTCAGGGGTCCCT GACCGATTCTCTGGCTCCAAGTCTGGCACCTCAGCCTCCCTGGCCATCAGTGGGCTCCGG TCCGAGGATGAGGCTGATTATTACTGTGCAGCATGGGATGGCAGCCTGAATGGTTGGGTG TTCGGCGGAGGAACCAAGCTGACGGTCC (SEQ. ID. NO. 26)
18. Use according to claims 7, wherein the antibody is characterized in that it comprises the variable heavy region (VH)
GAGGTGCAGCTGTTGGAGTCTGGGGGAGGCTTGGTACAGCCTGGGGGGTCCCTGAGACTC TCCTGTGCAGCCTCTGG ATTCACCTTCAGTAACGCCTGGATGAGCTGGGTCCGCCAGGCT
CCAGGGAAGGGGCTGGAGTGGGTCTCAAGTATTAGTGTTGGTGGACATAGGACATATTAT GCAGATTCCGTGAAGGGCCGGTCCACCATCTCCAGAGACAATTCCAAGAACACGCTGTAT CTGCAAATGAACAGCCTGAGAGCCGAGGACACTGCCGTGTATTACTGTGCACGGATACGG GTGGGTCCGTCCGGCGGGGCCTTTGACTACTGGGGCCAGGGTACACTGGTCACCGTGAGC TCA (SEQ. ID. NO. 27)
and the variable light region (V )
CAGTCTGTGCTGACTCAGCCACCCTCAGCGTCTGGGACCCCCGGGCAGAGGGTCACCAT CTCCTGCTCTGGAAGCAACACCAACATTGGG AAGAACTATGTATCTTGGTATCAGCAGC
TCCCAGGAACGGCCCCCAAACTCCTCATCTATGCTAATAGCAATCGGCCCTCAGGGGTC CCTGACCGATTCrCTGGCTCC GTCTGGCACCTCAGCCTCCCTGGCCATCAGTGGGCT CCGGTCCGAGGATGAGGCTGATTATTACTGTGCGTCATGGGATGCCAGCCTGAATGGTT GGGTATTCGGCGGAGGAACCAAGCTGACGGTCCTAGGT (SEQ. ID. NO. 28)
19. Use according to claims 7, wherein the antibody is characterized in that it comprises the variable heavy region (VH)
5
GAGGTGCAGCTGTTGGAGTCTGGGGGAGGCTTGGTACAGCCTGGGGGGTCCCTGAGACTC TCCTGTGCAGCCTCTGGATTCACCTTCAGTAACGCCTGGATGAGCTGGGTCCGCCAGGCT CCAGGGAAGGGGCTGGAGTGGGTCTCATCCATTAGTAGTAGTAGTAGTTACATATACTAC GCAGACTCAGTGAAGGGCCGATCCACCATCTCCAGAGACAATTCCAAGAACACGCTGTAT o CTGCAAATGAACAGCCTGAGAGCCGAGGACACTGCCGTGTATTACTGTGCGAGGCTCACA AATATTTTGACTGGTTATTATACCTCAGGATATGCTTTTGATATCTGGGGCCAAGGTACA CTGGTCACCGTGAGCTCA (SEQ. ID. NO. 29)
and the variable light region (V ) 5
CAGTCTGTGCTGACTCAGCCACCCTCAGCGTCTGGGACCCCCGGGCAGAGGGTCACCATC TCCTGCTCTGGAAGCACCTCCAACATTGGGAAGAATTATGTATCCTGGTATCAGCAGCTC CCAGGAACGGCCCCCAAACTCCTCATCTATGGTAACAGCAATCGGCCCTCAGGGGTCCCT GACCGATTCTCTGGCTCCAAGTCTGGCACCTCAGCCTCCCTGGCCATCAGTGGGCTCCGG 0 TCCGAGGATGAGGCTGATTATTACTGTGCAGCATGGGATGCCAGCCTCAGTGGTTGGGTG
TTCGGCGGAGGAACCAAGCTGACGGTCCTAGGT (SEQ. ID. NO. 30)
20. Use according to claims 7, wherein the antibody is characterized in that it comprises the variable heavy region (VH) 5
GAGGTGCAGCTGTTGGAGTCTGGGGGAGGCTTGGTACAGCCTGGGGGGTCCCTGAGACTC TCCTGTGCAGCCTCTGGATTCACCTTCAGTAGTTCTTGGATGAGTTGGGTCCGCCAGGCT CCAGGGAAGGGGCTGGAGTGGGTCTCATCCATTAGTAGTAGTAGTAGTTACATATACTAC GCAGACTCAGTGAAGGGCCGATTCACCATCTCCAGAGACAATTCCAAGAACACGCTGTAT o CTGCAAATGAACAGCCTGAGAGCCGAGGACACTGCCGTGTATTACTGTGCGAGAGTAGGG
AACTACGGTTTCTACCACTACATGGACGTCTGGGGCCAAGGTACACTGGTCACCGTGAGC TCA (SEQ. ID. NO. 31)
and the variable light region (Vu) 5
CAGTCTGTGCTGACTCAGCCACCCTCAGCGTCTGGGACCCCCGGGCAGAGGGTCACCATC
TCTTGTTCTGGAGGCAGCTCAAACATCGGAAAAAGAGGTGTAAATTGGTATCAGCAGCTC
CCAGGAACGGCCCCCAAACTCCTCATCTATGGTAACAGAAATCGGCCCTCAGGGGTCCCT GACCGATTCTCTGGCTCCAAGTCTGGCACCTCAGCCTCCCTGGCCATCAGTGGGCTCCGG
TCCGAGGATGAGGCTGATTATTACTGTGCTACATGGGATTACAGCCTCAATGCTTGGGTG
TTCGGCGGAGGAACCAAGCTGACGGTCCTAGGT (SEQ. ID. NO. 32)
21. Use according to claims 7, wherein the antibody is characterized in that it comprises the variable heavy region (VH)
GAGGTGCAGCTGTTGGAGTCTGGGGGAGGCTTGGTACAGCCTGGGGGGTCCCTGAGACTC TCCTGTGCAGCCTCTGGATTCACCTTTAGTAGCTATTGGATGAGCTGGGTCCGCCAGGCT CCAGGGAAGGGGCTGGAGTGGGTCTCATCCATTAGTAGTAGTAGTAGTTACATATACTAC GCAGACTCAGTGAAGGGCCGATTCACCATCTCCAGAGACAATTCCAAGAACACGCTGTAT CTGCAAATGAACAGCCTGAGAGCCGAGGACACTGCCGTGTATTACTGTGCGAGAATTAAA CGGTTACGATTCGGCTGGACCCCTTTTGACTACTGGGGCCAGGGTACACTGGTCACCGTG AGCTCA (SEQ. ID. NO. 33)
and the variable light region (V )
CAGTCTGTTCTGACTCAGCCACCCTCAGCGTCTGGGACCCCCGGGCAGAGGGTCACCATC TCCTGTTCTGGAAGCAGCTCCAACATCGGAAATAATGGTGTAAACTGGTATCAGCAGCTC CCAGGAACGGCCCCCAAACTCCTCATCTATGGTAACAACAATCGGCCCTCAGGGGTCCCT
GACCGATTCTCTGGCTCCAAGTCTGGCACCTCAGCCTCCCTGGCCATCAGTGGGCTCCGG TCCGAGGATGAGGCTGATTATTACTGTGCAGCATGGGATGACAGCCTGCGTGGTTGGCTG TTCGGCGGAGGAACCAAGCTGACGGTCCTAGGT (SEQ. ID. NO. 34)
22. Use according to claims 7, wherein the antibody is characterized in that it comprises the variable heavy region (VH)
GAGGTGCAGCTGTTGGAGTCTGGGGGAGGCTTGGTACAGCCTGGGGGGTCCCTGAGACTC TCCTGTGCAGCCTCTGGATTCACCTTCAGTAACGCCTGGATGAGCTGGGTCCGCCAGGCT CCAGGGAAGGGGCTGGAGTGGGTCTCATCCATTAGTAGTAGTAGTAGTTACATATACTAC
GCAGACTCAGTGAAGGGCCGATTCACCATCTCCAGAGACAATTCCAAGAACACGCTGTAT CTGCAAATGAACAGCCTGAGAGCCGAGGACACTGCCGTGTATTACTGTGCGAGAGTCAAT AGCAAAAAGTGGTATGAGGGCTACTTCTTTGACTACTGGGGCCAGGGTACACTGGTCACC GTGAGCTCA (SEQ. ID. NO. 35)
and the variable light region (VL)
CAGTCTGTGCTGACTCAGCCACCCTCAGCGTCTGGGACCCCCGGGCAGAGGGTCACCATC TCCTGCTCTGGAAGCAGCTCCAACATTGGGAATAATTATGTATCCTGGTATCAGCAGCTC CCAGGAACGGCCCCCAAACTCCTCATCTATGGTAACAGCAATCGGCCCTCAGGGGTCCCT GACCGATTCTCTGGCTCCAAGTCTGGCACCTCAGCCTCCCTGGCCATCAGTGGGCTCCGG TCCGAGGATGAGGCTGATTATTACTGTGCAGCATGGGATGACAGTCTGAGTGGTTGGGTG TTCGGCGGAGGAACCAAGCTGACGGTCCTAGGT (SEQ. ID. NO. 36)
23. Use according to claims 7, wherein the antibody is characterized in that it comprises the variable heavy region (VH)
GAGGTGCAGCTGTTGGAGTCTGGGGGAGGCTTGGTACAGCCTGGGGGGTCCCTGAGACTC TCCTGTGCAGCCTCTGGATTCACCTTCAGTAACGCCTGGATGAGCTGGGTCCGCCAGGCT CCAGGGAAGGGGCTGGAGTGGGTCTCATCCATTAGTACTAGTAGTAATTACATATACTAC GCAGACTCAGTGAAGGGCCGGTTCACCATCTCCAGAGACAATTCCAAGAACACGCTGTAT CTGCAAATGAACAGCCTGAGAGCCGAGGACACTGCCGTGTATTACTGTGCGAGAGTCAAG AAGTATAGCAGTGGCTGGTACTCGAATTATGCTTTTGATATCTGGGGCCAAGGTACACTG GTCACCGTGAGCTCA (SEQ. ID. NO. 37)
and the variable light region (VL)
CAGTCTGTGCTGACTCAGCCACCCTCAGCGTCTGGGACCCCCGGGCAGAGGGTCACCATC
TCCTGCrCTGGAAGCAGCTCCAGCATTGGGAATAATTTTGTATCCTGGTATCAGCAGCTC CCAGGAACGGCCCCCAAACTCCTCATCTATGACAATAATAAGCGACCCTCAGGGGTCCCT GACCGATTCTCTGGCTCCAAGTCTGGCACCTCAGCCTCCCTGGCCATCAGTGGGCTCCGG TCCGAGGATGAGGCTGATTATTACTGTGCAGCATGGGATGACAGCCTGAATGGTTGGGTG TTCGGCGGAGGAACCAAGCTGACGGTCCTAGGT (SEQ. ID. NO. 38)
24. Antibodies raised against at least one oxidized fragments of apo BlOO comprising a variable heavy region (VH) selected from the group of nucleic acid sequences consisting of SEQ. ID. NO. 1, SEQ. ID. NO. 3, SEQ. ID. NO. 5, SEQ. ID. NO. 7, SEQ. ID. NO. 9,
SEQ. ID. NO. 11, SEQ. ID. NO. 19, SEQ. ID. NO. 21, SEQ. ID. NO. 23, SEQ. ID. NO. 25, SEQ. ID. NO. 27, SEQ. ID. NO. 29, SEQ. ID. NO. 31, SEQ. ID. NO. 33, SEQ. ID. NO. 35, SEQ. ID. NO. 37
25. Antibodies raised against at least one oxidized fragments of apo BlOO comprising a variable light region (VL) selected from the group of nucleic acid sequences consisting of
SEQ. ID. NO. 2, SEQ. ID. NO. 4, SEQ. ID. NO. 6, SEQ. ID. NO. 8, SEQ. ID. NO. 10, SEQ. ID. NO. 12, SEQ. ID. NO. 20, SEQ. ID. NO. 22, SEQ. ID. NO. 24, SEQ. ID. NO. 26,
SEQ. ID. NO. 28, SEQ. ID. NO. 30, SEQ. ID. NO. 32, SEQ. ID. NO. 34, SEQ. ID. NO. 36,
SEQ. ID. NO. 38
26. Antibodies raised against at least one oxidized fragments of apo BlOO comprising a variable heavy region (VH) selected from the group of nucleic acid sequences consisting of
SEQ. ID. NO. 1, SEQ. ID. NO. 3, SEQ. ID. NO. 5, SEQ. ID. NO. 7, SEQ. ID. NO. 9, SEQ. ID. NO. 11, SEQ. ID. NO. 19, SEQ. ID. NO. 21, SEQ. ID. NO. 23, SEQ. ID. NO. 25, SEQ. ID. NO. 27, SEQ. ID. NO. 29, SEQ. ID. NO. 31, SEQ. ID. NO. 33, SEQ. ID. NO. 35, SEQ. ID. NO. 37
in combination with a variable light region (V ) selected from the group of nucleic acid sequences consisting of SEQ. ID. NO. 2, SEQ. ID. NO. 4, SEQ. ID. NO. 6, SEQ. ID. NO. 8, SEQ. ID. NO. 10,
SEQ. ID. NO. 12, SEQ. ID. NO. 20, SEQ. ID. NO. 22, SEQ. ID. NO. 24, SEQ. ID. NO. 26, SEQ. ID. NO. 28, SEQ. ID. NO. 30, SEQ. ID. NO. 32, SEQ. ID. NO. 34, SEQ. ID. NO. 36, SEQ. ID. NO. 38
27. Antibody according to claim 26, wherein the antibody is characterized in that it comprises the variable heavy region (VH)
SEQ. ID. NO. 1 and the variable light region (V ) SEQ. ID. NO. 2
28. Antibody according to claim 26, wherein the antibody is characterized in that it comprises the variable heavy region (VH) SEQ. ID. NO. 3 and the variable light region (V ) SEQ. ID. NO. 4
29. Antibody according to claim 26, wherein the antibody is characterized in that it comprises the variable heavy region (VH)
SEQ. ID. NO. 5 and the variable light region (V SEQ. ID. NO. 6
30. Antibody according to claim 26, wherein the antibody is characterized in that it comprises the variable heavy region (VH) SEQ. ID. NO. 7 and the variable light region (V ) SEQ. ID. NO. 8
31. Antibody according to claim 26, wherein the antibody is characterized in that it comprises the variable heavy region (VH)
SEQ. ID. NO. 9 and the variable light region (VL) SEQ. ID. NO. 10
32. Antibody according to claim 26, wherein the antibody is characterized in that it comprises the variable heavy region (VH) SEQ. ID. NO. 11 and the variable light region (VL) SEQ. ID. NO. 12
33. Antibody according to claim 26, wherein the antibody is characterized in that it comprises the variable heavy region (VH) SEQ. ID. NO. 19 and the variable light region (VL) SEQ. ID. NO. 20
34. Antibody according to claim 26, wherein the antibody is characterized in that it comprises the variable heavy region (VH) SEQ. ID. NO. 21 and the variable light region (VL) SEQ. ID. NO. 22
35. Antibody according to claim 26, wherein the antibody is characterized in that it comprises the variable heavy region (VH) SEQ. ID. NO. 23 and the variable light region (VL) SEQ. ID. NO. 24
36. Antibody according to claim 26, wherein the antibody is characterized in that it comprises the variable heavy region (VH) SEQ. ID. NO. 25 and the variable light region (VL) SEQ. ID. NO. 26
37. Antibody according to claim 26, wherein the antibody is characterized in that it comprises the variable heavy region (VH)
SEQ. ID. NO. 27 and the variable light region (V ) SEQ. ID. NO. 28
38. Antibody according to claim 26, wherein the antibody is characterized in that it comprises the variable heavy region (VH) SEQ. ID. NO. 29 and the variable light region (V ) SEQ. ID. NO. 30
39. Antibody according to claim 26, wherein the antibody is characterized in that it comprises the variable heavy region (VH) SEQ. ID. NO. 31 and the variable light region (VL) SEQ. ID. NO. 32
40. Antibody according to claim 26, wherein the antibody is characterized in that it comprises the variable heavy region (VH) SEQ. ID. NO. 33 and the variable light region (VL) SEQ. ID. NO. 34
41. Antibody according to claim 26, wherein the antibody is characterized in that it comprises the variable heavy region (VH) SEQ. ID. NO. 35 and the variable light region (VL) SEQ. ID. NO. 36
42. Antibody according to claim 26, wherein the antibody is characterized in that it comprises the variable heavy region (V )
SEQ. ID. NO. 37 and the variable light region (VL) SEQ. ID. NO. 38
43. Method for preparation of a isolated antibody according to claims 24-42, using a fragment library to generate specific human antibody fragments against oxidized, in particular MDA modified peptides derived from Apo BlOO, whereupon identified antibody fragments having the desired characteristics are rebuilt into full length human immunoglobulin to be used for therapeutic purposes.
44. Method for amplification of a isolated human antibody according to claim 22, using a recombinant technology, comprising transfer of genes encoding the variable parts of selected scFv to full length human IgGl vectors using a PCR-amplification wherein primers used, are:
primers for amplification of VH-segments:
5 H : 5'-GGTG7GC/ 77CCGAGGTGCAGCTGTTGGAG (SEQ. ID. NO: 13) 3 H : 5'-GACGTACGACTCACCTGAGCTCACGGTGACCAG (SEQ. ID. NO: 14)
and primers for amplification of VL-segments:
5VL: 5'-GGTGTGCATTCCCAGTCTGTGCTGACTCAG (SEQ. ID. NO: 15) 3'VL: 5'-GACGTACGTTCTACTCACCTAGGACCGTCAGCTT (SEQ. ID. NO: 16)
45. Method according to claim 44, wherein colonies containing heavy chain regions and light chain region plasmids with variable heavy region and variable light chain inserts were identified by colony PCR using
Forward primer: 5'-ATGGGTGACAATGACATC (SEQ. ID. NO: 17) Reverse primer: 5'-AAGCTTGCTAGCGTACG (SEQ. ID. NO: 18)
46. Method for passive immunization of mammals, preferably humans, wherein a therapeutically or prophylactically effective amount of a isolated human antibody directed towards at least one oxidized fragment of apolipoprotein B is administered for treatment of atherosclerosis.
47. Method according to claim 46, the oxidized fragment is selected from one or more of the group consisting of
FLDTVYGNCSTHFTVKTRKG PQCSTHILQWLKRVHANPLL VISIPRLQAEARSEILAHWS KLVKEALKESQLPTVM DFRK LKFVTQAEGAKQTEATMTFK
DGSLRHKFLDSNIKFSHVEK KGTYGLSCQRDPNTGRLNGE RLNGESNLRFNSSYLQGTNQ SLTSTSDLQSGIIKNTASLK TASLKYE YELTLKSDTNGK DMTFSKQNALLRSEYQADYE MKVKIIRTIDQMQNSELQWP IALDDAKINFNEKLSQLQTY KTTKQSFDLSVKAQYKKNKH EEEMLENVSLVCPKDATRFK
GSTSHHLVSRKSISAALEHK IENIDFNKSGSSTASWIQNV IREVTQRLNGEIQALELPQK EVDVLTKYSQPEDSLIPFFE HTFLIYITELLKKLQSTTVM LLDIANYLMEQIQDDCTGDE CTGDEDYTYKIKRVIGNMGQ GNMGQTMEQLTPELKSSILK SSILKCVQSTKPSLMIQKAA
IQKAAIQALRKMEPKDKDQE
RLNGESNLRFNSSYLQGTNQ
SLNSHGLELNADILGTDKIN WIQNVDTKYQIRIQIQEKLQ
TYISDWWTLAAKNLTDFAEQ
EATLQRIYSLWEHSTKNHLQ
ALLVPPETEEAKQVLFLDTV
IEIGLEGKGFEPTLEALFGK SGASMKLTTNGRFREHNAKF
NLIGDFEVAEKINAFRAKVH
GHSVLTAKGMALFGEGKAEF
FKSSVITLNTNAELFNQSDI
FPDLGQEVALNANTKNQKIR, or an active site thereof.
48. Method according to claims 46-47, wherein the antibody is characterized in that it comprises antibodies raised against oxidized fragments of apo BlOO comprising a variable heavy region (VH) selected from the group of nucleic acid sequences consisting of
SEQ. ID. NO. 1, SEQ. ID. NO. 3, SEQ. ID. NO. 5, SEQ. ID. NO. 7, SEQ. ID. NO. 9, SEQ. ID. NO. 11, SEQ. ID. NO. 19, SEQ. ID. NO. 21, SEQ. ID. NO. 23, SEQ. ID. NO. 25, SEQ. ID. NO. 27, SEQ. ID. NO. 29, SEQ. ID. NO. 31, SEQ. ID. NO. 33, SEQ. ID. NO. 35, SEQ. ID. NO. 37
49. Method according to claims 36-37, wherein the antibody is characterized in that it comprises antibodies raised against oxidized fragments of apo BlOO comprising a variable light region (VL) selected from the group of nucleic acid sequences consisting of SEQ. ID. NO. 2, SEQ. ID. NO. 4, SEQ. ID. NO. 6, SEQ. ID. NO. 8, SEQ. ID. NO. 10, SEQ. ID. NO. 12, SEQ. ID. NO. 20, SEQ. ID. NO. 22, SEQ. ID. NO. 24, SEQ. ID. NO. 26, SEQ. ID. NO. 28, SEQ. ID. NO. 30, SEQ. ID. NO. 32, SEQ. ID. NO. 34, SEQ. ID. NO. 36, SEQ. ID. NO. 38
50. Method according to claims 38-39, wherein the antibody is characterized in that it comprises antibodies raised against oxidized fragments of apo BlOO comprising a variable heavy region (VH) selected from the group of nucleic acid sequences consisting of
SEQ. ID. NO. 1, SEQ. ID. NO. 3, SEQ. ID. NO. 5, SEQ. ID. NO. 7, SEQ. ID. NO. 9, SEQ. ID. NO. 11, SEQ. ID. NO. 19, SEQ. ID. NO. 21, SEQ. ID. NO. 23, SEQ. ID. NO. 25,
SEQ. ID. NO. 27, SEQ. ID. NO. 29, SEQ. ID. NO. 31, SEQ. ID. NO. 33, SEQ. ID. NO. 35,
SEQ. ID. NO. 37
in combination with a variable light region (V ) selected from the group of nucleic acid sequences consisting of
SEQ. ID. NO. 2, SEQ. ID. NO. 4, SEQ. ID. NO. 6, SEQ. ID. NO. 8, SEQ. ID. NO. 10, SEQ. ID. NO. 12, SEQ. ID. NO. 20, SEQ. ID. NO. 22, SEQ. ID. NO. 24, SEQ. ID. NO. 26, SEQ. ID. NO. 28, SEQ. ID. NO. 30, SEQ. ID. NO. 32, SEQ. ID. NO. 34, SEQ. ID. NO. 36, SEQ. ID. NO. 38
51. Method according to claims 50, wherein the antibody is characterized in that it comprises the variable heavy region (VH) SEQ. ID. NO. 1 and the variable light region (VL) SEQ. ID. NO. 2
52. Method according to claims 50, wherein the antibody is characterized in that it comprises the variable heavy region (VH) SEQ. ID. NO. 3 and the variable light region (V ) SEQ. ID. NO. 4
53. Method according to claims 50, wherein the antibody is characterized in that it comprises the variable heavy region (VH) SEQ. ID. NO. 5 and the variable light region (VL)
SEQ. ID. NO. 6
54. Method according to claims 50, wherein the antibody is characterized in that it comprises the variable heavy region (VH) SEQ. ID. NO. 7 and the variable light region (VL) SEQ. ID. NO. 8
55. Method according to claims 50, wherein the antibody is characterized in that it comprises the variable heavy region (VH) SEQ. ID. NO. 9 and the variable light region (V ) SEQ. ID. NO. 10
56. Method according to claims 50, wherein the antibody is characterized in that it comprises the variable heavy region (VH)
SEQ. ID. NO. 11 and the variable light region (V ) SEQ. ID. NO. 12
57. Method according to claims 50, wherein the antibody is characterized in that it comprises the variable heavy region (VH) SEQ. ID. NO. 19 and the variable light region (VL) SEQ. ID. NO. 20
58. Method according to claims 50, wherein the antibody is characterized in that it comprises the variable heavy region (VH) SEQ. ID. NO. 21 and the variable light region (V ) SEQ. ID. NO. 22
59. Method according to claims 50, wherein the antibody is characterized in that it comprises the variable heavy region (VH) SEQ. ID. NO. 23 and the variable light region (V ) SEQ. ID. NO. 24
60. Method according to claims 50, wherein the antibody is characterized in that it comprises the variable heavy region (VH) SEQ. ID. NO. 25 and the variable light region (V ) SEQ. ID. NO. 26
61. Method according to claims 50, wherein the antibody is characterized in that it comprises the variable heavy region (VH) SEQ. ID. NO. 27 and the variable light region (V ) SEQ. ID. NO. 28
62. Method according to claims 50, wherein the antibody is characterized in that it comprises the variable heavy region (VH)
SEQ. ID. NO. 29 and the variable light region (V SEQ. ID. NO. 30
63. Method according to claims 50, wherein the antibody is characterized in that it comprises the variable heavy region (VH) SEQ. ID. NO. 31 and the variable light region (V ) SEQ. ID. NO. 32
64. Method according to claims 50, wherein the antibody is characterized in that it comprises the variable heavy region (VH)
SEQ. ID. NO. 33 and the variable light region (VL) SEQ. ID. NO. 34
65. Method according to claims 50, wherein the antibody is characterized in that it comprises the variable heavy region (VH) SEQ. ID. NO. 35 and the variable light region (V ) SEQ. ID. NO. 36
66. Method according to claims 50, wherein the antibody is characterized in that it comprises the variable heavy region (VH)
SEQ. ID. NO. 37 and the variable light region (VL) SEQ. ID. NO. 38
67. Pharmaceutical composition comprising an isolated human antibody directed towards at least one oxidized fragment of apolipoprotein B for therapeutical or prophylactical treatment of atherosclerosis by means of passive immunization, which antibody is present in combination with a pharmaceutical excipient.
PCT/SE2003/001547 2002-10-04 2003-10-06 Peptide-based passive immunization therapy for treatment of atherosclerosis WO2004030607A2 (en)

Priority Applications (14)

Application Number Priority Date Filing Date Title
DK03748843.4T DK1545609T3 (en) 2002-10-04 2003-10-06 Antibodies directed to oxidized apolipoprotein B
CN200380104103.2A CN1717251B (en) 2002-10-04 2003-10-06 Peptide-based passive immunization therapy for treatment of atherosclerosis
JP2005500961A JP2006506450A (en) 2002-10-04 2003-10-06 Peptide-based passive immunotherapy for the treatment of atherosclerosis
EEP200500012A EE200500012A (en) 2002-10-04 2003-10-06 Peptide-based passive immunotherapy for the treatment of atherosclerosis
ES03748843T ES2387423T3 (en) 2002-10-04 2003-10-06 DIRECTED ANTIBODIES AGAINST OXIDATED APOLIPROTEIN B
BR0315042-9A BR0315042A (en) 2002-10-04 2003-10-06 Therapy for the treatment of atherosclerosis based on passive peptide immunization
AT03748843T ATE498407T1 (en) 2002-10-04 2003-10-06 ANTIBODIES DIRECTED AGAINST OXIDATED APOLIPOPROTEIN B
CA002500895A CA2500895A1 (en) 2002-10-04 2003-10-06 Peptide-based passive immunization therapy for treatment of atherosclerosis
EP03748843A EP1545609B1 (en) 2002-10-04 2003-10-06 Antibodies directed against oxidised apolipoprotein B
AU2003267905A AU2003267905B2 (en) 2002-10-04 2003-10-06 Peptide-based passive immunization therapy for treatment of atherosclerosis
DE60336068T DE60336068D1 (en) 2002-10-04 2003-10-06 Antibodies directed against oxidized apolipoprotein B
SI200331982T SI1545609T1 (en) 2002-10-04 2003-10-06 Antibodies directed against oxidised apolipoprotein B
HK06107155.0A HK1087018A1 (en) 2002-10-04 2006-06-23 Peptide-based passive immunization therapy for treatment of atherosclerosis
AU2009201260A AU2009201260B2 (en) 2002-10-04 2009-03-31 Peptide-based passive immunization therapy for treatment of atherosclerosis

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
SE0202959A SE0202959D0 (en) 2002-10-04 2002-10-04 Peptide-Base passive immunization therapy for the treatment of atherosclerosis
SE0202959-3 2002-10-04
SE0302312A SE0302312D0 (en) 2002-10-04 2003-08-27 Peptide-based passive immunization therapy for the treatment of atherosclerosis
SE0302312-4 2003-08-27
SEPCT/SE03/01469 2003-09-22
PCT/SE2003/001469 WO2004030698A1 (en) 2002-10-04 2003-09-22 Peptide-based passive immunization therapy for treatment of atherosclerosis

Publications (2)

Publication Number Publication Date
WO2004030607A2 true WO2004030607A2 (en) 2004-04-15
WO2004030607A3 WO2004030607A3 (en) 2004-06-24

Family

ID=32074178

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/SE2003/001547 WO2004030607A2 (en) 2002-10-04 2003-10-06 Peptide-based passive immunization therapy for treatment of atherosclerosis

Country Status (3)

Country Link
AU (1) AU2003267905B2 (en)
CA (1) CA2500895A1 (en)
WO (1) WO2004030607A2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008104194A1 (en) * 2007-02-28 2008-09-04 Bioinvent International Ab Oxidized ldl and antibodies thereto for the treatment of atheroscleroti c plaques
WO2010005389A1 (en) * 2008-07-11 2010-01-14 Forskarpatent I Syd Ab Oxidized ldl specific antibody-fusion and conjugated proteins
US20100239567A1 (en) * 2009-03-06 2010-09-23 Genentech, Inc. Antibody Formulation
EP2319868A1 (en) 2005-09-02 2011-05-11 BioInvent International AB Immunotherapeutic treatment for inducing the regression of atherosclerotic plaques
US8703126B2 (en) 2000-10-12 2014-04-22 Genentech, Inc. Reduced-viscosity concentrated protein formulations
US10034940B2 (en) 2003-04-04 2018-07-31 Genentech, Inc. High concentration antibody and protein formulations
EP3524620A1 (en) 2008-10-14 2019-08-14 Genentech, Inc. Immunoglobulin variants and uses thereof
US10858422B2 (en) 2016-05-31 2020-12-08 Abcentra, Llc Methods for treating systemic lupus erythematosus with an anti-apolipoprotein B antibody

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0433088A1 (en) * 1989-12-15 1991-06-19 Eli Lilly And Company Monoclonal antibodies reactive with a human atheroma associated antigen
US5494791A (en) * 1992-06-26 1996-02-27 Exocell, Inc. Monoclonal antibodies against glycated low density lipoprotein
WO1998042751A1 (en) * 1997-03-20 1998-10-01 University Of Leicester Oxidised fragments of apolipoprotein b and their use
US5861276A (en) * 1995-11-02 1999-01-19 Korea Institute Of Science & Technology CDNAS encoding murine antibody against human plasma apolipoprotein B-100
WO1999008109A2 (en) * 1997-08-07 1999-02-18 The Regents Of The University Of California Antibodies to oxidation-specific epitopes on lipoprotein and methods for their use in detecting, monitoring and inhibiting the growth of atheroma
US5972890A (en) * 1988-05-02 1999-10-26 New England Deaconess Hospital Corporation Synthetic peptides for arterial imaging
WO2001032070A2 (en) * 1999-10-26 2001-05-10 The Regents Of The University Of California Reagents and methods for diagnosing, imaging and treating atherosclerotic disease
WO2001064008A2 (en) * 2000-03-03 2001-09-07 Smithkline Beecham Biologicals S.A. Vaccine for the treatment of artherosclerosis
WO2002080954A1 (en) * 2001-04-05 2002-10-17 Forskarpatent I Syd Peptide-based immunization therapy for treatment of atherosclerosis and development of peptide-based assay for determination of immune responses against oxidized low density lipoprotein

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5972890A (en) * 1988-05-02 1999-10-26 New England Deaconess Hospital Corporation Synthetic peptides for arterial imaging
EP0433088A1 (en) * 1989-12-15 1991-06-19 Eli Lilly And Company Monoclonal antibodies reactive with a human atheroma associated antigen
US5494791A (en) * 1992-06-26 1996-02-27 Exocell, Inc. Monoclonal antibodies against glycated low density lipoprotein
US5861276A (en) * 1995-11-02 1999-01-19 Korea Institute Of Science & Technology CDNAS encoding murine antibody against human plasma apolipoprotein B-100
WO1998042751A1 (en) * 1997-03-20 1998-10-01 University Of Leicester Oxidised fragments of apolipoprotein b and their use
WO1999008109A2 (en) * 1997-08-07 1999-02-18 The Regents Of The University Of California Antibodies to oxidation-specific epitopes on lipoprotein and methods for their use in detecting, monitoring and inhibiting the growth of atheroma
WO2001032070A2 (en) * 1999-10-26 2001-05-10 The Regents Of The University Of California Reagents and methods for diagnosing, imaging and treating atherosclerotic disease
WO2001064008A2 (en) * 2000-03-03 2001-09-07 Smithkline Beecham Biologicals S.A. Vaccine for the treatment of artherosclerosis
WO2002080954A1 (en) * 2001-04-05 2002-10-17 Forskarpatent I Syd Peptide-based immunization therapy for treatment of atherosclerosis and development of peptide-based assay for determination of immune responses against oxidized low density lipoprotein

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1545609A2 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8703126B2 (en) 2000-10-12 2014-04-22 Genentech, Inc. Reduced-viscosity concentrated protein formulations
US10166293B2 (en) 2000-10-12 2019-01-01 Genentech, Inc. Reduced-viscosity concentrated protein formulations
US10034940B2 (en) 2003-04-04 2018-07-31 Genentech, Inc. High concentration antibody and protein formulations
EP2319868A1 (en) 2005-09-02 2011-05-11 BioInvent International AB Immunotherapeutic treatment for inducing the regression of atherosclerotic plaques
WO2008104194A1 (en) * 2007-02-28 2008-09-04 Bioinvent International Ab Oxidized ldl and antibodies thereto for the treatment of atheroscleroti c plaques
WO2010005389A1 (en) * 2008-07-11 2010-01-14 Forskarpatent I Syd Ab Oxidized ldl specific antibody-fusion and conjugated proteins
EP2310417A1 (en) * 2008-07-11 2011-04-20 Forskarpatent i Syd AB Oxidized ldl specific antibody-fusion and conjugated proteins
EP2310417A4 (en) * 2008-07-11 2012-01-11 Forskarpatent I Syd Ab Oxidized ldl specific antibody-fusion and conjugated proteins
EP3524620A1 (en) 2008-10-14 2019-08-14 Genentech, Inc. Immunoglobulin variants and uses thereof
US20100239567A1 (en) * 2009-03-06 2010-09-23 Genentech, Inc. Antibody Formulation
US8318161B2 (en) * 2009-03-06 2012-11-27 Genentech, Inc. Anti-oxidized LDL antibody formulation
US10858422B2 (en) 2016-05-31 2020-12-08 Abcentra, Llc Methods for treating systemic lupus erythematosus with an anti-apolipoprotein B antibody

Also Published As

Publication number Publication date
AU2003267905A1 (en) 2004-04-23
WO2004030607A3 (en) 2004-06-24
CA2500895A1 (en) 2004-04-15
AU2003267905B2 (en) 2009-02-05

Similar Documents

Publication Publication Date Title
US7601353B2 (en) Peptide-based passive immunization therapy for treatment of atherosclerosis
JP4716350B2 (en) Antibodies against latency membrane proteins and their use
ES2338791T3 (en) IMMUNOGLOBULINS DESPROVISTAS OF LIGHT CHAINS.
JPH05507197A (en) Soluble peptide analogs containing binding sites
RU2454428C2 (en) Immunotherapeutic treatment
US8008448B2 (en) Cotinine neutralizing antibody
JP2006506450A5 (en)
CA3032783C (en) Antibody to programmed cell death 1 (pd-1) and use thereof
AU2003267905B2 (en) Peptide-based passive immunization therapy for treatment of atherosclerosis
WO1999032520A1 (en) Method for quantitating denatured ldls
WO2008050907A1 (en) Antibody against rgd in amino acid sequence of extracellular matrix protein and production method and use of the same
CN1717251B (en) Peptide-based passive immunization therapy for treatment of atherosclerosis
AU2016202118A1 (en) Carrier immunoglobulins and uses thereof
CN116284377A (en) Anti-human angiogenin 3 nano antibody and application thereof

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 167699

Country of ref document: IL

WWE Wipo information: entry into national phase

Ref document number: 2500895

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2005500961

Country of ref document: JP

Ref document number: 376964

Country of ref document: PL

WWE Wipo information: entry into national phase

Ref document number: 2003267905

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2003748843

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1807/DELNP/2005

Country of ref document: IN

ENP Entry into the national phase in:

Ref document number: 2005113235

Country of ref document: RU

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 20038A41032

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2003748843

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 195708

Country of ref document: IL