WO2003077259A1 - Very high speed optical memory method and apparatus using bistable semiconductor laser - Google Patents

Very high speed optical memory method and apparatus using bistable semiconductor laser Download PDF

Info

Publication number
WO2003077259A1
WO2003077259A1 PCT/JP2003/002687 JP0302687W WO03077259A1 WO 2003077259 A1 WO2003077259 A1 WO 2003077259A1 JP 0302687 W JP0302687 W JP 0302687W WO 03077259 A1 WO03077259 A1 WO 03077259A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
signal
semiconductor laser
bistable semiconductor
bistable
Prior art date
Application number
PCT/JP2003/002687
Other languages
French (fr)
Japanese (ja)
Inventor
Hitoshi Kawaguchi
Original Assignee
Japan Science And Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science And Technology Agency filed Critical Japan Science And Technology Agency
Publication of WO2003077259A1 publication Critical patent/WO2003077259A1/en

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/04Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using optical elements ; using other beam accessed elements, e.g. electron or ion beam
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F3/00Optical logic elements; Optical bistable devices
    • G02F3/02Optical bistable devices
    • G02F3/026Optical bistable devices based on laser effects

Definitions

  • the present invention relates to an ultrafast optical memory method using a bistable semiconductor laser and an apparatus therefor.
  • FIG. 1 is a schematic diagram of a conventional fiber delay line buffer memory.
  • 101 is a packet input
  • 102 is a first optical switch
  • 103 is a bucket storage device
  • 104 is a second optical switch
  • 105 is a bucket output.
  • Non-Patent Document 3 (Non-Patent Document 3)
  • the present inventors have provided a plurality of bistable semiconductor lasers that perform an AND gate operation and a memory operation, and convert an all-optical, time-series optical signal without converting an optical signal into an electric signal.
  • the challenge was to develop an ultra-high-speed optical memory that could record one bit at a time on a stable semiconductor laser and read out the recorded signal as a time-series signal at the required time.
  • an optical spatial parallel signal converter that receives optical time-series signals for input and output and an optical time-series signal converter that receives optical parallel signals are required for the number of bits.
  • the equipment becomes large, and it has been an issue to solve it.
  • the present invention provides a method and an apparatus for an ultra-high-speed optical memory using a bistable semiconductor laser having a shift register function, which can read information at the required timing and control for each bit.
  • the purpose is to provide.
  • An ultra-high-speed optical memory method using a bistable semiconductor laser comprising a plurality of bistable semiconductor lasers that perform an AND gate operation and a memory operation, and all light without converting optical signals into electrical signals. It is characterized in that a time-series optical signal is recorded one bit at a time in each bistable semiconductor laser, and the recorded signal is read out as a time-series signal at the required timing.
  • an ultra-high-speed optical memory device using a bistable semiconductor laser an array having a plurality of bistable semiconductor lasers performing an AND gate operation and a memory operation, and an optical signal write for writing an optical signal to the array Means for reading optical signals written in the array, and optical signal reading means for reading optical signals written in the array, wherein all-optical, time-series optical signals are converted to each bistable semiconductor laser without converting the optical signals into electric signals. Recording the data bit by bit and reading the recorded signal as a time-series signal at the required timing Features.
  • the optical signal writing means includes: an optical branch to which a time-series optical signal is input; And a set light irradiating means and a reset light irradiating means for the half mirror.
  • the optical signal readout means includes a half mirror, an analyzer, an optical gate means, and a gate light pulse irradiation means. And an optical delay / merging line of the read signal light.
  • An ultra-high-speed optical memory device that records one bit at a time on a laser and can read out the recording signal as a time-series signal at the required timing. The recording signal is recorded from one bistable semiconductor laser to another bistable semiconductor. It has a shift register function for transferring and recording to a laser.
  • FIG. 1 is a schematic diagram of a conventional fiber delay line buffer memory.
  • FIG. 2 is a schematic diagram of an ultrafast optical memory device using a bistable semiconductor laser showing a first embodiment of the present invention (a conceptual diagram of a shift register using a two-dimensionally polarized bistable surface emitting semiconductor laser array). is there.
  • FIG. 3 is a schematic diagram for explaining signal writing to an ultrafast optical memory using a bistable semiconductor laser according to the first embodiment of the present invention.
  • FIG. 4 is a schematic diagram illustrating reading of a signal from ultrafast optical memory using a bistable semiconductor laser according to a first embodiment of the present invention.
  • FIG. 5 is a diagram showing a simulation result of an ultra-high-speed optical memory using a bistable semiconductor laser according to the first embodiment of the present invention.
  • FIG. 6 is a schematic view of an ultrafast optical memory device using a bistable semiconductor laser according to a second embodiment of the present invention.
  • FIG. 7 shows a surface emitting semiconductor laser A, B, C! Of an optical signal according to a second embodiment of the present invention.
  • D is a schematic diagram showing the arrangement in more detail for one column.
  • FIG. 8 is a timing chart showing recording of the optical signal of the surface emitting semiconductor lasers A 1 to A N according to the second embodiment of the present invention.
  • FIG. 9 is a timing chart showing a state of transfer and recording of a signal from a surface emitting semiconductor laser A, to B B, B> to C,, C, to D, of an optical signal according to a second embodiment of the present invention. It is a chart. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 2 is a schematic view of an ultrafast optical memory device using a bistable semiconductor laser according to a first embodiment of the present invention.
  • 1 is an ultra-high-speed optical signal (input signal)
  • 1 A is a header
  • 2 is an optical time-series signal / optical spatial parallel signal converter
  • 3, 4, and 13 are half mirrors
  • 1 is one-dimensional or two-dimensional.
  • Dimensional polarization bistable surface emitting semiconductor laser (VCSEL) array 6 is set light
  • 7 is reset light
  • 11 is analyzer (transmits 0 ° polarized light)
  • 12 is optical gate element
  • 14 is optical gate element A gate optical pulse
  • 15 is an optical spatial parallel signal / optical time-series signal converter
  • 16 is an ultra-high-speed optical signal (output signal).
  • FIG. 3 shows a first embodiment of the present invention in which an optical spatial parallel signal is converted into an optical time-series signal by using an optical branching / delay line. It is a schematic diagram explaining writing.
  • 11 is an ultra-high-speed optical signal (input signal)
  • 21 A is a header
  • 22A is an input port
  • 22B is an output port
  • 23 is a half mirror
  • 14 is a one-dimensional or two-dimensional polarization bistable surface emitting semiconductor laser (VCSEL) array
  • 25 is a set light
  • 26 is a reset light.
  • VCSEL polarization bistable surface emitting semiconductor laser
  • a surface emitting semiconductor laser in which the optical waveguide has a square cross section, there are two eigenmodes whose electric field direction is along a square side. Here, they are called 0 ° mode and 90 ° mode.
  • the optical gain of a surface-emitting semiconductor laser is almost equal to one laser oscillation mode, and the two modes are strongly coupled through gain saturation, resulting in bistability.
  • the polarization is switched to the same polarization mode as that of the incident pulse light, and the polarization after switching is maintained even if the incident pulse disappears. Therefore, a polarization bistable optical memory can be realized.
  • optical demultiplexing optical DEMUX
  • direct conversion of optical RZ signals to optical NRZ signals are expected to be applied to ultra-high-speed optical functional devices.
  • each polarization bistable surface emitting semiconductor laser (VCSEL) array 24 is perpendicular to the paper (90 °) by applying a reset light 26 having an electric field perpendicular to the paper (called 90 ° light). Light).
  • VCSEL polarization bistable surface emitting semiconductor laser
  • header 11-1A is added to the ultra-high-speed time-series optical signal.
  • the optical signal polarized in the plane of the paper enters from the input port 2 A of the optical branching / delay line 22, is branched, is delayed by a bit interval, and is output from each output port 22 B.
  • the light is emitted and injected into the VCSEL array 14 via the half mirror 23.
  • the set light 25 of 0 ° polarization is transmitted to the VCSEL array 14 by the signal from the header 21A. Incident. Although the polarization of the VCSEL array 24 is not switched only by the signal light, when the set light 25 and the signal light are simultaneously incident, the light switches from 90 ° light to 0 ° light. Therefore, as shown in Fig. 3, when the set light 25 enters, the VC SEL array
  • the “1” and “0” signals injected into 24 are recorded as oscillation polarization in the VCSEL array 24.
  • FIG. 4 is a schematic diagram illustrating reading of a signal from an ultra-high-speed optical memory using a bistable semiconductor laser according to a first embodiment of the present invention.
  • 27 is a half mirror
  • 28 is an analyzer
  • 29 is a saturable absorber
  • 30 is a gate light pulse
  • 31 is an optical delay / merging line
  • 32 is a mirror
  • 33 is an ultra-high-speed optical signal (output signal).
  • the reading of the optical signal (record) written as shown in FIG. 3 is performed as follows.
  • 0 ° and 90 ° polarized laser oscillation light is continuously (CW) emitted according to the “1” and “0” signals. Only the 0 ° polarized light passes through the analyzer 28 and enters the saturable absorber 29. Next, the gate light pulse 30 is incident on the saturable absorber 29, and the CW light from the VCSEL array 24 is cut out as pulse light. Next, the optical pulses are arranged in chronological order by the optical delay / merging line 31 and read as an ultra-high-speed optical signal (output signal) 33.
  • the memory can be stored in the unit of an optical bucket and can be read out in the unit of an optical bucket when necessary.
  • the above-mentioned embodiment shows that one operation of the ultra-high-speed optical memory is possible by a detailed computer simulation using a rate equation.
  • Non-Patent Documents 1 to 3 It is known from the above-mentioned Non-Patent Documents 1 to 3 that this analysis method is suitable for analysis of one operation of this kind of optical memory, and that the result agrees well with the experimental result.
  • FIG. 5 is a diagram showing a simulation result of an ultrafast optical memory using a bistable semiconductor laser according to the first embodiment of the present invention, and FIG. 5 (a) shows an ultrafast optical signal (0).
  • Figure 5 (b) is the set light (0 °)
  • Figure 5 (c) is the reset light
  • FIG. 5 ((1) shows the 0 ° polarization component of the memory output
  • FIG. 5 (e) shows the gate light pulse
  • FIG. 5 (f) shows the read output.
  • the vertical axis is optical power
  • the pulse width of the optical signal is 1 Ps
  • pulse interval is 5 ps
  • signal transmission speed is 200 Gbit / s.
  • the optical signal power of each channel is 5.
  • a header with a pulse width of 10 ps is read, and a set light (10 uW) of 1 ps is generated with an appropriate time delay and incident on the VCSEL array 4 simultaneously with the signal light of the sixth channel. Set as follows. As a result, as shown in Fig.
  • the 0 ° polarization component of the memory output becomes “0” power and “1” depending on whether the optical signal is “0” power or “1” and is stored.
  • the optical output of the memory is about 500 / W, which is an advantage that it is 100 times (20 dB) larger than the optical signal.
  • the absorption of the saturable absorber 29 is saturated with the gate light pulse 30 of lps, about 100 W, and the signal light is converted to the signal light of FIG. 5 (f). Read as shown in.
  • the optical memory is reset to a 90 ° signal by the reset light 26 of 1 ps, 20 W as shown in FIG. 5 (c).
  • memory can be stored in the unit of an optical bucket and read out in the unit of an optical bucket when necessary.
  • FIG. 6 is a schematic diagram of an ultrafast optical memory device using a bistable semiconductor laser according to a second embodiment of the present invention.
  • 101 is a half mirror
  • 202 is a two-dimensional polarization bistable surface emitting semiconductor laser (VCSEL) array
  • 203 is an optical gate element
  • 204 is a reflector.
  • VCSEL polarization bistable surface emitting semiconductor laser
  • the device of this embodiment is a device in which the polarization bistable surface emitting semiconductor laser array 24 shown in the first embodiment is replaced by a two-dimensional array 202, and an optical time series signal / optical spatial parallel signal converter (shown in FIG. None), reset light generator (not shown), set light generator (not shown), gate light generator (not shown), analyzer 11, optical gate element 12, and optical spatial parallel signal / light It has a device composed of a time-series signal converter (not shown), and has a configuration in which a reflector 204, an optical gate element 103, and a gate light generator are added to this device.
  • writing of a signal to the two-dimensional polarization bistable surface emitting semiconductor laser array 202 will be described.
  • an electric field is applied in the direction perpendicular to the plane of the paper (referred to as 90 ° light).
  • the oscillation polarization of each polarization bistable surface emitting semiconductor laser becomes perpendicular to the plane of the paper (referred to as 90 ° light).
  • Reset. A header is added to the ultra-high-speed time-series signal.
  • the optical time-series signal polarized in the paper (called 0 ° light) is converted by the optical time-series signal / optical spatial parallel signal converter,
  • the optical signal VC SEL array 2 0 2 of the first stage is 0 ° polarization set light when it reaches the, incident on the VCSEL array 10 2 by a signal from the header one I do.
  • the polarization of the VC SEL array 202 is not switched only by the signal light, but is switched from 90 ° light to 0 ° light when the set light and the signal light are simultaneously incident. Therefore, when the set light is incident, “1” injected into the VCSEL array 202,
  • a “0” signal is recorded as the VCSEL oscillation polarization.
  • FIG. 7 is a schematic diagram showing the arrangement of the surface emitting semiconductor lasers A,, B,. C,.
  • the present invention solves this problem by having an optical shift register function of collectively transferring signals recorded in some bistable semiconductor lasers to another bistable semiconductor laser and recording the signals.
  • FIG. 6 shows a conceptual diagram of a shift register using a two-dimensional polarization bistable surface emitting semiconductor laser array composed of a 4 ⁇ 4 surface emitting semiconductor laser.
  • A by the operation principle shown in FIG. 2, the to A 4, "1" and "0" signals, respectively 0. And 90. Recorded as oscillation polarization.
  • A the output of the surface emitting semiconductor laser to A 4 is emitted with a diffraction expansion rising a few degrees, it is condensed by the reflector 204 disposed on an upper surface B, and the surface emitting semiconductors lasers .about.B 4.
  • An optical gate element 203 through which the output of the surface emitting semiconductor laser is transmitted when a gate light pulse is incident from the outside is disposed near the reflector 204. Have been.
  • Figure 8 is a timing Chiya Ichiboku showing the surface emitting semiconductor laser A of the optical signal, the recording of to A N
  • Figure 9 is illustrates this shift Bok register function in the timing chart, ie from,, B
  • 5 is a timing chart showing the transfer and recording of signals from to d and from C and to.
  • the number of bits corresponding to the number of surface emitting semiconductor lasers in the y direction shown in FIG. is recorded a, the surface emitting semiconductor laser to a N by.
  • the input of the gate one Bok light, the signal of B, after being recorded is transferred to ⁇ BN, A reset light, the oscillation polarization to A N is reset to 90 °, recording the next signal. Reading of a record is performed as follows. The final stage (of FIG.
  • the analyzer 11 passes only 0 ° polarized light and enters the optical gate element 12.
  • the gate light pulse is made incident on the optical gate element 12, passes through the CW light from the last stage of the VCSEL array 202, and is cut out as pulse light.
  • optical pulses are arranged in time series by an optical spatial parallel signal / optical time series signal converter.
  • the memory can be stored in the unit of the light bucket, and can be read out in the unit of the light bucket when necessary.
  • a plurality of bistable surface-emitting semiconductor lasers performing an AND gate operation and a memory operation are provided, and all-optical type is used without converting an optical signal into an electric signal.
  • Optical signal is recorded on each bistable semiconductor laser one bit at a time.
  • An ultra-high-speed optical memory capable of reading a recording signal as a time-series signal at a necessary timing has a function of transferring a recording signal from one bistable semiconductor laser to another bistable semiconductor laser and recording.
  • All-optical routing can be performed on an optical bucket basis without converting optical signals into electrical signals, and high-speed optical communication can be achieved.
  • An ultra-high-speed optical memory method using a bistable semiconductor laser and a device therefor according to the present invention contribute to increase the speed of optical communication, and can control information for each bit and read information at necessary timing. Further, it is suitable as an ultra-high-speed optical memory using a bistable semiconductor laser having a shift register function.

Abstract

There are provided a very high speed optical memory method and apparatus using bistable semiconductor laser capable of controlling each bit and reading out information at the necessary timing. The very high speed optical memory apparatus using bistable semiconductor laser includes an array (5) having a plurality of bistable semiconductor lasers performing the AND gate operation and the memory operation, optical signal write means for writing an optical signal to the array (5), and optical signal read out means for reading out the optical signal written to the array (5). The apparatus is an entirely-optical type not converting the optical signal into an electric signal. The apparatus records a time-series optical signal to the bistable semiconductor laser bit by bit and reads out the recorded signal as a time-series signal at a necessary timing. Moreover, it is possible to transfer a recorded signal from a bistable semiconductor laser to another bistable semiconductor laser and record it there.

Description

明 細 書 双安定半導体レーザを用いた超高速光メモリ一方法及びその装置 技術分野  Description Ultra-high-speed optical memory method using bistable semiconductor laser and device therefor
本発明は、 双安定半導体レーザを用いた超高速光メモリ一方法及びその装置に 関するものである。 背景技術  The present invention relates to an ultrafast optical memory method using a bistable semiconductor laser and an apparatus therefor. Background art
現在、 光ファイバ通信システムは高度情報社会を担う通信伝送方式として発展 している。 しかし、 現状の光ファイバ通信システムは、 キャリア周波数が 200 THzという光の特性をまだ十分には活用していない。 今後の情報量の増大に応 えるためには、 より一層の超高速光通信システムの開発が望まれているが、 その 超高速化のためには信号処理も光が行う全光型のシステムが期待されている。 と りわけ、 全光型でのバケツト単位のルーティング技術が必要とされている。 第 1図は従来のファイバ遅延線バッファメモリーの模式図である。  At present, optical fiber communication systems are being developed as communication transmission systems for the advanced information society. However, current optical fiber communication systems have not yet fully utilized the characteristics of light with a carrier frequency of 200 THz. In order to respond to the increase in the amount of information in the future, further development of ultra-high-speed optical communication systems is desired. To achieve such ultra-high speed, all-optical systems that also use light for signal processing are required. Expected. In particular, an all-optical bucket-based routing technology is needed. FIG. 1 is a schematic diagram of a conventional fiber delay line buffer memory.
この図において、 1 0 1はパケット入力、 1 0 2は第 1の光スィッチ、 1 0 3 はバケツ卜の保存装置、 1 04は第 2の光スィッチ、 1 0 5はバケツ卜出力であ る。  In this figure, 101 is a packet input, 102 is a first optical switch, 103 is a bucket storage device, 104 is a second optical switch, and 105 is a bucket output. .
し力、し、 かかるファイバ遅延線バッファメモリーを用いる方式では、 各ビッ卜 毎の制御や必要なタイミングに情報を読み出すことが困難であった。  In the method using such a fiber delay line buffer memory, it was difficult to control each bit and read information at a necessary timing.
〔非特許文献 1〕  (Non-Patent Document 1)
田村、 山吉、 河口 「超高速偏光双安定面発光半導体レーザを用いた全光型光 信号処理」 信学技法、 LQE 2000 - 4 2 ( 2000年 8月)  Tamura, Yamayoshi, Kawaguchi "All-optical signal processing using ultrafast polarization bistable surface-emitting semiconductor laser" IEICE Tech., LQE 2000-42 (August 2000)
〔非特許文献 2〕  (Non-patent document 2)
山吉、 河口、 「面発光半導体レーザの偏光双安定性を用いた全光型超高速 DE MUX」 信学技法、 PS 98— 1 5 ( 1 998年 6月)  Yamayoshi, Kawaguchi, "All-Optical Ultrafast DE MUX Using Polarization Bistability of Surface-Emitting Semiconductor Laser" IEICE Tech., PS 98-15 (June 1998)
〔非特許文献 3〕  (Non-Patent Document 3)
H. Kawaguc h i , B i s t ab l e l a s e r d i o de s and the i r app l i c at i on ; S t at e o f the ar t, I EEE J. Se l e c t e d. Top. Quantum E 1 e c t r on. , 3 ( 1997 ) 1254. 発明の開示 H. Kawaguc hi, B ist ab lelaserdio de s and the ir app lic at ion; St at eof the art, I EEE J. Select d. Top. Quantum E 1 ectr on., 3 (1997) 1254.
そこで、 本願発明者らは A N Dゲート動作およびメモリ一動作を行う複数個の 双安定半導体レーザを備え、光信号を電気信号に変換することなく全光型で、 時 系列の光信号を、 各双安定半導体レーザに 1ビットずつ記録し、 必要なタイミン グに時系列信号として記録信号を読み出すことができる超高速光メモリ一の開発 をすることが課題となった。  Therefore, the present inventors have provided a plurality of bistable semiconductor lasers that perform an AND gate operation and a memory operation, and convert an all-optical, time-series optical signal without converting an optical signal into an electric signal. The challenge was to develop an ultra-high-speed optical memory that could record one bit at a time on a stable semiconductor laser and read out the recorded signal as a time-series signal at the required time.
さらに、 後に詳しく述べるように、 ビット数が多くなると入出力のための光時 系列信号を受ける光空間並列信号変換器や光並列信号を受ける光時系列信号変換 器がビット数の分だけ必要となり、 装置が大型になるといった欠点があり、 それ をも解決することが課題となった。  Furthermore, as will be described in detail later, as the number of bits increases, an optical spatial parallel signal converter that receives optical time-series signals for input and output and an optical time-series signal converter that receives optical parallel signals are required for the number of bits. However, there is a drawback that the equipment becomes large, and it has been an issue to solve it.
本発明は、 上記状況に鑑み、 各ビット毎の制御や必要なタイミングで情報を読 み出すことができ、 また、 シフトレジスタ機能を有する双安定半導体レーザを用 いた超高速光メモリ一方法及びその装置を提供することを目的とする。  SUMMARY OF THE INVENTION In view of the above circumstances, the present invention provides a method and an apparatus for an ultra-high-speed optical memory using a bistable semiconductor laser having a shift register function, which can read information at the required timing and control for each bit. The purpose is to provide.
本発明は、 上記目的を達成するために、  The present invention, in order to achieve the above object,
〔 1〕 双安定半導体レーザを用いた超高速光メモリ一方法において、 ANDゲ 一卜動作およびメモリ一動作を行う複数個の双安定半導体レーザを備え、 光信号 を電気信号に変換することなく全光型で、 時系列の光信号を各双安定半導体レ一 ザに 1ビットずつ記録し、 必要なタイミングに合わせて時系列信号として記録信 号を読み出すことを特徴とする。  [1] An ultra-high-speed optical memory method using a bistable semiconductor laser, comprising a plurality of bistable semiconductor lasers that perform an AND gate operation and a memory operation, and all light without converting optical signals into electrical signals. It is characterized in that a time-series optical signal is recorded one bit at a time in each bistable semiconductor laser, and the recorded signal is read out as a time-series signal at the required timing.
〔2〕 双安定半導体レーザを用いた超高速光メモリ一装置において、 ANDゲ ート動作およびメモリ一動作を行う複数個の双安定半導体レーザを有するアレイ と、 このアレイに光信号を書き込む光信号書き込み手段と、 前記アレイに書き込 まれた光信号を読み出す光信号読み出し手段とを備え、 光信号を電気信号に変換 することなく全光型で、 時系列の光信号を各双安定半導体レーザに 1ビッ卜ずつ 記録し、 必要なタイミングに合わせ時系列信号として記録信号を読み出すことを 特徴とする。 [2] In an ultra-high-speed optical memory device using a bistable semiconductor laser, an array having a plurality of bistable semiconductor lasers performing an AND gate operation and a memory operation, and an optical signal write for writing an optical signal to the array Means for reading optical signals written in the array, and optical signal reading means for reading optical signals written in the array, wherein all-optical, time-series optical signals are converted to each bistable semiconductor laser without converting the optical signals into electric signals. Recording the data bit by bit and reading the recorded signal as a time-series signal at the required timing Features.
〔 3〕 上記 〔 2〕 記載の双安定半導体レーザを用いた超高速光メモリ一装置に おいて、 前記光信号書き込み手段は、 時系列の光信号が入力される光分岐 '遅延 線と、 ハーフミラーと、 このハーフミラーへのセット光照射手段及びリセット光 照射手段とを具備することを特徴とする。  [3] In the ultrahigh-speed optical memory device using the bistable semiconductor laser according to the above [2], the optical signal writing means includes: an optical branch to which a time-series optical signal is input; And a set light irradiating means and a reset light irradiating means for the half mirror.
〔 4〕 上記 〔 2〕 記載の双安定 導体レーザを用いた超高速光メモリ一装置に おいて、 前記光信号読み出し手段は、 ハーフミラ一と、 検光子と、 光ゲート手段 と、 ゲート光パルス照射手段と、 読み出された信号光の光遅延 ·合流線とを具備 することを特徴とする。  [4] In the ultrahigh-speed optical memory device using the bistable semiconductor laser according to the above [2], the optical signal readout means includes a half mirror, an analyzer, an optical gate means, and a gate light pulse irradiation means. And an optical delay / merging line of the read signal light.
〔 5〕 上記 〔 4〕 記載の双安定半導体レーザを用いた超高速光メモリ一装置に おいて、 前記光ゲート手段が、 光ゲート素子であることを特徴とする。  [5] The ultrahigh-speed optical memory device using the bistable semiconductor laser according to the above [4], wherein the optical gate means is an optical gate element.
〔6〕 上記 〔4〕 記載の双安定半導体レーザを用いた超高速光メモリー装置に おいて、 前記光ゲート手段が、 可飽和吸収体であることを特徴とする。  [6] The ultrahigh-speed optical memory device using the bistable semiconductor laser according to the above [4], wherein the optical gate means is a saturable absorber.
〔 7〕 A N Dゲ一ト動作およびメモリ一動作を行う複数個の双安定半導体レー ザを備え、 光信号を電気信号に変換することなく全光型で、 時系列の光信号を各 双安定半導体レーザに 1ビットずつ記録し、 、要なタイミングに合わせて時系列 信号として記録信号を読み出すことができる超高速光メモリ一装置であつて、 記 録信号をある双安定半導体レーザから別の双安定半導体レーザへ転送し記録する シフトレジスタ機能を有することを特徴とする。 図面の簡単な説明  [7] Equipped with a plurality of bistable semiconductor lasers that perform AND gate operation and memory operation. All bistable semiconductor lasers convert optical signals into time-series optical signals without converting optical signals into electrical signals. An ultra-high-speed optical memory device that records one bit at a time on a laser and can read out the recording signal as a time-series signal at the required timing. The recording signal is recorded from one bistable semiconductor laser to another bistable semiconductor. It has a shift register function for transferring and recording to a laser. BRIEF DESCRIPTION OF THE FIGURES
第 1図は、 従来のファイバ遅延線バッファメモリ一の模式図である。  FIG. 1 is a schematic diagram of a conventional fiber delay line buffer memory.
第 2図は、 本発明の第 1実施例を示す双安定半導体レーザを用いた超高速光メ モリ一装置の模式図 ( 次元偏光双安定面発光半導体レーザァレイを用いたシフ トレジスタの概念図) である。  FIG. 2 is a schematic diagram of an ultrafast optical memory device using a bistable semiconductor laser showing a first embodiment of the present invention (a conceptual diagram of a shift register using a two-dimensionally polarized bistable surface emitting semiconductor laser array). is there.
第 3図は、 本発明の第 1実施例を示す双安定半導体レーザを用いた超高速光メ モリ一への信号の書き込みを説明する模式図である。  FIG. 3 is a schematic diagram for explaining signal writing to an ultrafast optical memory using a bistable semiconductor laser according to the first embodiment of the present invention.
第 4図は、 本発明の第 1実施例を示す双安定半導体レーザを用いた超高速光メ モリーからの信号の読み出しを説明する模式図である。 第 5図は、 本発明の第 1実施例を示す双安定半導体レーザを用いた超高速光メ モリ一のシミュレ一ション結果を示す図である。 FIG. 4 is a schematic diagram illustrating reading of a signal from ultrafast optical memory using a bistable semiconductor laser according to a first embodiment of the present invention. FIG. 5 is a diagram showing a simulation result of an ultra-high-speed optical memory using a bistable semiconductor laser according to the first embodiment of the present invention.
第 6図は、 本発明の第 2実施例を示す双安定半導体レーザを用いた超高速光メ モリー装置の模式図である。  FIG. 6 is a schematic view of an ultrafast optical memory device using a bistable semiconductor laser according to a second embodiment of the present invention.
第 7図は、 本発明の第 2実施例の光信号の面発光半導体レーザ A , 、 B , 、 C ! 、 D , の 1列について配置をより詳細に示した模式図である。  FIG. 7 shows a surface emitting semiconductor laser A, B, C! Of an optical signal according to a second embodiment of the present invention. , D, is a schematic diagram showing the arrangement in more detail for one column.
第 8図は、 本発明の第 2実施例を示す光信号の面発光半導体レーザ A , 〜AN の記録を示すタイミングチャートである。 FIG. 8 is a timing chart showing recording of the optical signal of the surface emitting semiconductor lasers A 1 to A N according to the second embodiment of the present invention.
第 9図は、 本発明の第 2実施例を示す光信号の面発光半導体レーザ A , から B ■ 、 B > から C , 、 C , から D , への信号の転送と記録の様子を示すタイミング チャートである。 発明を実施するための最良の形態  FIG. 9 is a timing chart showing a state of transfer and recording of a signal from a surface emitting semiconductor laser A, to B B, B> to C,, C, to D, of an optical signal according to a second embodiment of the present invention. It is a chart. BEST MODE FOR CARRYING OUT THE INVENTION
以下、本発明の実施の形態について詳細に説明する。  Hereinafter, embodiments of the present invention will be described in detail.
第 2図は本発明の第 1実施例を示す双安定半導体レーザを用いた超高速光メモ リー装置の模式図である。  FIG. 2 is a schematic view of an ultrafast optical memory device using a bistable semiconductor laser according to a first embodiment of the present invention.
この図において、 1は超高速光信号 (入力信号) 、 1 Aはヘッダー、 2は光時 系列信号/光空間並列信号変換装置、 3 , 4、 1 3はハーフミラ一、 5は一次元 又は二次元の偏光双安定面発光半導体レーザ (V C S E L ) アレイ、 6はセッ ト 光、 7はリセット光、 1 1は検光子 (0 ° 偏光を透過する) 、 1 2は光ゲート素 子、 1 4はゲート光パルス、 1 5は光空間並列信号/光時系列信号変換装置、 1 6は超高速光信号 (出力信号) である。  In this figure, 1 is an ultra-high-speed optical signal (input signal), 1 A is a header, 2 is an optical time-series signal / optical spatial parallel signal converter, 3, 4, and 13 are half mirrors, 1 is one-dimensional or two-dimensional. Dimensional polarization bistable surface emitting semiconductor laser (VCSEL) array, 6 is set light, 7 is reset light, 11 is analyzer (transmits 0 ° polarized light), 12 is optical gate element, 14 is optical gate element A gate optical pulse, 15 is an optical spatial parallel signal / optical time-series signal converter, and 16 is an ultra-high-speed optical signal (output signal).
以下、 双安定半導体レーザを用いた超高速光メモリ一への信号の書き込みと双 安定半導体レーザを用いた超高速光メモリ一からの信号の読み出しに分けて、 詳 細に説明する。  In the following, detailed description will be made separately for writing a signal to the ultra-high-speed optical memory using a bistable semiconductor laser and reading a signal from the ultra-high-speed optical memory using the bistable semiconductor laser.
第 3図は光空間並列信号から光時系列信号への変換に光分岐 ·遅延線を用いた 本発明の第 1実施例を示す双安定半導体レーザを用いた超高速光メモリ一への信 号の書き込みを説明する模式図である。  FIG. 3 shows a first embodiment of the present invention in which an optical spatial parallel signal is converted into an optical time-series signal by using an optical branching / delay line. It is a schematic diagram explaining writing.
この図において、 1 1は超高速光信号 (入力信号) 、 2 1 Aはヘッダ一、 2 2 は光分岐 '遅延線、 2 2Aは入力ポート、 22 Bは出力ポート、 23はハーフミ ラー、 14は一次元又は二次元の偏光双安定面発光半導体レーザ (VCSEL) アレイ、 2 5はセット光、 26はリセット光である。 In this figure, 11 is an ultra-high-speed optical signal (input signal), 21 A is a header, 2 2 Is a delay line, 22A is an input port, 22B is an output port, 23 is a half mirror, 14 is a one-dimensional or two-dimensional polarization bistable surface emitting semiconductor laser (VCSEL) array, 25 is a set light, 26 is a reset light.
ここで、 VC SELエレメントの動作原理について述べておく。  Here, the operating principle of the VC SEL element will be described.
光導波路が正方形の断面形状を持つ、面発光半導体レーザには、 電界方向が正 方形の辺に沿う 2つの固有モードが存在する。 ここでは、 0° モード、 90° モ 一ドと呼ぶ。 1つのレーザ発振モードに対して面発光半導体レーザの光学利得は ほぼ等しく、 2つのモードは利得飽和を通して強結合し、 双安定性が生じる。 短 光パルスを外部から入射すると、 入射パルス光と同一偏光のモ一ドに偏光がスィ ツチし、 入射パルスがなくなってもスィッチした後の偏光を保持する。 従って、 偏光双安定光メモリ一が実現できる。 偏光スィッチングの速度は 7 p sと極めて 速く、 光双安定素子のスイッチング速度としては世界最高速である。 超高速光通 信における光多重分離 (光 DEMUX) や光 RZ信号の光 NRZ信号への直接変 換など、 超高速光機能素子としての応用が期待できる。  In a surface emitting semiconductor laser in which the optical waveguide has a square cross section, there are two eigenmodes whose electric field direction is along a square side. Here, they are called 0 ° mode and 90 ° mode. The optical gain of a surface-emitting semiconductor laser is almost equal to one laser oscillation mode, and the two modes are strongly coupled through gain saturation, resulting in bistability. When a short light pulse is incident from the outside, the polarization is switched to the same polarization mode as that of the incident pulse light, and the polarization after switching is maintained even if the incident pulse disappears. Therefore, a polarization bistable optical memory can be realized. The speed of polarization switching is as fast as 7 ps, making it the world's fastest switching speed for optical bistable devices. Applications such as optical demultiplexing (optical DEMUX) in ultra-high-speed optical communications and direct conversion of optical RZ signals to optical NRZ signals are expected to be applied to ultra-high-speed optical functional devices.
次に、 偏光双安定面発光半導体レーザ (VCSEL) アレイ 24への信号の書 き込みについて、 第 3図を参照して説明する。  Next, the signal writing to the polarization bistable surface emitting semiconductor laser (VCSEL) array 24 will be described with reference to FIG.
最初に紙面に垂直方向に電場をもつ (90° 光と呼ぶ) リセット光 26を入射 することにより、 各偏光双安定面発光半導体レーザ (VCSEL) アレイ 24の 発振偏光は紙面に垂直 (9 0° 光) にリセッ卜される。  First, an oscillating polarization of each polarization bistable surface emitting semiconductor laser (VCSEL) array 24 is perpendicular to the paper (90 °) by applying a reset light 26 having an electric field perpendicular to the paper (called 90 ° light). Light).
第 3図に示すように、 超高速の時系列光信号にはへッダ一 1 1 Aが付与されて いる。 紙面内に偏光した (0° 光と呼ぶ) 光信号は光分岐 ·遅延線 22の入力ポ —ト 2 Aから入射し、 分岐された後、 ビット間隔ずつ遅延され各々の出力ポー 卜 22 Bから出射し、 ハーフミラー 2 3を介して VC SELアレイ 14に注入さ れる。  As shown in FIG. 3, header 11-1A is added to the ultra-high-speed time-series optical signal. The optical signal polarized in the plane of the paper (referred to as 0 ° light) enters from the input port 2 A of the optical branching / delay line 22, is branched, is delayed by a bit interval, and is output from each output port 22 B. The light is emitted and injected into the VCSEL array 14 via the half mirror 23.
次いで、 光分岐'遅延線 22により最も大きく遅れた光信号が、 VCSELァ レイ 24に到達した時に、 0° 偏光のセット光 2 5が、 ヘッダ一 2 1 Aからの信 号により VCSELアレイ 14に入射する。 VCSELアレイ 24の偏光は信号 光のみではスィッチしないが、 セット光 2 5と信号光が同時に入射した時には、 90° 光から 0° 光にスィツチする。 従って、 第 3図に示すように、 セット光 2 5が入射した時、 VC SELアレイThen, when the optical signal delayed most by the optical branching delay line 22 reaches the VCSEL array 24, the set light 25 of 0 ° polarization is transmitted to the VCSEL array 14 by the signal from the header 21A. Incident. Although the polarization of the VCSEL array 24 is not switched only by the signal light, when the set light 25 and the signal light are simultaneously incident, the light switches from 90 ° light to 0 ° light. Therefore, as shown in Fig. 3, when the set light 25 enters, the VC SEL array
24内に注入されている、 「1」 「0」 信号が VC SELアレイ 2 4に発振偏光 として記録される。 The “1” and “0” signals injected into 24 are recorded as oscillation polarization in the VCSEL array 24.
第 4図は本発明の第 1実施例を示す双安定半導体レーザを用いた超高速光メモ リーからの信号の読み出しを説明する模式図である。  FIG. 4 is a schematic diagram illustrating reading of a signal from an ultra-high-speed optical memory using a bistable semiconductor laser according to a first embodiment of the present invention.
この図において、 2 7はハーフミラー、 2 8は検光子、 2 9は可飽和吸収体、 In this figure, 27 is a half mirror, 28 is an analyzer, 29 is a saturable absorber,
3 0はゲート光パルス、 3 1は光遅延 ·合流線、 3 2はミラ一、 3 3は超高速光 信号 (出力信号) である。 30 is a gate light pulse, 31 is an optical delay / merging line, 32 is a mirror, and 33 is an ultra-high-speed optical signal (output signal).
第 3図に示すようにして書き込まれた光信号 (記録) の読み出しは、 次のよう に ί亍われる。  The reading of the optical signal (record) written as shown in FIG. 3 is performed as follows.
VC SELアレイ 2 4からは 「 1」 「0」 信号に従って 0° 偏光と 9 0° 偏光 のレーザ発振光が連続的 (CW) に出射されている。 検光子 2 8により 0° 偏光 のみを通過させ、 可飽和吸収体 2 9に入射する。 次に、 ゲート光パルス 3 0を可 飽和吸収体 2 9に入射し、 VC S ELアレイ 2 4からの CW光をパルス光として 切り出す。 次に、 光遅延 ·合流線 3 1により、 光パルスを時系列に並べて、 超高 速光信号 (出力信号) 3 3として読み出す。  From the VC SEL array 24, 0 ° and 90 ° polarized laser oscillation light is continuously (CW) emitted according to the “1” and “0” signals. Only the 0 ° polarized light passes through the analyzer 28 and enters the saturable absorber 29. Next, the gate light pulse 30 is incident on the saturable absorber 29, and the CW light from the VCSEL array 24 is cut out as pulse light. Next, the optical pulses are arranged in chronological order by the optical delay / merging line 31 and read as an ultra-high-speed optical signal (output signal) 33.
以上により、 光バケツト単位でメモリ一し、 必要な時に光バケツ卜単位で読み 出すことができるようになる。  As described above, the memory can be stored in the unit of an optical bucket and can be read out in the unit of an optical bucket when necessary.
上記の実施例により、 超高速光メモリ一動作が可能なことをレート方程式を用 いた詳細な計算機シミュレーションにより示す。  The above-mentioned embodiment shows that one operation of the ultra-high-speed optical memory is possible by a detailed computer simulation using a rate equation.
この解析手法が、 この種の光メモリ一動作の解析に適し、 その結果が実験結果 と良く一致することは上記した非特許文献 1〜 3などで知られている。  It is known from the above-mentioned Non-Patent Documents 1 to 3 that this analysis method is suitable for analysis of one operation of this kind of optical memory, and that the result agrees well with the experimental result.
第 5図は本発明の第 1実施例を示す双安定半導体レーザを用いた超高速光メモ リ一のシミュレ一ション結果を示す図であり、 第 5図 ( a ) は超高速光信号 ( 0 ° ) の時間波形、 第 5図 (b) はセッ ト光 (0° ) 、 第 5図 (c) はリセッ ト光 FIG. 5 is a diagram showing a simulation result of an ultrafast optical memory using a bistable semiconductor laser according to the first embodiment of the present invention, and FIG. 5 (a) shows an ultrafast optical signal (0). Figure 5 (b) is the set light (0 °), Figure 5 (c) is the reset light
(9 0° ) 、 第5図 ((1) はメモリ一出力の 0° 偏光成分、 第 5図 (e) はゲー 卜光パルス、 第 5図 (f ) は読み出し出力を示している。 また、 縦軸は光パワー(90 °), FIG. 5 ((1) shows the 0 ° polarization component of the memory output, FIG. 5 (e) shows the gate light pulse, and FIG. 5 (f) shows the read output. , The vertical axis is optical power
( W) 、 横軸は時間 (p s) を示している。 (W), and the horizontal axis indicates time (ps).
第 5図 (a) に示す超高速光信号の時間波形において、 光信号のパルス幅は 1 P s、 パルス間隔 5 p sであり、 信号伝送速度は 2 0 0 G b i t / sである。 各 チャンネルの光信号パワーは 5 である。 第 3図、 第 4図に示した模式図に合 わせ 6チャンネルの場合を解析した。 1 0 p sのパルス幅を持つヘッダ一 2 1 A を読み取り、 適当な時間遅れで 1 p sのセット光( 1 0 uW) を発生し、 6番目 のチャンネルの信号光と同時に VCSELアレイ 4に入射するように設定する。 その,結果、 第 5図 (d) に示すように、 メモリー出力の 0° 偏光成分は光信号 が 「0」 力、 「 1」 かにより、 「0」 力、 「 1」 になり保存される。 この時、 メモリ —の光出力は約' 5 0 0 /Wであり、 光信号に対し 1 0 0倍 ( 2 0 dB) 大きいと いう利点を持つ。 In the time waveform of the ultrafast optical signal shown in Fig. 5 (a), the pulse width of the optical signal is 1 Ps, pulse interval is 5 ps, and signal transmission speed is 200 Gbit / s. The optical signal power of each channel is 5. According to the schematic diagrams shown in Figs. 3 and 4, the case of 6 channels was analyzed. A header with a pulse width of 10 ps is read, and a set light (10 uW) of 1 ps is generated with an appropriate time delay and incident on the VCSEL array 4 simultaneously with the signal light of the sixth channel. Set as follows. As a result, as shown in Fig. 5 (d), the 0 ° polarization component of the memory output becomes “0” power and “1” depending on whether the optical signal is “0” power or “1” and is stored. . At this time, the optical output of the memory is about 500 / W, which is an advantage that it is 100 times (20 dB) larger than the optical signal.
次に、 第 5図 (e) に示すように、 l p s, 1 0 0 W程度のゲート光パルス 3 0で可飽和吸収体 2 9の吸収を飽和し、 信号光を、 第 5図 (f ) に示すように 読み出す。  Next, as shown in FIG. 5 (e), the absorption of the saturable absorber 29 is saturated with the gate light pulse 30 of lps, about 100 W, and the signal light is converted to the signal light of FIG. 5 (f). Read as shown in.
信号光の読み出しが終わった時点で、 第 5図 (c) に示すように、 1 p s, 2 0 Wのリセット光 2 6で光メモリーを 9 0° 信号へリセッ卜する。  When the reading of the signal light is completed, the optical memory is reset to a 90 ° signal by the reset light 26 of 1 ps, 20 W as shown in FIG. 5 (c).
この一連の動作により、 光バケツト単位でメモリ一し、 必要な時に光バケツト 単位で読み出すことができるようになる。  With this series of operations, memory can be stored in the unit of an optical bucket and read out in the unit of an optical bucket when necessary.
次に、 本発明の第 2実施例について説明する。  Next, a second embodiment of the present invention will be described.
第 6図は本発明の第 2実施例を示す双安定半導体レーザを用いた超高速光メモ リー装置の模式図である。  FIG. 6 is a schematic diagram of an ultrafast optical memory device using a bistable semiconductor laser according to a second embodiment of the present invention.
この図において、 1 0 1はハーフミラ一、 2 0 2は二次元偏光双安定面発光半 導体レーザ (VC S EL) アレイ、 2 0 3は光ゲート素子、 2 0 4は反射器であ る。  In this figure, 101 is a half mirror, 202 is a two-dimensional polarization bistable surface emitting semiconductor laser (VCSEL) array, 203 is an optical gate element, and 204 is a reflector.
本実施例の装置は、 第 1実施例で示した偏光双安定面発光半導体レーザアレイ 2 4を二次元アレイ 2 0 2で置き換えたもので、 光時系列信号/光空間並列信号 変換器 (図示なし) 、 リセット光発生装置 (図示なし) 、 セット光発生装置 (図 示なし) 、 ゲート光発生装置 (図示なし) 、検光子 1 1、 光ゲート素子 1 2およ び光空間並列信号/光時系列信号変換器 (図示なし) からなる装置を有しており、 この装置に反射器 2 04と光ゲート素子 1 0 3およびゲート光発生装置が付加さ れた構成である。 まず、 第 1実施例に示したように、 二次元偏光双安定面発光半導体レーザァレ ィ 2 0 2への信号の書き込みについて説明する。 最初に紙面に垂直方向に電場を もつ (9 0° 光と呼ぶ) リセット光を入射することにより、 各偏光双安定面発光 半導体レーザの発振偏光は紙面に垂直 (9 0° 光と呼ぶ) にリセッ卜される。 超高速の時系列信号にはヘッダーが付与されている。 紙面内に偏光した (0° 光と呼ぶ) 光時系列信号は光時系列信号/光空間並列信号変換器により変換され、The device of this embodiment is a device in which the polarization bistable surface emitting semiconductor laser array 24 shown in the first embodiment is replaced by a two-dimensional array 202, and an optical time series signal / optical spatial parallel signal converter (shown in FIG. None), reset light generator (not shown), set light generator (not shown), gate light generator (not shown), analyzer 11, optical gate element 12, and optical spatial parallel signal / light It has a device composed of a time-series signal converter (not shown), and has a configuration in which a reflector 204, an optical gate element 103, and a gate light generator are added to this device. First, as described in the first embodiment, writing of a signal to the two-dimensional polarization bistable surface emitting semiconductor laser array 202 will be described. First, an electric field is applied in the direction perpendicular to the plane of the paper (referred to as 90 ° light). By inputting the reset light, the oscillation polarization of each polarization bistable surface emitting semiconductor laser becomes perpendicular to the plane of the paper (referred to as 90 ° light). Reset. A header is added to the ultra-high-speed time-series signal. The optical time-series signal polarized in the paper (called 0 ° light) is converted by the optical time-series signal / optical spatial parallel signal converter,
1ビット每に異なる偏光双安定面発光半導体レーザに注入される。 次に、 光信号 が VC SELアレイ 2 0 2の初段 (第 6図の A , 〜A4 ) に到達した時に 0° 偏 光のセット光が、 ヘッダ一からの信号により VCSELアレイ 10 2に入射する。 VC SELアレイ 2 0 2の偏光は信号光のみではスィッチしないが、 セット光と 信号光が同時に入射した時には 9 0° 光から 0° 光にスィッチする。 従って、 セ ット光が入射された時、 VC SELアレイ 2 0 2内に注入されている 「 1」 、Each bit is injected into a different polarization bistable surface emitting semiconductor laser. Then, the optical signal VC SEL array 2 0 2 of the first stage (of FIG. 6 A, to A 4) is 0 ° polarization set light when it reaches the, incident on the VCSEL array 10 2 by a signal from the header one I do. The polarization of the VC SEL array 202 is not switched only by the signal light, but is switched from 90 ° light to 0 ° light when the set light and the signal light are simultaneously incident. Therefore, when the set light is incident, “1” injected into the VCSEL array 202,
「0」 信号が VC SELの発振偏光として記録される。 A “0” signal is recorded as the VCSEL oscillation polarization.
次に、 シフ卜レジス夕機能について第 6図および第 7図を参照しながら説明す る。  Next, the shift register function will be described with reference to FIGS. 6 and 7. FIG.
第 7図は光信号の面発光半導体レーザ A , , B, . C, . D, の 1列について 配置をより詳細に示した模式図である。  FIG. 7 is a schematic diagram showing the arrangement of the surface emitting semiconductor lasers A,, B,. C,.
上述した従来の光バケツトメモリ一では、 一般にビット数が増加すると光時系 列信号/光空間並列信号変換装置の入出力ポー卜がビッ卜数だけ必要になり、 構 成上大きな問題となる。 本発明では、 いくつかの双安定半導体レーザに記録され ている信号を別の双安定半導体レーザへ一括転送し、 記録する光シフトレジスタ 機能を持たせることにより、 この問題を解決している。  In the conventional optical bucket memory described above, when the number of bits increases, the number of input / output ports of the optical time series signal / optical spatial parallel signal conversion device is generally required by the number of bits, which is a major configuration problem. . The present invention solves this problem by having an optical shift register function of collectively transferring signals recorded in some bistable semiconductor lasers to another bistable semiconductor laser and recording the signals.
第 6図に 4 X 4の面発光半導体レーザからなる二次元偏光双安定面発光半導体 レーザアレイを用いたシフトレジス夕の概念図を示す。 第 2図に示した動作原理 により A, 〜A4 に、 「1」 及び 「0」 信号がそれぞれ 0。 と 9 0。 発振偏光と して記録されている。 A, 〜A4 の面発光半導体レーザの出力は、 数度の回折拡 がりをもって出射され、 上面に配置した反射器 204で B, 〜B4 の面発光半導 体レーザに集光される。 反射器 2 04の近くには外部からゲート光パルスが入射 された時に、 面発光半導体レーザの出力が透過する光ゲート素子 2 0 3が配置さ れている。 面発光半導体レーザと反射器 204の間の間隔を 1とすると 2 1 /c (cは光速) よりも短い間ゲートが開かれると B, 〜B4 のレーザ発振偏光は、 A, 〜A4 の出力の注入により A, 〜A4 と各々同じ発振偏光になり、 信号がそ れぞれ書き込まれ、記録される。 例えば、 1を 5 cmとするとゲ一卜の開かれる 時間は 30 p s以下になる。 次に、 A, 〜A4 を 90° 偏光をもつリセット光で リセットし、 新しい信号を書き込む。 次にゲート光でゲートを開くと、 B, 〜B 4 の信号が C, 〜C4 に、 A, 〜A4 の信号が B, 〜B4 にそれぞれ書き込まれ 記録される。 信号の読出しは、 最終段 (図の列では D, 〜D4 ) の面発光半導体 レーザの CW出力を後述のように読み出すことによって実現できる。 FIG. 6 shows a conceptual diagram of a shift register using a two-dimensional polarization bistable surface emitting semiconductor laser array composed of a 4 × 4 surface emitting semiconductor laser. A by the operation principle shown in FIG. 2, the to A 4, "1" and "0" signals, respectively 0. And 90. Recorded as oscillation polarization. A, the output of the surface emitting semiconductor laser to A 4 is emitted with a diffraction expansion rising a few degrees, it is condensed by the reflector 204 disposed on an upper surface B, and the surface emitting semiconductors lasers .about.B 4. An optical gate element 203 through which the output of the surface emitting semiconductor laser is transmitted when a gate light pulse is incident from the outside is disposed near the reflector 204. Have been. When the surface emitting semiconductor laser and 1 the distance between the reflector 204 2 1 / c When (c is the speed of light) briefly gate is opened than B, the laser oscillation polarization of .about.B 4 is, A, to A 4 a, the injection of the output of each is the same oscillation polarization and to a 4, signal pixel Re respectively written and recorded. For example, if 1 is 5 cm, the gate opening time will be less than 30 ps. Next, A, to A 4 were reset by the reset light having a 90 ° polarization, and writes the new signal. Then you open the gate in the gate light, B, signals .about.B 4 is C, and -C 4, A, signal to A 4 is B, is written are recorded respectively .about.B 4. Reading of signals (in the figure the column D, to D 4) final stage can be realized by reading the CW output of the surface emitting semiconductor laser as described below.
第 8図は光信号の面発光半導体レーザ A , 〜AN の記録を示すタイミングチヤ 一卜、 第 9図はこのシフ卜レジスタ機能をタイミングチャートで示したもの、 す なわち、 から 、 B, から d へ、 C, から への信号の転送と記録の 様子を示すタイミングチャートである。 Figure 8 is a timing Chiya Ichiboku showing the surface emitting semiconductor laser A of the optical signal, the recording of to A N, Figure 9 is illustrates this shift Bok register function in the timing chart, ie from,, B, 5 is a timing chart showing the transfer and recording of signals from to d and from C and to.
本発明によるシフ卜レジス夕機能付超高速光メモリ一装置では、 第 6図に示し た y方向の面発光半導体レーザの数に一致する数のビッ卜が、 セット光と信号光 との ANDゲート動作により A, 〜AN の面発光半導体レーザに記録される。 ゲ 一卜光の入力により、 この信号は B, ~BN に転送され記録された後、 リセット 光で A, 〜AN の発振偏光は 90° にリセットされ、 次の信号を記録する。 記録の読出しは次のように行われる。 VC SELアレイ 202の最終段 (第 6 図の D, ~D4 ) からは 「 1」 、 「0」 信号に従って 0° 偏光と 90° 偏光のレ 一ザ発振光が連続的 (CW) に出射されている。 検光子 1 1により 0° 偏光のみ を通過させ、 光ゲート素子 1 2に入射する。 次に、 ゲート光パルスを光ゲート素 子 1 2に入射し、 VCSELアレイ 202の最終段からの CW光を通過させパル ス光として切り出す。 次に光空間並列信号/光時系列信号変換器により、 光パル スを時系列に並べる。 以上により、 光バケツ卜単位でメモリーし、 必要な時に光 バケツ卜単位で読み出すことができるようになる。 In the ultrahigh-speed optical memory device with the shift register function according to the present invention, the number of bits corresponding to the number of surface emitting semiconductor lasers in the y direction shown in FIG. is recorded a, the surface emitting semiconductor laser to a N by. The input of the gate one Bok light, the signal of B, after being recorded is transferred to ~ BN, A reset light, the oscillation polarization to A N is reset to 90 °, recording the next signal. Reading of a record is performed as follows. The final stage (of FIG. 6 D, ~ D 4) of the VC SEL array 202 "1" from, 0 ° polarized light and 90 ° polarization Les monodentate oscillation light in accordance with the "0" signal is emitted continuously (CW) Have been. The analyzer 11 passes only 0 ° polarized light and enters the optical gate element 12. Next, the gate light pulse is made incident on the optical gate element 12, passes through the CW light from the last stage of the VCSEL array 202, and is cut out as pulse light. Next, optical pulses are arranged in time series by an optical spatial parallel signal / optical time series signal converter. As described above, the memory can be stored in the unit of the light bucket, and can be read out in the unit of the light bucket when necessary.
本発明の第 2実施例によれば、 ANDゲート動作およびメモリ一動作を行う複 数個の双安定面発光半導体レーザを備え、 光信号を電気信号に変換することなく 全光型で、 時系列の光信号を、 各双安定半導体レーザに 1ビットずつ記録し、 必 要なタイミングに時系列信号として記録信号を読み出すことができる超高速光メ モリ一において、 記録信号をある双安定半導体レーザから別の双安定半導体レ一 ザへ転送し、 記録する機能を有する。 According to the second embodiment of the present invention, a plurality of bistable surface-emitting semiconductor lasers performing an AND gate operation and a memory operation are provided, and all-optical type is used without converting an optical signal into an electric signal. Optical signal is recorded on each bistable semiconductor laser one bit at a time. An ultra-high-speed optical memory capable of reading a recording signal as a time-series signal at a necessary timing has a function of transferring a recording signal from one bistable semiconductor laser to another bistable semiconductor laser and recording.
なお、 本発明は上記実施例に限定されるものではなく、 本発明の趣旨に基づい て種々の変形が可能であり、 これらを本発明の範囲から排除するものではない。 以上、 詳細に説明したように、 本発明によれば、 以下のような効果を奏するこ とができる。  It should be noted that the present invention is not limited to the above embodiments, and various modifications are possible based on the spirit of the present invention, and these are not excluded from the scope of the present invention. As described above, according to the present invention, the following effects can be obtained.
( 1 ) 光信号を電気信号に変換することなく、 全光型で光バケツト単位でルー ティングができ、 光通信の高速化を達成することがきる。  (1) All-optical routing can be performed on an optical bucket basis without converting optical signals into electrical signals, and high-speed optical communication can be achieved.
( 2 ) 記録信号をある双安定半導体レーザから別の双安定半導体レーザへ転送 し、 記録することができる。 産業上の利用可能性  (2) The recording signal can be transferred from one bistable semiconductor laser to another and recorded. Industrial applicability
本発明の双安定半導体レーザを用いた超高速光メモリ一方法及びその装置は、 光通信の高速化を図るために寄与し、 各ビッ ト毎の制御や必要なタイミングで情 報を読み出すことができ、 また、 シフトレジスタ機能を有する双安定半導体レー ザを用いた超高速光メモリーとして好適である。  INDUSTRIAL APPLICABILITY An ultra-high-speed optical memory method using a bistable semiconductor laser and a device therefor according to the present invention contribute to increase the speed of optical communication, and can control information for each bit and read information at necessary timing. Further, it is suitable as an ultra-high-speed optical memory using a bistable semiconductor laser having a shift register function.

Claims

請 求 の 範 囲 The scope of the claims
1 . A N Dゲート動作およびメモリ一動作を行う複数個の双安定半導体レーザ を備え、 光信号を電気信号に変換することなく全光型で、 時系列の光信号を各双 安定半導体レーザに 1ビッ卜ずつ記録し、 必要なタイミングに合わせて時系列信 号として記録信号を読み出すことを特徴とする双安定半導体レーザを用いた超高 速光メモリ一方法。 1. Equipped with a plurality of bistable semiconductor lasers that perform AND gate operation and memory operation, all-optical type without converting optical signals to electrical signals. An ultra-high-speed optical memory method using a bistable semiconductor laser, characterized in that data is recorded one by one and a recorded signal is read out as a time-series signal at a required timing.
2 .  2.
( a ) A N Dゲート動作およびメ'モリ一動作を行う複数個の双安定半導体レーザ を有するアレイと、  (a) an array having a plurality of bistable semiconductor lasers performing an AND gate operation and a memory operation,
( b ) 該アレイに光信号を書き込む光信号書き込み手段と、  (b) optical signal writing means for writing an optical signal to the array;
( c )前記ァレイに書き込まれた光信号を読み出す光信号読み出し手段とを備え、 ( d ) 光信号を電気信号に変換することなく全光型で、 時系列の光信号を各双安 定半導体レーザに 1ビットずつ記録し、 必要なタイミングに合わせ時系列信号と して記録信号を読み出すことを特徴とする双安定半導体レーザを用いた超高速光 メモリ一装置。  (c) optical signal reading means for reading an optical signal written in the array, (d) an all-optical type without converting the optical signal into an electric signal, and a time-series optical signal for each bistable semiconductor. An ultra-high-speed optical memory device using a bistable semiconductor laser characterized by recording one bit at a time on a laser and reading out a recorded signal as a time-series signal at a required timing.
3 . 請求項 2記載の双安定半導体レーザを用いた超高速光メモリー装置におい て、 前記光信号書き込み手段は、 時系列の光信号が入力される光分岐,遅延線と、 ハーフミラーと、 該ハーフミラーへのセット光照射手段及びリセット光照射手段 とを具備することを特徴とする双安定半導体レーザを用いた超高速光メモリ一装 置。  3. An ultra-high-speed optical memory device using a bistable semiconductor laser according to claim 2, wherein the optical signal writing means comprises: an optical branch and delay line to which a time-series optical signal is input; An ultra-high-speed optical memory device using a bistable semiconductor laser, comprising: means for irradiating a half mirror with set light and reset light.
4 . 請求項 2記載の双安定半導体レーザを用いた超高速光メモリ一装置におい て、 前記光信号読み出し手段は、 ハーフミラーと、 検光子と、 光ゲート手段と、 ゲート光パルス照射手段と、 読み出された信号光の光遅延 ·合流線とを具備する ことを特徴とする双安定半導体レーザを用いた超高速光メモリ一装置。  4. An ultra-high-speed optical memory device using a bistable semiconductor laser according to claim 2, wherein the optical signal readout means comprises a half mirror, an analyzer, an optical gate means, a gate light pulse irradiation means, An ultra-high-speed optical memory device using a bistable semiconductor laser, comprising: an optical delay of the emitted signal light and a merging line.
5 . 請求項 4記載の双安定半導体レーザを用いた超高速光メモリー装置におい て、 前記光ゲート手段が、 光ゲート素子であることを特徴とする双安定半導体レ 一ザを用いた超高速光メモリ一装置。  5. An ultrafast optical memory device using a bistable semiconductor laser according to claim 4, wherein the optical gate means is an optical gate element. One device.
6 . 請求項 4記載の双安定半導体レーザを用いた超高速光メモリ一装置におい て、 前記光ゲート手段が、 可飽和吸収体であることを特徴とする双安定半導体レ 一ザを用いた超高速光メモリ一装置。 6. An ultrafast optical memory device using the bistable semiconductor laser according to claim 4. An ultra-high-speed optical memory device using a bistable semiconductor laser, wherein the optical gate means is a saturable absorber.
7 . A N Dゲート動作およびメモリ一動作を行う複数個の双安定半導体レーザ を備え、 光信号を電気信号に変換することなく全光型で、 時系列の光信号を各双 安定半導体レーザに 1 ビッ 卜ずつ記録し、 必要なタイミングに合わせて時系列信 号として記録信号を読み出すことができる超高速光メモリ一装置であって、 記録 信号をある双安定半導体レーザから別の双安定半導体レーザへ転送し記録するシ フトレジスタ機能を有することを特徴とする双安定半導体レーザを用いた超高速 光メモリ一装置。  7. Equipped with a plurality of bistable semiconductor lasers that perform AND gate operation and memory operation, all-optical type without converting optical signals into electrical signals, and time-series optical signals are transmitted to each bistable semiconductor laser by one bit. An ultra-high-speed optical memory device that can record data one by one and read out the recorded signal as a time-series signal at the required timing, transferring the recorded signal from one bistable semiconductor laser to another. An ultrahigh-speed optical memory device using a bistable semiconductor laser having a shift register function for recording.
PCT/JP2003/002687 2002-03-12 2003-03-07 Very high speed optical memory method and apparatus using bistable semiconductor laser WO2003077259A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2002067071 2002-03-12
JP2002-67071 2002-03-12
JP2002-340372 2002-11-25
JP2002340372A JP4368573B2 (en) 2002-03-12 2002-11-25 Ultrafast optical memory device using a bistable semiconductor laser

Publications (1)

Publication Number Publication Date
WO2003077259A1 true WO2003077259A1 (en) 2003-09-18

Family

ID=27806976

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/002687 WO2003077259A1 (en) 2002-03-12 2003-03-07 Very high speed optical memory method and apparatus using bistable semiconductor laser

Country Status (2)

Country Link
JP (1) JP4368573B2 (en)
WO (1) WO2003077259A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4805663B2 (en) * 2005-11-30 2011-11-02 株式会社東芝 Near-field waveguide, near-field waveguide method, and optical shift register
JP5110422B2 (en) * 2007-04-13 2012-12-26 国立大学法人 奈良先端科学技術大学院大学 Shift register type optical memory device

Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60254991A (en) * 1984-05-31 1985-12-16 Nec Corp Time-division optical exchange
JPS61156231A (en) * 1984-12-28 1986-07-15 Nec Corp Circuit for mixing and integrating light
EP0188290A2 (en) * 1985-01-17 1986-07-23 Nec Corporation Optical memory device comprising a semiconductor laser having bistability and two injection current sources for individually controlling the bistability
JPS61259235A (en) * 1985-05-14 1986-11-17 Nec Corp Optical shift register circuit
EP0236796A2 (en) * 1986-03-07 1987-09-16 Hitachi, Ltd. Optical switching system
EP0274250A2 (en) * 1986-12-15 1988-07-13 BRITISH TELECOMMUNICATIONS public limited company Optical switch
US4761060A (en) * 1984-11-07 1988-08-02 Nec Corporation Optical delay type flipflop and shift register using it
EP0315512A1 (en) * 1987-11-03 1989-05-10 Thomson-Csf Optical dynamic interconnection device for integrated circuits
JPH01135087A (en) * 1987-11-20 1989-05-26 Nippon Telegr & Teleph Corp <Ntt> Optical signal multiplexing/branching device
JPH01134431A (en) * 1987-11-20 1989-05-26 Nippon Telegr & Teleph Corp <Ntt> Optical signal switching device
JPH01164930A (en) * 1987-12-21 1989-06-29 Nippon Telegr & Teleph Corp <Ntt> Optical register memory array
JPH01164929A (en) * 1987-12-21 1989-06-29 Nippon Telegr & Teleph Corp <Ntt> Optical signal processor
JPH01201631A (en) * 1988-02-08 1989-08-14 Fujitsu Ltd Optical shift register
EP0385430A2 (en) * 1989-02-28 1990-09-05 Fujitsu Limited Optical drop-and-insert apparatus
JPH03105330A (en) * 1989-09-19 1991-05-02 Fujitsu Ltd Method for controlling optical bistable semiconductor laser
JPH0440195A (en) * 1990-06-06 1992-02-10 Matsushita Electric Ind Co Ltd Optical connecter
JPH05342889A (en) * 1992-06-10 1993-12-24 Nippon Telegr & Teleph Corp <Ntt> Optical information storage device
EP0853397A2 (en) * 1997-01-13 1998-07-15 Nec Corporation Optical functional amplifying method and optical functional amplifying device
JP2000347231A (en) * 1999-06-08 2000-12-15 Nec Corp Optical gate switch device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0648599B2 (en) * 1984-11-07 1994-06-22 日本電気株式会社 Optical shift register circuit
JPH0797194B2 (en) * 1985-06-28 1995-10-18 日本電気株式会社 Optical signal shift circuit

Patent Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60254991A (en) * 1984-05-31 1985-12-16 Nec Corp Time-division optical exchange
US4761060A (en) * 1984-11-07 1988-08-02 Nec Corporation Optical delay type flipflop and shift register using it
JPS61156231A (en) * 1984-12-28 1986-07-15 Nec Corp Circuit for mixing and integrating light
EP0188290A2 (en) * 1985-01-17 1986-07-23 Nec Corporation Optical memory device comprising a semiconductor laser having bistability and two injection current sources for individually controlling the bistability
JPS61259235A (en) * 1985-05-14 1986-11-17 Nec Corp Optical shift register circuit
EP0236796A2 (en) * 1986-03-07 1987-09-16 Hitachi, Ltd. Optical switching system
EP0274250A2 (en) * 1986-12-15 1988-07-13 BRITISH TELECOMMUNICATIONS public limited company Optical switch
EP0315512A1 (en) * 1987-11-03 1989-05-10 Thomson-Csf Optical dynamic interconnection device for integrated circuits
JPH01135087A (en) * 1987-11-20 1989-05-26 Nippon Telegr & Teleph Corp <Ntt> Optical signal multiplexing/branching device
JPH01134431A (en) * 1987-11-20 1989-05-26 Nippon Telegr & Teleph Corp <Ntt> Optical signal switching device
JPH01164930A (en) * 1987-12-21 1989-06-29 Nippon Telegr & Teleph Corp <Ntt> Optical register memory array
JPH01164929A (en) * 1987-12-21 1989-06-29 Nippon Telegr & Teleph Corp <Ntt> Optical signal processor
JPH01201631A (en) * 1988-02-08 1989-08-14 Fujitsu Ltd Optical shift register
EP0385430A2 (en) * 1989-02-28 1990-09-05 Fujitsu Limited Optical drop-and-insert apparatus
JPH03105330A (en) * 1989-09-19 1991-05-02 Fujitsu Ltd Method for controlling optical bistable semiconductor laser
JPH0440195A (en) * 1990-06-06 1992-02-10 Matsushita Electric Ind Co Ltd Optical connecter
JPH05342889A (en) * 1992-06-10 1993-12-24 Nippon Telegr & Teleph Corp <Ntt> Optical information storage device
EP0853397A2 (en) * 1997-01-13 1998-07-15 Nec Corporation Optical functional amplifying method and optical functional amplifying device
JP2000347231A (en) * 1999-06-08 2000-12-15 Nec Corp Optical gate switch device

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
HITOSHI KAWAGUCHI: "Cho-kosoku hikari soantei sosi to sono oyo", OPTICAL AND ELECTRO-OPTICAL ENGINEERING CONTACT, vol. 32, no. 1, 1994, pages 37 - 40, XP002968481 *
HITOSHI KAWAGUCHI: "Handotai laser no hikari soantei to switching", OYO BUTSURI, vol. 58, no. 11, 1989, pages 1574 - 1583, XP002968482 *
KAZUTAKE TAMURA ET AL.: "Cho-kosoku henko soantei menhakko handotai laser o mochiita zenko-gata hikari shingo shori", THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS GJUTSU KENKYU HOKOKU (OPE 2000-48), vol. 100, no. 261, 17 August 2000 (2000-08-17), pages 25 - 30, XP002968479 *
KEN'ICHI NODA ET AL.: "Hikari kioku sosi", JOHO SHORI, vol. 26, no. 8, 15 August 1985 (1985-08-15), pages 895 - 902, XP002968477 *
OGURA I. ET AL.: "Picosecond all-optical gate using a saturable absorber in mode-locked laser diodes", IEEE PHOTONICS TECHNOLOGY LETTERS, vol. 10, no. 4, April 1998 (1998-04-01), pages 603 - 605, XP000754233 *
SHUJI SUZUKI ET AL.: "Soantei LD o mochiita jibunkatsu hikari koka no jikken", SHOWA 59 NENDO NATIONAL CONVENTION RECORD, THE INSTITUTE OF ELECTRONICS AND COMMUNICATION ENGINEERS OF JAPAN, vol. 8, 5 March 1984 (1984-03-05), pages 295 - 296, XP002968476 *
YASUHIRO YAMAYOSHI ET AL.: "Henko soantei menhakko handotai laser o mochiita zen kogakuteki 3R chukeiki no dosa tokusei no kaiseki", THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS GIJUTSU KENKYU HOKOKU (OPE2002-64), vol. 102, no. 288, 23 August 2002 (2002-08-23), pages 67 - 72, XP002968480 *
YASUHIRO YAMAYOSHI ET AL.: "Menhakko handotai laser no henko soanteisei o mochiita zenko-gata cho-kosoku DEMUX", THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS GIJUTSU KENKYU HOKOKU (OFT98-16), vol. 98, no. 111, 18 June 1998 (1998-06-18), pages 37 - 42, XP002968478 *

Also Published As

Publication number Publication date
JP2003337355A (en) 2003-11-28
JP4368573B2 (en) 2009-11-18

Similar Documents

Publication Publication Date Title
Willner Optical fiber telecommunications
Cotter et al. Nonlinear optics for high-speed digital information processing
Tucker et al. Optical time-division multiplexing for very high bit-rate transmission
US7474827B2 (en) Devices and methods for all-optical processing and storage
CN108665924B (en) Array silicon-based programmable optical memory chip
Takahashi et al. Photonic random access memory for 40-Gb/s 16-b burst optical packets
Kehayas et al. All-optical network subsystems using integrated SOA-based optical gates and flip-flops for label-swapped networks
US20010055439A1 (en) Optical memory apparatus and method
Yoo et al. Optical-label based packet routing system with contention resolution in wavelength, time, and space domains
Takahashi et al. 40-Gbit/s label recognition and 1/spl times/4 self-routing using self-serial-to-parallel conversion
JP2002135209A (en) Optical signal processor
US6570694B1 (en) System and method for low-jitter asynchronous optical regeneration using wavelength sampling
JP2004296075A (en) Optical cache memory
WO2003077259A1 (en) Very high speed optical memory method and apparatus using bistable semiconductor laser
JP3577289B2 (en) Optical signal processing method and optical signal processing device
Blumenthal Photonic packet and all-optical label switching technologies and techniques
JP4038159B2 (en) Optical signal processing apparatus and optical signal processing method
JP2827501B2 (en) Optical self-routing circuit
Takahashi et al. Hybrid optoelectronic router for future energy-efficient, large-capacity, and flexible OPS networks
Nakahara et al. Hybrid optoelectronic router prototype for asynchronous optical packet switched networks
US7466914B2 (en) Optoelectronic switch having cascaded optical nodes
Takahashi et al. Photonic random access memory using serial-to-parallel and parallel-to-serial conversion
Kurumida et al. All-optical label recognition with SOA-MZI multistage switching scheme
JP2004254345A (en) Optical/optical and electric/optical signal converter and signal converting method
Urata et al. A compact low-power label swapper for asynchronous burst optical packets based on an optically clocked transistor array

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase