WO2004018667A1 - Peptides and drugs containing the same - Google Patents

Peptides and drugs containing the same Download PDF

Info

Publication number
WO2004018667A1
WO2004018667A1 PCT/JP2003/010459 JP0310459W WO2004018667A1 WO 2004018667 A1 WO2004018667 A1 WO 2004018667A1 JP 0310459 W JP0310459 W JP 0310459W WO 2004018667 A1 WO2004018667 A1 WO 2004018667A1
Authority
WO
WIPO (PCT)
Prior art keywords
peptide
gpc3
fmoc
cells
hla
Prior art date
Application number
PCT/JP2003/010459
Other languages
French (fr)
Japanese (ja)
Inventor
Yasuharu Nishimura
Tetsuya Nakatsura
Yusuke Nakamura
Original Assignee
Kirin Beer Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kirin Beer Kabushiki Kaisha filed Critical Kirin Beer Kabushiki Kaisha
Priority to AU2003254950A priority Critical patent/AU2003254950A1/en
Priority to JP2004530567A priority patent/JP4406607B2/en
Publication of WO2004018667A1 publication Critical patent/WO2004018667A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • C07K14/4701Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals not used
    • C07K14/4725Proteoglycans, e.g. aggreccan
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer
    • G01N33/57407Specifically defined cancers
    • G01N33/57438Specifically defined cancers of liver, pancreas or kidney

Definitions

  • the present invention relates to a novel peptide effective as a cancer vaccine, a medicament for treating and preventing a tumor containing the peptide, and a novel diagnostic agent for hepatocellular carcinoma.
  • HCC Primary hepatocellular carcinoma
  • AFP and PIVKA-II are well-known tumor markers for HCC.
  • SGBS Simpson-Golabi-Behmel syndrome
  • the clinical features of SGBS include distinct facial appearance, cleft palate, syndactyly, polydactyly, accessory breast, cystic and dysplastic kidneys, and congenital heart defects (Behmel, A. Hum. Genet. 67, 409-413 (1984); Garganta, CL and Bodurtha, JN, Am. J. Med. Genet. 44, 129-135 (1992); Golabi, M. and ⁇ Rosen, L. , Am. J. Med. Genet. 17, 345-358 (1984); Gurrieri, F. et al., Am. J. Med. Genet. 44, 136-137 (1992)).
  • GPC3 mutations have been reported to be point mutations or deletions of small genes containing some exons (Hughes-Benzie, RM et al., Am. J. Med. Genet. 66, 227). -234 (1996); Lindsay, S. et al., J. Med. Genet. 34, 480-483 (1997); Veugelers. M. et al., Hum. Mol. Genet. 9, 1321-1328 (2000); Xuan, JY et al., J. Med. Genet. 36, 57-58 (1999)).
  • SGBS is characterized by functional GPC3 protein deficiency and other genetic factors that produce phenotypic differences within and between families.
  • Hughes-Benzie, RM, et al., Am. J. Med. Genet. 66, 227-234 (1996) and studies of GPC3-deficient mice support this hypothesis.
  • Cano-Gauci, DF et al., J. Cell Biol. 146, 255-264 (1999) These mice have some of the abnormalities found in patients with SGBS, including overgrowth, cystic and dysplastic kidneys.
  • TL is expected to show cytotoxicity only against cancers that overexpress the antigen, and not show any side effects on normal tissues. From studies using Northern plot analysis, GP C
  • GPC3 has an inhibitory effect on cell growth and can induce apoptosis in certain types of tumor cells (Duenas Gonzales, A. et al., J. Cell Biol. 141,
  • GPC3 was not expressed in human breast cancer (Xiang, YY et al., Oncogene 20, 7408-7412 (2001)). These data suggest that GPC 3 may act as a negative regulator of cell proliferation in these cancers. That is, GPC3 expression is reduced during tumor progression in cancers arising from adult GPC3-positive tissues, and this reduction appears to play a role in the development of the malignant phenotype.
  • HS PG paran sulfate proteodalican
  • Glypican is a family of GPI-anchored cell-surface HSPGs, and this tissue-specific difference in the relationship between tumorigenesis and GPC3 expression levels indicates that GPC3 regulates growth and survival factors in different ways in each tissue It is presumed that it is because. GPC 3 appears to act as an oncofetal protein at least in these organs. In general, oncofetal proteins have not been found to play a significant role in tumor progression, but have been used as tumor markers or immunotherapeutic targets (Coggin,
  • HCC Despite various treatments for HCC, it has a poorer prognosis than other cancers and is one of the refractory cancers. This is due to the cirrhosis at the base of HCC, the poor liver function of the original patient, and the fact that treating one cancer causes it to come from another location. There is an urgent need for new treatment strategies. If immunotherapy targeting antigens that are specifically expressed in HCC could be developed, it could be a therapeutic method that effectively eliminates only cancer without damaging its own normal organs. It can also be a treatment that can be used for any terminally ill cancer patient whose liver function is too poor for other treatments. In Japan, it is said that there are more than 2 million hepatitis C infected people in the HCC reserve group.
  • AFP and PIVKA-II are known as tumor markers for HCC, but may not be detected in some patients or may be false-positive in patients with benign liver disease cirrhosis or chronic hepatitis. Diagnosis of HCC is considered difficult. Other useful tumor markers are needed for early diagnosis of HCC. Disclosure of the invention
  • the present inventors have identified Daribican 3 (GPC 3) as a novel oncofetal protein specifically overexpressed in human hepatocellular carcinoma based on cDNA microarray interpretation data, Novel peptides have been discovered that could be potential candidates for target antigens.
  • GPC3 Daribican 3
  • the present invention provides the following (1) to (18).
  • the second amino acid from the N-terminus is phenylalanine, tyrosine, The peptide according to the above (2), which is nin or tributophan.
  • a medicament for treating and / or preventing or treating a tumor comprising at least one peptide according to any one of the above (1) to (4).
  • a diagnostic agent for hepatocellular carcinoma comprising an antibody against GPC3.
  • a method for diagnosing HCC comprising contacting a sample with an antibody against GPC3.
  • the method according to (16) further comprising quantifying GPC3 in the sample.
  • FIG. 1 shows HCC-specific expression of GPC3 mRNA in adult tissues.
  • FIG. 2 shows the expression of mRNA of GPC 3 and ⁇ -actin (control) detected by RT-PCR in a human HCC cell line.
  • Lane 1 HepG2
  • Lane 2 Hep3B
  • Lane 3 PLC / PRF / 5
  • Lane 4 SK—Hep-1; Lane 5: HuH-7
  • FIG. 3 shows that PBMCs stimulated with GPC 3 peptide (peptides (pep) 1 to 12: SEQ ID NOs: 5 to 16) and further expanded were subjected to CTL using a 6 hr 51 Cr release assay. A part of the results obtained by examining the activity is shown. The value on the vertical axis indicates the specific cell lysis rate (%) calculated based on the average value of three assays.
  • HCC cell lines as HLA- A 24 + GPC 3 + + + in HepG2, using HLA- A 24+ GPC 3- Roh SK- Hep- 1, HLA one A 24- GPC 3 +++ of Hep3B and HuH- 7 , Patient 1, peptide 1,
  • FIG. 4 shows the presence of GPC3 protein in the culture supernatant of HepG2 using Western blot.
  • Lanes 2, 4, 6, and 8 20 ⁇ l of HepG2 culture supernatant after culturing for 6, 12, 24, and 48 hours
  • FIG. 5 shows the results of quantification by ELISA of GPC3 protein secreted into the culture supernatant of three types of HCC cell lines (HepG2, Hep 3B and SK-Hep-1).
  • the concentration of GPC 3 protein in the culture supernatant 1 m 1 after HepG2 cells 1 X 1 0 5 or 24 hours of culture was defined as lUZm l.
  • FIG. 6 shows detection of soluble GPC3 protein in serum of HC C patients by Western blot.
  • FIG. 7 shows the results of ELISA quantification of GPC3 protein in the sera of 28 HCC patients and 54 healthy donors (HD). 1.71 is the upper normal limit of soluble GPC3 protein in serum, defined as the mean of GPC3 protein in serum from 54 HDs + 3SD. BEST MODE FOR CARRYING OUT THE INVENTION
  • the present inventors used the method described in Okabe, H. et al. (Cancer Res. 61, 2129-2137 (2001)) to specifically overexpress human hepatocellular carcinoma based on cDNA microarrays.
  • Glypican 3 GPC3 was identified as a novel oncofetal protein expressed.
  • GPC3 was negative in cancers other than hepatocellular carcinoma, such as stomach, esophagus, lung, breast, pancreas, bile duct, and colon, and liver cirrhosis and chronic The results were confirmed to be negative for benign liver diseases such as hepatitis.
  • the present inventors have also confirmed that postoperative serum GPC 3 becomes negative in patients after surgical treatment for hepatocellular carcinoma.
  • the amino acid sequence of the human GPC3 protein is known, and is registered in, for example, GenBank's protein database as Accession No. NP 004475. Can be easily obtained.
  • the present inventors next considered that various proteins are presented in vivo on antigen-presenting cells after being decomposed into a peptide (nonapeptide) consisting of 9 amino acids.
  • a peptide nonapeptide
  • Selection of a peptide having a binding motif for HLA-A24 can be performed, for example, based on the method described in (J. Immunol., 152, 3913, 1994; J. Immunol. 155: 4307, 1994). .
  • peptides can be selected for HLA types other than HLA-A24.
  • various peptides and HLA molecules also called HLA antigens may be used using software recently available on the Internet, such as those described in Parker KC, J. Immunol. 152, 1994. Can be calculated in insilico.
  • the binding affinity with the HLA molecule can be determined by, for example, using the above-mentioned software.
  • BIMAS HLA Binding Prediction: http://bimas.dcrt.nih.gov/molbio/hla_bind/ , 152, 1994), or Nukaya, I., Int. J. Cancer, 80, 1999 and the like.
  • 9-mer and 10-mer peptides can be obtained by synthesizing a peptide from any position based on the entire amino acid sequence of the obtained GPC3 protein.
  • the peptide can be synthesized according to the method used in ordinary peptide chemistry. Synthetic methods commonly used include, for example, Peptide Synthesis, Interscience, New
  • LA class I molecules can be quantified and measured using a flow cytometer (for example, Immunol. Lett. 2002 Aug 1, 83 (1): 21-30; Immunogenetics, 44: 233-241,
  • the HLA molecule it is preferable to use the A24 type possessed by many Japanese (60%) in order to obtain effective results, and more preferably a subtype such as A * 2402. It is.
  • the type of HLA molecule in patients requiring treatment is determined in advance, and a peptide with high binding affinity to the HLA molecule or the ability to induce cytotoxic T cells (CTL) by antigen presentation can be appropriately selected. You can choose.
  • one or two amino acids may be substituted or added based on the amino acid sequence of a naturally occurring GPC tri-partial peptide. it can.
  • the sequence regularity of peptides presented to HLA molecules is already known (J. Immunol., 152, 3913, 1994; Imraunogenetics. 41). : 178, 1995; J. Immunol. 155: 4307, 1994), and the obtained peptide may be modified based on these regularities.
  • those with high HLA-A24 binding affinity have the amino acid at the N-terminus of the peptide replaced with phenylalanine, tyrosine, methionine or tributophane, or the C-terminal amino acid with phenylalanine.
  • Peptides substituted with leucine, isoleucine, tryptophan or methionine can also be suitably used.
  • the sequence of the peptide is identical to a part of the amino acid sequence of an endogenous or exogenous protein having another function, side effects such as an autoimmune disease may occur, or a specific substance Because of the possibility of causing allergic symptoms, it is preferable to perform a homology search using an available database to avoid a match with the amino acid sequence of another protein. Furthermore, if it is clear from the homology search that no peptide differs by one or two amino acids, the above amino acid sequence for enhancing the binding affinity to the HLA molecule and the ability to induce Z or CTL Does not cause such a problem.
  • a peptide having a high binding affinity to an HLA molecule is expected to be highly likely to be effective as a cancer vaccine, but a candidate selected as an index because it has a high binding affinity It is necessary to examine whether the peptide actually has the ability to induce CTL. Confirmation of CTL inducibility can be performed, for example, using antigen-presenting cells (eg, B-lymphocytes, macrophages, dendritic cells) containing HLA molecules Induces dendritic cells derived from human peripheral blood mononuclear cells, stimulated with peptides, and stimulated CD
  • antigen-presenting cells eg, B-lymphocytes, macrophages, dendritic cells
  • peptide-specific CTL can be derived from PBMC based on the method described in Nakatsura, T. et al. (Eur. J. Immunol. 32, 826-836 (2002)).
  • transgenic animals prepared to express human HLA molecules (for example, Hum. Immunol.
  • HLA class II restricted T (H) response BenMohamed L., Krishnan R., Longmate J., Auge C., Low L., Primus J., Diamond DJ.
  • the cytotoxic activity can be calculated from the radioactivity released from the target cell, for example, by radiolabeling the target cell with 5 ⁇ Cr or the like.
  • CTLs are produced in the presence of peptide-loaded antigen-presenting cells. Observation can be made by measuring spots visualized on the medium by the released IFN- ⁇ and anti-IFN- ⁇ monoclonal antibodies. .
  • non-peptides or decaptides selected from peptides having the amino acid sequences shown in SEQ ID NOs: 5 to 16 have particularly high CTL-inducing ability It became clear.
  • Trp-Tyr-Cys-Ser-Tyr-Cys-Gln-Gly-Leu SEQ ID NO: 10.
  • the present invention further provides a peptide in which one or two amino acids are substituted or added in the amino acid sequence shown in any of SEQ ID NOs: 5 to 16, and which has an ability to induce cytotoxic T cells. Substitution or addition of one or two amino acids may be capable of inducing CTL as long as there is no match with the amino acid sequence of another protein.
  • amino acid substitutions such as substitution of the second amino acid from the N-terminus with phenylalanine, tyrosine, methionine or tryptophan, and substitution of a C-terminal amino acid with phenylalanine, leucine, isoleucine, tryptophan or methionine are not allowed. This is a preferred example.
  • the above-mentioned peptide of the present invention can be used as one or a combination of two or more thereof as a cancer vaccine capable of inducing CTL in vivo.
  • the peptide is presented at a high density on HLA molecules of antigen-presenting cells, and CTLs that specifically react with the complex of the presented peptide and the HLA molecule are induced.
  • the offensive power against hepatocellular carcinoma cells to be targeted cells increases.
  • dendritic cells are removed from a subject and stimulated with the peptide of the present invention to obtain antigen-presenting cells loaded with the peptide of the present invention on the cell surface. It can induce CTLs and increase the attack power on target cells.
  • the present invention provides a medicament for treating a tumor or preventing the growth and metastasis of a tumor, which comprises one or more peptides of the present invention.
  • a medicament for treating a tumor or preventing the growth and metastasis of a tumor which comprises one or more peptides of the present invention.
  • peptide stimulation of antigen-presenting cells according to the present invention by the presence of high concentrations of peptide in to cells, the exchange of the peptide which is previously loaded into the cell Occurs and is easily performed. For this reason, the binding affinity with the HLA molecule needs to be higher than a certain level.
  • the medicament of the present invention may be directly administered with the peptide of the present invention alone, or may be administered as a pharmaceutical composition formulated by a commonly used pharmaceutical method.
  • a pharmaceutical composition formulated by a commonly used pharmaceutical method.
  • carriers, excipients and the like usually used for pharmaceuticals can be appropriately contained, and there is no particular limitation.
  • a medicament for treating and / or preventing hepatocellular carcinoma containing the peptide of the present invention as an active ingredient can be administered with an adjuvant so that cellular immunity can be effectively established, It can be administered together with other active ingredients such as anticancer agents, or can be administered in the form of particles.
  • an adjuvant those described in the literature (Clin. Microbiol. Rev., 7: 277-289, 1994) can be applied.
  • a ribosome preparation, a particulate preparation bonded to beads having a diameter of several ⁇ , a preparation bonded to a lipid, and the like can be considered.
  • oral administration intradermal administration, subcutaneous administration, intravenous injection and the like can be used, and systemic administration or local administration near a target tumor can be used.
  • the dose of the peptide of the present invention can be appropriately adjusted depending on the disease to be treated, the age and weight of the patient, the administration method, etc., but is usually 0.001 mg to; L000 mg, preferably 0.001 to 1000 mg, More preferably, the dose is 0.1 mg to: 10 mg, and it is preferable to administer it once every few days to several months. Those skilled in the art can appropriately select an appropriate dose.
  • the present invention provides an intracellular vesicle called exosome, which displays a complex of the peptide of the present invention and an HLA molecule on the surface.
  • Exosomes can be prepared, for example, using the methods described in detail in JP-A No. 11-151,073 and JP-A No. 2000-512,161. However, it is preferably prepared using antigen-presenting cells obtained from a subject to be treated and / or prevented.
  • the exosome of the present invention can be inoculated as a cancer vaccine in the same manner as the above-mentioned peptide of the present invention.
  • the HLA molecule must be of the same type as the HLA molecule of the subject in need of treatment and / or prevention.
  • HLA-A24 especially HLA-A * 2402.
  • the present invention also provides a method for inducing antigen-presenting cells using the peptide of the present invention.
  • dendritic cells After dendritic cells are derived from peripheral blood monocytes, they can be contacted (stimulated) with the peptide of the present invention in vitro or in vivo to induce antigen-presenting cells.
  • antigen-presenting cells loaded with the peptide of the present invention are induced in the subject.
  • the peptide of the present invention can be administered as a vaccine to a subject after in vitro loading the peptide of the present invention on the antigen-presenting cells.
  • the present invention also provides a cytotoxic T cell-inducing ability, which comprises introducing a gene encoding a partial peptide thereof containing the GPC3 protein or the peptide of the present invention into an antigen-presenting cell in vitro.
  • Methods for inducing high antigen presenting cells are provided.
  • Guidance The gene to be input may be in the form of DNA or RNA.
  • the method of introduction may be any of various methods usually used in this field, such as ribofusion, electroporation, and calcium phosphate method, and is not particularly limited. Specifically, for example, it is described in Cancer Res., 56: 5672, 1996; J. Immunol., 161: 5607, 1998; J. Exp.
  • the present invention further provides a method for inducing CTL using the above-described peptide of the present invention.
  • CTL is induced in the subject, and immunity targeting hepatocellular carcinoma cells is enhanced.
  • exogenous antigen-presenting cells and CD8-positive cells or peripheral blood mononuclear cells from a subject are contacted (stimulated) with the peptide of the present invention in vitro to induce CTL and then return to the subject. It can also be used for treatment.
  • the present invention further provides an isolated cytotoxic T cell induced using the peptide of the present invention.
  • the cytotoxic T cells induced based on stimulation by the antigen-presenting cells presenting the peptide of the present invention are preferably derived from a subject to be treated and / or prevented, alone or in the present invention. It can be administered for the purpose of antitumor effect together with other drugs including the peptide of the present invention, exosomes and the like.
  • the present invention further provides an antigen-presenting cell that presents a complex of an HLA molecule and a peptide of the present invention.
  • the antigen-presenting cells obtained by contacting the peptide of the present invention, or the GPC3 protein containing the peptide of the present invention, or a gene encoding a partial peptide thereof, are preferably targets for treatment and prevention or prevention. And can be administered alone or as a vaccine together with other drugs including the peptide of the present invention, exosomes, cytotoxic T cells and the like.
  • the present invention further provides a diagnostic agent for hepatocellular carcinoma, comprising an antibody against GPC3.
  • Antibodies to GPC3 may be either polyclonal or monoclonal antibodies, and can be prepared by methods known to those skilled in the art (for example, see “Shinsei Kagaku Jikken Kozai 1, Protein 1, 389-406, Tokyo Kagaku Dojin”). It is possible.
  • GPC 3 protein The amino acid sequence of the protein is known as described above, and can be produced using ordinary protein expression techniques based on the amino acid sequence, or a commercially available product (Santa Cruz, CA) can be used.
  • SDS-Out TM Sodium Dodecyl Sulfate Precipitation Reagent; purchased from PIERCE, Rockford, IL
  • the partial peptide of GPC3 can be produced by selecting an appropriate partial sequence from the amino acid sequence of GPC3 and using a general peptide synthesis technique.
  • a GPC3 protein or a partial peptide thereof is administered as a sensitizing antigen to animals such as rabbits, guinea pigs, mice, rats, hamsters, -birds, and monkeys.
  • Administration may be with an adjuvant (FIA or FCA) that promotes antibody production.
  • FFA or FCA adjuvant
  • Administration is usually performed every few weeks. Multiple immunizations can increase antibody titers.
  • antiserum can be obtained by collecting blood from the immunized animal.
  • a polyclonal antibody can be prepared by subjecting the anticoagulant to, for example, ammonium sulfate precipitation, fractionation by anion chromatography, and affinity purification using protein A or immobilized antigen.
  • a monoclonal antibody for example, an animal is immunized with the GPC3 protein or a partial peptide thereof in the same manner as described above, and after the final immunization, a spleen or lymph node is collected from the immunized animal.
  • Antibody-producing cells contained in the spleen or lymph nodes and myeloma cells are fused using polyethylene glycol or the like to prepare a hybridoma.
  • Cell fusion is basically performed by known methods, for example, the method of Kohler and Milstein et al. (Kohler. G. and Milstein, Methods Enzymol. (1981)
  • the obtained hybridomas are selected by culturing them in a normal selective culture medium, for example, a HAT culture medium (a culture medium containing hypoxanthine, aminopterin and thymidine). Culture in the above HAT culture solution is continued for a time sufficient for killing cells other than the target hybridoma (non-fused cells). Next, the desired hybridoma is screened, cultured, and a monoclonal antibody can be prepared from the culture supernatant.
  • a normal selective culture medium for example, a HAT culture medium (a culture medium containing hypoxanthine, aminopterin and thymidine).
  • the antibody of the present invention can be expressed by an expression vector containing an antibody gene by a genetic engineering technique. May be produced in a host transformed with-.
  • a recombinant antibody produced by cloning an antibody gene from a hybridoma into a suitable vector, introducing this into a host, and producing the same using a gene recombination technique can be used as a monoclonal antibody.
  • Vanda Thigh e, AM et al., Eur. J. Biochem. (1990) 192, 767-775, 1990 See, for example, Vanda Thigh e, AM et al., Eur. J. Biochem. (1990) 192, 767-775, 1990).
  • any expression system can be used, for example a eukaryotic or prokaryotic cell system.
  • Eukaryotic cells include, for example, established mammalian cell lines, insect cell lines, animal cells such as filamentous fungal cells and yeast cells, and prokaryotic cells include, for example, bacterial cells such as E. coli cells. Is mentioned.
  • the transformed host cells are cultured in vitro or in vivo to produce the desired antibody. Culture of the host cell is performed according to a known method.
  • the monoclonal antibody can be purified, for example, by precipitation with ammonium sulfate or fractionation by anion chromatography, or by affinity chromatography using protein A or immobilized antigen.
  • the separation and purification methods used for ordinary proteins may be used.For example, a chromatography column other than the above-mentioned affinity column, a filter, ultrafiltration, salting-out, dialysis, etc. may be appropriately selected. By combining them, antibodies can be separated and purified.
  • the antibody used in the present invention is not limited to the whole antibody molecule, and may be an antibody fragment or a modified product thereof as long as it binds to GPC3, and includes both bivalent antibodies and monovalent antibodies.
  • the antibody fragment Fab, F (ab ') 2, Fv, Fab / c having one Fab and complete Fc, or Fv of H chain or L chain were linked by an appropriate linker.
  • Single-chain Fv scFv
  • the antibody may recognize any epitope of GPC3.
  • the antibody is preferably a human antibody or a human antibody.
  • a human antibody is isolated from a mouse cell that produces an antibody against the GPC3 protein, and the H chain constant region is recombined into a human IgE H chain constant region gene. It can be prepared by introduction into mouse myeloma cells.
  • the human antibody binds the immunoglobulin gene to human. It can be prepared by immunizing the replaced mouse with GPC3 protein.
  • the antibody in the diagnostic agent of the present invention, can be used at, for example, but not limited to, a concentration of 1 ⁇ g / ml.
  • a diagnostically acceptable carrier or the like can be appropriately contained in the diagnostic agent, if necessary.
  • the present invention further provides a method for diagnosing hepatocellular carcinoma, which comprises contacting a sample with an antibody against GPC3.
  • the diagnostic method may further include quantifying GPC3 in the sample.
  • the sample includes serum, saliva, urine, and the like obtained from a subject who may be suffering from HCC, and is particularly preferably serum.
  • the contact between the sample and the above antibody may be performed by a method generally used in the art, and is not particularly limited. Diagnosis is, for example, after contact between the sample and the above antibody, the specific binding between the antibody and GPC3, which may be present in the sample, is determined using a fluorescent or luminescent substance, or a secondary antibody labeled with an enzyme This can be done by quantitative detection.
  • the reaction for diagnosis may be performed in a liquid phase such as a well, or may be performed on a solid support on which an antibody against GPC3 is immobilized.
  • the measured value is HCC-positive by comparing with a standard value prepared in advance using a normal sample without HCC or a sample known to be HCC. Can be determined.
  • it is preferable to set the cut-off value by measuring the amount of GPC3 in the serum of a large number of HCC patients and healthy persons.
  • the diagnostic method of the present invention can be used for diagnosing whether or not the subject has HCC, and can be performed over time to confirm the effect of treatment for HCC.
  • the present invention provides a kit for diagnosing HCC, comprising an antibody against GPC3.
  • the kit can include an antibody against GPC3, a secondary antibody, a standard sample for quantification, a buffer, and the like.
  • the present invention will be further described with reference to examples, but the present invention is not limited to these examples.
  • Example 1 Identification of GPC3 gene specifically overexpressed in HCC Profiling of gene expression by cDNA microarray was performed as previously reported (Okabe, H. et al., Cancer Res. 61, 2129-2137 (2001)). Primary HCC and corresponding non-cancerous liver tissue were obtained from 20 patients who underwent hepatectomy. Of these, 10 were positive for hepatitis B surface antigen, 10 were positive for hepatitis C virus (HCV), and none were infected with both HBV and HCV. HBV-positive and ⁇ HCV-positive, with significant differences in age, gender, degree of differentiation, vascular invasion, and tumor stage.
  • HCV hepatitis C virus
  • a “genome-wide” cDNA microarray containing 23,040 cDNAs selected from the UniGene database of the National Center for Biotechnology Information was generated. Comparison of expression profiles between HCC and corresponding non-cancerous liver tissues to search for genes that are specifically over-expressed in HCC, and as a result, are candidates for immunotherapy for HCC patients, possibly GP C3, which could be an ideal target, was identified.
  • the expression of GPC 3 niRNA in cancerous tissues was more than 5-fold higher than in non-cancerous tissues (FIG. 1). That is, GPC3 was overexpressed in most HC C and was not associated with hepatitis B virus (HBV) or HCV infection.
  • HBV hepatitis B virus
  • GPC3 mRNA was highly expressed in the placenta, fetal liver, fetal lung, and fetal kidney, and was low in most adult normal tissues (Figure 1). These data for GPC3 were consistent with those published based on Northern plotting studies (Zhu, ZW et al., Gut 48, 558-564 (2001); Hsu. HC et al., Cancer Res. 57, 5179-5184 (1997); Pellegrini, M. et al., Dev Dyn. 213, 431-439 (1998)). These results revealed that GPC3, like ⁇ -phytoprotein (AFP), is a novel carcinoembryonic antigen in HCC.
  • AFP ⁇ -phytoprotein
  • HCC cell lines Hep G2, Hep 3B, PLC / PRF / 5, and HuH-7 were obtained from the Medical Cell Resources Center, Institute of Aging and Medicine, Tohoku University.
  • SK-Hep-1 was provided by Dr. K. Itoh of Kurume University.
  • RT-PCR was performed according to a known method (for example, Nakatsura, T. et al., Biochem. Biophys. Res. Comraun. 281, 936-944 (2001)).
  • a GPC3 gene-specific PCR primer was designed to amplify a 939 bp fragment and was used with RT-P consisting of 30 amplification cycles at 94 ° C, 5 min initial transformation, and 58 ° C annealing temperature.
  • a CR reaction was performed.
  • the GP C 3 P CR primer sequence used was
  • Antisense 5'-CTGGTGCCCAGCACATGT-3, (SEQ ID NO: 2)
  • Antisense 5, -GGATCTTCATGAGGTAGTCAGTC-3 '(SEQ ID NO: 4).
  • Example 3 Induction of Tumor-Responsive CTL by Stimulating Peripheral Blood Mononuclear Cells (PBMC) Based on the prior art (Kubo, RT et al., J. Immunol. 152, 3913-3924 (1994)), HLA-A24 We searched for GPC3-derived peptides that are expected to bind to the molecule and synthesized and used 12 different peptides (Table 1). These peptides were synthesized using the Fffloc / PyBOP method (see Reference Examples 1 to 12 below) and purchased from biologica (Tokyo). The purity of the peptide was confirmed to exceed 95% in all cases by HP LC.
  • PBMC Peripheral Blood Mononuclear Cells
  • PBMC peripheral blood mononuclear cells
  • the method for inducing peptide-specific CTL from P BMC is based on the method reported previously (Nakatsura, T. et al., Eur. J. Immunol. 32,
  • the surface phenotype of CTL was examined by direct immunofluorescence staining using a FITC-conjugated anti-CD3, CD4, or CD8 monoclonal antibody (Nichirei, Tokyo). To determine effector cells and HLA restriction, 20 ⁇ g Zm1 of each anti-HLA—Class I
  • IgG2a anti-HLA-DR (H-DR-1, IgG2a), and anti-CD4 (Nu-Th / I, IgGl) monoclonal antibodies were added.
  • AA24 + GPC3 + showed strong cytotoxicity against HepG2. This cytotoxicity indicates peptide specificity, anti-HLA-class I, anti-CD8 or anti-H
  • Western blotting was performed as follows. Dissolve the sample in an appropriate volume of lysis buffer (1 50 mM NaC1, 50 mM Tris, pH 7.4, 1% Nonidet P_40, 1 mM sodium orthovanadate (Wako Pure Chemical Industries, Ltd.), 1 mM EDTA and protease inhibitor tablets (Amersham, Arlington Heights, Ill.). Lysate supernatants were electrophoresed on SDS-PAGE gels and transferred to nitrocellulose membranes (Bio-Rad, Hercules, CA).
  • the membrane was ligated against an anti-GPC3 antibody prepared against a recombinant protein corresponding to the amino acid GPC3303-464. ⁇ Incubate with a heron polyclonal antibody (Santa Cruz, California) and wash well with PBS. Peroxidase conjugation anti-Egret Ig, horseradish peroxidase-bound F (ab ') 2 fragment (from donkey ) Chemiluminescence detection was performed using (Amersham) and ECL kit (Amercham).
  • Anti-GPC was prepared by diluting a 4 ⁇ m-thick tissue sample section 1: 200 diluted in OCT embedding compound.
  • GPC 3 303-464 (Santa Cruz, CA) produced from E. coli as a 45 kDa tagged fusion protein for positive control and FluoReporter Mini-Biotin for biotinting of anti-glypican-3ansagi polyclonal antibody -XX
  • the antibody was added together with 3 antibodies, and incubated at room temperature for 2 hours. After washing three times with PBS, add HRP—Conjugate Streptavidin (END0GEN, Woburn) was added. After a 30 minute incubation, the plates were washed three times with PBS and TMB substrate solution (END0GEN) was added. An ELI SA — der (model 550, Bio-Rad) was used at 405 nm for analysis.
  • GPC3 is a GPI-anchored membrane protein and has been reported to be a secreted protein (Filmus J., Glycobiology 11, 19R-23R (2001)). Therefore, we next attempted to detect the secreted GPC3 protein.
  • a standard curve for quantifying GPC3 protein was evaluated.
  • the 1 X 1 0 5 or concentrations of GP C 3 protein in the culture supernatant 1 m 1 after 24 hours of culture the HepG2 cells was defined as 1 m 1.
  • the amount of GPC3 protein in the HepG2 culture supernatant was much higher than in Hep3B, whereas it was not detectable in SK-Hep-1 ( Figure 5).
  • We detected soluble GPC3 protein in the serum of HCC patients Fig. 6). Blood samples were collected from eighteen HCC patients, and patient profiles were collected from medical records to determine the clinical stage based on the UICC T-Wake Classification.
  • a band of 60 kDa GPC3 protein was detected in 20 ⁇ l of serum from patient 7 (Pt7, lane 3 in Figure 6), but serum from two other HCC patients and four healthy donors was not detected.
  • the serum levels of GPC3 protein in 28 HCC patients and 54 healthy donors (HD) were then assessed by ELISA ( Figure 7).
  • the mean of GPC3 protein in the HD serum of 54 patients was 0.75 U / ml and the standard deviation (SD) was 0.32. There was no difference in expression between males and females, and therefore weak expression of GPC3 in the ovaries was considered negligible for this system.
  • the mean for 28 HCC patients was 1,98 UZ ml.
  • Fmoc-Phe-0H Fmoc-Phe-0H Fmoc-Ser (tBu) -OH was subjected to random coupling to obtain a peptide-bound resin. Is the peptide a resin by reacting with the reagent shown in Step 6? It was cut off, filtered into cold methyl tart butyl ether (MTBE) and precipitated. The precipitated peptide was washed twice with cold MTBE and lyophilized under nitrogen. Table 3 Schedule A
  • Mass spectrometry of the main peak occupying 90% or more in area ratio was performed using Lasermat 2000 (Finnigan Mat, San Jose, Calif.) Using MALD! [-TOF method, and the theoretical value was [MH +] 1109.3. On the other hand, the measured value was 1109.9.
  • Fmoc-Ser (tBu) -OH, Fmoc-Pro-0H, Fmoc-Tyr (tBu) -OH, Fmoc-Asn (Trt) -OH, Fmoc-Asn (Trt) -OH, Fmoc-Lys (Boc) -OH , Fmoc-Phe-0H and Fmoc-Met-OH were sequentially bonded.
  • Fmoc-Leu-Wang resin was used as the starting resin as in [Reference Example 1].
  • Fmoc-Asp (Otbu) -OH, Fmoc-Thr (tBu) -0H, and Fmoc-Phe-OH were sequentially bonded.
  • Fmoc-Leu-Wang resin was used as the starting resin as in [Reference Example 1].
  • Fmoc-Ser (tBu) -0H, Fmoc-Cys (Trt) -0H, Fmoc-Tyr (tBu) -0H, and Fmoc-Trp (Boc) -OH were sequentially bonded.
  • Fmoc-Leu-Wang resin was used as the starting resin, Fmoc-Ser (tBu) -0H, Fraoc-Leu-0H, Fmoc-lie-0H, Fmoc-Tyr (tBu) -0H,
  • Fmoc-Glu Otbu
  • Fmoc-Arg Pbf
  • Fmoc-Trp Boc
  • Fmoc-Tyr tBu
  • Fmoc-Lys Boc
  • Fmoc-Leu-Wang resin was used as the starting resin as in [Reference Example 1].
  • Fmoc-Glu (Otbu) -OH, Fmoc-Glu (Otbu) -OH, Fmoc-Leu-0H, Fmoc-Ser (tBu) -OH, Fmoc-Leu_0H, Fmoc-Ile-0H, Fmoc- Tyr (tBu)- 0H and Fmoc-Glu (Otbu) -OH were sequentially bonded.
  • the measured value was 130.7.
  • Fmoc-Asp (Otbu) -0H, Fmoc-Tyr (tBu) -0H, and Fmoc-lie-OH were sequentially bonded.
  • Fmoc-lie-Wang resin as an open resin, Fmoc-Phe-0H, Fmoc-Leu-0H,
  • Fraoc-Tyr (tBu) -OH and Fmoc-Ala-OH were sequentially bonded.
  • the present inventors have identified 12 peptides from GPC3, an oncofetal protein, as target candidates for immunotherapy of HLA-A24 + HCC patients. Regardless of GPC3 overexpression in HCC patients, GPC3 expression is significantly lower in normal adult organs, except for the placenta, making GPC3 an ideal target for HCC immunotherapy It has been found.
  • the method of the present invention has been shown to be a very useful method for diagnosing whether or not the subject has HCC.
  • the present inventors have further identified a GPC3-derived peptide capable of preparing HLA-A24-restricted and HCC-reactive CTL.
  • the HLA-A24 allele is owned by 60% of all Japanese and 95% of its genotype is A * 2402.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Urology & Nephrology (AREA)
  • Medicinal Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Immunology (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Hematology (AREA)
  • Biochemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biotechnology (AREA)
  • Toxicology (AREA)
  • Biophysics (AREA)
  • Genetics & Genomics (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Hospice & Palliative Care (AREA)
  • Oncology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Zoology (AREA)
  • Cell Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Microbiology (AREA)
  • Food Science & Technology (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Peptides Or Proteins (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

It is intended to provide a novel and useful immunotherapy for HCC and a clinically useful diagnostic for hepatocellular carcinoma. More specifically speaking, a peptide comprising an amino acid sequence represented by any of SEQ ID NOS:5 to 16 from which an HLA-A24-restricted and HCC-reactive CTL can be prepared. It is also intended to provide a diagnostic for hepatocellular carcinoma which contains an antibody against GPC3.

Description

明 細 書 ぺプチド及ぴこれを含む医薬 技術分野  Description Peptides and pharmaceutical technology fields containing them
本発明は、 癌ワクチンとして有効な新規ペプチド、 当該ペプチドを含む腫瘍の 治療及び予防のための医薬、 並びに肝細胞癌の新規な診断剤に関する。 背景技術  The present invention relates to a novel peptide effective as a cancer vaccine, a medicament for treating and preventing a tumor containing the peptide, and a novel diagnostic agent for hepatocellular carcinoma. Background art
原発性肝細胞癌 (H C C ) は、 世界中で最も一般的な悪性疾患の一つである。 B型及ぴ C型肝炎の世界的な流行により、 アジアや欧州諸国における H C Cの発 生率は急激に上昇しており (Schafer, D. F.及び Sorrell, M. F. , Lancet 353, 1253-1257 (1999) )、 H C C感染から発病までの長い潜在期間を考慮すると今後 5 0年にわたってこの傾向が続くものと予想される。 病状の進んだ H C Cの予後は 芳しくなく、 新たな治療戦略が緊急に必要とされている。  Primary hepatocellular carcinoma (HCC) is one of the most common malignancies worldwide. Due to the worldwide outbreak of hepatitis B and C, the incidence of HCC in Asia and European countries is increasing rapidly (Schafer, DF and Sorrell, MF, Lancet 353, 1253-1257 (1999)). This trend is expected to continue over the next 50 years, given the long latency period from HCC infection to disease onset. The prognosis of advanced HCC is poor and new treatment strategies are urgently needed.
一方、 近年の分子生物学及び腫瘍免疫学の進展により、 腫瘍応答性細胞傷害性 Tリンパ球 ( C T L ) によつて認識される腫瘍抗原及び抗原性のあるぺプチドを コードする多数の遺伝子が同定されてきており、 抗原特異的腫瘍免疫療法の可能 性が高まってきている (Boon, T.及び van der Bruggen, P. , J. Exp. Med. 183, 725-729 (1996); Rosenberg, S. A. , J. Natl. Cancer Inst. 88, 1635-1644 (1996) )。 α—フヱトタンパク質 (A F P ) は、 正常組織では胎生期にのみ発現するが、 多くの H C Cにおいて発現が再活性化されることが報告されている (Fujiyama, S. ら, Oncology 62, 57-63 (2002) )。 またマウス及ぴヒ トの T細胞レパートリーは、 On the other hand, recent advances in molecular biology and tumor immunology have identified a number of genes encoding tumor antigens and antigenic peptides recognized by tumor-responsive cytotoxic T lymphocytes (CTLs). And the potential of antigen-specific tumor immunotherapy is increasing (Boon, T. and van der Bruggen, P., J. Exp. Med. 183, 725-729 (1996); Rosenberg, SA , J. Natl. Cancer Inst. 88, 1635-1644 (1996)). It has been reported that α-photoprotein (AFP) is expressed only in the fetal period in normal tissues, but its expression is reactivated in many HCCs (Fujiyama, S. et al., Oncology 62, 57-63). (2002)). The mouse and human T cell repertoires
MH Cクラス I分子により提示された A F P由来ぺプチドエピトープを認識でき る (Butterfield, L. H.ら, Cancer Res. 59, 3134-3142 ; Jr Vollmer, C M. ら,Recognize AFP-derived peptide epitopes presented by MHC class I molecules (Butterfield, L. H. et al., Cancer Res. 59, 3134-3142; Jr Vollmer, CM. Et al.,
Cancer Res. 59, 3064—3067 (1999) ; Butterfield, L. H. ら, J. Immunol. 166,Cancer Res. 59, 3064-3067 (1999); Butterfield, L. H. et al., J. Immunol. 166,
5300-5308 (2001) )。胎児の発達段階においてこの癌胎児性タンパク質に対して高 い血漿レベルで曝されているにも関わらず、 成熟 T細胞は A F Pに対して完全な 免疫寛容 (トレランス) を獲得することはなく、 A F P特異的な T細胞が末梢血 中に検出される。 すなわち、 癌胎児性タンパク質は免疫治療の標的となり得る。 また、 A F P及び PIVKA- II (Fujiyama, S.ら, Oncology 62, 57 - 63 (2002) ) は H C Cの周知の腫瘍マーカーである。 5300-5308 (2001)). Despite high plasma levels of exposure to this oncofetal protein during fetal development, mature T cells do not achieve full tolerance to AFP, Specific T cells are peripheral blood Detected during. Thus, oncofetal proteins may be targets for immunotherapy. AFP and PIVKA-II (Fujiyama, S. et al., Oncology 62, 57-63 (2002)) are well-known tumor markers for HCC.
更に、 研究者が遺伝子一発現プロファイルに関する包括的なデータを得ること を可能とする c D N Aマイクロアレイ技術が急速に発展している。 いくつかの研 究によって、 この技術が新規癌関連遺伝子の同定及び分子レベルにおけるヒ ト癌 の分類に有用であることが証明されている(Golub, T. R.ら, Science 286, 531-537 (1999); Alizadeh, A. A.ら, ature 403, 503-511 (2000); 0no, K.ら, Cancer Res. 60, 5007-5011 (2000); Kitahara, 0.ら, Cancer Res. 61, 3544-3549 (2001); Kihara, ら, Cancer Res. 61, 6474-6479 (2001) )。 本発明者等は先に、 23, 040 種の遺伝子を含むゲノムワイドの c D N Aマイクロアレイの使用によって、 H C Cの発生の際に発現が変化する遺伝子の同定を報告した。 そして 2 0種の原発性 In addition, cDNA microarray technology is rapidly evolving to enable researchers to obtain comprehensive data on gene expression profiles. Several studies have demonstrated that this technique is useful for identifying novel cancer-related genes and for classifying human cancers at the molecular level (Golub, TR et al., Science 286, 531-537 (1999)). Alizadeh, AA et al., Ature 403, 503-511 (2000); 0no, K. et al., Cancer Res. 60, 5007-5011 (2000); Kitahara, 0. et al., Cancer Res. 61, 3544-3549 (2001). Kihara, et al., Cancer Res. 61, 6474-6479 (2001)). The inventors have previously reported the identification of genes whose expression changes during the development of HCC by using a genome-wide cDNA microarray containing 23,040 genes. And 20 types of primary
H C Cにおけるこれらの遺伝子の発現プロファイルを検討した (0kabe, H. ら, Cancer Res. 61, 2129-2137 (2001) )。 The expression profiles of these genes in HCC were examined (0kabe, H. et al., Cancer Res. 61, 2129-2137 (2001)).
1 9 9 6年、 Pilia らは、 グリピカンファミリーのメンバーの 1種をコードす るグリピカン 3 (glypican-3 ; G P C 3 ) 遺伝子力 S、 Simpson- Golabi - Behmel 症 候群 (S G B S ) 患考において変異していることを報告した (Pilia, G.ら, Nat- Genet. 12, 241-247 (1996) )。 S G B Sは出生前後の過成長、 及ぴ女性キャリア における非常に軽い表現型から男性乳児の致死的症状までの幅広い臨床症状によ つて特徵付けられる X連鎖遺伝性疾患である(Neri, G.ら, Am. J. Med. Genet. 79, 279-283 (1998) )。 S G B Sの臨床的特徴としては、特徴的な顔貌(distinct facial appearance) , 口蓋裂、 合指、 多指、 副乳、 嚢胞性及び異形成腎、 先天性心欠陥等 が挙げられる (Behmel, A.ら, Hum. Genet. 67, 409-413 (1984); Garganta, C. L. 及ぴ Bodurtha, J. N. , Am. J. Med. Genet. 44, 129-135 (1992); Golabi, M.及 ぴ Rosen, L. , Am. J. Med. Genet. 17, 345—358 (1984); Gurrieri, F.ら, Am. J. Med. Genet. 44, 136-137 (1992) )。 G P C 3変異のほとんどは点突然変異または 幾つかのェク ソ ンを含む小さな遺伝子の欠失である と報告されている (Hughes-Benzie, R. M.ら, Am. J. Med. Genet. 66, 227 - 234 (1996); Lindsay, S. ら, J. Med. Genet. 34, 480 - 483 (1997) ; Veugelers. M.ら, Hum. Mol. Genet. 9, 1321-1328 (2000); Xuan, J. Y.ら, J. Med. Genet. 36, 57 - 58 (1999))。 また、 患者の表現型と変異の位置に相関性がないことから、 S GB Sは機能的 GP C 3 タンパク質の欠損と、 家系内及び家系間の表現型の差を生み出す他の遺伝的要因 によって引き起こされる可能性が挙げられており (Hughes - Benzie, R. M.ら, Am. J. Med. Genet. 66, 227-234 (1996))、 G P C 3欠損マウスの研究からも、 この仮説 に対する支持が得られている (Cano-Gauci, D. F.ら, J. Cell Biol. 146, 255-264 (1999))。 これらのマウスは S GB S患者に見られる、過成長、 嚢胞性及ぴ異形成 腎を含む異常のいくつかを有している。 In 1996, Pilia et al. Reported that glypican-3 (GPC3), a gene encoding one member of the glypican family, had a genetic power of S, and that the Simpson-Golabi-Behmel syndrome (SGBS) syndrome Mutations were reported (Pilia, G. et al., Nat-Genet. 12, 241-247 (1996)). SGBS is an X-linked hereditary disorder characterized by prenatal overgrowth and a wide range of clinical symptoms ranging from very mild phenotypes in female carriers to fatal symptoms in male infants (Neri, G. et al. Am. J. Med. Genet. 79, 279-283 (1998)). The clinical features of SGBS include distinct facial appearance, cleft palate, syndactyly, polydactyly, accessory breast, cystic and dysplastic kidneys, and congenital heart defects (Behmel, A. Hum. Genet. 67, 409-413 (1984); Garganta, CL and Bodurtha, JN, Am. J. Med. Genet. 44, 129-135 (1992); Golabi, M. and ぴ Rosen, L. , Am. J. Med. Genet. 17, 345-358 (1984); Gurrieri, F. et al., Am. J. Med. Genet. 44, 136-137 (1992)). Most of the GPC3 mutations have been reported to be point mutations or deletions of small genes containing some exons (Hughes-Benzie, RM et al., Am. J. Med. Genet. 66, 227). -234 (1996); Lindsay, S. et al., J. Med. Genet. 34, 480-483 (1997); Veugelers. M. et al., Hum. Mol. Genet. 9, 1321-1328 (2000); Xuan, JY et al., J. Med. Genet. 36, 57-58 (1999)). In addition, because of the lack of correlation between the patient's phenotype and the location of the mutation, SGBS is characterized by functional GPC3 protein deficiency and other genetic factors that produce phenotypic differences within and between families. (Hughes-Benzie, RM, et al., Am. J. Med. Genet. 66, 227-234 (1996)), and studies of GPC3-deficient mice support this hypothesis. (Cano-Gauci, DF et al., J. Cell Biol. 146, 255-264 (1999)). These mice have some of the abnormalities found in patients with SGBS, including overgrowth, cystic and dysplastic kidneys.
癌に特異的に過剰発現し、 種々の正常組織においては発現レベルが無視できる 抗原は、 免疫療法において理想的な標的である可能性がある。 こうした場合、 C Antigens that are specifically overexpressed in cancer and have negligible expression levels in various normal tissues may be ideal targets for immunotherapy. In these cases, C
T Lは抗原を過剰発現する癌に対してのみ細胞傷害性を示し、 正常な組織には副 作用を示さないと期待できる。 ノーザンプロット解析を用いた研究から、 GP CTL is expected to show cytotoxicity only against cancers that overexpress the antigen, and not show any side effects on normal tissues. From studies using Northern plot analysis, GP C
3 mRNAは HCC、 胎盤、 胎児肝臓、 胎児肺、 胎児腎臓で過剰発現しているこ とが報告されている (Zhu, Z. W.ら, Gut 48, 558-564 (2001); Hsu. H. C.ら, Cancer3 mRNA has been reported to be overexpressed in HCC, placenta, fetal liver, fetal lung, and fetal kidney (Zhu, ZW. Et al., Gut 48, 558-564 (2001); Hsu. H.C. et al., Cancer
Res. 57, 5179-5184 (1997); Pellegrini, M.ら, Dev Dyn. 213, 431—439 (1998))。 また、 GP C 3には細胞増殖の阻害作用があり、 ある種の腫瘍細胞においてァ ポトーシスを誘導し得るため (Duenas Gonzales, A. ら, J. Cell Biol. 141,Res. 57, 5179-5184 (1997); Pellegrini, M. et al., Dev Dyn. 213, 431-439 (1998)). In addition, GPC3 has an inhibitory effect on cell growth and can induce apoptosis in certain types of tumor cells (Duenas Gonzales, A. et al., J. Cell Biol. 141,
1407-1414 (1998); Cano-Gauci, D. F.ら, J. Cell Biol. 146, 255-264 (1999))、1407-1414 (1998); Cano-Gauci, DF et al., J. Cell Biol. 146, 255-264 (1999)),
GPC 3発現が種々の起源の腫瘍において発現が抑制されているという報告があ る。 Lin らは、 GP C 3は正常な卵巣で発現しているが、 ある種の卵巣癌細胞系 においては検出できないことを示した (Lin, H.ら, Cancer Res. 59, 807-810There are reports that GPC3 expression is suppressed in tumors of various origins. Lin et al. Have shown that GPC3 is expressed in normal ovaries but is not detectable in certain ovarian cancer cell lines (Lin, H. et al., Cancer Res. 59, 807-810).
(1999))。 GP C 3発現が見られない全てのケースにおいて、 コード領域における 変異はなく、 GPC 3プロモーターが過度にメチル化されており、 また脱メチル 化剤で処理することによって G PC 3発現は回復した。 更に、 GPC 3の異所性 発現は数種の卵巣癌細胞系においてコロニー形成活性を阻害することが報告され ている。 GP C 3と癌を関連付ける他のデータとしては、 正常なラット中皮細胞 と中皮腫細胞株との間のディファレンシャル m RNAディスプレイ研究から得ら れたものがある (Murthy, S.S.ら, Oncogene 19, 410-416 (2000))。 この研究に おいて、 GP C 3は腫瘍細胞株において絶えず発現が抑制されている.ことが見出 された。 更に、 同様の発現抑制は原発性ラット中皮腫及びヒ トの中皮腫由来の細 胞株においても見られている。 卵巣癌と同様に、 GP C 3コード配列中に変異は 見出されていないが、 ほとんどの細胞株で G P C 3プロモーター領域に異常なメ チル化が見られている。報告されているように(Duenas Gonzales, A.ら, J. Cell. Biol. 141, 1407-1414 (1998))、 中皮腫細胞株における G P C 3の異所性癸現は コロニー形成活性を阻害することが示された。 更に最近、 Xiang らは、 GPC 3 がヒ トの乳癌においても発現していないことを報告した (Xiang, Y.Y. ら, Oncogene 20, 7408-7412 (2001))。 これらのデータ力、ら、 GPC 3がこれらの癌 における細胞増殖の負の調節因子として作用し得ることが示唆される。すなわち、 GPC 3の発現は成人の G P C 3陽性組織から生じる癌における腫瘍の進行の間 に低下し、 この低下が悪性の表現型の発生において何らかの役割を果たしている ように居、われる。 (1999)). In all cases where there was no GPC3 expression, there was no mutation in the coding region, the GPC3 promoter was hypermethylated, and GPC3 expression was restored by treatment with a demethylating agent. Furthermore, ectopic expression of GPC3 has been reported to inhibit colony forming activity in several ovarian cancer cell lines. Other data linking GPC3 to cancer include those obtained from differential mRNA display studies between normal rat mesothelial cells and mesothelioma cell lines (Murthy, SS et al., Oncogene 1992). , 410-416 (2000)). In this study, GPC3 was found to be constantly down-regulated in tumor cell lines. Was done. Furthermore, similar suppression of expression has been observed in primary rat mesothelioma and cell lines derived from human mesothelioma. As in ovarian cancer, no mutations have been found in the GPC3 coding sequence, but most cell lines show abnormal methylation of the GPC3 promoter region. As reported (Duenas Gonzales, A. et al., J. Cell. Biol. 141, 1407-1414 (1998)), ectopic kissing of GPC3 in mesothelioma cell lines inhibits colony forming activity It was shown to be. More recently, Xiang et al. Reported that GPC3 was not expressed in human breast cancer (Xiang, YY et al., Oncogene 20, 7408-7412 (2001)). These data suggest that GPC 3 may act as a negative regulator of cell proliferation in these cancers. That is, GPC3 expression is reduced during tumor progression in cancers arising from adult GPC3-positive tissues, and this reduction appears to play a role in the development of the malignant phenotype.
反対に、 HCCの場合、 腫瘍は胎児においてのみ GP C 3を発現する肝臓組織 から生じ、 GP C 3発現は悪性への形質転換において再ぴ現れる傾向がある。 G Conversely, in the case of HCC, tumors arise from liver tissue that expresses GPC3 only in the fetus, and GPC3 expression tends to reappear in transformation to malignancy. G
P C 3の再発現がこれらの腫瘍の進行において重要であるか否かは明らかでない。 ここ数年の間に、 細胞表面へパラン硫酸プロテオダリカン (HS PG) が線維芽 細胞増殖因子 (FGF) 及び Wnt等のへパリン結合性成長因子の最適な活性の発 現に必要であることが明らかとなった (Yayon, A.ら, Cell 64, 841 - 848 (1991);It is not clear whether re-expression of PC3 is important in the progression of these tumors. Over the past few years, paran sulfate proteodalican (HS PG) has been required on the cell surface for the optimal expression of heparin-binding growth factors such as fibroblast growth factor (FGF) and Wnt. (Yayon, A. et al., Cell 64, 841-848 (1991);
Schlessinger, J.ら, Cell 83, 357-360 (1995))。 グリピカンは G P Iアンカー 型細胞表面 HSPGのファミリー あり、 腫瘍形成と GPC 3の発現レベルの関 係におけるこの組織特異的な差異は、 G P C 3が各組織ごとに異なった方法で成 長と生存因子を調節しているためではないかと推測される。 GPC 3は少なくと もこれらの臓器において癌胎児性タンパク質として働いているように思われる。 一般に、 癌胎児性タンパク質は腫瘍の進行において重要な役割を持つとはされて いないが、 腫瘍マーカーまたは免疫治療の標的として使用されてきた (Coggin,Schlessinger, J. et al., Cell 83, 357-360 (1995)). Glypican is a family of GPI-anchored cell-surface HSPGs, and this tissue-specific difference in the relationship between tumorigenesis and GPC3 expression levels indicates that GPC3 regulates growth and survival factors in different ways in each tissue It is presumed that it is because. GPC 3 appears to act as an oncofetal protein at least in these organs. In general, oncofetal proteins have not been found to play a significant role in tumor progression, but have been used as tumor markers or immunotherapeutic targets (Coggin,
J. H. Jr. , CRC Critical Reviews in Oncology/Hematology 5, 37 - 55 (1992);J. H. Jr., CRC Critical Reviews in Oncology / Hematology 5, 37-55 (1992);
Matsuura, H.及ぴ Hakomori S. -I. , Proc. Natl. Acad. Sci. USA. 82, 6517 - 6521Matsuura, H. and Hakomori S. -I., Proc. Natl. Acad. Sci. USA. 82, 6517-6521
(1985))。 GPC 3の癌胎児性挙動が臨床的用途に利用し得るか否力 このダリピ カンの再発現が HC Cの進行において重要であるか否かは、 更に研究の余地があ る。 (1985)). The Potential of the Oncofetal Behavior of GPC 3 to be Used for Clinical Use Whether or not this dalippican re-expression is important in the progression of HCC requires more research. You.
HC Cの治療法は様々なものがあるにも関わらず、他の癌に比べて予後が悪く、 難治性癌のひとつになっている。 HC Cのベースに肝硬変があり、 もともとの患 者の肝機能が悪いことや、 1個の癌を治療してもまた別の場所から癌が発生する という性質もその理由である。 早急かつ新たな治療戦略が要求されている。 HC Cに特異的に高発現している抗原を標的にした免疫療法を開発できれば、 自己の 正常臓器に障害を及ぼすことなく、 癌だけを有効に排除する治療法になる可能性 がある。 また、 どんな末期の癌患者でも、 肝機能が悪すぎて他の治療が行えない 患者にでも使用できる治療法になり得る。 また、 現在日本では HCC予備群であ る C型肝炎感染者が 200万人以上いるといわれている。 これらの感染者の HC C の予防に対してもこのような免疫療法は使用できる可能性がある。 HCCの腫瘍 マーカーとして AF P及び PIVKA - IIが知られているが、患者によっては検出され ない場合や、 良性肝疾患である肝硬変や慢性肝炎の患者で偽陽性となる場合があ り、 特に早期の HCCの診断は難しいとされている。 HCCの早期診断のために も他に有用な腫瘍マーカーが必要である。 発明の開示  Despite various treatments for HCC, it has a poorer prognosis than other cancers and is one of the refractory cancers. This is due to the cirrhosis at the base of HCC, the poor liver function of the original patient, and the fact that treating one cancer causes it to come from another location. There is an urgent need for new treatment strategies. If immunotherapy targeting antigens that are specifically expressed in HCC could be developed, it could be a therapeutic method that effectively eliminates only cancer without damaging its own normal organs. It can also be a treatment that can be used for any terminally ill cancer patient whose liver function is too poor for other treatments. In Japan, it is said that there are more than 2 million hepatitis C infected people in the HCC reserve group. Such immunotherapy could be used to prevent HC C in these infected individuals. AFP and PIVKA-II are known as tumor markers for HCC, but may not be detected in some patients or may be false-positive in patients with benign liver disease cirrhosis or chronic hepatitis. Diagnosis of HCC is considered difficult. Other useful tumor markers are needed for early diagnosis of HCC. Disclosure of the invention
本発明者等は、 cDNAマイクロアレイ解釈データに基づいて、 ヒ ト肝細胞癌 において特異的に過剰発現している新規な癌胎児性タンパク質としてダリビカン 3 (GPC 3) を同定し、 免疫治療のための標的抗原の潜在的な候補となり得る 新規なぺプチドを見出した。 次いで本発明者等は HCC患者血清中に可溶性 GP C 3タンパク質を検出し、 GPC 3は HCCの新たな腫瘍マーカーとなり得るこ とを明ら力にした。  The present inventors have identified Daribican 3 (GPC 3) as a novel oncofetal protein specifically overexpressed in human hepatocellular carcinoma based on cDNA microarray interpretation data, Novel peptides have been discovered that could be potential candidates for target antigens. We then detected soluble GPC3 protein in the serum of HCC patients and clarified that GPC3 could be a new tumor marker for HCC.
すなわち、 本発明は、 以下の (1) 〜 (1 8) を提供する。  That is, the present invention provides the following (1) to (18).
(1) 配列番号 5〜1 6のいずれかに示すアミノ酸配列からなるペプチド。 (1) A peptide consisting of the amino acid sequence shown in any one of SEQ ID NOs: 5 to 16.
(2) 配列番号 5〜1 6のいずれかに示すアミノ酸配列において 1個または 2個のァミノ酸が置換または付加されており、 細胞傷害性 T細胞の誘導能を有す るペプチド。 (2) A peptide having one or two amino acids substituted or added in the amino acid sequence shown in any of SEQ ID NOs: 5 to 16, and having an ability to induce cytotoxic T cells.
(3) N末端から 2番目のアミノ酸がフエ-ルァラニン、 チロシン、 メチォ ニンまたはトリブトファンである、 上記 (2) に記載のペプチド。 (3) The second amino acid from the N-terminus is phenylalanine, tyrosine, The peptide according to the above (2), which is nin or tributophan.
(4) C末端のアミノ酸がフエ二ルァラニン、 ロイシン、 イソロイシン、 ト リプトフアンまたはメチォニンである、 上記 (2) または (3) に記載のぺプチ ド、。  (4) The peptide according to the above (2) or (3), wherein the amino acid at the C-terminus is phenylalanine, leucine, isoleucine, tryptophan or methionine.
(5) 上記 (1) 〜 (4) のいずれかに記載のペプチドを 1種以上含む、 腫 瘍の治療及び Zまたは予防のための医薬。  (5) A medicament for treating and / or preventing or treating a tumor, comprising at least one peptide according to any one of the above (1) to (4).
(6) 上記 (1) 〜 (4) のいずれかに記載のペプチドと HL A分子とを含 む複合体を表面に提示しているェキソソーム。  (6) An exosome presenting on its surface a complex containing the peptide according to any of (1) to (4) above and an HLA molecule.
(7) HL A分子が HL A— A 24である、 上記 (6) に記載のェキソソー ム。  (7) The exosome according to (6), wherein the HLA molecule is HLA-A24.
(8) HLA分子が HL A— A* 2402である、 上記 (7) に記載のェキ ソソーム。  (8) The exosome according to (7), wherein the HLA molecule is HLA-A * 2402.
(9) 上記 (1) 〜 (4) のいずれかに記載のペプチドを用いて細胞傷害性 T細胞誘導能の高い抗原提示細胞を誘導する方法。  (9) A method for inducing antigen-presenting cells having high cytotoxic T cell inducing ability using the peptide according to any one of the above (1) to (4).
(1 0) グリピカン 3 (glypican- 3; GPC 3) タンパク質または上記 (1) 〜 (4) のいずれかに記載のペプチドを含むその部分ペプチドをコードする遺伝 子を抗原提示細胞に導入することを含む、 細胞傷害性 T細胞誘導能の高い抗原提 示細胞を誘導する方法。  (10) Introduction of a gene encoding a glypican-3 (glypican-3; GPC3) protein or a partial peptide thereof including the peptide according to any of (1) to (4) above into antigen-presenting cells. A method for inducing antigen presenting cells having high cytotoxic T cell inducing ability.
(1 1) 上記 (1) 〜 (4) のいずれかに記載のペプチドを用いて細胞傷害 性 T細胞を誘導する方法。  (11) A method for inducing cytotoxic T cells using the peptide according to any of (1) to (4).
(1 2) 上記 (1) 〜 (4) のいずれかに記載のペプチドを用いて誘導され る、 単離された細胞傷害性 T細胞。  (12) An isolated cytotoxic T cell induced by using the peptide according to any one of the above (1) to (4).
(1 3) HLA分子と上記 (1) 〜 (4) のいずれかに記載のペプチドとの 複合体を提示する抗原提示細胞。  (13) An antigen presenting cell that presents a complex of an HLA molecule and the peptide according to any of (1) to (4).
(14) 上記 (9) または (1 0) に記載の方法によって誘導される、 上記 (1 3) に記載の抗原提示細胞。  (14) The antigen-presenting cell according to (13), which is induced by the method according to (9) or (10).
(1 5) GPC 3に対する抗体を含む、 肝細胞癌 (HCC) の診断剤。  (15) A diagnostic agent for hepatocellular carcinoma (HCC), comprising an antibody against GPC3.
(1 6) サンプルと GP C 3に対する抗体を接触させることを含む、 HCC の診断方法。 (1 7) 更にサンプル中の GP C 3を定量することを含む、 上記 (1 6) に 記載の方法。 (16) A method for diagnosing HCC, comprising contacting a sample with an antibody against GPC3. (17) The method according to (16), further comprising quantifying GPC3 in the sample.
(1 8) G P C 3に対する抗体を含む、 HC Cの診断のためのキット。 本明細書は本願の優先権の基礎である日本国特許出願 2002-245831号の明細書 および/または図面に記載される内容を包含する。 図面の簡単な説明  (18) A kit for diagnosis of HC C, comprising an antibody against GP C3. This description includes part or all of the contents as disclosed in the description and / or drawings of Japanese Patent Application No. 2002-245831, which is a priority document of the present application. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 成人組織における GPC 3 mRNAの HC C特異的発現を示す。 FIG. 1 shows HCC-specific expression of GPC3 mRNA in adult tissues.
20例の HCC及ぴ種々の正常組織におけるヒ ト GPC 3 mRNAの発現の 相対比 (RR) を示す。 HCCにおける RRは各症例における腫瘍:非腫瘍の強 度比を示す。 正常組織における RRは正常各組織:正常肝臓の強度比を示す。 図 2は、 ヒ ト HCC細胞株において RT— P CRによって検出された GP C 3 及び β—ァクチン (対照) の mRNAの発現を示す。 The relative ratio (RR) of human GPC3 mRNA expression in 20 cases of HCC and various normal tissues is shown. The RR in HCC indicates the tumor: non-tumor strength ratio in each case. RR in normal tissue indicates the intensity ratio of each normal tissue: normal liver. FIG. 2 shows the expression of mRNA of GPC 3 and β-actin (control) detected by RT-PCR in a human HCC cell line.
レーン 1 : HepG2、 レーン 2 : Hep3B、 レーン 3 : PLC/PRF/5, Lane 1: HepG2, Lane 2: Hep3B, Lane 3: PLC / PRF / 5,
レーン 4 : SK— Hep - 1、 レーン 5 : HuH-7 Lane 4: SK—Hep-1; Lane 5: HuH-7
図 3は、 G P C 3ぺプチド (ぺプチド(pep) 1〜 1 2 :配列番号 5〜 1 6 ) で刺 激し、 更に増殖させた PBMCを、 6時間の51 C r放出アツセィを用いて CTL 活性について調べた結果の一部を示す。 縦軸の値は 3回のァッセィの平均値に基 づいて計算した特異的細胞溶解率 (%) を示す。 HCC細胞株として HLA— A 24 + G P C 3+ + +の HepG2、 HLA— A 24+ G P C 3—の SK— Hep— 1、 HLA 一 A 24— G P C 3 +++の Hep3B及び HuH- 7 を用い、患者 1に対してペプチド 1、FIG. 3 shows that PBMCs stimulated with GPC 3 peptide (peptides (pep) 1 to 12: SEQ ID NOs: 5 to 16) and further expanded were subjected to CTL using a 6 hr 51 Cr release assay. A part of the results obtained by examining the activity is shown. The value on the vertical axis indicates the specific cell lysis rate (%) calculated based on the average value of three assays. HCC cell lines as HLA- A 24 + GPC 3 + + + in HepG2, using HLA- A 24+ GPC 3- Roh SK- Hep- 1, HLA one A 24- GPC 3 +++ of Hep3B and HuH- 7 , Patient 1, peptide 1,
3、 7、 または 1 2で誘導した CTL、 患者 2に対してペプチド 5、 6、 1 0、 または 1 1で誘導した C T L、 患者 3に対してべプチド 2または 1 2で誘導した CTL、 患者 4に対してペプチド 1、 2、 3、 4、 7、 または 1 0で誘導した C T L、患者 5に対してぺプチド 1、 3、 4、 1 1、 または 1 2で誘導した C T L、 患者 6に対してぺプチド 6または 9で誘導した C T L、 患者 7に対してべプチドCTL induced with 3, 7, or 12; CTL induced with peptide 5, 6, 10, or 11 for patient 2, CTL induced with peptide 2 or 12 for patient 3, patient CTL induced with peptide 1, 2, 3, 4, 7, or 10 for 4; CTL induced with peptide 1, 3, 4, 11, or 12 for patient 5; for patient 6 CTL induced with peptides 6 or 9 vs. peptide 7 versus patient 7
4、 5、 6、 8、 9、 1 1、 または 1 2で誘導した CTL、 患者 8に対してぺプ チ ド 5 、 7、 または 1 0で誘導した C T Lの結果を示す。 尚、 横軸は Effector/Target比 (E/T比)、 すなわち癌細胞数に対する C T L数の比を示す。 図 4は、 ウェスタンブロッ トを用いて HepG2の培養上清における GP C 3タン パク質の存在を示す。 Shown are the results of CTLs induced with 4, 5, 6, 8, 9, 11, or 12 and CTLs induced with peptide 5, 7, or 10 for patient 8. The horizontal axis is Effector / Target ratio (E / T ratio), that is, the ratio of the number of CTLs to the number of cancer cells. FIG. 4 shows the presence of GPC3 protein in the culture supernatant of HepG2 using Western blot.
レーン 1、 3、 5、 及び 7 : 6、 1 2、 24、 及ぴ 48時間の培養後の HepG2細 胞 1 X 1 05個の溶解物 Lane 1, 3, 5, and 7: 6, 1 2, 24 , HepG2 cells 1 X 1 after culture及Pi 48 hours 0 five lysate
レーン 2、 4、 6、 及び 8 : 6、 1 2、 24、 及び 48時間の培養後の HepG2培 養上清 20 μ 1 Lanes 2, 4, 6, and 8: 20 μl of HepG2 culture supernatant after culturing for 6, 12, 24, and 48 hours
図 5は、 3種類の HCC細胞株 (HepG2、 Hep 3Bおよび SK- Hep- 1) の培養上清 中に分泌される G PC 3タンパク質の E L I S Aによる定量の結果を示す。 HepG2 細胞 1 X 1 05個の 24時間培養後の培養上清 1 m 1中の G P C 3タンパク質の 濃度を lUZm l と定義した。 FIG. 5 shows the results of quantification by ELISA of GPC3 protein secreted into the culture supernatant of three types of HCC cell lines (HepG2, Hep 3B and SK-Hep-1). The concentration of GPC 3 protein in the culture supernatant 1 m 1 after HepG2 cells 1 X 1 0 5 or 24 hours of culture was defined as lUZm l.
図 6は、 ウェスタンブロッ トによる HC C患者血清中の可溶性 GP C 3タンパ ク質の検出を示す。  FIG. 6 shows detection of soluble GPC3 protein in serum of HC C patients by Western blot.
図 7は、 HC C患者 28名及び健康なドナー (HD) 54名の血清中の G P C 3タンパク質の EL I S Aによる定量の結果を示す。 1.71は、 54名の HD由来 の血清中の GP C 3タンパク質の平均値 + 3 S Dとして規定される、 血清中の可 溶性 GP C 3タンパク質の正常上限の値である。 発明を実施するための最良の形態  FIG. 7 shows the results of ELISA quantification of GPC3 protein in the sera of 28 HCC patients and 54 healthy donors (HD). 1.71 is the upper normal limit of soluble GPC3 protein in serum, defined as the mean of GPC3 protein in serum from 54 HDs + 3SD. BEST MODE FOR CARRYING OUT THE INVENTION
本発明者等は、 Okabe, H.ら (Cancer Res. 61, 2129-2137 (2001)) に記載の方 法を用い、 c DN Aマイクロアレイに基づいてヒ ト肝細胞癌において特異的に過 剰発現している新規な癌胎児性タンパク質としてグリピカン 3 (GP C 3) を同 定した。 血清中の GP C 3を検出した結果では、 肝細胞癌以外の癌、 '例えば胃、 食道、 肺、 乳房、 すい臓、 胆管、 結腸等の癌では GPC 3は陰性であり、 また、 肝硬変、 慢性肝炎等の良性の肝疾患においても陰性であることを確認した。 更に 本発明者等は、 肝細胞癌の外科的治療後の患者において、 術後の血清中 GP C 3 が陰性になることも確認した。  The present inventors used the method described in Okabe, H. et al. (Cancer Res. 61, 2129-2137 (2001)) to specifically overexpress human hepatocellular carcinoma based on cDNA microarrays. Glypican 3 (GPC3) was identified as a novel oncofetal protein expressed. According to the results of detecting GPC3 in serum, GPC3 was negative in cancers other than hepatocellular carcinoma, such as stomach, esophagus, lung, breast, pancreas, bile duct, and colon, and liver cirrhosis and chronic The results were confirmed to be negative for benign liver diseases such as hepatitis. Furthermore, the present inventors have also confirmed that postoperative serum GPC 3 becomes negative in patients after surgical treatment for hepatocellular carcinoma.
ヒ ト G P C 3タンパク質のアミノ酸配列は公知であり、 例えば GenBankのタン パク質データベースに Accession No. NP 004475として登録されており、 当業者 であれば容易に入手することができる。 本発明者等は次に、 種々のタンパク質が in vivo において抗原提示細胞上に提示される場合に、 9個のアミノ酸からなる ペプチド (ノナペプチド) に分解されてから提示されることを考慮し、 日本人全 体の 6 0%を占めるHLA— A24に対する結合モチーフを有する GP C 3由来 の 9個のァミノ酸または 1 0個のァミノ酸からなる部分べプチドを合成した。 The amino acid sequence of the human GPC3 protein is known, and is registered in, for example, GenBank's protein database as Accession No. NP 004475. Can be easily obtained. The present inventors next considered that various proteins are presented in vivo on antigen-presenting cells after being decomposed into a peptide (nonapeptide) consisting of 9 amino acids. We synthesized partial amino acids consisting of 9 amino acids or 10 amino acids derived from GPC3 having a binding motif for HLA-A24, which accounts for 60% of the total human body.
HL A— A 24に対する結合モチーフを有するペプチドの選択は、 例えば (J. Immunol. , 152, 3913, 1994; J. Immunol. 155:4307, 1994) に記載の方法に基づ いて行うことができる。 HLA— A24以外の HL Aの型についても同様にぺプ チドを選択することが可能である。 あるいはまた、 最近インターネット上で利用 可能となっているソフトウェア、 例えば Parker K. C. , J. Immunol. 152, 1994 に記載されているもの等を用いて、 種々のペプチドと HLA分子 (HLA抗原と 呼ばれることもある)との結合親和性を insilicoで計算することもできる。尚、 H L A分子との結合親和性は、 例えば上記のソフ トウェアを利用できる BIMAS:HLA Binding Prediction: http://bimas.dcrt.nih.gov/molbio/hla_bind/ (Parker, K. C.ら, J. Immunol. , 152, 1994)、 あるいは Nukaya, I., Int. J. Cancer, 80, 1999等に記載の方法を用いて推定することができる。  Selection of a peptide having a binding motif for HLA-A24 can be performed, for example, based on the method described in (J. Immunol., 152, 3913, 1994; J. Immunol. 155: 4307, 1994). . Similarly, peptides can be selected for HLA types other than HLA-A24. Alternatively, various peptides and HLA molecules (also called HLA antigens) may be used using software recently available on the Internet, such as those described in Parker KC, J. Immunol. 152, 1994. Can be calculated in insilico. The binding affinity with the HLA molecule can be determined by, for example, using the above-mentioned software. BIMAS: HLA Binding Prediction: http://bimas.dcrt.nih.gov/molbio/hla_bind/ , 152, 1994), or Nukaya, I., Int. J. Cancer, 80, 1999 and the like.
9 - mer及ぴ 1 0 - merペプチドは、得られた G P C 3タンパク質の全アミノ酸配 列に基づいて、 任意の位置からのペプチドを合成して得ることができる。 ぺプチ ドの合成は、 通常のぺプチド化学において用いられる方法に準じて行うことがで きる。通常用レヽられる合成方法は、例えば、 Peptide Synthesis, Interscience, New 9-mer and 10-mer peptides can be obtained by synthesizing a peptide from any position based on the entire amino acid sequence of the obtained GPC3 protein. The peptide can be synthesized according to the method used in ordinary peptide chemistry. Synthetic methods commonly used include, for example, Peptide Synthesis, Interscience, New
York, 1966; The Proteins, Vol 2, Academic Press Inc. , New York, 1976; へ プチド合成、 丸善 (株)、 1975; ペプチド合成の基礎と実験、丸善(株)、 1985; 医 薬品の開発 続 第 14卷 *ペプチド合成、 広川書店、 1991等の文献や、 国際公 開 W099/67288号等の公報に記載されている。 H L A分子とぺプチドとの実際の結 合は、 TAP欠損 T 2あるいは RMA— S細胞株に当該 HL A遺伝子を発現させ たトランスフエクタントとぺプチドをィンキュベートし、 細胞表面に発現する HYork, 1966; The Proteins, Vol 2, Academic Press Inc., New York, 1976; Peptide synthesis, Maruzen Co., Ltd., 1975; Fundamentals and experiments of peptide synthesis, Maruzen Co., Ltd., 1985; Vol. 14 * It is described in literatures such as Peptide Synthesis, Hirokawa Shoten, 1991, and in gazettes such as International Publication W099 / 67288. The actual binding between the HLA molecule and the peptide is determined by incubating the peptide and the transfectant expressing the HLA gene in a TAP-deficient T2 or RMA-S cell line and expressing it on the cell surface.
L Aクラス I分子をフローサイトメ一ターで定量して測定することができる (例 えば Immunol. Lett. 2002 Aug 1, 83(1) :21— 30; Immunogenetics, 44: 233-241,LA class I molecules can be quantified and measured using a flow cytometer (for example, Immunol. Lett. 2002 Aug 1, 83 (1): 21-30; Immunogenetics, 44: 233-241,
1996; Nature 346:321 - 325, 1990を参照のこと)。 H L A分子としては、 日本人の多く (6 0 %) が保有している A 2 4型を用い ることが有効な結果を得るために好ましく、 更に好ましくは A * 2 4 0 2等のサ ブタイプである。 しかしながら、 臨床においては、 治療を必要とする患者の H L A分子の型を予め調べることにより、 これとの結合親和性、 あるいは抗原提示に よる細胞傷害性 T細胞 (C T L ) 誘導能の高いペプチドを適宜選択することがで きる。 更に、 結合親和性及ぴ C T L誘導能の高いペプチドを得るために、 天然に 存在する G P C 3部分ぺプチドのアミノ酸配列に基づいて 1個または 2個のアミ ノ酸の置換または付加を行うこともできる。 天然において提示されるぺプチド以 外にも、 既に H L A分子に結合して提示されるぺプチドの配列の規則性が知られ ているので (J. Immunol. , 152, 3913, 1994; Imraunogenetics. 41 : 178, 1995; J. Immunol. 155 : 4307, 1994)、 得られたペプチドに対してこれらの規則性に基づい た改変を行っても良い。 例えば、 H L A— A 2 4結合親和性の高いものはぺプチ ドの N末端から 2番目のアミノ酸をフエ二ルァラニン、 チロシン、 メチォニンま たはトリブトファンに置換したり、 C末端のアミノ酸をフエ二ルァラニン、 ロイ シン、 イソロイシン、 トリプトファンまたはメチォェンに置換したペプチドも好 適に使用することができる。 1996; Nature 346: 321-325, 1990). As the HLA molecule, it is preferable to use the A24 type possessed by many Japanese (60%) in order to obtain effective results, and more preferably a subtype such as A * 2402. It is. However, in the clinic, the type of HLA molecule in patients requiring treatment is determined in advance, and a peptide with high binding affinity to the HLA molecule or the ability to induce cytotoxic T cells (CTL) by antigen presentation can be appropriately selected. You can choose. Further, in order to obtain a peptide having a high binding affinity and a high CTL inducing ability, one or two amino acids may be substituted or added based on the amino acid sequence of a naturally occurring GPC tri-partial peptide. it can. In addition to peptides presented in nature, the sequence regularity of peptides presented to HLA molecules is already known (J. Immunol., 152, 3913, 1994; Imraunogenetics. 41). : 178, 1995; J. Immunol. 155: 4307, 1994), and the obtained peptide may be modified based on these regularities. For example, those with high HLA-A24 binding affinity have the amino acid at the N-terminus of the peptide replaced with phenylalanine, tyrosine, methionine or tributophane, or the C-terminal amino acid with phenylalanine. Peptides substituted with leucine, isoleucine, tryptophan or methionine can also be suitably used.
しかしながら、 ぺプチドの配列が他の機能を有する内在性または外来性のタン パク質のアミノ酸配列の一部と同一となる場合には、 自己免疫疾患等の副作用が 生じたり、 あるいは特定の物質に対するアレルギー症状を引き起こしたりする可 能性があるため、 利用可能なデータベースを用いてホモロジ一検索を行い、 他の タンパク質のアミノ酸配列と一致することを避けるのが好ましい。 更に、 ホモ口 ジー検索において、 アミノ酸が 1個または 2個異なるぺプチドも存在しないこと が明らかであれば、 H L A分子との結合親和性及ぴ Zまたは C T L誘導能を高め るための上記アミノ酸配列の改変もこのような問題を生じるおそれがない。  However, when the sequence of the peptide is identical to a part of the amino acid sequence of an endogenous or exogenous protein having another function, side effects such as an autoimmune disease may occur, or a specific substance Because of the possibility of causing allergic symptoms, it is preferable to perform a homology search using an available database to avoid a match with the amino acid sequence of another protein. Furthermore, if it is clear from the homology search that no peptide differs by one or two amino acids, the above amino acid sequence for enhancing the binding affinity to the HLA molecule and the ability to induce Z or CTL Does not cause such a problem.
上記のようにして H L A分子との結合親和性の高いぺプチドは、 癌ワクチンと して有効である可能性が高いことが予想されるが、 高い結合親和性を有すること を指標として選択した候補ペプチドについて、 実際に C T L誘導能を有するか否 かを検討することが必要である。 C T L誘導能の確認は、 例えば H L A分子を有 する抗原提示細胞 (例えば B—リンパ球、 マクロファージ、 樹状細胞)、 具体的に はヒ ト末梢血単核細胞由来の樹状細胞等を誘導し、 ペプチドで刺激した後に C DAs described above, a peptide having a high binding affinity to an HLA molecule is expected to be highly likely to be effective as a cancer vaccine, but a candidate selected as an index because it has a high binding affinity It is necessary to examine whether the peptide actually has the ability to induce CTL. Confirmation of CTL inducibility can be performed, for example, using antigen-presenting cells (eg, B-lymphocytes, macrophages, dendritic cells) containing HLA molecules Induces dendritic cells derived from human peripheral blood mononuclear cells, stimulated with peptides, and stimulated CD
8陽性細胞と混合し、標的細胞に対する細胞傷害活性を測定する。あるいはまた、 Nakatsura, T.ら (Eur. J. Immunol. 32, 826-836 (2002) ) に記載の方法に基づ いて P B M Cからペプチド特異的 C T Lを誘導することができる。 更に、 反応系 として、ヒ ト H L A分子を発現するように作製されたトランスジエニック動物(例 えば、 Hum. Immunol. 2000 Aug.;61 (8): 764-79 Related Articles, Books, Linkout Induction of CTL response by a minimal epitope vaccine in HLA A*0201/DR1 transgenic mice : dependence on HLA class II restricted T (H) response. , BenMohamed L. , Krishnan R. , Longmate J. , Auge C. , Low L. , Primus J. , Diamond DJ.に記載のもの) を用いることもできる。 細胞傷害活性は、 例えば標的細胞を5 X C r等で放射標識し、 標的細胞から遊離した放射活性から計算することができ る。 あるいはまた、 ペプチドを負荷した抗原提示細胞の存在下で C T Lが産生 . 放出した IFN- γ及び抗 IFN - γモノクローナル抗体によって培地上に可視化され るスポットを測定することによつて観察することもできる。 Mix with 8 positive cells and measure cytotoxic activity against target cells. Alternatively, peptide-specific CTL can be derived from PBMC based on the method described in Nakatsura, T. et al. (Eur. J. Immunol. 32, 826-836 (2002)). Furthermore, as a reaction system, transgenic animals prepared to express human HLA molecules (for example, Hum. Immunol. 2000 Aug .; 61 (8): 764-79 Related Articles, Books, Linkout Induction of CTL response by a minimal epitope vaccine in HLA A * 0201 / DR1 transgenic mice: dependence on HLA class II restricted T (H) response., BenMohamed L., Krishnan R., Longmate J., Auge C., Low L., Primus J., Diamond DJ.) Can also be used. The cytotoxic activity can be calculated from the radioactivity released from the target cell, for example, by radiolabeling the target cell with 5 × Cr or the like. Alternatively, CTLs are produced in the presence of peptide-loaded antigen-presenting cells. Observation can be made by measuring spots visualized on the medium by the released IFN-γ and anti-IFN-γ monoclonal antibodies. .
上記のようにしてペプチドの C T L誘導能を検討した結果、 以下の配列番号 5 〜 1 6に示すアミノ酸配列からなるぺプチドから選ばれるノナぺプチドまたはデ カぺプチドが特に高い C T L誘導能を有することが明らかとなった。  As a result of examining the CTL inducing ability of the peptide as described above, non-peptides or decaptides selected from peptides having the amino acid sequences shown in SEQ ID NOs: 5 to 16 have particularly high CTL-inducing ability It became clear.
Ser-Phe-Phe-Gln-Arg-Leu-Gln-Pro-Gly-Leu (配列番号 5 )  Ser-Phe-Phe-Gln-Arg-Leu-Gln-Pro-Gly-Leu (SEQ ID NO: 5)
Phe-Phe-Gln-Arg-Leu-Gln-Pro-Gly-Leu (配列番号 6 )  Phe-Phe-Gln-Arg-Leu-Gln-Pro-Gly-Leu (SEQ ID NO: 6)
Met-Phe-Lys-Asn-Asn-Tyr-Pro-Ser-Leu (配列番号 7 )  Met-Phe-Lys-Asn-Asn-Tyr-Pro-Ser-Leu (SEQ ID NO: 7)
Phe-Thr-Asp-Val-Ser-Leu-Tyr-Ile-Leu (配列番号 8 )  Phe-Thr-Asp-Val-Ser-Leu-Tyr-Ile-Leu (SEQ ID NO: 8)
Lys-Phe-Ser-Lys-Asp-Cys-Gly-Arg-Met-Leu (酉己歹幡号 9 )  Lys-Phe-Ser-Lys-Asp-Cys-Gly-Arg-Met-Leu
Trp-Tyr-Cys-Ser-Tyr-Cys-Gln-Gly-Leu (配列番号 1 0 )  Trp-Tyr-Cys-Ser-Tyr-Cys-Gln-Gly-Leu (SEQ ID NO: 10)
Ly s-Tyr-Trp-Ar g-Gl u-Tyr-11 e-Leu-S er-Leu (配列番号 1 1 )  Lys-Tyr-Trp-Ar g-Glu-Tyr-11 e-Leu-Ser-Leu (SEQ ID NO: 11)
Glu- Tyr- lie- Leu- Ser- Leu- Glu- Glu- Leu (配列番号 1 2 )  Glu- Tyr-lie- Leu- Ser- Leu- Glu- Glu- Leu (SEQ ID NO: 12)
Ile-Tyr-Asp-Met-Glu-Asn-Val-Leu-Leu (配列番号 1 3 )  Ile-Tyr-Asp-Met-Glu-Asn-Val-Leu-Leu (SEQ ID NO: 13)
Ala- Tyr- Tyr- Pro- Glu- Asp- Leu- Phe- lie (配列番号 1 4 )  Ala- Tyr- Tyr- Pro- Glu- Asp- Leu- Phe-lie (SEQ ID NO: 14)
Phe-Tyr-Ser-Ala-Leu-Pro-Gly-Tyr-Ile (配列番号 1 5 )  Phe-Tyr-Ser-Ala-Leu-Pro-Gly-Tyr-Ile (SEQ ID NO: 15)
Arg-Phe-Leu-Ala-Glu-Leu-Ala-Tyr-Asp-Leu (配歹 (I番号 1 6 ) 本発明は更に、 配列番号 5〜1 6のいずれかに示すアミノ酸配列において 1個 または 2個のアミノ酸が置換または付加されており、 細胞傷害性 T細胞の誘導能 を有するぺプチドも提供する。 1個または 2個のアミノ酸の置換または付加は、 他のタンパク質のアミノ酸配列との一致がない限りにおいて、 C T L誘導能を有 し得る。 特に、 アミノ酸の置換として、 N末端から 2番目のアミノ酸のフエニル ァラニン、 チロシン、 メチォニンまたはトリプトファンへの置換、 C末端のアミ ノ酸のフエ二ルァラニン、 ロイシン、 イソロイシン、 トリプトファンまたはメチ ォニンへの置換は好適な例である。 Arg-Phe-Leu-Ala-Glu-Leu-Ala-Tyr-Asp-Leu (system (I number 16) The present invention further provides a peptide in which one or two amino acids are substituted or added in the amino acid sequence shown in any of SEQ ID NOs: 5 to 16, and which has an ability to induce cytotoxic T cells. Substitution or addition of one or two amino acids may be capable of inducing CTL as long as there is no match with the amino acid sequence of another protein. In particular, amino acid substitutions such as substitution of the second amino acid from the N-terminus with phenylalanine, tyrosine, methionine or tryptophan, and substitution of a C-terminal amino acid with phenylalanine, leucine, isoleucine, tryptophan or methionine are not allowed. This is a preferred example.
上記の本発明のペプチドは、 1種または 2種以上の組み合わせとして、 生体内 で C T Lを誘導し得る癌ワクチンとして使用することができる。 本発明のぺプチ ドの投与により、抗原提示細胞の H L A分子に当該ぺプチドが高密度に提示され、 提示されたぺプチドと H L A分子との複合体に対して特異的に反応する C T Lが 誘導され、標的細胞となるべき肝細胞癌細胞に対する攻撃力が高まる。あるいは、 被験者から樹状細胞を取り出して本発明のぺプチドで刺激することにより、 細胞 表面に本発明のぺプチドを負荷した抗原提示細胞が得られ、 これを再度被験者に 投与することで被験者において C T Lを誘導し、 標的細胞に対する攻撃力を高め ることができる。  The above-mentioned peptide of the present invention can be used as one or a combination of two or more thereof as a cancer vaccine capable of inducing CTL in vivo. By administration of the peptide of the present invention, the peptide is presented at a high density on HLA molecules of antigen-presenting cells, and CTLs that specifically react with the complex of the presented peptide and the HLA molecule are induced. As a result, the offensive power against hepatocellular carcinoma cells to be targeted cells increases. Alternatively, dendritic cells are removed from a subject and stimulated with the peptide of the present invention to obtain antigen-presenting cells loaded with the peptide of the present invention on the cell surface. It can induce CTLs and increase the attack power on target cells.
すなわち、 本発明は、 本発明のペプチドを 1種以上含む、 腫瘍の治療または腫 瘍の増殖 ·転移等の予防のための医薬を提供するものである。 尚、 in vivo 及ぴ in vitroにおいて、 本発明のペプチドによる抗原提示細胞の刺激は、 細胞に対し て高濃度のぺプチドを存在させることによって、 当該細胞に予め負荷されている ペプチドとの交換が生じ、 容易に行われる。 このため、 H L A分子との結合親和 性はある程度以上高いことが必要とされる。 That is, the present invention provides a medicament for treating a tumor or preventing the growth and metastasis of a tumor, which comprises one or more peptides of the present invention. Incidentally, in i n vivo及Pi in vitro, peptide stimulation of antigen-presenting cells according to the present invention, by the presence of high concentrations of peptide in to cells, the exchange of the peptide which is previously loaded into the cell Occurs and is easily performed. For this reason, the binding affinity with the HLA molecule needs to be higher than a certain level.
本発明の医薬は、 本発明のペプチドを単独で直接投与しても良いが、 通常用い られる製剤学的方法によって製剤化した医薬組成物として投与しても良い。 その 場合、 本発明のペプチドの他に、 通常医薬に用いられる担体、 賦形剤等を適宜含 むことができ、 特に限定されるものではない。  The medicament of the present invention may be directly administered with the peptide of the present invention alone, or may be administered as a pharmaceutical composition formulated by a commonly used pharmaceutical method. In that case, in addition to the peptide of the present invention, carriers, excipients and the like usually used for pharmaceuticals can be appropriately contained, and there is no particular limitation.
本発明のぺプチドを有効成分とする肝細胞癌の治療及び/または予防のための 医薬は、 細胞性免疫が効果的に成立するようにアジュバントと共に投与したり、 他の抗癌剤等の有効成分と共に投与したり、 また粒子状の剤型にして投与するこ とができる。 アジュバントとしては、 文献 (Clin. Microbiol. Rev. , 7 : 277 - 289, 1994) に記載のものなどが応用可能である。 また、 リボソーム製剤、 直径数 μ πι のビーズに結合させた粒子状の製剤、 リピッドを結合させた製剤なども考えられ る。 投与方法としては、 経口投与、 皮内投与、 皮下投与、 静脈注射などが利用で き、 全身投与、 あるいは目的となる腫瘍の近傍に局所投与しても良い。 本発明の ペプチドの投与量は、 治療すべき疾患、 患者の年齢、 体重、 投与方法等により適 宜調整することができるが、 通常 0. OOlmg〜; L000mg、 好ましくは 0. 001mg〜1000 mg、 より好ましくは 0. 1 mg〜: 10 mgであり、 数日ないし数月に 1回投与するのが好 ましい。当業者であれば、 適当な投与量を適宜選択することが可能である。 A medicament for treating and / or preventing hepatocellular carcinoma containing the peptide of the present invention as an active ingredient can be administered with an adjuvant so that cellular immunity can be effectively established, It can be administered together with other active ingredients such as anticancer agents, or can be administered in the form of particles. As the adjuvant, those described in the literature (Clin. Microbiol. Rev., 7: 277-289, 1994) can be applied. Also, a ribosome preparation, a particulate preparation bonded to beads having a diameter of several μπι, a preparation bonded to a lipid, and the like can be considered. As an administration method, oral administration, intradermal administration, subcutaneous administration, intravenous injection and the like can be used, and systemic administration or local administration near a target tumor can be used. The dose of the peptide of the present invention can be appropriately adjusted depending on the disease to be treated, the age and weight of the patient, the administration method, etc., but is usually 0.001 mg to; L000 mg, preferably 0.001 to 1000 mg, More preferably, the dose is 0.1 mg to: 10 mg, and it is preferable to administer it once every few days to several months. Those skilled in the art can appropriately select an appropriate dose.
あるいはまた、 本発明は、 本発明のペプチドと H L A分子との複合体を表面に 提示している、 ェキソソームと呼ばれる細胞内小胞を提供する。 ェキソソームの 調製は、 例えば特表平 1 1一 5 1 0 5 0 7号、 及び特表 2 0 0 0— 5 1 2 1 6 1 号に詳細に記載されている方法を用いて行うことができるが、 好ましくは治療及 ぴ //または予防の対象となる被験者から得た抗原提示細胞を用いて調製する。 本 発明のェキソソームは、 上記本発明のぺプチドと同様に癌ワクチンとして接種す ることができる。  Alternatively, the present invention provides an intracellular vesicle called exosome, which displays a complex of the peptide of the present invention and an HLA molecule on the surface. Exosomes can be prepared, for example, using the methods described in detail in JP-A No. 11-151,073 and JP-A No. 2000-512,161. However, it is preferably prepared using antigen-presenting cells obtained from a subject to be treated and / or prevented. The exosome of the present invention can be inoculated as a cancer vaccine in the same manner as the above-mentioned peptide of the present invention.
H L A分子としては、 治療及び/または予防を必要とする被験者の H L A分子 と同じ型のものであることが必要である。 例えば、 日本人の場合には H L A— A 2 4、 特に H L A— A * 2 4 0 2とすると好適であることが多い。  The HLA molecule must be of the same type as the HLA molecule of the subject in need of treatment and / or prevention. For example, in the case of Japanese, it is often preferable to set HLA-A24, especially HLA-A * 2402.
本発明はまた、本発明のペプチドを用いた抗原提示細胞の誘導方法も提供する。 樹状細胞を末梢血単球から誘導した後、 in vitroまたは in vivoで本発明のぺプ チドと接触 (刺激) させ、 抗原提示細胞を誘導することができる。 本発明のぺプ チドを被験者に投与した場合、 被験者の体内で本発明のぺプチドを負荷した抗原 提示細胞が誘導される。 あるいは、 抗原提示細胞に本発明のペプチドを in vitro で負荷した後に被験者にワクチンとして投与することもできる。  The present invention also provides a method for inducing antigen-presenting cells using the peptide of the present invention. After dendritic cells are derived from peripheral blood monocytes, they can be contacted (stimulated) with the peptide of the present invention in vitro or in vivo to induce antigen-presenting cells. When the peptide of the present invention is administered to a subject, antigen-presenting cells loaded with the peptide of the present invention are induced in the subject. Alternatively, the peptide of the present invention can be administered as a vaccine to a subject after in vitro loading the peptide of the present invention on the antigen-presenting cells.
本発明はまた、 G P C 3タンパク質または上記本発明のペプチドを含む、 その 部分べプチドをコ一ドする遺伝子を in vitroで抗原提示細胞に導入することを含 む、 細胞傷害性 T細胞誘導能の高い抗原提示細胞を誘導する方法を提供する。 導 入する遺伝子は D N Aの形態であっても R N Aの形態であっても良い。 導入の方 法は当分野において通常行われるリボフヱクシヨン、 エレク トロポレーション、 リン酸カルシウム法等の種々の方法を用いれば良く、特に限定するものではない。 具体的には、 例えば Cancer Res., 56 : 5672, 1996; J. Immunol. , 161 : 5607, 1998; J. Exp. Med. , 184 : 465, 1996; 特表 2000 - 509281号に記载のようにして行うこと ができる。 遺伝子を抗原提示細胞に導入することによって、 当該遺伝子は細胞中 で転写、 翻訳等の処理の後、 得られたタンパク質が H L Aクラス Iまたはクラス IIのプロセッシング及び提示経路を経て、 部分ぺプチドが提示される。 The present invention also provides a cytotoxic T cell-inducing ability, which comprises introducing a gene encoding a partial peptide thereof containing the GPC3 protein or the peptide of the present invention into an antigen-presenting cell in vitro. Methods for inducing high antigen presenting cells are provided. Guidance The gene to be input may be in the form of DNA or RNA. The method of introduction may be any of various methods usually used in this field, such as ribofusion, electroporation, and calcium phosphate method, and is not particularly limited. Specifically, for example, it is described in Cancer Res., 56: 5672, 1996; J. Immunol., 161: 5607, 1998; J. Exp. Med., 184: 465, 1996; It can be done in this way. By introducing a gene into an antigen-presenting cell, the gene is subjected to transcription, translation, and other processing in the cell, and the resulting protein undergoes HLA class I or class II processing and presentation, and a partial peptide is displayed. Is done.
本発明は更に、 上記本発明のぺプチドを用いて C T Lを誘導する方法を提供す る。 本発明のペプチドを被験者に投与した場合、 被験者の体内で C T Lが誘導さ れ、 肝細胞癌細胞を標的とした免疫力が増強される。 あるいは、 被験者由来の抗 原提示細胞及び C D 8陽性細胞、または末梢血単核球を in vitroで本発明のぺプ チドと接触 (刺激) させ、 C T Lを誘導してから被験者にもどす ex vivoの治療 方法にも用いることができる。  The present invention further provides a method for inducing CTL using the above-described peptide of the present invention. When the peptide of the present invention is administered to a subject, CTL is induced in the subject, and immunity targeting hepatocellular carcinoma cells is enhanced. Alternatively, exogenous antigen-presenting cells and CD8-positive cells or peripheral blood mononuclear cells from a subject are contacted (stimulated) with the peptide of the present invention in vitro to induce CTL and then return to the subject. It can also be used for treatment.
本発明は更に、 本発明のペプチドを用いて誘導される、 単離された細胞傷害性 T細胞を提供する。 本発明のぺプチドを提示した抗原提示細胞による刺激に基づ いて誘導された細胞傷害性 T細胞は、 好ましくは治療及び/または予防の対象で ある被験者由来のものであり、 単独、 または、 本発明のペプチド、 ェキソソーム 等を含む、 他の医薬と共に抗腫瘍効果を目的として投与することができる。  The present invention further provides an isolated cytotoxic T cell induced using the peptide of the present invention. The cytotoxic T cells induced based on stimulation by the antigen-presenting cells presenting the peptide of the present invention are preferably derived from a subject to be treated and / or prevented, alone or in the present invention. It can be administered for the purpose of antitumor effect together with other drugs including the peptide of the present invention, exosomes and the like.
本発明は更に、 H L A分子と本発明のぺプチドとの複合体を提示する抗原提示 細胞を提供する。 本発明のペプチド、 あるいは本発明のペプチドを含む G P C 3 タンパク質、 またはその部分ぺプチドをコ一ドする遺伝子との接触によって得ら れる当該抗原提示細胞は、 好ましくは治療及ぴ Zまたは予防の対象である被験者 由来のものであり、 単独、 または、 本発明のペプチド、 ェキソソーム、 細胞傷害 性 T細胞等を含む、 他の医薬と共にワクチンとして投与することができる。  The present invention further provides an antigen-presenting cell that presents a complex of an HLA molecule and a peptide of the present invention. The antigen-presenting cells obtained by contacting the peptide of the present invention, or the GPC3 protein containing the peptide of the present invention, or a gene encoding a partial peptide thereof, are preferably targets for treatment and prevention or prevention. And can be administered alone or as a vaccine together with other drugs including the peptide of the present invention, exosomes, cytotoxic T cells and the like.
本発明は更に、 G P C 3に対する抗体を含む、 肝細胞癌の診断剤を提供する。 G P C 3に対する抗体は、 ポリクローナルまたはモノクローナル抗体のいずれで も良く、 当業者に公知の方法 (例えば、 「新生化学実験講座 1,タンパク質 1 , 389 -406,東京化学同人」 参照) により調製することが可能である。 G P C 3タンパク 質はアミノ酸配列が前記のように公知であり、 当該アミノ酸配列に基づいて通常 のタンパク質発現技術を用いて製造でき、 また市販のもの (Santa Cruz, CA) を 利用することも可能である。 市販の G P C 3を用いる場合は、 必要に応じて SDS - Out™ (Sodium Dodecyl Sulfate Precipitation Reagent; PIERCE, Rockford, I L より購入) を用いて S D Sを除いて使用することが好ましい。 また G P C 3の 部分ペプチドは、 G P C 3のアミノ酸配列から適当な部分配列を選択し、 通常の ぺプチド合成技術を用いて製造できる。 The present invention further provides a diagnostic agent for hepatocellular carcinoma, comprising an antibody against GPC3. Antibodies to GPC3 may be either polyclonal or monoclonal antibodies, and can be prepared by methods known to those skilled in the art (for example, see “Shinsei Kagaku Jikken Kozai 1, Protein 1, 389-406, Tokyo Kagaku Dojin”). It is possible. GPC 3 protein The amino acid sequence of the protein is known as described above, and can be produced using ordinary protein expression techniques based on the amino acid sequence, or a commercially available product (Santa Cruz, CA) can be used. When a commercially available GPC 3 is used, it is preferable to use SDS-Out ™ (Sodium Dodecyl Sulfate Precipitation Reagent; purchased from PIERCE, Rockford, IL) and remove SDS as necessary. The partial peptide of GPC3 can be produced by selecting an appropriate partial sequence from the amino acid sequence of GPC3 and using a general peptide synthesis technique.
ポリクローナル抗体の調製は、 まず、 例えば、 ゥサギ、 モルモット、 マウス、 ラット、 ハムスター、 -ヮトリ、 サルなどの動物に G P C 3タンパク質またはそ の部分ペプチドを感作抗原として投与する。 投与は、 抗体産生を促進するアジュ バント (FIAや FCA) と共に行ってもよい。 投与は、 通常、 数週間ごとに行う。 免 疫を複数回行うことにより、 抗体価を上昇させることができる。 最終免疫後、 免 疫動物から採血を行うことにより抗血清が得られる。この抗血淸に対し、例えば、 硫酸アンモニゥム沈殿や陰イオンクロマトグラフィ一による分画、 プロテイン A や固定化抗原を用いたァフィ二ティー精製を行うことにより、 ポリクローナル抗 体を調製することができる。  In preparing a polyclonal antibody, first, for example, a GPC3 protein or a partial peptide thereof is administered as a sensitizing antigen to animals such as rabbits, guinea pigs, mice, rats, hamsters, -birds, and monkeys. Administration may be with an adjuvant (FIA or FCA) that promotes antibody production. Administration is usually performed every few weeks. Multiple immunizations can increase antibody titers. After the final immunization, antiserum can be obtained by collecting blood from the immunized animal. A polyclonal antibody can be prepared by subjecting the anticoagulant to, for example, ammonium sulfate precipitation, fractionation by anion chromatography, and affinity purification using protein A or immobilized antigen.
—方、 モノクローナル抗体の調製は、 例えば、 G P C 3タンパク質もしくはそ の部分ペプチドを、 上記と同様に動物に免疫し、 最終免疫後、 この免疫動物から 脾臓またはリンパ節を採取する。 この脾臓またはリンパ節に含まれる抗体産生細 胞とミエローマ細胞とをポリエチレングリコールなどを用いて融合し、 ハイプリ ドーマを調製する。 細胞融合は、 基本的には公知の方法、 たとえば、 ケーラーと ミルスティンらの方法 (Kohler. G. and Milstein, に、 Methods Enzymol. (1981) For preparation of a monoclonal antibody, for example, an animal is immunized with the GPC3 protein or a partial peptide thereof in the same manner as described above, and after the final immunization, a spleen or lymph node is collected from the immunized animal. Antibody-producing cells contained in the spleen or lymph nodes and myeloma cells are fused using polyethylene glycol or the like to prepare a hybridoma. Cell fusion is basically performed by known methods, for example, the method of Kohler and Milstein et al. (Kohler. G. and Milstein, Methods Enzymol. (1981)
73, 3-46) 等に準じて行うことができる。 得られたハイプリ ドーマは、 通常の選 択培養液、 例えば HAT培養液 (ヒポキサンチン、 アミノプテリンおよびチミジン を含む培養液) で培養することにより選択される。 上記 HAT培養液での培養は、 目的とするハイプリ ドーマ以外の細胞 (非融合細胞) が死滅するのに十分な時間 継続する。 次いで、 目的のハイプリ ドーマをスクリーニングし、 これを培養し、 その培養上清からモノクローナル抗体を調製することができる。 73, 3-46) etc. The obtained hybridomas are selected by culturing them in a normal selective culture medium, for example, a HAT culture medium (a culture medium containing hypoxanthine, aminopterin and thymidine). Culture in the above HAT culture solution is continued for a time sufficient for killing cells other than the target hybridoma (non-fused cells). Next, the desired hybridoma is screened, cultured, and a monoclonal antibody can be prepared from the culture supernatant.
また、 本発明の抗体は、 遺伝子工学的手法により抗体遺伝子を含む発現べクタ —で形質転換した宿主に産生させても良い。例えば、モノクローナル抗体として、 抗体遺伝子をハイブリ ドーマからクローニングし、適当なベクターに組み込んで、 これを宿主に導入し、 遺伝子組換え技術を用いて産生させた組換え型のものを用 いることができる (例えば、 Vanda腿 e, A. M. et al. , Eur. J. Biochem. (1990) 192, 767-775, 1990参照)。 Further, the antibody of the present invention can be expressed by an expression vector containing an antibody gene by a genetic engineering technique. May be produced in a host transformed with-. For example, a recombinant antibody produced by cloning an antibody gene from a hybridoma into a suitable vector, introducing this into a host, and producing the same using a gene recombination technique can be used as a monoclonal antibody. (See, for example, Vanda Thigh e, AM et al., Eur. J. Biochem. (1990) 192, 767-775, 1990).
本発明で使用される抗体の製造のために、 任意の発現系、 例えば真核細胞又は 原核細胞系を使用することができる。 真核細胞としては、 例えば樹立された哺乳 類細胞系、 昆虫細胞系、 真糸状菌細胞おょぴ酵母細胞などの動物細胞等が挙げら れ、 原核細胞としては、 例えば大腸菌細胞等の細菌細胞が挙げられる。 次に、 形 質転換させた宿主細胞を in vitroまたは in vivoで培養して目的とする抗体を産 生させる。 宿主細胞の培養は公知の方法に従い行う。  For the production of the antibodies used in the present invention, any expression system can be used, for example a eukaryotic or prokaryotic cell system. Eukaryotic cells include, for example, established mammalian cell lines, insect cell lines, animal cells such as filamentous fungal cells and yeast cells, and prokaryotic cells include, for example, bacterial cells such as E. coli cells. Is mentioned. Next, the transformed host cells are cultured in vitro or in vivo to produce the desired antibody. Culture of the host cell is performed according to a known method.
モノクローナル抗体の精製は、 例えば、 硫酸アンモ-ゥム沈殿や陰イオンクロ マトグラフィ一による分画、 プロテイン Aや固定化抗原を用いたァフィ二ティー クロマトグラフィーによる精製により行うことができる。 その他、 通常のタンパ ク質で使用されている分離、 精製方法を使用すればよく、 例えば、 上記ァフィ二 ティーカラム以外のクロマトグラフィーカラム、 フィルター、 限外濾過、 塩析、 透析等を適宜選択、 組み合わせることにより、 抗体を分離、 精製することができ る。 · 本発明で使用される抗体は、 抗体の全体分子に限られず G P C 3に結合する限 り、抗体の断片又はその修飾物であってもよく、二価抗体も一価抗体も含まれる。 例えば、 抗体の断片としては、 Fab、 F (ab' ) 2、 Fv、 1個の Fabと完全な Fcを有 する Fab/c、または H鎖若しくは L鎖の Fvを適当なリンカーで連結させた単鎖 Fv (scFv) が挙げられる。 尚、 本発明の目的のためには、 抗体は G P C 3のいかな るェピトープを認識するものであっても良い。  The monoclonal antibody can be purified, for example, by precipitation with ammonium sulfate or fractionation by anion chromatography, or by affinity chromatography using protein A or immobilized antigen. In addition, the separation and purification methods used for ordinary proteins may be used.For example, a chromatography column other than the above-mentioned affinity column, a filter, ultrafiltration, salting-out, dialysis, etc. may be appropriately selected. By combining them, antibodies can be separated and purified. · The antibody used in the present invention is not limited to the whole antibody molecule, and may be an antibody fragment or a modified product thereof as long as it binds to GPC3, and includes both bivalent antibodies and monovalent antibodies. For example, as the antibody fragment, Fab, F (ab ') 2, Fv, Fab / c having one Fab and complete Fc, or Fv of H chain or L chain were linked by an appropriate linker. Single-chain Fv (scFv). For the purpose of the present invention, the antibody may recognize any epitope of GPC3.
診断剤としての正確性のためには、 抗体はヒ ト型抗体もしくはヒト抗体である ことが好ましい。 ヒ ト型抗体は、 例えば、 マウスーヒ トキメラ抗体であれば、 G P C 3タンパク質に対する抗体を産生するマウス細胞から抗体遺伝子を単離し、 その H鎖定常部をヒ ト IgE H鎖定常部遺伝子に組換え、 マウス骨髄腫細胞に導入 することにより調製できる。 また、 ヒ ト抗体は、 免疫グロプリン遺伝子をヒ トと 入れ換えたマウスに GPC 3タンパク質を免疫することにより調製することが可 能である。 For accuracy as a diagnostic agent, the antibody is preferably a human antibody or a human antibody. For example, in the case of a mouse-human chimeric antibody, a human antibody is isolated from a mouse cell that produces an antibody against the GPC3 protein, and the H chain constant region is recombined into a human IgE H chain constant region gene. It can be prepared by introduction into mouse myeloma cells. In addition, the human antibody binds the immunoglobulin gene to human. It can be prepared by immunizing the replaced mouse with GPC3 protein.
本発明の診断剤において、 限定するものではないが、 抗体は例えば 1 ^g/mlの 濃度で用いることができる。 診断剤には上記 GP C 3に対する抗体の他に、 必要 に応じて率学的に許容される担体等を適宜含有させることができる。  In the diagnostic agent of the present invention, the antibody can be used at, for example, but not limited to, a concentration of 1 ^ g / ml. In addition to the antibody against GPC3 described above, a diagnostically acceptable carrier or the like can be appropriately contained in the diagnostic agent, if necessary.
本発明は更に、 サンプルと GP C 3に対する抗体を接触させることを含む、 肝 細胞癌の診断方法を提供する。 診断方法は、 更にサンプル中の GP C 3を定量す ることを含み得る。 本発明において、 サンプルは、 HC Cに罹患しているおそれ のある被験者から得られる血清、 唾液、 尿等が挙げられるが、 特に好ましくは血 清である。 サンプルと上記抗体との接触は、 当分野において通常行われている方 法に基づいて行えば良く、 特に限定するものではない。 診断は、 例えばサンプル と上記抗体との接触の後、 サンプル中に存在し得る GP C 3と抗体との特異的結 合を、 蛍光物質や発光物質、 酵素等で標識した二次抗体等を使用して定量的に検 出することにより行うことができる。 また、 診断のための反応をゥエル等の液相 中で行っても良く、 あるいは GPC 3に対する抗体を固定した固相支持体上で行 つても良い。 この場合、 HC Cに罹患していない正常なサンプル、 あるいは HC Cであることが判明しているサンプルを用いて予め作製した標準値と比較するこ とによって、 測定された値が H C C陽性であるか否かを判定することができる。 また、診断の際には、多数の HC C患者と健常人の血清中 GP C 3量を測定して、 カツトオフ値を設定することが好ましい。  The present invention further provides a method for diagnosing hepatocellular carcinoma, which comprises contacting a sample with an antibody against GPC3. The diagnostic method may further include quantifying GPC3 in the sample. In the present invention, the sample includes serum, saliva, urine, and the like obtained from a subject who may be suffering from HCC, and is particularly preferably serum. The contact between the sample and the above antibody may be performed by a method generally used in the art, and is not particularly limited. Diagnosis is, for example, after contact between the sample and the above antibody, the specific binding between the antibody and GPC3, which may be present in the sample, is determined using a fluorescent or luminescent substance, or a secondary antibody labeled with an enzyme This can be done by quantitative detection. In addition, the reaction for diagnosis may be performed in a liquid phase such as a well, or may be performed on a solid support on which an antibody against GPC3 is immobilized. In this case, the measured value is HCC-positive by comparing with a standard value prepared in advance using a normal sample without HCC or a sample known to be HCC. Can be determined. At the time of diagnosis, it is preferable to set the cut-off value by measuring the amount of GPC3 in the serum of a large number of HCC patients and healthy persons.
本発明の診断方法は、 H C Cに罹患しているか否かの診断に用いることができ る他、 HCCに対する治療の効果を確認するために経時的に行うこともできる。 更に本発明は、 GPC 3に対する抗体を含む、 HCCの診断のためのキットを 提供する。 当該キットには、 GPC 3に対する抗体の他、 二次抗体、 定量のため の標準サンプル、 バッファ一等を含めることができる。 以下、 実施例を挙げて本発明を更に説明するが、 本発明はこれら実施例に限定 されるものではない。  The diagnostic method of the present invention can be used for diagnosing whether or not the subject has HCC, and can be performed over time to confirm the effect of treatment for HCC. Furthermore, the present invention provides a kit for diagnosing HCC, comprising an antibody against GPC3. The kit can include an antibody against GPC3, a secondary antibody, a standard sample for quantification, a buffer, and the like. Hereinafter, the present invention will be further described with reference to examples, but the present invention is not limited to these examples.
[実施例 1 ] H C Cで特異的に過剰発現する G PC 3遺伝子の同定 c DNAマイクロアレイによる遺伝子発現のプロフアイリングは先に報告した ように行った (Okabe, H.ら, Cancer Res. 61, 2129 - 2137 (2001))。 肝切除術を 行った 20名の患者から、 原発性 HCC及び対応する非癌性肝臓組織を得た。 そ のうち 1 0例は B型肝炎表面抗原陽性、 1 0例は C型肝炎ウィルス (HCV) 陽 性であり、 HBV及ぴ HCVの双方に感染している例はなかった。 HBV陽性及 ぴ HCV陽性のもので、 年齢、 性別、 分化の程度、 血管の浸潤、 腫瘍の段階に関 して有意な差異^ >な力 つに。 National Center for Biotechnology Information の UniGeneデータベースから選択した 23, 040種の c DNAを含む「ゲノムワイド の」 c DN Aマイクロアレイを作製した。 HCC及ぴ対応する非癌性肝臓組織間 での発現プロファイルを比較して HC Cにおいて特異的に過剰発現している遺伝 子を探索し、 その結果、 HCC患者に対する免疫治療の候補であり、 おそらくは 理想的な標的であり得る GP C 3を同定した。 20例の HC C中 1 6例において、 癌組織における G PC 3 niRN Aの発現は非癌性組織における発現よりも 5倍 以上高かった (図 1 )。すなわち、 G P C 3はほとんどの HC Cにおいて過剰発現 しており、 B型肝炎ウィルス (HBV) または HCV感染とは関連していなかつ た。 一方、 GPC 3 mRNAは胎盤、 胎児肝臓、 胎児肺、 及び胎児腎臓において 高発現しており、成人の正常組織のほとんどで発現が低かった (図 1)。 これらの GP C 3に関するデータは、 ノーザンプロッティング研究に基づいて公表されて いるものと一致した (Zhu, Z.W.ら, Gut 48, 558-564 (2001); Hsu. H. C.ら, Cancer Res. 57, 5179-5184 (1997); Pellegrini, M.ら, Dev Dyn. 213, 431-439 (1998))。 この結果から、 GPC 3は α—フエトタンパク質 (AFP) と同様に、 HCCに おける新規な癌胎児性抗原であることが明らかとなった。 [Example 1] Identification of GPC3 gene specifically overexpressed in HCC Profiling of gene expression by cDNA microarray was performed as previously reported (Okabe, H. et al., Cancer Res. 61, 2129-2137 (2001)). Primary HCC and corresponding non-cancerous liver tissue were obtained from 20 patients who underwent hepatectomy. Of these, 10 were positive for hepatitis B surface antigen, 10 were positive for hepatitis C virus (HCV), and none were infected with both HBV and HCV. HBV-positive and ぴ HCV-positive, with significant differences in age, gender, degree of differentiation, vascular invasion, and tumor stage. A “genome-wide” cDNA microarray containing 23,040 cDNAs selected from the UniGene database of the National Center for Biotechnology Information was generated. Comparison of expression profiles between HCC and corresponding non-cancerous liver tissues to search for genes that are specifically over-expressed in HCC, and as a result, are candidates for immunotherapy for HCC patients, possibly GP C3, which could be an ideal target, was identified. In 16 of the 20 HCCs, the expression of GPC 3 niRNA in cancerous tissues was more than 5-fold higher than in non-cancerous tissues (FIG. 1). That is, GPC3 was overexpressed in most HC C and was not associated with hepatitis B virus (HBV) or HCV infection. On the other hand, GPC3 mRNA was highly expressed in the placenta, fetal liver, fetal lung, and fetal kidney, and was low in most adult normal tissues (Figure 1). These data for GPC3 were consistent with those published based on Northern plotting studies (Zhu, ZW et al., Gut 48, 558-564 (2001); Hsu. HC et al., Cancer Res. 57, 5179-5184 (1997); Pellegrini, M. et al., Dev Dyn. 213, 431-439 (1998)). These results revealed that GPC3, like α-phytoprotein (AFP), is a novel carcinoembryonic antigen in HCC.
[実施例 2] ヒ ト HC C細胞系における GP C 3 mRNA及び HL Α— A 24 の発現  [Example 2] Expression of GPC3 mRNA and HLII-A24 in human HC C cell line
CT Lアツセィのための標的 HC C細胞系を選択するために、 逆転写一 P CR Reverse transcription-PCR to select target HC C cell lines for CT L-assay
(RT-P CR) を用いた GPC 3 mRNA発現、 抗 HLAクラス I (W6/32、GPC 3 mRNA expression using (RT-PCR), anti-HLA class I ( W 6/32,
IgG2a) または抗 HLA— A24 (IgG2) モノクローナル抗体 (VERITAS、 東京)、 及ぴ FITCコンジユゲートャギ抗マウス I gG (ICN/CAPPEL, Aurora, 0H) を用い た免疫染色及ぴフローサイトメ トリーによる HLA—クラス I及ぴ一 A24の発 現を検討した。 HCC細胞系である Hep G2、 Hep 3B、 PLC/PRF/5, 及び HuH- 7は 東北大学加齢医学研究所医用細胞資源センターから入手した。また SK- Hep- 1は久 留米大学の K. Itoh博士よりご供与頂いた。 Immunostaining and flow cytometry using IgG2a) or anti-HLA-A24 (IgG2) monoclonal antibody (VERITAS, Tokyo) and FITC conjugation anti-mouse IgG (ICN / CAPPEL, Aurora, 0H) Departure of HLA—Class I and A24 The current was considered. The HCC cell lines Hep G2, Hep 3B, PLC / PRF / 5, and HuH-7 were obtained from the Medical Cell Resources Center, Institute of Aging and Medicine, Tohoku University. SK-Hep-1 was provided by Dr. K. Itoh of Kurume University.
R T— PC Rは公知の方法 (例えば Nakatsura, T.ら, Biochem. Biophys. Res. Comraun. 281, 936-944 (2001)) に従って行った。 939bpの断片を増幅する G P C 3遺伝子特異的 P CRプライマーを設計し、 これを用いて 94°C、 5分の初期変 性、 及び 58 °Cのァニーリング温度での 30増幅サイクルからなる RT— P CR 反応を行った。 用いた GP C 3 P CRプライマー配列は、  RT-PCR was performed according to a known method (for example, Nakatsura, T. et al., Biochem. Biophys. Res. Comraun. 281, 936-944 (2001)). A GPC3 gene-specific PCR primer was designed to amplify a 939 bp fragment and was used with RT-P consisting of 30 amplification cycles at 94 ° C, 5 min initial transformation, and 58 ° C annealing temperature. A CR reaction was performed. The GP C 3 P CR primer sequence used was
センス : 5' -GTTACTGCAATGTGGTCATGC-3' (配列番号 1 ) Sense: 5'-GTTACTGCAATGTGGTCATGC-3 '(SEQ ID NO: 1)
ァンチセンス : 5' - CTGGTGCCCAGCACATGT- 3, (配列番号 2 ) であり、 Antisense: 5'-CTGGTGCCCAGCACATGT-3, (SEQ ID NO: 2)
対照実験のための β—ァクチン P CRプライマー配列は、 The β-actin PCR primer sequence for control experiments
センス : 5' -CCTCGCCTTTGCCGATCC-3 ' (配列番号 3 ) Sense: 5'-CCTCGCCTTTGCCGATCC-3 '(SEQ ID NO: 3)
アンチセンス : 5,- GGATCTTCATGAGGTAGTCAGTC- 3' (配列番号 4 ) である。 Antisense: 5, -GGATCTTCATGAGGTAGTCAGTC-3 '(SEQ ID NO: 4).
対照である βーァクチン mRNAによる標準化の後、 HCC細胞系における G PC 3 mRNAの発現を比較した。  After normalization with the control β-actin mRNA, the expression of GPC3 mRNA in HCC cell lines was compared.
その結果、 HepG2、 Hep3B、 及び HuH- 7 H C C細胞系において G P C 3 mRN Aの強い発現が示され、 PLC/PRF/5 細胞系において中程度の発現が示されたが、 SK - Hep- 1ではそのような発現は見られなかった(図 2)。 尚、 HepG2及び SK- Hep - 1 は3¾ ー 24を発現したが、 Hep3B及び HuH- 7は発現しなかった。  The results showed strong expression of GPC 3 mRNA in HepG2, Hep3B, and HuH-7 HCC cell lines, and moderate expression in PLC / PRF / 5 cell lines, but SK-Hep-1 No such expression was seen (Figure 2). Note that HepG2 and SK-Hep-1 expressed 3-24, but Hep3B and HuH-7 did not.
[実施例 3] 末梢血単核球 (PBMC) の刺激による腫瘍応答性 CTLの誘導 先行技術 (Kubo, R.T.ら, J. Immunol. 152, 3913 - 3924 (1994)) に基づいて、 HLA-A24分子に結合することが予想される G PC 3由来ぺプチドを探索し、 1 2種の異なるペプチドを合成して使用した (表 1)。 これらのペプチドは、 Fffloc/PyBOP法を用いて合成したものであり (後記参考例 1〜 1 2を参照のこと)、 biologica (東京) から購入した。 ペプチドの純度は、 HP LCでいずれも 9 5 % を越えることが確認された。 表 1 GPC3ペプチドで刺激した HLA-A24陽性の HCC患者の PBMCからの HLA-A24拘束性肝細胞癌反応性 CTLの誘導率 ぺ:^ による PBMCからの CTLの誘導 Example 3 Induction of Tumor-Responsive CTL by Stimulating Peripheral Blood Mononuclear Cells (PBMC) Based on the prior art (Kubo, RT et al., J. Immunol. 152, 3913-3924 (1994)), HLA-A24 We searched for GPC3-derived peptides that are expected to bind to the molecule and synthesized and used 12 different peptides (Table 1). These peptides were synthesized using the Fffloc / PyBOP method (see Reference Examples 1 to 12 below) and purchased from biologica (Tokyo). The purity of the peptide was confirmed to exceed 95% in all cases by HP LC. Table 1 Induction rate of HLA-A24-restricted hepatocellular carcinoma-reactive CTL from PBMC in HLA-A24-positive HCC patients stimulated with GPC3 peptide Induction of CTL from PBMC by ぺ: ^
GPC3ペプチド、 HLA-A24陽性 HCC患者 各ペプチドの GPC3 peptide, HLA-A24 positive HCC patient
No 位 西己列 結合スコア a 1 2 3 4 5 6 7 8 GTL誘導率No rank Nishiki row Binding score a 1 2 3 4 5 6 7 8 GTL induction rate
1 Q PP^ AO- 4-Q FF0RL0PGL 24 ― + + 3/81 Q PP ^ AO- 4-Q FF0RL0PGL 24 ― + + 3/8
2 GPC3 41- 9 FFQRLQPGし 36 2/82 GPC3 41-9 FFQRLQPG 36 2/8
3 GPC3 129-137 MFKNNYPSL 20 + ― + + 3/83 GPC3 129-137 MFKNNYPSL 20 +-+ + 3/8
4 GPC3 148-157 FTDV 8S 〇LYIL 24 ― + + + 3/84 GPC3 148-157 FTDV 8S 〇LYIL 24 ― + + + 3/8
5 GPC3 247-256 KFSKDCGRML 40 + + + 3/85 GPC3 247-256 KFSKDCGRML 40 + + + 3/8
6 GPC3 260-268 WYCSYCQGL 240 + + + 3/8 t 7 GPC3 294-303 KYWREY!LSL 400 + + 3/8 6 GPC3 260-268 WYCSYCQGL 240 + + + 3/8 t 7 GPC3 294-303 KYWREY! LSL 400 + + 3/8
8 GPC3 298-306 EYILSLEEL 330 + 1/8 8 GPC3 298-306 EYILSLEEL 330 + 1/8
9 GPC3 313-321 IYDMENVLL 200 + + 2/89 GPC3 313-321 IYDMENVLL 200 + + 2/8
10 GPC3 360-368 AYYPEDLFI 60 + ― + 3/810 GPC3 360-368 AYYPEDLFI 60 + ― + 3/8
11 GPC3 401-409 FYSALPGYI 60 + + + 3/811 GPC3 401-409 FYSALPGYI 60 + + + 3/8
12 GPC3 521-530 RFLAELAYDL 72 + + 4/8 12 GPC3 521-530 RFLAELAYDL 72 + + 4/8
導率 4/12 4/12 2/12 6/12 5/12 2/12 7/12 3/12  Conductivity 4/12 4/12 2/12 6/12 5/12 2/12 7/12 3/12
\各配列を有する分子の解離の半減期の評価 \ Evaluation of the half-life of dissociation of molecules with each sequence
(BIMAS: Hし A Binding Prediction: Dr. Kenneth Parkerの研究より: http://bimas.dcrt.nih.gov/molbio/hla_bind/; b, +はペプチド特異的でかつ HLA-A24+腫瘍細胞に応答性の CTLの誘導が成功したことを示す。 (BIMAS: H-A Binding Prediction: From the study of Dr. Kenneth Parker: http://bimas.dcrt.nih.gov/molbio/hla_bind/; b, + are peptide-specific and respond to HLA-A24 + tumor cells This indicates that the induction of sex CTL was successful.
インフォームドコンセントを得た後、 熊本大学医学部外科学第二講座において 治療中の HLA— A 2 4 + HC C患者から血液サンプル 3 0 m Iを得、 先に報告 したよ うに (Nakatsura, T. ら, Eur. J. Immunol. 32, 826—836 (2002))、After obtaining informed consent, a blood sample of 30 ml from HLA-A24 + HCC patients under treatment was obtained at the second course of Kumamoto University School of Medicine, and as previously reported (Nakatsura, T. et al. Eur. J. Immunol. 32, 826-836 (2002)),
Ficoll-Conray密度勾配遠心法によって P B M Cを単離した。 HLA— A 2 4結 合モチーフを有する glypican_3由来のぺプチド 12種(表 1、 No. 1〜 1 2 :配列 番号 5〜: 1 6に対応) について、 8名の H LA— A 2 4 +HC C患者 (Pt 1〜8 ) から得た P BMCから HLA— A 2 4拘束性で、 かつ腫瘍応答性の C T Lを誘導 する能力について検討した (図 3、表 1)。 P BMCからペプチド特異的 CT Lを 誘導する方法は、 先に報告した方法 (Nakatsura, T.ら, Eur. J. Immunol. 32,PBMC was isolated by Ficoll-Conray density gradient centrifugation. Eight HLA-A2 + The ability to induce HLA-A24-restricted and tumor-responsive CTL from PBMC obtained from HCC patients (Pt 1 to 8) was examined (Figure 3, Table 1). The method for inducing peptide-specific CTL from P BMC is based on the method reported previously (Nakatsura, T. et al., Eur. J. Immunol. 32,
826-836 (2002)) を用いた。 C T Lの表面表現型は F I T C—コンジユゲート抗 一 CD 3、 一 CD 4、 または— CD 8モノクローナル抗体 (ニチレイ、 東京) を 用いた直接免疫蛍光染色によって検討した。 エフェクター細胞及び HL A拘束性 を決定するために、 培養開始時に各 2 0 μ gZm 1の抗ー H L A—クラス I826-836 (2002)). The surface phenotype of CTL was examined by direct immunofluorescence staining using a FITC-conjugated anti-CD3, CD4, or CD8 monoclonal antibody (Nichirei, Tokyo). To determine effector cells and HLA restriction, 20 μg Zm1 of each anti-HLA—Class I
(W6/32、 IgG2a)、抗一 HLA— A 2 4 (0041HA、 IgG2a)、抗一 CD 8 (Nu— Tsん、(W6 / 32, IgG2a), anti-HLA-A24 (0041HA, IgG2a), anti-CD8 (Nu-Ts,
IgG2a)、 抗ー HLA— DR (H- DR-1、 IgG2a)、 及ぴ抗ー CD 4 (Nu- Th/I、 IgGl) モノクローナル抗体を添加した。 アイソタイプが合った対照として、 抗ー CD 1IgG2a), anti-HLA-DR (H-DR-1, IgG2a), and anti-CD4 (Nu-Th / I, IgGl) monoclonal antibodies were added. Anti-CD 1 as isotype matched control
3 (MCS- 2、 IgG2a) 及ぴ抗ー CD 1 4 (JML - H14、 IgGl) モノクローナル抗体を使 用した。 3〜4週間後、 これらの CT L株の数は P BMCの培養前の数と比較し て約 1 0倍に増加した。 次にこれらの C T L株の HC C細胞株に対する細胞傷害 活性を 6時間の51 C r放出アツセィによって検討した。結果を図 3及ぴ表 1に示 す。 9 6種中 3 3種(34.4%)の C T L株が、 H L A— A 2 4— G P C 3 +の HeP3B 及ぴ HuH- 7、 及び HLA— A 2 4 + G P C 3—の SK- Hep- 1に対してよりも、 HL3 (MCS-2, IgG2a) and anti-CD14 (JML-H14, IgGl) monoclonal antibodies were used. After 3-4 weeks, the number of these CTL strains increased about 10-fold compared to the number before culture of PBMC. It was then examined by 51 C r release Atsusi of 6 hours cytotoxic activity against HC C cell lines of these CTL lines. The results are shown in FIG. 3 and Table 1. 9 CTL lines six 3 three (34.4%) is, HLA- A 2 4- GPC 3 + of the He P 3B及Pi HuH- 7, and HLA- A 2 4 + GPC 3- Bruno SK- Hep- HL than against one
A-A 2 4 + G P C 3 +の HepG2に対して強い細胞傷害性を示した。 この細胞傷 害性はペプチド特異性を示し、 抗ー HLA—クラス I、 抗ー CD 8または抗ー HAA24 + GPC3 + showed strong cytotoxicity against HepG2. This cytotoxicity indicates peptide specificity, anti-HLA-class I, anti-CD8 or anti-H
L A-A 2 4モノクローナル抗体によって阻害されることから、 これらの T細胞 応答が HL A— A 2 4拘束性の CD 8 + C T Lによって担われていることが示さ れる。 各ペプチドまたは各患者における C T Lの誘導率を表 1に示す。 これらの 結果から、 GP C 3由来の 1 2種のペプチドの全てが CT L誘導能を有し、 HLInhibition by the LA-A24 monoclonal antibody indicates that these T cell responses are mediated by HLA-A24-restricted CD8 + CTL. Table 1 shows the induction rate of CTL in each peptide or each patient. From these results, all of the 12 peptides derived from GPC3 have CTL-inducing ability, and HL
A— A 2 4拘束性の G P C 3由来べプチド特異的 CD 8 + 丁!^株が8名の^5 害、者の全員において誘導されたことが示される。 A— A 24 restricted GPC 3 derived peptide-specific CD 8 + ^ 5 with 8 shares It is shown that harm was induced in all of the persons.
[実施例 4] HC Cにおける GP C 3タンパク質の発現  [Example 4] Expression of GPC3 protein in HC C
4名の H C C患者から切除した肝臓組織周辺の H C C及び非癌性領域における GP C 3のウェスタンブロッテイング解析及び免疫組織化学分析を行った。  Western blotting analysis and immunohistochemical analysis of GPC3 in HCC and non-cancerous regions around liver tissues excised from four HCC patients were performed.
ウェスタンブロッティングは以下のように行った。 サンプルを適量の溶解用バ ッファー ( 1 50 mM N a C 1、 50 mM T r i s、 p H 7. 4、 1 % Nonidet P_40、 1 mM オルトバナジウム酸ナトリウム (和光純薬工業 (株))、 1 mM E DT A、及びプロテアーゼ阻害剤タブレツト(Amersham, Arlington Heights, IL)) 中で溶解した。 溶解物の上清を SDS— PAGEゲル上で電気泳動し、 ニトロセ ルロース膜 (Bio - Rad, Hercules, CA) にトランスファーした。 5 %脱脂乳、 0.2% Tween20を含有する Tri s緩衝生理食塩水中でブロッキングした後、 この膜を、 G PC 3 303-464 のアミノ酸に対応する組換えタンパク質に対して作製された抗 一 G P C 3ゥサギポリクローナル抗体 (Santa Cruz, California) と共にィンキ ュペートし、 P B Sでよく洗浄し、 ペルォキシダーゼコンジユゲート抗ーゥサギ I g、 西洋ヮサビペルォキシダーゼ結合 F (a b')2断片 (ロバ由来) (Amersham) を用い、 ECLキッ ト (Amercham) を使用して化学発光検出を行った。 Western blotting was performed as follows. Dissolve the sample in an appropriate volume of lysis buffer (1 50 mM NaC1, 50 mM Tris, pH 7.4, 1% Nonidet P_40, 1 mM sodium orthovanadate (Wako Pure Chemical Industries, Ltd.), 1 mM EDTA and protease inhibitor tablets (Amersham, Arlington Heights, Ill.). Lysate supernatants were electrophoresed on SDS-PAGE gels and transferred to nitrocellulose membranes (Bio-Rad, Hercules, CA). After blocking in Tris-buffered saline containing 5% skim milk, 0.2% Tween20, the membrane was ligated against an anti-GPC3 antibody prepared against a recombinant protein corresponding to the amino acid GPC3303-464.ン Incubate with a heron polyclonal antibody (Santa Cruz, California) and wash well with PBS. Peroxidase conjugation anti-Egret Ig, horseradish peroxidase-bound F (ab ') 2 fragment (from donkey ) Chemiluminescence detection was performed using (Amersham) and ECL kit (Amercham).
免疫組織化学分析は、当分野において公知の方法に従って行った(Nakatsura, T. ら, Biochem. Biophys. Res. Coramun. 281, 936-944 (2001))。 OCT包埋用化合 物に包埋した厚さ 4 μ mの組織サンプル切片を 1 : 200に希釈した抗ー GP C Immunohistochemical analysis was performed according to methods known in the art (Nakatsura, T. et al., Biochem. Biophys. Res. Coramun. 281, 936-944 (2001)). Anti-GPC was prepared by diluting a 4 μm-thick tissue sample section 1: 200 diluted in OCT embedding compound.
3抗体と共に染色した。 陽性対照のために 45kDaタグ付き融合タンパク質として 大腸菌から産生される GP C 3 303-464 (Santa Cruz, CA) 及び抗— glypican - 3 ゥサギポリクローナノレ抗体のピオチンィ匕のために FluoReporter Mini - Biotin - XXStained with 3 antibodies. GPC 3 303-464 (Santa Cruz, CA) produced from E. coli as a 45 kDa tagged fusion protein for positive control and FluoReporter Mini-Biotin for biotinting of anti-glypican-3ansagi polyclonal antibody -XX
Protein Labeling Kit (F - 6347) (Molecular Probes, Inc. , Eugene) を使用した。Protein Labeling Kit (F-6347) (Molecular Probes, Inc., Eugene) was used.
96ゥエルの E L I S Aプレート (Nunc, Denmark) を 4°Cでー晚、 PB S、 p H96-well ELISA plate (Nunc, Denmark) at 4 ° C-PBS, pH
7.4中 0. l i gZゥヱルの抗ーヒ ト GP C 3 303-464 (Santa Cruz)でコートした。 次いで、 4%ゥシ血清アルブミン/ PB Sを用い、 室温で 1時間、 プレートをブ ロッキングした。 陽性対照の標準サンプル及び培養上清をビォチン化抗ー G PCCoated with anti-human GP C 3 303-464 (Santa Cruz) at 0. The plates were then blocked for 1 hour at room temperature with 4% Pserum albumin / PBS. The positive control standard sample and culture supernatant were biotinylated anti-GPC
3抗体と共に添加し、 室温で 2時間インキュベーションした。 PB Sで 3回洗浄 した後、 各ゥエルに H R P—コンジユゲートス トレプトアビジン (END0GEN, Woburn) を添加した。 3 0分のインキュベーションの後、 プレートを P B Sで 3 回洗浄し、 TMB基質溶液 (END0GEN) を添加した。 解析のために E L I SA — ダー (モデル 550、 Bio-Rad) を 4 0 5 nmで用いた。 The antibody was added together with 3 antibodies, and incubated at room temperature for 2 hours. After washing three times with PBS, add HRP—Conjugate Streptavidin (END0GEN, Woburn) was added. After a 30 minute incubation, the plates were washed three times with PBS and TMB substrate solution (END0GEN) was added. An ELI SA — der (model 550, Bio-Rad) was used at 405 nm for analysis.
インフォームドコンセントを得た後、 熊本大学医学部外科学第二講座において 治療中の HC C患者から組織サンプルを得た。 4種の腫瘍全てにおいて、 GP C 3タンパク質の発現が H C C細胞において非癌性肝細胞と同程度に低いという同 様の結果が得られた。従って、 HCC細胞中における GP C 3 niRNA発現と G P C 3タンパク質発現の間に矛盾が生じる。 GP C 3は GP I—アンカー型膜タ ンパク質であり、 分泌タンパク質である可能性が報告されている (Filmus J. , Glycobiology 11, 19R-23R (2001))。 そこで、 次に分泌された G P C 3タンパク 質の検出を試みた。  After obtaining informed consent, tissue samples were obtained from HCC patients being treated at Kumamoto University School of Medicine. Similar results were obtained in all four tumors in which the expression of GPC3 protein was as low in HCC cells as in non-cancerous hepatocytes. Thus, there is a contradiction between GPC3 niRNA expression and GPC3 protein expression in HCC cells. GPC3 is a GPI-anchored membrane protein and has been reported to be a secreted protein (Filmus J., Glycobiology 11, 19R-23R (2001)). Therefore, we next attempted to detect the secreted GPC3 protein.
[実施例 5] HC C細胞株の培養上清及び HCC患者血清中における可溶性 G P C 3タンパク質の検出  [Example 5] Detection of soluble GPC 3 protein in culture supernatant of HC C cell line and serum of HCC patient
HepG2 の培養上清中に可溶性 GP C 3タンパク質が存在するか否かを検討する ために、 所定の培養期間の後に回収した HepG2細胞溶解物及び培養上清について ウェスタンプロッティングを行った。 無血清培地における 6、 1 2、 24、 及び 48時間の培養後に 1 X 1 05個の HepG2細胞から調製した細胞溶解物は、 同様 の量の 60kDaの G P C 3タンパク質の存在を示した (図 4のレーン 1、 3、 5、 及ぴ 7 )。 一方、 6、 1 2、 24、 及ぴ 4 8時間の培養後の HepG2培養上清 ( 1 m 1 ゥエルの 2 0 μ 1 ) では 60kDaの GP C 3タンパク質が漸増しており、 GP C 3タンパク質が HepG2から培養上清中に分泌されたことを示した。 To determine whether soluble GPC3 protein was present in the culture supernatant of HepG2, Western blotting was performed on the HepG2 cell lysate and the culture supernatant collected after a predetermined culture period. 6 in serum free medium, 1 2, 24, and 1 X 1 0 cell lysates prepared from five HepG2 cells after 48 hours culture, showed the presence of GPC 3 protein similar amounts of 60 kDa (Fig. Lanes 4, 3, 5, and 7 of 4). On the other hand, in the HepG2 culture supernatant (20 μl of 1 ml / well) after culturing for 6, 12, 24, and 48 hours, the 60 kDa GPC3 protein was gradually increased. Was secreted into the culture supernatant from HepG2.
次いで、抗ー GP C 3 303- 464抗体及びビォチン化抗ー G P C 3抗体を用いて 酵素結合免疫吸着検査法 (E L I SA) による検出を行った。 GPC 3 303-464 に対応する市販の組換えタンパク質を用い、 EL I S A系における GP C 3の定 量の精度を確認した。 HepG2 培養上清の連続希釈を用い、 ODデータに基づいて Subsequently, detection was performed by an enzyme-linked immunosorbent assay (ELISA) using an anti-GPC3303-464 antibody and a biotinylated anti-GPC3 antibody. Using a commercially available recombinant protein corresponding to GPC 3 303-464, the accuracy of quantification of GPC 3 in the ELISA system was confirmed. Using serial dilution of HepG2 culture supernatant, based on OD data
GP C 3タンパク質を定量する標準曲線を評価した。 1 X 1 05個の HepG2細胞 を 24時間培養した後の培養上清 1 m 1中の GP C 3タンパク質の濃度を 1 m 1と定義した。 HepG2培養上清中の GP C 3タンパク質の量は Hep3Bよりはる かに多く、 一方 SK- Hep- 1においては検出できなかった (図 5)。 次に、 HCC患者血清中の可溶性 GP C 3タンパク質の検出を行った (図 6)。 2 8名の HC C患者から血液サンプルを採取し、 医療記録から患者のプロフアイ ルを集めて UICC T醒分類に基づいて臨床段階を決定した。 患者 7 (Pt7、 図 6の レーン 3) の血清 2 0 μ 1中に 60kDaの GP C 3タンパク質のバンドが検出され たが、 他の 2名の HC C患者及び 4名の健康なドナーの血清からは検出されなか つた。 次に 2 8名の HC C患者及ぴ 54名の健康なドナー (HD) の血清中の G PC 3タンパク質の量を E L I SAによって評価した(図 7)。 5 4名の HD血清 中の GP C 3タンパク質の平均は 0· 75U/m 1であり、標準偏差(S D) は 0.32 であった。 男女間で発現に差はなく、 従って卵巣での GP C 3の弱い発現は、 こ の系に関して無視できると考えられた。 2 8名の HCC患者の平均値は 1,98UZ m lであった。 血清中の GP C 3タンパク質の正常上限値を決定するために、 5 4名の HD血清の G P C 3タンパク質の平均 + 3 S Dとして 1.71を規定した。 H CC患者の 35· 7% (10/28)、 HDの 0% (0/54) が GP C 3タンパク質陽性 (> 1.71) であった。 HC C患者血清中の GP C 3タンパク質の濃度は、 HDにおけ る濃度よりも有意に高かった (Pく 0.0001)。 患者 4、 5及ぴ 7について E L I S Aで評価した G P C 3の濃度は、図 6に示すようにそれぞれ 0.94、 1.73、及び 69.4 U/m】であった (表 2)。 すなわち、 ウェスタンブロッテイングでは 69.4UZ m lの GP C 3タンパク質は検出できるが、 1.73UZm 1の GP C 3は検出でき なかった。 A standard curve for quantifying GPC3 protein was evaluated. The 1 X 1 0 5 or concentrations of GP C 3 protein in the culture supernatant 1 m 1 after 24 hours of culture the HepG2 cells was defined as 1 m 1. The amount of GPC3 protein in the HepG2 culture supernatant was much higher than in Hep3B, whereas it was not detectable in SK-Hep-1 (Figure 5). Next, we detected soluble GPC3 protein in the serum of HCC patients (Fig. 6). Blood samples were collected from eighteen HCC patients, and patient profiles were collected from medical records to determine the clinical stage based on the UICC T-Wake Classification. A band of 60 kDa GPC3 protein was detected in 20 μl of serum from patient 7 (Pt7, lane 3 in Figure 6), but serum from two other HCC patients and four healthy donors Was not detected. The serum levels of GPC3 protein in 28 HCC patients and 54 healthy donors (HD) were then assessed by ELISA (Figure 7). The mean of GPC3 protein in the HD serum of 54 patients was 0.75 U / ml and the standard deviation (SD) was 0.32. There was no difference in expression between males and females, and therefore weak expression of GPC3 in the ovaries was considered negligible for this system. The mean for 28 HCC patients was 1,98 UZ ml. To determine the upper normal limit of GPC3 protein in serum, 1.71 was defined as the average of GPC3 protein + SD of 54 HD sera. 35.7% (10/28) of HCC patients and 0% (0/54) of HDs were GPC3 protein positive (> 1.71). The concentration of GPC3 protein in the serum of HCC patients was significantly higher than in HD (P <0.0001). The concentrations of GPC3 evaluated by ELISA for patients 4, 5 and 7 were 0.94, 1.73 and 69.4 U / m, respectively, as shown in FIG. 6 (Table 2). That is, Western blotting could detect 69.4 UZ ml of GPC3 protein, but could not detect 1.73 UZm1 of GPC3.
表 2の結果から明らかなように、 1 0名の GP C 3—陽性患者のうち 2名 (患 者 6及ぴ 2 5) は AF P及び PIVKA-IIの双方が陰性であり、 その一方の患者 (患 者 6) は比較的初期の UICC ステージ IIとして分類された。 すなわち、 AF P及 ぴ PIVKA-II の双方が陰性の患者において G P C 3が陽性となる場合があること から、 GP C 3は HCCの新規な腫瘍マーカーとして有用であることが明らかと なった。 表 2 HCC患者 28例の血清中の AFP, PIVKA-Πと GPC3の測定結果 As is evident from the results in Table 2, two of the ten GPC3-positive patients (patients 6 and 25) had negative AFP and PIVKA-II, and one of The patient (patient 6) was classified as a relatively early UICC stage II. That is, GPC3 may be positive in patients with negative AFP and PIVKA-II in both cases, indicating that GPC3 is useful as a novel tumor marker for HCC. Table 2 Measurement results of AFP, PIVKA-Π and GPC3 in serum of 28 HCC patients
Pt lD年齢 (y),性別 ウィルス a UICC Stage AFP(ng/ml)u(<20)c PIVKA-ll(mAU/ml)Q(<40) GPC3(U/ml)a(<1.71)Pt lD age (y), gender virus a UICC Stage AFP (ng / ml) u (<20) c PIVKA-ll (mAU / ml) Q (<40) GPC3 (U / ml) a (<1.71)
3 56 HBV IVA 54e 957 1.733 56 HBV IVA 54 e 957 1.73
5 71M HCV IIIB 8900 31577 1.735 71M HCV IIIB 8900 31577 1.73
11 69 非 B,非 C IVA 9400 319 3.2311 69 Non-B, non-C IVA 9400 319 3.23
1 64M HCV IIIA 50 15 9.401 64M HCV IIIA 50 15 9.40
2 53M HCV II 45 38 2 53M HCV II 45 38
8 69M HCV II! 21 21 2.22 8 69M HCV II! 21 21 2.22
9 73M HCV IIIA 25 242 9 73M HCV IIIA 25 242
12 61M HCV IVA 349 169  12 61M HCV IVA 349 169
17 0M HBV IVA 56 133  17 0M HBV IVA 56 133
18 71F HBV 1! 930 994 0.38 18 71F HBV 1! 930 994 0.38
19 77M HCV II 163 96 0.42 19 77M HCV II 163 96 0.42
29 ·1 0.28  291 0.28
OF, 0.87  OF, 0.87
HCV IIIA 178 28 0.94 HCV IIIA 178 28 0.94
15 HCV II 100 32 0.8315 HCV II 100 32 0.83
22 72 HCV IIIA 25 12 1.6722 72 HCV IIIA 25 12 1.67
7 62M HCV IVA 10 239 69.397 62M HCV IVA 10 239 69.39
16 72M HCV II <1 840 1.9416 72M HCV II <1 840 1.94
14 62M HCV II 3 69 0.9014 62M HCV II 3 69 0.90
20 75F 非 B,非 C IIIA <1 63 0.3520 75F Non-B, non-C IIIA <1 63 0.35
27 71M HCV IVA 10 19288 0.8327 71M HCV IVA 10 19 288 0.83
6 72F HCV II 9 20 3.096 72F HCV II 9 20 3.09
25 63 HCV IVB <1 10 62.4525 63 HCV IVB <1 10 62.45
10 58M 非 B,非 C IIIA 3 18 0.66o o10 58M non-B, non-C IIIA 3 18 0.66o o
13 69 HCV IVB 6 10 1.5313 69 HCV IVB 6 10 1.53
21 71M HBV, HCV IVA 2 26 0.5221 71M HBV, HCV IVA 2 26 0.52
23 59 HBV IIIA 3 18 1.7023 59 HBV IIIA 3 18 1.70
28 69M HCV IIIA <1 28 0.80 a HCVは RT-PCRを用いて検出した。 HBsAgはラジオィムノアッセィ(R )を用いて調べた。 28 69M HCV IIIA <1 28 0.80 a HCV was detected using RT-PCR. HBsAg was examined using Radioimnoassy (R).
b, AFPは RIAを用いて定量し fc b, AFP quantified using RIA fc
c,括弧内の値はカットオフインデックスを示す。 c, The value in parentheses indicates the cutoff index.
d, PIVKA-IIおよび GPG3はェンザィムィムノアッセィ(E1A)を用いて定量した。 d, PIVKA-II and GPG3 were quantified using Enzymimnoassay (E1A).
e, 陽性の測定値に下線を付した。 e, Positive measurements are underlined.
[参考例 1 ] Ser- Phe- Phe- Gin- Arg_Leu- Gin- Pro- Gly- Leu (配列番号 5 ) の合成 開始レジンとして Fmoc-Leu-Wang resin (l00-200mesh)を用いて後記スケジュ ール Aに従って合成を開始し、 工程 5まで進んだ後、 工程 2へ戻ることで αアミ ノ基の脱保護、洗浄、カップリング、洗浄を繰り返し、 Fmoc-Gly-0H, Fmoc- Pro_0H[Reference Example 1] Synthesis of Ser-Phe-Phe-Gin-Arg_Leu-Gin-Pro-Gly-Leu (SEQ ID NO: 5) Schedule using Fmoc-Leu-Wang resin (l00-200mesh) as the starting resin Start the synthesis according to A, proceed to step 5, and then return to step 2 to repeat the deprotection, washing, coupling, and washing of the α-amino group to obtain Fmoc-Gly-0H, Fmoc-Pro_0H
Fmoc-Gln (Trt) -0H, FmocHLeu - 0H Fmoc- Arg (Pbf) - 0H Fmoc Gin (Trt) - 0H Fmoc-Gln (Trt) -0H, FmocHLeu-0H Fmoc- Arg (Pbf)-0H Fmoc Gin (Trt)-0H
Fmoc- Phe- 0H Fmoc- Phe- 0H Fmoc- Ser (tBu) - OHを)頓次カツプリングさせた結果、 ぺプチド結合樹脂を得た。 ぺプチドは工程 6に示す試薬との反応によって樹脂か ら切り離され、 冷メチルタートブチルエーテル (MTBE) 中にろ過され、 沈殿させ た。 沈殿したぺプチドは 2回冷 MTBEで洗浄され、 窒素下で凍結乾燥された。 表 3 スケジュール A Fmoc-Phe-0H Fmoc-Phe-0H Fmoc-Ser (tBu) -OH was subjected to random coupling to obtain a peptide-bound resin. Is the peptide a resin by reacting with the reagent shown in Step 6? It was cut off, filtered into cold methyl tart butyl ether (MTBE) and precipitated. The precipitated peptide was washed twice with cold MTBE and lyophilized under nitrogen. Table 3 Schedule A
工程 時間 処理  Process time Processing
(分) 回数 (Minutes)
1 . (洗浄) D M F 2 2 . (脱保護) 20%ピぺリジン /DMF 10ml 1 1. (Wash) DMF 2 2. (Deprotection) 20% piperidine / DMF 10ml 1
20%ピぺリジン /DMF 10ml 30 1 20% piperidine / DMF 10ml 30 1
3 . (洗浄) DMF 4 3. (washing) DMF 4
DCM 1 DCM 1
4 . (カップリング) 各 αアミノ基保護アミノ酸 lmraole 30 4. (Coupling) Each α-amino group protected amino acid lmraole 30
/ 0. 45M HBTU/H0BT 2. lral (lmmole) ,  / 0.45M HBTU / H0BT 2.lral (lmmole),
DIEA 348 1 (2mmole)  DIEA 348 1 (2mmole)
5 - (洗浄) DMF  5-(wash) DMF
DCM  DCM
(クリ一べッジ) 5% H20 120 (Clearage) 5% H 2 0 120
5% フエノーノレ  5% fenore
3% チオア二ソール  3% thioanisol
3% エタンジチオール  3% ethanedithiol
3% トリイソプロビルシレン  3% triisopropyl silene
81% TFA  81% TFA
7 . (沈殿) MTBE  7. (Precipitation) MTBE
8 . (洗浄) MTBE  8. (Washing) MTBE
9 . (凍結乾燥) 得られた粗ペプチドは BioCad 60 (Perkin - Elmer, Foster City CA)により、 粒 子サイズ 10 ミクロンの C18カラム(Phenomenex, Torrance, CA)を用いて逆相 HPLC 法によつて精製された。 流速 20ml/min, 4 5分で 10%Bから 80°/。B (溶媒 A : 0. 05% TFA/H20, 溶媒 0. 05% TFA/ァセトニトリル)の直線濃度勾配で溶出し、 溶出液 を A220nmでモニターした。面積割合で 9 0 %以上を占める主ピークの質量分析を Lasermat 2000 (Finnigan Mat, San Jose, CA)を用レヽ、 MALD! [- TOF法で行なった 結果、 理論値 [MH+] 1109. 3に対し、 実測値 1109. 9を得た。 9. (Lyophilization) The obtained crude peptide was subjected to reverse phase HPLC using BioCad 60 (Perkin-Elmer, Foster City CA) using a C18 column (Phenomenex, Torrance, CA) with a particle size of 10 microns. Purified by the method. Flow rate 20ml / min, 10% B to 80 ° / in 45 minutes. B (solvent A: 0. 05% TFA / H 2 0, solvents 0. 05% TFA / Asetonitoriru) eluted with a linear gradient of was monitored eluate A220nm. Mass spectrometry of the main peak occupying 90% or more in area ratio was performed using Lasermat 2000 (Finnigan Mat, San Jose, Calif.) Using MALD! [-TOF method, and the theoretical value was [MH +] 1109.3. On the other hand, the measured value was 1109.9.
[参考例 2 ] Phe- Phe- Gin- Arg- Leu- Gin- Pro- Gly- Leu (配列番号 6 ) の合成 [参考例 1 ] と同様に Fmoc-Leu - Wang resinを開始レジンとして用い、  [Reference Example 2] Synthesis of Phe-Phe-Gin-Arg-Leu-Gin-Pro-Gly-Leu (SEQ ID NO: 6) Fmoc-Leu-Wang resin was used as a starting resin as in [Reference Example 1].
Fmoc - Gly - 0H、 Fmoc - Pro - 0H、 Fmoc - Gin (Trt) - 0H、 FmocHLeu - 0H、 Fraoc-Arg (Pbf) - 0H、 Fmoc- Gin (Trt) -0H、 Fmoc- Phe- 0H、 Fmoc- Phe- OHを順次結合させた。 Fmoc-Gly-0H, Fmoc-Pro-0H, Fmoc-Gin (Trt)-0H, FmocHLeu-0H, Fraoc-Arg (Pbf)-0H, Fmoc-Gin (Trt)-0H, Fmoc-Phe-0H, Fmoc -Phe-OH was coupled sequentially.
質量分析の結果、 理論値 [MH+] 1131. 3 に対し、 実測値 1130. 4を得た。  As a result of mass spectrometry, the measured value was 1130.4, whereas the theoretical value was [MH +], 1131.3.
[参考例 3 ] Met-Phe-Lys-Asn-Asn-Tyr-Pro-Ser-Leu (配列番号 7 ) の合成 • [参考例 1 ] と同様に Fmoc - Leu - Wang resinを開始レジンとして用い、  [Reference Example 3] Synthesis of Met-Phe-Lys-Asn-Asn-Tyr-Pro-Ser-Leu (SEQ ID NO: 7) • As in [Reference Example 1], Fmoc-Leu-Wang resin was used as a starting resin.
Fmoc-Ser (tBu) -OH, Fmoc - Pro - 0H、 Fmoc-Tyr (tBu) -OH, Fmoc-Asn (Trt) -OH, Fmoc-Asn (Trt) -OH, Fmoc-Lys (Boc) -OH, Fmoc- Phe - 0H、 Fmoc - Met- OHを順次結合さ せた。 Fmoc-Ser (tBu) -OH, Fmoc-Pro-0H, Fmoc-Tyr (tBu) -OH, Fmoc-Asn (Trt) -OH, Fmoc-Asn (Trt) -OH, Fmoc-Lys (Boc) -OH , Fmoc-Phe-0H and Fmoc-Met-OH were sequentially bonded.
質量分析の結果、 理論値 [MH+] 1031. 2 に対し、 実測値 1032. 3を得た。  As a result of mass spectrometry, the measured value 1032.3 was obtained against the theoretical value [MH +] 1031.2.
[参考例 4 ] Phe-Thr-Asp-Val-Ser-Leu-Tyr-Ile-Leu (配列番号 8 ) の合成 [Reference Example 4] Synthesis of Phe-Thr-Asp-Val-Ser-Leu-Tyr-Ile-Leu (SEQ ID NO: 8)
[参考例 1 ] と同様に Fmoc - Leu - Wang resinを開始レジンとして用い、 Fmoc-Leu-Wang resin was used as the starting resin as in [Reference Example 1].
Fmoc - lie - 0Hヽ Fmoc - Tyr (tBu) -OH, Fmoc - Leu - OHヽ Fmoc-Ser (tBu) - OHヽ Fmoc- Vaト 0H、 Fmoc-lie-0H ヽ Fmoc-Tyr (tBu) -OH, Fmoc-Leu-OH ヽ Fmoc-Ser (tBu)-OH ヽ Fmoc- Vato 0H,
Fmoc - Asp (Otbu) - OH 、 Fmoc - Thr (tBu) - 0H、 Fmoc - Phe - OHを順次結合させた。 Fmoc-Asp (Otbu) -OH, Fmoc-Thr (tBu) -0H, and Fmoc-Phe-OH were sequentially bonded.
質量分析の結果、 理論値 [MH- ] 1121. 3 に対し、 実測値 1122. 1 を得た。  As a result of mass spectrometry, the measured value 1122.1 was obtained against the theoretical value [MH-] 1121.3.
[参考例 5〕 Lys-Phe-Ser-Lys-Asp-Cys-Gly-Arg-Met-Leu (配列番号 9 ) の合成 Reference Example 5 Synthesis of Lys-Phe-Ser-Lys-Asp-Cys-Gly-Arg-Met-Leu (SEQ ID NO: 9)
[参考例 1 ] と同様に Fmoc - Leu - Wang resinを開始レジンとして用い、 Fmoc-Leu-Wang resin was used as the starting resin as in [Reference Example 1].
Fmoc - Met - 0H、 Fmoc - Arg (Pbf ) - 0H、 Fmoc - Gly - 0H、 Fmoc - Cys (Trt) -0H、  Fmoc-Met-0H, Fmoc-Arg (Pbf)-0H, Fmoc-Gly-0H, Fmoc-Cys (Trt) -0H,
Fmoc - Asp (Otbu) - 0H、 Fmoc-Lys (Boc) -OH, Fmoc-Ser (tBu) -OH, Fmoc - Phe- 0H、  Fmoc-Asp (Otbu)-0H, Fmoc-Lys (Boc) -OH, Fmoc-Ser (tBu) -OH, Fmoc-Phe-0H,
Fmoc-Lys (Boc) -OHを順次結合させた。  Fmoc-Lys (Boc) -OH was linked sequentially.
質量分析の結果、 理論値 [MH- ] 1108. 3 に対し、 実測値 1111. 4 を得た。  As a result of mass spectrometry, the measured value was 1111.4 compared to the theoretical value [MH-] 1108.3.
[参考例 6 ] Trp-Tyr-Cys-Ser-Tyr-Cys-Gln-Gly-Leu (配列番号 1 0 ) の合成 [Reference Example 6] Synthesis of Trp-Tyr-Cys-Ser-Tyr-Cys-Gln-Gly-Leu (SEQ ID NO: 10)
[参考例 1 ] と同様に Fmoc - Leu- Wang resin を開始レジンとして用い、 Fraoc - Gly- 0H、 Fmoc - Gin (Trt) - 0H、 Fmoc-Cys (Trt) -OH, Fraoc-Tyr (tBu) - 0H、Using Fmoc-Leu- Wang resin as the starting resin as in [Reference Example 1], Fraoc-Gly-0H, Fmoc-Gin (Trt)-0H, Fmoc-Cys (Trt) -OH, Fraoc-Tyr (tBu)-0H,
Fmoc - Ser (tBu) - 0H、 Fmoc-Cys (Trt) -0H、 Fmoc- Tyr (tBu) -0H、 Fmoc-Trp (Boc) -OH を 順次結合させた。 Fmoc-Ser (tBu) -0H, Fmoc-Cys (Trt) -0H, Fmoc-Tyr (tBu) -0H, and Fmoc-Trp (Boc) -OH were sequentially bonded.
質量分析の結果、 理論値 [腿 +] 1114. 3 に対し、 実測値 1115. 7 を得た。  As a result of mass spectrometry, an actual measured value of 115.7 was obtained with respect to a theoretical value of [thigh +] of 114.3.
[参考例 7 ] Lys-Tyr-Trp-Arg-Glu-Tyr-Ile-Leu-Ser-Leu (配列番号 1 1 ) の合 成  [Reference Example 7] Synthesis of Lys-Tyr-Trp-Arg-Glu-Tyr-Ile-Leu-Ser-Leu (SEQ ID NO: 11)
[参考例 1 ] と同様に Fmoc - Leu - Wang resin を開始レジンとして用い、 Fmoc - Ser (tBu) - 0H、 Fraoc - Leu - 0H、 Fmoc - lie - 0H、 Fmoc - Tyr (tBu) - 0H、  As in [Reference Example 1], Fmoc-Leu-Wang resin was used as the starting resin, Fmoc-Ser (tBu) -0H, Fraoc-Leu-0H, Fmoc-lie-0H, Fmoc-Tyr (tBu) -0H,
Fmoc-Glu (Otbu) -OH, Fmoc - Arg (Pbf) - 0H、 Fmoc-Trp (Boc) -OH, Fmoc - Tyr (tBu) - 0H、 Fmoc-Lys (Boc) -0Hを順次結合させた。 Fmoc-Glu (Otbu) -OH, Fmoc-Arg (Pbf)-0H, Fmoc-Trp (Boc) -OH, Fmoc-Tyr (tBu)-0H, and Fmoc-Lys (Boc)-0H were sequentially bonded.
質量分析の結果、 理論値 [MH- ] 1104. 3 に対し、 実測値 1105. 3 を得た。  As a result of mass spectrometry, an actual measured value of 1105.3 was obtained against a theoretical value of [MH-] of 1104.3.
[参考例 8 ] Glu-Tyr-Ile-Leu-Ser-Leu-Glu-Glu-Leu (配列番号 1 2 ) の合成 [Reference Example 8] Synthesis of Glu-Tyr-Ile-Leu-Ser-Leu-Glu-Glu-Leu (SEQ ID NO: 12)
[参考例 1 ] と同様に Fmoc - Leu - Wang resinを開始レジンとして用い、 Fmoc-Leu-Wang resin was used as the starting resin as in [Reference Example 1].
Fmoc-Glu (Otbu) -OH, Fmoc-Glu (Otbu) -OH, Fmoc - Leu - 0H、 Fmoc-Ser (tBu) -OH, Fmoc - Leu_0H、 Fmoc-Ile-0H、 Fmoc- Tyr (tBu) - 0H、 Fmoc - Glu (Otbu) - OHを順次結合 させた。 Fmoc-Glu (Otbu) -OH, Fmoc-Glu (Otbu) -OH, Fmoc-Leu-0H, Fmoc-Ser (tBu) -OH, Fmoc-Leu_0H, Fmoc-Ile-0H, Fmoc- Tyr (tBu)- 0H and Fmoc-Glu (Otbu) -OH were sequentially bonded.
質量分析の結果、 理論値 [匪 +] 1371. 6 に対し、 実測値 1370. 7 を得た。  As a result of mass spectrometry, the measured value was 130.7.
[参考例 9 ] Ile-Tyr-Asp-Met-Glu-Asn-Val-Leu-Leu (配列番号 1 3 ) の合成 [Reference Example 9] Synthesis of Ile-Tyr-Asp-Met-Glu-Asn-Val-Leu-Leu (SEQ ID NO: 13)
[参考例 1 ] と同様に Fmoc-Leu - Wang resin を開始レジンとして用い、Using Fmoc-Leu-Wang resin as the starting resin as in [Reference Example 1],
Fmoc - Leu - 0H、 Fmoc - Vaト 0H、 Fmoc- Asn (Trt) - 0H、 Fmoc-Glu (Otbu) - 0H、 Fmoc - Met - 0H、Fmoc-Leu-0H, Fmoc-Vato 0H, Fmoc- Asn (Trt)-0H, Fmoc-Glu (Otbu)-0H, Fmoc-Met-0H,
Fmoc- Asp (Otbu) -0H、 Fmoc- Tyr (tBu) -0H、 Fmoc- lie- OHを順次結合させた。 Fmoc-Asp (Otbu) -0H, Fmoc-Tyr (tBu) -0H, and Fmoc-lie-OH were sequentially bonded.
質量分析の結果、 理論値 [MH+] 1211. に対し、 実測値 1213. 4 を得た。  As a result of mass spectrometry, the theoretical value [MH +] 1211.
[参考例 1 0 ] Ala- Tyr- Tyr- Pro- Glu- Asp- Leu- Phe- lie (配列番号 1 4 ) の合成 [Reference Example 10] Synthesis of Ala-Tyr-Tyr-Pro-Glu-Asp-Leu-Phe-lie (SEQ ID NO: 14)
Fmoc— lie- Wang resin を開 台レジンとして用い、 Fmoc - Phe- 0H、 Fmoc— Leu - 0H、Using Fmoc-lie-Wang resin as an open resin, Fmoc-Phe-0H, Fmoc-Leu-0H,
Fmoc - Asp (Otbu) - 0H、 Fmoc - Glu (Otbu) - 0H、 Fmoc - Pro - 0H、 Fmoc - Tyr (tBu) - 0H、Fmoc-Asp (Otbu)-0H, Fmoc-Glu (Otbu)-0H, Fmoc-Pro-0H, Fmoc-Tyr (tBu)-0H,
Fraoc-Tyr (tBu) -OH, Fmoc - Ala-OHを順次結合させた。 Fraoc-Tyr (tBu) -OH and Fmoc-Ala-OH were sequentially bonded.
質量分析の結果、 理論値 [MH- ] 1216. 4 に対し、 実測値 1217. 4 を得た。  As a result of mass spectrometry, the measured value was 1217.4 in comparison to the theoretical value [MH-] 1216.4.
[参考例 1 1 ] Phe- Tyr- Ser- Ala- Leu- Pro- Gly-Tyr- lie. (配列番号 1 5 ) の合成 [Reference Example 11] Synthesis of Phe-Tyr-Ser-Ala-Leu-Pro-Gly-Tyr-lie. (SEQ ID NO: 15)
[参考例 1 0 ] と同様に Fmoc - lie- Wang resin (100- 200 mesh) を開始 して用い、 i½oc- Tyr(tBu)- 0H、 Fraoc- Gly- 0H、 Fmoc- Pro- 0H、 Fmoc-Leu-0H Fmoc- Ala-0H、 Fmoc- Ser (tBu) - 0H、 Fmoc- Tyr (tBu)- 0H、 Fmoc- Phe-OHを順次結合さ せた。 Reference Example 1 0] Like the Fmoc - lie- initiate Wang resin (100- 2 00 mesh) I½oc-Tyr (tBu) -0H, Fraoc-Gly-0H, Fmoc-Pro-0H, Fmoc-Leu-0H Fmoc-Ala-0H, Fmoc- Ser (tBu) -0H, Fmoc-Tyr (tBu ) -0H and Fmoc-Phe-OH were sequentially bonded.
質量分析の結果、 理論値 [觀 +] 1193. に対し、 実測値 1196.8 を得た。  As a result of mass spectrometry, the measured value was 1196.8 compared to the theoretical value of [view +] 1193.
[参考例 1 2] Arg - Phe - Leu-Ala - Glu - Leu - Ala - Tyr - Asp - Leu (配列番号 1 6) の 合成  [Reference Example 1 2] Synthesis of Arg-Phe-Leu-Ala-Glu-Leu-Ala-Tyr-Asp-Leu (SEQ ID NO: 16)
[参考 ί列 1] と同様に Fmoc— Leu Wang resin を用!/ヽ、 Fmoc— Asp (Otbu)— 0H、 Fmoc - Tyr (tBu) - 0H、Fmoc - Ala - 0H、FmocHLeu - 0H、Fffloc - Glu (Otbu) - 0H、Fmoc - Ala - 0H、 Fmoc- Leu- 0H、 Fmoc- Phe- 0H、 Fmoc- Arg (Pbf)- OHを順次結合させた。  Use Fmoc—Leu Wang resin as in [Reference 1]! / ヽ, Fmoc — Asp (Otbu) — 0H, Fmoc-Tyr (tBu)-0H, Fmoc-Ala-0H, FmocHLeu-0H, Fffloc-Glu (Otbu)-0H, Fmoc-Ala-0H, Fmoc-Leu- 0H, Fmoc-Phe-0H, and Fmoc-Arg (Pbf) -OH were sequentially bonded.
質量分析の結果、 理論値 [MH- ] 1183.5 に対し、 実測値 1186.7 を得た。 産業上の利用の可能性  As a result of mass spectrometry, the theoretical value [MH-] was 1183.5, but the measured value was 1186.7. Industrial potential
本発明者等は、癌胎児性タンパク質である GP C 3由来の 1 2種のぺプチドを、 HLA— A24+ HC C患者の免疫療法の標的候補として同定した。 HCC患者 における GP C 3の過剰発現に関わらず、 成人の正常臓器においては、 胎盤を除 き、 GP C 3の発現は顕著に低く、 GPC 3が HCCの免疫療法の理想的な標的 であり得ることが判明した。 また、 本発明の方法は、 HCCに罹患しているか否 かを診断するために非常に有用な方法であることが示された。 本発明者等は更に HLA— A24拘束性であり、 かつ HCC反応性の CTLを調製することができ る GPC 3由来のぺプチドを同定した。 HLA— A24アレルは日本人全体の 6 0%が保有し、 その 9 5 %の遺伝子型は A* 2402である。 コーカサス人では 20%、 アフリカ人では 1 2 %である (Tokunaga, K. ら, Immunogenetics 46, 199-205 (1997); Imanishi, I. ら, Proceedings of the 11th International Histocompatibility Workshop and Conference (Tsuji, K. ら編) 1065-1220 (Oxford University Press, Oxford, 1992))。 これらの結果から、 G P C 3は、 世界中の多くの HCC患者に対する特異的な免疫治療または癌診断及び予防にお ける用途に対して非常に有用であることが明らかとなった。 本明細書で引用した全ての刊行物、 特許および特許出願をそのまま参考として 本明細 j と る' The present inventors have identified 12 peptides from GPC3, an oncofetal protein, as target candidates for immunotherapy of HLA-A24 + HCC patients. Regardless of GPC3 overexpression in HCC patients, GPC3 expression is significantly lower in normal adult organs, except for the placenta, making GPC3 an ideal target for HCC immunotherapy It has been found. In addition, the method of the present invention has been shown to be a very useful method for diagnosing whether or not the subject has HCC. The present inventors have further identified a GPC3-derived peptide capable of preparing HLA-A24-restricted and HCC-reactive CTL. The HLA-A24 allele is owned by 60% of all Japanese and 95% of its genotype is A * 2402. It is 20% in Caucasians and 12% in Africans (Tokunaga, K. et al., Immunogenetics 46, 199-205 (1997); Imanishi, I. et al., Proceedings of the 11th International Histocompatibility Workshop and Conference (Tsuji, K Ed.) 1065-1220 (Oxford University Press, Oxford, 1992)). These results demonstrate that GPC3 is very useful for specific immunotherapy or use in cancer diagnosis and prevention for many HCC patients worldwide. All publications, patents and patent applications cited herein are referred to as they are. This specification j '

Claims

請求の範囲 The scope of the claims
1. 配列番号 5〜 1 6のいずれかに示すアミノ酸配列からなるペプチド。1. A peptide consisting of the amino acid sequence shown in any one of SEQ ID NOs: 5 to 16.
2. 配列番号 5〜 1 6のいずれかに示すアミノ酸配列において 1個または 2 個のアミノ酸が置換または付加されており、 細胞傷害性 T細胞の誘導能を有する ぺプチド。 2. A peptide having one or two amino acids substituted or added in any of the amino acid sequences shown in SEQ ID NOs: 5 to 16, and having an ability to induce cytotoxic T cells.
3. N末端から 2番目のアミノ酸がフエ二ルァラニン、 チロシン、 メチォ二 ンまたはトリプトファンである、 請求項 2に記載のぺプチド。  3. The peptide according to claim 2, wherein the second amino acid from the N-terminus is phenylalanine, tyrosine, methionine or tryptophan.
4. C末端のアミノ酸がフエ二ルァラニン、 ロイシン、 イソロイシン、 トリ プトファンまたはメチォニンである、 請求項 2または 3に記載のぺプチド。  4. The peptide according to claim 2, wherein the C-terminal amino acid is phenylalanine, leucine, isoleucine, tryptophan or methionine.
5. 請求項 1〜 4のいずれか 1項に記載のぺプチドを 1種以上含む、 腫瘍の 治療及び/または予防のための医薬。  5. A medicament for treating and / or preventing a tumor, which comprises one or more peptides according to any one of claims 1 to 4.
6. 請求項 1〜4のいずれか 1項に記載のぺプチドと HL A分子とを含む複 合体を表面に提示しているェキソソーム。  6. An exosome displaying on its surface a complex comprising the peptide according to any one of claims 1 to 4 and an HLA molecule.
7. HL A分子が HL A— A 24である、 請求項 6に記載のェキソソーム。 7. The exosome according to claim 6, wherein the HLA molecule is HLA-A24.
8. HL A分子が HL A— A* 2402である、 請求項 7に記載のェキソソ ーム。 8. The exosome according to claim 7, wherein the HLA molecule is HLA-A * 2402.
9. 請求項 1〜4のいずれか 1項に記載のぺプチドを用いて細胞傷害性 T細 胞誘導能の高い抗原提示細胞を誘導する方法。  9. A method for inducing antigen-presenting cells having a high ability to induce cytotoxic T cells using the peptide according to any one of claims 1 to 4.
1 0. グリピカン 3 (glypican-3; G P C 3) タンパク質または請求項 1〜 4のいずれか 1項に記載のぺプチドを含むその部分ぺプチドをコ一ドする遺伝子 を抗原提示細胞に導入することを含む、 細胞傷害性 T細胞誘導能の高い抗原提示 細胞を誘導する方法。  10. Introduction of a gene encoding a glypican-3 (glypican-3; GPC3) protein or a partial peptide thereof including the peptide according to any one of claims 1 to 4 into an antigen-presenting cell. A method for inducing antigen-presenting cells having high cytotoxic T cell-inducing ability, comprising:
1 1. 請求項 1〜 4のいずれか 1項に記載のぺプチドを用いて細胞傷害性 T 細胞を誘導する方法。  1 1. A method for inducing cytotoxic T cells using the peptide according to any one of claims 1 to 4.
1 2. 請求項 1〜4のいずれか 1項に記載のペプチドを用いて誘導される、 単離された細胞傷害性 T細胞。  1 2. An isolated cytotoxic T cell induced using the peptide of any one of claims 1-4.
1 3. HL A分子と請求項 1〜4のいずれか 1項に記載のペプチドとの複合 体を提示する抗原提示細胞。 1 3. An antigen-presenting cell that presents a complex of an HLA molecule and the peptide according to any one of claims 1 to 4.
14. 請求項 9または 1 0に記載の方法によって誘導される、 請求項 1 3に 記載の抗原提示細胞。 14. The antigen presenting cell according to claim 13, which is induced by the method according to claim 9 or 10.
1 5. GPC 3に対する抗体を含む、 肝細胞癌 (HCC) の診断剤。  1 5. A diagnostic agent for hepatocellular carcinoma (HCC), including an antibody against GPC3.
1 6. サンプルと GP C 3に対する抗体を接触させることを含む、 HCCの 診断方法。  1 6. A method for diagnosing HCC, comprising contacting a sample with an antibody against GPC3.
1 7. 更にサンプル中の GPC 3を定量することを含む、 請求項 1 6に記載 の方法。  17. The method of claim 16, further comprising quantifying GPC 3 in the sample.
1 8. G P C 3に対する抗体を含む、 HC Cの診断のためのキット。  1 8. A kit for diagnosis of HC C, comprising an antibody against GP C3.
PCT/JP2003/010459 2002-08-26 2003-08-19 Peptides and drugs containing the same WO2004018667A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU2003254950A AU2003254950A1 (en) 2002-08-26 2003-08-19 Peptides and drugs containing the same
JP2004530567A JP4406607B2 (en) 2002-08-26 2003-08-19 Peptide and pharmaceutical containing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002245831 2002-08-26
JP2002-245831 2002-08-26

Publications (1)

Publication Number Publication Date
WO2004018667A1 true WO2004018667A1 (en) 2004-03-04

Family

ID=31944202

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/010459 WO2004018667A1 (en) 2002-08-26 2003-08-19 Peptides and drugs containing the same

Country Status (4)

Country Link
JP (1) JP4406607B2 (en)
AU (1) AU2003254950A1 (en)
TW (1) TW200413406A (en)
WO (1) WO2004018667A1 (en)

Cited By (128)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006006693A1 (en) 2004-07-09 2006-01-19 Chugai Seiyaku Kabushiki Kaisha Anti-glypican 3 antibody
WO2006022407A1 (en) * 2004-08-24 2006-03-02 Chugai Seiyaku Kabushiki Kaisha Adjuvant therapy with the use of anti-glypican 3 antibody
WO2007018199A1 (en) * 2005-08-09 2007-02-15 Kumamoto University Cancer-rejection antigen peptide derived from glypican-3 (gpc3) for use in hal-a2-positive patient and pharmaceutical comprising the antigen
WO2007040105A1 (en) * 2005-09-30 2007-04-12 Takara Bio Inc. Method for production of t cell population
JP2009502732A (en) * 2005-07-27 2009-01-29 オンコセラピー・サイエンス株式会社 Colon cancer-related gene TOM34
WO2009069302A1 (en) * 2007-11-28 2009-06-04 Oncotherapy Science, Inc. Stat3 epitope peptides
WO2009094551A1 (en) 2008-01-25 2009-07-30 Amgen Inc. Ferroportin antibodies and methods of use
WO2009150822A1 (en) * 2008-06-10 2009-12-17 Oncotherapy Science, Inc. Mybl2 epitope peptides and vaccines containing the same
JP2010500308A (en) * 2006-08-11 2010-01-07 ライフ・サイエンシーズ・リサーチ・パートナーズ・フェレニゲング・ゾンデル・ウィンストーメルク Immunogenic peptides and their use in immune disorders
US7691586B2 (en) 2004-04-28 2010-04-06 Perseus Proteomics Inc. Method for predicting and judging the recurrence of liver cancer after treating liver cancer
WO2010056981A2 (en) 2008-11-13 2010-05-20 Massachusetts General Hospital Methods and compositions for regulating iron homeostasis by modulation bmp-6
US7867734B2 (en) 2004-10-26 2011-01-11 Chugai Seiyaku Kabushiki Kaisha Anti-glypican 3 antibody having modified sugar chain
WO2011050333A1 (en) 2009-10-23 2011-04-28 Amgen Inc. Vial adapter and system
WO2011156373A1 (en) 2010-06-07 2011-12-15 Amgen Inc. Drug delivery device
WO2012032764A1 (en) * 2010-09-07 2012-03-15 Oncotherapy Science, Inc. Ttll4 peptides and vaccines containing the same
WO2012053200A1 (en) * 2010-10-21 2012-04-26 Oncotherapy Science, Inc. C18orf54 peptides and vaccines including the same
WO2012053206A1 (en) * 2010-10-21 2012-04-26 Oncotherapy Science, Inc. Wdhd1 peptides and vaccines including the same
WO2012135315A1 (en) 2011-03-31 2012-10-04 Amgen Inc. Vial adapter and system
US8383114B2 (en) 2007-09-27 2013-02-26 Amgen Inc. Pharmaceutical formulations
WO2013055873A1 (en) 2011-10-14 2013-04-18 Amgen Inc. Injector and method of assembly
EP2620448A1 (en) 2008-05-01 2013-07-31 Amgen Inc. Anti-hepcidin antibodies and methods of use
WO2013133405A1 (en) 2012-03-09 2013-09-12 オンコセラピー・サイエンス株式会社 Pharmaceutical composition containing peptide
US8663647B2 (en) 2005-02-28 2014-03-04 Oncotherapy Science, Inc. Epitope peptides derived from vascular endothelial growth factor receptor 1 and vaccines containing these peptides
US8728811B2 (en) 2002-03-25 2014-05-20 Takara Bio Inc. Process for producing cytotoxic lymphocyte
WO2014081780A1 (en) 2012-11-21 2014-05-30 Amgen Inc. Drug delivery device
US8765469B2 (en) 2005-08-17 2014-07-01 Takara Bio Inc. Method of producing lymphocytes
JP2014169275A (en) * 2013-02-05 2014-09-18 Nitto Denko Corp Vaccine composition for mucosal administration
WO2014144096A1 (en) 2013-03-15 2014-09-18 Amgen Inc. Drug cassette, autoinjector, and autoinjector system
JP2014169274A (en) * 2013-02-05 2014-09-18 Nitto Denko Corp Vaccine composition for transdermal administration
WO2014149357A1 (en) 2013-03-22 2014-09-25 Amgen Inc. Injector and method of assembly
US8927273B2 (en) 2003-08-22 2015-01-06 Takara Bio Inc. Process for producing cytotoxic lymphocytes
US8999346B2 (en) 2008-02-14 2015-04-07 Life Sciences Research Partners Vzw Immunogenic control of tumours and tumour cells
WO2015061389A1 (en) 2013-10-24 2015-04-30 Amgen Inc. Drug delivery system with temperature-sensitive control
WO2015061386A1 (en) 2013-10-24 2015-04-30 Amgen Inc. Injector and method of assembly
US9102739B2 (en) 2005-10-14 2015-08-11 Chugai Seiyaku Kabushiki Kaisha Anti-glypican-3 antibody
WO2015119906A1 (en) 2014-02-05 2015-08-13 Amgen Inc. Drug delivery system with electromagnetic field generator
US9125849B2 (en) 2010-12-02 2015-09-08 Oncotherapy Science, Inc. TOMM34 peptides and vaccines including the same
WO2015171777A1 (en) 2014-05-07 2015-11-12 Amgen Inc. Autoinjector with shock reducing elements
WO2015187793A1 (en) 2014-06-03 2015-12-10 Amgen Inc. Drug delivery system and method of use
WO2016049036A1 (en) 2014-09-22 2016-03-31 Intrinsic Lifesciences Llc Humanized anti-hepcidin antibodies and uses thereof
WO2016061220A2 (en) 2014-10-14 2016-04-21 Amgen Inc. Drug injection device with visual and audio indicators
WO2016092787A1 (en) * 2014-12-09 2016-06-16 Oncotherapy Science, Inc. Gpc3 epitope peptides for th1 cells and vaccines containing the same
WO2016100781A1 (en) 2014-12-19 2016-06-23 Amgen Inc. Drug delivery device with proximity sensor
WO2016100055A1 (en) 2014-12-19 2016-06-23 Amgen Inc. Drug delivery device with live button or user interface field
US9394517B2 (en) 2008-02-14 2016-07-19 Imcyse Sa CD4+ T-cells with cytolytic properties
WO2016143816A1 (en) * 2015-03-09 2016-09-15 日本電気株式会社 Peptide derived from gpc3, pharmaceutical composition for treatment or prevention of cancer using same, immunity inducer, and method for producing antigen-presenting cells
WO2017039786A1 (en) 2015-09-02 2017-03-09 Amgen Inc. Syringe assembly adapter for a syringe
US9657098B2 (en) 2013-03-15 2017-05-23 Intrinsic Lifesciences, Llc Anti-hepcidin antibodies and uses thereof
WO2017100501A1 (en) 2015-12-09 2017-06-15 Amgen Inc. Auto-injector with signaling cap
WO2017120178A1 (en) 2016-01-06 2017-07-13 Amgen Inc. Auto-injector with signaling electronics
WO2017160799A1 (en) 2016-03-15 2017-09-21 Amgen Inc. Reducing probability of glass breakage in drug delivery devices
WO2017189089A1 (en) 2016-04-29 2017-11-02 Amgen Inc. Drug delivery device with messaging label
WO2017192287A1 (en) 2016-05-02 2017-11-09 Amgen Inc. Syringe adapter and guide for filling an on-body injector
WO2017197222A1 (en) 2016-05-13 2017-11-16 Amgen Inc. Vial sleeve assembly
WO2017200989A1 (en) 2016-05-16 2017-11-23 Amgen Inc. Data encryption in medical devices with limited computational capability
WO2017209899A1 (en) 2016-06-03 2017-12-07 Amgen Inc. Impact testing apparatuses and methods for drug delivery devices
WO2018004842A1 (en) 2016-07-01 2018-01-04 Amgen Inc. Drug delivery device having minimized risk of component fracture upon impact events
US9861661B2 (en) 2008-02-14 2018-01-09 Life Sciences Research Partners Vzw Elimination of immune responses to viral vectors
WO2018034784A1 (en) 2016-08-17 2018-02-22 Amgen Inc. Drug delivery device with placement detection
WO2018081234A1 (en) 2016-10-25 2018-05-03 Amgen Inc. On-body injector
US9975966B2 (en) 2014-09-26 2018-05-22 Chugai Seiyaku Kabushiki Kaisha Cytotoxicity-inducing theraputic agent
WO2018110654A1 (en) 2016-12-15 2018-06-21 Heartseed株式会社 Undifferentiated stem cell removal agent and method for removing undifferentiated stem cells
WO2018136398A1 (en) 2017-01-17 2018-07-26 Amgen Inc. Injection devices and related methods of use and assembly
WO2018143454A1 (en) * 2017-02-06 2018-08-09 国立研究開発法人国立がん研究センター Novel t-cell receptor
WO2018152073A1 (en) 2017-02-17 2018-08-23 Amgen Inc. Insertion mechanism for drug delivery device
WO2018151890A1 (en) 2017-02-17 2018-08-23 Amgen Inc. Drug delivery device with sterile fluid flowpath and related method of assembly
WO2018165499A1 (en) 2017-03-09 2018-09-13 Amgen Inc. Insertion mechanism for drug delivery device
WO2018164829A1 (en) 2017-03-07 2018-09-13 Amgen Inc. Needle insertion by overpressure
WO2018165143A1 (en) 2017-03-06 2018-09-13 Amgen Inc. Drug delivery device with activation prevention feature
WO2018172219A1 (en) 2017-03-20 2018-09-27 F. Hoffmann-La Roche Ag Method for in vitro glycoengineering of an erythropoiesis stimulating protein
EP3381445A2 (en) 2007-11-15 2018-10-03 Amgen Inc. Aqueous formulation of antibody stablised by antioxidants for parenteral administration
WO2018183039A1 (en) 2017-03-28 2018-10-04 Amgen Inc. Plunger rod and syringe assembly system and method
WO2018226565A1 (en) 2017-06-08 2018-12-13 Amgen Inc. Torque driven drug delivery device
WO2018226515A1 (en) 2017-06-08 2018-12-13 Amgen Inc. Syringe assembly for a drug delivery device and method of assembly
WO2018236619A1 (en) 2017-06-22 2018-12-27 Amgen Inc. Device activation impact/shock reduction
WO2018237225A1 (en) 2017-06-23 2018-12-27 Amgen Inc. Electronic drug delivery device comprising a cap activated by a switch assembly
WO2019014014A1 (en) 2017-07-14 2019-01-17 Amgen Inc. Needle insertion-retraction system having dual torsion spring system
WO2019018169A1 (en) 2017-07-21 2019-01-24 Amgen Inc. Gas permeable sealing member for drug container and methods of assembly
WO2019022950A1 (en) 2017-07-25 2019-01-31 Amgen Inc. Drug delivery device with container access system and related method of assembly
WO2019022951A1 (en) 2017-07-25 2019-01-31 Amgen Inc. Drug delivery device with gear module and related method of assembly
WO2019032482A2 (en) 2017-08-09 2019-02-14 Amgen Inc. Hydraulic-pneumatic pressurized chamber drug delivery system
WO2019036181A1 (en) 2017-08-18 2019-02-21 Amgen Inc. Wearable injector with sterile adhesive patch
WO2019040548A1 (en) 2017-08-22 2019-02-28 Amgen Inc. Needle insertion mechanism for drug delivery device
WO2019070552A1 (en) 2017-10-06 2019-04-11 Amgen Inc. Drug delivery device with interlock assembly and related method of assembly
WO2019070472A1 (en) 2017-10-04 2019-04-11 Amgen Inc. Flow adapter for drug delivery device
WO2019074579A1 (en) 2017-10-09 2019-04-18 Amgen Inc. Drug delivery device with drive assembly and related method of assembly
WO2019090303A1 (en) 2017-11-06 2019-05-09 Amgen Inc. Fill-finish assemblies and related methods
WO2019090086A1 (en) 2017-11-03 2019-05-09 Amgen Inc. Systems and approaches for sterilizing a drug delivery device
WO2019089178A1 (en) 2017-11-06 2019-05-09 Amgen Inc. Drug delivery device with placement and flow sensing
WO2019094138A1 (en) 2017-11-10 2019-05-16 Amgen Inc. Plungers for drug delivery devices
WO2019099324A1 (en) 2017-11-16 2019-05-23 Amgen Inc. Door latch mechanism for drug delivery device
WO2019099322A1 (en) 2017-11-16 2019-05-23 Amgen Inc. Autoinjector with stall and end point detection
EP3556411A1 (en) 2015-02-17 2019-10-23 Amgen Inc. Drug delivery device with vacuum assisted securement and/or feedback
WO2019231618A1 (en) 2018-06-01 2019-12-05 Amgen Inc. Modular fluid path assemblies for drug delivery devices
WO2019231582A1 (en) 2018-05-30 2019-12-05 Amgen Inc. Thermal spring release mechanism for a drug delivery device
EP3593839A1 (en) 2013-03-15 2020-01-15 Amgen Inc. Drug cassette
US10537626B2 (en) 2014-10-07 2020-01-21 Cytlimic Inc. HSP70-derived peptide, pharmaceutical composition for treating or preventing cancer using same, immunity inducer, and method for producing antigen presenting cell
WO2020023451A1 (en) 2018-07-24 2020-01-30 Amgen Inc. Delivery devices for administering drugs
WO2020023336A1 (en) 2018-07-24 2020-01-30 Amgen Inc. Hybrid drug delivery devices with grip portion
WO2020023444A1 (en) 2018-07-24 2020-01-30 Amgen Inc. Delivery devices for administering drugs
WO2020023220A1 (en) 2018-07-24 2020-01-30 Amgen Inc. Hybrid drug delivery devices with tacky skin attachment portion and related method of preparation
WO2020028009A1 (en) 2018-07-31 2020-02-06 Amgen Inc. Fluid path assembly for a drug delivery device
WO2020068476A1 (en) 2018-09-28 2020-04-02 Amgen Inc. Muscle wire escapement activation assembly for a drug delivery device
WO2020068623A1 (en) 2018-09-24 2020-04-02 Amgen Inc. Interventional dosing systems and methods
WO2020072577A1 (en) 2018-10-02 2020-04-09 Amgen Inc. Injection systems for drug delivery with internal force transmission
WO2020072846A1 (en) 2018-10-05 2020-04-09 Amgen Inc. Drug delivery device having dose indicator
WO2020081480A1 (en) 2018-10-15 2020-04-23 Amgen Inc. Platform assembly process for drug delivery device
WO2020081479A1 (en) 2018-10-15 2020-04-23 Amgen Inc. Drug delivery device having damping mechanism
WO2020092056A1 (en) 2018-11-01 2020-05-07 Amgen Inc. Drug delivery devices with partial needle retraction
WO2020091981A1 (en) 2018-11-01 2020-05-07 Amgen Inc. Drug delivery devices with partial drug delivery member retraction
WO2020091956A1 (en) 2018-11-01 2020-05-07 Amgen Inc. Drug delivery devices with partial drug delivery member retraction
US10729791B2 (en) 2015-05-18 2020-08-04 Imcyse Sa Animal models for evaluating pharmaceutical compounds
WO2020219482A1 (en) 2019-04-24 2020-10-29 Amgen Inc. Syringe sterilization verification assemblies and methods
US10842848B2 (en) 2015-04-07 2020-11-24 Cytlimic Inc. Method for treating cancer by adminstering poly I:C and LAG-3-IgG fusion protein
JP2020191869A (en) * 2014-12-23 2020-12-03 イマティクス バイオテクノロジーズ ゲーエムベーハー Novel peptides and combination of peptides for use in immunotherapy against hepatocellular carcinoma (hcc) and other cancers
US10899795B2 (en) 2012-01-30 2021-01-26 Life Sciences Research Partners Vzw Modified epitopes for boosting CD4+ T-cell responses
WO2021041067A2 (en) 2019-08-23 2021-03-04 Amgen Inc. Drug delivery device with configurable needle shield engagement components and related methods
US10982196B2 (en) 2008-02-14 2021-04-20 Life Sciences Research Partners Vzw Immunotherapy targeting intracellular pathogens
US11193114B2 (en) 2010-11-25 2021-12-07 Imnate Sarl Immunogenic peptides for use in the prevention and/or treatment of infectious diseases, autoimmune diseases, immune responses to allofactors, allergic diseases, tumors, graft rejection and immune responses against viral vectors used for gene therapy or gene vaccination
US11226332B2 (en) 2013-05-28 2022-01-18 Imcyse Sa Method for the detection, preparation and depletion of CD4+ t lymphocytes
US11291718B2 (en) 2016-10-11 2022-04-05 Cytlimic Inc. Method for treating cancer by administering a toll-like receptor agonist and LAG-3 IgG fusion protein
EP3981450A1 (en) 2015-02-27 2022-04-13 Amgen, Inc Drug delivery device having a needle guard mechanism with a tunable threshold of resistance to needle guard movement
EP4074355A1 (en) 2011-04-20 2022-10-19 Amgen Inc. Autoinjector apparatus
US11485768B2 (en) 2016-04-19 2022-11-01 Imcyse Sa Immunogenic CD1d binding peptides
WO2022246055A1 (en) 2021-05-21 2022-11-24 Amgen Inc. Method of optimizing a filling recipe for a drug container
US11787849B2 (en) 2015-09-25 2023-10-17 Imcyse Sa Methods and compounds for eliminating immune responses to therapeutic agents
WO2024094457A1 (en) 2022-11-02 2024-05-10 F. Hoffmann-La Roche Ag Method for producing glycoprotein compositions
US11992659B2 (en) 2021-11-23 2024-05-28 Amgen Inc. Controllable drug delivery system and method of use

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008097461A2 (en) 2007-02-02 2008-08-14 Amgen Inc Hepcidin and hepcidin antibodies
GB201501017D0 (en) * 2014-12-23 2015-03-04 Immatics Biotechnologies Gmbh Novel peptides and combination of peptides for use in immunotherapy against hepatocellular carcinoma (HCC) and other cancers

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
NAKATSURA T. ET AL.: "Glypican-3, overexpressed specifically in human hepatocellular carcinoma, is a novel tumor marker", BIOCHEM. BIOPHYS. RES. COMMUN., vol. 306, no. 1, June 2003 (2003-06-01), pages 16 - 25, XP002261242 *
NUKAYA I. ET AL.: "Identification of HLA-A24 epitope peptides of carcinoembryonic antigen which induce tumor-reactive cytotoxic T lymphocyte", INT. J. CANCER, vol. 80, no. 1, 1999, pages 92 - 97, XP002939244 *
OKABE H. ET AL.: "Genome-wide analysis of gene expression in human hepatocellular carcinomas using cDNA microarray: identification of genes involved in viral carcinogenesis and tumor progression", CANCER RES., vol. 61, no. 5, 2001, pages 2129 - 2137, XP002235524 *
PILIA G. ET AL.: "Mutations in GPC3, a glypican gene, cause the simpson-golabi-behmel overgrowth syndrome", NAT. GENET., vol. 12, no. 3, 1996, pages 2341 - 247, XP002957174 *
ZHU ZW ET AL.: "Enhanced glypican-3 expression differentiates the majority of hepatocellular carcinomas from benign hepatic disorders", GUT, vol. 48, no. 4, 2001, pages 558 - 564, XP002959808 *

Cited By (223)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8728811B2 (en) 2002-03-25 2014-05-20 Takara Bio Inc. Process for producing cytotoxic lymphocyte
US8975070B2 (en) 2002-03-25 2015-03-10 Takara Bio Inc. Process for producing cytotoxic lymphocyte
US8927273B2 (en) 2003-08-22 2015-01-06 Takara Bio Inc. Process for producing cytotoxic lymphocytes
US7691586B2 (en) 2004-04-28 2010-04-06 Perseus Proteomics Inc. Method for predicting and judging the recurrence of liver cancer after treating liver cancer
EP2216046A2 (en) 2004-07-09 2010-08-11 Chugai Seiyaku Kabushiki Kaisha Anti-glypican 3 antibody
EP2898897A2 (en) 2004-07-09 2015-07-29 Chugai Seiyaku Kabushiki Kaisha Anti-glypican 3 antibody
EP2314317A2 (en) 2004-07-09 2011-04-27 Chugai Seiyaku Kabushiki Kaisha Anti-glypican 3 antibody
WO2006006693A1 (en) 2004-07-09 2006-01-19 Chugai Seiyaku Kabushiki Kaisha Anti-glypican 3 antibody
US7919086B2 (en) 2004-07-09 2011-04-05 Chugai Seiyaku Kabushiki Kaisha Anti-glypican 3 antibody
WO2006022407A1 (en) * 2004-08-24 2006-03-02 Chugai Seiyaku Kabushiki Kaisha Adjuvant therapy with the use of anti-glypican 3 antibody
US7871613B2 (en) 2004-08-24 2011-01-18 Chugai Seiyaku Kabushiki Kaisha Adjuvant therapy with the use of anti-glypican 3 antibody
US7867734B2 (en) 2004-10-26 2011-01-11 Chugai Seiyaku Kabushiki Kaisha Anti-glypican 3 antibody having modified sugar chain
US8663647B2 (en) 2005-02-28 2014-03-04 Oncotherapy Science, Inc. Epitope peptides derived from vascular endothelial growth factor receptor 1 and vaccines containing these peptides
JP2009502732A (en) * 2005-07-27 2009-01-29 オンコセラピー・サイエンス株式会社 Colon cancer-related gene TOM34
US8674059B2 (en) 2005-07-27 2014-03-18 Oncotherapy Science, Inc. Colon cancer related gene TOM34
CN101313063B (en) * 2005-08-09 2013-04-03 肿瘤疗法·科学股份有限公司 Cancer-rejection antigen peptide derived from glypican-3 (GPC3) for use in HLA-A2-positive patient and pharmaceutical comprising the antigen
CN104877008B (en) * 2005-08-09 2018-06-05 肿瘤疗法·科学股份有限公司 The cancer rejection antigen peptide from GPC3 for HLA-A2 Positive Populations and the drug containing the peptide
CN103242428B (en) * 2005-08-09 2015-04-15 肿瘤疗法.科学股份有限公司 Glypican-3 (GPC3)-derived tumor rejection antigenic peptides useful for HLA-A2-positive patients and pharmaceutical comprising the same
CN104877008A (en) * 2005-08-09 2015-09-02 肿瘤疗法·科学股份有限公司 Cancer-rejection antigen peptide derived from glypican-3 GPC3 for use in HAL-A2-positive patient and pharmaceutical comprising the antigen
US8053556B2 (en) 2005-08-09 2011-11-08 Oncotherapy Science, Inc. Glypican-3 (GPC3)-derived tumor rejection antigenic peptides useful for HLA-A2-positive patients and pharmaceutical comprising the same
WO2007018199A1 (en) * 2005-08-09 2007-02-15 Kumamoto University Cancer-rejection antigen peptide derived from glypican-3 (gpc3) for use in hal-a2-positive patient and pharmaceutical comprising the antigen
JP5299942B2 (en) * 2005-08-09 2013-09-25 オンコセラピー・サイエンス株式会社 Glypican-3 (GPC3) -derived cancer rejection antigen peptide for HLA-A2 positive person and pharmaceutical containing the same
US8535942B2 (en) 2005-08-09 2013-09-17 Oncotherapy Science, Inc. Glypican-3 (GPC3)-derived tumor rejection antigenic peptides useful for HLA-A2-positive patients and pharmaceutical comprising the same
KR101304243B1 (en) 2005-08-09 2013-09-05 온코세라피 사이언스 가부시키가이샤 Cancer-Rejection Antigen Peptide Derived from Glypican-3(GPC-3) for Use in HAL-A2 Positive Patient and Pharmaceutical Comprising the Same
US8765469B2 (en) 2005-08-17 2014-07-01 Takara Bio Inc. Method of producing lymphocytes
JP5156382B2 (en) * 2005-09-30 2013-03-06 タカラバイオ株式会社 Method for producing T cell population
WO2007040105A1 (en) * 2005-09-30 2007-04-12 Takara Bio Inc. Method for production of t cell population
EA016168B1 (en) * 2005-09-30 2012-02-28 Такара Био Инк. Method for production of t cell population and use thereof
CN101400785B (en) * 2005-09-30 2013-09-25 宝生物工程株式会社 Method for production of t cell population
US9102739B2 (en) 2005-10-14 2015-08-11 Chugai Seiyaku Kabushiki Kaisha Anti-glypican-3 antibody
US10118959B2 (en) 2005-10-14 2018-11-06 Chugai Seiyaku Kabushiki Kaisha Anti-glypican-3 antibody
US10662232B2 (en) 2006-08-11 2020-05-26 Life Sciences Research Partners Vzw Immunogenic peptides and their use in immune disorders
US9249202B2 (en) 2006-08-11 2016-02-02 Life Sciences Research Partners Vzw Immunogenic peptides and their use in immune disorders
JP2010500308A (en) * 2006-08-11 2010-01-07 ライフ・サイエンシーズ・リサーチ・パートナーズ・フェレニゲング・ゾンデル・ウィンストーメルク Immunogenic peptides and their use in immune disorders
US11718650B2 (en) 2006-08-11 2023-08-08 Imcyse Sa Immunogenic peptides and their use in immune disorders
US9320797B2 (en) 2007-09-27 2016-04-26 Amgen Inc. Pharmaceutical formulations
US10653781B2 (en) 2007-09-27 2020-05-19 Amgen Inc. Pharmaceutical formulations
US8383114B2 (en) 2007-09-27 2013-02-26 Amgen Inc. Pharmaceutical formulations
EP3381445A2 (en) 2007-11-15 2018-10-03 Amgen Inc. Aqueous formulation of antibody stablised by antioxidants for parenteral administration
WO2009069302A1 (en) * 2007-11-28 2009-06-04 Oncotherapy Science, Inc. Stat3 epitope peptides
US9175078B2 (en) 2008-01-25 2015-11-03 Amgen Inc. Ferroportin antibodies and methods of use
EP2803675A2 (en) 2008-01-25 2014-11-19 Amgen, Inc Ferroportin antibodies and methods of use
WO2009094551A1 (en) 2008-01-25 2009-07-30 Amgen Inc. Ferroportin antibodies and methods of use
EP2574628A1 (en) 2008-01-25 2013-04-03 Amgen Inc. Ferroportin antibodies and methods of use
US9688759B2 (en) 2008-01-25 2017-06-27 Amgen, Inc. Ferroportin antibodies and methods of use
US8999346B2 (en) 2008-02-14 2015-04-07 Life Sciences Research Partners Vzw Immunogenic control of tumours and tumour cells
US9394517B2 (en) 2008-02-14 2016-07-19 Imcyse Sa CD4+ T-cells with cytolytic properties
US9861661B2 (en) 2008-02-14 2018-01-09 Life Sciences Research Partners Vzw Elimination of immune responses to viral vectors
US10982196B2 (en) 2008-02-14 2021-04-20 Life Sciences Research Partners Vzw Immunotherapy targeting intracellular pathogens
US10617748B2 (en) 2008-02-14 2020-04-14 Life Sciences Research Partners Vzw Immunogenic control of tumours and tumour cells
EP2816059A1 (en) 2008-05-01 2014-12-24 Amgen, Inc Anti-hepcidin antibodies and methods of use
EP2620448A1 (en) 2008-05-01 2013-07-31 Amgen Inc. Anti-hepcidin antibodies and methods of use
RU2496787C2 (en) * 2008-06-10 2013-10-27 Онкотерапи Сайенс, Инк. Mybl2 epitope peptides and vaccines containing them
WO2009150822A1 (en) * 2008-06-10 2009-12-17 Oncotherapy Science, Inc. Mybl2 epitope peptides and vaccines containing the same
EP3693014A1 (en) 2008-11-13 2020-08-12 The General Hospital Corporation Methods and compositions for regulating iron homeostasis by modulation bmp-6
WO2010056981A2 (en) 2008-11-13 2010-05-20 Massachusetts General Hospital Methods and compositions for regulating iron homeostasis by modulation bmp-6
WO2011050333A1 (en) 2009-10-23 2011-04-28 Amgen Inc. Vial adapter and system
WO2011156373A1 (en) 2010-06-07 2011-12-15 Amgen Inc. Drug delivery device
CN103189510B (en) * 2010-09-07 2015-05-06 肿瘤疗法科学股份有限公司 TTLL4 peptides and vaccines containing the same
CN103189510A (en) * 2010-09-07 2013-07-03 肿瘤疗法科学股份有限公司 TTLL4 peptides and vaccines containing the same
WO2012032764A1 (en) * 2010-09-07 2012-03-15 Oncotherapy Science, Inc. Ttll4 peptides and vaccines containing the same
WO2012053200A1 (en) * 2010-10-21 2012-04-26 Oncotherapy Science, Inc. C18orf54 peptides and vaccines including the same
US9056890B2 (en) 2010-10-21 2015-06-16 Oncotherapy Science Inc. WDHD1 peptides and vaccines including the same
WO2012053206A1 (en) * 2010-10-21 2012-04-26 Oncotherapy Science, Inc. Wdhd1 peptides and vaccines including the same
US11193114B2 (en) 2010-11-25 2021-12-07 Imnate Sarl Immunogenic peptides for use in the prevention and/or treatment of infectious diseases, autoimmune diseases, immune responses to allofactors, allergic diseases, tumors, graft rejection and immune responses against viral vectors used for gene therapy or gene vaccination
US9125849B2 (en) 2010-12-02 2015-09-08 Oncotherapy Science, Inc. TOMM34 peptides and vaccines including the same
US9585948B2 (en) 2010-12-02 2017-03-07 Oncotherapy Science, Inc. TOMM34 peptides and vaccines including the same
WO2012135315A1 (en) 2011-03-31 2012-10-04 Amgen Inc. Vial adapter and system
EP4074355A1 (en) 2011-04-20 2022-10-19 Amgen Inc. Autoinjector apparatus
EP3744371A1 (en) 2011-10-14 2020-12-02 Amgen, Inc Injector and method of assembly
EP3335747A1 (en) 2011-10-14 2018-06-20 Amgen Inc. Injector and method of assembly
EP3269413A1 (en) 2011-10-14 2018-01-17 Amgen, Inc Injector and method of assembly
EP3045188A1 (en) 2011-10-14 2016-07-20 Amgen, Inc Injector and method of assembly
EP3045187A1 (en) 2011-10-14 2016-07-20 Amgen, Inc Injector and method of assembly
EP3045189A1 (en) 2011-10-14 2016-07-20 Amgen, Inc Injector and method of assembly
EP3045190A1 (en) 2011-10-14 2016-07-20 Amgen, Inc Injector and method of assembly
WO2013055873A1 (en) 2011-10-14 2013-04-18 Amgen Inc. Injector and method of assembly
US10899795B2 (en) 2012-01-30 2021-01-26 Life Sciences Research Partners Vzw Modified epitopes for boosting CD4+ T-cell responses
WO2013133405A1 (en) 2012-03-09 2013-09-12 オンコセラピー・サイエンス株式会社 Pharmaceutical composition containing peptide
WO2014081780A1 (en) 2012-11-21 2014-05-30 Amgen Inc. Drug delivery device
US11439745B2 (en) 2012-11-21 2022-09-13 Amgen Inc. Drug delivery device
EP3072548A1 (en) 2012-11-21 2016-09-28 Amgen, Inc Drug delivery device
US10682474B2 (en) 2012-11-21 2020-06-16 Amgen Inc. Drug delivery device
EP3656426A1 (en) 2012-11-21 2020-05-27 Amgen, Inc Drug delivery device
US11344681B2 (en) 2012-11-21 2022-05-31 Amgen Inc. Drug delivery device
EP3081249A1 (en) 2012-11-21 2016-10-19 Amgen, Inc Drug delivery device
EP4234694A2 (en) 2012-11-21 2023-08-30 Amgen Inc. Drug delivery device
US11458247B2 (en) 2012-11-21 2022-10-04 Amgen Inc. Drug delivery device
JP2014169275A (en) * 2013-02-05 2014-09-18 Nitto Denko Corp Vaccine composition for mucosal administration
JP2014169274A (en) * 2013-02-05 2014-09-18 Nitto Denko Corp Vaccine composition for transdermal administration
WO2014144096A1 (en) 2013-03-15 2014-09-18 Amgen Inc. Drug cassette, autoinjector, and autoinjector system
US9657098B2 (en) 2013-03-15 2017-05-23 Intrinsic Lifesciences, Llc Anti-hepcidin antibodies and uses thereof
EP3593839A1 (en) 2013-03-15 2020-01-15 Amgen Inc. Drug cassette
US9803011B2 (en) 2013-03-15 2017-10-31 Intrinsic Lifesciences Llc Anti-hepcidin antibodies and uses thereof
US10239941B2 (en) 2013-03-15 2019-03-26 Intrinsic Lifesciences Llc Anti-hepcidin antibodies and uses thereof
EP3831427A1 (en) 2013-03-22 2021-06-09 Amgen Inc. Injector and method of assembly
WO2014149357A1 (en) 2013-03-22 2014-09-25 Amgen Inc. Injector and method of assembly
US11226332B2 (en) 2013-05-28 2022-01-18 Imcyse Sa Method for the detection, preparation and depletion of CD4+ t lymphocytes
EP3501575A1 (en) 2013-10-24 2019-06-26 Amgen, Inc Drug delivery system with temperature-sensitive-control
EP3421066A1 (en) 2013-10-24 2019-01-02 Amgen, Inc Injector and method of assembly
WO2015061386A1 (en) 2013-10-24 2015-04-30 Amgen Inc. Injector and method of assembly
EP3789064A1 (en) 2013-10-24 2021-03-10 Amgen, Inc Injector and method of assembly
WO2015061389A1 (en) 2013-10-24 2015-04-30 Amgen Inc. Drug delivery system with temperature-sensitive control
WO2015119906A1 (en) 2014-02-05 2015-08-13 Amgen Inc. Drug delivery system with electromagnetic field generator
EP3785749A1 (en) 2014-05-07 2021-03-03 Amgen Inc. Autoinjector with shock reducing elements
WO2015171777A1 (en) 2014-05-07 2015-11-12 Amgen Inc. Autoinjector with shock reducing elements
EP4036924A1 (en) 2014-06-03 2022-08-03 Amgen, Inc Devices and methods for assisting a user of a drug delivery device
WO2015187797A1 (en) 2014-06-03 2015-12-10 Amgen Inc. Controllable drug delivery system and method of use
WO2015187799A1 (en) 2014-06-03 2015-12-10 Amgen Inc. Systems and methods for remotely processing data collected by a drug delivery device
WO2015187793A1 (en) 2014-06-03 2015-12-10 Amgen Inc. Drug delivery system and method of use
US11213624B2 (en) 2014-06-03 2022-01-04 Amgen Inc. Controllable drug delivery system and method of use
US11738146B2 (en) 2014-06-03 2023-08-29 Amgen Inc. Drug delivery system and method of use
EP4362039A2 (en) 2014-06-03 2024-05-01 Amgen Inc. Controllable drug delivery system and method of use
US10323088B2 (en) 2014-09-22 2019-06-18 Intrinsic Lifesciences Llc Humanized anti-hepcidin antibodies and uses thereof
WO2016049036A1 (en) 2014-09-22 2016-03-31 Intrinsic Lifesciences Llc Humanized anti-hepcidin antibodies and uses thereof
US9975966B2 (en) 2014-09-26 2018-05-22 Chugai Seiyaku Kabushiki Kaisha Cytotoxicity-inducing theraputic agent
US11001643B2 (en) 2014-09-26 2021-05-11 Chugai Seiyaku Kabushiki Kaisha Cytotoxicity-inducing therapeutic agent
US10537626B2 (en) 2014-10-07 2020-01-21 Cytlimic Inc. HSP70-derived peptide, pharmaceutical composition for treating or preventing cancer using same, immunity inducer, and method for producing antigen presenting cell
US11304997B2 (en) 2014-10-07 2022-04-19 Cytlimic Inc. HSP70-derived peptide, pharmaceutical composition for treating or preventing cancer using same, immunity inducer, and method for producing antigen-presenting cell
WO2016061220A2 (en) 2014-10-14 2016-04-21 Amgen Inc. Drug injection device with visual and audio indicators
EP3943135A2 (en) 2014-10-14 2022-01-26 Amgen Inc. Drug injection device with visual and audible indicators
WO2016092787A1 (en) * 2014-12-09 2016-06-16 Oncotherapy Science, Inc. Gpc3 epitope peptides for th1 cells and vaccines containing the same
US10799630B2 (en) 2014-12-19 2020-10-13 Amgen Inc. Drug delivery device with proximity sensor
EP3689394A1 (en) 2014-12-19 2020-08-05 Amgen Inc. Drug delivery device with live button or user interface field
US10765801B2 (en) 2014-12-19 2020-09-08 Amgen Inc. Drug delivery device with proximity sensor
WO2016100055A1 (en) 2014-12-19 2016-06-23 Amgen Inc. Drug delivery device with live button or user interface field
EP3848072A1 (en) 2014-12-19 2021-07-14 Amgen Inc. Drug delivery device with proximity sensor
US11357916B2 (en) 2014-12-19 2022-06-14 Amgen Inc. Drug delivery device with live button or user interface field
WO2016100781A1 (en) 2014-12-19 2016-06-23 Amgen Inc. Drug delivery device with proximity sensor
US11944794B2 (en) 2014-12-19 2024-04-02 Amgen Inc. Drug delivery device with proximity sensor
JP7026411B2 (en) 2014-12-23 2022-02-28 イマティクス バイオテクノロジーズ ゲーエムベーハー Novel peptides and peptide combinations for use in immunotherapy for hepatocellular carcinoma (HCC) and other cancers
JP2020191869A (en) * 2014-12-23 2020-12-03 イマティクス バイオテクノロジーズ ゲーエムベーハー Novel peptides and combination of peptides for use in immunotherapy against hepatocellular carcinoma (hcc) and other cancers
JP2020191873A (en) * 2014-12-23 2020-12-03 イマティクス バイオテクノロジーズ ゲーエムベーハー Novel peptides and peptide combinations for use in immunotherapy against hepatic cell cancer (hcc) and other cancers
JP7448423B2 (en) 2014-12-23 2024-03-12 イマティクス バイオテクノロジーズ ゲーエムベーハー Novel peptides and peptide combinations for use in immunotherapy against hepatocellular carcinoma (HCC) and other cancers
EP3556411A1 (en) 2015-02-17 2019-10-23 Amgen Inc. Drug delivery device with vacuum assisted securement and/or feedback
EP3981450A1 (en) 2015-02-27 2022-04-13 Amgen, Inc Drug delivery device having a needle guard mechanism with a tunable threshold of resistance to needle guard movement
TWI714558B (en) * 2015-03-09 2021-01-01 日商賽多利克公司 A peptide from GPC3, a pharmaceutical composition for the treatment or prevention of cancer using the peptide, an immune inducer, and a manufacturing method for antigen presenting cells
CN107428815A (en) * 2015-03-09 2017-12-01 Cytlimic公司 Come from GPC3 peptide, the manufacture method for being used to treat or prevent the medical composition of cancer, immune inducing agent and antigen presenting cell using it
US10590179B2 (en) 2015-03-09 2020-03-17 Cytlimic Inc. Peptide derived from GPC3, pharmaceutical composition for treatment or prevention of cancer using same, immunity inducer, and method for producing antigen-presenting cells
US10875900B2 (en) 2015-03-09 2020-12-29 Cytlimic Inc. Peptide derived from GPC3, pharmaceutical composition for treatment or prevention of cancer using same, immunity inducer, and method for producing antigen-presenting cells
US10526388B2 (en) 2015-03-09 2020-01-07 Cytlimic Inc. Peptide derived from GPC3, pharmaceutical composition for treatment or prevention of cancer using the same, immunity inducer, and method for producing antigen-presenting cells
RU2714117C2 (en) * 2015-03-09 2020-02-11 Ситлимик Инк. Peptide obtained from gpc3, pharmaceutical composition for treating or preventing cancer using it, immunity inducer and method for producing antigen-presenting cells
CN107428815B (en) * 2015-03-09 2021-07-09 Cytlimic公司 GPC 3-derived peptide, pharmaceutical composition for treating or preventing cancer using same, immune inducer, and method for producing antigen-presenting cell
WO2016143816A1 (en) * 2015-03-09 2016-09-15 日本電気株式会社 Peptide derived from gpc3, pharmaceutical composition for treatment or prevention of cancer using same, immunity inducer, and method for producing antigen-presenting cells
JPWO2016143816A1 (en) * 2015-03-09 2018-03-01 サイトリミック株式会社 GPC3-derived peptide, pharmaceutical composition for treating or preventing cancer using the same, immunity-inducing agent, and method for producing antigen-presenting cells
US11491204B2 (en) 2015-04-07 2022-11-08 Cytlimic Inc. Composition comprising poly I:C and LAG-3-IGG fusion protein
US10842848B2 (en) 2015-04-07 2020-11-24 Cytlimic Inc. Method for treating cancer by adminstering poly I:C and LAG-3-IgG fusion protein
US10729791B2 (en) 2015-05-18 2020-08-04 Imcyse Sa Animal models for evaluating pharmaceutical compounds
WO2017039786A1 (en) 2015-09-02 2017-03-09 Amgen Inc. Syringe assembly adapter for a syringe
US11787849B2 (en) 2015-09-25 2023-10-17 Imcyse Sa Methods and compounds for eliminating immune responses to therapeutic agents
WO2017100501A1 (en) 2015-12-09 2017-06-15 Amgen Inc. Auto-injector with signaling cap
WO2017120178A1 (en) 2016-01-06 2017-07-13 Amgen Inc. Auto-injector with signaling electronics
EP4035711A1 (en) 2016-03-15 2022-08-03 Amgen Inc. Reducing probability of glass breakage in drug delivery devices
EP3721922A1 (en) 2016-03-15 2020-10-14 Amgen Inc. Reducing probability of glass breakage in drug delivery devices
WO2017160799A1 (en) 2016-03-15 2017-09-21 Amgen Inc. Reducing probability of glass breakage in drug delivery devices
US11485768B2 (en) 2016-04-19 2022-11-01 Imcyse Sa Immunogenic CD1d binding peptides
WO2017189089A1 (en) 2016-04-29 2017-11-02 Amgen Inc. Drug delivery device with messaging label
WO2017192287A1 (en) 2016-05-02 2017-11-09 Amgen Inc. Syringe adapter and guide for filling an on-body injector
WO2017197222A1 (en) 2016-05-13 2017-11-16 Amgen Inc. Vial sleeve assembly
WO2017200989A1 (en) 2016-05-16 2017-11-23 Amgen Inc. Data encryption in medical devices with limited computational capability
WO2017209899A1 (en) 2016-06-03 2017-12-07 Amgen Inc. Impact testing apparatuses and methods for drug delivery devices
WO2018004842A1 (en) 2016-07-01 2018-01-04 Amgen Inc. Drug delivery device having minimized risk of component fracture upon impact events
WO2018034784A1 (en) 2016-08-17 2018-02-22 Amgen Inc. Drug delivery device with placement detection
US11291718B2 (en) 2016-10-11 2022-04-05 Cytlimic Inc. Method for treating cancer by administering a toll-like receptor agonist and LAG-3 IgG fusion protein
US11759518B2 (en) 2016-10-11 2023-09-19 Nec Corporation Medicine for treating cancer by administering a toll-like receptor agonist and LAG-3 IgG fusion protein
WO2018081234A1 (en) 2016-10-25 2018-05-03 Amgen Inc. On-body injector
WO2018110654A1 (en) 2016-12-15 2018-06-21 Heartseed株式会社 Undifferentiated stem cell removal agent and method for removing undifferentiated stem cells
WO2018136398A1 (en) 2017-01-17 2018-07-26 Amgen Inc. Injection devices and related methods of use and assembly
US11603519B2 (en) 2017-02-06 2023-03-14 National Cancer Center Japan T-cell receptor
WO2018143454A1 (en) * 2017-02-06 2018-08-09 国立研究開発法人国立がん研究センター Novel t-cell receptor
WO2018152073A1 (en) 2017-02-17 2018-08-23 Amgen Inc. Insertion mechanism for drug delivery device
WO2018151890A1 (en) 2017-02-17 2018-08-23 Amgen Inc. Drug delivery device with sterile fluid flowpath and related method of assembly
WO2018165143A1 (en) 2017-03-06 2018-09-13 Amgen Inc. Drug delivery device with activation prevention feature
WO2018164829A1 (en) 2017-03-07 2018-09-13 Amgen Inc. Needle insertion by overpressure
WO2018165499A1 (en) 2017-03-09 2018-09-13 Amgen Inc. Insertion mechanism for drug delivery device
WO2018172219A1 (en) 2017-03-20 2018-09-27 F. Hoffmann-La Roche Ag Method for in vitro glycoengineering of an erythropoiesis stimulating protein
EP4241807A2 (en) 2017-03-28 2023-09-13 Amgen Inc. Plunger rod and syringe assembly system and method
WO2018183039A1 (en) 2017-03-28 2018-10-04 Amgen Inc. Plunger rod and syringe assembly system and method
WO2018226515A1 (en) 2017-06-08 2018-12-13 Amgen Inc. Syringe assembly for a drug delivery device and method of assembly
WO2018226565A1 (en) 2017-06-08 2018-12-13 Amgen Inc. Torque driven drug delivery device
WO2018236619A1 (en) 2017-06-22 2018-12-27 Amgen Inc. Device activation impact/shock reduction
WO2018237225A1 (en) 2017-06-23 2018-12-27 Amgen Inc. Electronic drug delivery device comprising a cap activated by a switch assembly
WO2019014014A1 (en) 2017-07-14 2019-01-17 Amgen Inc. Needle insertion-retraction system having dual torsion spring system
WO2019018169A1 (en) 2017-07-21 2019-01-24 Amgen Inc. Gas permeable sealing member for drug container and methods of assembly
EP4292576A2 (en) 2017-07-21 2023-12-20 Amgen Inc. Gas permeable sealing member for drug container and methods of assembly
EP4085942A1 (en) 2017-07-25 2022-11-09 Amgen Inc. Drug delivery device with gear module and related method of assembly
WO2019022951A1 (en) 2017-07-25 2019-01-31 Amgen Inc. Drug delivery device with gear module and related method of assembly
WO2019022950A1 (en) 2017-07-25 2019-01-31 Amgen Inc. Drug delivery device with container access system and related method of assembly
WO2019032482A2 (en) 2017-08-09 2019-02-14 Amgen Inc. Hydraulic-pneumatic pressurized chamber drug delivery system
WO2019036181A1 (en) 2017-08-18 2019-02-21 Amgen Inc. Wearable injector with sterile adhesive patch
WO2019040548A1 (en) 2017-08-22 2019-02-28 Amgen Inc. Needle insertion mechanism for drug delivery device
WO2019070472A1 (en) 2017-10-04 2019-04-11 Amgen Inc. Flow adapter for drug delivery device
EP4257164A2 (en) 2017-10-06 2023-10-11 Amgen Inc. Drug delivery device with interlock assembly and related method of assembly
WO2019070552A1 (en) 2017-10-06 2019-04-11 Amgen Inc. Drug delivery device with interlock assembly and related method of assembly
WO2019074579A1 (en) 2017-10-09 2019-04-18 Amgen Inc. Drug delivery device with drive assembly and related method of assembly
WO2019090086A1 (en) 2017-11-03 2019-05-09 Amgen Inc. Systems and approaches for sterilizing a drug delivery device
WO2019090079A1 (en) 2017-11-03 2019-05-09 Amgen Inc. System and approaches for sterilizing a drug delivery device
WO2019090303A1 (en) 2017-11-06 2019-05-09 Amgen Inc. Fill-finish assemblies and related methods
WO2019089178A1 (en) 2017-11-06 2019-05-09 Amgen Inc. Drug delivery device with placement and flow sensing
WO2019094138A1 (en) 2017-11-10 2019-05-16 Amgen Inc. Plungers for drug delivery devices
WO2019099322A1 (en) 2017-11-16 2019-05-23 Amgen Inc. Autoinjector with stall and end point detection
WO2019099324A1 (en) 2017-11-16 2019-05-23 Amgen Inc. Door latch mechanism for drug delivery device
WO2019231582A1 (en) 2018-05-30 2019-12-05 Amgen Inc. Thermal spring release mechanism for a drug delivery device
WO2019231618A1 (en) 2018-06-01 2019-12-05 Amgen Inc. Modular fluid path assemblies for drug delivery devices
WO2020023220A1 (en) 2018-07-24 2020-01-30 Amgen Inc. Hybrid drug delivery devices with tacky skin attachment portion and related method of preparation
WO2020023444A1 (en) 2018-07-24 2020-01-30 Amgen Inc. Delivery devices for administering drugs
WO2020023451A1 (en) 2018-07-24 2020-01-30 Amgen Inc. Delivery devices for administering drugs
WO2020023336A1 (en) 2018-07-24 2020-01-30 Amgen Inc. Hybrid drug delivery devices with grip portion
WO2020028009A1 (en) 2018-07-31 2020-02-06 Amgen Inc. Fluid path assembly for a drug delivery device
WO2020068623A1 (en) 2018-09-24 2020-04-02 Amgen Inc. Interventional dosing systems and methods
WO2020068476A1 (en) 2018-09-28 2020-04-02 Amgen Inc. Muscle wire escapement activation assembly for a drug delivery device
WO2020072577A1 (en) 2018-10-02 2020-04-09 Amgen Inc. Injection systems for drug delivery with internal force transmission
WO2020072846A1 (en) 2018-10-05 2020-04-09 Amgen Inc. Drug delivery device having dose indicator
WO2020081479A1 (en) 2018-10-15 2020-04-23 Amgen Inc. Drug delivery device having damping mechanism
WO2020081480A1 (en) 2018-10-15 2020-04-23 Amgen Inc. Platform assembly process for drug delivery device
WO2020092056A1 (en) 2018-11-01 2020-05-07 Amgen Inc. Drug delivery devices with partial needle retraction
WO2020091981A1 (en) 2018-11-01 2020-05-07 Amgen Inc. Drug delivery devices with partial drug delivery member retraction
WO2020091956A1 (en) 2018-11-01 2020-05-07 Amgen Inc. Drug delivery devices with partial drug delivery member retraction
WO2020219482A1 (en) 2019-04-24 2020-10-29 Amgen Inc. Syringe sterilization verification assemblies and methods
WO2021041067A2 (en) 2019-08-23 2021-03-04 Amgen Inc. Drug delivery device with configurable needle shield engagement components and related methods
WO2022246055A1 (en) 2021-05-21 2022-11-24 Amgen Inc. Method of optimizing a filling recipe for a drug container
US11992659B2 (en) 2021-11-23 2024-05-28 Amgen Inc. Controllable drug delivery system and method of use
WO2024094457A1 (en) 2022-11-02 2024-05-10 F. Hoffmann-La Roche Ag Method for producing glycoprotein compositions

Also Published As

Publication number Publication date
TW200413406A (en) 2004-08-01
TWI333958B (en) 2010-12-01
AU2003254950A1 (en) 2004-03-11
JPWO2004018667A1 (en) 2005-12-08
JP4406607B2 (en) 2010-02-03

Similar Documents

Publication Publication Date Title
JP4406607B2 (en) Peptide and pharmaceutical containing the same
US20200405831A1 (en) Novel peptides and combination of peptides for use in immunotherapy against hepatocellular carcinoma (hcc) and other cancers
JP7146399B2 (en) Novel peptides and peptide and scaffold combinations for use in immunotherapy against renal cell carcinoma (RCC) and other cancers
JP6490581B2 (en) Antitumor immune response to modified self epitope
JP2007516966A (en) Synthetic HLA-binding peptide analogs and methods of use thereof
TWI658049B (en) Kntc2 peptides and vaccines containing the same
US20100145030A1 (en) Gene encoding a multidrug resistance human p-glycoprotein homologue on chromosome 7p15-21 and uses thereof
JP6259983B2 (en) Th1 cell KIF20A epitope peptide and vaccine containing the same
US20180000915A1 (en) Imp-3 epitope peptides for th1 cells and vaccines containing the same
TW201043240A (en) NEIL3 peptides and vaccines including the same
TW201138806A (en) CDCA5 peptides and vaccines including the same
US11576956B2 (en) Peptides and combination of peptides for use in immunotherapy against hepatocellular carcinoma (HCC) and other cancers
RU2531348C2 (en) Ttk peptides and vaccines containing them
JP6255594B2 (en) LY6K epitope peptide of Th1 cell and vaccine containing the same
US20140199336A1 (en) Tmem22 peptides and vaccines including the same
TW201138803A (en) ECT2 peptides and vaccines including the same
AU2013356143A1 (en) SEMA5B peptides and vaccines containing the same
TW201300423A (en) C18orf54 peptides and vaccines including the same
JP4925033B2 (en) Stress-induced anti-apoptotic molecule (IEX-1) derived peptide
WO2014136453A1 (en) C12orf48 PEPTIDES AND VACCINES CONTAINING THE SAME
JP2018508181A (en) GPC3 epitope peptide for Th1 cells and vaccine containing the same
TW201200525A (en) MYBL2 peptides and vaccines containing the same
TW201134480A (en) CLUAP1 peptides and vaccines including the same

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004530567

Country of ref document: JP

122 Ep: pct application non-entry in european phase