WO2004023996A1 - 活動筋肉表示装置 - Google Patents

活動筋肉表示装置 Download PDF

Info

Publication number
WO2004023996A1
WO2004023996A1 PCT/JP2002/009302 JP0209302W WO2004023996A1 WO 2004023996 A1 WO2004023996 A1 WO 2004023996A1 JP 0209302 W JP0209302 W JP 0209302W WO 2004023996 A1 WO2004023996 A1 WO 2004023996A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
paragraph
display device
motor
motor unit
Prior art date
Application number
PCT/JP2002/009302
Other languages
English (en)
French (fr)
Inventor
Satoshi Maekawa
Yoshihisa Fujiwara
Manabu Kotani
Takahiko Arimoto
Original Assignee
National Institute Of Information And Communications Technology Incorporated Administrative Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute Of Information And Communications Technology Incorporated Administrative Agency filed Critical National Institute Of Information And Communications Technology Incorporated Administrative Agency
Priority to PCT/JP2002/009302 priority Critical patent/WO2004023996A1/ja
Priority to JP2004535836A priority patent/JP3831788B2/ja
Priority to US10/527,087 priority patent/US7409242B2/en
Priority to EP02807806A priority patent/EP1537823A1/en
Publication of WO2004023996A1 publication Critical patent/WO2004023996A1/ja

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • A61B5/279Bioelectric electrodes therefor specially adapted for particular uses
    • A61B5/296Bioelectric electrodes therefor specially adapted for particular uses for electromyography [EMG]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/389Electromyography [EMG]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/04Arrangements of multiple sensors of the same type
    • A61B2562/046Arrangements of multiple sensors of the same type in a matrix array

Definitions

  • the present invention also relates to an active muscle display device that specifies a motor unit constituting a muscle from a surface electromyogram measured on a skin surface, and displays an active muscle based on the specified motor unit. It is. Background art
  • the living body performs complex movement control, and clarifying the control mechanism is of great significance in the fields of ergonomics and the like, and elucidating such a control mechanism in the living body. For this reason, many attempts have been made to measure and analyze neuromuscular activity.
  • Muscles are composed of subunits called motor units.
  • This motor unit is a single ⁇ -motor neuron in the spinal cord, Motor N euron, hereafter referred to as “a-MN”.
  • Hiichi MN Motor N euron
  • a-MN Motor N euron
  • Hiichi MN the smallest functional unit of the neuromuscular control mechanism.
  • Measuring the action potential (Motor Unit Potential) of a motor unit and analyzing individual activity patterns is a process that can be performed by neural networks. This is important for elucidating the muscle control mechanism.
  • Electromyograms which show changes in potentials caused by muscle contraction, are measured as interference waveforms of multiple MUAPs. This electromyogram shows a needle measured with a needle electrode inserted into the muscle. There are electromyograms and surface electromyograms measured with non-invasive surface electrodes.
  • Needle electromyograms have the advantage that they are not easily affected by living tissue and the like, and that the separation of motor units is relatively easy, and they are used when analyzing electromyograms by separating motor units.
  • surface EMG can be measured by attaching a surface electrode to the skin surface, so a needle EMG is used. This has the advantage that EMG can be measured relatively easily.
  • the needle electromyogram needs to be measured by inserting a needle electrode into the muscle at the time of measurement, and there is a problem in that a load is imposed on the living body. It was difficult to do. Further, the site measured by the needle electrode is very narrow, and it is necessary to determine in advance which site in the living tissue is to be measured. On the other hand, in the surface EMG, a large number of MUAPs under the electrodes are observed as being added temporally and spatially, and There was a problem that it was difficult to specify the firing pattern of each motor unit. Disclosure of the invention
  • the present invention employs the following means.
  • the present invention provides a plurality of electrodes arranged on the skin surface, a surface electromyogram measurement unit for measuring a surface electromyogram on the skin surface with the plurality of electrodes, and a method for measuring the surface electromyogram.
  • the movement unit separation unit separates the signals from the individual movement units that make up the active muscle based on the surface EMG measured by the movement unit, and the activity of each movement unit obtained by the movement unit separation unit.
  • a motor unit position estimator that estimates the three-dimensional position of the motor unit from the generated potential distribution on the skin surface, and the activities of the individual motor units identified by the motor unit position estimator are summarized.
  • the display unit is provided with a display unit for displaying an image on the surface of the living body without invading the living body by the plurality of electrodes and the surface electromyogram measurement unit.
  • EMG can be measured and motor units
  • the remote unit and the motion unit position estimating unit can identify the three-dimensional position of the active motor unit from a large number of MUAPs that have been added temporally and spatially. Since the display unit images the motor unit, it can be very useful for elucidating the muscle control mechanism in the living body.
  • the unit of motion separation unit In order to estimate individual motion units showing a predetermined firing pattern from the surface electromyogram measured by the surface electromyogram measurement unit, the unit of motion separation unit must include a multi-channel blind decoupling unit. Based on the method, it is desirable to separate individual motor units showing a predetermined firing pattern from the surface electromyogram measured by the surface electromyogram measuring unit.
  • a motor unit firing pattern storage unit that stores a distribution pattern of firing intervals of the motor unit based on physiological knowledge and a surface electromyogram waveform is provided. It is desirable to identify the movement unit by comparing with the time-series signal of each electrode separated by the separation unit, and if they have a matching relationship.
  • the motor unit position estimator estimates the potential distribution formed by depolarization of muscle fibers or muscle fibers necessary to reproduce the potential distribution on a given skin surface. There is a need to. To do this, the inverse problem can be solved by using the potential at the surface electrode position given by the motion unit separation unit as a boundary condition according to the PDE giving the electrostatic field.
  • the motor unit position estimating unit is configured to perform a Poisso so that the motor unit position estimating unit reproduces the potential from the electrode position potential corresponding to each motor unit obtained by the motor unit separating unit.
  • a conductance distribution model storage unit that stores a conductance distribution model that models the distribution and arrangement of fats, bones, muscles, etc. in the living body with different electrical conductances. is there.
  • the plurality of electrodes be arranged in an array.
  • a frequency above a predetermined frequency A high-pass filter that allows a signal having a component to pass therethrough is provided, and the surface EMG measured by the surface EMG measurement unit may be one that passes through the high-pass filter.
  • the surface EMG measured by the surface EMG measurement unit is normalized to an average value of 0 and a variance of 1,
  • the exercise unit separation unit learns the surface electromyogram measured by the surface electromyogram measurement unit under predetermined conditions, and learns each of the exercise units constituting the muscles fired based on the learned data. It is desirable to estimate
  • a muscle distribution model storage unit for storing a modeled muscle distribution model, wherein the display unit superimposes the exercise unit identified by the exercise unit position estimating unit on the muscle distribution model and three-dimensionally displays the exercise unit; The operation of can be recognized more specifically.
  • a measurement and monitoring unit that outputs the surface EMG during measurement is provided when measuring the surface EMG. It is preferable that the surface EMG measurement unit is configured not to perform measurement when the estimated surface EMG is output as an image.
  • FIG. 1 is a diagram schematically showing an overall configuration of an active muscle display device according to an embodiment of the present invention.
  • FIG. 2 is a diagram schematically showing a surface electrode in the same embodiment.
  • FIG. 3 is an internal equipment configuration diagram of the active muscle display device main body in the embodiment.
  • FIG. 4 is a functional configuration diagram showing functions of the active muscle display device in the embodiment.
  • FIG. 5 is a diagram showing a surface electromyogram for each channel in the same embodiment.
  • FIG. 7 is a diagram showing a firing interval distribution pattern of a unit of motion stored in the firing interval distribution pattern storage unit in the embodiment.
  • FIG. 8 is a flow chart showing the operation of the active muscle display device in the same embodiment.
  • FIG. 9 is a flow chart showing an independent component in the embodiment.
  • FIG. 10 is a diagram showing an impulse response of a mixed filer to a fourth independent component in the same embodiment.
  • FIG. 11 is a diagram showing an impulse response of a mixed filer to a seventh independent component in the same embodiment.
  • FIG. 12 is a diagram showing an impulse response of the mixed filter to a fifteenth independent component in the same embodiment.
  • FIG. 13 is a diagram showing an impulse response of the mixed filter to a 16th independent component in the same embodiment.
  • FIG. 14 is a diagram showing a mode in which the fired motion units in the embodiment are displayed as images.
  • FIG. 1 is a diagram schematically showing an overall configuration of an active muscle display device A according to an embodiment of the present invention.
  • the active muscle display device A of the present invention as shown in FIG.
  • Surface electrode unit 1 provided with a plurality of surface electrodes 1a, lb,- ⁇ , Is and It (hereinafter, collectively referred to as “surface electrode 1”) arranged on the skin surface of the subject M.
  • U and a plurality of lead wires 2 a, 2 b, 2 s and 2 t connected to each of the plurality of surface electrodes 1 (hereinafter, collectively referred to as “lead wire 2”). ), And connected to the plurality of lead wires 2, and based on the surface electromyogram measured using the plurality of surface electrodes 1, the unit of movement that ignites is specified.
  • an active muscle display device body 3 for imaging and displaying the specified exercise unit.
  • the arm of the subject M is placed on a horizontal table (not shown) with respect to the ground, and the electromyogram during isometric contraction without a change in muscle length when the tension of the ring finger of the subject M occurs.
  • a figure is measured, a motor unit that has been fired is specified, and the specified motor unit is displayed as an image.
  • the surface electrode unit 1U is a surface with a diameter of 2.0 mm that detects changes in the potential on the skin surface caused by muscle contraction.
  • a pair of surface electrodes 1 adjacent to each other with a gap of 10 mm is defined as one channel, and the potential difference between the 16 channels is output to the active muscle display device 3 as a myoelectric potential signal. Is set to do so.
  • the active muscle display device main body 3 is a computer having a general information processing function, and as shown in FIG. 3, an external storage device such as a CPU 101, an internal memory 102, and an HDD. 10 3, communication interface 10 4 connected to the lead wire 2, display 10 5, user interface 10 such as mouse and keyboard 10 6 Etc. as main components.
  • the filter section 31 and the surface electromyogram Figure measurement unit 32 movement unit separation unit 33, conductance distribution model storage unit 34, movement unit position estimation unit 35, muscle distribution model storage unit 36, measurement monitoring unit 37, a display unit 38, a movement unit firing pattern storage unit 3a, a movement unit depolarization model storage unit 3b, and the like.
  • the filter portion 31 is for passing a frequency component higher than a predetermined frequency in a myoelectric signal obtained from the surface electrode 1 via the lead wire 2, and according to the present embodiment.
  • low-frequency fluctuations caused by changes in contact resistance due to movement of the skin and fluctuations of the lead wire 2 are referred to as the EMG signals.
  • It is composed of a high-pass filter with a cut-off frequency of 2.5 Hz so that it can be suitably removed.
  • the display 105 is configured to display the surface electromyogram of each of the 16 channels as shown in FIG.
  • the surface electromyogram measurement section 32 amplifies the signal measured by the surface electrode 1, applies an anti-aliasing filter, and measures the surface electromyogram on the skin surface.
  • the myoelectric potential signal is sampled at a sampling frequency of 1 kHz and a 12-bit AZD conversion.
  • the movement unit separation unit 33 estimates the individual movement units constituting the ignited muscle based on the surface electromyogram measured by the surface electromyogram measurement unit 32, and in the present embodiment, Based on the multi-channel blind decoupling method, it is set so that individual motor units showing a predetermined firing pattern are separated from the surface EMG measured by the surface EMG measurement unit 32. ing.
  • this method is classified as independent component analysis that can separate the signal into statistically independent components using higher-order statistics.
  • S (t) [s ⁇ (t), ⁇ ⁇ , s n (t)] ⁇ is observed as having been passed through the mixing filter.
  • X (t) [ Xx (t), , Xn (t)] T ,
  • ⁇ ⁇ ( ⁇ ) ⁇ ; ⁇ ( ⁇ ')- ⁇ t-r') ⁇ L (r- ⁇ '
  • AR (T) - ⁇ L H ( ⁇ - ⁇ ) ⁇ ⁇ ⁇ ( ⁇ )) ⁇ ⁇ (t + T ') R (T- ⁇ ')
  • FIG. 9 shows an example of each output signal of the independent component separated as described above.
  • a signal corresponding to a single motor unit appears in each of the fourth, seventh and fifteenth components. This signal is displayed on the display and the operator selects them.
  • the upper part near the elbow It can be confirmed that the phase of the impulse response is inverted between the electrode arranged and the electrode arranged on the lower side near the hand. It is known that the phase of the EMG before and after the end plate is reversed because MUAP propagates from the end plate to the end of the muscle fiber on both sides. Therefore, it is considered that the reason for the existence of electrodes with extremely weak impulse response of the motion unit in the part where the phase is reversed is that the motion end plates were located near these electrodes. . In addition, in Fig. 10 to Fig. 12, since the position of the end plate and the position of the electrode showing the maximum amplitude are different from each other, it can be estimated that these are different motion units extracted. . On the other hand, in Fig. 13 no particular feature was observed, and it is considered that the 16th independent component was extracted as noise. From the above, the fourth, seventh, and fifteenth independent components can be specified as motion units from the viewpoint of the characteristics of the mixed filter passed through the independent components.
  • the firing motor units are separated based on the surface EMG measured by the surface EMG measurement unit 32. I do.
  • the number of taps is 20
  • the patch size is 100
  • the exercise unit firing pattern storage unit 3a stores the distribution pattern of the firing intervals of the exercise units based on physiological knowledge, and stores the predetermined pattern in the external storage device 103 and the internal memory 102. Formed in the area.
  • the distribution pattern of the firing intervals of the motor units based on this physiological knowledge can be shown as the distribution of the firing intervals of the motor units, as shown in FIG. Stores data obtained from possible needle EMGs.
  • represents the conductance distribution of the living tissue, and is given by the conductance distribution model storage unit 34.
  • is the normal vector to the skin.
  • Each motion unit obtained by the motion unit position estimator 35 The current source distribution I with respect to the position indicates the depolarization position of the muscle fiber constituting each motor unit in the living tissue, but this inverse problem is a poor setting problem, and until then the solution is uniquely determined. I can't decide. Therefore, a motor unit depolarization model that models how a motor unit depolarizes to generate an action potential is stored in the motor unit depolarization model storage unit 3b in advance and is used. This uniquely determines the solution.
  • the muscle distribution model storage unit 36 stores a muscle distribution model that models muscle fibers and motor neurons constituting a motor unit, and stores the external storage device 103 and the internal memory 102. In a predetermined area.
  • the measurement monitoring unit 37 outputs an image of the surface electromyogram being measured to the display 105 when the surface electromyogram is measured. Note that, in the present embodiment, when a surface EMG that is estimated to be other than a unit of motion is output to the display 105 during measurement of the surface EMG, the surface EMG measurement is performed. Part 32 is set not to perform measurement.
  • the display unit 38 superimposes the depolarized position of the motor unit estimated by the motor unit position estimating unit 35 on the muscle distribution model stored in the muscle distribution model storage unit 36 and displays the display 10 5. It outputs a three-dimensional image.
  • the operation of the active muscle display device A configured as described above will be described with reference to a flow chart shown in FIG.
  • the main operation of the active muscle display device A is set to be performed.
  • the subject M is seated on a chair, and the left arm is fixed on a table with the palm facing upward.
  • the operator confirms that no noise other than hum noise is seen in the signal of each channel, and that the hum noise is sufficiently small.
  • a certain amount of force is applied to the subject M with a certain force while watching the electromyogram displayed on the display 105 so as not to mobilize or stop a new motor unit during the measurement. And instruct them to apply force to (4)
  • Subject M applies a force to a predetermined finger with a constant force along with the signal of the measurer.
  • the contact resistance associated with the movement of the skin is determined by the filter section 31. ⁇ Disturbances such as low-frequency fluctuations caused by fluctuations of the lead wire 2 were removed (Step S102), and passed through the final section 31 of this filer.
  • the EMG signal is displayed on the display 105 as a surface EMG measured for each channel as shown in Fig. 5 by the surface EMG measurement unit 32 (step 5).
  • Step S103 the motor unit separation unit 33 obtains the independent component separated from the electromyogram as shown in FIG. 5 by the multi-channel decomposition method (Step S). 104), and are displayed on the display 105 as independent components as shown in FIG.
  • the 4th, 7th, and 15th components are estimated to be motor units (step S105).
  • the estimation of the independent component is performed by the user selecting a component estimated as an independent component from the surface electromyogram displayed on the display 105 and using the user interface 1 It is set so that the motor unit presumed to have fired using 06 is input to the active muscle display device main body 3.
  • the impulse response of each separated motor unit at each electrode is obtained (step S106), and the value is used as a boundary condition to estimate the three-dimensional position of the motor unit (step S107). .
  • Step S108 the movement unit whose position has been specified is superimposed on the muscle distribution model stored in the muscle distribution model storage unit 36 by the display unit 38, and is displayed on the display 105.
  • a three-dimensional structure image obtained by taking the tissue of the arm by fMRI or the like is displayed semi-transparently on the display 105 on the screen.
  • the movement unit X whose position is specified is set to be displayed as a bright line (hatched in the figure).
  • the active muscle display device A of the present embodiment displays the surface electromyogram without invading the living body by the plurality of surface electrodes and the surface electromyogram measurement unit 32.
  • the motor unit fired from a large number of MUAPs that are temporally and spatially added by the motor unit separating unit 33 and the motor unit position estimating unit 35 Can be separated
  • the position-specific movement units are imaged on the display, they can be very useful for elucidating the control mechanism in the living body.
  • the high-noise filter favorably reduces disturbances such as low-frequency fluctuations caused by changes in contact resistance associated with movement of the skin and fluctuations of the lead wire. Since it is removed, it is possible to accurately measure the surface electromyogram to identify the firing motor unit.
  • the motion can be recognized more specifically.
  • the arm of the subject M is placed on a horizontal table (not shown) with respect to the ground, and the surface electromyography during isometric contraction without a change in muscle length when tension of the ring finger of the subject M occurs.
  • the figure shows an example in which the motor unit that ignited was identified from this figure, and the identified motor unit was then displayed as an image.However, the muscles in other parts were measured, not limited to the ring finger However, it is needless to say that it is possible to identify and image the motor unit that fired.
  • the cut-off frequency in the high-pass filter is set to 2.5 Hz, but the cut-off frequency is not limited to this.
  • the surface electrodes 1 are arranged in a 5 ⁇ 4 array with a gap of 10 mm and 4 mm, but the number and arrangement method of the surface electrodes 1 to be arranged are not limited thereto.
  • the shape and dimensions of the surface electrode 1 to be used may be arbitrarily set.
  • the measurer selects a component estimated as an independent component from the surface electromyogram displayed on the display 105 and uses the user interface 106. It is set so that the motor unit presumed to have fired is input to the motor unit separation unit 33, but this estimated operation is automatically identified by the active muscle display unit 3 and specified. Good
  • a surface electromyogram can be measured without invading a living body by a plurality of electrodes and a surface electromyogram measurement unit, and a movement unit can be measured.
  • the separation unit and the motion unit position estimation unit can identify the three-dimensional position of the active motion unit from a large number of MUAPs added in time and space, and can further identify the specified motion. Since the display unit images the unit, it is possible to provide an active muscle display device that is very useful for understanding the control mechanism in the living body.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Description

明細 活動筋肉表示装置 技術分野
本発明は、 皮膚表面上で計測する表面筋電図か ら筋を 構成する運動単位を特定し、 こ の特定した運動単位に基 づき、 活動する筋肉を表示する活動筋肉表示装置に関す る も のである。 背景技術
生体は複雑な運動制御を行っ てお り 、 その制御機構を 明 らかにする こ とは、 人間工学等の分野において大きな 意義があ り 、 こ のよ う な生体における制御機構を解明す るため、 神経一筋活動を計測 · 解析しょ う と い う 試みが 多く 行われている。
筋は、 多く の運動単位と呼ばれるサブユニッ ト によ り 構成されている。 こ の運動単位は脊髄内の単一の α運動 ニュー ロ ン ひ M o t o r N e u r o n 、 以下、 「 a — M N」 とする。 ) と、 ひ 一 M N に支配される筋繊維 群か ら な り 、 神経一筋制御機構の最小機能単位である。 筋の収縮時には、 複数の運動単位が協調 して活動する。 運動単位の活動電位 ( M o t o r U n i t a c t i o n p o t e n t i a l 、 以下、 「 M U A P 」 とする 。 ) を計測し、 個々 の活動様式を解析する こ と は、 神経 一筋制御機構を解明する上で重要な こ とである。
筋収縮に伴っ て発生する電位の変化を示す筋電図は、 複数の M U A P の干渉波形 と して計測されるが、 こ の筋 電図には、 筋に刺入する針電極で計測 した針筋電図と、 非侵襲の表面電極によ り 計測した表面筋電図がある。
針筋電図は、 生体組織な どの影響を受けに く く 、 運動 単位の分離が比較的容易である とい う利点があ り 、 筋電 図を運動単位の分離によ り解析する際に用い られる こ と が多い ( K . C . M c G i 1 1 、 K . L . C u m m i n s a n d L . J . D o r f m a n , A u t o m a t i c D e c o m p o s i t i o n o f C l i n i c a 1 E 1 e c t r o m y o g r a m " I E E E T r a n s 。 B i o m e d 。 E n g 、 B M E 、 v o l . 3 2 、 p p . 4 7 0 - 4 7 7 , 1 9 8 5 ) 。 一方、 表 面筋電図は、 皮膚表面に表面電極を貼 り 付ければ計測で きるため、 針筋電図に比べ比較的簡単に筋電図を計測で きる と いっ た利点があっ た。
しか しながら 、 針筋電図は、 計測時に針電極を筋肉に 刺して計測する必要があ り 、 生体に負荷を与えて し ま う と いっ た問題点があるため、 多数の筋を同時に計測する こ とは困難であ った。 また、 針電極が計測する部位は、 非常に狭い範囲であ り 、 あ らか じめ生体組織内の どの場 所を計測するかを決定してお く 必要があ った。 一方、 表 面筋電図では電極下にある多数の M U A P が、 時間的 - 空間的に加算されたもの と して観測されるため、 個々 の 運動単位の発火パターンを特定する こ とが困難である と い う 問題点があっ た。 発明の開示
上記の課題を解決するために、 本発明は、 次のよ う な 手段を講じたものである。
すなわち、 本発明は、 皮膚表面上に配置する複数の電 極と、 こ の複数の電極における皮膚表面上の表面筋電図 を計測する表面筋電図計測部と、 こ の表面筋電図計測部 で計測した表面筋電図に基づき活動した筋を構成する個 々 の運動単位か ら の信号を分離する運動単位分離部と、 運動単位分離部で得た個々 の運動単位の活動によ り 生じ た皮膚表面上での電位分布か ら 、 運動単位の 3 次元的な 位置を推定する運動単位位置推定部と、 こ の運動単位位 置推定部で特定した個々 の運動単位の活動をま とめて画 像化 して表示する表示部と を具備する こ と を特徴とする こ のよ う な構成によれば、 複数の電極及び表面筋電図 計測部によって生体を侵襲する こ とな く 表面筋電図を計 測する こ とができる と と も に、 運動単位分離部及び運動 単位位置推定部によ って、 時間的 · 空間的に加算された 多数の M U A P か ら活動した運動単位の 3 次元的位置を 特定する こ とができ、 さ ら に、 特定した運動単位を表示 部が画像化するため、 生体における筋制御機構の解明に 非常に有用 とする こ とができる。 なお、 前記表面筋電図計測部で計測した表面筋電図か ら所定の発火パターンを示す個々 の運動単位を推定する ためには、 前記運 単位分離部が、 多チャ ンネルブライ ン ドデコ ンポルーシ ヨ ン法に基づき、 前記表面筋電図計 測部で計測 した表面筋電図か ら所定の発火パターンを示 す個々 の運動単位を分離する こ とが望ま しい。
よ り 正確に活動した運動単位を特定するためには、 生 理学的知見に基づく 運動単位の発火間隔の分布パターン および表面筋電図波形を格納する運動単位発火パターン 格納部を備え、 前記運動単位分離部が分離した各電極の おける時系列信号と照合して, 一致する関係にある場合 に, 運動単位と特定する こ とが望まれる。
運動単位位置推定部では、 与え られた皮膚表面上の電 位分布を再現するのに必要な生体組織内に流れる電流源 も し く は筋繊維の脱分極によっ て形成される電位分布を 推定する必要がある。 これを行う には、 静電場を与える 偏微分方程式程式に従っ て、 運動単位分離部で与え られ た表面電極位置での電位を境界条件 と して逆問題を解け ばよい。
なお、 本発明の好ま しい態様と しては、 前記運動単位 分離部で得た各運動単位に対応する電極位置電位よ り , 前記運動単位位置推定部が、 その電位を再現する よ う に ポアソ ン方程式か ら電流源を推定する ものが挙げられる また、 運動単位位置推定部における逆問題を解く ため には、 電気的コ ンダク タ ンスが異なる生体内の脂肪、 骨 、 筋肉等の分布、 配置をモデル化 したコ ンダク タ ンス分 布モデルを格納する コ ンダク 夕 ンス分布モデル格納部を 備える必要があ る。
また、 運動単位位置推定部における逆問題は、 そのま までは不良設定問題であ るため、 一意に解く ため には運 動単位の脱分極モデルを格納する運動単位脱分極モデル 格納部を備える必要があ る。
分離の精度を向上させるためには、 前記複数の電極が 、 ア レイ 状に並べて配置された ものである こ とが望ま し い
皮膚の動きに と もなう 接触抵抗の変化ゃ リ 一 ド線の揺 れな どによ り 生 じる低周波の変動等の外乱を好適に除去 するためには、 所定の周波数以上の周波数成分を有する 信号を通過させるハイパス フ ィ ルタ を設け、 前記表面筋 電図計測部が計測する表面筋電図が、 こ のハイ パス フ ィ ル夕 を通過させたものであればよい。
多チャ ンネルブライ ン ドデコ ンポ リ ューシ ョ ンを精度 よ く 行う ためには、 前記表面筋電図計測部で計測 した表 面筋電図を、 平均値が 0 、 分散が 1 に正規化した り 、 前 記運動単位分離部が、 前記表面筋電図計測部で計測する 表面筋電図を所定の条件で学習 し、 こ の学習 した学習デ —夕 に基づき発火した筋を構成する個々 の運動単位を推 定した り する こ とが望ま しい。
また、 運動単位を構成する筋繊維や運動ニュー ロ ンを モデル化した筋肉分布モデルを格納する筋肉分布モデル 格納部を備え、 前記表示部が前記運動単位位置推定部で 特定 した運動単位を前記筋肉分布モデルに重ねて 3 次元 表示すれば、 発火した運動単位の動作をよ り 具体的に認 識する こ とができる。
精度よ く 表面筋電図の測定を行う ためには、 表面筋電 図の計測時に、 計測中の表面筋電図を画像出力する計測 監視部を設け、 こ の計測監視部に運動単位以外と推定さ れる表面筋電図が画像出力 された際に、 前記表面筋電図 計測部が計測を行わないよ う に構成している こ とが望ま しい。 図面の簡単な説明
第 1 図は、 本発明の実施形態における活動筋肉表示装置 の全体構成を模式的に示す図である。
第 2 図は、 同実施形態における表面電極を模式的に示す 図であ る。
第 3 図は、 同実施形態における活動筋肉表示装置本体の 内部機器構成図であ る。
第 4 図は、 同実施形態における活動筋肉表示装置の機能 を示す機能構成図である。
第 5 図は、 同実施形態におけるチャ ンネル毎の表面筋電 図を示す図である。
第 6 は、 同実施形態における ブライ ン ドデコ ンポ リ ュー シヨ ンの構造を示す図である。 第 7 図は、 同実施形態における発火間隔分布 Λター ン格 納部に格納する運動単位の発火間隔の分布パター ンを示 す図である。
第 8 図は、 同実施形態における活動筋肉表示装置の動作 を示すフ ロー図である。
第 9 図は、 同実施形態における独立成分を示すフ ロー図 である。
第 1 0 図は、 同実施形態における 4 番目 の独立成分に対 する混合フ ィ ル夕 のィ ンパルス応答を示す図である。 第 1 1 図は、 同実施形態における 7 番目 の独立成分に対 する混合フ ィ ル夕 のィ ンパルス応答を示す図である。 第 1 2 図は、 同実施形態における 1 5 番目 の独立成分に 対する混合フィ ルタ のイ ンパルス応答を示す図である。 第 1 3 図は、 同実施形態における 1 6 番目 の独立成分に 対する混合フィ ルタ のイ ンパルス応答を示す図である。 第 1 4 図は、 同実施形態における発火した運動単位を画 像表示する態様を示す図である。 発明を実施するための最良の形態 以下、 本発明の一実施形態について図面を参照して説 明する。
第 1 図は、 本発明の実施形態における活動筋肉表示装 置 Aの全体構成を模式的に示す図である。
本発明の活動筋肉表示装置 Aは、 第 1 図に示すよ う に 、 被験者 Mの皮膚表面上に配置する複数の表面電極 1 a 、 l b , - ■ · 、 I s 及び I t (以下、 「表面電極 1 」 と 総称する。) を備えた表面電極ユニ ッ ト 1 U と 、 こ の複 数の表面電極 1 それぞれに接続される複数の リ ー ド線 2 a 、 2 b 、 · · · 、 2 s 及び 2 t (以下、 「 リ ー ド線 2 」 と総称する。) と 、 こ の複数の リ ー ド線 2 と接続さ れる と と も に前記複数の表面電極 1 を用いて測定した表面筋 電図に基づき発火した運動単位を特定し さ ら に こ の特定 した運動単位を画像化 して表示する活動筋肉表示装置本 体 3 と を具備する ものであ る。 なお、 本実施形態では、 地面に対して図示しない水平な台の上に被験者 Mの腕を 載せ、 その被験者 Mの薬指の張力発生時に筋長変化を伴 わない等尺性収縮時における筋電図を測定し、 これよ り 発火した運動単位を特定し さ ら に特定 した運動単位を画 像化 して表示する場合を一例に挙げて説明する。
表面電極ユニ ッ ト 1 Uは、 第 1 図及び第 2 図に示すよ う に、 筋の収縮運動に と もなっ て生ずる皮膚表面上の電 位の変化を検知する直径 2 . 0 m mの表面電極 1 と、 こ の表面電極 1 を極間 1 0 m m及び 4 m mにて 5 X 4 のァ レイ 状に して取 り 付ける表面電極支持板 1 1 と を備える ものであっ て、 この表面電極ュニッ ト 1 Uを肘窩よ り 約 1 0 c mの と こ ろか ら配置する こ とによ り 、 薬指の動作 によ っ て生じ る筋の収縮運動に と もなっ て生ずる皮膚表 面上の電位の変化を好適に検知するよ う に している。 そ して、 5 X 4 のア レイ 状に配置した表面電極 1 において 、 極間 1 0 m mにて隣接する一対の表面電極 1 を 1 チ ヤ ンネルと し、 1 6 チヤ ンネルそれぞれのチヤ ンネルにお ける電位差を筋電位信号と して活動筋肉表示装置本体 3 に出力するよ う に設定している。
活動筋肉表示装置本体 3 は、 一般的な情報処理機能を 有する コ ンピュータであっ て、 第 3 図に示すよ う に、 C P U 1 0 1 、 内部メ モ リ 1 0 2 、 H D D等の外部記憶装 置 1 0 3 、 前記 リ ー ド線 2 と接続される通信イ ンタ フ エ イ ス 1 0 4 、 ディ ス プレイ 1 0 5 、 マウスやキーボー ド と いっ たユーザイ ン夕 フ ェイ ス 1 0 6 等を主な構成要素 と してレ る。
一方、 こ の活動筋肉表示装置本体 3 を機能面で説明す る と、 前記各部が動作する こ と によ り 、 第 4 図に示すよ う に、 フ ィ ルタ部 3 1 と、 表面筋電図計測部 3 2 と、 運 動単位分離部 3 3 と、 コ ンダク タ ンス分布モデル格納部 3 4 と 、 運動単位位置推定部 3 5 と、 筋肉分布モデル格 納部 3 6 と、 計測監視部 3 7 と、 表示部 3 8 、 運動単位 発火パターン格納部 3 a 、 運動単位脱分極モデル格納部 3 b 等と しての機能を有している。
以下、 各部を詳述する 。
フ ィ ル夕部 3 1 は、 前記表面電極 1 か ら リ ー ド線 2 を 介して取得する筋電位信号において所定の周波数よ り 高 い周波数成分を通過させる ものであ っ て、 本実施形態で は、 皮膚の動きに と もなう 接触抵抗の変化 · リ ー ド線 2 の揺れな どによ り 生じる低周波の変動を前記筋電位信号 か ら好適に除去できる よ う に、 カ ッ トオフ周波数 2 . 5 H z のハイパス フィ ル夕で構成 している。 そして、 この フィ ル夕部 3 1 を通過後に第 5 図に示すよ う な 1 6 チヤ ンネル各々 の表面筋電図で前記ディ ス プレイ 1 0 5 に表 示する よ う に構成している。
表面筋電図計測部 3 2 は、 表面電極 1 によ り 計測した 信号を増幅し、 ア ンチエイ リ アシングフィ ルターをかけ た後で、 前記皮膚表面上における表面筋電図を計測する ものである。 なお、 本実施形態では、 前記筋電位信号を サンプリ ング周波数 1 k H z 及び 1 2 ビッ ト A Z D変換 にてサンプリ ングを行う 。
運動単位分離部 3 3 は、 前記表面筋電図計測部 3 2 で 計測 した表面筋電図に基づき発火した筋を構成する個々 の運動単位を推定する ものであ っ て、 本実施形態では、 多チャ ンネルブライ ン ドデコ ンポル一シ ョ ン法に基づき 、 前記表面筋電図計測部 3 2 で計測 した表面筋電図か ら 所定の発火パターンを示す個々 の運動単位を分離する よ う に設定している。
よ り 具体的に多チヤ ンネルブライ ン ドデコ ンポルーシ ヨ ン法を説明する と、 この方法は高次統計量を利用 して 信号を統計的独立な成分へと分離可能な独立成分分析に 分類される手法の一つであっ て、 時間的に独立な信号 s ( t ) = [ s 丄 ( t ) 、 · ■ · 、 s n ( t ) ] τが混合 フィ ルタ に通されたもの と して観測される多チャ ンネル の各時刻 t での信号を X ( t ) = [ X x ( t ) 、 · · · 、 X n ( t ) ] Tと表した と き、
y(t)二
Figure imgf000013_0001
によ り 信号を独立成分 y ( t ) = [ y x ( t ) 、 y n ( t ) ] Tに分離する こ とができ る。 こ で、 W ( Z - 1 ) は、
Figure imgf000013_0002
( 2 ) と表される。 Ζ - 1 は Z — r X ( t ) = X ( t 一 て ) のよ う に動作する時間遅れ演算子を表す。
そ して、 逆フ ィ ルタ を求めやすく するために W ( z - 1 ) を 2 つ の片側のみの F I R フ ィ ルタ L ( c a u s u a l )、 R ( n o n - c a u s u a 1 ) に分解する 。 こ のよ う に分解されたフ ィ ルタ におけるブライ ン ドデコ ン ポ リ ューシ ョ ンの過程を第 6 図に示す。 混合フィ ルタは 時空間的に一定である と仮定し、 その逆フ ィ ル夕 の推定 は、
Δ^(τ) = η ; {δ(τ')一 φ議 t― r')}L(r― τ'
τ'=0 ( 3 )
AR(T) =—η LH {ζ-ι)ψ{υ{ϊ))ητ [t + T')R(T一 τ')
'=0 ( 4 ) によ って学習される。 こ で R ( 0 ) は単位行列、
Ν
L1 ∑L(T)T
「=0
であ る。 以上によっ て分離された独立成分の各出力信号の例を 第 9 図に示す。 この例では、 4 、 7 、 1 5 番目 の各成分 に単独の運動単位に相当する信号が現れている。 こ の信 号は、 ディ スプ レイ に表示され、 計測者がこれら を選択 する。
次に、 各独立成分に対応する M U A P の各表面電極へ の現れ方を次のよ う に して調べる。 i 番目 の独立成分の イ ンパルス 出力 のみ、 y = [ 0 、 · · · 、 0 、 y ; ( t ) > 0 , - - - 0 ] T , y i ( t ) = [ 0 , - - - , 0 , ( t )、 0 、 · · · 、 0 ] に対する入力 x ( i ) は、 y ( t ) = W ( Z - 1 ) ( t ) よ り 、
x ( i ) = W ( Z 1 ) 1 の第 i 列 … ( 5 ) で与え られる。 なお、 こ こで δ ( t ) は、 t = 0 の時だ け 1 で、 その他では 0 を と る もの とする。 これは i 番目 の独立成分に対応する運動単位か ら発生した M U A P が 、 各表面電極上でどのよ う に入力されたかを示すイ ンパ ルス応答となっ ている。 4 、 7 、 1 5 番目 、 そして比較 のため、 運動単位とは違っ た ものと して推定されている 独立成分の う ち 1 6 番目 の独立成分に対 して式 ( 5 ) に よ っ て算出されるイ ンパルス応答を第 1 0 図〜第 1 3 図 に示す。 第 1 0 図〜第 1 2 図の結果は、 単独の運動単位 に相当するィ ンパルス応答を示している こ とが確認でき る。 しか しなが ら、 第 1 3 図の結果は 特に有意な信号 を分離した とは見なせない こ とが分かる。 第 1 0 図〜第 1 2 図のイ ンパルス応答を観察する と、 肘に近い上側に 配置された電極と、 手先に近い下側に配置された電極と で、 ィ ンパルス応答の位相が反転している こ とが確認で きる。 M U A P は運動終板か ら筋繊維の末端に向かっ て 両側に伝搬してい く ため、 運動終板の前後の筋電図は位 相が反転する こ とが知 られている。 したがって、 ち ょ う ど位相が反転する部分において運動単位のィ ンパルス応 答が非常に弱い電極が存在している原因は、 これ ら の電 極付近に運動終板があつ たためである と考え られる。 ま た、 第 1 0 図〜第 1 2 図において、 運動終板の位置およ び最大振幅を示す電極位置がそれぞれ異なる こ とか ら、 これら は異なる運動単位を抽出 したものである と推定で きる。 一方、 第 1 3 図では特に 目立っ た特徴が見 られず 、 1 6 番目 の独立成分はノイ ズと して抽出されている と 考え られる。 以上よ り 、 独立成分に通される混合フィ ル 夕の特性と い う観点か ら、 4 、 7 、 1 5 番目の独立成分 は運動単位である と特定できる。
このよ う な多チャ ンネルブライ ン ドデコ ンポ リ ューシ ヨ ン法を用いる こ と によ っ て、 前記表面筋電図計測部 3 2 で計測 した表面筋電図に基づき、 発火した運動単位を 分離する。 なお、 本実施形態において、 多チャ ンネルブ ライ ン ドデコ ンボルーシ ヨ ン法を行う 際の学習条件と し て、 タ ッ プ数 て は 2 0 、 パッ チサイ ズは 1 0 0 、 学習率 は ?7 ( 0 ) = 0 . 0 0 0 0 1 か ら はじめて 1 0 回学習す る ごと に 7? ( t + 1 ) = 0 . 8 n ( t ) に したがって更 新するよ う に設定している。 また、 非線形関数 ψ ( X ) は運動単位の発火統計が、 スーパ一ガウ シア ン分布を し てレ る とい う仮定によ り Φ ( X ) = t a n h ( x ) を用 いて いる 。 こ こ で、 スーノ°.—ガウシア ン分布とは、 尖度 と呼ばれる K = E [ ( X — 4 ] / E [ ( - II 2 ) 2 ] 一 3 の 4 次の統計量が正の値を と る分布の こ とであ る。
運動単位発火パターン格納部 3 a は、 生理学的知見に 基づく 運動単位の発火間隔の分布パター ンを格納する も のであ っ て、 前記外部記憶装置 1 0 3 や内部メ モ リ 1 0 2 の所定領域に形成している。 なお、 本実施形態におい て、 こ の生理学的知見に基づく 運動単位の発火間隔の分 布パターンは、 第 7 図に示すよ う に、 運動単位の発火間 隔の分布と して示すこ とが可能な針筋電図か ら得た も の を格納している。
運動単位位置推定部 3 5 は、 前記運動単位分離部 3 3 で分離した個々 の運動単位に起因する各電極上の電位を 境界条件と して、 静電場に関する偏微分方程式であるポ ァソ ン方程式 ▽ · σ ν Φ = — I で与え られる逆問題を 解き、 各運動単位に対して個別に対応する電流源 I の分 布を求める。 こ こで、 σ は、 生体組織のコ ンダク タ ンス 分布を表し、 コ ンダク タ ンス分布モデル格納部 3 4 によ つ て与え られる。 Φ は、 生体組織内の電位分布であ り 、 皮膚表面上で、 σ ν Φ · η = 0 とい う境界条件を満たす 。 η は、 皮膚に対する法線ベク トルであ る。
運動単位位置推定部 3 5 において求め られる各運動単 位に対する電流源分布 I は、 生体組織中 における各運動 単位を構成する筋線維の脱分極位置を示しているが、 こ の逆問題は不良設定問題であ り 、 そのま までは解を一意 に決定する こ とができない。 そのため、 運動単位がどの よ う に脱分極して活動電位を発生させる のかをモデル化 した運動単位脱分極モデルをあ らか じめ運動単位脱分極 モデル格納部 3 b に持ち、 これを利用する こ と によっ て 、 一意に解を決定する。
筋肉分布モデル格納部 3 6 は、 運動単位を構成する筋 線維や運動ニュー ロ ンをモデル化した筋肉分布モデルを 格納する ものであっ て、 前記外部記憶装置 1 0 3 や内部 メモ リ 1 0 2 の所定領域に形成している。
計測監視部 3 7 は、 表面筋電図の計測時に、 計測中の 表面筋電図を前記ディ スプレイ 1 0 5 に画像出力する も のであ る。 なお、 本実施形態では、 表面筋電図の計測中 に運動単位以外と推定される表面筋電図が前記ディ スプ レイ 1 0 5 に画像出力された際には、 前記表面筋電図計 測部 3 2 が計測を行わないよ う に設定している。
表示部 3 8 は、 前記運動単位位置推定部 3 5 で推定し た運動単位の脱分極位置を、 前記筋肉分布モデル格納部 3 6 に格納する筋肉分布モデルに重ねて前記ディ スプレ ィ 1 0 5 に 3 次元画像出力する ものである。
次に、 以上のよ う に構成される活動筋肉表示装置 Aの 動作について第 8 図に示すフ ロー図等を用 いて説明する 。 なお、 本実施形態では、 次の ( 1 ) か ら ( 4 ) に示す 手順で準備を行っ たのち に活動筋肉表示装置 Aの主動作 を行う よ う に設定 している。 ( 1 ) 被験者 M を椅子に座 らせ、 左腕を掌が上に向く よ う に して台の上に固定する 。 ( 2 ) 各チャ ンネルの信号にハム雑音以外の雑音が見 られな く な り 、 また、 ハム雑音が十分小さ く なつ た こ と を計測者が確認する。 ( 3 ) 計測中 にお ける新たな運動 単位の動員や停止がないよ う に、 被験者 Mに対してディ スプレイ 1 0 5 に表示される筋電図を見ながら一定の力 で、 所定の指に力 を加える よ う に指示する 。 ( 4 ) 被験 者 Mは計測者の合図 と と も に一定の力で所定の指に力 を 加える。
まず、 表面電極 1 を用いて各チャ ンネルにおける筋電 位信号を計測する と (ステ ッ プ S 1 0 1 )、 フ ィ ル夕部 3 1 によっ て皮膚の動きに と もなう 接触抵抗の変化ゃ リ ー ド線 2 の揺れな どによ り 生じ る低周波の変動等の外乱 が除去され (ス テ ッ プ S 1 0 2 )、 こ の フ イ リレ夕部 3 1 を通過した筋電位信号は、 表面筋電図計測部 3 2 によ つ て、 第 5 図に示すよ う なチャ ンネル毎に計測 した表面筋 電図 と してディ スプレイ 1 0 5 に表示される (ステッ プ S 1 0 3 )。 次に、 運動単位分離部 3 3 が、 多チャ ンネ ルデコ ンポ リ ューシ ョ ン法によ り 、 第 5 図に示すよ う な 筋電図よ り 分離された独立成分を求め (ステッ プ S 1 0 4 )、 第 9 図に示すよ う な独立成分 と してディ ス プレイ 1 0 5 に表示する。 ディ スプレイ 1 0 5 に表示した独立 成分か ら独立成分がピーク値の振幅 と発火周期がほぼ一 定である 4 、 7 、 1 5番目 の成分が運動単位と推定され る (ステ ッ プ S 1 0 5 )。 なお、 本実施形態において、 この独立成分の推定は、 ディ スプレイ 1 0 5 に表示した 表面筋電図か ら計測者が独立成分と して推定される もの を選択し、 前記ユーザイ ンタ フェイ ス 1 0 6 を利用 して 発火したと推定される運動単位を活動筋肉表示装置本体 3 に入力する よ う に設定している。 次に、 分離した運動 単位の各電極におけるイ ンパルス応答を求め (ステッ プ S 1 0 6 )、 その値を境界条件と して運動単位の 3 次元 位置を推定する (ステッ プ S 1 0 7 )。
そ して、 位置を特定した運動単位: は、 表示部 3 8 に よ っ て、 筋肉分布モデル格納部 3 6 に格納している筋肉 分布モデルと重ね合わされ、 ディ ス プレイ 1 0 5 に画面 表示される こ と となる (ス テ ッ プ S 1 0 8 )。 なお、 本 実施形態では、 第 1 4 図に示すよ う に、 腕の組織を f M R I 等で取っ た 3 次元構造画像を半透明にディ スプレイ 1 0 5 に画面表示に表示する と と も に、 位置を特定した 運動単位 Xを輝線 (図中斜線) 等で表示するよ う に して 設定している。
以上に詳述 したよ う に、 本実施形態の活動筋肉表示装 置 Aは、 複数の表面電極及び表面筋電図計測部 3 2 によ つて生体を侵襲する こ とな く 表面筋電図を計測する こ と ができる と と もに、 運動単位分離部 3 3 及び運動単位位 置推定部 3 5 によ っ て、 時間的 · 空間的に加算された多 数の M U A Pか ら発火した運動単位を分離する こ とがで き、 さ ら に、 位置を特定した運動単位をディ ス プレイ で 画像化されるため、 生体における制御機構の解明に非常 に有用 とする こ とができる。
また、 ハイノ°ス フ ィ ル夕 によ っ て、 皮膚の動きに と も なう 接触抵抗の変化や リ ー ド線の揺れな どによ り 生じ る 低周波の変動等の外乱を好適に除去されるため、 精度よ く 表面筋電図を計測して発火した運動単位を特定する こ とができる。
さ ら に、 発火した と特定した運動単位を筋肉分布モデ ルに重ねて表示するため、 よ り 具体的にその動作を認識 する こ とができる。
なお、 本実施形態では、 地面に対して図示しない水平 な台の上に被験者 Mの腕を載せ、 その被験者 Mの薬指の 張力発生時に筋長変化を伴わない等尺性収縮時における 表面筋電図を測定し、 これよ り 発火した運動単位を特定 しさ ら に特定した運動単位を画像化 して表示する場合を 一例に挙げて説明 したが、 薬指に限 らずその他の部位の 筋を計測し、 発火した運動単位を特定して画像化可能で ある こ とは言う までもない。
また、 筋長変化を伴わない等尺性収縮時に限らず、 筋 長変化を伴う ものであっ ても、 発火した運動単位を特定 して画像化する よ う に対応させる こ と もできる。
また、 本実施形態において、 ハイ パス フ ィ ル夕 のカ ツ トオフ周波数を 2 . 5 H z と したが、 カ ッ トオフ周波数 はこれに限られる ものではない。 また、 表面電極 1 を極間 1 0 m m及び 4 m mにて 5 X 4 のア レイ状に して配置したが、 配置する表面電極 1 の 個数や配置方法はこれに限られる ものではな く 、 使用す る表面電極 1 の形状や寸法等も任意に設定しても構わな い。
なお、 本実施形態において、 ディ スプレイ 1 0 5 に表 示した表面筋電図か ら計測者が独立成分と して推定され る ものを選択し、 前記ユーザイ ンタ フ ェイ ス 1 0 6 を利 用 して発火した と推定される運動単位を運動単位分離部 3 3 に入力する よ う に設定しているが、 こ の推定する動 作を活動筋肉表示装置本体 3 で自動化して特定してもよ い
その他、 各部の具体的構成についても上記実施形態に 限られる ものではな く 、 本発明の趣旨を逸脱しない範囲 で種々変形が可能である。 産業上の利用可能性
上述したよ う に、 本発明によれば、 複数の電極及び表 面筋電図計測部によっ て生体を侵襲する こ となく 表面筋 電図を計測する こ とができる と と もに、 運動単位分離部 及び運動単位位置推定部によっ て、 時間的 · 空間的に加 算された多数の M U A Pか ら活動した運動単位の 3 次元 位置を特定する こ とができ、 さ ら に、 特定した運動単位 を表示部が画像化するため、 生体における制御機構の解 明に非常に有用な活動筋肉表示装置を提供する こ とがで
0 ^
oz
Z0C600/Z00Zdf/X3d 966£請 OOZ OAV

Claims

請求の範囲
1 . 皮膚表面上に配置する複数の電極と、 こ の複数の電 極における皮膚表面上の表面筋電図を計測する表面筋電 図計測部と、 こ の表面筋電図計測部で計測した表面筋電 図に基づき活動した筋を構成する個々 の運動単位を推定 する運動単位分離部と、 こ の運動単位分離部で活動した と推定される運動単位か ら発火した運動単位の位置を推 定する運動単位位置推定部と、 こ の運動単位位置推定部 で推定した運動単位を画像化して表示する表示部と を具 備する活動筋肉表示装置。
2 . 前記運動単位分離部が、 多チャ ンネルブライ ン ドデ コ ンポルーシヨ ン法に基づき、 前記表面筋電図計測部で 計測した表面筋電図か ら所定の発火パター ンを示す個々 の運動単位を推定する こ と を特徴とする請求の範囲第 1 項記載の活動筋肉表示装置。
3 . 生理学的知見に基づく 運動単位の発火間隔の分布パ ター ンおよび表面筋電図波形を格納する運動単位発火パ ターン格納部を備え、 前記運動単位分離部が分離した各 電極のおける時系列信号と照合して, 一致する関係にあ る場合に, 運動単位と特定する こ と を特徴とする請求の 範囲第 1 項又は第 2 項記載の活動筋肉表示装置。
4 . 前記運動単位分離部で得た各運動単位に対応する電 極位置電位よ り , 前記運動単位位置推定部が、 その電位 を再現するよ う に静電場を与える偏微分方程式の逆問題 を解く こ と を特徴とする請求の範囲第 1 項、 第 2 項又は 第 3 項記載の活動筋肉表示装置。
5 . 前記運動単位分離部で得た各運動単位に対応する電 極位置電位よ り , 前記運動単位位置推定部が、 その電位 を再現するよ う にポアソ ン方程式か ら電流源を推定する こ と を特徴とする請求の範囲第 1 項、 第 2 項、 第 3 項又 は第 4 項記載の活動筋肉表示装置。
6 - 前記運動単位位置推定部が、 逆問題を解く ために、 電気的コ ンダク タ ンスがそれぞれ異なる生体内の脂肪、 骨、 筋肉等の分布、 配置をモデル化したコ ンダク タ ンス 分布モデルを格納する コ ンダク 夕 ンス分布モデル格納部 を備えた こ と を特徴とする請求の範囲第 1 項、 第 2 項、 第 3 項、 第 4 項、 第 5 項又は第 6 項記載の活動筋肉表示 装置。
7 . 前記運動単位位置推定部が、 逆問題を一意に解く た めに、 運動単位の脱分極モデルを格納する運動単位脱分 極モデル格納部を備えた こ とを特徴とする請求の範囲第 1 項、 第 2 項、 第 3 項、 第 4項、 第 5 項又は第 6 項記載 の活動筋肉表示装置。
8 . 前記複数の電極が、 ア レイ 状に並べて配置されたも のである こ と を特徴とする請求の範囲第 1 項、 第 2 項、 第 3 項、 第 4項、 第 5 項、 第 6 項又は第 7 項記載の活動 筋肉表示装置。
9 . 所定の周波数以上の周波数成分を有する信号を通過 させるハイ パス フ ィ ルタ を設け、 前記表面筋電図計測部 が計測する表面筋電図が、 このハイ パス フ ィ ルタ を通過 させたものである こ と を特徴とする請求の範囲第 1 項、 第 2 項、 第 3 項、 第 4項、 第 5 項、 第 6 項、 第 7 項又は 第 8 項記載の活動筋肉表示装置。
1 0 . 前記表面筋電図計測部で計測 した表面筋電図を、 平均値が 0 、 分散が 1 に正規化 している こ とを特徴とす る請求の範囲第 1 項、 第 2 項、 第 3 項、 第 4 項、 第 5 項 、 第 6 項、 第 7 項、 第 8 項又は第 9 項記載の活動筋肉表 示装置。
1 1 . 前記運動単位分離部が、 前記表面筋電図計測部で 計測する表面筋電図を所定の条件で学習 し、 この学習 し た学習データに基づき発火した筋を構成する個々 の運動 単位を推定する よ う に構成している こ と を特徴とする請 求の範囲第 1 項、 第 2 項、 第 3 項、 第 4 項、 第 5 項、 第 6 項、 第 7 項、 第 8 項、 第 9 項又は第 1 0 項記載の活動 筋肉表示装置。
1 2 . 運動単位を構成する筋繊維や運動ニューロ ンをモ デル化した筋肉分布モデルを格納する筋肉分布モデル格 納部を備え、 前記表示部が前記運動単位位置推定部で特 定した運動単位を前記筋肉分布モデルに重ねて表示する こ と を特徴とする請求の範囲第 1 項、 第 2 項、 第 3 項、 第 4 項、 第 5 項、 第 6 項、 第 7 項、 第 8 項、 第 9 項、 第 1 0 項又は第 1 1 項記載の活動筋肉表示装置。
1 3 . 表面筋電図の計測時に、 計測中の表面筋電図を画 像出力する計測監視部を設け、 こ の計測監視部に運動単 位以外と推定される表面筋電図が画像出力された際に、 前記表面筋電図計測部が計測を行わないよ う に構成して いる こ と を特徴とする請求の範囲第 1 項、 第 2 項、 第 3 項、 第 4項、 第 5 項、 第 6 項、 第 7 項、 第 8 項、 第 9 項 、 第 1 0 項、 第 1 1 項又は第 1 2 項記載の活動筋肉表示
PCT/JP2002/009302 2002-09-11 2002-09-11 活動筋肉表示装置 WO2004023996A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2002/009302 WO2004023996A1 (ja) 2002-09-11 2002-09-11 活動筋肉表示装置
JP2004535836A JP3831788B2 (ja) 2002-09-11 2002-09-11 活動筋肉表示装置
US10/527,087 US7409242B2 (en) 2002-09-11 2002-09-11 Active muscle display device
EP02807806A EP1537823A1 (en) 2002-09-11 2002-09-11 Active muscle display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2002/009302 WO2004023996A1 (ja) 2002-09-11 2002-09-11 活動筋肉表示装置

Publications (1)

Publication Number Publication Date
WO2004023996A1 true WO2004023996A1 (ja) 2004-03-25

Family

ID=31986087

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/009302 WO2004023996A1 (ja) 2002-09-11 2002-09-11 活動筋肉表示装置

Country Status (4)

Country Link
US (1) US7409242B2 (ja)
EP (1) EP1537823A1 (ja)
JP (1) JP3831788B2 (ja)
WO (1) WO2004023996A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1637076A1 (en) * 2004-09-16 2006-03-22 Altec, Inc. Sensor system for detecting and processing EMG signals
JP2013500108A (ja) * 2009-07-30 2013-01-07 ユニバーシティ・オブ・ケープ・タウン 非侵襲性深部筋肉筋電図検査法
JP2013244027A (ja) * 2012-05-23 2013-12-09 Hokkaido Research Organization 筋活動量計測装置
JP2018134189A (ja) * 2017-02-21 2018-08-30 国立大学法人電気通信大学 信号測定装置、及び信号測定方法

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090036792A1 (en) * 2005-09-12 2009-02-05 Deluca Carlo J Sensor system for detecting and processing EMG signals
US20070276281A1 (en) * 2006-05-09 2007-11-29 Mika Sarkela Monitoring of the state of the central nervous system of a subject
US8117047B1 (en) 2007-04-16 2012-02-14 Insight Diagnostics Inc. Healthcare provider organization
US9351659B2 (en) 2009-07-28 2016-05-31 Altec, Inc. Biomedical electrode configuration for suppressing movement artifact
US20130274583A1 (en) * 2010-11-15 2013-10-17 Sandy L. Heck Electrodes Adapted for Transmitting or Measuring Voltages Through Hair
US10042422B2 (en) 2013-11-12 2018-08-07 Thalmic Labs Inc. Systems, articles, and methods for capacitive electromyography sensors
US20150124566A1 (en) 2013-10-04 2015-05-07 Thalmic Labs Inc. Systems, articles and methods for wearable electronic devices employing contact sensors
US11921471B2 (en) 2013-08-16 2024-03-05 Meta Platforms Technologies, Llc Systems, articles, and methods for wearable devices having secondary power sources in links of a band for providing secondary power in addition to a primary power source
WO2015081113A1 (en) 2013-11-27 2015-06-04 Cezar Morun Systems, articles, and methods for electromyography sensors
RU2732344C2 (ru) * 2015-06-12 2020-09-15 Конинклейке Филипс Н.В. Система, регистратор и способ поверхностной электромиографии
US10687759B2 (en) 2018-05-29 2020-06-23 Facebook Technologies, Llc Shielding techniques for noise reduction in surface electromyography signal measurement and related systems and methods
US10409371B2 (en) 2016-07-25 2019-09-10 Ctrl-Labs Corporation Methods and apparatus for inferring user intent based on neuromuscular signals
US20190121306A1 (en) 2017-10-19 2019-04-25 Ctrl-Labs Corporation Systems and methods for identifying biological structures associated with neuromuscular source signals
US11337652B2 (en) 2016-07-25 2022-05-24 Facebook Technologies, Llc System and method for measuring the movements of articulated rigid bodies
US11216069B2 (en) 2018-05-08 2022-01-04 Facebook Technologies, Llc Systems and methods for improved speech recognition using neuromuscular information
US11179066B2 (en) * 2018-08-13 2021-11-23 Facebook Technologies, Llc Real-time spike detection and identification
US10990174B2 (en) 2016-07-25 2021-04-27 Facebook Technologies, Llc Methods and apparatus for predicting musculo-skeletal position information using wearable autonomous sensors
JP2018143353A (ja) * 2017-03-02 2018-09-20 Smk株式会社 生体用電極の誘導装置
JP2020528770A (ja) * 2017-06-05 2020-10-01 パウエル マンスフィールド, インコーポレイテッド 神経筋機能を評価するための膜貫通センサ
US11150730B1 (en) 2019-04-30 2021-10-19 Facebook Technologies, Llc Devices, systems, and methods for controlling computing devices via neuromuscular signals of users
US10937414B2 (en) 2018-05-08 2021-03-02 Facebook Technologies, Llc Systems and methods for text input using neuromuscular information
US11069148B2 (en) 2018-01-25 2021-07-20 Facebook Technologies, Llc Visualization of reconstructed handstate information
US11907423B2 (en) 2019-11-25 2024-02-20 Meta Platforms Technologies, Llc Systems and methods for contextualized interactions with an environment
US11961494B1 (en) 2019-03-29 2024-04-16 Meta Platforms Technologies, Llc Electromagnetic interference reduction in extended reality environments
US11493993B2 (en) 2019-09-04 2022-11-08 Meta Platforms Technologies, Llc Systems, methods, and interfaces for performing inputs based on neuromuscular control
US11481030B2 (en) 2019-03-29 2022-10-25 Meta Platforms Technologies, Llc Methods and apparatus for gesture detection and classification
US10592001B2 (en) 2018-05-08 2020-03-17 Facebook Technologies, Llc Systems and methods for improved speech recognition using neuromuscular information
CN112585600A (zh) 2018-06-14 2021-03-30 脸谱科技有限责任公司 使用神经肌肉标记进行用户识别和认证
WO2020018892A1 (en) 2018-07-19 2020-01-23 Ctrl-Labs Corporation Methods and apparatus for improved signal robustness for a wearable neuromuscular recording device
US10842407B2 (en) 2018-08-31 2020-11-24 Facebook Technologies, Llc Camera-guided interpretation of neuromuscular signals
CN112789577B (zh) 2018-09-20 2024-04-05 元平台技术有限公司 增强现实系统中的神经肌肉文本输入、书写和绘图
WO2020069181A1 (en) 2018-09-26 2020-04-02 Ctrl-Labs Corporation Neuromuscular control of physical objects in an environment
CN112822992A (zh) 2018-10-05 2021-05-18 脸谱科技有限责任公司 在增强现实环境中使用神经肌肉信号来提供与物理对象的增强交互
CN113423341A (zh) 2018-11-27 2021-09-21 脸谱科技有限责任公司 用于可穿戴电极传感器系统的自动校准的方法和装置
US10905383B2 (en) 2019-02-28 2021-02-02 Facebook Technologies, Llc Methods and apparatus for unsupervised one-shot machine learning for classification of human gestures and estimation of applied forces
KR102394769B1 (ko) * 2020-10-27 2022-05-06 플레이스비 주식회사 햅틱 컨트롤러와 근전도 센서를 이용한 햅틱 피드백 제공 시스템 및 방법
US11868531B1 (en) 2021-04-08 2024-01-09 Meta Platforms Technologies, Llc Wearable device providing for thumb-to-finger-based input gestures detected based on neuromuscular signals, and systems and methods of use thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7231254B2 (en) * 1998-08-05 2007-06-12 Bioneuronics Corporation Closed-loop feedback-driven neuromodulation
US7333850B2 (en) * 2004-05-28 2008-02-19 University Of Florida Research Foundation, Inc. Maternal-fetal monitoring system

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HIDEO NAKAMURA ET AL.: "Blind shingo bunri gijutsu hyomen kindenzu niyoru undo tan'i katsudo den'i keisoku eno oyo", BME, vol. 16, no. 5, 10 May 2002 (2002-05-10), pages 32 - 37, XP002961354 *
TAKAHIKO ARIMOTO ET AL.: "Blind deconvolution niyoru ta-channel hyomen kindenzu kara no tan'itsu undo tan'i dotei ni kansuru kenkyu", THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS GIJUTSU KENKYU HOKOKU, vol. 101, no. 736, 12 March 2002 (2002-03-12), pages 159 - 166, XP002961353 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1637076A1 (en) * 2004-09-16 2006-03-22 Altec, Inc. Sensor system for detecting and processing EMG signals
JP2013500108A (ja) * 2009-07-30 2013-01-07 ユニバーシティ・オブ・ケープ・タウン 非侵襲性深部筋肉筋電図検査法
JP2013244027A (ja) * 2012-05-23 2013-12-09 Hokkaido Research Organization 筋活動量計測装置
JP2018134189A (ja) * 2017-02-21 2018-08-30 国立大学法人電気通信大学 信号測定装置、及び信号測定方法

Also Published As

Publication number Publication date
US7409242B2 (en) 2008-08-05
JP3831788B2 (ja) 2006-10-11
EP1537823A1 (en) 2005-06-08
JPWO2004023996A1 (ja) 2006-01-05
US20060129057A1 (en) 2006-06-15

Similar Documents

Publication Publication Date Title
WO2004023996A1 (ja) 活動筋肉表示装置
JP4068763B2 (ja) 生体信号計測装置
US20070179396A1 (en) Method and System for Detecting and Classifying Facial Muscle Movements
JP7373555B2 (ja) Eeg信号を使用した運動機能の定量化
US20130245480A1 (en) Heart monitoring apparatus
WO2017059569A1 (zh) 起搏信号处理方法、系统和心电监护仪
US11058352B2 (en) Electrical stimulation facilitated symptom transference for empathic response
WO2018214523A1 (zh) 一种肌电信号采集方法及装置
KR20130092849A (ko) 개인화된 생체 신호 패턴을 이용한 생체 신호의 동잡음 제거 방법 및 장치
Medved et al. Kinesiological electromyography
JP7149613B2 (ja) リハビリテーション支援システム、脳波測定システムの制御方法、プログラム、及び非一時的記録媒体
Rantanen et al. Capacitive measurement of facial activity intensity
CN110418604A (zh) 用于检测电生理诱发电位变化的医疗系统和方法
Manoilov EEG eye-blinking artefacts power spectrum analysis
JP2012095905A (ja) 脳波計測システム、方法及びコンピュータプログラム
CN107708547A (zh) 表面肌电图系统、记录器和方法
Fraser et al. Biosignal quality analysis of surface EMG using a correlation coefficient test for normality
Kearney et al. Quantification of motion artifact in ECG electrode design
Bull et al. A system and method for online high-resolution mapping of gastric slow-wave activity
CN116473556A (zh) 一种基于多位点皮肤生理响应的情感计算方法及系统
WO2020139108A1 (ru) Способ проведения когнитивных исследований с использованием системы нейровизуализации и механизма обратной связи
WO2019078325A1 (ja) 脳波判定システム、脳波判定方法、プログラム、及び非一時的記録媒体
Wang et al. Assessing the time synchronisation of EEG systems
US20180092566A1 (en) Method for determining the perceptiveness of a subject
Cerutti In the spotlight: Biomedical signal processing—A well established discipline or a paradigm to promising integrated visions?

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SK TR

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2002807806

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2004535836

Country of ref document: JP

WWP Wipo information: published in national office

Ref document number: 2002807806

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2006129057

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10527087

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 10527087

Country of ref document: US