WO2003091772A1 - Plastic optical fiber - Google Patents

Plastic optical fiber Download PDF

Info

Publication number
WO2003091772A1
WO2003091772A1 PCT/JP2003/005356 JP0305356W WO03091772A1 WO 2003091772 A1 WO2003091772 A1 WO 2003091772A1 JP 0305356 W JP0305356 W JP 0305356W WO 03091772 A1 WO03091772 A1 WO 03091772A1
Authority
WO
WIPO (PCT)
Prior art keywords
core
fluoropolymer
optical fiber
refractive index
plastic optical
Prior art date
Application number
PCT/JP2003/005356
Other languages
French (fr)
Japanese (ja)
Inventor
Koji Koganezawa
Chikafumi Tanaka
Tsuyoshi Onishi
Original Assignee
Asahi Glass Company, Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Company, Limited filed Critical Asahi Glass Company, Limited
Priority to JP2004501975A priority Critical patent/JPWO2003091772A1/en
Priority to AU2003235143A priority patent/AU2003235143A1/en
Publication of WO2003091772A1 publication Critical patent/WO2003091772A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02042Multicore optical fibres
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02033Core or cladding made from organic material, e.g. polymeric material

Definitions

  • the present invention relates to a plastic optical fiber having excellent heat resistance, flame retardancy, chemical resistance, and solvent resistance, having a low transmission loss and a high transmission band. More specifically, heat resistance and flame retardancy
  • the present invention relates to a plastic multi-core optical fiber having excellent chemical resistance and solvent resistance, having three or more cores, and suppressing transmission loss due to bending.
  • a plastic multi-core optical fiber having three or more cores is a communication plastic optical fiber in which the transmission loss due to bending (hereinafter referred to as “bending loss”) is suppressed while increasing the light coupling efficiency.
  • bending loss the transmission loss due to bending
  • the present invention provides a plastic optical fiber that eliminates the essential transmission loss based on the C—H bond and that can use a light source in a wide range from 500 to 160 nm from visible to near infrared.
  • the purpose is to do.
  • due to the heat resistance, flame retardancy, chemical resistance, and solvent resistance of the fluororesin there is provided a plastic optical fiber that does not deteriorate even in a severe environment and is suitable as a sensor for medical use. With the goal.
  • the present invention relates to a fluorine-containing polymer (a) in which the core comprises a non-crystalline fluorine-containing polymer (a) having substantially no C—H bond, and the clad has a refractive index lower than that of the core by 0.001 or more
  • a plastic optical fiber comprising: a core; and 3 or more cores provided in the same clad.
  • the fluorinated polymer (a) is preferably a fluorinated polymer having a fluorinated aliphatic ring structure in the main chain, and more preferably the fluorinated polymer (a) and the fluorinated polymer ( b) is preferably a fluoropolymer having a fluorinated aliphatic ring structure in the main chain. According to this embodiment, a plastic optical fiber with small scattering loss can be obtained.
  • the core is preferably of a refractive index distribution type.
  • the refractive index distribution type core is preferably made of a fluorinated polymer (a) containing a refractive index adjusting agent (a 2), and in each core, the refractive index adjusting agent (a 2) It is preferable that the fluorine-containing polymer (a) is contained with a concentration distribution. These modes are preferable because a wide band transmission rate with a small mode dispersion can be secured while suppressing bending loss.
  • the core is of a single mode type, and the core further comprises a fluoropolymer composition of the fluoropolymer (a) and the refractive index adjuster (a2). It is preferable that the clad be made of only the fluoropolymer (a) and the clad be made of the fluoropolymer (b). This mode is preferable because bending loss can be suppressed to a very low level.
  • FIG. 1 is a sectional view of an example of the plastic optical fiber of the present invention.
  • FIG. 2 is a cross-sectional view of one example of the plastic optical fiber of the present invention.
  • the core is made of an amorphous fluoropolymer having substantially no C—H bond (a), and the clad has a refractive index of 0.001 or more as compared with the core.
  • the phrase “the core or the clad is made of a fluoropolymer” means that the fluoropolymer contains a refractive index adjusting agent in addition to the case where the core or clad is made of only the fluoropolymer. It also refers to the case where the composition comprises a fluoropolymer composition with an agent.
  • the polymer has substantially no C—H bond, it means that when a polymer film (thickness to be measured is preferably about 0.2) is prepared and the infrared absorption spectrum is measured, — No absorption due to H bond is observed.
  • non-crystalline refers to a diagram in which the X-ray diffraction (XRD) of a polymer or a polymer composition is measured with 20 (unit: degree) on the horizontal axis and intensity (cps) on the vertical axis. Means that no clear peak with a half width of 2 degrees or less is observed.
  • the refractive index means a refractive index for sodium D line.
  • the core is the part of the optical fiber in which most of the optical power is transmitted while being confined, and the cladding is the part made of a substance having a lower refractive index than the core surrounding the core.
  • the core aggregate refers to a region where a plurality of cores exist in close proximity.
  • the difference in the refractive index between the core and the clad is the difference between the refractive index of the core having the highest refractive index and the refractive index of the clad having the lowest refractive index.
  • the core diameter refers to the diameter of a region showing a light amount of 5% or more of the light amount at the center of the core.
  • the core is made of an amorphous fluoropolymer (a) having substantially no C—H bond.
  • the material is not particularly limited as long as it is non-crystalline and has substantially no C—H bond in which light is absorbed by near-infrared light.
  • a fluorinated polymer having a fluorinated aliphatic ring structure in the main chain is preferable.
  • Having a fluorinated aliphatic ring structure in the main chain means that at least one of the carbon atoms constituting the aliphatic ring is a carbon atom in the carbon chain constituting the main chain, and that the carbon atom constituting the aliphatic ring is present.
  • a fluorinated aliphatic ring structure a fluorinated aliphatic ether ring structure is more preferable.
  • the viscosity of the fluorine-containing polymer (a) in the molten state is preferably 100 to 100,000 Pa ⁇ S, more preferably 300 to 10,000 Pa * S at a melting temperature of 200 to 300 ° C, and 500 to 500 Pa. 3,000 Pa ⁇ S is particularly preferred. If the melt viscosity is too high, melt spinning is difficult, and if the melt viscosity is too low, it is exposed to high temperatures and softened when a protective coating is applied to make a cable, and the light transmission performance is reduced.
  • the number average molecular weight of the fluoropolymer (a) is preferably 1 X 10 4 ⁇ 5 X 10 6, 5X 10 4 ⁇ 1 X 10 6 are more preferred.
  • this molecular weight is preferably 0.1 to 0.1 in 30 of perfluoro (2-butyltetrahydrofuran) [hereinafter referred to as “PBTHF”]; It is preferably from 2 to 0.5 d 1 / g.
  • PBTHF perfluoro (2-butyltetrahydrofuran
  • Examples of the polymer having a fluorinated aliphatic ring structure include a monomer having a fluorinated ring structure (a monomer having a polymerizable double bond between a carbon atom constituting the ring and a carbon atom not constituting the ring). Or a monomer having a polymerizable double bond between two carbon atoms constituting the ring) or a polymer obtained by polymerizing (Ml), or a fluorine-containing monomer having two or more polymerizable double bonds. Polymers having a fluorinated aliphatic ring structure in the main chain obtained by cyclopolymerization of the monomer (M2) are preferred.
  • Polymers having a fluorine-containing aliphatic ring structure in the main chain obtained by polymerizing a monomer (Ml) having a fluorine-containing aliphatic ring structure include perfluoro (2,2-dimethyl-1,3 dioxol), Fluorinated fats such as perfluoro (4-methyl-2-methylene-1,3-dioxolane) and perfluoro (2-methyl-1,4-dioxin) It can be obtained by homopolymerizing a monomer (Ml) having an aliphatic ring structure.
  • a polymer having a fluorinated aliphatic ring structure in the main chain obtained by copolymerizing this monomer (Ml) and a radical polymerizable monomer (M3) containing no C_H bond is also used.
  • a homopolymer of the monomer (Ml) is preferable because the light transmittance may decrease.
  • the radical polymerizable monomer (M3) containing no C-H bond include tetrafluoroethylene, trifluoromethyl ethylene, perfluoro (methyl vinyl ether), and the like.
  • a polymer having a fluorinated aliphatic ring structure in the main chain obtained by cyclopolymerization of a fluorinated monomer (M2) having two or more polymerizable double bonds is disclosed in No. 2,381,111 and JP-A-63-238115.
  • M2 monomers
  • these monomers (M2) may be homopolymerized, or two or more monomers may be copolymerized.
  • a polymer having a fluorinated aliphatic ring structure in the main chain can be obtained.
  • a polymer of only the monomer (M2) is preferable because a light transmittance may decrease, and a homopolymer of the monomer (M2) is particularly preferable.
  • a monomer having a fluorinated aliphatic ring structure (Ml) and a fluorinated monomer having two or more polymerizable double bonds (M2) are copolymerized into a main chain.
  • a polymer having a fluoroaliphatic ring structure is obtained, and is used as the fluorinated polymer (a).
  • a homopolymer is preferred because the light transmittance may be reduced depending on the combination.
  • the polymer units having a fluorinated alicyclic structure are at least 20 mol%, particularly 40 mol%, based on all the polymer units of the polymer having a fluorinated alicyclic structure.
  • the fluoropolymer (a) may be composed of only the fluoropolymer (a) or may be composed of the fluoropolymer (a) containing the refractive index adjuster (a2). May be.
  • the fluoropolymer (a) preferably contains a refractive index adjusting agent (a2). It is preferable that the refractive index adjusting agent (a 2) has a concentric and continuously varying concentration distribution in the fluoropolymer (a), and the concentration distribution is parabolic. Is preferred. That is, a distribution in which the concentration is high at the center of the core and decreases toward the periphery is preferable.
  • the fluorinated polymer (a) contains only the fluorinated polymer (a) or the fluorinated polymer (a) And a refractive index adjusting agent (a2).
  • the refractive index adjusting agent (a2) a compound having excellent compatibility with the fluoropolymer (a) and having substantially no C—H bond is preferable. That is, in the fluorinated polymer composition of the fluorinated polymer (a) and the refractive index adjusting agent (a2), the refractive index adjusting agent (a2) is dissolved in the fluorinated polymer (a). It is preferable that you do.
  • “dissolved” means that phase separation does not occur even when the fluoropolymer composition is heated to the glass transition point and then slowly cooled (for example, cooled at 5 / hr). .
  • the refractive index of the refractive index adjusting agent (a2) is preferably higher. That is, the refractive index adjuster 2) is preferably a high refractive index agent for the fluoropolymer (a).
  • the refractive index adjuster (a2) a compound having a chlorine atom and / or an aromatic compound is preferable because of its high refractive index. Examples of the compound having a chlorine atom include a trifluoroethylene oligomer. Examples of the aromatic compound include perfluoro (1,3,5-triphenylbenzene) and perfluoro (2,4,6_triphenyl_1,3,5-triazine).
  • the fluoropolymer (b) is a fluoropolymer having a refractive index lower than that of the core by 0.001 or more. That is, the fluoropolymer serving as the core (a) Since it is necessary to have a lower refractive index, a fluorine-containing polymer having substantially no C—H bond is preferred. From the viewpoint of moldability and the like, the fluoropolymer (b) is preferably a fluoropolymer (b) having a fluorinated aliphatic ring structure in the main chain. In particular, it is particularly preferable that the clad is only composed of the fluoropolymer (b) in the present invention.
  • the fluorinated polymer (b) when the fluorinated polymer (a) contains a refractive index adjuster (a2) having a higher refractive index than the fluorinated polymer (a), Only the fluoropolymer (a) containing no agent (a2) may be used.
  • the combination of the fluoropolymer (a) and the fluoropolymer (b) is represented by (a) / (b), (i) the fluoropolymer ( a-1) / fluorine-containing polymer (a-1) a combination of a fluorinated polymer (a_2) having a lower refractive index by a predetermined amount or more than (a-1); (ii) a fluorinated polymer (a) and a refractive index adjuster (a
  • the combination of the composition Z fluoropolymer (a) comprising 2) is preferred.
  • the core of the plastic optical fiber of the present invention is of a refractive index distribution type
  • the combination of (i) or (ii) is preferable, and the combination of (ii) is particularly preferable.
  • the core is a single mode type, the combination of (i) is preferable.
  • a low transmission loss of 50 dB / km or less can be achieved in the wavelength region of 700 to 1600 nm by the combination of the fluoropolymer (a) and the fluoropolymer (b). It is preferable in that the degree of freedom in selecting a light source is improved.
  • the plastic optical fiber according to the present invention three or more cores are provided in the same clad. That is, a sea-island structure is formed in which the clad is the sea and the core is the island. At this time, the plurality of cores are separated from each other by a continuous cladding.
  • the number of cores provided in the same clad may be three or more, preferably seven or more, and more preferably ten or more.
  • the upper limit is not particularly limited, but is preferably 3000 or less.
  • the core diameters of the provided cores may be the same or different.
  • This is plastic It is considered that the optical energy leaked from the core at the center when the optical fiber is bent reenters the core at the outer periphery and the increase in bending loss can be suppressed. Is suitable.
  • the disposition of the core in the cladding is not particularly limited. Since it is difficult to make a difference depending on the bending direction, it is preferable to arrange the points symmetrically. In addition, the close-packed arrangement is preferable from the viewpoint of improving the coupling efficiency when light enters the core assembly.
  • the core of the plastic optical fiber in the present invention is preferably of a refractive index distribution type or a single mode type.
  • the refractive index of the core preferably changes continuously without any step, and the refractive index distribution preferably has a parabolic shape. That is, a distribution in which the refractive index is high at the center of the core and the refractive index decreases toward the periphery is preferable.
  • This distribution shape can be obtained, for example, by preparing a high-concentration portion of the refractive index adjusting agent in the center and diffusing it by thermal diffusion to give a refractive index distribution.
  • the single mode type means that only the lowest mode is propagated at the wavelength of interest.
  • the condition for a single mode is expressed by equation (1) using a parameter called the normalized frequency V.
  • V — n i ⁇ n 2 2 2.405 (1)
  • a is the core radius, is the refractive index of the core center
  • n 2 is the refractive index of the cladding
  • is the wavelength.
  • ⁇ ⁇ ⁇ ⁇ ⁇ — ⁇ 2 is in the range of 0.0 1 ⁇ ⁇ ⁇ 0.03. Desirably. If ⁇ is smaller than this, light cannot be confined and bending loss tends to increase.On the other hand, if it is large, the core diameter needs to be very small to satisfy the condition of single mode, which makes manufacturing difficult. Prone.
  • (S1) a method of forming a base material (preform) and then hot drawing the same, or (S2) a method of melt-spinning using an extruder is adopted. Is done. In any case, it is also possible to form directly from a polymer or to mold while polymerizing a monomer. Further, a method in which the method (S1) and the method (S2) are combined, that is, a method in which a base material is manufactured by an extrusion method and then hot-stretched may be employed. In particular, when the core of the plastic optical fiber of the present invention is of a refractive index distribution type, the method (S1) is preferable. Similarly, when the core is a single mode type, the method of (S2) is used. Is preferred.
  • Examples of the method (S1) include the following examples. First, a predetermined number of core materials formed in a strand shape are inserted into a separately formed porous clad material, and this is used as a base material. The obtained preform is thermally drawn to obtain a plastic optical fiber. The stretching ratio at this time is preferably from 20 to 1000 times, more preferably from 50 to 300 times. This method is suitable when the core is of a refractive index distribution type. An example of a specific molding method is shown below. First, a hollow tube of the fluoropolymer (a) is prepared, a refractive index adjuster (a2) is injected into the center of the hollow tube, and the refractive index adjuster (a2) is thermally diffused to form a core base material. obtain.
  • the core base material is thermally stretched to obtain a core material formed into the above-mentioned strand shape.
  • a predetermined number of the core materials are inserted into a multi-hole clad material obtained by extruding the fluoropolymer (b) to form a base material.
  • the obtained preform is thermally drawn to obtain a plastic optical fiber.
  • a strand of the fluoropolymer (a) comprising the fluoropolymer (a) and the refractive index adjuster (a2) is formed.
  • the fluoropolymer (a) is extruded to form a porous clad material.
  • thermal diffusion is performed to obtain a base material having a refractive index distribution type core.
  • the preform is thermally drawn to obtain a plastic optical fiber.
  • Examples of the method (S2) include the following examples.
  • This method is suitable when the core is of a single mode type.
  • a base material consisting of a core material and a porous clad material was obtained by extrusion molding of two colors, and this was obtained.
  • the plastic optical fiber of the present invention is not affected by acidic chemicals such as sulfuric acid and hydrochloric acid or alkaline chemicals such as sodium hydroxide. It is not affected by organic solvents such as toluene, benzene, and acetone. Due to its chemical and solvent resistance, it can be used in poor environments, such as in sewer pipes and in factories where hydraulic oil scatters. Also, by having three or more cores, bending loss is improved, and it can be used for movable parts such as robots that are frequently bent.
  • acidic chemicals such as sulfuric acid and hydrochloric acid or alkaline chemicals such as sodium hydroxide. It is not affected by organic solvents such as toluene, benzene, and acetone. Due to its chemical and solvent resistance, it can be used in poor environments, such as in sewer pipes and in factories where hydraulic oil scatters. Also, by having three or more cores, bending loss is improved, and it can be used for movable parts such as robots that are frequently bent.
  • the fluorine-containing plastic multi-core optical fiber of the present invention is a communication line for a subscriber system; a communication line used for a LAN in a public facility such as a LAN in a factory, a LAN in a hospital, a LAN in a school, and a LAN in a sewer pipe; Power line monitoring communication line; suitable for applications requiring high speed and high bandwidth, such as communication lines for data transmission of automobiles, aircraft, trains, ships, etc. Particularly, it is suitable for wiring to a narrow place where bending loss tends to be large. It is also safe because it is made of plastic, so it is hard to break and hard to stick when broken.
  • fluoropolymer (a) a perfluoro (butenyl vinyl ether) cyclic polymer (refractive index: 1.342) (hereinafter referred to as polymer API) was selected, and a refractive index modifier (a2) was used.
  • Fluoroethylene (CTFE) oligomer was selected as the target.
  • the CTFE oligomer was added to the polymer API to obtain a polymer composition AC1 having a CTFE oligomer concentration of 15% by mass and a refractive index of 1.355.
  • a hollow tube with an outer diameter of 40 mm, an inner diameter of 20.5 mm and a length of 500 mm is made using the polymer API.
  • a cylinder having an outer diameter of 20 mm and a length of 500 mm is prepared using the polymer composition AC1.
  • a cylindrical column of the polymer composition AC 1 was introduced into the hollow tube of the polymer AP 1 and melt-spun in a heating furnace heated to 220 ° C to have an outer diameter of 0.26 mm and a core diameter of 0.26 mm. Get a 13mm strand.
  • 20mm outer diameter, 10mm inner diameter, 500mm length using polymer AP1 Create a new hollow tube.
  • One hundred and three hundred and thirty strands cut into a length of 480 mm are inserted into this hollow part to prepare a base material.
  • the preform is melt spun in a heating furnace heated to 220 ° C to produce a plastic optical fiber with an outer diameter of 0.5 mm.
  • the plastic optical fiber has a core having a core diameter of 3.25 ⁇ .
  • the core has a standard frequency of 2.25 for light with a wavelength of 850 nm, and this core is a single mode type.
  • FIG. 1 shows a cross-sectional view of an example of the plastic optical fiber of the present invention obtained by the present embodiment.
  • the core assembly 2 is arranged at the center of the clad 1.
  • the above-mentioned single mode type cores are arranged so as to form a sea-island structure.
  • a 200 m transmission test was performed on the manufactured plastic optical fiber using a laser beam with a numerical aperture (NA) of 0.1 and a wavelength of 850 nm, and the transmission loss was 19 dB / km, bandwidth is 4GHz ⁇ km.
  • NA numerical aperture
  • bandwidth is 4GHz ⁇ km.
  • a bending test was performed using this plastic optical fiber with a radius of 10 mm and a bending angle of 180 degrees, the bending loss was less than 0.010 dB.
  • Polymer API was selected as the fluoropolymer (a), and perfluoro (1,3,5-triphenylbenzene) (TPB) was selected as the refractive index adjuster (a2).
  • TPB perfluoro (1,3,5-triphenylbenzene
  • a 2 the refractive index adjuster
  • polymer AP1 a hollow tube with an outer diameter of 20 mm, an inner diameter of 5 mm, and a length of 300 mm is made.
  • the TPB is injected into the hollow tube in a molten state, and the hollow tube into which the TPB has been injected is heated while rotating in the sealed tube. Heat at 240 ° C for 10 hours to obtain a hollow tube with TPB diffused.
  • the inner tube has a refractive index of 1.355, and the outer tube has a refractive index of 1.342.
  • This hollow tube is melt-spun in a heating furnace heated to 220 ° C. while reducing the pressure in the hollow portion to obtain
  • One glass tube a with an outer diameter of 46 mm, an inner diameter of 40 mm, and a length of 350 mm, and three glass tubes b with both outer diameters of 2.1 mm, an inner diameter of 0.5 mm, and a length of 3 30 mm sealed at both ends Prepare 0 bottles. Place glass tube b at approximately the center of glass tube a, fix it, and seal one side of glass tube a with a cylindrical resin block made of polytetrafluoroethylene. I do. The polymer AP1 is poured into the glass tube a in a molten state, defoamed under reduced pressure, then gradually cooled, and cooled to room temperature.
  • the solution is poured into a 50% by mass aqueous solution of hydrofluoric acid, and the aqueous solution of hydrofluoric acid is circulated to completely dissolve and remove the glass tubes a and b.
  • This is washed with water and dried to obtain a porous clad material having an outer diameter of 40 mm and a length of 300 mm having 30 holes.
  • a strand is inserted into each hole of the porous clad material to serve as a base material, which is melt-spun in a heating furnace heated to 230 ° C to produce a plastic optical fiber having an outer diameter of 0.5 mm.
  • the plastic optical fiber has 30 graded index cores having a core diameter of 23 m.
  • FIG. 2 shows a cross-sectional view of an example of the plastic optical fiber of the present invention obtained by the present embodiment.
  • 30 refractive index distribution type cores 4 are arranged.
  • a 500m transmission test was performed on the manufactured plastic optical fiber using a laser beam with a NA of 0.25 and a wavelength of 130 Onm. The transmission loss was 17 dBZkm and the bandwidth was 1 GHzkm. .
  • a bending test was performed using this plastic optical fiber with a radius of 10 mm and a bending angle of 180 °, the bending loss was 0.1 dB.
  • a fluoropolymer (a) As a fluoropolymer (a), a polymer API was used, and as a polymer having a lower refractive index than the polymer AP1, perfluoro (butenyl vinyl ether) and perfluoro (2,2-dimethyl-1,3-dioxole) were used. (Refractive index: 1.338) (hereinafter, referred to as polymer AP 2) was selected.
  • Extruder 1 and Extruder 2 are connected via a crosshead.
  • the flow path from the extruder 1 is divided into 200 lines in the crosshead.
  • the resin is guided from the crosshead to the nozzle, where a 10 mm diameter clad material (Polymer AP2) is extruded, into which a 0.12 mm diameter core material (Polymer API) is extruded. I do.
  • the resin coming out of the nozzle is stretched in the molten state to obtain a plastic optical fiber with an outer diameter of 5 mm.
  • Plastic The optical fiber has 200 cores with a core diameter of 6 im.
  • the normalized frequency of this core for light with a wavelength of 850 nm is 2.30, and this core is a single mode type.
  • a 200-m transmission test was performed on a manufactured plastic optical fiber using a laser with a NA of 0.1 and a wavelength of 850 nm.
  • the transmission loss was 24 dB / km and the bandwidth was 3 GHzkm. is there.
  • a bending test was performed using this plastic optical fiber with a radius of 10 mm and a bending angle of 180 degrees, the bending loss was 0.01 dB or less.
  • a fluoropolymer As a fluoropolymer (a), a polymer API is used. As a polymer having a lower refractive index than polymer AP1, a perfluoro (4-pentene-2-ylvinyl ether) cyclized polymer (refractive index: 1.326) ) (Hereinafter referred to as polymer AP 3).
  • Example 3 The same two extruders as in Example 3 are used, and the clad material is set to AP3 and the core material is set to AP1. Extrusion is performed in the same manner as in Example 3, and the resin discharged from the nozzle is stretched in a molten state to obtain a plastic optical fiber having an outer diameter of 0.25 mm.
  • the plastic optical fiber has 200 cores with a core diameter of 3 m.
  • the standard frequency of this core for light with a wavelength of 850 nm is 2.29, and this core is a single mode type.
  • a 20 Om transmission test was performed on a manufactured plastic optical fiber using a laser with a NA of 0.1 and a wavelength of 850 nm.
  • the transmission loss was 24 dB Zkm and the bandwidth was 3 GHz. km.
  • a bending test was performed using this plastic optical fiber with a radius of 10 mm and a bending angle of 180 degrees, the bending loss was 0.01 dB or less.
  • low transmission loss and high bandwidth can be achieved in a wide wavelength range, which cannot be achieved by a conventional plastic optical fiber using a material such as polymethyl methacrylate resin, and Low bending losses can be achieved.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)

Abstract

A plastic optical fiber which has three or more cores in a clad, wherein the core consists substantially of an amorphous fluorine-containing polymer (a) having no C-H bond and the clad comprises a fluorine-containing polymer (b) having a refractive index lower than that of the core by 0.001 or more. The plastic optical fiber allows the achievement of a combination of low transmission loss, a high band, and a low bending loss in a broad wavelength region.

Description

明細書  Specification
プラスチック光ファイバ 技術分野  Plastic optical fiber
本発明は耐熱性、 難燃性、 耐薬品性、 耐溶剤性に優れた、 低伝送損失かつ高伝 送帯域を有するプラスチック光ファイバに関する。 より詳細には耐熱性、 難燃性 The present invention relates to a plastic optical fiber having excellent heat resistance, flame retardancy, chemical resistance, and solvent resistance, having a low transmission loss and a high transmission band. More specifically, heat resistance and flame retardancy
、 耐薬品性及び耐溶剤性に優れ、 3以上のコアを有し、 曲げによる伝送損失が抑 制されたプラスチックマルチコア光ファイバに関する。 背景技術 The present invention relates to a plastic multi-core optical fiber having excellent chemical resistance and solvent resistance, having three or more cores, and suppressing transmission loss due to bending. Background art
3以上のコアを有するプラスチックマルチコア光ファイバは、 光の結合効率を 高くしつつ、 曲げによる伝送損失 (以下、 「曲げ損失」 という。 ) を抑えた、 通 信用プラスチック光ファイバであり、 特開平 5— 3 4 1 1 4 7号公報、 特開平 9 - 3 3 7 3 7号公報、 特開 2 0 0 1— 1 6 6 1 5 7号公報等に開示された技術が 知られている。  A plastic multi-core optical fiber having three or more cores is a communication plastic optical fiber in which the transmission loss due to bending (hereinafter referred to as “bending loss”) is suppressed while increasing the light coupling efficiency. There are known techniques disclosed in Japanese Patent Application Laid-Open No. 3411147, Japanese Patent Application Laid-Open No. 9-33737, Japanese Patent Application Laid-Open No. 2001-166157, and the like.
しかし、 いずれの場合にもアクリル樹脂、 ポリカーボネート樹脂等の C一 H結 合 (炭素一水素結合) を有する樹脂をコアとして採用しているために、 C— H結 合に基づく本質的な損失が大きく、 限定された波長でしか使用できず、 また伝送 距離も短距離に限られていた。 また上記従来例には、 含フッ素樹脂をコアに採用 すること自体は提案されていたが、 具体的な実施例は記載されておらず、 その効 果は明らかとなっていなかった。  However, in any case, since a resin having a C-H bond (carbon-hydrogen bond) such as an acrylic resin or a polycarbonate resin is used as a core, an essential loss due to the C-H bond is generated. It was large and could be used only at a limited wavelength, and the transmission distance was limited to a short distance. Further, in the above-mentioned conventional example, although the use of a fluorine-containing resin for the core itself was proposed, no specific example was described, and the effect was not clear.
本発明では、 上記 C— H結合に基づく本質的な伝送損失を排除し、 5 0 0〜1 6 0 0 n mという可視から近赤外までの広い領域にわたる光源が使用できるブラ スチック光ファイバを提供することを目的とする。 またフッ素樹脂の持つ、 耐熱 性、 難燃性、 耐薬品性、 耐溶剤性により、 過酷な環境においても材料の劣化のな い、 医療用等のセンサ一として好適なプラスチック光ファイバを提供することを 目的とする。 発明の開示 本発明は、 コアが実質的に C—H結合を有しない非結晶性の含フッ素重合体 ( a) からなり、 クラッドがコアとの比較において屈折率が 0. 001以上低い含 フッ素重合体 (b) からなるプラスチック光ファイバであって、 3以上のコアを 同一クラッド内に設けることを特徴とするプラスチック光ファイバを提供する。 本発明の光ファイバのコアとして、 C— H結合を有しない材料を採用すること は、 500〜 1600 nmの広い領域にわたる透明性、 すなわち低伝送損失を確 保する上で必要である。 またコアとして上記含フッ素重合体 (a) を、 クラッド として上記含フッ素重合体 (b) を、 併せて採用することは、 低伝送損失のブラ スチック光ファイバを得る上で必須である。 またコア、 クラッドともに含フッ素 重合体を採用することにより、 耐熱性、 難燃性、 耐薬品性、 耐溶剤性という特性 が得られる。 また同一クラッド内に 3以上のコアを設けることにより、 同一外径 の単一コアファイバに比べて曲げ損失を抑制できる。 The present invention provides a plastic optical fiber that eliminates the essential transmission loss based on the C—H bond and that can use a light source in a wide range from 500 to 160 nm from visible to near infrared. The purpose is to do. Also, due to the heat resistance, flame retardancy, chemical resistance, and solvent resistance of the fluororesin, there is provided a plastic optical fiber that does not deteriorate even in a severe environment and is suitable as a sensor for medical use. With the goal. Disclosure of the invention The present invention relates to a fluorine-containing polymer (a) in which the core comprises a non-crystalline fluorine-containing polymer (a) having substantially no C—H bond, and the clad has a refractive index lower than that of the core by 0.001 or more ( b) A plastic optical fiber comprising: a core; and 3 or more cores provided in the same clad. The use of a material having no C—H bond as the core of the optical fiber of the present invention is necessary to ensure transparency over a wide range of 500 to 1600 nm, that is, low transmission loss. In addition, it is essential to use the above-mentioned fluoropolymer (a) as the core and the above-mentioned fluoropolymer (b) as the clad in order to obtain a plastic optical fiber with low transmission loss. In addition, by using a fluoropolymer for both the core and the clad, characteristics such as heat resistance, flame retardancy, chemical resistance, and solvent resistance can be obtained. By providing three or more cores in the same clad, bending loss can be suppressed as compared with a single-core fiber having the same outer diameter.
また本発明においては、 含フッ素重合体 (a) が主鎖に含フッ素脂肪族環構造 を有する含フッ素重合体であることが好ましく、 さらに含フッ素重合体 (a) お よび含フッ素重合体 (b) が、 いずれも主鎖に含フッ素脂肪族環構造を有する含 フッ素重合体であることが好ましい。 この態様により、 散乱損失の少ないプラス チック光ファイバが得られる。  In the present invention, the fluorinated polymer (a) is preferably a fluorinated polymer having a fluorinated aliphatic ring structure in the main chain, and more preferably the fluorinated polymer (a) and the fluorinated polymer ( b) is preferably a fluoropolymer having a fluorinated aliphatic ring structure in the main chain. According to this embodiment, a plastic optical fiber with small scattering loss can be obtained.
また本発明においては、 コアが屈折率分布型であることが好ましい。 この態様 において、 屈折率分布型であるコアが、 屈折率調整剤 (a 2) を含む含フッ素重 合体 (a) からなることが好ましく、 さらに各コアにおいて、 屈折率調整剤 (a 2) が含フッ素重合体 (a) 中で濃度分布を有して含まれることが好ましい。 こ れらの態様により、 曲げ損失を抑制しつつ、 モード分散の少ない広帯域な伝送速 度が確保できて好ましい。  Further, in the present invention, the core is preferably of a refractive index distribution type. In this embodiment, the refractive index distribution type core is preferably made of a fluorinated polymer (a) containing a refractive index adjusting agent (a 2), and in each core, the refractive index adjusting agent (a 2) It is preferable that the fluorine-containing polymer (a) is contained with a concentration distribution. These modes are preferable because a wide band transmission rate with a small mode dispersion can be secured while suppressing bending loss.
また本発明においては、 コアが単一モード型であることも好ましく、 さらにコ ァが含フッ素重合体 (a) と屈折率調整剤 (a 2) との含フッ素重合体組成物か らなるか、 または、 含フッ素重合体 (a) のみからなり、 クラッドが含フッ素重 合体 (b) からなることが好ましい。 この態様により、 曲げ損失を非常に低く抑 制できて好ましい。 図面の簡単な説明 Further, in the present invention, it is preferable that the core is of a single mode type, and the core further comprises a fluoropolymer composition of the fluoropolymer (a) and the refractive index adjuster (a2). It is preferable that the clad be made of only the fluoropolymer (a) and the clad be made of the fluoropolymer (b). This mode is preferable because bending loss can be suppressed to a very low level. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明のプラスチック光ファイバの一例の断面図である。 FIG. 1 is a sectional view of an example of the plastic optical fiber of the present invention.
図 2は、 本発明のプラスチック光ファイバの一例の断面図である。 FIG. 2 is a cross-sectional view of one example of the plastic optical fiber of the present invention.
1 :クラッド、 2 :コア集合部、 3 :クラッド、 4 :コア 発明を実施するための最良の形態 1: Clad, 2: Core assembly, 3: Clad, 4: Core Best mode for carrying out the invention
本発明のプラスチック光ファイバは、 コアが実質的に C一 H結合を有しない非 結晶性の含フッ素重合体 (a ) からなり、 クラッドがコアとの比較において屈折 率が 0 . 0 0 1以上低い含フッ素重合体 (b ) からなるプラスチック光ファイバ であって、 3以上のコアを同一クラッド内に設けたプラスチック光ファイバであ る。  In the plastic optical fiber of the present invention, the core is made of an amorphous fluoropolymer having substantially no C—H bond (a), and the clad has a refractive index of 0.001 or more as compared with the core. A plastic optical fiber made of a low fluoropolymer (b), wherein three or more cores are provided in the same clad.
なお、 本発明において、 コアまたはクラッドが含フッ素重合体からなるとは、 含フッ素重合体のみからなる場合に加えて、 含フッ素重合体が屈折率調整剤を含 み含フッ素重合体と屈折率調整剤との含フッ素重合体組成物からなる場合を併せ ていう。 また、 重合体が実質的に C— H結合を有しないとは、 重合体のフィルム (測定する厚さは 0 . 2 程度が好ましい。 ) を作成し赤外吸収スペクトルを 測定した場合に、 C— H結合に基づく吸収が観測されないことをいう。 また、 非 結晶性とは、 重合体または重合体組成物の X線回折 (X R D) を測定した際に、 横軸に 2 0 (単位:度) 、 縦軸に強度 (c p s ) をとつた図において、 半値幅が 2度以下の明瞭なピークが見られないことをいう。 また屈折率とはナトリウム D 線に対する屈折率をいう。 またコアとは、 光パワーの大部分が閉じ込められて伝 送される光ファイバの部分をいい、 クラッドとは、 コアを取り囲んでいるコアよ り屈折率の低い物質で構成される部分をいう。 またコア集合部とは、 複数のコア が近接して存在する領域をいう。 またコアとクラッドとの屈折率差は、 コアのう ち屈折率の最も高い部分の屈折率と、 クラッドのうち屈折率の最も低い部分の屈 折率と、 の差をいう。 またコア径とは、 コア中心部の光量の 5 %以上の光量を示 す領域の直径をいう。  In the present invention, the phrase “the core or the clad is made of a fluoropolymer” means that the fluoropolymer contains a refractive index adjusting agent in addition to the case where the core or clad is made of only the fluoropolymer. It also refers to the case where the composition comprises a fluoropolymer composition with an agent. Further, when the polymer has substantially no C—H bond, it means that when a polymer film (thickness to be measured is preferably about 0.2) is prepared and the infrared absorption spectrum is measured, — No absorption due to H bond is observed. The term “non-crystalline” refers to a diagram in which the X-ray diffraction (XRD) of a polymer or a polymer composition is measured with 20 (unit: degree) on the horizontal axis and intensity (cps) on the vertical axis. Means that no clear peak with a half width of 2 degrees or less is observed. The refractive index means a refractive index for sodium D line. The core is the part of the optical fiber in which most of the optical power is transmitted while being confined, and the cladding is the part made of a substance having a lower refractive index than the core surrounding the core. In addition, the core aggregate refers to a region where a plurality of cores exist in close proximity. The difference in the refractive index between the core and the clad is the difference between the refractive index of the core having the highest refractive index and the refractive index of the clad having the lowest refractive index. The core diameter refers to the diameter of a region showing a light amount of 5% or more of the light amount at the center of the core.
本発明のプラスチック光ファイバにおいて、 コアは実質的に C一 H結合を有し ない非結晶性の含フッ素重合体 (a ) からなる。 含フッ素重合体 (a ) としては 、 非結晶性であり、 カ 近赤外光で光吸収が起こる C—H結合を実質的に有しな い含フッ素重合体であれば特に限定されない。 この含フッ素重合体 (a) として は、 主鎖に含フッ素脂肪族環構造を有する含フッ素重合体が好ましい。 In the plastic optical fiber of the present invention, the core is made of an amorphous fluoropolymer (a) having substantially no C—H bond. As the fluorinated polymer (a), The material is not particularly limited as long as it is non-crystalline and has substantially no C—H bond in which light is absorbed by near-infrared light. As the fluorinated polymer (a), a fluorinated polymer having a fluorinated aliphatic ring structure in the main chain is preferable.
主鎖に含フッ素脂肪族環構造を有するとは、 脂肪族環を構成する炭素原子の 1 以上が主鎖を構成する炭素連鎖中の炭素原子であり、 かつ脂肪族環を構成する炭 素原子の少なくとも一部にフッ素原子またはフッ素含有基が結合している構造を 有することを意味する。 含フッ素脂肪族環構造としては、 含フッ素脂肪族ェ一テ ル環構造がさらに好ましい。  Having a fluorinated aliphatic ring structure in the main chain means that at least one of the carbon atoms constituting the aliphatic ring is a carbon atom in the carbon chain constituting the main chain, and that the carbon atom constituting the aliphatic ring is present. Has a structure in which a fluorine atom or a fluorine-containing group is bonded to at least a part thereof. As the fluorinated aliphatic ring structure, a fluorinated aliphatic ether ring structure is more preferable.
含フッ素重合体 (a) の溶融状態における粘度は、 溶融温度 200〜300°C において、 100〜100, 000 P a · Sが好ましく、 300〜 10, 000 P a * Sがより好ましく、 500〜3, 000 P a · Sが特に好ましい。 溶融粘 度が高すぎると溶融紡糸が困難であり、 また、 溶融粘度が低すぎると保護被覆を 施してケーブル化する際に高温にさらされ軟化し、 光の伝送性能が低下する。 含フッ素重合体 ( a ) の数平均分子量は 1 X 104 〜 5 X 106 が好ましく、 5X 104〜1 X 106 がより好ましい。 分子量が小さすぎると耐熱性を阻害す ることがあり、 大きすぎると母材の成形または溶融押出が困難になる。 この分子 量を固有粘度 [77] で表わした場合は、 ペルフルォロ (2—プチルテトラヒドロ フラン) [以下、 「PBTHF」 という] 中 30 で 0. 1〜; L d lZgである ことが好ましく、 特に 0. 2〜0. 5 d 1 /gであることが好ましい。 The viscosity of the fluorine-containing polymer (a) in the molten state is preferably 100 to 100,000 Pa · S, more preferably 300 to 10,000 Pa * S at a melting temperature of 200 to 300 ° C, and 500 to 500 Pa. 3,000 Pa · S is particularly preferred. If the melt viscosity is too high, melt spinning is difficult, and if the melt viscosity is too low, it is exposed to high temperatures and softened when a protective coating is applied to make a cable, and the light transmission performance is reduced. The number average molecular weight of the fluoropolymer (a) is preferably 1 X 10 4 ~ 5 X 10 6, 5X 10 4 ~1 X 10 6 are more preferred. If the molecular weight is too small, heat resistance may be impaired, and if it is too large, molding or melt extrusion of the base material becomes difficult. When this molecular weight is represented by an intrinsic viscosity [77], it is preferably 0.1 to 0.1 in 30 of perfluoro (2-butyltetrahydrofuran) [hereinafter referred to as “PBTHF”]; It is preferably from 2 to 0.5 d 1 / g.
含フッ素脂肪族環構造を有する重合体としては、 含フッ素環構造を有する単量 体 (環を構成する炭素原子と環を構成しない炭素原子間に重合性二重結合を有す る単量体、 または環を構成する炭素原子 2個間に重合性二重結合を有する単量体 ) (Ml) を重合して得られる重合体や、 2個以上の重合性二重結合を有する含 フッ素単量体 (M2) を環化重合して得られる主鎖に含フッ素脂肪族環構造を有 する重合体が好適である。  Examples of the polymer having a fluorinated aliphatic ring structure include a monomer having a fluorinated ring structure (a monomer having a polymerizable double bond between a carbon atom constituting the ring and a carbon atom not constituting the ring). Or a monomer having a polymerizable double bond between two carbon atoms constituting the ring) or a polymer obtained by polymerizing (Ml), or a fluorine-containing monomer having two or more polymerizable double bonds. Polymers having a fluorinated aliphatic ring structure in the main chain obtained by cyclopolymerization of the monomer (M2) are preferred.
含フッ素脂肪族環構造を有する単量体 (Ml) を重合して得られる主鎖に含フ ッ素脂肪族環構造を有する重合体は、 ペルフルォロ (2, 2—ジメチルー 1, 3 ージォキソール) 、 ペルフルォロ (4—メチルー 2—メチレン一 1, 3一ジォキ ゾラン) 、 ペルフルォロ (2—メチル一1, 4一ジォキシン) などの含フッ素脂 肪族環構造を有する単量体 (Ml) を単独重合することにより得られる。 また、 この単量体 (Ml) と C_H結合を含まないラジカル重合性単量体 (M3) とを 共重合させることにより得られた主鎖に含フッ素脂肪族環構造を有する重合体も 用いられるが、 光の透過性が低下する場合があるので単量体 (Ml) の単独重合 体が好ましい。 C一 H結合を含まないラジカル重合性単量体 (M3) としては、 テトラフルォロエチレン、 クロ口トリフルォロエチレン、 ペルフルォロ (メチル ビニルエーテル) などが挙げられる。 Polymers having a fluorine-containing aliphatic ring structure in the main chain obtained by polymerizing a monomer (Ml) having a fluorine-containing aliphatic ring structure include perfluoro (2,2-dimethyl-1,3 dioxol), Fluorinated fats such as perfluoro (4-methyl-2-methylene-1,3-dioxolane) and perfluoro (2-methyl-1,4-dioxin) It can be obtained by homopolymerizing a monomer (Ml) having an aliphatic ring structure. Further, a polymer having a fluorinated aliphatic ring structure in the main chain obtained by copolymerizing this monomer (Ml) and a radical polymerizable monomer (M3) containing no C_H bond is also used. However, a homopolymer of the monomer (Ml) is preferable because the light transmittance may decrease. Examples of the radical polymerizable monomer (M3) containing no C-H bond include tetrafluoroethylene, trifluoromethyl ethylene, perfluoro (methyl vinyl ether), and the like.
また、 2個以上の重合性二重結合を有する含フッ素単量体 (M2) を環化重合 して得られる、 主鎖に含フッ素脂肪族環構造を有する重合体は、 特開昭 63— 2 38111号や特開昭 63- 2381 15号などにより知られている。 すなわち 、 ペルフルォロ (ァリルビニルエーテル) [CF2 = CF— CF2_0_CF = C F2] 、 ペルフルォロ (ブテ二ルビニルエーテル) [CF2 = CF— CF2_CF2 -0-CF = CF2] 、 およびペルフルォロ (4—ペンテン一 2—ィルビニルェ 一テル) [CF2 = CF_CF2— CF (CF3) — 0_CF = CF2] などの単量 体 (M2) を環ィ匕重合することにより得られる。 ここでこれらの単量体 (M2) は単独重合しても、 2種以上を共重合してもよい。 またこのような単量体 (M2 ) と C一 H結合を含まないラジカル重合性単量体 (M3) とを共重合させること により主鎖に含フッ素脂肪族環構造を有する重合体が得られるが、 光の透過性が 低下する場合があるので単量体 (M2) のみの重合体が好ましく、 単量体 (M2 ) の単独重合体が特に好ましい。 Further, a polymer having a fluorinated aliphatic ring structure in the main chain obtained by cyclopolymerization of a fluorinated monomer (M2) having two or more polymerizable double bonds is disclosed in No. 2,381,111 and JP-A-63-238115. That is, perfluoro (aryl vinyl ether) [CF 2 = CF—CF 2 _0_CF = CF 2 ], perfluoro (butenyl vinyl ether) [CF 2 = CF—CF 2 _CF 2 -0-CF = CF 2 ], and Perfluoro (4-pentene-2-ylvinyl ether) [CF 2 = CF_CF 2 —CF (CF 3 ) —0_CF = CF 2 ] can be obtained by polymerization of a monomer (M2). Here, these monomers (M2) may be homopolymerized, or two or more monomers may be copolymerized. Further, by copolymerizing such a monomer (M2) and a radical polymerizable monomer (M3) containing no C—H bond, a polymer having a fluorinated aliphatic ring structure in the main chain can be obtained. However, a polymer of only the monomer (M2) is preferable because a light transmittance may decrease, and a homopolymer of the monomer (M2) is particularly preferable.
また、 含フッ素脂肪族環構造を有する単量体 (Ml) と 2個以上の重合性二重 結合を有する含フッ素単量体 (M2) とを共重合させることによつても主鎖に含 フッ素脂肪族環構造を有する重合体が得られ、 含フッ素重合体 (a) として用い られるが、 この場合も組み合わせによっては光の透過性が低下する場合があるの で単独重合体が好ましい。  In addition, a monomer having a fluorinated aliphatic ring structure (Ml) and a fluorinated monomer having two or more polymerizable double bonds (M2) are copolymerized into a main chain. A polymer having a fluoroaliphatic ring structure is obtained, and is used as the fluorinated polymer (a). In this case, a homopolymer is preferred because the light transmittance may be reduced depending on the combination.
含フッ素脂肪族環構造を有する重合体は、 含フッ素脂肪族環構造を有する重合 体の全重合単位に対して含フッ素脂肪族環構造を有する重合単位を 20モル%以 上、 特に 40モル%以上含有するものが透明性、 機械的特性などの面から好まし い。 本発明において、 含フッ素重合体 (a) は、 含フッ素重合体 (a) のみからな つていても、 または、 屈折率調整剤 (a 2) を含む含フッ素重合体 (a) からな つていてもよい。 特に本発明のプラスチック光ファイバのコァが屈折率分布型で ある場合には、 含フッ素重合体 (a) は、 屈折率調整剤 (a 2) を含むことが好 ましく、 さらに各コアにおいて、 屈折率調整剤 (a 2) が含フッ素重合体 (a) 中で 、 同心円状で段差なく連続的に変化する濃度分布を有していることが好ま しく、 その濃度分布は放物線様であることが好ましい。 すなわち、 コアの中心部 において濃度が高く、 周辺部に向かうに従って濃度が低くなる分布が好ましい。 また、 特に、 本発明のプラスチック光ファイバのコアが単一モード型である場合 には、 含フッ素重合体 (a) は、 含フッ素重合体 (a) のみ、 または、 含フッ素 重合体 (a) と屈折率調整剤 (a 2) との含フッ素重合体組成物からなることが 好ましい。 In the polymer having a fluorinated alicyclic structure, the polymer units having a fluorinated alicyclic structure are at least 20 mol%, particularly 40 mol%, based on all the polymer units of the polymer having a fluorinated alicyclic structure. Those containing above are preferred in terms of transparency, mechanical properties, and the like. In the present invention, the fluoropolymer (a) may be composed of only the fluoropolymer (a) or may be composed of the fluoropolymer (a) containing the refractive index adjuster (a2). May be. Particularly, when the core of the plastic optical fiber of the present invention is of a refractive index distribution type, the fluoropolymer (a) preferably contains a refractive index adjusting agent (a2). It is preferable that the refractive index adjusting agent (a 2) has a concentric and continuously varying concentration distribution in the fluoropolymer (a), and the concentration distribution is parabolic. Is preferred. That is, a distribution in which the concentration is high at the center of the core and decreases toward the periphery is preferable. In particular, when the core of the plastic optical fiber of the present invention is of a single mode type, the fluorinated polymer (a) contains only the fluorinated polymer (a) or the fluorinated polymer (a) And a refractive index adjusting agent (a2).
本発明において屈折率調整剤 (a 2) としては、 含フッ素重合体 (a) との相 溶性に優れ、 かつ、 実質的に C一 H結合を有していない化合物が好ましい。 すな わち含フッ素重合体 (a) と屈折率調整剤 (a 2) との含フッ素重合体組成物に おいて、 屈折率調整剤 (a 2) は含フッ素重合体 (a) に溶解していることが好 ましい。 ここで溶解しているとは、 含フッ素重合体組成物のガラス転移点まで加 熱し、 それを徐冷 (例えば 5で/ h rで冷却) した場合においても、 相分離を起 こさないことをいう。  In the present invention, as the refractive index adjusting agent (a2), a compound having excellent compatibility with the fluoropolymer (a) and having substantially no C—H bond is preferable. That is, in the fluorinated polymer composition of the fluorinated polymer (a) and the refractive index adjusting agent (a2), the refractive index adjusting agent (a2) is dissolved in the fluorinated polymer (a). It is preferable that you do. Here, “dissolved” means that phase separation does not occur even when the fluoropolymer composition is heated to the glass transition point and then slowly cooled (for example, cooled at 5 / hr). .
また含フッ素重合体 (a) との比較において、 屈折率調整剤 (a 2) の屈折率 が高いことが好ましい。 すなわち、 屈折率調整剤 2) は、 含フッ素重合体 ( a) にとつて高屈折率化剤であることが好ましい。 屈折率調整剤 (a 2) として は、 屈折率が高いことから、 塩素原子を有する化合物および/または芳香族化合 物が好ましい。 塩素原子を有する化合物としては、 クロ口トリフルォロエチレン オリゴマー等が挙げられる。 また芳香族化合物としては、 ペルフルォロ (1, 3 , 5—トリフエニルベンゼン) 、 ペルフルォロ (2, 4, 6_トリフエニル _1 , 3, 5—トリアジン) 等が挙げられる。  Further, as compared with the fluoropolymer (a), the refractive index of the refractive index adjusting agent (a2) is preferably higher. That is, the refractive index adjuster 2) is preferably a high refractive index agent for the fluoropolymer (a). As the refractive index adjuster (a2), a compound having a chlorine atom and / or an aromatic compound is preferable because of its high refractive index. Examples of the compound having a chlorine atom include a trifluoroethylene oligomer. Examples of the aromatic compound include perfluoro (1,3,5-triphenylbenzene) and perfluoro (2,4,6_triphenyl_1,3,5-triazine).
本発明において、 含フッ素重合体 (b) とは、 コアとの比較において屈折率が 0. 001以上低い含フッ素重合体である。 すなわちコアとなる含フッ素重合体 (a) より低屈折率である必要があるため、 実質的に C一 H結合を有しない含フ ッ素重合体であることが好ましい。 また成形性等の問題から、 含フッ素重合体 ( b) としては、 主鎖に含フッ素脂肪族環構造を有する含フッ素重合体 (b) であ ることが好ましい。 特に含フッ素重合体 (b) すなわち本発明においてクラッド は、 含フッ素重合体 (b) のみからなることが特に好ましい。 ここで含フッ素重 合体 (b) としては、 含フッ素重合体 (a) が含フッ素重合体 (a) よりも屈折 率の高い屈折率調整剤 (a 2) を含む場合には、 屈折率調整剤 (a 2) を含まな い含フッ素重合体 (a) のみであってもよい。 In the present invention, the fluoropolymer (b) is a fluoropolymer having a refractive index lower than that of the core by 0.001 or more. That is, the fluoropolymer serving as the core (a) Since it is necessary to have a lower refractive index, a fluorine-containing polymer having substantially no C—H bond is preferred. From the viewpoint of moldability and the like, the fluoropolymer (b) is preferably a fluoropolymer (b) having a fluorinated aliphatic ring structure in the main chain. In particular, it is particularly preferable that the clad is only composed of the fluoropolymer (b) in the present invention. Here, as the fluorinated polymer (b), when the fluorinated polymer (a) contains a refractive index adjuster (a2) having a higher refractive index than the fluorinated polymer (a), Only the fluoropolymer (a) containing no agent (a2) may be used.
具体的な組み合わせとしてはすなわち、 含フッ素重合体 (a) と含フッ素重合 体 (b) との組み合わせとしては (a) / (b) で表した場合に、 (i) 含フッ 素重合体 (a— 1) /含フッ素重合体 (a— 1) よりも所定以上低屈折率である 含フッ素重合体 (a_2) の組み合わせ、 (i i) 含フッ素重合体 (a) と屈折 率調整剤 (a 2) とからなる組成物 Z含フッ素重合体 (a) の組み合わせが好ま しい。 特に本発明のプラスチック光ファイバのコアが、 屈折率分布型である場合 には、 (i) または (i i) の組み合わせが好ましく、 (i i) の組み合わせが 特に好ましい。 また同じくコアが単一モード型である場合には、 (i) の組み合 わせが好ましい。  As a specific combination, when the combination of the fluoropolymer (a) and the fluoropolymer (b) is represented by (a) / (b), (i) the fluoropolymer ( a-1) / fluorine-containing polymer (a-1) a combination of a fluorinated polymer (a_2) having a lower refractive index by a predetermined amount or more than (a-1); (ii) a fluorinated polymer (a) and a refractive index adjuster (a The combination of the composition Z fluoropolymer (a) comprising 2) is preferred. In particular, when the core of the plastic optical fiber of the present invention is of a refractive index distribution type, the combination of (i) or (ii) is preferable, and the combination of (ii) is particularly preferable. Similarly, when the core is a single mode type, the combination of (i) is preferable.
本発明においては、 上記含フッ素重合体 (a) と含フッ素重合体 (b) との組 み合わせにより、 700〜1600 nmの波長領域において、 50 dB/km以 下の低伝送損失が達成でき、 光源の選択の自由度が向上する点で好ましい。  In the present invention, a low transmission loss of 50 dB / km or less can be achieved in the wavelength region of 700 to 1600 nm by the combination of the fluoropolymer (a) and the fluoropolymer (b). It is preferable in that the degree of freedom in selecting a light source is improved.
本発明におけるプラスチック光ファイバは、 3以上のコアを同一クラッド内に 設けている。 すなわち、 クラッドを海としコアを島とする、 海島構造を形成する 。 このとき複数のコア同士は連続するクラッドによって互いに隔てられている。 同一のクラッド内に設けられるコアの数は 3以上であればよいが、 7以上が好ま しく、 10以上がより好ましい。 またその上限は特に設けられないが、 3000 以下が好ましい。  In the plastic optical fiber according to the present invention, three or more cores are provided in the same clad. That is, a sea-island structure is formed in which the clad is the sea and the core is the island. At this time, the plurality of cores are separated from each other by a continuous cladding. The number of cores provided in the same clad may be three or more, preferably seven or more, and more preferably ten or more. The upper limit is not particularly limited, but is preferably 3000 or less.
設けられるコアのコア径は、 それぞれ同一でも異なってもよい。 特にコア集合 部の中心部 (内部) に大きいコア径のコアを配置し、 その外周部の同心円上に中 心部に比較して小さいコア径のコアを配置することが好ましい。 これはプラスチ ック光ファイバを曲げた際に中心部のコアから漏洩した光エネルギーが外周部の コァに再度入射し曲げ損失の増加が抑制できるためと考えられ、 特に中心部のコ ァが屈折率分布型である場合に好適である。 ただし異なる径のコアを配置する場 合であってコアが単一モード型である場合には、 後述の条件を満たす必要がある またクラッド内におけるコアの配置は、 特に制限されないが、 光ファイバを曲 げる方向によって差が出にくいことから、 点対称に配置されることが好ましい。 またコア集合部に光が入射する際の結合効率が向上する点から、 最密充填配置と なることが好ましい。 The core diameters of the provided cores may be the same or different. In particular, it is preferable to arrange a core with a large core diameter at the center (inside) of the core assembly, and to arrange a core with a smaller core diameter on the concentric circle of the outer periphery than the center. This is plastic It is considered that the optical energy leaked from the core at the center when the optical fiber is bent reenters the core at the outer periphery and the increase in bending loss can be suppressed. Is suitable. However, when disposing cores of different diameters and the core is of a single mode type, it is necessary to satisfy the conditions described below.Also, the disposition of the core in the cladding is not particularly limited. Since it is difficult to make a difference depending on the bending direction, it is preferable to arrange the points symmetrically. In addition, the close-packed arrangement is preferable from the viewpoint of improving the coupling efficiency when light enters the core assembly.
本発明におけるプラスチック光ファイバのコアは、 屈折率分布型または単一モ ード型が好ましい。 コアが屈折率分布型である場合に、 コアの屈折率は段差なく 連続的に変化することが好ましく、 その屈折率分布は放物線様であることが好ま しい。 すなわちコアの中心部において屈折率が高く、 周辺部に向かうに従って屈 折率が低くなる分布が好ましい。 この分布形状は例えば中心部に屈折率調整剤の 高濃度部分を用意して、 それを熱拡散により拡散させて屈折率分布を与えること により得られる。  The core of the plastic optical fiber in the present invention is preferably of a refractive index distribution type or a single mode type. When the core is of a refractive index distribution type, the refractive index of the core preferably changes continuously without any step, and the refractive index distribution preferably has a parabolic shape. That is, a distribution in which the refractive index is high at the center of the core and the refractive index decreases toward the periphery is preferable. This distribution shape can be obtained, for example, by preparing a high-concentration portion of the refractive index adjusting agent in the center and diffusing it by thermal diffusion to give a refractive index distribution.
次にコアが単一モード型である場合について説明する。 単一モ一ド型であると は、 対象となる波長で最低次のモードだけが伝播される状態であることをいう。 単一モードとなる条件は規格化周波数 Vと呼ばれるパラメータを用いて (1 ) 式 で表される。  Next, a case where the core is a single mode type will be described. The single mode type means that only the lowest mode is propagated at the wavelength of interest. The condition for a single mode is expressed by equation (1) using a parameter called the normalized frequency V.
2πα  2πα
V = — ni ~ n22 く 2.405 ( 1 ) ただし、 aはコア半径、 はコア中心の屈折率、 n 2 はクラッドの屈折率、 λは波長である。 またこの場合、 (1 ) 式を満たすために必要な屈折率 およ び η 2 の関係に関して、 Δ η ^ ι^ — η 2 が 0 . 0 0 1≤Δ η < 0 . 0 3の範囲 であることが望ましい。 △ ηがこれより小さいと光を閉じ込めることができず曲 げ損失が大きくなりやすく、 一方、 大きいと単一モードの条件を満たすためにコ ァ径を非常に小さくする必要が生じ製造上困難になりやすい。 コァを単一モード 型とすることにより、 高帯域で伝送容量が大きく低伝送損失を実現できる。 本発明におけるプラスチック光ファイバの製造方法としては、 (S 1) 母材 ( プリフォーム) を成形してからこれを熱延伸する方法や (S 2) 押出成形機を用 いて溶融紡糸する方法が採用される。 いずれも重合体から直接作成する方法や単 量体を重合させながら成形することも可能である。 また上記 (S 1) の方法と ( S 2) の方法とを組み合わせる方法、 すなわち、 母材を押し出し法により製造し た後に熱延伸する方法を採用してもよい。 特に本発明のプラスチック光ファイバ のコアが、 屈折率分布型である場合には、 (S 1) の方法が好ましく、 同じくコ ァが単一モード型である場合には、 (S 2) の方法が好ましい。 V = — n i ~ n 2 2 2.405 (1) where a is the core radius, is the refractive index of the core center, n 2 is the refractive index of the cladding, and λ is the wavelength. In this case, regarding the relationship between the refractive index and η 2 required to satisfy the expression (1), Δ η ^ ι ^ — η 2 is in the range of 0.0 1 ≤Δ η <0.03. Desirably. If Δη is smaller than this, light cannot be confined and bending loss tends to increase.On the other hand, if it is large, the core diameter needs to be very small to satisfy the condition of single mode, which makes manufacturing difficult. Prone. By making the core a single mode type, it is possible to realize a large transmission capacity and a low transmission loss in a high band. As the method for producing the plastic optical fiber in the present invention, (S1) a method of forming a base material (preform) and then hot drawing the same, or (S2) a method of melt-spinning using an extruder is adopted. Is done. In any case, it is also possible to form directly from a polymer or to mold while polymerizing a monomer. Further, a method in which the method (S1) and the method (S2) are combined, that is, a method in which a base material is manufactured by an extrusion method and then hot-stretched may be employed. In particular, when the core of the plastic optical fiber of the present invention is of a refractive index distribution type, the method (S1) is preferable. Similarly, when the core is a single mode type, the method of (S2) is used. Is preferred.
上記 (S 1) の方法としては、 以下の例力挙げられる。 まずストランド状に成 形したコア材を、 別途成形した多孔のクラッド材に所定本数挿入し、 これを母材 とする。 得られた母材を熱延伸してプラスチック光ファイバを得る。 このときの 延伸倍率は 20〜 1000倍が好ましく、 50〜 300倍がより好ましい。 この 方法は、 コアが屈折率分布型である場合に好適である。 その具体的な成形方法の 一例を以下に示す。 まず含フッ素重合体 (a) の中空管を作成し、 その中心部に 屈折率調整剤 (a 2) を注入し、 屈折率調整剤 (a 2) を熱拡散させてコア用母 材を得る。 次にこのコア用母材を熱延伸して、 上記ストランド状に成形したコア 材を得る。 このコア材を、 含フッ素重合体 (b) を押し出し成形して得られた多 孔のクラッド材に、 所定本数挿入し母材とする。 得られた母材を熱延伸してブラ スチック光ファイバを得る。  Examples of the method (S1) include the following examples. First, a predetermined number of core materials formed in a strand shape are inserted into a separately formed porous clad material, and this is used as a base material. The obtained preform is thermally drawn to obtain a plastic optical fiber. The stretching ratio at this time is preferably from 20 to 1000 times, more preferably from 50 to 300 times. This method is suitable when the core is of a refractive index distribution type. An example of a specific molding method is shown below. First, a hollow tube of the fluoropolymer (a) is prepared, a refractive index adjuster (a2) is injected into the center of the hollow tube, and the refractive index adjuster (a2) is thermally diffused to form a core base material. obtain. Next, the core base material is thermally stretched to obtain a core material formed into the above-mentioned strand shape. A predetermined number of the core materials are inserted into a multi-hole clad material obtained by extruding the fluoropolymer (b) to form a base material. The obtained preform is thermally drawn to obtain a plastic optical fiber.
また他の具体例を以下に示す。 含フッ素重合体 (a) と屈折率調整剤 (a 2) とからなる含フッ素重合体 (a) のストランドを成形する。 次に含フッ素重合体 (a) を押し出し成形して多孔のクラッド材とする。 このクラッド材にストラン ドを揷入した後、 熱拡散を行い、 屈折率分布型のコアを有する母材を得る。 この 母材を熱延伸してプラスチック光ファイバを得る。  Other specific examples are shown below. A strand of the fluoropolymer (a) comprising the fluoropolymer (a) and the refractive index adjuster (a2) is formed. Next, the fluoropolymer (a) is extruded to form a porous clad material. After a strand is introduced into the clad material, thermal diffusion is performed to obtain a base material having a refractive index distribution type core. The preform is thermally drawn to obtain a plastic optical fiber.
前記 (S 2) の方法としては、 以下の例が挙げられる。 まず、 均一に溶融させ たコア材を押し出し機のダイス内で分流させ、 細分化した後にその周辺部にクラ ッド材を供給する。 これらを同一のノズルから押し出してプラスチック光フアイ バを得る。 この方法はコアが単一モード型である場合に好適である。 また 2色の 押し出し成形により、 コア材と多孔のクラッド材とからなる母材を得て、 これを 熱延伸してプラスチック光ファイバを得る方法も挙げられる。 Examples of the method (S2) include the following examples. First, the homogeneously melted core material is split in the die of the extruder, and after being subdivided, the clad material is supplied to the periphery. These are extruded from the same nozzle to obtain a plastic optical fiber. This method is suitable when the core is of a single mode type. In addition, a base material consisting of a core material and a porous clad material was obtained by extrusion molding of two colors, and this was obtained. There is also a method of obtaining a plastic optical fiber by hot stretching.
本発明のプラスチック光ファイバは、 硫酸、 塩酸等の酸性薬品、 または水酸化 ナトリウム等のアルカリ性薬品に侵されない。 また、 トルエン、 ベンゼン、 ァセ トン等の有機溶剤にも侵されない。 この耐薬品性、 耐溶剤性により、 下水道配管 内、 作動油が飛散する工場内等の劣悪な環境下でも使用可能である。 また、 3以 上のコアを有することにより、 曲げ損失が改善され、 頻繁に折り曲げられるロボ ット等の可動部へも使用できる。  The plastic optical fiber of the present invention is not affected by acidic chemicals such as sulfuric acid and hydrochloric acid or alkaline chemicals such as sodium hydroxide. It is not affected by organic solvents such as toluene, benzene, and acetone. Due to its chemical and solvent resistance, it can be used in poor environments, such as in sewer pipes and in factories where hydraulic oil scatters. Also, by having three or more cores, bending loss is improved, and it can be used for movable parts such as robots that are frequently bent.
本発明の含フッ素プラスチックマルチコア光ファイバは、 加入者系の通信線; 工場内 LAN、 病院内 LAN、 学校内 LAN、 下水道配管内 LAN等の公共施設 内 LANに用いる通信線;医療機器内配線;電力線監視通信線; 自動車、 航空機 、 電車、 船舶等のデータ伝送用通信線等の高速、 高帯域を必要とする用途に好適 である。 特に曲げ損失が大きくなりやすい、 狭い場所への配線に好適である。 さ らにプラスチック製である点で折れにくく、 また折れた際に刺さりにくいという 点で安全でもある。  The fluorine-containing plastic multi-core optical fiber of the present invention is a communication line for a subscriber system; a communication line used for a LAN in a public facility such as a LAN in a factory, a LAN in a hospital, a LAN in a school, and a LAN in a sewer pipe; Power line monitoring communication line; suitable for applications requiring high speed and high bandwidth, such as communication lines for data transmission of automobiles, aircraft, trains, ships, etc. Particularly, it is suitable for wiring to a narrow place where bending loss tends to be large. It is also safe because it is made of plastic, so it is hard to break and hard to stick when broken.
(実施例) (Example)
以下に本発明の実施例について具体的に説明する。  Hereinafter, examples of the present invention will be specifically described.
(実施例 1 )  (Example 1)
含フッ素重合体 (a) として、 ペルフルォロ (ブテ二ルビニルエーテル) の環 化重合体 (屈折率 1. 342) (以下、 重合体 AP Iという。 ) を選び、 屈折率 調整剤 (a 2) としてクロ口トリフルォロエチレン (CTFE) オリゴマーを選 んだ。 重合体 A P Iに CTFEオリゴマ一を添加し、 C T F Eオリゴマー濃度が 15質量%、 屈折率が 1. 355の重合体組成物 AC 1を得た。  As the fluoropolymer (a), a perfluoro (butenyl vinyl ether) cyclic polymer (refractive index: 1.342) (hereinafter referred to as polymer API) was selected, and a refractive index modifier (a2) was used. Fluoroethylene (CTFE) oligomer was selected as the target. The CTFE oligomer was added to the polymer API to obtain a polymer composition AC1 having a CTFE oligomer concentration of 15% by mass and a refractive index of 1.355.
重合体 AP Iを用いて、 外径が 40mm、 内径が 20. 5mm、 長さが 500 mmの中空管を作成する。 また重合体組成物 AC 1を用いて、 外径が 20mm、 長さが 500mmの円柱を作成する。 重合体 AP 1の中空管に重合体組成物 A C 1の円柱を揷入し、 これを 220°Cに加熱された加熱炉の中で溶融紡糸し、 外径 が 0. 26mm、 コア径が 0. 13mmのストランドを得る。  A hollow tube with an outer diameter of 40 mm, an inner diameter of 20.5 mm and a length of 500 mm is made using the polymer API. In addition, a cylinder having an outer diameter of 20 mm and a length of 500 mm is prepared using the polymer composition AC1. A cylindrical column of the polymer composition AC 1 was introduced into the hollow tube of the polymer AP 1 and melt-spun in a heating furnace heated to 220 ° C to have an outer diameter of 0.26 mm and a core diameter of 0.26 mm. Get a 13mm strand.
重合体 AP 1を用いて、 外径が 20mm, 内径が 10mm、 長さが 500mm の中空管を新たに作成する。 この中空部に、 長さ 48 0mmに切りそろえられた ストランドを 1 33 0本揷入し、 母材とする。 この母材を 2 20°Cに加熱された 加熱炉の中で溶融紡糸し、 外径が 0. 5 mmのプラスチック光ファイバを製造す る。 プラスチック光ファイバは、 コア径が 3. 2 5 βΐηのコアを 1 3 3 0有して いる。 このコアの波長 8 5 0 nmの光に対する規格ィ匕周波数は 2. 2 5であり、 このコアはシングルモ一ド型である。 20mm outer diameter, 10mm inner diameter, 500mm length using polymer AP1 Create a new hollow tube. One hundred and three hundred and thirty strands cut into a length of 480 mm are inserted into this hollow part to prepare a base material. The preform is melt spun in a heating furnace heated to 220 ° C to produce a plastic optical fiber with an outer diameter of 0.5 mm. The plastic optical fiber has a core having a core diameter of 3.25 βΐη. The core has a standard frequency of 2.25 for light with a wavelength of 850 nm, and this core is a single mode type.
図 1に本実施例により得られる、 本発明のプラスチック光ファイバの一例の断 面図を示す。 クラッド 1の中央部にコア集合部 2が配置される。 コア集合部 2に は上記のシングルモード型のコアが海島構造を形成するように 1 3 3 0配置され ている。  FIG. 1 shows a cross-sectional view of an example of the plastic optical fiber of the present invention obtained by the present embodiment. The core assembly 2 is arranged at the center of the clad 1. In the core assembly part 2, the above-mentioned single mode type cores are arranged so as to form a sea-island structure.
製造されたプラスチック光ファイバに、 開口数 (NA) が 0. 1、 波長が 8 5 0 nmのレーザー光を用いて、 2 0 0 mの伝送試験を実施したところ、 伝送損失 は 1 9 dB/km、 帯域は 4GHz · kmである。 またこのプラスチック光ファ ィバを用いて、 半径が 1 0 mm、 曲げ角度が 1 8 0度の曲げ試験を行ったところ 、 曲げ損失は 0. O l dB以下である。  A 200 m transmission test was performed on the manufactured plastic optical fiber using a laser beam with a numerical aperture (NA) of 0.1 and a wavelength of 850 nm, and the transmission loss was 19 dB / km, bandwidth is 4GHz · km. When a bending test was performed using this plastic optical fiber with a radius of 10 mm and a bending angle of 180 degrees, the bending loss was less than 0.010 dB.
(実施例 2)  (Example 2)
含フッ素重合体 (a) として、 重合体 AP Iを選び、 屈折率調整剤 (a 2) と して、 ペルフルォロ (1, 3, 5—トリフエニルベンゼン) (TPB) を選んだ 。 重合体 AP 1を用いて、 外径が 2 0mm、 内径が 5mm、 長さが 3 0 0mmの 中空管を作成する。 この中空管に TP Bを溶融した状態で注入し、 封管内におい て、 TP Bを注入した中空管を回転させながら加熱する。 240°Cで 1 0時間加 熱し、 TPBが拡散した中空管を得る。 この中空管の内周部の屈折率は 1. 3 5 5であり、 外周部の屈折率は 1. 342である。 この中空管を、 中空部を減圧に しながら、 2 2 0°Cに加熱された加熱炉の中で溶融紡糸し、 外径が 2mmのスト ランドを得る。  Polymer API was selected as the fluoropolymer (a), and perfluoro (1,3,5-triphenylbenzene) (TPB) was selected as the refractive index adjuster (a2). Using polymer AP1, a hollow tube with an outer diameter of 20 mm, an inner diameter of 5 mm, and a length of 300 mm is made. The TPB is injected into the hollow tube in a molten state, and the hollow tube into which the TPB has been injected is heated while rotating in the sealed tube. Heat at 240 ° C for 10 hours to obtain a hollow tube with TPB diffused. The inner tube has a refractive index of 1.355, and the outer tube has a refractive index of 1.342. This hollow tube is melt-spun in a heating furnace heated to 220 ° C. while reducing the pressure in the hollow portion to obtain a strand having an outer diameter of 2 mm.
外径が 46mm、 内径が 40mm、 長さが 3 50mmのガラス管 aを 1本と、 外径 2. 1mm、 内径 0. 5mm、 長さが 3 30mmの両端を封止したガラス管 bを 3 0本とを用意する。 ガラス管 bをガラス管 aの略中心部に配置し固定し、 ガラス管 aの片側をポリテトラフルォロエチレン製の円柱状樹脂ブロックで封止 する。 このガラス管 aの中に重合体 AP 1を溶融状態で注入し、 減圧下で脱泡し た後、 徐々に冷却し、 室温まで冷却する。 その後、 50質量%濃度のフッ化水素 酸水溶液中に投入し、 フッ化水素酸水溶液を循環させガラス管 a、 bを完全に溶 解除去する。 これを水洗、 乾燥して、 30個の孔を有する、 外径が 40mm、 長 さが 300mmの多孔クラッド材を得る。 多孔クラッド材の孔にそれぞれストラ ンドを挿入し母材とし、 これを 230°Cに加熱された加熱炉の中で溶融紡糸し、 外径が 0. 5 mmのプラスチック光ファイバを製造する。 プラスチック光フアイ バは、 コア径が 23 mの屈折率分布型コアを 30有している。 One glass tube a with an outer diameter of 46 mm, an inner diameter of 40 mm, and a length of 350 mm, and three glass tubes b with both outer diameters of 2.1 mm, an inner diameter of 0.5 mm, and a length of 3 30 mm sealed at both ends Prepare 0 bottles. Place glass tube b at approximately the center of glass tube a, fix it, and seal one side of glass tube a with a cylindrical resin block made of polytetrafluoroethylene. I do. The polymer AP1 is poured into the glass tube a in a molten state, defoamed under reduced pressure, then gradually cooled, and cooled to room temperature. Thereafter, the solution is poured into a 50% by mass aqueous solution of hydrofluoric acid, and the aqueous solution of hydrofluoric acid is circulated to completely dissolve and remove the glass tubes a and b. This is washed with water and dried to obtain a porous clad material having an outer diameter of 40 mm and a length of 300 mm having 30 holes. A strand is inserted into each hole of the porous clad material to serve as a base material, which is melt-spun in a heating furnace heated to 230 ° C to produce a plastic optical fiber having an outer diameter of 0.5 mm. The plastic optical fiber has 30 graded index cores having a core diameter of 23 m.
図 2に本実施例により得られた、 本発明のプラスチック光ファィバの一例の断 面図を示す。 クラッド 3の略中央部に屈折率分布型のコア 4が 30配置されてい る。 製造されたプラスチック光ファイバに、 NAが 0. 25、 波長が 130 On mのレーザー光を用いて、 500mの伝送試験を実施したところ、 伝送損失は 1 7 dBZkm、 帯域は 1 GHz · kmである。 またこのプラスチック光ファイバ を用いて、 半径が 10mm、 曲げ角度が 180度の曲げ試験を行ったところ、 曲 げ損失は 0. 1 dBである。  FIG. 2 shows a cross-sectional view of an example of the plastic optical fiber of the present invention obtained by the present embodiment. At the approximate center of the clad 3, 30 refractive index distribution type cores 4 are arranged. A 500m transmission test was performed on the manufactured plastic optical fiber using a laser beam with a NA of 0.25 and a wavelength of 130 Onm.The transmission loss was 17 dBZkm and the bandwidth was 1 GHzkm. . When a bending test was performed using this plastic optical fiber with a radius of 10 mm and a bending angle of 180 °, the bending loss was 0.1 dB.
(実施例 3)  (Example 3)
含フッ素重合体 (a) として重合体 AP Iを、 重合体 AP 1より低屈折率の重 合体として、 ペルフルォロ (ブテ二ルビニルエーテル) とペルフルォロ (2, 2 一ジメチルー 1, 3—ジォキソール) との共重合体 (屈折率 1. 338) (以下 、 重合体 AP 2という。 ) を選んだ。  As a fluoropolymer (a), a polymer API was used, and as a polymer having a lower refractive index than the polymer AP1, perfluoro (butenyl vinyl ether) and perfluoro (2,2-dimethyl-1,3-dioxole) were used. (Refractive index: 1.338) (hereinafter, referred to as polymer AP 2) was selected.
耐食仕様の 15mmプランジャ式押し出し機 2台を準備し、 それぞれ押し出し 機 1、 押し出し機 2とする。 押し出し機 1に重合体 AP Iを装填し、 押し出し機 2に重合体 A P 2を装填する。 押し出し機 1と押し出し機 2とを、 クロスヘッド を介して連結する。 押し出し機 1からの流路はクロスへッド内で 200本に分流 されている。 樹脂はクロスヘッドからノズルに導かれ、 直径が 10mmのクラッ ド材 (重合体 AP 2) が押し出され、 その中に直径が 0. 12mmのコア材 (重 合体 AP I) が押し出されるように設定する。 押し出し機 1を 220°Cに設定し 、 押し出し機 2を 240°Cに設定し、 押し出しを行う。 ノズルから出た樹脂を溶 融状態で延伸し、 外径 5 mmのプラスチック光ファイバを得る。 プラスチッ ク光ファイバは、 コア径が 6 imのコアを 200有している。 このコアの波長 8 50 nmの光に対する規格化周波数は 2. 30であり、 このコアはシングルモー ド型である。 Prepare two 15 mm plunger-type extruders with corrosion-resistant specifications, and use them as Extruder 1 and Extruder 2, respectively. Extruder 1 is loaded with polymer API, and extruder 2 is loaded with polymer AP2. Extruder 1 and Extruder 2 are connected via a crosshead. The flow path from the extruder 1 is divided into 200 lines in the crosshead. The resin is guided from the crosshead to the nozzle, where a 10 mm diameter clad material (Polymer AP2) is extruded, into which a 0.12 mm diameter core material (Polymer API) is extruded. I do. Set extruder 1 at 220 ° C and extruder 2 at 240 ° C and extrude. The resin coming out of the nozzle is stretched in the molten state to obtain a plastic optical fiber with an outer diameter of 5 mm. Plastic The optical fiber has 200 cores with a core diameter of 6 im. The normalized frequency of this core for light with a wavelength of 850 nm is 2.30, and this core is a single mode type.
製造されたプラスチック光ファイバに、 NAが 0. 1、 波長が 850 nmのレ 一ザ一光を用いて、 200mの伝送試験を実施したところ、 伝送損失は 24dB /km, 帯域は 3GHz · kmである。 またこのプラスチック光ファイバを用い て、 半径が 10mm、 曲げ角度が 180度の曲げ試験を行ったところ、 曲げ損失 は 0. 01 dB以下である。  A 200-m transmission test was performed on a manufactured plastic optical fiber using a laser with a NA of 0.1 and a wavelength of 850 nm.The transmission loss was 24 dB / km and the bandwidth was 3 GHzkm. is there. When a bending test was performed using this plastic optical fiber with a radius of 10 mm and a bending angle of 180 degrees, the bending loss was 0.01 dB or less.
(実施例 4)  (Example 4)
含フッ素重合体 (a) として重合体 AP Iを、 重合体 AP 1より低屈折率の重 合体として、 ペルフルォロ (4—ペンテン— 2—ィルビニルエーテル) の環化重 合体 (屈折率 1. 326) (以下、 重合体 A P 3という。 ) を選んだ。  As a fluoropolymer (a), a polymer API is used. As a polymer having a lower refractive index than polymer AP1, a perfluoro (4-pentene-2-ylvinyl ether) cyclized polymer (refractive index: 1.326) ) (Hereinafter referred to as polymer AP 3).
実施例 3と同じ 2台の押し出し機を用い、 クラッド材が AP 3、 コア材が AP 1となるように設定する。 実施例 3と同様に押し出しを行い、 ノズルから出た樹 脂を溶融状態で延伸し、 外径 0. 25mmのプラスチック光ファイバを得る。 プ ラスチック光ファイバは、 コア径が 3 mのコアを 200有している。 このコア の波長 850 nmの光に対する規格ィ匕周波数は 2. 29であり、 このコアはシン グルモード型である。  The same two extruders as in Example 3 are used, and the clad material is set to AP3 and the core material is set to AP1. Extrusion is performed in the same manner as in Example 3, and the resin discharged from the nozzle is stretched in a molten state to obtain a plastic optical fiber having an outer diameter of 0.25 mm. The plastic optical fiber has 200 cores with a core diameter of 3 m. The standard frequency of this core for light with a wavelength of 850 nm is 2.29, and this core is a single mode type.
製造されたプラスチック光ファイバに、 NAが 0. 1、 波長が 850 nmのレ 一ザ一光を用いて、 20 Omの伝送試験を実施したところ、 伝送損失は 24 dB Zkm、 帯域は 3 GHz · kmである。 またこのプラスチック光ファイバを用い て、 半径が 10mm、 曲げ角度が 180度の曲げ試験を行ったところ、 曲げ損失 は 0. 01 dB以下である。 産業上の利用の可能性  A 20 Om transmission test was performed on a manufactured plastic optical fiber using a laser with a NA of 0.1 and a wavelength of 850 nm.The transmission loss was 24 dB Zkm and the bandwidth was 3 GHz. km. When a bending test was performed using this plastic optical fiber with a radius of 10 mm and a bending angle of 180 degrees, the bending loss was 0.01 dB or less. Industrial applicability
本発明によれば、 ポリメチルメタクリレ一ト系樹脂等の材料を用いた従来のプ ラスチック光ファイバでは達成できなかった、 広い波長領域における、 低伝送損 失と高帯域が達成でき、 かつ、 低い曲げ損失が達成できる。  According to the present invention, low transmission loss and high bandwidth can be achieved in a wide wavelength range, which cannot be achieved by a conventional plastic optical fiber using a material such as polymethyl methacrylate resin, and Low bending losses can be achieved.

Claims

請求の範囲 The scope of the claims
1. コアが実質的に C—H結合を有しない非結晶性の含フッ素重合体 (a) から なり、 クラッドがコアとの比較において屈折率が 0. 001以上低い含フッ素重 合体 (b) からなるプラスチック光ファイバであって、 3以上のコアを同一クラ ッド内に設けることを特徴とするプラスチック光ファイバ。 1. The core is composed of a non-crystalline fluoropolymer having substantially no C—H bond (a), and the cladding is a fluoropolymer having a refractive index lower than that of the core by 0.001 or more (b) A plastic optical fiber, comprising: three or more cores provided in the same clad.
2. 含フッ素重合体 (a) が主鎖に含フッ素脂肪族環構造を有する含フッ素重合 体である、 請求項 1に記載のプラスチック光ファイバ。  2. The plastic optical fiber according to claim 1, wherein the fluoropolymer (a) is a fluoropolymer having a fluorinated aliphatic ring structure in the main chain.
3. 含フッ素重合体 (a) および含フッ素重合体 (b) が、 いずれも主鎖に含フ ッ素脂肪族環構造を有する含フッ素重合体である、 請求項 1または 2に記載のプ ラスチック光ファイバ。  3. The process according to claim 1, wherein the fluoropolymer (a) and the fluoropolymer (b) are both fluoropolymers having a fluoroaliphatic ring structure in the main chain. Plastic optical fiber.
4. コアが屈折率分布型である請求項 1、 2または 3に記載のプラスチック光フ アイバ。  4. The plastic optical fiber according to claim 1, 2 or 3, wherein the core is of a gradient index type.
5. 屈折率分布型であるコアが、 屈折率調整剤 (a 2) を含む含フッ素重合体 ( a) からなる請求項 4に記載のプラスチック光ファイバ。  5. The plastic optical fiber according to claim 4, wherein the refractive index distribution type core is made of a fluoropolymer (a) containing a refractive index adjuster (a2).
6. 各コアにおいて、 屈折率調整剤 (a 2) が含フッ素重合体 (a) 中で濃度分 布を有して含まれる請求項 5に記載のプラスチック光ファイバ。  6. The plastic optical fiber according to claim 5, wherein in each core, the refractive index adjusting agent (a2) is contained in the fluoropolymer (a) with a concentration distribution.
7. コアが単一モード型である請求項 1、 2または 3に記載のプラスチック光フ アイバ。  7. The plastic optical fiber according to claim 1, 2 or 3, wherein the core is of a single mode type.
8. コアが含フッ素重合体 (a) と屈折率調整剤 (a 2) との含フッ素重合体組 成物からなり、 クラッドが含フッ素重合体 (b) のみからなる請求項 7に記載の プラスチック光ファイバ。  8. The method according to claim 7, wherein the core comprises a fluoropolymer composition of the fluoropolymer (a) and the refractive index adjusting agent (a2), and the cladding comprises the fluoropolymer (b) alone. Plastic optical fiber.
9. コアが含フッ素重合体 (a) のみからなり、 クラッドが含フッ素重合体 (b ) のみからなる請求項 7に記載のプラスチック光ファイバ。  9. The plastic optical fiber according to claim 7, wherein the core comprises only the fluoropolymer (a) and the cladding comprises only the fluoropolymer (b).
PCT/JP2003/005356 2002-04-25 2003-04-25 Plastic optical fiber WO2003091772A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2004501975A JPWO2003091772A1 (en) 2002-04-25 2003-04-25 Plastic optical fiber
AU2003235143A AU2003235143A1 (en) 2002-04-25 2003-04-25 Plastic optical fiber

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002-124434 2002-04-25
JP2002124434 2002-04-25

Publications (1)

Publication Number Publication Date
WO2003091772A1 true WO2003091772A1 (en) 2003-11-06

Family

ID=29267529

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/005356 WO2003091772A1 (en) 2002-04-25 2003-04-25 Plastic optical fiber

Country Status (3)

Country Link
JP (1) JPWO2003091772A1 (en)
AU (1) AU2003235143A1 (en)
WO (1) WO2003091772A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011185986A (en) * 2010-03-04 2011-09-22 Asahi Glass Co Ltd Multi-core plastic optical fiber

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51127743A (en) * 1975-04-30 1976-11-08 Nippon Telegr & Teleph Corp <Ntt> Optical fiber and its manufacturing method
US4966435A (en) * 1988-11-29 1990-10-30 Mitsubishi Rayon Company, Ltd. Plastic optical fiber
JPH05341147A (en) * 1992-06-12 1993-12-24 Asahi Chem Ind Co Ltd Multi-core type single mode optical fiber and transmission using it
WO1994015005A1 (en) * 1992-12-18 1994-07-07 Hoechst Celanese Corporation Shaped articles of graduated refractive index
JPH08304636A (en) * 1995-04-28 1996-11-22 Yasuhiro Koike Optical fiber
US5734773A (en) * 1994-05-24 1998-03-31 Asahi Kasei Kogyo Kabushiki Kaisha Multicore plastic optical fiber for light signal transmission
US6107402A (en) * 1997-11-17 2000-08-22 Samsung Electronics Co., Ltd. Optical polymer composition

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51127743A (en) * 1975-04-30 1976-11-08 Nippon Telegr & Teleph Corp <Ntt> Optical fiber and its manufacturing method
US4966435A (en) * 1988-11-29 1990-10-30 Mitsubishi Rayon Company, Ltd. Plastic optical fiber
JPH05341147A (en) * 1992-06-12 1993-12-24 Asahi Chem Ind Co Ltd Multi-core type single mode optical fiber and transmission using it
WO1994015005A1 (en) * 1992-12-18 1994-07-07 Hoechst Celanese Corporation Shaped articles of graduated refractive index
US5734773A (en) * 1994-05-24 1998-03-31 Asahi Kasei Kogyo Kabushiki Kaisha Multicore plastic optical fiber for light signal transmission
JPH08304636A (en) * 1995-04-28 1996-11-22 Yasuhiro Koike Optical fiber
US6107402A (en) * 1997-11-17 2000-08-22 Samsung Electronics Co., Ltd. Optical polymer composition

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011185986A (en) * 2010-03-04 2011-09-22 Asahi Glass Co Ltd Multi-core plastic optical fiber

Also Published As

Publication number Publication date
JPWO2003091772A1 (en) 2005-09-02
AU2003235143A1 (en) 2003-11-10

Similar Documents

Publication Publication Date Title
US5783636A (en) Graded-refractive-index optical plastic material and method for its production
KR100768020B1 (en) Plastic optical fiber
US5916971A (en) Graded-refractive-index optical plastic material and method for its production
JP4232172B2 (en) Manufacturing method of gradient index optical fiber
EP1592991B1 (en) Method and apparatus for manufacturing plastic optical transmission medium
JP3719733B2 (en) Gradient index type optical resin material and manufacturing method thereof
US7135133B2 (en) Method and apparatus for manufacturing plastic optical transmission medium
JP2002071972A (en) Plastic optical fiber
WO2004019088A1 (en) Porous plastic optical transmission article and method for production thereof
JP3679155B2 (en) Manufacturing method of gradient index optical resin material
US20050141834A1 (en) Optical fiber having sea and islands structure
JP3530630B2 (en) Method of manufacturing refractive index distribution type optical fiber and base material thereof
WO2003091772A1 (en) Plastic optical fiber
EP1279976B1 (en) Plastic optical fiber and process for its production
JP3533263B2 (en) Method for producing a preform for producing a refractive index distribution type optical fiber
JP3723250B2 (en) Manufacturing method of base material for refractive index distribution type optical fiber manufacturing
JP2003098365A (en) Plastic optical fiber and method for manufacturing the same
JP4886256B2 (en) Plastic optical fiber
JP2004093639A (en) Optical fiber having sea-island structure
JP4095122B2 (en) Optical resin material and manufacturing method thereof
KR100496747B1 (en) Method of manufacturing distributed refractive index optical fiber
JP3489764B2 (en) Refractive index distribution type optical resin material
JPH11109144A (en) Graded refractive index type optical fiber, and its manufacture
JP2006106779A (en) Optical plastic material, graded-refractive-index optical fiber and method for manufacturing graded-refractive-index optical plastic material
JP2002311254A (en) Method for manufacturing optical resin material having graded refractive index

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004501975

Country of ref document: JP

122 Ep: pct application non-entry in european phase