WO2003061981A1 - Feuille imprimee authentifiable, procede et appareil de fabrication, et procede et appareil d'authentification - Google Patents

Feuille imprimee authentifiable, procede et appareil de fabrication, et procede et appareil d'authentification Download PDF

Info

Publication number
WO2003061981A1
WO2003061981A1 PCT/JP2003/000083 JP0300083W WO03061981A1 WO 2003061981 A1 WO2003061981 A1 WO 2003061981A1 JP 0300083 W JP0300083 W JP 0300083W WO 03061981 A1 WO03061981 A1 WO 03061981A1
Authority
WO
WIPO (PCT)
Prior art keywords
printed matter
line
fourier transform
longitudinal direction
objects
Prior art date
Application number
PCT/JP2003/000083
Other languages
English (en)
French (fr)
Inventor
Kazuharu Saitou
Masato Kiuchi
Minoru Fujita
Original Assignee
National Printing Bureau, Incorporated Administrative Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2002001519A external-priority patent/JP2003200647A/ja
Priority claimed from JP2002050606A external-priority patent/JP4082448B2/ja
Application filed by National Printing Bureau, Incorporated Administrative Agency filed Critical National Printing Bureau, Incorporated Administrative Agency
Publication of WO2003061981A1 publication Critical patent/WO2003061981A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M3/00Printing processes to produce particular kinds of printed work, e.g. patterns
    • B41M3/14Security printing

Definitions

  • the present invention relates to a printed matter that can be authenticated, a method of producing the same and a producing apparatus thereof, and a method of determining the same and a device of the same.
  • Countermeasures to prevent counterfeiting and alteration are important factors in printed materials such as banknotes, stock certificates, bonds, and other securities, various certificates, and important documents.
  • a method that uses a pattern that makes extensive use of geometric patterns in the design, or by performing some processing on the printed material is a latent that cannot be recognized with the normal visible light.
  • a pattern is composed of a set of curved objects with a fixed image width.
  • a typical example of the latter is a countermeasure that is often used to prevent forgery or falsification.
  • Images that are generally referred to as copy-prevention images can visually recognize the latent image applied to the printed matter. In some cases, a latent image appears when copied by a copier.
  • the following (a) and (b) have been proposed for such forgery prevention technology using a copying machine.
  • characters are composed of fine components composed of, for example, 85 lines and 30% halftone dots.
  • a technology for displaying a latent image by copying Japanese Patent Laid-Open No. 57-20995.
  • the collective pattern of the musical composition lines is composed of the part without the latent image and the part with the latent image.
  • One line is used for the part without the latent image, and two lines are used for the part with the latent image.
  • the object width of the two lines used in the part where the latent image is applied is the same as the object width of one object used in the part where the latent image is not applied.
  • the portion where no latent image is applied is branched into two lines continuously from one line.
  • the line that has been split into two lines is so narrow that it cannot be copied at the resolution of the copier.
  • the naked eye sees one object line and two objects as the same line. As a result, an image that is different from the naked eye is copied (Japanese Patent Application No. 6-206140).
  • the part without the latent image is represented by a solid line
  • the part with the latent image is represented by a line that is broken at regular intervals.
  • the portion where the latent image is provided includes an image portion where the line at the broken line exists and a non-image portion where the line is cut off and missing.
  • OCR optical character recognition
  • 0MR 0MR
  • bar codes two-dimensional codes, and the like are relatively simple methods for optically reading the pattern of printed matter.
  • changes in design and specifications are required.
  • Digital watermarks are said to have little degradation in frequency characteristics even in duplicates, and have recently been used to apply digital images distributed on the Internet for the purpose of copyright protection. Also, printed materials are increasingly used by bosses and others for the purpose of copyright protection.
  • the most effective use of the electronic watermark is when applied to continuous tone (photographic tone) patterns.
  • the continuous tone pattern is a multi-valued image. Because of this, enough Because of the high degree of redundancy, many methods have been proposed, such as pixel replacement, pixel space-based, and quantization error diffusion, as well as frequency-based methods. Technology.
  • a set pattern of curved lines such as a tint block, a colorful pattern, and a relief pattern used in securities is basically a binary image, and thus has little redundancy. For this reason, embedding electronic watermarks is considered difficult. Even if a digital watermark was embedded, there was a problem that the reading accuracy was low due to the weak reading signal.
  • the present invention is difficult to forge or falsify, and is capable of easily performing true / false discrimination. It is intended to provide a device.
  • the printed matter that can be authenticated according to the present invention is:
  • the first region has a plurality of first objects
  • the second region has a plurality of second objects
  • the first object is a solid line
  • a plurality of divided lines extending in a direction orthogonal to the longitudinal direction of the second object are arranged so as to have a predetermined interval along the longitudinal direction of the second object. It is characterized by the following.
  • the first region has a plurality of first objects
  • the second region has a plurality of second objects,
  • the first object is a solid line
  • the second object includes a plurality of types of dividing lines extending in a direction orthogonal to the longitudinal direction of the second object, and each of the dividing lines is arranged in the longitudinal direction of the second object. It is characterized in that it is arranged so as to have different intervals along it.
  • the method of producing a printed matter capable of determining the authenticity of the present invention includes:
  • a step angle in which the object included in the first area is a solid line
  • the object included in the second area is divided into a plurality of types of dividing lines extending in a direction orthogonal to the longitudinal direction of the object along the longitudinal direction of the object.
  • the apparatus for producing a printed matter capable of determining the authenticity of the present invention includes:
  • An input unit for inputting image data representing a line drawing including a first region including a plurality of objects and a second region including a plurality of objects;
  • the object line included in the second region is divided into predetermined lines along the longitudinal direction of the object line in a direction orthogonal to the longitudinal direction of the object line.
  • An operation unit that replaces a plurality of units arranged so as to have It is characterized by having.
  • the apparatus for producing a printed matter capable of determining the authenticity of the present invention includes:
  • An input unit for inputting an image data representing a line drawing including a first region including a plurality of objects and a second region including a plurality of objects;
  • the object included in the second area is divided into a plurality of types of dividing lines extending in a direction orthogonal to the longitudinal direction of the object along the longitudinal direction of the object.
  • the printed matter includes a first area, and a second area arranged adjacent to the first area,
  • the first region has a plurality of first objects
  • the second region has a plurality of second objects
  • the first object is a solid line
  • a plurality of the second objects are arranged such that dividing lines extending in a direction orthogonal to the longitudinal direction of the second objects have predetermined intervals along the longitudinal direction of the second objects.
  • a correlation between an interval between the first objects in a pattern corresponding to the first region and an interval between the second objects in a pattern corresponding to the second region is obtained. Based on the above, the authenticity of the printed matter is determined.
  • the printed matter includes a first area, and a second area arranged adjacent to the first area,
  • the first region has a plurality of first objects
  • the second region has a plurality of second objects
  • the first object is a solid line
  • the second object includes a plurality of types of dividing lines extending in a direction orthogonal to the longitudinal direction of the second object, and each of the dividing lines is arranged in the longitudinal direction of the second object. Along with different distances along
  • the authenticity of the printed matter is determined based on a correlation between respective intervals of the plurality of types of dividing lines in a pattern corresponding to the second region.
  • the method of the present invention for determining the authenticity of a printed matter includes:
  • the printed matter includes a first area, and a second area arranged adjacent to the first area,
  • the first region has a plurality of first objects
  • the second region has a plurality of second objects
  • the first object is a solid line
  • a plurality of dividing lines extending in a direction orthogonal to the longitudinal direction of the second object are arranged so as to have a predetermined interval along the longitudinal direction of the second object.
  • An input unit for inputting image data of the printed matter
  • Fourier transform is performed on the image data overnight to create a Fourier transform pattern, and in the obtained Fourier transform pattern, an interval between the first objects in a pattern corresponding to the first region; And a calculation unit for determining the authenticity of the printed matter based on the correlation with the above-described second image line interval in a pattern corresponding to a second area.
  • the method of the present invention for determining the authenticity of a printed matter includes:
  • the printed matter includes a first area, and a second area arranged adjacent to the first area,
  • the first region has a plurality of first objects
  • the second region has a plurality of second objects
  • the first object is a solid line
  • the second object includes a plurality of types of dividing lines extending in a direction orthogonal to the longitudinal direction of the second object, and each of the dividing lines is arranged in the longitudinal direction of the second object. Along with different distances along
  • An input unit for inputting image data of the printed matter
  • Fourier transform is performed on the image data to create a Fourier transform pattern, and in the obtained Fourier transform pattern, a correlation between respective intervals of the plurality of types of dividing lines in a pattern corresponding to the second region.
  • the printed matter of the present invention which can be determined as authenticity, has a line drawing including a plurality of objects,
  • the object comprises a plurality of units
  • the plurality of units are arranged with a predetermined length along a longitudinal direction of the object line,
  • each of the units a plurality of dividing lines extending in a direction orthogonal to the longitudinal direction are arranged along the longitudinal direction,
  • An interval between the plurality of divided lines is set for each of the units in accordance with information to be embedded.
  • a method of producing a printed matter capable of determining whether the authenticity is true has a line drawing including a plurality of objects, and the object is configured as a unit image in which a plurality of units are continuously arranged.
  • the plurality of units are arranged so as to have a predetermined length along a longitudinal direction of the object,
  • each of the units a plurality of dividing lines extending in a direction orthogonal to the longitudinal direction are arranged along the longitudinal direction,
  • An interval between the plurality of divided lines is set for each of the units in accordance with information to be embedded.
  • a method of determining the authenticity of a printed matter having a line drawing including a plurality of image lines includes: The object comprises a plurality of units;
  • the plurality of units are arranged with a predetermined length along a longitudinal direction of the object line,
  • each of the units a plurality of dividing lines extending in a direction orthogonal to the longitudinal direction are arranged along the longitudinal direction,
  • an interval between the plurality of divided lines is set in accordance with information to be embedded
  • a Fourier transform is performed on the image data to generate a Fourier transform pattern, and the embedded information is identified by using the generated Fourier transform pattern, thereby realizing the authenticity of the printed matter. The determination is performed.
  • FIG. 1 is an explanatory view showing a printed matter using straight lines having a constant interval according to the first embodiment.
  • FIG. 2 is an explanatory diagram showing a figure in an image portion of a printed matter according to the first embodiment.
  • FIG. 3 is an explanatory diagram illustrating a printed material according to the first embodiment.
  • FIG. 4 is a flowchart illustrating a procedure for creating a printed material according to the first embodiment.
  • FIG. 5 is an explanatory diagram illustrating embedding of a dividing line in the first embodiment.
  • FIG. 6 is an explanatory diagram showing embedding of a dividing line in the first embodiment.
  • FIG. 7 is an explanatory diagram showing embedding of a dividing line in the first embodiment.
  • FIG. 8 is a block diagram illustrating a configuration of a printed matter creating apparatus according to the first embodiment.
  • FIG. 9 is an explanatory diagram illustrating a Fourier transform pattern of a printed matter according to the first embodiment.
  • FIG. 10 is an explanatory diagram illustrating extraction by a bandpass filter used in the first embodiment.
  • FIG. 11 is a diagram illustrating an image obtained by performing an inverse Fourier transform after passing a Fourier transform pattern performed in the first embodiment through a bandpass filter.
  • FIG. 12 is a flowchart illustrating a procedure of reading a latent image according to the first embodiment.
  • FIG. 13 is a block diagram illustrating a configuration of an apparatus that reads a latent image according to the first embodiment.
  • FIGS. 14A and 14B are explanatory diagrams showing the correlation strength of the intervals obtained by eliminating the anisotropy from the Fourier transform pattern of the printed matter.
  • FIG. 15 is a flowchart illustrating an information reading procedure according to the first embodiment.
  • FIG. 16 is a block diagram showing a configuration of an apparatus for reading information according to the first embodiment
  • FIG. 17 is an explanatory diagram showing a printed matter according to the second embodiment.
  • FIG. 18 is an explanatory diagram illustrating a Fourier transform pattern of a printed matter according to the second embodiment.
  • Fig. 19 is an enlarged view of the main part in Fig. 17.
  • FIG. 20 is an explanatory diagram illustrating extraction by bandpass filtering used in the second embodiment.
  • FIG. 21 is a diagram illustrating an image obtained by performing an inverse Fourier transform after passing a Fourier transform pattern performed in the second embodiment through a bandpass filter.
  • FIG. 22 is an explanatory view showing a printed matter according to the third embodiment.
  • FIG. 23 is an explanatory diagram illustrating a Fourier transform pattern of a printed matter according to the third embodiment.
  • FIG. 24 is an explanatory diagram showing an image obtained by performing an inverse Fourier transform after passing the Fourier transform pattern according to the third embodiment through a band-pass filter.
  • FIG. 25 is an explanatory view showing a printed matter according to the fourth embodiment.
  • FIG. 26 is an explanatory diagram illustrating a Fourier transform pattern of a printed material according to the fourth embodiment.
  • FIG. 27 is a diagram illustrating an image obtained by performing an inverse Fourier transform after passing the Fourier transform pattern according to the fourth embodiment through a band-pass filter.
  • FIG. 28 is an explanatory diagram showing two different figures to be embedded in the printed matter according to the fifth embodiment.
  • FIG. 29 is an explanatory view showing a printed matter according to the fifth embodiment.
  • FIG. 30 is an explanatory diagram showing a Fourier transform pattern according to the fifth embodiment.
  • FIGS. 31A and 3IB show images obtained by extracting a bandpass filter of a Fourier transform pattern according to the fifth embodiment and performing inverse Fourier transform.
  • FIG. 32A and FIG. 32B are diagrams illustrating images obtained by extracting a bandpass filter of a Fourier transform pattern according to the fifth embodiment and performing inverse Fourier transform.
  • Fig. 33 is a diagram showing a typical colorful pattern element used as a line drawing for securities. You.
  • FIG. 34 is an explanatory view showing a printed matter according to the sixth embodiment.
  • FIG. 35 is a diagram showing a Fourier transform pattern of the printed matter shown in FIG. 33.
  • FIG. 36 is a diagram showing a Fourier transform pattern of the printed matter shown in FIG.
  • FIG. 37A and FIG. 37B are diagrams showing correlation strength of intervals obtained by eliminating anisotropy from a Fourier transform pattern of a printed material.
  • FIG. 38 is a view showing a color print element 3 which is a security line drawing 1 included in a printed matter according to Example 8 of the present invention.
  • FIG. 39A and 39B are explanatory diagrams showing a graphic of an image portion of a printed matter according to the eighth embodiment.
  • C FIG. 40 is an explanatory diagram showing a main part of the printed matter according to the eighth embodiment.
  • FIG. 41 is an explanatory diagram showing a main part of another printed matter of the eighth embodiment.
  • FIG. 42 is an explanatory diagram showing a graphic of an image portion of another printed matter according to the eighth embodiment.
  • FIG. 43 is a view showing a pattern obtained by performing a Fourier transform process on an image of a printed matter according to the eighth embodiment.
  • FIG. 44 is a diagram showing a pattern obtained by performing a Fourier transform process on image data of another printed matter according to the eighth embodiment.
  • the line drawings are modulated to such an extent that they cannot be recognized by the naked eye under ordinary visible light. Embed information for authenticity determination without losing its design and art Put in.
  • the line drawing with regularity is subjected to division and branch processing.
  • Line drawings used in securities, banknotes, etc. have a geometric design in which a plurality of lines including straight lines (straight lines) and curves are assembled.
  • such an object as an element that constitutes such a line drawing for securities is referred to as a “fine object line”.
  • fine object line In line drawing for securities, there is a very high regularity in the interval between multiple fine drawing lines. The present embodiment focuses on the point that a method of evaluating the correlation between the intervals of fine image lines is effective in evaluating this regularity.
  • a plurality of fine lines of a security line drawing having this regularity can be identified by a digital device such as a scanner or a copying machine, but it is difficult for the naked eye to recognize with ordinary visible light. Fine and regular portions are provided. And for the printed matter obtained. Analyze the correlation between the line drawing intervals for securities using a digital device. As a result, the information embedded in the print is identified, and the authenticity is determined. In addition, when digital information such as a copying machine is used for forgery using the obtained information, measures such as stopping the operation of are considered as g.
  • Information to be embedded in a security line drawing composed of a plurality of fine drawing lines has two parameters: regularity of the security line drawing, in other words, a fixed interval and a position for embedding a plurality of fine drawing lines.
  • regularity of the security line drawing in other words, a fixed interval and a position for embedding a plurality of fine drawing lines.
  • the printed matter shown in FIG. 1 has straight lines 2 (corresponding to the “fine line” in this embodiment) having a simple constant interval db.
  • straight lines 2 corresponding to the “fine line” in this embodiment
  • db simple constant interval
  • the printed matter shown in FIG. 1 is read by a digital device such as a scanner to obtain digital data image data such as a bitmap image.
  • the digital image data may be directly created by a computer.
  • a printed matter having a plurality of straight lines 2 (having a plurality of fine lines in a line) is created.
  • the plurality of dividing lines 6 are respectively arranged in a direction orthogonal to the longitudinal direction of the straight line 2.
  • the width and length of the dividing line 6 are set so as to be equivalent to the density of the basic image portion 5 (straight line 2) with the naked eye under normal visible light.
  • the portion existing in the area of the image section 3 is replaced with the divided image line section 1.
  • each straight line 2 (fine line) is viewed one by one, it is composed of the basic line portion 5 and the divided line portion 1 or one of them.
  • the basic object part 5 is composed of a plurality of straight lines 2 and forms a basic object group as a basic object group to constitute the background part 4.
  • the divided object part 1 is composed of a plurality of divided lines 6 and becomes a divided object group.
  • Construct image part 3 (figure).
  • the basic object group and the divided object group have different frequencies based on the respective object intervals. Furthermore, the background part 4 and the image part 3 constitute a security line drawing in which information is embedded. By printing out such a printed matter, the authenticity determination according to the present embodiment is performed. Possible prints can be obtained.
  • a procedure for embedding information by using divided image lines will be described as a method for creating a printed material as described above.
  • Figure 4 shows the creation procedure. Note that the line drawing for securities may be created using a commercially available line drawing design software or the like.
  • Line drawings created using line drawing design software have a data structure that is generally object-oriented.
  • Securities line drawings have multiple line drawing objects 0b1, Ob2, Obm.
  • Securities line drawing Ob is the shape of the securities line drawing kl, k2, km, the separation line intervals dd1, dd2, 'ddi, and the division line length 1 ⁇ 1, 2, ... .] ⁇ ; 1 and the division line widths Wl, W2, ⁇ Wi, and in this embodiment, it is assumed that Ob [k, dd, L, W].
  • step 1 line objects Ob 1, Ob 2 ⁇ ⁇ Obm are input to the computer.
  • step 2 set the line drawing object for embedding.
  • line drawing object for embedding There are two ways to set line art objects. There are a method of selecting an arbitrary line drawing object for embedding, and a method of selecting an embedding area, that is, a picture of a latent image (for example, an image portion 3 shown in FIG. 2) in a plurality of line drawing objects.
  • step 3 set the intervals ddl, dd2,..., Ddi of the dividing lines in the line drawing object for embedding.
  • the interval of the dividing line to be set is arbitrary, and a different interval can be set for each line drawing object.
  • step 4 the width W and length L of the dividing line are calculated based on the dividing line interval dd.
  • the intervals, widths, and lengths of the dividing lines are determined by using a calculation formula or by selecting a width and a length corresponding to the interval of the dividing lines set in advance as a table from the table. You may.
  • step 5 the dividing line determined in step 4 is embedded along the latent image portion.
  • step 6 Outputs the security line drawing Ob of the line drawing object.
  • the drawing widths 1, W2, and W3 of the line drawings Ob1, Ob2s # 103 shown in FIG. 5 are all 50 m.
  • the embedding information adjusts the interval dd2 of the dividing line and the length L2 of the dividing line.
  • the drawing width W2 is 50 zm
  • the separation line spacing dd2 is 150 m
  • the cutting line length L2 is 30 m
  • the line drawing b2 becomes the line drawing Ob l and Ob 3.
  • the image area ratio is reduced.
  • the drawing area ratio of the drawing Ob2 can be made equal to the drawing Ob1, Ob3.
  • the adjustment of the line drawing Ob 2 is executed in step 4 shown in FIG.
  • the configuration of the computer that performs the above processing includes a line drawing object input unit 200, an interval dd setting unit 201, a calculation unit 202, a storage unit 203, and a line drawing object output unit 204. I have.
  • An original design line drawing object is created using commercially available software or the like, and the line drawing object is input to the line drawing object input unit 200.
  • An interval dd setting unit 201 is used to set a division line interval
  • an arithmetic unit 202 is used to calculate the division line interval dd, width W, and length L, and the calculation result is stored in the storage unit 203.
  • the storage unit 203 stores a calculation formula for adjusting the density so that the selected line drawing object and the non-selected line drawing object can be visually recognized by the naked eye with the same density under normal visible light, or It stores a table for determining a width and a length corresponding to a predetermined interval between dividing lines.
  • the line drawing object output unit 204 outputs the line drawing object Ob (the result of the segmentation processing) in step 5 described above.
  • the output line drawing object Ob is finally processed in a raster, and can be output as a plate making film or a printed matter by a commercially available output device such as an image set or on-demand output.
  • the printed matter is read by a reading device such as a scanner, and the read result is obtained as bitmap data (corresponding to “digital image data” in this embodiment).
  • a Fourier transform is performed on the obtained bitmap overnight.
  • FIG. 9 shows a Fourier transform pattern obtained by performing a Fourier transform on the printed matter of FIG.
  • two types of strong interval correlation are observed. These frequencies qb and qd correspond to the correlation between the interval db of the straight line 2 and the interval dd of the dividing line 6, respectively. That is, the correlation between the respective intervals based on the interval db between the basic object groups and the interval dd between the divided image groups is observed as the frequency qb and the frequency qd in the Fourier transform pattern.
  • the embedded information can be identified.
  • the embedded information corresponds to the correlation of the interval dd of the dividing line 6, the following equation (1) is used for the Fourier transform pattern of FIG. 9 to obtain the frequency qd of FIG. Information is extracted using a bandpass filter that extracts only the Fourier transform pattern only in the vicinity.
  • I (q) is the intensity of the Fourier transform pattern in the frequency vector q
  • f (q) 0 if q ⁇ qd Becomes Also, If (q) means the correlation strength of the interval at q in the Fourier pattern after the image is extracted by bandpass filtering.
  • a readout operation, image input, processing, in c step 11 is divided largely into three parts Results, read the image on the printed material as a bitmap de one evening by a scanner or the like.
  • an FFT process is performed overnight in the bitmap.
  • step 13 a specific frequency FET pattern is extracted from the bitmap data that has been subjected to the FET processing using a bandpass filter.
  • the specific frequency corresponds to the interval between the embedded dividing lines.
  • step 14 the embedded latent image is extracted by performing an inverse Fourier transform on the extracted FFT pattern of the specific frequency.
  • Figure 13 shows the configuration of a computer for identifying latent images.
  • bitmap image data input unit 221 a bitmap image data of a printed material is input using a scanner.
  • the read bitmap image data is sent to the operation unit 222, where FFT processing, extraction of a specific frequency by a preset band bus filter, and inverse Fourier transform are performed.
  • the content of the calculation processing in the calculation unit 222 can be set in the operation unit 220.
  • the extracted latent images are displayed on the display unit 222, and can be authenticated by the operator.
  • the latent image data is stored in the storage unit 224.
  • Fig. 14 shows the position correlation strength based on the image interval, obtained by performing a process to eliminate anisotropy, from the Fourier transform pattern of the bitmap data obtained by reading the above printed matter with a scanner or the like. Show.
  • Fig. 14A shows the position correlation strength based on the distance between the basic lines
  • Fig. 14B shows the position correlation strength based on the distance between the basic image part of the background part and the image part and the dividing line. ing.
  • the anisotropy means that the physical properties of the object differ depending on the direction.
  • the process of eliminating anisotropy in the present embodiment is a process of replacing the intensity of the Fourier transform from a frequency vector to a frequency scalar.
  • Fig. 15 shows the flow of the method described in Fig. 14 to determine the authenticity (authentication) of a printed matter by recognizing information embedded in place of a latent image.
  • This process like the latent image, can be broadly divided into image input, automatic processing, and result display.
  • the image of the printed matter is read as bitmap data by a scanner or the like.
  • step 22 FFT processing is performed to generate an FET pattern.
  • step 23 the FFT pattern is made one-dimensional, the anisotropy of the FFT pattern is removed, and isotropic processing is performed.
  • step 24 it is checked that the intensity of the FFT pattern at a specific frequency is equal to or higher than a predetermined value, and authentication is performed in step 25 based on the result.
  • Figure 16 shows the configuration of the computer that performs the reading and authentication operations.
  • bitmap image data input unit 251 a bitmap image data of a printed material is input using a scanner.
  • the read bitmap image data is sent to the calculation unit 252, where the FFT processing, one-dimensionalization of the FFT pattern (anisotropic removal), and the strength of the FFT pattern at a specific frequency set in advance are checked. Output the authentication result.
  • the contents of the arithmetic processing in the arithmetic section 250 can be set in the operation section 250.
  • the output authentication result is displayed on the display unit 253, and the authentication by the operation can be performed. Further, the latent image data is stored in the storage unit 254.
  • Example 1 it is difficult to recognize with the naked eye under normal visible light, but by embedding information that can be detected by digital devices such as scanners and copiers, By reading and performing processing such as Fourier transform, extraction of a specific frequency, and inverse Fourier transform, it is possible to easily and accurately determine the authenticity of a printed matter based on the analysis result of the embedded information.
  • the signal strength of the information is increased because a highly regular segmentation process is applied to a highly regular image. It is very large and can be read easily and with high accuracy.
  • FIG. 17 shows that a printed matter having a plurality of lines 11 (corresponding to the “fine line” in this embodiment) vibrating in a wave-like manner at a constant cycle is used to store information by the same method as in the first embodiment. Indicates the printed material created by embedding.
  • the background portion 12 is composed of a basic object group including a plurality of lines 14 (basic object portions 14) that vibrate in a wave shape at an interval of db.
  • a plurality of divided image portions 10 composed of a plurality of divided lines 17 of db are formed as a group of divided image lines.
  • the wavy line shown in FIG. 17 is obtained by applying amplitude modulation to the straight line which is a basic unit of the printed matter of the first embodiment.
  • the printed matter shown in FIG. 17 can be produced by a computer having the procedure of the flow shown in FIG. 4 and the block configuration shown in FIG.
  • the printed matter shown in FIG. 17 is read by a scanner or the like, and the read result is set as a bitmap, and an image obtained by performing a Fourier transform is shown in FIG.
  • FIG. 18 is compared with FIG. 9 showing the image after the Fourier transform in the first embodiment.
  • the frequency qb corresponding to the position correlation of the interval db of the amplitude line 14 and the interval dd of the division line 17 are shown.
  • each Qb ⁇ qb + ⁇ b and q ⁇ 1 over (1 over ⁇ (1 (1 + ⁇ (1 + correlation peak is broad expansion Shitiru of Wakaru £ which the corresponding frequency qd the position correlation
  • the line 14 is a wavy curve, and the dividing line 17 is caused by the arrangement on the wavy line 14. This will be described with reference to FIG. 19, which is an enlarged view of the main part of FIG.
  • the interval 26 between the concave curves of the dividing line 24 and the dividing line 25 is shorter than the basic interval 27 (interval dd). I'm sorry. Although not shown, the interval between the dividing lines on the opposite side, that is, on the convex curved side, is longer than the basic interval (dd).
  • observation may be performed based on the features of the Fourier transform pattern shown in FIG.
  • the range of the frequency obtained by subtracting Aqd from the frequency qd from the frequency qd and the frequency obtained by adding Aqd + to the qd that is, (1 room (3 ⁇ 4 1 ⁇ to 01 (1 + 1 (1 In the (frequency range up to 1+)
  • An image as shown in FIG. 21 is obtained by performing an inverse Fourier transform on an image obtained through the above-mentioned “No. In this image, the information embedded in the printed matter can be read as the image section 15.
  • the image obtained by the inverse Fourier transform can obtain more clear information by eliminating noise having a value equal to or less than a certain intensity with respect to the intensity of each pixel.
  • the above-described reading / authentication work for the latent image can be performed by a computer having the procedure of the flow shown in FIG. 15 and the block diagram shown in FIG.
  • the work of detecting the characteristic frequency and performing the read authentication on the image after the Fourier transform shown in FIG. 18 is performed by a computer having the procedure of the flow shown in FIG. 4 and the block configuration shown in FIG. be able to.
  • FIG. 22 shows a printed matter according to the third embodiment of the present invention.
  • the printed matter according to Example 1 is a line drawing having a plurality of straight lines (thin lines) having both ends open. It is obtained by embedding information by replacing a line with a divided image line portion composed of a plurality of divided lines.
  • a security line drawing having a plurality of concentric circles 28 (corresponding to the fine streaks of the present embodiment) which is a closed system
  • the concentric circles 28 are divided into a plurality of divided lines. It is obtained by embedding information by replacing it with the dividing image line part 34 consisting of 33.
  • the background part 28 of the information to be embedded is composed of a basic object group consisting of a plurality of basic object parts 30 at intervals db, and the image part 31 is composed of O is composed of a group of dividing lines, which is a set of dividing lines 34 composed of a plurality of dividing lines 33
  • This printed matter is read by a scanner or the like as in the first embodiment to obtain a bitmap data, which is subjected to a Fourier transform, whereby a Fourier transform pattern shown in FIG. 23 can be obtained.
  • the information embedded in the printed matter can be identified from the characteristics of the obtained Fourier transform pattern.
  • Example 4 will be described with reference to FIGS. 25 to 27.
  • the fourth embodiment embeds information in a concentric circle as a closed system as in the third embodiment, but further includes a closed system line (fine image) in which a plurality of concentric circles vibrate in a wave-like manner. It embeds information in the line drawing obtained by modulating the line.
  • the background portion 43 is composed of a basic object group consisting of a plurality of basic image portions 44 arranged at intervals db, and the image portion 45 is arranged at intervals dd.
  • the embedded information can be identified.
  • the flow of the embedded information or latent image reading process, the authentication process, and the configuration of the computer that implements these processes are the same as those in the first embodiment.
  • Example 5 will be described with reference to FIGS. 28 to 32.
  • Embodiment 5 is characterized in that two types of images are embedded as information in a line drawing. Specifically, Example 5 has a configuration in which an image “A” is embedded in the image part a and an image “B” is embedded in the image part b as embedded information, as shown in FIG. 28. Have.
  • the background part 52 has a basic drawing part 54 with an interval 53 set to 400 m, and an image part.
  • information is alternately arranged by a dividing line 48 in which the interval 47 is set to 16 3 m, and in the image part b by a dividing line 50 in which the interval 49 is set to 114 m.
  • the printed matter shown in FIG. 29 is read by a scanner to obtain bitmap data, and the Fourier transform of this is shown in FIG. 30.
  • the Fourier transform pattern the correlation of the interval of the basic image portion 54 and the interval 53 of 400 m
  • the corresponding frequency qb is correlated with the correlation of the 163 m spacing of the dividing line 48 at the interval 47, and the frequency qd2 corresponding to the 114 m of the dividing line 50 at the interval 49 is observed.
  • the bandpass filter is provided as described in the fourth embodiment. 'When performing inverse Fourier transform on the extracted results with the image a 5 in FIG 31B' evening a can recognize an image "a" as.
  • the extraction result using the bandpass filter b ′ is inversely filtered.
  • the Rier transform it is possible to recognize the image “B”, such as images b and '.
  • image information composed of two-dimensional symbols is added.
  • the printed matter may be identified based on the characteristic image line interval in the printed matter, and the authenticity may be determined.
  • FIG. 34 shows a case where the configuration is replaced with a dividing image line portion 41 composed of a plurality of dividing lines 40 set in FIG.
  • the image without the dividing lines shown in Fig. 33 is set as the bitmap image, and —The Fourier transform pattern obtained by the Rie transform is as shown in Fig. 35.
  • the image obtained by applying a plurality of dividing lines shown in FIG. 34 is taken as a bitmap image, and the Fourier transform pattern obtained by performing a Fourier transform is as shown in FIG. 36.
  • the Fourier transform pattern for the bitmap data is evaluated in one dimension without the anisotropy of the Fourier transform pattern, the first order of the Fourier transform pattern without dividing lines 38 and 40 is given.
  • Fig. 37A showing the original evaluation
  • the printed matter is a specific security, that is, it is genuine. Thus, the forgery prevention effect can be exhibited.
  • the recognition accuracy can be further enhanced.
  • the flow relating to embedding and reading of information consisting of two types of divided line intervals for a line (thin line) constituting an object and authentication, and the configuration of a computer realizing these are as described above. This is the same as that according to the first embodiment.
  • Example 7 Example 7 of the present invention will be described.
  • the information to embed the information in the printed matter has a reflection wavelength of 400 ⁇ !
  • Printing is performed using an ink that is in the range of 700 nm, preferably in the range of 600 ⁇ ⁇ 700 nm.
  • the reader has a wavelength of 400 to 700 n m, or if a filter that transmits only light within the range of 600 to 700 nm is installed, many other elements on the printed matter will be removed by the filter and unnecessary noise will be removed. Becomes possible.
  • the dividing lines are arranged in the longitudinal direction at regular intervals, and the information that can be given is limited.
  • a plurality of fine image lines constituting a regular line drawing for securities can be identified by digital devices such as a scanner and a copier, but are normally visible to humans.
  • Prints are created by arranging the dividing lines that are difficult for the naked eye to recognize under light and embedding information by applying modulation. Then, the image data of the created printed matter is obtained, and the image processing apparatus is used to analyze the correlation of the interval, position, arrangement, etc. of the security line drawing, and identify the embedded information, thereby realizing the trueness. Perform false determination.
  • a part or all of the fine line constituting the security line drawing is converted into a unit consisting of a plurality of units. It is configured to be formed by objects. A plurality of such unit drawing objects are collected to form a unit drawing object group, and form a line drawing for securities.
  • the length of multiple units shall be a predetermined length, and each unit shall be composed of multiple invisible dividing lines.
  • the plurality of division lines extend in a direction orthogonal to the center line of the fine object line, and are arranged in parallel in the fine object line direction.
  • the information is embedded by arranging them with appropriate intervals between them (determining the intervals of arranging a plurality of divided lines in the direction of the fine drawing line). That is, in the unit, a plurality of intervals between adjacent divided lines among a plurality of divided lines are set in accordance with information to be embedded.
  • the fine drawing constituting the original drawing for security is formed by the unit drawing, and this unit drawing is visually recognized under normal visible light with the same density as the fine drawing of the original drawing. It is configured so that line drawings for securities are recognized in the same way as the original drawing.
  • the length of the dividing line (the length of the dividing line in the direction perpendicular to the center line of the fine drawing line) and the width (the length of the dividing line so that it is difficult for the naked eye to identify it under normal visible light) Set the width of the dividing line in the direction in which the fine drawing line extends) and the interval between them.
  • an image data representing a security line drawing composed of a plurality of unity object groups consisting of a plurality of unity and soto object lines By performing Fourier transform on the obtained Fourier transform pattern, extracting information about the unit length on the security drawing and the arrangement of the dividing lines in the unit, and extracting and identifying the embedded information. .
  • not all of the objects constituting the line drawing for securities of the printed matter are in units of the above-described units, but a part of the objects is composed of divided lines in which a plurality of divided lines are arranged.
  • a plurality of divided object lines may be combined to form a divided object line group, and the divided object line group may include the divided object line group.
  • Example 8 of the present invention will be described.
  • FIG. 38 shows an example of a security line drawing serving as an original drawing of a printed matter according to the eighth embodiment.
  • the security line drawing 101 has a color print element 103 composed of a printed fine line 102, and the fine line 102 to the color print element 103 are It can be recognized by the naked eye under normal visible light.
  • a printed material 104 of the eighth embodiment shown in FIG. 39A is created.
  • the printed matter 104 is formed by forming a plurality of fine strokes 102 constituting the color print element 103 with unity strokes 106 composed of a plurality of units 105 of the same configuration, respectively.
  • This is an image in which the color print element 103 is drawn with 106.
  • a unitary object group 107 composed of a plurality of unit object lines 106 constitutes a colorful pattern element 103.
  • This unit streak 1 0 In No. 6, the interval and direction of the objects are the same as the fine object 102 in the original drawing.
  • FIG. 39B is a further enlarged view of one unitary object line 106 in this enlarged view.
  • the units 105A, 105B, and 105C that make up the unity drawing object 106 have the same configuration as each other, and each have a predetermined length (hereinafter referred to as "unit length"). It is composed of multiple dividing lines.
  • the units 105 A, 105 B, and 105 C are each composed of a plurality of information dividing lines 108 for embedding information, and a starting end disconnection on both sides of the information dividing line 108. 1 109 and a terminal disconnection line 110.
  • the unit object line 106 is configured such that a plurality of units 105 having the same configuration are continuously and repeatedly arranged.
  • Units 105 A and 105 B adjacent to each other share a start and end disconnection line 109 and 110. This will be described with reference to FIG. 39B.
  • the end disconnection line 110 of the unit 105A is divided into the start end disconnection line 109 of the unit 105B, and both units 105A, 105 B is shared by the two units 105B and 105C, and the end disconnection 110 of the disconnection line 105B is shared as the start end disconnection line 109 of the unit 105C.
  • the unit 105 is configured to embed predetermined information.
  • FIG. 40 shows a specific configuration of the unit 105 in which predetermined information is embedded.
  • This unit 105 is configured such that four information dividing lines 1 08! To 1 084 are arranged between a starting end dividing line 109 and an end dividing line 110.
  • the predetermined information is embedded by appropriately determining the distance between the four information dividing lines 108! To 1084.
  • the intervals are determined in advance corresponding to information elements (for example, symbols such as numbers) constituting information to be embedded in advance.
  • an information element is a decimal number, and an example of a corresponding interval is shown in the following table.
  • * and # indicate identifiers, respectively, and the necessity of them will be described later.
  • the identifiers are the starting end dividing line 109 and the information dividing line 18!
  • the identifier ⁇ corresponds to the interval between the terminal dividing line 100 and the information dividing line 18 ( .
  • the unit length is a value of 580 zm that is the sum of these intervals.
  • the unit image 106 is formed by arranging a plurality of units 105 having such a configuration continuously and repeatedly along the fine image line 102 (see FIG. 38) of the original drawing. .
  • the printed matter according to the present embodiment is identified as a Fourier-transformed image by means such as pattern matching.
  • the information “264” is confirmed in the Fourier-transformed image, an image appears symmetrically.Therefore, the same position and intensity are shown as those obtained by performing the Fourier-transformed image on the information “462”.
  • the identifier * is made to correspond to the interval 150 zm
  • the identifier # is made to correspond to the interval 160 zm, and registered in the above table together with the information element, and ⁇ Is used as an identifier indicating the start of information, and # is used as an identifier indicating the end of information.
  • the width (thickness of the line) of the fine drawing line 102 is 55.
  • the dividing lines 108 to 110 of the unit 105 are respectively visible to human eyes under normal visible light. Difficult to identify with the naked eye.
  • the separation line 108 to 110 it is necessary to adjust the dimensions (width W and length L) of the dividing line.
  • the dimensions are adjusted according to the interval between the dividing lines 108 and 110.
  • the interval between the dividing lines is changed according to the information to be embedded and the identifier, so that a correction for the interval is also required.
  • the width W of each of the divided lines for the information, the beginning and the end, and the width W is 3 ⁇ m.
  • Length L can be set to 293 m.
  • the present applicant is not a technology for forming the fine object line 102 with the unit image object 106 as in the present embodiment.
  • Has already been filed for a patent application for a technology for making this breaking line more invisible see Japanese Patent Application Laid-Open No. 2000-118121.
  • the dividing line in the present embodiment can be made more invisible.
  • the outline of the technology for making this dividing line invisible is as follows. Determine the length of the dividing line In this case, calculate the average value of the interval between adjacent divided lines before and after the divided line, and determine the width and length corresponding to this average value.
  • Determine the length of the dividing line In this case, calculate the average value of the interval between adjacent divided lines before and after the divided line, and determine the width and length corresponding to this average value.
  • a configuration in which this technique is applied to the present invention will be specifically described with reference to a unit 105 shown in FIG.
  • the width and length of the information dividing line 108 t do as follows.
  • the distance between the starting end line 1 109 and the information line 1 110 (the interval corresponding to the identifier *) is 150 m, and the information line 1 08! And the information line 1 0 8 2 interval (interval corresponding to the information element "2") is 7 0 ⁇ M.
  • the thickness of the basic stroke is 6 O jm.
  • the fine object line 102 of the original security line image 101 shown in Fig. 38 is formed by the unit object object 106, and the unit object object 106 is a set of unit object objects 106.
  • a digital device such as a scanner
  • the digital image data such as a bitmap image.
  • this is processed with a drawing software (for example, a general PARCO system as an illustrator commercially available from Adobe), and the fine drawing 102 is processed and replaced with the unity drawing 106.
  • a drawing software for example, a general PARCO system as an illustrator commercially available from Adobe
  • a computer may use the drawing software to directly create an image of the securities line drawing shown in FIG. 39B displayed in the unit drawing group 7.
  • the image data may be any data that produces a printed matter as shown in FIG. 39B when printed out.
  • such a method of creating a printed matter is not the gist of the invention, and a description of this point will be omitted.
  • the unit image line 106 composed of a plurality of unit 105 as described above is grouped into a unit image group 107 to display a line drawing for securities.
  • These unit image groups 107 have different spatial frequencies based on the mutual spacing of the multiple unit images 107, and furthermore, information “* 264 #” is embedded in the unit 105. I have. If this is printed out, a printed matter 4 that is almost the same as the security line drawing 101 shown in FIG. 38 with the naked eye under ordinary visible light is created. Similarly, for example, in order to create a printed matter 1 1 1 having a unit 1 1 2 embedded with another information “* 8 3 1 #” in the same security line drawing 101 shown in FIG. As shown in Fig.
  • the unit length of the unit 111 is 580 m as in the case of the printed material 111.
  • a fine object line 102 of the original drawing 101 is formed by a unitary object line 113 composed of a plurality of the unit 112 continuously and repeatedly in the direction of the fine object line.
  • a printed matter 1 1 1 for displaying a security line drawing can be created by a united object group 1 114 in which the united objects 1 13 are gathered.
  • the printed materials 104 and 111 are read by a reading device such as a scanner, and the reading result is obtained as a bitmap image (an example of the above-described image data). Then, a Fourier transform is performed in this bitmap overnight.
  • FIG. 43 shows an image 115 obtained by performing a Fourier transform on the bit map map of the printed material 104 of the present embodiment
  • FIG. 40 shows a Fourier transformed image 116 of the printed material 111.
  • Each is shown in 4.
  • the correlation based on the augmentation for each of the embedded information “2 6 4 #” and information “* 8 3 1 #” is expressed by the Fourier transform Explain how it will appear in the evening.
  • the beak positions in the Fourier transform pattern are observed at the same frequency.
  • the unit length of both the printed matter 104 and the printed matter 111 is 58, and peaks are observed at the frequency position corresponding to this unit length and at the integer multiple of this frequency. Have been. At this point, the embedded information cannot be identified.
  • the intensity of the peaks in the Fourier transform patterns of the printed matter 104 and the printed matter 111 are different between them, especially at the fourth peak (fourth ring from the center). The differences are noticeable.
  • the unit 105 of the printed material 101 and the unit 112 of the printed material 104 are used for embedding different information (“* 264 *” and “* 831 #”), respectively.
  • the spacing of the dividing lines is different, which results in different fourth-order peak intensities.
  • the unit length is the same, a peak is observed at the same frequency position in the Fourier transform pattern, but the peak intensity is different if the interval of arrangement of the information dividing lines in the unit is different. Therefore, based on the Fourier transform pattern, it is possible to recognize the interval of the arrangement of the information dividing line in the unit, which is related to the information embedded in the printed matter. If the intervals of the arrangement of the information dividing lines correspond to the embedded information, the embedding of the predetermined information into the print image and the reading thereof can be realized.
  • a Fourier transform pattern corresponding to predetermined embedding information is stored in advance, and a Fourier transform pattern of a bit map read from a printed material is stored in advance. Discrimination is performed by comparing with a certain Fourier transform pattern (pattern matching).
  • the density distribution curve of the k-th peak of the Fourier transform data corresponding to the predetermined embedded information (the density distribution curve that becomes the k-th peak from the inside in the Fourier transform pattern) is determined in advance. Prepare and compare this with the density distribution of the k-th peak of the Fourier transform data of the bitmap data read from the printed matter.
  • N is the number of units 5 in the entire object
  • n is the number of division lines in unit 5
  • T j is the distance from the unit origin of the j-th division line in unit 105.
  • T (k) represents the fluctuation of the printed image
  • fj (k) represents the shape factor of the dividing line, and is given by the following equation (4).
  • Wj represents the width of the j-th dividing line.
  • identification of a printed material 101 having a unit 105 in which information “* 2 64 #” is embedded will be described. It is assumed that the printed material 101 is read, an image is obtained, a Fourier transform is performed, and a Fourier transform pattern is obtained. The reader immediately knows that the unit length is 58 from the primary beak position of the FFT.
  • the starting end parting line 109, the information parting line 108 ⁇ 108 and the end parting line 110 are adjacent to each other at intervals of 150 1m, 70 ⁇ m, 110 ⁇ m, 90 / m , 16 ⁇ ⁇ , and by identifying the decimal digits based on the above table, the embedded information can be identified as “* 2 64 #”.
  • the printed matter 102 in which the information “* 83 1” is embedded can be similarly identified.
  • a clear Fourier transform pattern peak intensity can be obtained. By doing so, it is possible to embed and read information.
  • information consisting of three decimal digits is embedded.
  • the present invention is not limited to this, and even if the number of digits is larger, it is possible to represent a symbol such as a number using a dividing line, and the result is a frequency at a characteristic peak position corresponding to information such as a number. And the intensity of the Fourier transform pattern.
  • the fluctuation T (k) of the print image is expressed by the following equation (5).
  • g is a factor representing the magnitude of the fluctuation of the printed image. That is, if g is large, the fluctuation of the printed image is large, and if g is small, the fluctuation of the printed image is small.
  • the fine structure constructed by the unity method can be encrypted by diffusion processing.
  • the structure of the divided line encrypted in this way can be restored using a secret key that is the inverse transform of the spreading process, and the structure can be read.
  • a fine object line 102 constituting the original security line image 101 shown in FIG. 38 is formed by a unit image composed of a plurality of units, and a unit image which is a collection of unit objects is formed.
  • This is a line group for displaying a security line drawing of the color print element 103.
  • the unit drawing of this printed matter has the same interval between the drawing and the like as the fine drawing of the security drawing 101 of the original drawing.
  • the unit image is constituted by a plurality of units arranged repeatedly and continuously, and the plurality of units have the same unit length.
  • the unit is the fine line of the original drawing
  • a plurality of dividing lines extending in a direction orthogonal to the center line of 102 are configured in parallel in the fine object line direction, thereby embedding information.
  • the unit is provided with a plurality of dividing lines.
  • the length and width of the dividing lines and the distance between the dividing lines are almost invisible to the naked eye by the dividing lines themselves, but a unit image composed of a plurality of units is required.
  • the line is visually determined to have the same density as the fine drawing line 102 of the original drawing, and to show the color print element 103 like the line drawing 101 for securities of the original drawing.
  • predetermined information is embedded by determining an interval of arrangement of a plurality of dividing lines of a unit (a plurality of intervals formed by adjacent dividing lines among a plurality of dividing lines in a unit).
  • the arrangement of a plurality of dividing lines in each unit in a plurality of units constituting a unit image is the same for each unit, that is, a plurality of units having the same dividing line arrangement are repeatedly and continuously arranged.
  • the unit is composed.
  • the intervals of the arrangement of the plurality of dividing lines in each of the units in the plurality of units constituting the unit image need not necessarily be the same for each unit.
  • the unit is not always the same, and a plurality of units are arranged repeatedly and continuously to form a unit image.
  • the printed matter according to this modified example is read by a scanner, image data is acquired, and a Fourier transform is performed on the printed matter so that an image obtained by the Fourier transform becomes a predetermined Fourier transform pattern.
  • the arrangement of the dividing lines can be determined independently. In short, information is embedded by arranging a unique dividing line in each of a plurality of units so that the Fourier transform pattern becomes a predetermined pattern.
  • the arrangement of the plurality of dividing lines is independently determined for each of the plurality of units constituting the unit image, and the plurality of units having the original dividing lines are continuously arranged.
  • a unitary object is arranged and a unitary object group, which is a group of unitary objects, is displayed as a security line image.
  • the Fourier transform image of the printed matter matches a predetermined Fourier transform pattern Is used to determine the authenticity.
  • the method of identifying information from the Fourier transform pattern is the same as that of the eighth embodiment and is as follows.
  • the securities line drawing by forming the securities line drawing by a unit drawing consisting of a unit having a plurality of divided lines, it is possible to embed information that is difficult for the naked eye to identify under normal visible light. Then, by obtaining image data of the line drawing for securities, performing Fourier transform on this image data, and performing processing such as matching, it is possible to identify embedded information and to determine whether the image is true or false. As a result, the forgery prevention effect can be enhanced without reducing the artistic effect of the printed image.
  • a fine drawing line of the original drawing of the printed matter is formed by a unit drawing composed of a unit having a plurality of dividing lines, and a plurality of intervals formed by adjacent dividing lines among the plurality of dividing lines are embedded in the unit.
  • Information can be embedded by setting it corresponding to the information.
  • the embedded information can be easily identified. This makes it possible to enhance the anti-counterfeiting effect, is low cost, is convenient to handle, and is extremely useful in various fields such as banknotes, securities, various certificates and important documents.
  • the image line used in the above-mentioned Example 8 or its modified example is difficult to recognize the embedded information under normal visible light even in monochromatic printing. There is no reduction.
  • thin lines can be formed not by units but by visible dividing lines consisting of multiple invisible dividing lines, and the information embedded between the dividing lines (pitch in which the dividing lines are repeated) can be embedded.
  • the fine object line is constituted by a unit image formed by arranging a plurality of units continuously in the longitudinal direction in units of units having dividing lines.
  • fine lines may not be set as a unit.o
  • the fine drawing line constituting the security line drawing of the printed matter according to the ninth embodiment does not use the unit as in the eighth embodiment, but a plurality of dividing lines are arranged in the longitudinal direction of the fine drawing line. It consists of dividing lines consisting of Then, the dividing lines are gathered to form a dividing line group, and the line drawing for securities of the printed matter is displayed by the dividing line group.
  • the plurality of dividing lines which are the minimum units of the components of the security drawing, each extend in a direction orthogonal to the longitudinal direction of the fine drawing, and are arranged in parallel along the longitudinal direction of the fine drawing. ing.
  • each dividing line and the distance between them are invisible by the dividing line itself, but the dividing line is visually equivalent in density to the fine drawing line of the original drawing, and It is determined so that the color print element 103 can be seen in the same way as the line drawing 101.
  • a plurality of intervals (intervals) formed by adjacent divided lines in the direction of the fine drawing line are set so that predetermined information is embedded in the security line drawing.
  • This embedded information can be identified by the Fourier transform performed on the image obtained by reading the printed matter according to the ninth embodiment with a scanner or the like, and using the obtained Fourier transform pattern.
  • the plurality of intervals formed by the dividing lines are set so that the information to be embedded can be identified by a pattern obtained by performing a Fourier transform on the image data of the printed matter.
  • a plurality of intervals formed by dividing lines adjacent to each other in the direction of the fine drawing line include those identical to each other. Absent. That is, the interval between the plurality of divided lines (the pitch at which the divided lines are repeated) does not include a configuration in which the divided lines are uniform, and the embedded information is set so that it can be identified by the Fourier conversion pattern of the image data of the printed matter. It is that you are.
  • the interval between a plurality of dividing lines is randomly selected using random numbers from, for example, 50 m to 15 O ⁇ m, and the dividing lines are arranged. If the number of dividing lines is sufficiently large, No matter how many times the disconnection occurs, the same Fourier transform pattern can be obtained. On the other hand, if an artificial operation is given to the arrangement of the dividing lines, the Fourier transform pattern becomes different from the above-mentioned pattern.
  • the Fourier transform pattern corresponding to the divided lines arranged in this manner will generate a Fourier transform pattern which is completely different from the case where the arranged divided lines are selected at random intervals.
  • the embedded information can be extracted from this unique Fourier transform pattern.
  • the printed matter according to the ninth embodiment has a configuration in which information is embedded by arranging dividing lines completely independently in a plurality of units so that the Fourier transform pattern has a predetermined pattern.
  • the apparatus for identifying the printed matter according to the ninth embodiment to determine the authenticity is, specifically, inputting image data obtained by reading the printed matter according to the eighth embodiment with a reading device such as a scanner, and inputting the image data.
  • a Fourier transform pattern obtained by performing a Fourier transform in one day and a predetermined Fourier transform pattern stored in advance are matched using a computing device such as a comparator, and whether the matching is performed is determined. It is equipped with a configuration to determine the authenticity.

Description

明 細 書 真偽判別可能な印刷物、 その作成方法及びその作成装置、
並びにその判別方法及びその判別装置 技術的背景
本発明は、 真偽判別可能な印刷物、 その作成方法及びその作成装置、 並びにそ の判別方法及びその判別装置に関する。
銀行券、 株券、 債券等の有価証券、 各種証明書及び重要書類等の印刷物におい て、 偽造、 変造防止策は重要な要素である。 これら印刷物の偽造、 変造防止策に は、 幾何学模様を多用化した図柄をデザインに用いる手法や、 印刷物に対して何 等かの処理を施すことにより、 通常の可視光では肉眼で認識できない潜像を複写 機の使用によって出現させるような手法等がある。
前者の代表的な例として、 証券印刷物等のデザィンに広く用いられている地紋、 彩紋模様、 レリーフ模様等の幾何学模様等をデザインに用いるものがある。 これ は、 基本的に一定の画線幅による曲画線の集合によつて模様を構成するものであ る。
これらの模様は、 印刷物のデザイン等の意匠性を加味し、 且つ写真製版装置に よる抽出または複写機では再現されにくい色彩を用いたり、 複雑な曲画線にして 複写機及びスキャナの走査入出力に対し、 モアレを発生させたりすることで、 偽 造防止策としての効果を高めている。
しかし、 最近では高機能化した写真製版装置や複写機等の出現により、 充分な 偽造、 変造防止効果を得ることができなくなつてきた。
後者の代表的な例として、 多く用いられている偽造、 変造防止策には、 一般的 にコピ一防止画線と称されている画線により、 印刷物中に施した潜像が目視では 認識できず、 複写機により複写することで潜像が現出するというものがある。 こ のような、 複写機を用いた偽造防止技術には、 次の (a ) 〜 (b ) が提案されて いる。
( a ) 基紙表面に、 例えば 8 5線 3 0 %の網点で構成した微細構成素子で文字 を表示し、 複写によって潜像を出現させる技術 (特開昭 5 7 - 2 0 3 9 5号公 報) 。
( b ) 用紙の表面に、 網点で潜像を印刷し、 潜像と同濃度の背景を万線により 構成して同時に印刷し、 背景を含む潜像の上面に装飾模様を、 複写では再現され ない程度の薄色の透明性インキで重ね刷りする技術 (特開昭 6 0— 7 9 9 9 1号 公報) 。
( c ) 背景の万線との間で干渉が生じてモアレ模様を形成する平行線からなる 波形パターンを備えたオーバ一プリント版を用いて、 用紙表面に、 複写機では再 生されないような淡色の重ね刷りを施す。 これにより、 印刷物の表面において、 肉眼を幻惑するモアレ模様が形成されるので潜像の存在が識別困難となり、 複写 機で複写すると、 潜像と波形パターンとが再生されずに背景のみが再生される技 術 (特開昭 6 0 - 8 7 3 8 0号公報) 。
しかし、 上記 (a ) 〜 (b ) の技術は、 いずれも網点、 もしくは万線等の点及 び線の粗密からなるスクリーンパターンを用いている。 このため、 地紋、 彩紋模 様を多用している銀行券、 株券、 債券等の有価証券等の既存製品に用いるには適 さないという欠点があった。
これに対し、 上記技術の欠点を補う手法として、 次のようなものが提案されて いる。
( d ) 曲画線の集合模様を、 潜像を施さない部分と施した部分とで構成する。 潜像を施さない部分には一本線、 潜像を施した部分には二本線から成る画線を用 いる。 潜像を施した部分で用いた二本線の画線は、 二本の画線の合計の画線幅が、 潜像を施さない部分で用いた一本の画線の画線幅と等しく、 且つ、 潜像を施さな い部分の一本線から連続して二本に分岐する。 二本に分岐した画線は、 複写機の 解像度で複写できない程度に線幅が狭い。 しかし、 肉眼では一本の画線と二本の 画線とが同一の線に見える。 これにより、 肉眼とは異なる画像が複写される (特 願平 6— 2 0 6 1 4 0号) 。
( e ) 曲画線の集合模様に、 潜像を施さない部分を実線、 潜像を施した部分を 一定周期で断絶する線で表現する。 そして、 潜像を施した部分には、 断絶線にお ける線が存在する画線部と、 線が断絶して欠落している非画線部とが含まれる。 (特願平 7— 1 3 8 8 7 9 ) 。
このような上記 (d ) ( e ) による模様を施すことで、 上記 (a ) 〜 ( c ) に よる技術が有する欠点をある程度解消することができる。
しかし最近では、 カラ一複写機の高機能化及び D T P (デスクトップパプリヅ シング) 技術の高度化によって、 上記 (d ) ( e ) による技術でも十分な偽造防 止策に成り得なくなつてきた。
そこで、 真偽判別において大量且つ高速処理できる機械読み取り検査技術が広 く採用されている。 今日の機械読み取り検査手法は、 磁性インキ、 赤外線反射吸 収インキ、 蛍光インキ等の機能性インキ、 印刷媒体を形成する繊維、 材質、 薬品 類等による素材を検知する。 このような技術は、 人間に感知できない特定の電磁 波等を用いており、 印刷物を作製する上で材料適性に依存するものが多く、 生産 コスト面において、 経済性の見合う特定用途向けの製品にしか用いることができ ない。
また、 印刷物の模様を光学的に読み取る比較的簡易な手法として、 O C R、 0 MR、 バーコード、 二次元コード等がある。 これらの光学読み取り技術を既存製 品に用いる場合は、 デザイン、 仕様の変更が要求される。
また、 これらの光学読み取り技術は広く用いられている。 印刷画線も可視でき るため、 解読、 改竄の危険性があり、 偽造、 変造防止方法としては不十分である 光学読み取り技術を用いて、 かつデザィン等の意匠性を変えずに真偽判別用の 情報を付与する手法として、 一般に電子すかしと呼ばれる技術がある。 電子すか しは、 コンシ一ルドイメージ、 デジタルすかしとも呼ばれ、 ドキュメントフアイ ルやその印刷物に著作権情報等を埋め込むのに用いられている。 公知技術として は、 周波数利用型と呼ばれるものがある。
電子すかしは、 複製物においてもその周波数特性の劣化が少ないと言われ、 最 近では著作権保護の目的で、 イン夕ーネット上に配信されるデジタルイメージに 施すのに用いられている。 また、 印刷物においても、 著作権保護の目的で、 ボス 夕一等に利用されることも多くなつてきた。
電子すかしの特性を最も効果的に発揮させるのは、 連続階調 (写真階調) 模様 に適用した場合である。 連続階調模様は多値画像デ一夕である。 このため、 十分 な冗長度が存在するので、 周波数利用型に限らず画素置換型、 画素空間利用型、 量子化誤差拡散型等の多くの手法が提案されており、 文献、 特許出願も数多く、 今日注目を集めている技術の一つである。
しかしながら、 有価証券に用いられる地紋、 彩紋模様、 レリーフ模様等の曲画 線の集合模様は、 基本的に 2値画像であるから冗長度が少ない。 このため、 電子 すかしの埋め込みは困難とされている。 敢えて電子透かしを埋め込んだとしても、 読み取り用信号が弱いために読み取り精度が低いという問題があつた。
従って、 印刷物の材料適性に依存することなく偽造、 変造防止が可能であり、 銀行券、 株券、 債券等の有価証券、 各種証明書、 重要書類等に好適な技術の開発 が望まれている。 発明の概要
本発明は上記事情に鑑み、 偽造、 変造が困難であり、 また容易に真偽判別を行 うことができる真偽判別可能な印刷物、 その作成方法及びその作成装置、 並びに その判別方法及びその判別装置を提供することを目的とする。
本発明による真偽判別可能な印刷物は、
第 1の領域と、 前記第 1の領域に隣接するように配置された第 2の領域とを備 え、
前記第 1の領域は複数の第 1の画線を有し、
前記第 2の領域は複数の第 2の画線を有し、
前記第 1の画線は実線であり、
前記第 2の画線は、 この第 2の画線の長手方向と直交する方向に延びる分断線 が、 前記第 2の画線の長手方向に沿って所定間隔を有するように複数配置されて いることを特徴とする。
また本発明の真偽判別可能な印刷物は、
第 1の領域と、 前記第 1の領域に隣接するように配置された第 2の領域とを備 え、
前記第 1の領域は複数の第 1の画線を有し、
前記第 2の領域は複数の第 2の画線を有し、 前記第 1の画線は実線であり、
前記第 2の画線には、 この第 2の画線の長手方向と直交する方向に延びる複数 種類の分断線が含まれ、 各々の前記分断線は、 前記第 2の画線の長手方向に沿つ てそれそれ異なる間隔を有するように配置されていることを特徴とする。
本発明の真偽判別可能な印刷物の作成方法は、
複数の画線を含む第 1の領域と、 複数の画線を含む第 2の領域とを備える線画 を表す画像データを作成するステップと、
前記画像デ一夕を用いて、 前記第 1の領域に含まれる前記画線を実線とするス テツフ°と、
前記画像データを用いて、 前記第 2の領域に含まれる前記画線を、 この画線の 長手方向と直交する方向に延びる分断線が、 この画線の長手方向に沿って所定間 隔を有するように複数配置きれたものに置き換えるステップと、
を備えることを特徴とする。
また、 本発明の真偽判別可能な印刷物の作成方法は、
複数の画線を含む第 1の領域と、 複数の画線を含む第 2の領域とを備える線画 を表す画像デ一夕を作成するステツプと、
前記画像デ一夕を用いて、 前記第 1の領域に含まれる前記画線を実線とするス テツプと、
前記画像データを用いて、 前記第 2の領域に含まれる前記画線を、 この画線の 長手方向と直交する方向に延びる複数種類の分断線が、 この画線の長手方向に沿 つてそれそれ異なる間隔を有するように複数配置されたものに置き換えるステツ プと、
を備えることを特徴とする。
本発明の真偽判別可能な印刷物の作成装置は、
複数の画線を含む第 1の領域と、 複数の画線を含む第 2の領域とを備える線画 を表す画像データを入力する入力部と、
前記画像デ一夕を用いて、 前記第 2の領域に含まれる前記画線を、 この画線の 長手方向と直交する方向に延びる分断線が、 この画線の長手方向に沿って所定間 隔を有するように複数配置されたものに置き換える演算部と、 を備えることを特徴とする。
また本発明の真偽判別可能な印刷物の作成装置は、
複数の画線を含む第 1の領域と、 複数の画線を含む第 2の領域とを備える線画 を表す画像デ一夕を入力する入力部と、
前記画像デ一夕を用いて、 前記第 2の領域に含まれる前記画線を、 この画線の 長手方向と直交する方向に延びる複数種類の分断線が、 この画線の長手方向に沿 つてそれそれ異なる間隔を有するように複数配置されたものに置き換える演算部 と、
を備えることを特徴とする。
本発明の印刷物の真偽を判別する方法は、
前記印刷物は、 第 1の領域と、 前記第 1の領域に隣接するように配置された第 2の領域とを備え、
前記第 1の領域は複数の第 1の画線を有し、
前記第 2の領域は複数の第 2の画線を有し、
前記第 1の画線は実線であり、
前記第 2の画線は、 この第 2の画線の長手方向と直交する方向に延びる分断線 が、 前記第 2の画線の長手方向に沿って所定間隔を有する.ように複数配置されて おり、
前記印刷物の画像データを作成するステップと、
前記画像デ一夕にフーリエ変換を行ってフ一リエ変換パターンを作成するステ ヅプと、
前記フーリエ変換パターンにおいて、 前記第 1の領域に相当するパターンにお ける前記第 1の画線の間隔と、 前記第 2の領域に相当するパターンにおける前記 第 2の画線の間隔との相関に基づいて、 前記印刷物の真偽判別を行うことを特徴 とする。
また本発明の印刷物の真偽を判別する方法は、
前記印刷物は、 第 1の領域と、 前記第 1の領域に隣接するように配置された第 2の領域とを備え、
前記第 1の領域は複数の第 1の画線を有し、 前記第 2の領域は複数の第 2の画線を有し、
前記第 1の画線は実線であり、
前記第 2の画線には、 この第 2の画線の長手方向と直交する方向に延びる複数 種類の分断線が含まれ、 各々の前記分断線は、 前記第 2の画線の長手方向に沿つ てそれそれ異なる間隔を有するように配置されており、
前記印刷物の画像デー夕を作成するステップと、
前記画像デ一夕にフーリエ変換を行ってフ一リエ変換ノ ^夕一ンを作成するステ ヅプと、
前記フーリエ変換パターンにおいて、 前記第 2の領域に相当するパターンにお ける前記複数種類の分断線のそれぞれの間隔の相関に基づいて、 前記印刷物の真 偽判別を行うことを特徴とする。
あるいは、 本発明の印刷物の真偽を判別する方法は、
前記印刷物は、 第 1の領域と、 前記第 1の領域に隣接するように配置された第 2の領域とを備え、
前記第 1の領域は複数の第 1の画線を有し、
前記第 2の領域は複数の第 2の画線を有し、
前記第 1の画線は実線であり、
前記第 2の画線は、 この第 2の画線の長手方向と直交する方向に延びる分断線 が、 前記第 2の画線の長手方向に沿って所定間隔を有するように複数配置されて おり、
前記印刷物の画像データを入力する入力部と、
前記画像デ一夕にフーリェ変換を行ってフーリェ変換パターンを作成し、 得ら れた前記フーリエ変換パターンにおいて、 前記第 1の領域に相当するパターンに おける前記第 1の画線の間隔と、 前記第 2の領域に相当するパ夕一ンにおける前 記第 2の画線の間隔との相関に基づいて、 前記印刷物の真偽判別を行う演算部と、 を備えることを特徴とする。
あるいはまた、 本発明の印刷物の真偽を判別する方法は、
前記印刷物は、 第 1の領域と、 前記第 1の領域に隣接するように配置された第 2の領域とを備え、 前記第 1の領域は複数の第 1の画線を有し、
前記第 2の領域は複数の第 2の画線を有し、
前記第 1の画線は実線であり、
前記第 2の画線には、 この第 2の画線の長手方向と直交する方向に延びる複数 種類の分断線が含まれ、 各々の前記分断線は、 前記第 2の画線の長手方向に沿つ てそれそれ異なる間隔を有するように配置されており、
前記印刷物の画像データを入力する入力部と、
前記画像データにフーリエ変換を行ってフーリエ変換パターンを作成し、 得ら れた前記フーリエ変換パターンにおいて、 前記第 2の領域に相当するパターンに おける前記複数種類の分断線のそれそれの間隔の相関に基づいて、 前記印刷物の 真偽判別を行う演算部と、
を備えることを特徴とする。
本発明の真偽判別可能な印刷物は、 複数の画線を含む線画を有し、
前記画線は、 複数のユニットを備え、
前記複数のュニットは、 前記画線の長手方向に沿って所定の長さを持って配置 されており、
前記各々のュニット内において、 前記長手方向と直交する方向に延在する複数 の分断線が前記長手方向に沿って配置されており、
前記各々のユニット毎に、 前記複数の分断線がなす間隔は、 埋め込むべき情報 に対応して設定されていることを特徴とする。
本発明の真偽判別可能な印刷物の作成方法は、 複数の画線を含む線画を有し、 前記画線を、 複数のュニットが連続的に配置されたュニット画線として構成す るように、 前記複数のユニットを、 前記画線の長手方向に沿って所定の長さを有 するように配置し、
前記各々のュニット内において、 前記長手方向と直交する方向に延在する複数 の分断線を前記長手方向に沿って配置し、
前記各々のユニット毎に、 前記複数の分断線がなす間隔を、 埋め込むべき情報 に対応して設定することを特徴とする。
本発明による、 複数の画線を含む線画を有する印刷物の真偽判別方法は、 前記画線は、 複数のュニットを備え、
前記複数のュニットは、 前記画線の長手方向に沿って所定の長さを持って配置 されており、
前記各々のュニット内において、 前記長手方向と直交する方向に延在する複数 の分断線が前記長手方向に沿って配置されており、
前記各々のユニット毎に、 前記複数の分断線がなす間隔は、 埋め込むべき情報 に対応して設定されており、
前記印刷物の線画を読み取って画像データを取得し、
前記画像デ一夕にフーリエ変換を行ってフ一リェ変換パ夕ーンを生成し、 生成された前記フーリエ変換パターンを用いて、 前記埋め込まれた情報を識別 することによって、 前記印刷物の真偽判別を行うことを特徴とする。 図面の簡単な説明
添付図面において、
図 1は、 実施例 1による、 一定間隔を有する直万線を用いた印刷物を示す説明 図。
図 2は、'実施例 1による印刷物の画像部の図形を示す説明図。
図 3は、 実施例 1による印刷物を示す説明図。
図 4は、 実施例 1による印刷物の作成手順を示すフローチャート。
図 5は、 実施例 1における分断線の埋め込みを示す説明図。
図 6は、 実施例 1における分断線の埋め込みを示す説明図。
図 7は、 実施例 1における分断線の埋め込みを示す説明図。
図 8は、 実施例 1による印刷物の作成装置の構成を示すプロック図。
図 9は、 実施例 1による印刷物のフーリエ変換パターンを示す説明図。
図 1 0は、 実施例 1で用いるバンドパスフィルタによる抽出を示す説明図。 図 1 1は、 実施例 1で行うフーリエ変換パターンをバンドパスフィル夕を通し た後、 逆フ一リエ変換によって得られた画像を示す図。
図 1 2は、 実施例 1における潜像読み取り手順を示すフローチャート。
図 1 3は、 実施例 1において潜像読み取りを行なう装置の構成を示すブロック 図。
図 1 4 A、 図 1 4 Bは、 印刷物のフーリエ変換パターンから異方性をなくして 得られる間隔の相関強度を示す説明図。
図 1 5は、 実施例 1による情報読み取り手順を示すフローチャート。
図 1 6は、 実施例 1による情報読み取りを行なう装置の構成を示すブロック図 ( 図 1 7は、 実施例 2による印刷物を示す説明図。
図 1 8は、 実施例 2による印刷物のフーリエ変換パターンを示す説明図。
図 1 9は、 図 1 7における要部を拡大した拡大図。
図 2 0は、 実施例 2において用いるバンドパスフィル夕による抽出を示す説明 図。
図 2 1は、 実施例 2において行うフーリエ変換パターンをバンドパスフィル夕 を通した後、 逆フーリエ変換によつて得られた画像を示す図。
図 2 2は、 実施例 3による印刷物を示す説明図。
図 2 3は、 実施例 3による印刷物のフーリエ変換パターンを示す説明図。
図 2 4は、 実施例 3によるフーリエ変換パターンをバンドバスフィル夕を通し た後、 逆フーリエ変換によって得られた画像を示す説明図。
図 2 5は、 実施例 4による印刷物を示す説明図。
図 2 6は、 実施例 4による印刷物のフーリエ変換パターンを示す説明図。
図 2 7は、 実施例 4によるフーリエ変換パターンをバンドバスフィル夕を通し た後、 逆フーリエ変換によって得られた画像を示す図。
図 2 8は、 実施例 5による印刷物において、 埋め込まれる異なる二つの図形を 示す説明図。
図 2 9は、 実施例 5による印刷物を示す説明図。
図 3 0は、 実施例 5によるフーリエ変換パターンを示す説明図。
図 3 1 A、 図 3 I Bは、 実施例 5によるフーリエ変換パターンのバンドパスフ ィル夕のフィル夕の抽出及び逆フーリエ変換によって得られた画像を示す図。 図 3 2 A、 図 3 2 Bは、 実施例 5によるフーリエ変換パターンのバンドパスフ ィル夕のフィル夕の抽出及び逆フーリエ変換によって得られた画像を示す図。 図 3 3は、 証券用線画として利用される一般的な彩紋エレメントを示す図であ る。
図 34は、 実施例 6による印刷物を示す説明図。
図 35は、 図 33に示された印刷物のフーリエ変換パターンを示す図。
図 36は、 図 34に示された印刷物のフーリエ変換パターンを示す図。
図 37A、 図 37Bは、 印刷物のフーリエ変換パターンから異方性をなくして 得られる間隔の相関強度を示す図。
図 38は、 本発明の実施例 8による印刷物に含まれる証券用線画 1である彩紋 エレメント 3を示す図。
図 39A、 図 39Bは、 同実施例 8による印刷物の画像部の図形を示す説明図 c 図 40は、 同実施例 8による印刷物の要部を示す説明図。
図 41は、 同実施例 8の他の印刷物の要部を示す説明図。
図 42は、 同実施例 8の他の印刷物の画像部の図形を示す説明図。
図 43は、 同実施例 8による印刷物の画像デ一夕にフ一リエ変換処理行って得 られたパターンを示す図。
図 44は、 同実施例 8の他の印刷物の画像データにフーリエ変換処理行って得 られたパターンを示す図。
1、 10、 34、 35、 41、 42 分断画線部
2 直万線
3、 15、 31、 45 画像部
4、 12、 43、 52 背景部
5、 14、 30、 44、 54 基本画線部
6、 17、 24、 25、 33、 38、 40、 46、 48、 50 分断線 11 万線
18 振幅
19 周波数
26、 37、 39、 47、 49、 53
27 分断線の基本となる間隔
28 同心円 (細画線) 36 彩紋エレメント
101 証券用線画
102 細画線
103 彩紋エレメント
104 実施例 7の印刷物
105、 105 A、 105 B、 105 C ユニット
106、 113 ユニット画線
107、 114 ュニヅト画線群
108 情報用分断線
109 始端分断線
110 終端分断線
111 実施例 7の別の印刷物
112 実施例 7の別のュニヅト
115、 116 フ一リエ変換画像
200 線画オブジェクト入力部
201 間隔 dd 設定部
202、 222、 252 演算部
203、 224、 254 記憶部
204 線画オブジェクト出力部
220、 250 操作部
22 251 ビットマップ画像データ入力部
223、 253 表示部 発明の詳細な説明
本発明の実施例による真偽判別可能な印刷物、 その作成方法及びその作成装置、 並びにその判別方法及びその判別装置について、 図面を参照して説明する。
以下に示す実施例は、 線画で構成された証券類等、 意匠性、 芸術性を有する印 刷物において、 通常の可視光下で、 肉眼で認識できない程度に線画に変調を与え ることにより、 その意匠性、 芸術性を損なうことなく、 真偽判別用の情報を埋め 込む。 また、 従来よりも、 機械的に読み取った信号の強度をより強くするため、 規則性を有する線画に、 分断や分岐処理を施す。
証券類、 紙幣等に使用されている線画は、 万線状の直線 (直万線) や曲線を含 む画線が複数本集合して、 幾何学的なデザインをなしている。 このような証券用 線画を構成する要素となる画線を、 本実施例では 「細画線」 という。 証券用線画 では、 複数本の細画線の間隔等において、 非常に高い規則性が存在する。 本実施 例は、 この規則性を評価する際に、 細画線の間隔の相関を評価する手法が有効で ある点に着目している。
本実施例では、 この規則性を有する証券用線画の複数本の細画線に対し、 スキ ャナ、 複写機等のデジタル機器で識別可能であるが、 通常の可視光で肉眼で認識 困難な微細且つ規則性を有する部分を付与する。 そして、 得られた印刷物に対し て。 デジタル機器を用いて証券用線画の間隔の相関を分析する。 これにより、 印 刷物に埋め込まれた情報を識別し、 真偽判別を行う。 また得られた情報を用いて、 複写機等のデジタル機器を偽造に利用しょうとした際に、 の動作を停止させる等 の処置を可會 gとする。
通常の可視光で肉眼で認識困難なレベルで証券用線画に変調を与える手法とし て、 証券用線画を構成する細画線を分断させる。 この際に、 肉眼では分断部と非 分断部との濃度が同等と見えるように、 証券用線画の細画線の中心線と直行する 方向に、 その長さと幅とを変更した複数本の分断線を、 細画線方向に並列するよ うに情報を埋め込む。
また、 証券用線画を並行方向に分岐させた分岐画線についても、 同様な手法を 用い 。
複数本の細画線から成る証券用線画に埋め込む情報は、 証券用線画の規則性、 言い換えれば複数本の細画線の一定間隔及ぴ埋め込む位置という 2つのパラメ一 夕を有する。 埋め込まれた情報を識別するには、 細画線の間隔の相関をフーリエ 変換によって得た後、 特定の位置あるいは特定方向の相関のみを抽出し、 或いは さらに逆フーリエ変換を行う。 したがって、 埋め込まれた情報は、 位置あるいは 方向の相関に応じて、 異なる情報が得られることとなる。 以下、 実施例 1〜7に おいて具体的に説明する。 ( 1 ) 実施例 1
図 1〜 1 3を用いて、 実施例 1を説明する。 図 1に示された印刷物は、 単純な 一定間隔 d bを有する直万線 2 (本実施例の 「細画線」 に相当する) を有する。 この印刷物に対し、 1種類の情報を埋め込む方法、 これによつて形成された印刷 物、 並びにこの印刷物を認識する方法、 装置について説明する。
図 1に示す印刷物を、 スキャナ等のデジタル機器で読み取ってビットマヅプデ —夕等のデジタルデータ画像データを得る。 或いは、 コンピュータにより、 直接 デジ夕ル画像デ一夕を作成してもよい。 得られたデジ夕ル画像データを用いて印 刷出力することで、 複数本の直万線 2を有する (万線状に細画線を複数本有す る) 印刷物が作成される。
この直万線 2に、 図 2のような画像部 3及び背景部 4を含む二値画像 (情報) を埋め込む。 具体的には、 図 3において、 直万線 2のうち、 画像部 3の領域に存 在する部分は、 分断画線部 1に置き換える。 直万線 2のうち、 背景部 4の領域に 存在する部分は、 もとの一定間隔 d bを有する直万線 2のまま (基本画線部 5 ) としておく。
分断画線部 1は、 通常の可視光下において肉眼で認識困難な複数の分断線 6が、 直万線 3の方向に一定間隔 d dを保った状態で、 直万線 2の方向に並列するよう に配置されている。 複数の分断線 6は、 夫々直万線 2の長手方向に対して直交す る方向に配列されている。 分断線 6の幅及び長さは、 通常の可視光下において肉 眼では、 基本画線部 5 (直万線 2 ) の濃度と同等となるように設定しておく。 以上のように、 複数本の直万線 2のうち、 画像部 3の領域に存在する部分は、 分断画線部 1で置き換える。 これにより、 各々の直万線 2 (細画線) を一本ずつ 見ると、 基本画線部 5及び分断画線部 1、 あるいはいずれか一方から成る。 基本 画線部 5は、 直万線 2が複数本集まって基本画線群となって背景部 4を構成し、 分断画線部 1は、 分断線 6が複数本集まって分断画線群となり画像部 3 (図形) を構成する。
そして、 基本画線群と分断画線群とは、 夫々の画線間隔に基づいて異なる周波 数を有する。 さらに、 背景部 4と画像部 3とで、 情報が埋め込まれた証券用線画 を構成する。 このような印刷物を印刷出力することで、 本実施例に係る真偽判別 可能な印刷物を得ることができる。
以上のような印刷物の作成方法として、 分断画線を用いて情報の埋め込みを行 う手順について、 説明する。 図 4に、 作成手順を示す。 尚、 証券用線画は、 市販 の線画デザィンソフトウヱァ等を用いて作成してもよい。
線画デザインソフトウエア等を用いて作成した線画デ一夕は、 一般的にォブジ ェクト指向から成るデータ構造を有し、 証券用線画は複数の線画オブジェクト 0 b 1、 Ob2 · · · ■ Obmを備え、 証券用線画 Obは、 証券用線画の形状 kl、 k2 · · · · kmと、 分断線の間隔 dd 1、 d d 2 · · · ' ddiと、 分断線長 さ1^ 1、 2 . . . . ]^ ;1と、 分断線幅さ Wl、 W2 · · · · Wiとを含み、 本 実施例では、 Ob [k, dd, L, W] と仮定する。
まずステップ 1において、 線画オブジェクト Ob 1、 Ob 2 · · · ■ Obmを コンピュータに入力する。
ステップ 2において、 埋め込み用の線画オブジェクトの設定を行う。 線画ォブ ジェクトの設定には 2通りある。 埋め込み用に任意の線画オブジェクトを選択す る方法と、 複数の線画オブジェクトにおいて埋め込み領域即ち潜像の絵柄 (例え ば、 図 2に示される画像部 3) を選択する方法とがあり、 どちらを用いてもよい c ステップ 3において、 埋め込み用の線画オブジェクトにおける分断線の間隔 d d l、 dd2 · · · · ddiを設定する。 設定する分断線の間隔は任意であり、 線画オブジェクト毎に異なった間隔を設定することができる。
ステップ 4において、 分断線の間隔 ddに基づき、 分断線の幅 W、 長さ Lの算 出を行う。
このとき、 分断線の間隔に対して、 通常の可視光下において肉眼で視覚的に、 選択した線画ォブジェクトと選択されなかった線画ォブジェクトとが同様の濃度 で視覚されるように調整する。 具体的には、 例えば、 計算式を用いて、 若しくは 予めテーブルとして設定した分断線の間隔に対応する幅と長さとをテーブルから 選択することで、 分断線の間隔、 幅、 長さを決定してもよい。
ステップ 5において、 ステヅプ 4で決定した分断線を、 潜像部に沿って埋め込 む。
最後に表示工程として、 ステップ 6において、 部分的に埋め込み処理を行った 線画ォブジェクトの証券用線画 Obを出力する。
例えば、 図 5に示す線画 Ob 1、 Ob 2s 〇103の画線幅 1、 W2、 W 3が、 全て 50 mであったとする。 このとき、 線画 Ob 2に埋め込み処理を行うとす ると、 埋め込み情報は分断線の間隔 dd 2と分断線長さ L 2とを調整することに なる。
例えば図 6に示すように、 画線幅 W2が 50 zmで、 分断線の間隔 dd2が 1 50 m、 分断線長さ L 2が 30 mとすると、 線画〇b2は線画 Ob l、 Ob 3に対して画線面積率が低くなつてしまう。
そこで図 7に示すように、 画線幅 W2を 250 zmにすることによって、 線画 Ob 2の画線面積率を線画 Ob 1、 Ob 3と等しくすることができる。 この線画 Ob 2の調整については、 図 4に示すステップ 4にて実行するものである。
以上のような処理を行うコンピュータの構成は、 図 8に示されるように、 線画 オブジェクト入力部 200、 間隔 d d設定部 201、 演算部 202、 記憶部 20 3、 線画オブジェクト出力部 204で構成している。
市販のソフトウエア等を用いて、 オリジナルデザインの線画ォブジヱクトの作 成を行い、 線画オブジェクト入力部 200にこの線画オブジェクトを入力する。 間隔 dd設定部 201を用いて分断線間隔の設定を行い、 演算部 202を用い て分断線間隔 dd及び幅 W、 長さ Lを算出し、 その演算結果を記憶部 203に記 憶する。
また、 記憶部 203は、 選択した線画オブジェクトと、 選択されなかった線画 オブジェクトとが通常の可視光下において肉眼で同程度の濃度で視覚されるよう に、 濃度を調整するための計算式、 若しくは予め設定した分断線の間隔に対応す る幅と長さとを決定するテーブルを格納している。
線画オブジェクト出力部 204は、 上記ステップ 5における、 線画のオブジェ クト Ob (分断線処理結果) を出力するものである。
出力した線画オブジェクト Obは、 最終的にラス夕一処理され、 イメージセッ 夕やオンデマンド出力等の市販の出力装置にて、 製版用フィルムあるいは印刷物 として出力することができる。
次に、 このようにして作成した印刷物から、 埋め込んだ情報を識別することに よって真偽判別を行う方法について説明する。
上記印刷物をスキャナ等の読取装置で読み込み、 読取結果をビットマップデー 夕 (本実施例の 「デジタル画像デ一夕」 に相当する) として得る。 得られたビヅ トマヅプデ一夕に、 フーリエ変換を行う。
図 9に、 図 3の印刷物にフ一リエ変換を行って得られたフ一リエ変換パターン を示す。 図 9には、 2種類の強い間隔の相関が観測される。 これらの周波数 qb 及び周波数 q dは、 夫々直万線 2の間隔 d bと分断線 6の間隔 d dの間隔の相関 に対応している。 即ち、 基本画線群の間隔 dbと分断画線群の間隔 ddとに基づ く夫々の間隔の相関が、 フーリエ変換パターンにおいて周波数 qb及び周波数 q dとして観測され、 この強い相関として示される画像によって埋め込まれた情報 を識別することが可能になる。
そして、 埋め込んだ情報は、 分断線 6の間隔 ddの間隔の相関に対応すること から、 図 9のフーリエ変換パターンに対し、 次の式 (1) を用いて、 図 10のよ うな周波数 q dの近傍のみでフーリエ変換パターンのみを抽出するバンドパスフ ィル夕を用いて、 情報の抽出を行う。
I f (q) =f (q) I (q) (1)
ここで、 I (q) は周波数ベクトル qにおけるフーリエ変換パターンの強度を、 f (q) は q = qdの場合、 f (q) =1となり、 q≠qdの場合、 f (q) = 0となる。 また I f (q) はバンドパスフィル夕による画線抽出後のフ一リエパ ターンの qにおける間隔の相関強度を意味する。
この抽出結果を逆フーリエ変換すると、 図 11に示すように、 一定間隔を有す る複数の分断線 6が現出し、 当初の図 2における画像部 3と類似したものが得ら れる。 この逆フーリエ変換した画像によって、 埋め込んだ情報 (画像) を識別す ることができることとなる。
以上の潜像が埋め込まれた印刷物に対する具体的な読取作業を、 図 12のフロ —を用いて説明する。
読取作業も、 画像入力、 演算処理、 結果表示の 3つの部分に大きく分けられる c ステップ 11において、 スキャナ等により印刷物上の画像をビットマップデ一 夕として読取る。 ステップ 1 2において、 ビヅトマヅプデ一夕に F F T処理を行う。
ステップ 1 3において、 F E T処理を行ったビヅトマヅプデ一夕に対し、 バン ドパスフィル夕を用いて特定周波数の F E Tパターンの抽出を行う。 ここで、 特 定周波数は埋め込まれた分断線の間隔に相当している。
ステップ 1 4において、 抽出した特定周波数の F F Tパターンに対して逆フ一 リエ変換を施すことにより、 埋め込まれた潜像を抽出する。
図 1 3に、 潜像を識別するためのコンピュータの構成を示す。
ビットマップ画像データ入力部 2 2 1において、 スキャナを用いて印刷物のビ ットマツプ画像デ一夕の入力を行う。
読取られたビットマップ画像データは演算部 2 2 2へ送られ、 F F T処理、 あ らかじめ設定しておいたバンドバスフィル夕による特定周波数の抽出、 逆フ一リ ェ変換がなされる。 演算部 2 2 2における演算処理内容は、 操作部 2 2 0におい て設定することができる。
抽出された潜像は表示部 2 2 3において表示され、 オペレータによる認証が可 能となる。 また、 潜像データは記憶部 2 2 4において保存される。
図 1 4に、 上述の印刷物をスキャナ等で読み取って得られたビヅトマヅプデ一 夕のフ一リエ変換パターンから、 異方性をなくす処理を施して得られる、 画線の 間隔に基づく位置相関強度を示す。 ここで、 図 1 4 Aは、 基本線の間隔に基づく 位置相関強度を示し、 図 1 4 Bは、 背景部と画像部の基本画線部及び分断線の間 隔に基づく位置相関強度を示している。
ここで、 異方性とは、 対象物の物理的性質が方向によって異なることをいう。 また、 本実施例における異方性をなくす処理とは、 フーリエ変換の強度を周波数 ぺクトルから周波数スカラーに置き換える処理とする。
具体的には周波数 q (ベクトル) となる同心円上にあるフーリエ変換強度を全 て加算し、 一次元的にフーリエ変換強度を周波数 q (スカラー) の関数として表 すことである。
図 1 4 Bに示されたように、 位置相関強度 Iによつて一定以上の大きな強度を 一次元で評価し、 識別することで印刷物の真偽判別が可能となる。 これによると、 上述したバンドパスフィル夕による特定周波数の抽出及び逆フーリエ変換を行わ なくとも、 埋め込まれた情報の識別が可能となる。
図 1 5に、 図 1 4を用いて説明した、 潜像の代わりに埋め込まれた情報を認識 することで印刷物の真偽判別 (認証) を行なう方法のフローを示す。 この工程は、 潜像の場合と同様に、 画像入力、 自動処理、 結果表示の 3つに大きく分けられる。 ステップ 2 1において、 スキャナ等により印刷物の画像をビットマップデータ として読取る。
ステップ 2 2において、 F F T処理を行い、 F E Tパターンを生成する。
ステップ 2 3において、 F F Tパターンの一次元化を行い、 F F Tパターンの 異方性を除去し、 等方化処理を行なう。
ステップ 2 4において、 特定周波数における F F Tパ夕一ン強度が一定以上で あることをチェックし、 その結果に基づいてステップ 2 5において認証を行なう。 読取 ·認証操作を行なうコンピュータの構成を図 1 6に示す。
ビットマヅプ画像デ一夕入力部 2 5 1において、 スキャナを用いて印刷物のビ ヅトマツプ画像デー夕の入力を行う。
読取られたビットマップ画像データは演算部 2 5 2へ送られ、 F F T処理、 F F Tパターンの一次元化 (異方性除去) 、 あらかじめ設定しておいた特定周波数 における F F Tパターンの強度をチェックし、 その認証結果を出力する。
ここで、 演算部 2 5 2における演算処理内容は、 操作部 2 5 0において設定す ることができる。
出力された認証結果は表示部 2 5 3において表示され、 ォペレ一夕による認証 が可能となる。 また、 潜像デ一夕は記憶部 2 5 4において保存される。
上記実施例 1によれば、 通常の可視光下において肉眼では認識が困難であるが、 スキャナ、 複写機等のデジ夕ル機器により検知することが可能な情報を埋め込む ことにより、 埋め込んだ情報を読み取ってフーリエ変換、 特定周波数の抽出、 逆 フ一リエ変換という処理を行なうことで、 埋め込んだ情報の解析結果に基づいて、 印刷物の真偽判別を容易かつ高精度に行うことができる。
また、 本実施例 1で埋め込まれる情報は、 通常の可視光下において肉眼で認識 することが困難であることから、 埋め込む前の画線が有する意匠的、 美術的効果 を損なうおそれがない。 また、 従来の技術として述べた、 不可視な情報を埋め込んで読み取る技術と比 ベ、 本実施例 1では、 規則性の高い画線に規則性の高い分断処理を与えるため、 その情報の信号強度は非常に大きなものとなり、 読み取りを容易且つ高精度に行 うことができる。
上述した手法により、 真偽判別用の情報を銀行券、 証券類、 各種証明書及び重 要書類等に埋め込むことで、 不正な複写防止に活用することができる。 即ち、 ス キヤナ等により印刷物を読み取った際に、 その機器の作動を停止させる等の処理 に用いることができる。
( 2 ) 実施例 2
図 1 7〜図 2 1を用いて、 本発明の実施例 2について説明する。
図 1 7に、 一定周期で波状に振動する複数の万線 1 1 (本実施例の 「細画線」 に相当する) を有する印刷物に、 上記実施例 1と同様の手法を用いて情報を埋め 込んで作成した印刷物を示す。
実施例 2による印刷物では、 背景部 1 2が間隔 d bの波状に振動する複数の万 線 1 4 (基本画線部 1 4 ) から成る基本画線群で構成されており、 画像部 1 5が 万線 1 1の長手方向に d bの複数の分断線 1 7から成る分断画線部 1 0が複数集 まつた分断画線群で構成されている。
図 1 7に示す波状に振動する万線は、 上記実施例 1の印刷物の基本単位である 直万線に振幅変調を与えることにより得られる。 図 1 7に示す印刷物は、 図 4に 示すフローの手順と、 図 8に示すブロック構成を備えるコンピュータにより作製 可能である。 図 1 7に示す印刷物をスキャナ等で読み取り、 読取結果をビットマ ップデ一夕とし、 これをフーリエ変換して得られる画像を図 1 8に示す。
図 1 8を、 上記実施例 1におけるフーリエ変換後の画像を示す図 9と比較する と、 振幅する万線 1 4の間隔 d bの位置相関に対応する周波数 q b及び分断線 1 7の間隔 d dの位置相関に対応する周波数 q dから夫々 q b〜q b +厶 b及び q <1ー (1ー〜(1 (1 + ^ (1 +相関のピークが幅広く拡大してぃることがゎかる£ これは、 万線 1 4が波状の曲線であり、 そして分断線 1 7が、 この波状の曲線で ある万線 1 4上に配列することに起因する。 これを図 14の要部を拡大した図 19を用いて説明すると、 例えば、 分断線 2 4と分断線 25の凹曲側の間隔 26が、 基本となる間隔 27 (間隔 dd) と比べ て短くなつている。 図示されていないが、 逆側、 即ち凸曲側では分断線と分断線 の間隔が、 基本となる間隔 (dd) と比べて長くなつている。
実施例 2において埋め込んだ情報を識別するには、 図 18に示すフ一リエ変換 パターンの特徴に基づいて観察してもよい。 あるいは、 フーリエ変換パターンに 対して、 周波数 qdから周波数 qdに Aqd—減じた周波数及び qdに Aqd + を加えた周波数の範囲 (即ち、 (1—厶(¾ 1ーから01(1+厶(1(1+までの周波数 範囲) で、 以下の式 (2) に示す特性のバンドパスフィルタを利用して、 図 20 に示すように抽出を行なうこともできる。
I f (q) =f (q) I (q) (2)
式 (2) において、 f (q) は (1—厶 (1—≤ ≤ (1+ (1(1+の場合、 f ( q) = 1となり、 qd+Aqd+く q, qく q d— Δ q d—の場合、 f (q) =0となる。
上記ノ、'ンドバスフィル夕を通して得られた画像に対して逆フーリエ変換を行な うことにより、 図 21に示すような画像が得られる。 この画像において、 印刷物 に埋め込んだ情報を、 画像部 15として読取ることが可能である。
なお、 この逆フ一リエ変換によって得られた画像は、 各ピクセルの強度に対し て一定強度以下の値を有するノィズを消去することにより、'さらに鮮明な情報を 得ることができる。 以上の潜像に対する読取 ·認証作業は、 図 15に示すフロー の手順、 図 15に示すブロック図からなるコンピュータによって行なうことがで ぎる。
また、 図 18に示されたフーリエ変換後の画像に対し、 特徴的な周波数を検知 して読取認証を行なう作業は、 図 4に示すフローの手順及び図 8に示すプロック 構成を備えるコンピュータによって行なうことができる。
( 3 ) 実施例 3
図 22に、 本発明の実施例 3による印刷物を示す。 上記実施例 1に係る印刷物 は、 両端が開いた系である複数の直万線 (細画線) を備える線画において、 直万 線を複数の分断線から成る分断画線部で置き換えて情報を埋め込んで得られる。 これに対し、 実施例 3に係る印刷物は、 閉じた系である複数の同心円 2 8 (本 実施例の細画線に相当する) を備える証券用線画において、 同心円 2 8を複数本 の分断線 3 3から成る分断画線部 3 4で置き換えて情報を埋め込んで得られるも のである。
図 2 2に示す印刷物は、 埋め込む情報の背景部 2 8は、 間隔 d bの複数本の基 本画線部 3 0から成る基本画線群で構成しており、 画像部 3 1は、 間隔 d dの複 数本の分断線 3 3から成る分断画線部 3 4の集合である分断画線群で構成してい o
この印刷物は、 上記実施例 1と同様にスキャナ等で読み取ってビットマップデ —夕とし、 これをフーリエ変換することにより、 図 2 3に示すフーリエ変換パ夕 —ンを得ることができる。 得られたフ一リエ変換パターンの特徴から、 印刷物の 埋め込まれた情報を識別することができる。
さらに、 図 2 3において、 分断線の間隔 d d及び位置相関に対応する周波数 q から、 周波数 q dに周波数 A q d +を加える、 あるいは△ q d—を減じた範囲 において、 上記実施例 2と同様にバンドパスフィル夕で抽出し、 抽出結果に対し て逆フーリエ変換を行なう。
これにより、 図 2 4に示すような、 間隔 d dの複数本の分断線 3 3が分断画線 部、 さらに分断画線群を構成する画像部 3 1に相当する図形を有する画像を得る ことができる。 このようにして、 埋め込んだ情報の識別が可能となる。 本実施例 3における閉じた系である同心円に対する情報あるいは潜像の埋め込み及び読み 取り、 認証に関する手順を示すフロー、 及びこれらを実現するコンピュータのブ ロック構成は、 上記実施例 1におけるものと同様である。
( 4 ) 実施例 4
図 2 5〜図 2 7を用いて、 実施例 4について説明する。 実施例 4は、 上記実施 例 3と同様に閉じた系としての同心円に対して情報を埋め込むものであるが、 さ らに、 複数の同心円を波状に振動する閉じた系の万線 (細画線) に変調すること によって得られた線画に、 情報を埋め込むものである。 図 2 5に示す印刷物では、 背景部 4 3が、 間隔 d bで配列された複数の基本画 線部 4 4から成る基本画線群で構成され、 画像部 4 5は、 間隔 d dで配列された 複数本の分断線 4 6から成る分断画線部 4 2が集合した分断画線群で構成されて おり、 これらの背景部 4 3と画像部 4 5とから成る情報が埋め込まれている。 この印刷物におけるフーリエ変換パターンは、 図 2 6に示すとおりである。 図 2 6において、 分断線 4 6の間隔 d dの間隔の相関に対応する周波数 q dから周 波数 q dに周波数 Δ q d +加えた範囲及び Δ q d一減じた範囲で、 上記実施例 2 と同様にバンドパスフィル夕で抽出し、 この抽出結果に対して逆フーリエ変換を 行なう。 その結果、 図 2 7に示すように、 間隔 d dの複数本の分断線 4 6が分断 画線部、 さらに分断画線群を構成して成る画像部 4 5に相当する図形を有する画 像を得ることができる。 このようにして、 埋め込んだ情報の識別が可能となる。 実施例 4における、 閉じた系である同心円を波状に振動するように変調して得ら れた、 閉じた系である万線 (細画線) に対して、 情報あるいは潜像を埋め込む処 理、 埋め込んだ情報あるいは潜像の読み取り処理、 認証処理に関するフロー、 こ れらを実現するコンピュータの構成は、 上記実施例 1におけるものと同様である
( 5 ) 実施例 5
図 2 8〜図 3 2を用いて、 実施例 5について説明する。
実施例 5は、 2種類の画像が、 線画に対して情報として埋め込まれる点に特徴 がある。 具体的には実施例 5は、 図 2 8に示すように、 画像部 aには 「A」 とい う画像、 画像部 bには 「B」 という画像を、 それぞれ埋め込み情報として埋め込 む構成を備えている。
図 2 9に、 同心円 (本実施例の細画線に相当する。 ) から成る線画において、 背景部 5 2には間隔 5 3を 4 0 0 mに設定した基本画線部 5 4、 画像部 aには 間隔 4 7を 1 6 3 mに設定した分断線 4 8、 画像部 bには間隔 4 9を 1 1 4 mに設定した分断線 5 0によって、 交互に情報を配置する。
図 2 9に示す印刷物をスキャナで読み取りビットマップデータを取得し、 これ をフーリエ変換して得られるフーリエ変換パターンを、 図 3 0に示す。 このフ一 リエ変換パターンでは、 基本画線部 5 4の間隔 5 3の 4 0 0〃mの間隔の相関に 対応する周波数 qbと、 分断線 48の間隔 47の 163 mの間隔の相関に対応 する qd 1と、 分断線 50の間隔 49の 114 mに対応する周波数 q d 2とが 観測される。
さらに、 図 31 Aに示すように、 周波数 qd 1から周波数 qd 1に周波数 A i d 1 +を加えた範囲及び Aqd 1—を減じた範囲で、 上記実施例 4において説明 したように、 バンドパスフィル夕 a' を用いた抽出結果に対して逆フーリエ変換 を行なうと、 図 31Bにおける画像 a5 ' のように 「A」 という画像を認識する ことができる。
同様に、 図 32Aに示すように、 周波数 qd2から周波数 qd2に厶 qd2 + を加えた範囲及び Aqd 2—を減じた範囲で、 バンドパスフィル夕 b' を用いた 抽出結果に対して逆フ一リエ変換を行なうと、 画像 b, ' のように 「B」 という 画像を認識することができる。
実施例 5における、 閉じた系である同心円を波状に振動するように変調して得 られた閉じた系の万線 (細画線) に対して、 2種類の潜像の埋め込み及び読み取 り、 認証に関するフロー、 これらを実現するコンピュータの構成は、 上記実施例 1におけるものと同様である。
( 6 ) 実施例 6
上記実施例は、 2次元の図柄で構成された画像情報を付与するものである。 し かし、 印刷物の特定をより簡便にするには、 読取装置によって印刷物中の情報を 必ずしも 2次元の図柄として認識する必要はない。 即ち、 印刷物において特徴的 な画線の間隔に基づいて印刷物を特定し、 真偽判別を行ってもよい。
例えば、 図 33に示すような彩紋エレメント 36を用いて複数の情報を埋め込 む方法及びその印刷物の構成について説明する。
図 33の彩紋エレメント 36を構成する複数の細画線を、 一本おきに、 間隔 3 7を 163 mに設定した複数の分断線 38から成る分断画線部 35と、 間隔 3 9を 11 に設定した複数の分断線 40から成る分断画線部 41とで置き換 えて構成した場合を図 34に示す。
図 33に示す分断線を施していない画像をビットマップデ一夕とし、 これをフ —リエ変換して得られたフーりェ変換パターンは図 3 5に示すとおりである。 さ らに、 図 3 4に示す複数の分断線を施した画像をビットマップデ一夕とし、 これ をフーリエ変換して得られたフ一リエ変換パターンは図 3 6に示すとおりである c そして、 印刷物を読み取る時に、 ビットマップデータに対するフーリエ変換パ 夕一ンの異方性をなくして一次元で評価した場合、 分断線 3 8及び分断線 4 0を 施していないフ一リエ変換パターンの一次元評価を示す図 3 7 Aと比較し、 分断 線 3 8及び分断線 4 0を施しているフ一リエ変換パターンの一次元評価を示す図 3 7 Bでは、 間隔の相関強度 Iによって一定以上の大きな強度を識別することで 印刷物の特定が可能となる。
即ち、 ビヅトマヅプデ一夕のフーリエ変換パターンの周波数 q d 1及び周波数 q d 2の間隔の相関強度 I ( q ) が所定値以上であれば、 印刷物は特定の証券類 であること、 即ち真正なものであると判定することで、 偽造防止効果を発揮する ことができる。
また、 実施例 5と同様に、 フーリエ変換結果の周波数 q d 1と、 周波数 q d 2 夫々の高次の間隔の相関による周波数の影響を受けない場所に設定すると、 より 認識制度を高めることができる。
図 3 7を用いて説明したように、 印刷物を読み取る時に、 ビットマップデ一夕 に対するフーリエ変換パターンの異方性をなくして一次元で評価する手法によれ ば、 バンドパスフィル夕による特定周波数の抽出と、 この抽出された画像の逆フ —リエ変換というプロセスは不要となる。
上記実施例 6における、 画線を構成する万線 (細画線) に対して 2種類の分断 線間隔からなる情報の埋め込み及び読み取り、 認証に関するフロー、 これらを実 現するコンピュータの構成は、 上記実施例 1によるものと同様である。
( 7 ) 実施例 7
本発明の実施例 7について説明する。
印刷物に情報を埋め込む情報を、 通常の可視光下において、 反射波長が 4 0 0 ηπ!〜 7 0 0 nmの範囲内、 望ましくは 6 0 0〜 7 0 0 nmの範囲内にあるよう なインキを用いて印刷する。 この場合、 読取装置には、 波長が 4 0 0〜7 0 0 n m、 ないし 6 0 0〜7 0 0 nmの範囲内の光のみを透過するフィル夕を装着すれ ば、 そのほかの印刷物上の多くのエレメントがフィル夕により除去され、 不必要 なノイズを除去することが可能となる。
この結果、 フーリエ変換、 バンドパスフィル夕による抽出、 逆フーリエ変換を 経て得られる情報の強度とノイズの比を大きくすることが可能となる。
上記実施例 1〜 7では、 分断線が一定間隔で長手方向に並列されており、 付与 できる情報に限りがある。
これに対し、 以下に説明する本発明の実施例 8〜9では、 分断線の配置の間隔 を工夫することで、 多様な情報を埋め込んで偽造防止効果を高めている。
以下の実施例 8〜 9では、 規則性を有する証券用線画を構成する複数の細画線 に対し、 スキャナ、 複写機等のデジタル機器では識別可能であるが、 人間にとつ て通常の可視光の下で肉眼では認識が困難な分断線を並べて構成し、 変調を与え て情報を埋め込むことで、 印刷物を作成する。 そして、 作成した印刷物の画像デ 一夕を取得し、 画像処理装置を用いて、 証券用線画の間隔、 位置、 配置等に関す る相関を分析し、 埋め込まれた情報を識別することにより、 真偽判別を行う。 このような、 通常の可視光下において、 肉眼では認識が困難なレベルで証券用 線画に変調を与えるため、 証券用線画を構成する細画線の一部又は全部を、 複数 のュニヅトから成るュニヅト画線で形成する構成にしている。 このようなュニヅ ト画線が複数集まりュニット画線群となり、 証券用線画を形成する。
複数のユニットの長さ (以下、 「ユニット長さ」 という。 ) は予め決めた所定 の長さとし、 各ユニットを、 複数の不可視的な分断線で構成する。 この複数の分 断線は、 夫々細画線の中心線と直交する方向に延び、 且つ細画線方向に並列して 配置される構成とし、 このユニット内の複数の分断線を、 細画線方向への互いの 間隔を適宜設定して配置すること (複数の分断線の細画線方向への配置の間隔を 決めること) で情報を埋め込む構成としている。 即ち、 ユニット内において、 複 数の分断線のうち互いに隣接する分断線がなす複数の間隔は、 夫々埋め込まれる 情報に対応して設定される。
このように、 原図である証券用線画を構成する細画線をュニット画線で形成し、 このュニット画線を、 通常の可視光下では肉眼で原図の細画線と濃度が同等に認 識され、 原図と同じように証券用線画が認識されるような構成とする。 ユニット を構成する分断線は、 通常の可視光下では肉眼で識別が困難なように、 分断線の 長さ (細画線の中心線に直交する方向への分断線の長さ) 及び幅 (細画線の延び る方向への分断線の幅) 、 さらに相互の間隔を設定する。 そして、 証券用線画の 規則性 (証券用線画の複数本の細画線の間隔及び方向) に基づき、 又ユニット内 の分断線の互いの間隔を適宜設定して配置することにより、 所定の倩報を埋め込 む構成としている。
このようにして埋め込まれた情報を識別し、 印刷物の真偽判別をするには、 複 数のュニ、ソト画線から成るュニット画線群で構成される証券用線画を表す画像デ 一夕に対してフーリエ変換を行い、 得られたフーリエ変換パターンから、 証券用 線画上のュニット長さ及びュニット内における分断線の配置に関する情報を抽出 し、 埋め込んだ情報を抽出して識別することによって行う。
また、 印刷物の証券用線画を構成する画線には、 全てが上述のようなユニット を単位とするものではなく、 その一部に、 複数の分断線が配置された分断画線で 構成し、 複数の分断画線が集まって分断画線群を構成し、 この分断画線群により 構成されたものを含んでいてもよい。
( 8 ) 実施例 8
以下に、 本発明の実施例 8について説明する。
図 3 8に、 本実施例 8による印刷物の原図となる証券用線画の一例を示す。 こ の証券用線画 1 0 1は、 印刷された細画線 1 0 2から成る彩紋エレメント 1 0 3 を有しているが、 この細画線 1 0 2乃至彩紋エレメント 1 0 3は、 通常の可視光 下で肉眼で認識できるものである。
この証券用線画 1 0 1の彩紋ェレメント 1 0 3に基づいて、 図 3 9 Aに示す本 実施例 8の印刷物 1 0 4を作成する。 印刷物 1 0 4は、 彩紋エレメント 1 0 3を 構成する複数の細画線 1 0 2を、 夫々複数の同じ構成のュニット 1 0 5から成る ュニヅト画線 1 0 6で形成し、 ュニット画線 1 0 6で彩紋エレメント 1 0 3が描 画されて成る画像である。 要するに、 複数のュニット画線 1 0 6が集合したュニ ヅト画線群 1 0 7で、 彩紋エレメント 1 0 3を構成する。 このュニヅト画線 1 0 6は、 画線どうしの間隔及び方向が、 原図の細画線 1 0 2と同じである。
図 3 9 Aの円内に、 ユニット画線 1 0 6の一部を拡大して示す。 この拡大図中 の 1本のュニヅト画線 1 0 6を、 さらに拡大して図 3 9 Bに示す。 ュニヅト画線 1 0 6を構成する各ユニット 1 0 5 A、 1 0 5 B、 1 0 5 Cは、 互いに同じ構成 であり、 予め決められた所定の長さ ( 「ュニヅト長さ」 という) を有し、 複数の 分断線から構成される。 具体的には、 ユニット 1 0 5 A、 1 0 5 B、 1 0 5 Cは、 夫々情報を埋め込む複数の情報用分断線 1 0 8と、 情報用分断線 1 0 8の両側の 始端分断線 1 0 9及び終端分断線 1 1 0とから成る。
ユニット画線 1 0 6は、 本実施例 8では複数の同じ構成のュニット 1 0 5が連 続的に繰り返し配置されて構成される。 互いに隣接するュニット 1 0 5 A、 1 0 5 Bは、 始端分断線 1 0 9、 終端分断線 1 1 0を共有している。 これを図 3 9 B を用いて説明すると、 ユニット 1 0 5 Aの終端分断線 1 1 0は、 ュニヅ ト 1 0 5 Bの始端分断線 1 0 9として両ュニヅト 1 0 5 A、 1 0 5 Bに共有され、 分断線 1 0 5 Bの終端分断線 1 1 0は、 ュニヅト 1 0 5 Cの始端分断線 1 0 9として両 ユニット 1 0 5 B、 1 0 5 Cに共有されている。
ユニット 1 0 5は、 所定の情報を埋め込む構成としている。 図 4 0に、 所定の 情報を埋め込んだュニット 1 0 5の具体的な構成を示す。 このュニット 1 0 5は、 始端分断線 1 0 9と終端分断線 1 1 0の間に、 4本の情報用分断線 1 0 8 !〜 1 0 84が配置されて構成されている。 所定の情報は、 4本の情報用分断線 1 0 8 ! 〜 1 0 8 4の互いの間隔を適宜決めることで埋め込まれる。
予め埋め込む情報を構成する情報要素 (例えば、 数字等の記号) に対応して間 隔を予め決めておく。 本実施例 8では、 情報要素を十進数字とし、 対応する間隔 の一例を次の表において示す。 この表中、 *、 #は、 夫々識別子を表し、 その必 要性については後述するが、 識別子 は、 始端分断線 1 0 9と情報用分断線 1 8 !との間隔に対応するものであり、 識別子 ΦΜま、 終端分断線 1 0 0と情報用分断 線 1 8 (との間隔に対応するものである。 情報/識別子 0 1 2 3 4 5 6 7 8 9 水 間隔 ( ju m) 50 60 70 80 90 100 110 120 130 140 150 160
この表に基づいて、 ュニヅト 1 0 5について、 「2 6 4」という十進数字の組み 合わせから成る情報を埋め込むためには、 識別子氺と情報用分断線 1 0 8 !との 間隔を 1 5 0 zm、 情報用分断線 1 0 8 >と情報用分断線 1 0 8 2の間隔を 7 0 / m、 情報用分断線 1 0 8 2と情報用分断線 1 0 8 3の間隔を 1 1 0 zm、 情報用分 断線 1 0 8 3と情報用分断線 1 0 8 4の間隔を 9 0 / mに、 情報用分断線 1 0 8 ( と識別子: ΙΦの間隔を 1 6 O mに、 夫々配置すればよい。
ュニヅト長さは、 これらの間隔を合計した 5 8 0 zmの値となる。 ュニット画 線 1 0 6は、 このような構成の複数のュニット 1 0 5が、 原図の細画線 1 0 2 (図 3 8参照) に沿って連続的に繰り返されて配置されて構成される。
ここで、 ユニット 1 0 5内に、 識別子 *及び識別子 #を配置する必要性につい て説明する。 本実施例に係る印刷物は、 後述するがフーリエ変換画像としてパ夕 —ンマッチング等の手段でその識別を行うものである。 情報 「2 6 4」 をフ一リ ェ変換画像で確認すると対称的に画像が現れるために、 情報 「4 6 2」 をフーリ ェ変換画像したものと、 同じ位置と強度を示すこととなり、 判別が不可能となる そこで、 この判別を可能とするために、 識別子 *を間隔 1 5 0 zmに対応させ、 識別子 #を間隔 1 6 0 z mに対応させ、 情報要素とともに上記表に登録し、 氺は 情報の開始を表す識別子、 #は情報の終了を表す識別子として夫々使用するので ある。
ここで、 情報の開始を表す識別子 *のみを使用し、 情報の終了を表す識別子 # を使用しない場合、 すなわち、 「* 2 6 4」 と 「* 4 6 2」 を比較すると 「* 2 6 4」 は 「2 6 4氺」 と同等に置き換えることが可能であり、 さらに前述のよう に反対方向から読むと 「* 4 6 2」 となってしまい、 「* 2 6 4」 と 「* 4 6 2 I は同じフーリエ変換パターンとなってしまうことが分かる。 そこで、 情報の 終了を表す識別子 #を用いれば、 「* 264#」 と 「氺 46 2 #」 は同じパ夕一 ンとならないことから、 両者の識別が可能となる。
図 38に示す原図の証券用線画 1 0 1では、 細画線 102の幅 (線の太さ) は 55 となっている。 図 39 Aに示すように細画線 102をュニヅト画線 10 6で形成した印刷物として作成された場合、 ュニット 105の分断線 108〜1 10は、 夫々人間の目には通常の可視光下では肉眼で識別が困難である。 しかし、 ュニット画線 106を、 原図である証券用線画 10 1の細画線 102と同様に、 通常の可視光下では肉眼で見えるようにするには、 分断線 1 08〜 1 1 0の間隔 及び分断線の寸法 (幅 Wと長さ L) を調節する必要がある。
具体的には、 分断線 1 08〜 1 10の間隔に応じて、 その寸法 (幅 Wと長さ L) を調節する。
ところで、 このように分断線の寸法を決定する場合に、 本実施例 8では分断線 の間隔を、 埋め込む情報及び識別子に応じて変化させているので、 それに対する 補正も必要となる。
本実施例 8では、 情報 「* 2 64 #」 に対応する分断線間の間隔を平均化する と、 ( 1 50 /m+ 70 j m+ 1 1 0 zm+ 90 zm+ 1 60 jum) + 5 = 1 1 6 zmとなる。 この分断線間の平均の間隔が 1 1 6 zmという数値に対応して、 情報用分断線、 始端分断線及び終端分断線の全ての分断線の夫々の幅 Wを 3 Ο μ. mとし、 長さ Lを 29 3 mと設定することができる。 ユニット 1 05の分断線 をこのような寸法とすることにより、 人間に対してュニット画線 1 06は通常の 可視光下で肉眼で可視であっても、 分断線 108〜1 10は殆ど不可視状態とな る。
ところで、 本出願人は、 細画線 1 02を本実施例のようなュニット画線 106 で形成する技術ではないが、 機械読取りで真偽判別を行う有価証券等において、 細画線の一部を分断線で構成し、 この分断線をより完全に不可視化する技術につ いて、 すでに特許出願を行っている (特開 2000 - 1 18 1 2 1号公報参照) c この不可視化する技術を本実施例に適用すると、 本実施例における分断線をより 不可視なものとすることができる。
この分断線を不可視化する技術の概要は、 次の通りである。 分断線の長さ決め る際には、 その分断線の前後の隣接する分断線との間隔の平均値を算出して、 こ の平均値に対応する幅及び長さを決定する。 この技術を本発明に適用した構成に ついて、 図 4 0に示すュニヅト 1 0 5で具体的に説明する。
例えば、 情報用分断線 1 0 8 tの幅及び長さを決める場合は、 次のようにする。 始端分断線 1 0 9と情報用分断線 1 1 0との間の間隔 (識別子 *に対応する間 隔) は 1 5 0 mであり、 情報用分断線 1 0 8 !と情報用分断線 1 0 8 2の間隔 (情報要素 " 2 " に対応する間隔) は 7 0〃mである。 基本画線の太さは 6 O j mである。 この情報用分断線 1 0 8 ,の両側の間隔 1 5 0 mと 7 0 z mに対し て、 両者の平均値 1 1 0 πιに対する分断線の長さを設定する必要がある。 分断 線の幅を 3 0 / mとすると、 分断線の長さは上述の算出方法に従って計算し、 そ れぞれ 2 0 2 μ- m ( = 1 1 0 5 5 m/ 3 0 j m) となる。
以上のように、 図 3 8に示す原図の証券用線画 1 0 1の細画線 1 0 2をュニヅ ト画線 1 0 6で形成し、 ユニット画線 1 0 6の集合であるュニヅト画線群 1 0 Ί で図 3 9 Aに示す証券用線画を表示するには、 まず証券用線画 1 0 1をスキャナ 等のデジ夕ル機器で読み取つてビットマヅプデ一夕等のデジ夕ル画像デ一夕とし、 これを作画ソフ ト (例えば、 アドビ社から市販されているイラストレー夕として 一般的なパルコシステム等) で細画線 1 0 2を加工してュニヅト画線 1 0 6に置 き換える。
あるいは、 コンピュータで、 作画ソフトを利用して直接、 ユニット画線群 7で 表示する図 3 9 Bに示す証券用線画の画像デ一夕を作成してもよい。 いずれにし ろ、 この画像データは、 印刷出力した際に、 図 3 9 Bに示すような印刷物が作成 されるものであればよい。 本実施例では、 このような印刷物の作画の仕方自体を その要旨とするものではないから、 この点に関する説明は省略する。
以上のような複数のュニット 1 0 5から成るュニット画線 1 0 6は、 複数本集 まってュニット画線群 1 0 7となり証券用線画を表示する。 これらのュニット画 線群 1 0 7は、 複数のュニット画線 1 0 7の相互の間隔に基づく異なる空間周波 数を有し、 しかもュニヅト 1 0 5に情報 「* 2 6 4 #」 が埋め込まれいる。 これ を印刷出力すれば、 通常の可視光下で肉眼では図 3 8に示す証券用線画 1 0 1と 殆ど変わらない印刷物 4が作成される。 同様に、 例えば図 3 8に示す同じ証券用線画 1 0 1に、 別の情報 「* 8 3 1 #」 を埋め込んだュニット 1 1 2を有する印刷物 1 1 1を作成するには、 上記表 に基づいて、 図 4 1に示すように、 情報「* 8 3 1 #」 に対応するように、 始端 分断線 1 0 9、 情報分断線 1 0 8及び終端分断線 1 1 0の夫々の間隔を決めて、 ユニット 1 1 2を作成する。 このュニヅト 1 1 2のュニヅト長さは、 印刷物 1 1 1と同様に 5 8 0〃mである。
そして、 このュニット 1 1 2を複数、 細画線の方向に連続して繰り返して構成 されるュニヅト画線 1 1 3で、 原図 1 0 1の細画線 1 0 2を形成し、 図 4 2に示 すような、 ュニヅト画線 1 1 3が集まったュニヅト画線群 1 1 4で証券用線画を 表示する印刷物 1 1 1を作成することができる。
次に、 上述した情報の埋め込み方法を用いて、 情報が埋め込まれた印刷物の当 該情報を識別することで、 印刷物の真偽判別を行う装置及びその方法について説 明する。
上記印刷物 1 0 4、 1 1 1をスキャナ等の読取装置で読み込み、 読取結果をビ ヅトマヅプデ一夕 (上述した画像デ一夕の一例) として取得する。 そして、 この ビヅトマヅプデ一夕に、 フ一リェ変換を行う。
本実施例の印刷物 1 0 4のビットマツプデ一夕に、 フ一リェ変換を行って得ら れた画像 1 1 5を図 4 3に示し、 印刷物 1 1 1のフーリエ変換画像 1 1 6を図 4 4に夫々示す。 これらのフーリエ変換画像 1 1 5、 1 1 6を例に、 埋め込まれた 情報 「 2 6 4 #」 、 情報「* 8 3 1 #」 の夫々について、 増補に基づく相関が、 フ一リェ変換パ夕ーンにどのように現れるかを説明する。
印刷物 1 0 4、 1 1 1のフ一リエ変換画像 1 1 5、 1 1 6において、 フーリエ 変換パターンにおけるビーク位置は同じ周波数に観測されている。 すなわち、 印 刷物 1 0 4と印刷物 1 1 1におけるュニット長さはどちらも 5 8 であり、 このュニツト長さに対応した周波数の位置、 及びこの周波数の整数倍の位置にピ —クが観測されている。 この点では、 埋め込まれた情報を識別することができな い。
ところが、 印刷物 1 0 4と印刷物 1 1 1のフ一リエ変換パターンにおけるピ一 クの強度は両者で異なり、 特に 4次のピーク (中心から 4つ目の輪) において両 者の違いは顕著に現れている。 印刷物 1 0 1のュニヅト 1 0 5と印刷物 1 0 4の ュニヅト 1 1 2とは、 夫々異なる情報 ( 「* 2 6 4 #」 、 「* 8 3 1 #」 ) を埋 め込むために情報用分断線の配置の間隔が異なるが、 これに起因して 4次のピ一 クの強度が異なる。
すなわち、 同じユニット長さであれば、 フーリエ変換パターンは同じ周波数位 置にピークが観測されるが、 ュニット内の情報用分断線の配置の間隔が異なれば、 ピーク強度が異なる。 したがって、 このフーリエ変換パターンを基に、 印刷物へ 埋め込んだ情報に係る情報用分断線のュニット内での配置の間隔を認識すること ができる。 この情報用分断線の配置の間隔が埋め込んだ情報に相当するようにし ておけば、 印刷画線への所定の情報の埋め込み及びその読取が実現する。
ところで、 フ一リエ変換パターンから本発明に係る印刷物の埋め込み情報を識 別する具体的な手段は、 いくつかあるが、 ここでは三つの手法を挙げる。
( 1 ) コンピュータ等の読取画像処理装置において、 予め所定の埋め込み情報に 対応するフーリエ変換パターンを記憶させておき、 印刷物から読み取ったビット マヅプデ一夕のフ一リェ変換パターンを、 この予め記憶してあるフ一リェ変換パ 夕一ンと比較して識別を行う (パターンマッチング) 。
( 2 ) 予め所定の埋め込み情報に対応するフ一リェ変換データの k次のピークの 濃度分布曲線 (フーリエ変換パターンにおけるピークのうち、 内側から k番目の ピークとなる濃度分布曲線を言う) を予め用意し、 これと、 印刷物から読み取つ たビットマップデ一夕のフーリエ変換データの k次のピークの濃度分布とを比較 する。
( 3 ) 印刷物から読み取ったビヅトマヅプデ一夕のフーリエ変換パターンの k次 のピーク位置における強度 I ( k ) を次の式 (3 ) で計算する。
Figure imgf000035_0001
ここで、 Nは画線全体にあるュニット 5の数、 nはュニット 5の中の分断線の 本数、 : T jは、 ユニット 1 0 5中の j番目の分断線のユニット原点からの距離を ユニット長さで規格化した数値を表す。 また、 T (k) は印刷画線のゆらぎを表 し、 f j (k) は分断線の形状因子を表し、 以下の (4) 式で与えられる。 ハ 、 sin^cwj (4ノ
ここで、 Wj は j番目の分断線の幅を表す。
これらの式 (3) 、 (4) によって、 フ一リエ変換パ夕一ンの k次のピーク位 置における強度 I (k) の値を認識すれば、 連立方程式を解くことにより容易に ュニヅト中の分断線の配置を求めることが可能となり、 これにより埋め込み情報 を識別することができる。
一例として、 情報「* 2 64#」 を埋め込んだユニット 105を有する印刷物 10 1の識別を説明する。 この印刷物 10 1を読み取って画像デ一夕を取得し、 フ一リエ変換を行い、 フ一リエ変換パターンを得たとする。 読取装置ではその F FTの 1次のビーク位置から、 ュニヅト長さは 58 であることが直ちに分 かる。
そして、 1次、 2次、 3次、 4次、 5次、 ···、 n次のピークにおけるフ一リエ 変換パターンの相対強度をそれそれ読み取り、 これを上記 (3) 、 (4) 式にあ てはめ、 連立方程式を最小二乗法により解くことにより、 ユニット 1 05中の除 法分断線の配置、 すなわち、 分断線の間隔の並びを解くことが可能である。
この連立方程式から、 始端分断線 1 09、 情報用分断線 108^ 108汲び 終端分断線 1 1 0が互いに隣接する間隔が、 1 50〃m、 70〃m、 1 10〃m、 90 /m、 1 6 θ ίπιと求まり、 上記表に基づき十進数字を識別することにより、 埋め込んだ情報は 「* 2 64#」 であることが識別できる。 なお、 情報 「* 83 1」 を埋め込んだ印刷物 1 02についても同様に識別可能である。
以上のように、 ュニットの中で同じ数字等の記号が繰り返されるような例にお いて、 明確なフーリエ変換パターンのピーク強度が得られることから、 分断線に バリエーションを持たせ、 規則的に配置することにより情報の埋め込み、 読み取 りが可能である。 本実施例 8では、 3桁の十進数字から成る情報を埋め込んだが、 これに限らず、 より多くの桁数の数字であっても、 分断線を用いて数字等の記号 を表現可能であり、 その結果を数字等の情報に対応した特徴的なピーク位置の周 波数と強度を有するフーリエ変換パターンから認識することができる。
印刷画線のゆらぎ T ( k ) は、 以下の (5 ) 式で表される。
T(k) = exp(-4^2g2k2) ( 5 )
( 5 ) 式において、 gは印刷画線のゆらぎの大きさを表す因子である。 すなわち、 gが大きければ印刷画線のゆらぎが大きく、 反対に gが小さけ れば、 印刷画線のゆらぎが小さいことを意味する。
一般に、 印刷物を複製すると、 その複製物は元の印刷物と比べ、 より微 細な部分で完全に復元されない傾向がある。 したがって、 複製物の gが真 正物と比べて大きくなることを利用すれば、 真正物と複製物の真偽判別が 可能となる。
なお、 ュニッ ト法により構成した微細構造は拡散処理により暗号化する ことが可能である。 このようにして暗号化した分断線は拡散処理の逆変換 となる秘密鍵を用いて構造を復元し、 その構造を読み取ることができる。
( 9 ) 実施例 8の変形例
ここで、 上記実施例 8の変形例について以下説明する。
この変形例は、 図 3 8に示す原図の証券用線画 1 0 1を構成する細画線 1 0 2 を複数のュニッ卜から成るュニット画線で形成し、 ュニット画線の集まりである ュニット画線群で彩紋エレメント 1 0 3の証券用線画を表示するものである。 こ の印刷物のュニット画線は、 画線どうしの間隔等が、 原図の証券用線画 1 0 1の 細画線の場合と同じである。
ユニット画線は、 複数のユニットが繰り返し連続的に配置されて構成され、 複 数のュニットは、 互いに同じュニット長さを有する。 ュニヅトは、 原図の細画線 1 0 2の中心線と直交する方向に延びる複数本の分断線を細画線方向に並列して 構成され、 これにより情報を埋め込む構成としている。
ユニットには複数の分断線が配置されているが、 この分断線の長さ及び幅、 さ らに相互の間隔は、 分断線自体では肉眼で殆ど不可視であるが、 複数のユニット から成るュニット画線は、 視覚的には原図の細画線 1 0 2と濃度が同等で、 原図 の証券用線画 1 0 1と同じように彩紋エレメント 1 0 3が見えるように決められ
Ό o
ところで、 ュニヅトの複数の分断線の配置の間隔 (ュニヅ卜内において複数の 分断線のうち互いに隣接する分断線がなす複数の間隔) を決めて所定の情報を埋 め込むのであるが、 上記実施例 8では、 ユニット画線を構成する複数のユニット における夫々のュニット内での複数の分断線の配置が各ュニット同じであり、 要 するに分断線の配置が同じュニットが複数繰り返し連続的に配置されてュニット 画線を構成している。
しかしながら、 この変形例では、 ユニット画線を構成する複数のユニットにお ける夫々のュ ツト内での複数の分断線の配置の間隔は、 各ュニットについて必 ずしも同じでなくてもよい。 要するに、 この変形例では、 分断線の配置が必ずし も同じではないュニットが複数繰り返し連続的に配置されてュニツト画線を構成 している。
この変形例に係る印刷物をスキャナで読取り、 画像データを取得し、 これにフ ―リェ変換を行つて得られた画像が所定のフーリェ変換パ夕一ンとなるように、 複数のュニット内で夫々独自に分断線の配置が決められるものである。 要するに、 フーリエ変換パターンが所定のパターンとなるように、 複数のュニヅト内で夫々 独自の分断線の配置をすることで情報を埋め込む構成としている。
このように変形例の印刷物では、 ュニット画線を構成する複数のュニット夫々 について、 複数の分断線の配置は独自に決められ、 夫々独自の分断線の配置のな されたュニットが複数連続的に配置されュニヅト画線が構成され、 ュニット画線 の集まりであるュニット画線群で証券用線画が表示されるもので、 印刷物のフ一 リエ変換画像が所定のフーリエ変換パターンにマヅチしているか否かでその真偽 判別がなされる。 ところで、 この変形例において、 フーリエ変換パターンから情報を識別する手 法は、 上記実施例 8と同様であって次の通りである。
①予め記憶した所定のフーリエ変換パターンと印刷物のフーリエ変換画像につ いて、 マッチングを行う。
②予め用意した所定フーリエ変換デ一夕の k次のピークの濃度分布曲線と印刷 物のフ一リエ変換デ一夕の k次のピークの濃度分布曲線を比較する。
③印刷物のフ一リェ変換デ一夕の k次のピーク位置における強度からユニット の配置を算出して識別する。
このように証券用線画を、 複数の分断線を有するュニットから成るュニット画 線で構成することで、 通常の可視光下では肉眼において識別が困難な情報を埋め 込むことができる。 そして、 証券用線画の画像データを取得し、 この画像データ にフーリエ変換を行い、 マッチング等の処理をすることで、 埋め込み情報を識別 し、 真偽判別を行うことが可能である。 これにより、 印刷画線の持つ美術的な効 果減じることなく、 偽造防止効果を高めることができる。
印刷物の原図の細画線を、 複数の分断線を有するュニットから成るュニット画 線で形成し、 ュニット内において複数の分断線のうち互いに隣接する分断線がな す複数の間隔を、 夫々埋め込まれる情報に対応して設定されるようにすることで、 情報を埋め込むことができる。 しかも、 この印刷物の画像デ一夕をフ一リエ変換 してパターンを得ることで容易に埋め込み情報を識別することが可能である。 こ れにより、 偽造防止効果を高めることができるとともに、 低コストで、 取り扱い が便利であり、 銀行券、 証券類、 各種証明書及び重要書類等の多方面の分野にお いてきわめて有用である。
上記実施例 8、 あるいはその変形例で用いられる画線は、 単色印刷においても、 その埋め込み情報を通常の可視光下では肉眼で認識が困難であることから、 印刷 画線の持つ美術的な効果減じることもない。
さらに、 細画線をュニット単位ではなく複数の不可視な分断線から成る可視な 分断画線で形成可能とし、 複数の分断線のなす間隔 (分断線が繰り返されるピッ チ) を、 埋め込まれる情報が画像デ一夕のフーリエ変換パターンによって識別可 能なように設定することにより、 より自由度をもつて偽造防止効果の高い真偽判 別可能な印刷物を実現することができる。 ( 1 0 ) 実施例 9
上記実施例 8では、 細画線を、 分断線を有するユニットを単位として、 複数の ュニットを長手方向に連続して配置して成るュニット画線から構成するようにし たものである。 しかしながら、 細画線をユニットを単位としない構成としてもよ い o
そこで、 本実施例 9による印刷物の証券用線画を構成する細画線は、 上記実施 例 8のようにュニットを単位とするものではなく、 細画線の長手方向に複数の分 断線が配置されて成る分断画線から構成される。 そして、 分断画線が集まって分 断画線群を構成し、 この分断画線群により、 印刷物の証券用線画が表示される。 このように、 証券用線画の構成要素の最小単位となる複数の分断線は、 夫々細 画線の長手方向に対して直交する方向に延び、 且つ細画線の長手方向に沿って並 列されている。 そして、 分断線の夫々の長さ及び幅、 さらに相互の間隔は、 分断 線自体では不可視であるが、 分断画線は、 視覚的には原図の細画線と濃度が同等 で、 原図の証券用線画 1 0 1と同じで彩紋エレメント 1 0 3が見えるように、 決 められる。
この複数の分断線のうち細画線の方向で互いに隣接する分断線がなす複数の間 隔 (相互の間隔) は、 証券用線画に所定の情報が埋め込まれるように、 夫々設定 される。 この埋め込まれた情報は、 本実施例 9による印刷物をスキャナ等で読取 つて得られた画像デ一夕にフーリェ変換を行い、 得られたフーリェ変換パターン によって識別が可能である。 要するに、 分断線がなす複数の間隔は、 埋め込まれ る情報が、 印刷物の画像データをフーリエ変換して得られたパターンによって識 別可能なように設定される。
ここで重要なことは、 本実施例 9は、 情報を埋め込むための複数の分断線のう ち細画線の方向で互いに隣接する分断線がなす複数の間隔は、 全て同一のものは 含まれない。 即ち、 複数の分断線のなす間隔 (分断線が繰り返されるピッチ) は 均一である構成は含まず、 埋め込まれる情報が印刷物の画像デ一夕のフーリエ変 換パターンによって識別可能なように設定されていることである。 ここで、 複数の分断線のなす間隔を、 例えば 5 0 mから 1 5 O ^mの間から 乱数を用いて無作為に選び、 分断線を配列した場合、 分断線の数が十分大きけれ ば、 何度、 分断線を発生させても、 同じフーリエ変換パターンが得られる。 これに対して、 分断線の配置に人為的な作為を与えれば、 そのフーリエ変換パ 夕一ンは前記パターンと異なるものとなる。 もっと具体的な例を挙げると、 5 0 mから 1 5 O zmまで 1 0 m間隔で分断線の種類を設定しておき、 この中か ら乱数を用いて分断線を配置する上で、 人為的に 8 0 //mのみ他の間隔の分断線 の選択確率の 2倍となるように設定しておく。
このように操作して配列した分断線に対するフーリエ変換パターンは完全に無 作為に間隔を選択、 配列した分断線にした場合と異なるフ一リェ変換ノ ターンを 生じることとなる。 この特異的なフーリエ変換パターンから埋め込んだ情報を抽 出することができる。
このように、 本実施例 9による印刷物は、 フ一リエ変換パターンが所定のパ夕 ーンとなるように、 複数のュニット内で分断線を夫々全く独自に配置をすること で情報を埋め込む構成としている。
本実施例 9による印刷物を識別して真偽判別を行う装置は、 具体的には、 上記 実施例 8による印刷物をスキャナ等の読み取り装置で読取つて得られた画像デー 夕を入力し、 この画像デ一夕にフーリェ変換を行って得られたフーリェ変換パ夕 ーンと、 予め記憶した所定のフーリエ変換パターンとを、 比較器等の演算装置を 用いてマッチングし、 マッチングしているか否かで真偽判別を行う構成を備えて いる。
なお、 本実施例 9においても、 夫々の分断線の幅、 長さ、 互いの間隔を設計す る際に、 上記先願 (特開 2 0 0 0 - 1 1 8 1 2 1号公報参照) の分断線をより完 全に不可視化を行う技術を適用することにより、 分断線のより完全なる不可視化 が可能となる。
上述したそれそれの実施例は一例であって、 本発明を限定するものではなく、 特許請求の範囲に記載された技術的事項の範囲内で様々に変形することが可能で ある。

Claims

請 求 の 範 囲
1 . 第 1の領域と、 前記第 1の領域に隣接するように配置された第 2の領域 とを備え、
前記第 1の領域は複数の第 1の画線を有し、
前記第 2の領域は複数の第 2の画線を有し、
前記第 1の画線は実線であり、
前記第 2の画線は、 この第 2の画線の長手方向と直交する方向に延びる分断線 が、 前記第 2の画線の長手方向に沿って所定間隔を有するように複数配置されて いることを特徴とする真偽判別可能な印刷物。
2 . 前記第 1の領域及び前記第 2の領域は、 一方が線画を構成し、 他方が前 記線画の背景を構成することを特徴とする請求項 1記載の真偽判別可能な印刷物
3 . 第 1の領域と、 前記第 1の領域に隣接するように配置された第 2の領域 とを備え、
前記第 1の領域は複数の第 1の画線を有し、
前記第 2の領域は複数の第 2の画線を有し、
前記第 1の画線は実線であり、
前記第 2の画線には、 この第 2の画線の長手方向と直交する方向に延びる複数 種類の分断線が含まれ、 各々の前記分断線は、 前記第 2の画線の長手方向に沿つ てそれそれ異なる間隔を有するように配置されていることを特徴とする真偽判別 可能な印刷物。
4 . 前記第 2の領域は、 前記分断線の種類に応じて複数種類の線画を構成し、 前記第 1の領域が前記線画の背景を構成することを特徴とする請求項 3記載の真 偽判別可能な印刷物。
5 . 前記第 1及び第 2の画線は、 直線、 曲線、 又は所定の周期を有する波状 の曲線のいずれかであることを特徴とする請求項 1乃至 4のいずれかに記載の真 偽判別可能な印刷物。
6 . 前記第 2の画線は、 通常の可視光下において反射光の波長が 4 0 0〜7 0 0 nmの範囲にあるインキで印刷されることを特徴とする請求項 1乃至 5のい ずれかに記載の真偽判別可能な印刷物。 '
7 . 真偽判別可能な印刷物の作成方法において、
複数の画線を含む第 1の領域と、 複数の画線を含む第 2の領域とを備える線画 を表す画像データを作成するステップと、
前記画像データを用いて、 前記第 1の領域に含まれる前記画線を実線とするス テヅプと、
前記画像デ一夕を用いて、 前記第 2の領域に含まれる前記画線を、 この画線の 長手方向と直交する方向に延びる分断線が、 この画線の長手方向に沿つて所定間 隔を有するように複数配置されたものに置き換えるステップと、
を備えることを特徴とする真偽判別可能な印刷物の作成方法。
8 . 真偽判別可能な印刷物の作成方法において、
複数の画線を含む第 1の領域と、 複数の画線を含む第 2の領域とを備える線画 を表す画像デ一夕を作成するステップと、
前記画像デ一夕を用いて、 前記第 1の領域に含まれる前記画線を実線とするス テヅプと、
前記画像デ一夕を用いて、 前記第 2の領域に含まれる前記画線を、 この画線の 長手方向と直交する方向に延びる複数種類の分断線が、 この画線の長手方向に沿 つてそれそれ異なる間隔を有するように複数配置されたものに置き換えるステツ プと、
を備えることを特徴とする真偽判別可能な印刷物の作成方法。
9 . 前記第 2の画線を、 通常の可視光下において反射光の波長が 4 0 0〜7 0 O nmの範囲にあるィンキで印刷するステップをさらに備えることを特徴とす る請求項 7又は 8記載の真偽判別可能な印刷物の作成方法。
1 0 . 真偽判別可能な印刷物の作成装置において、
複数の画線を含む第 1の領域と、 複数の画線を含む第 2の領域とを備える線画 を表す画像データを入力する入力部と、
前記画像データを用いて、 前記第 2の領域に含まれる前記画線を、 この画線の 長手方向と直交する方向に延びる分断線が、 この画線の長手方向に沿って所定間 隔を有するように複数配置されたものに置き換える演算部と、
を備えることを特徴とする真偽判別可能な印刷物の作成装置。
1 1 . 真偽判別可能な印刷物の作成装置において、
複数の画線を含む第 1の領域と、 複数の画線を含む第 2の領域とを備える線画 を表す画像データを入力する入力部と、
前記画像データを用いて、 前記第 2の領域に含まれる前記画線を、 この画線の 長手方向と直交する方向に延びる複数種類の分断線が、 この画線の長手方向に沿 つてそれそれ異なる間隔を有するように複数配置されたものに置き換える演算部 と、
を備えることを特徴とする真偽判別可能な印刷物の作成装置。
1 2 . 印刷物の真偽を判別する方法において、
前記印刷物は、 第 1の領域と、 前記第 1の領域に隣接するように配置された第 2の領域とを備え、
前記第 1の領域は複数の第 1の画線を有し、
前記第 2の領域は複数の第 2の画線を有し、
前記第 1の画線は実線であり、
前記第 2の画線は、 この第 2の画線の長手方向と直交する方向に延びる分断線 が、 前記第 2の画線の長手方向に沿って所定間隔を有するように複数配置されて おり、 前記印刷物の画像デ一夕を作成するステップと、
前記画像デ一夕にフーリエ変換を行ってフーリエ変換パターンを作成するステ ヅプと、
前記フーリエ変換パターンにおいて、 前記第 1の領域に相当するパターンにお ける前記第 1の画線の間隔と、 前記第 2の領域に相当するパターンにおける前記 第 2の画線の間隔との相関に基づいて、 前記印刷物の真偽判別を行うことを特徴 とする印刷物の真偽判別方法。
1 3 . 印刷物の真偽を判別する方法において、
前記印刷物は、 第 1の領域と、 前記第 1の領域に隣接するように配置された第 2の領域とを備え、
前記第 1の領域は複数の第 1の画線を有し、
前記第 2の領域は複数の第 2の画線を有し、
前記第 1の画線は実線であり、
前記第 2の画線には、 この第 2の画線の長手方向と直交する方向に延びる複数 種類の分断線が含まれ、 各々の前記分断線は、 前記第 2の画線の長手方向に沿つ てそれそれ異なる間隔を有するように配置されており、
前記印刷物の画像データを作成するステップと、
前記画像データにフーリエ変換を行ってフーリエ変換パターンを作成するステ ヅプと、
前記フーリエ変換パターンにおいて、 前記第 2の領域に相当するパターンにお ける前記複数種類の分断線のそれそれの間隔の相関に基づいて、 前記印刷物の真 偽判別を行うことを特徴とする印刷物の真偽判別方法。
1 4 . 印刷物の真偽を判別する方法において、
前記印刷物は、 第 1の領域と、 前記第 1の領域に隣接するように配置された第 2の領域とを備え、
前記第 1の領域は複数の第 1の画線を有し、
前記第 2の領域は複数の第 2の画線を有し、 前記第 1の画線は実線であり、
前記第 2の画線は、 この第 2の画線の長手方向と直交する方向に延びる分断線 が、 前記第 2の画線の長手方向に沿って所定間隔を有するように複数配置されて おり、
前記印刷物の画像デ一夕を入力する入力部と、
前記画像デ一夕にフ一リェ変換を行つてフーリェ変換パ夕一ンを作成し、 得ら れた前記フーリエ変換パターンにおいて、 前記第 1の領域に相当するパターンに おける前記第 1の画線の間隔と、 前記第 2の領域に相当するパターンにおける前 記第 2の画線の間隔との相関に基づいて、 前記印刷物の真偽判別を行う演算部と、 を備えることを特徴とする印刷物の真偽判別装置。
1 5 . 印刷物の真偽を判別する方法において、
前記印刷物は、 第 1の領域と、 前記第 1の領域に隣接するように配置された第 2の領域とを備え、
前記第 1の領域は複数の第 1の画線を有し、
前記第 2の領域は複数の第 2の画線を有し、
前記第 1の画線は実線であり、
前記第 2の画線には、 この第 2の画線の長手方向と直交する方向に延びる複数 種類の分断線が含まれ、 各々の前記分断線は、 前記第 2の画線の長手方向に沿つ てそれそれ異なる間隔を有するように配置されており、
前記印刷物の画像データを入力する入力部と、
前記画像デ一夕にフーリエ変換を行ってフーリェ変換パ夕ーンを作成し、 得ら れた前記フーリエ変換パターンにおいて、 前記第 2の領域に相当するパターンに おける前記複数種類の分断線のそれそれの間隔の相関に基づいて、 前記印刷物の 真偽判別を行う演算部と、
を備えることを特徴とする印刷物の真偽判別装置。
1 6 . 複数の画線を含む線画を有する真偽判別可能な印刷物であって、 前記画線は、 複数のユニットを備え、 前記複数のュニットは、 前記画線の長手方向に沿って所定の長さを持って配置 されており、
前記各々のュニット内において、 前記長手方向と直交する方向に延在する複数 の分断線が前記長手方向に沿って配置されており、
前記各々のユニット毎に、 前記複数の分断線がなす間隔は、 埋め込むべき情報 に対応して設定されていることを特徴とする真偽判別可能な印刷物。
1 7 . 前記各々のュニット内において、 前記長手方向に沿う一方の端部に始 端分断線、 他方の端部に終端分断線、 前記始端分断線と前記終端分断線との間に 複数の情報分断線がそれそれ配置され、
前記複数の情報分断線がなす間隔が、 前記埋め込むベき情報に対応して設定さ れており、
前記始端分断線は、 当該ュニットと前記一方の端部において隣接する他のュニ ットにおける終端分断線と共通であり、
前記終端分断線は、 当該ュニッ卜と前記他方の端部において隣接するさらに他 のュニットにおける始端分断線と共通であることを特徴とする請求項 1 6記載の 真偽判別可能な印刷物。
1 8 . 複数の画線を含む線画を有する真偽判別可能な印刷物の作成方法であ つて、
前記画線を、 複数のュニットが連続的に配置されたュニット画線として構成す るように、 前記複数のユニットを、 前記画線の長手方向に沿って所定の長さを有 するように配置し、
前記各々のュニット内において、 前記長手方向と直交する方向に延在する複数 の分断線を前記長手方向に沿って配置し、
前記各々のユニット毎に、 前記複数の分断線がなす間隔を、 埋め込むべき情報 に対応して設定することを特徴とする真偽判別可能な印刷物の作成方法。
1 9 . 前記各々のュニット内において、 前記長手方向に沿う一方の端部に始 端分断線、 他方の端部に終端分断線、 前記始端分断線と前記終端分断線との間に 複数の情報分断線をそれそれ配置し、
前記複数の情報分断線がなす間隔を、 前記埋め込むべき情報に対応して設定し、 前記始端分断線を、 当該ュニッ卜と前記一方の端部において隣接する他のュニ ットにおける終端分断線と共有させ、
前記終端分断線を、 当該ュニ、ソトと前記他方の端部において隣接するさらに他 のュニットにおける始端分断線と共有させることを特徴とする請求項 1 8記載の 真偽判別可能な印刷物の作成方法。
2 0 . 複数の画線を含む線画を有する印刷物の真偽判別方法であって、 前記画線は、 複数のュニットを備え、
前記複数のュニットは、 前記画線の長手方向に沿って所定の長さを持って配置 されており、
前記各々のュニット内において、 前記長手方向と直交する方向に延在する複数 の分断線が前記長手方向に沿って配置されており、
前記各々のユニット毎に、 前記複数の分断線がなす間隔は、 埋め込むべき情報 に対応して設定されており、
前記印刷物の線画を読み取って画像デ一夕を取得し、
前記画像データにフーリエ変換を行ってフーリエ変換パターンを生成し、 生成された前記フーリエ変換パターンを用いて、 前記埋め込まれた情報を識別 することによって、 前記印刷物の真偽判別を行うことを特徴とする印刷物の真偽 判別方法。
2 1 . 生成された前記フーリエ変換パターンを用いて前記埋め込まれた情報 を識別する際に、 生成された前記フーリエ変換パターンと真正な印刷物のフーリ ェ変換パターンとを比較することで、 前記印刷物の真偽判別を行うことを特徴と する請求項 2 0記載の印刷物の真偽判別方法。
2 2 . 生成された前記フーリエ変換パターンを用いて前記埋め込まれた情報 を識別する際に、 生成された前記フーリエ変換パターンに含まれるピークのうち 所定位置のピークの濃度分布曲線と、 真正な印刷物のフーリエ変換パターンに含 まれるピークのうち前記所定位置のピークの濃度分布曲線とを比較することで、 前記印刷物の真偽判別を行うことを特徴とする請求項 2 0記載の印刷物の真偽判 別方法。
2 3 . 生成された前記フーリエ変換パターンを用いて前記埋め込まれた情報 を識別する際に、 生成された前記フーリエ変換パターンに含まれるピークのうち 所定位置のピークにおける強度と、 真正な印刷物のフーリエ変換パターンに含ま れるビークのうち所定位置のピークにおける強度とを比較することで、 前記印刷 物の真偽判別を行うことを特徴とする請求項 2 0記載の印刷物の真偽判別方法。
PCT/JP2003/000083 2002-01-08 2003-01-08 Feuille imprimee authentifiable, procede et appareil de fabrication, et procede et appareil d'authentification WO2003061981A1 (fr)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2002-1519 2002-01-08
JP2002001519A JP2003200647A (ja) 2002-01-08 2002-01-08 真偽判別可能な印刷物及び判別方法、並びに該印刷物への情報の埋め込み方法
JP2002-50606 2002-02-27
JP2002050606A JP4082448B2 (ja) 2002-02-27 2002-02-27 真偽判別可能な印刷物及びその作成方法

Publications (1)

Publication Number Publication Date
WO2003061981A1 true WO2003061981A1 (fr) 2003-07-31

Family

ID=27615654

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/000083 WO2003061981A1 (fr) 2002-01-08 2003-01-08 Feuille imprimee authentifiable, procede et appareil de fabrication, et procede et appareil d'authentification

Country Status (1)

Country Link
WO (1) WO2003061981A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7715610B2 (en) 2002-06-25 2010-05-11 Mei, Inc. Method and apparatus for processing signals in testing currency items

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4855584A (en) * 1986-03-13 1989-08-08 Glory Kogyo Kabushiki Kaisha Method for identifying certification identifying media
JPH08300800A (ja) * 1995-05-15 1996-11-19 Printing Bureau Ministry Of Finance Japan 複写防止模様の作成方法及びその印刷物
JP2000118121A (ja) * 1998-10-20 2000-04-25 Printing Bureau Ministry Of Finance Japan 機械読み取り用画線の作成方法及びその印刷物
JP2001118109A (ja) * 1999-10-20 2001-04-27 Oji Paper Co Ltd インクジェットプリンターの異同識別方法および装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4855584A (en) * 1986-03-13 1989-08-08 Glory Kogyo Kabushiki Kaisha Method for identifying certification identifying media
JPH08300800A (ja) * 1995-05-15 1996-11-19 Printing Bureau Ministry Of Finance Japan 複写防止模様の作成方法及びその印刷物
JP2000118121A (ja) * 1998-10-20 2000-04-25 Printing Bureau Ministry Of Finance Japan 機械読み取り用画線の作成方法及びその印刷物
JP2001118109A (ja) * 1999-10-20 2001-04-27 Oji Paper Co Ltd インクジェットプリンターの異同識別方法および装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7715610B2 (en) 2002-06-25 2010-05-11 Mei, Inc. Method and apparatus for processing signals in testing currency items

Similar Documents

Publication Publication Date Title
US11548310B2 (en) Authenticating identification and security documents and other objects
JP4898999B2 (ja) 印刷物、該印刷物の検知方法及び検知装置、並びに認証方法及び認証装置
US7457957B2 (en) Apparatus and method for issuing and authenticating securities, etc. using digital watermarking
MXPA01007401A (es) Substratos para impresion.
JP5585915B2 (ja) 真偽判別可能な印刷物及びその該印刷物の認証方法
JP2003200647A (ja) 真偽判別可能な印刷物及び判別方法、並びに該印刷物への情報の埋め込み方法
JP5768236B2 (ja) 偽造防止用印刷物、偽造防止用印刷物の作製装置及び偽造防止用印刷物の作製方法
JP4082448B2 (ja) 真偽判別可能な印刷物及びその作成方法
JP4378509B2 (ja) 偽造防止用シート及びその真偽判別方法並びにその真偽判別装置
JP5678364B2 (ja) 真偽判別可能な印刷物、その作製装置及びその作製方法並びに真偽判別可能な印刷物の認証装置及びその認証方法
JP4288998B2 (ja) 紙の真贋判別方法
WO2003061981A1 (fr) Feuille imprimee authentifiable, procede et appareil de fabrication, et procede et appareil d&#39;authentification
JP5652787B2 (ja) 真偽判別可能な印刷物及びその該印刷物の認証方法
Zhao et al. A morphology screen coding anti-counterfeiting method based on visual characteristics
JP3254470B2 (ja) 印刷物の読み取り検査方法及びその装置
JP3323906B2 (ja) 印刷物の読み取り検査方法及びその装置
JP4378510B2 (ja) 偽造防止用シート及びその真偽判別方法並びにその真偽判別装置
JP3323908B2 (ja) 印刷物の読み取り検査方法及びその装置
Kumar Verification of document with social values using watermark exclusion
JP3323907B2 (ja) 印刷物の読み取り検査方法及びその装置
JP3362174B2 (ja) 印刷物の読み取り検査方法及びその装置
JP3376406B2 (ja) 印刷物の読み取り検査方法及びその装置
JP2001053948A (ja) 偽造防止用シート及びその真偽判別方法並びにその真偽判別装置
JP3323903B2 (ja) 印刷物の読み取り検査方法及びその装置
JP3323904B2 (ja) 印刷物の読み取り検査方法及びその装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase