WO2003008588A2 - Method for producing 2-keto-l-gulonic acid and vitamin c while using l-sorbose dehydrogenase and l-sorbosone dehydrogenase - Google Patents

Method for producing 2-keto-l-gulonic acid and vitamin c while using l-sorbose dehydrogenase and l-sorbosone dehydrogenase Download PDF

Info

Publication number
WO2003008588A2
WO2003008588A2 PCT/EP2002/007484 EP0207484W WO03008588A2 WO 2003008588 A2 WO2003008588 A2 WO 2003008588A2 EP 0207484 W EP0207484 W EP 0207484W WO 03008588 A2 WO03008588 A2 WO 03008588A2
Authority
WO
WIPO (PCT)
Prior art keywords
seq
nucleic acid
transgenic
sequences
organism
Prior art date
Application number
PCT/EP2002/007484
Other languages
German (de)
French (fr)
Other versions
WO2003008588A3 (en
Inventor
Knut Eichler
Christine Beck
Thomas Friedrich
Original Assignee
Basf Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Basf Aktiengesellschaft filed Critical Basf Aktiengesellschaft
Priority to AU2002328843A priority Critical patent/AU2002328843A1/en
Publication of WO2003008588A2 publication Critical patent/WO2003008588A2/en
Publication of WO2003008588A3 publication Critical patent/WO2003008588A3/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0008Oxidoreductases (1.) acting on the aldehyde or oxo group of donors (1.2)
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K10/00Animal feeding-stuffs
    • A23K10/10Animal feeding-stuffs obtained by microbiological or biochemical processes
    • A23K10/14Pretreatment of feeding-stuffs with enzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0006Oxidoreductases (1.) acting on CH-OH groups as donors (1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/40Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
    • C12P7/58Aldonic, ketoaldonic or saccharic acids
    • C12P7/602-Ketogulonic acid
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y101/00Oxidoreductases acting on the CH-OH group of donors (1.1)
    • C12Y101/99Oxidoreductases acting on the CH-OH group of donors (1.1) with other acceptors (1.1.99)
    • C12Y101/99012Sorbose dehydrogenase (1.1.99.12)

Definitions

  • the present invention relates to polypeptides with L-sorbose dehydrogenase (SDH) or L-sorbosone dehydrogenase (SNDH) activity and nucleic acid sequences coding for these polypeptides.
  • SDH L-sorbose dehydrogenase
  • SNDH L-sorbosone dehydrogenase
  • the invention further relates to transgenic expression constructs, vectors and transgenic organisms which contain these nucleic acid sequences and to processes for the preparation of 2-keto-L-gulonic acid or ascorbic acid using the same.
  • 2-Keto-L-gulonic acid (2-KLG) is an important intermediate for the synthesis of ascorbic acid (vitamin C).
  • Vitamin C ascorbic acid
  • Humans and various animal species have lost the ability to synthesize vitamin C, so the supply of vitamin C through food is essential.
  • the worldwide consumption of vitamin C is increasing.
  • the vitamin C available from natural, vegetable sources is limited and would not be sufficient to meet the need.
  • Ascorbic acid can be chemically synthesized using 2-KLG starting from D-sorbitol using the Reichstein method known to the person skilled in the art (Helv Chim Acta 17: 311-328; 1934).
  • the synthesis of ascorbic acid by this process requires the bioconversion of sorbitol followed by a 7-step chemical process. The process is expensive.
  • EP 0 373 181 discloses DNA sequences and methods for producing 2-KLG from sorbosone using a coenzyme-independent L-sorbosone dehydrogenase. Despite the progress made in the production of 2-KLG and
  • a first subject of the invention relates to processes for the production of vitamin C or 2-keto-L-gulonic acid, thereby
  • the process according to the invention comprises at least one of the following reaction steps:
  • reaction steps a) and b) mentioned are preferably used in the process according to the invention.
  • the process steps can be carried out in parallel or successively.
  • transgene means all such constructions which have been obtained by genetic engineering methods and in which either
  • nucleic acid sequence coding for a polypeptide according to SEQ ID NO: 2 or 4 or a functional equivalent thereof for example a nucleic acid sequence coding for a polypeptide according to SEQ ID NO: 2 or 4 or a functional equivalent thereof
  • the organism used (or the organism used for the production of the enzyme preparation used) contains at least one transgenic nucleic acid sequence coding for
  • 2-KLG can be converted into vitamin C in a manner familiar to the person skilled in the art. Sorbose is available from glucose.
  • the organisms used for the production of 2-KLG are grown in a medium which enables these organisms to grow.
  • This medium can be a synthetic or a natural medium.
  • media known to the person skilled in the art are used.
  • the media used contain a carbon source, a nitrogen source, inorganic salts and possibly small amounts of vitamins and trace elements.
  • Advantageous carbon sources are, for example, sugars such as mono-, di- or polysaccharides such as glucose, fructose, mannose, xylose, galactose, ribose, sorbose, ribulose, lactose, maltose, sucrose, raffinose, starch or cellulose, starch hydrolysates, complex sugar sources such as molasses, sugar phosphates how
  • Fructose-1,6-bisphosphate sugar alcohols such as mannitol, polyols such as glycerol, alcohols such as methanol or ethanol, carboxylic acids such as citric acid, lactic acid or acetic acid, fats such as soybean oil or rapeseed oil, amino acids such as a mixture of amino acids, for example so-called casa acids (Difco ) or individual amino acids such as glycine or aspartic acid or aminosugar, the latter can also be used simultaneously as a nitrogen source.
  • sugar alcohols such as mannitol
  • polyols such as glycerol
  • alcohols such as methanol or ethanol
  • carboxylic acids such as citric acid, lactic acid or acetic acid
  • fats such as soybean oil or rapeseed oil
  • amino acids such as a mixture of amino acids, for example so-called casa acids (Difco ) or individual amino acids such as glycine or aspartic acid or aminosu
  • Advantageous nitrogen sources are organic or inorganic nitrogen compounds or materials that contain these compounds.
  • ammonium salts such as NH 4 CI or (H 4 ) 2 S0 4 / nitrate, urea, or complex nitrogen sources such as corn steep liquor, brewer's yeast autolysate, soybean meal, wheat gluten, yeast extract, meat extract, casein hydrolyzate, yeast or potato protein, which are often also used simultaneously can serve as a nitrogen source.
  • inorganic salts are the salts of calcium, magnesium, sodium, cobalt, nickel, molybdenum, manganese, potassium, zinc, copper and iron.
  • the chlorine, sulfate and phosphate ions are particularly worth mentioning as the anion of these salts.
  • An important factor 5 for increasing productivity in the process according to the invention is the control of the Fe 2 + _ or Fe 3+ ion concentration in the production medium.
  • growth factors 10 are added to the nutrient medium, such as vitamins or growth promoters such as biotin, thiamine, folic acid, nicotinic acid, pantothenate or pyridoxine, amino acids such as alanine, cysteine, proline, aspartic acid, glutamine, serine, phenylalanine, ornithine or valine, carboxylic acids such as citric acid, formic acid, pimelic acid 15 or lactic acid, or substances such as dithiothreitol.
  • vitamins or growth promoters such as biotin, thiamine, folic acid, nicotinic acid, pantothenate or pyridoxine
  • amino acids such as alanine, cysteine, proline, aspartic acid, glutamine, serine, phenylalanine, ornithine or valine
  • carboxylic acids such as citric acid, formic acid, pimelic acid 15 or lactic acid, or substances such as dithio
  • the mixing ratio of the nutrients mentioned depends on the type of fermentation and is determined in each individual case.
  • the medium components can all be introduced at the beginning of the fermentation 20, after they have been sterilized separately if necessary or sterilized together, or else they can be added continuously or discontinuously during the fermentation as required.
  • the breeding conditions are determined in such a way that the organisms grow optimally and that the best possible yields are achieved.
  • Preferred cultivation temperatures are 15 ° C to 40 ° C. Temperatures between 25 ° C and 37 ° C are particularly advantageous.
  • the pH is in one
  • the process according to the invention can be carried out continuously or batchwise in batch or fed-batch fashion.
  • the method can preferably be implemented using a host organism which is itself already capable of 2-KLG or vitamin C biosynthesis.
  • the 2-KLG productivity can be increased by the method according to the invention to different extents.
  • productivity can advantageously be increased by at least 5%, preferably by at least 10%, particularly preferably by 20%, very particularly preferably by at least 100% in each case compared to the starting organism.
  • reaction can also be carried out with enzyme preparation derived from one of the transgenic organisms.
  • the organisms are unlocked.
  • the enzyme preparation with sorbosone and / or sorbose dehydrogenase activity can be used unpurified or completely or partially purified. Immobilization, for example on a solid support material, is also preferred.
  • Another object of the invention relates to polypeptides with L-sorbose dehydrogenase (SDH) activity according to SEQ ID NO: 2 and L-sorbosone dehydrogenase (SNDH) activity according to SEQ ID NO: 4 and their functional equivalents.
  • SDH L-sorbose dehydrogenase
  • SNDH L-sorbosone dehydrogenase
  • the invention further relates to nucleic acid sequences coding for the polypeptide according to SEQ ID NO: 2, preferably the nucleic acid sequence according to SEQ ID: 1 or nucleic acid sequences which can be derived from the polypeptide sequence according to SEQ ID NO: 2 due to the degeneracy of the genetic code. Functional equivalents of said nucleic acid sequences are also included.
  • the invention further relates to nucleic acid sequences coding for the polypeptide according to SEQ ID NO: 4, preferably the nucleic acid sequence according to SEQ ID NO: 3 or nucleic acid sequences which can be derived from the polypeptide sequence according to SEQ ID NO: 4 due to the degeneracy of the genetic code. Functional equivalents of said nucleic acid sequences are also included.
  • “Functional equivalents” means in particular natural or artificial mutations of the polypeptides according to SEQ ID NO: 2 or 4 as well as homologous polypeptides from other organisms which still have essentially the same properties. Prefers are homologous polypeptides from the preferred prokaryotic and eukaryotic organisms suitable as hosts described below, homologs from microorganisms are very particularly preferred.
  • the same properties refer to functional equivalents to polypeptides according to SEQ ID NO: 2, those which have a sorbose dehydrogenase activity.
  • the same properties refer to functional equivalents to polypeptides according to SEQ ID NO: 4, those which have a sorbosone dehydrogenase activity.
  • An activity is essentially said to be the same if the conversion of a specific, suitable substrate under the action of a specific, functional equivalent to a polypeptide according to SEQ ID NO: 2 or 4 under otherwise unchanged conditions is at least 10%, preferably at least 30%, particularly preferably at least 50%, very particularly preferably at least 70%, most preferably at least 90% in comparison to a conversion obtained using one of the polypeptides described by SEQ ID NO: 2 or 4.
  • Sorbose can be used as a suitable substrate, for example in the case of functional equivalents to polypeptides according to SEQ ID NO: 2.
  • Sorbosone can be used as a suitable substrate, for example, in the case of functional equivalents to polypeptides according to SEQ ID NO: 4.
  • the activity can differ both downwards and upwards compared to the comparison value. Preference is given to those sequences whose activity, measured on the basis of the conversion of the suitable substrate, under otherwise unchanged conditions, quantitatively by no more than 50%, preferably 25%, particularly preferably 10%, of a comparison value obtained with a by SEQ ID NO: 2 or 4 described polypeptides differs. Particularly preferred are those sequences whose activity, measured on the basis of the conversion of the suitable substrate, under otherwise unchanged conditions, quantitatively by more than 50%, preferably 100%, particularly preferably 500%, very particularly preferably 1000%, is compared with a value obtained by SEQ ID NO: 2 or 4 polypeptides described. Corresponding methods for determining sorbose dehydrogenase or sorbosone dehydrogenase activity are given in Examples 4 and 7.
  • Mutations include substitutions, additions, deletions, inversions, or insertions of one or more amino acid residues.
  • the present invention also includes those polypeptides which are obtained by modifying a polypeptide according to SEQ ID NO: 2 or 4. The aim of such a modification can be to further narrow down the sequence contained therein, to remove unnecessary sequences or to add further sequences, for example sequences which facilitate the purification or detection of the polypeptides.
  • Homology between two nucleic acid sequences is understood to mean the identity of the nucleic acid sequence over the entire total length of the sequence, which is determined by comparison using the program algorithm GAP (Wisconsin Package Version 10.0, University of Wisconsin, Genetics Computer Group (GCG), Madison, USA; Altschul et al. (1997) Nucleic Acids Res. 25: 3389ff) using the following parameters:
  • Gap Weight 50 Length Weight: 3
  • a sequence which has a homology of at least 80% based on nucleic acid with the sequence SEQ ID NO: 1 is understood to mean a sequence which, when compared with the sequence SEQ ID NO: 1 according to the above program algorithm with the above parameter set, has a homology of has at least 80%.
  • GAP Garnier ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇
  • Gap Weight 8 Length Weight: 2
  • a sequence which has a homology of at least 80% on a protein basis with the sequence SEQ ID NO: 2 is understood to mean a sequence which, when compared with the sequence SEQ ID NO .: 2, has homology according to the above program algorithm with the above parameter set of at least 80%.
  • Functional equivalents derived from the polypeptide according to SEQ ID NO: 2 by substitution, insertion or deletion, have a homology of at least 85%, preferably 90%, preferably at least 95%, particularly preferably at least 97%, very particularly preferably at least 99%, and are characterized by essentially the same properties as the polypeptide according to SEQ ID NO: 2.
  • Functional equivalents derived from the polypeptide according to SEQ ID NO: 4 by substitution, insertion or deletion, have a homology of at least 45%, preferably 60%, preferably at least 80%, particularly preferably at least 90%, very particularly preferably at least 95% , and are characterized by essentially the same properties as the polypeptide according to SEQ ID NO: 4.
  • Functional equivalents derived from the nucleic acid sequence according to the invention according to SEQ ID NO: 1 by substitution, insertion or deletion, have a homology of at least 75%, preferably 80%, preferably at least 85%, particularly preferably at least 90%, very particularly preferably at least 95% , and code for polypeptides with essentially the same properties as the polypeptide according to SEQ ID NO: 2.
  • Functional equivalents derived from the nucleic acid sequence according to the invention according to SEQ ID NO: 3 by substitution, insertion or deletion, have a homology of at least 50%, preferably 60%, preferably at least 80%, particularly preferably at least 90%, very particularly preferably at least 95%, and code for polypeptides with essentially the same properties as the polypeptide according to SEQ ID NO: 4.
  • Mutations are preferably implemented at the level of the nucleic acid sequence coding for the polypeptide. Where insertions, deletions or substitutions, such as transitions and transversions, come into question, techniques known per se, such as in vitro mutagenesis, "primer repair", restriction or ligation can be used. Manipulations such as restriction, “chewing-back” or filling in overhangs for "blunt ends” can provide complementary ends of the fragments for the ligation. Analogous results can also be obtained using the polymerase chain reaction (PCR) come using specific oligonucleotide primers.
  • a method for producing functional equivalents according to the invention preferably comprises the introduction of mutations into a nucleic acid sequence SEQ ID NO: 1 or 3.
  • Mutagenesis can be carried out in an undirected ("random") manner, the properties of the mutagenized sequences then being followed by a "trial-by-error""Procedure to be screened.
  • Particularly advantageous selection criteria include, for example, the enzyme activity of the polypeptide encoded by the nucleic acid.
  • non-essential sequences can be deleted without significantly impairing the properties mentioned.
  • Methods for mutagenizing nucleic acid sequences are known to the person skilled in the art and include, for example, the use of oligonucleotides with one or more mutations compared to the region to be mutated (for example in the context of a "site-specific mutagenesis").
  • primers with approximately 15 to approximately 75 nucleotides or more are used, preferably approximately 10 to approximately 25 or more nucleotide residues being located on both sides of the sequence to be changed.
  • the details and implementation of said mutagenesis methods are familiar to the person skilled in the art (Kunkel et al. (1987) Methods Enzyol 154: 367-382; Tomic et al. (1990) Nucl Acids Res 12: 1656; Upender, Raj, Weir (1995) Bio - techniques 18 (l): 29-30; US 4,237,224, Glover DM et al. (1995) DNA Cloning Vol.l, IRL Press (ISBN 019-963476-9), chapter 6, p. 193 ff).
  • Mutagenesis can also be achieved by treating, for example, vectors which contain one of the nucleic acid sequences according to the invention with mutagenizing agents such as hydroxylamine.
  • mutagenizing agents such as hydroxylamine.
  • Spee et al. describe a PCR method using dITP for random mutagenesis (Spee et al. (1993) Nucl Acids Res 21 (3): 777-778).
  • the use of an "in vitro" recombination technique for molecular evolution has been described (Stemmer et al. (1994) Proc Natl Acad Sei USA 91: 10747-10751).
  • the combination of the PCR and recombination method is also described (Moore et al. (1996) Nature Biotechnology 14: 458-467).
  • the modified nucleic acid sequences are then brought back into the organisms via vectors.
  • the aim of mutagenesis of the nucleic acid sequences according to the invention can, for example, be to increase the enzyme activity.
  • Functional equivalents also include truncated sequences, single-stranded DNA and promoter variants.
  • the promoters that precede the specified nucleotide sequences together or individually can be changed by one or more nucleotide exchanges, by insertion (s) and / or deletion (s), without however affecting the functionality or effectiveness of the promoters. are pregnant. Furthermore, the effectiveness of the promoters can be increased by changing their sequence, or completely replaced by more effective promoters, including organisms of other species.
  • Non-functional equivalents are also understood to mean those sequences whose nucleotide sequence has been changed before the start codon in such a way that the gene expression and / or the protein expression is changed, preferably increased.
  • nucleic acid sequences For optimal expression of heterologous genes in organisms, it is advantageous to change the nucleic acid sequences in accordance with the specific "codon usage" used in the organism.
  • the "codon usage” can easily be determined on the basis of computer evaluations of other known genes of the organism in question.
  • Corresponding codon-adapted nucleic acid sequences are also included under the term functional equivalents.
  • the invention further relates to chimeric enzymes consisting of two or more of the polypeptides according to the invention, manifestations in which the polypeptides according to the invention are present in the form of homo- and / or heterodimers, and fusion proteins from the polypeptides according to the invention with other amino acid sequences.
  • the amino acid sequences which are advantageously used in the fusion proteins should be mentioned:
  • a signal or transit peptide which directs the fusion protein to the desired site of action (e.g. the plastids), or
  • an antigenic polypeptide sequence which can be used to detect expression e.g. myc-tag or his-tag
  • a polypeptide sequence with the aid of which purification of the fusion protein is made possible e.g. tags from several histidine residues such as, for example, hexa-His tag, GST tag, etc.
  • the invention further relates to transgenic expression cassettes which contain the nucleic acid sequences according to the invention.
  • the nucleic acid sequence to be expressed is functionally linked to at least one genetic control sequence, preferably a promoter, which controls the transcription and / or translation of said nucleic acid sequence guaranteed.
  • said expression constructs can contain further genetic control sequences and / or functional elements.
  • a functional link is generally understood to mean an arrangement in which a genetic control sequence can perform its function in relation to the nucleic acid sequence to be expressed.
  • Function can, for example, control expression, i.e. Mean transcription and / or translation of the nucleic acid sequence.
  • Control includes, for example, the initiation, increase, control or suppression of expression, i.e. Transcription and, if necessary, translation.
  • the control in turn, can take place in a tissue-specific or time-specific manner, for example. It can also be inducible, for example, by certain chemicals, stress, temperature etc.
  • a functional link is understood to mean, for example, the sequential arrangement of a promoter, the nucleic acid sequence to be expressed and, if appropriate, further regulatory elements such as, for example, a terminator such that each of the regulatory elements can fulfill its function in the expression of the nucleic acid sequence.
  • nucleic acid sequence to be expressed transgenically is positioned behind the sequence which acts as a promoter, so that both sequences are covalently linked to one another.
  • the distance between the promoter sequence and the nucleic acid sequence to be expressed is preferably less than 200 base pairs, particularly preferably less than 100 base pairs, very particularly preferably less than 50 base pairs.
  • An expression cassette according to the invention is preferably produced, for example, by direct fusion of a nucleic acid sequence functioning as a promoter with a nucleotide sequence to be expressed.
  • a functional link can be established using common recombination and cloning techniques, such as those described in T Maniatis, EF Fritsch and J Sambrook, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (1989) and in TJ Silhavy, ML Berman and LW Enquist, Experiments with Gene Fusions, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (1984) and in Ausubel, FM et al., Current Protocols in Molecular Biology, Greene Publishing Assoc. and Wiley InterScience (1987).
  • further sequences can also be positioned between the two sequences, which for example have the function of a linker with certain restriction enzyme interfaces or a signal peptide.
  • the insertion of sequences can also lead to the expression of fusion proteins.
  • an expression cassette can also be constructed in such a way that the nucleic acid sequence to be expressed is brought under the control of an endogenous genetic control element, for example a promoter, for example by means of homologous recombination or also by random insertion.
  • an endogenous genetic control element for example a promoter
  • modified promoter regions can be placed in front of the natural genes, so that the expression of the genes is increased and thus the activity is ultimately increased.
  • Sequences can also be introduced at the 3 'end which, for example, increase the stability of the mRNA and thereby enable increased translation. This also leads to higher enzyme activity.
  • Further gene copies of the nucleic acid sequences according to the invention are preferably introduced into the cell. These gene copies can be subject to natural regulation, a changed regulation, the natural regulatory regions being changed in such a way that they enable increased expression of the genes, or regulatory sequences of foreign or foreign genes can be used. A combination of the above methods is particularly advantageous.
  • an expression cassette according to the invention means constructs in which the endogenous SDH or SNDH genes are changed.
  • the change can take place in the coding (e.g. the open reading frame) or non-coding region (e.g. the promoter region).
  • the aim of such changes can be, for example, the expression of enzymes with increased activity compared to the starting enzymes.
  • Enzyme activity can be increased, for example, by increasing the substrate turnover by changing the catalytic centers or by canceling the action of enzyme inhibitors. This means that they have an increased specific activity or their activity is not inhibited.
  • increased enzyme activity can also be increased by increasing the enzyme synthesis take place in the cell, for example by switching off factors that repress enzyme synthesis or by increasing the activity of factors or regulatory elements that promote enhanced synthesis, or preferably by introducing additional gene copies. These measures increase the overall activity of the gene products in the cell without changing the specific activity. A combination of these methods can also be used. That means increasing specific activity as well as increasing overall activity.
  • nucleic acid molecules can also be expressed using artificial transcription factors of the zinc finger protein type (Beerli RR et al. (2000) Proc Natl Acad Sei USA 97 (4): 1495-500). These factors can be adapted to any sequence region and allow expression independent of certain promoter sequences.
  • the term “genetic control sequences” is to be understood broadly and means all those sequences which have an influence on the formation or the function of the expression cassette according to the invention. Genetic control sequences ensure, for example, transcription and, if necessary, translation in prokaryotic or eukaryotic organisms.
  • the expression cassettes according to the invention preferably comprise a promoter 5 'upstream of the respective nucleic acid sequence to be expressed transgenically and a terminator sequence 3' downstream as an additional genetic control sequence, as well as, if appropriate, other customary regulatory elements, in each case functionally linked to the nucleic acid sequence to be expressed.
  • control sequences are described, for example, in “Goeddel; Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, CA (1990)” or “Gruber and Crosby, in: Methods in Plant Molecular Biology and Biotechnology, CRC Press, Boca Raton , Florida, eds.:Glick and Thompson, Chapter 7, 89-108 "and the citations cited therein.
  • Examples of such control sequences are sequences to which inducers or repressors bind and thus regulate the transgenic expression of the nucleic acid.
  • the natural regulation of these sequences may still be present before the actual structural genes and may have been genetically modified so that the natural regulation has been switched off and the expression of the genes increased.
  • the expression cassette can also have a simpler structure, that is to say no additional regulatory signals are inserted in front of the genes mentioned above and the natural promoter with its regulation is not removed. Instead, the natural control sequence is mutated so that regulation no longer takes place and gene expression is increased.
  • These modified promoters can also be placed in front of the natural genes to increase activity.
  • control sequences are suitable.
  • control sequences for the expression cassettes or vectors according to the invention are, for example, in
  • Promoters such as cos, tac, trp, tet, lpp, lac, laclq, T7, T5, T3, gal, trc, ara, SP6, tuf, 1-PR - Or contained in the 1-PL promoter, which are advantageously used in gram-negative bacteria.
  • control sequences are, for example, in the gram-positive promoters amy and SP02, in the yeast or fungal promoters ADC1, MFa, AC, P-60, CYC1, GAPDH, TEF, rp28, ADH or in the plant promoters CaMV / 35S [Franck et al., Cell 21 (1980) 285-294], SSU, OCS, LEB4, USP, STLS1, B33, NOS; FBPaseP (WO 98/18940) or contained in the ubiquitin or phaseolin promoter.
  • Vectors such as the TK promoter, the RSV 3 'LTR promoter, the CMV promoter, the SV40 "early” or late "promoter are suitable for expression in vertebrates, preferably in mammals.
  • Other promoters are known to the person skilled in the art Promoters suitable for use in vertebrates, preferably in mammals, include, for example, the tet promoter / repressor inducible or repressible by tetracycline or derivatives, the dexamethasone inducible MMTV-LTR promoter, the Drosophila minimal heat shock promoter inducible by Ecdysone or the analog Ponasterone A (as part of the pVgRXR expression system; Invitrogen, Inc.).
  • promoters are those which can control the expression of genes, in particular foreign genes, in plants. Promoters which allow constitutive expression in plants are preferred (Benfey et al., EMBO J. 8 (1989) 2195-2202).
  • a plant promoter or a promoter derived from a plant virus is preferably used.
  • the promoter of the 35S- is particularly preferred.
  • Cauliflower mosaic virus transcripts (Franck et al. (1980) Cell 21: 285-294; Odell et al. (1985) Nature 313: 810-812; Shewmaker et al. (1985) Virology 140: 281-288; Gardner et al. (1986) Plant Mol. Biol. 6, 221-228) or the 19S CaMV promoter (US 5,352,605 and WO 84/02913).
  • Another suitable constitutive promoter is the "Rubisco small subunit (SSU)" promoter (US 4,962,028).
  • SSU Rosulisco small subunit
  • LeguminB promoter accesion No. X03677
  • constitutive promoters are, for example, the promoter of nopaline synthase from Agrobacterium, the TR double promoter, the OCS (octopine synthase) promoter from Agrobacterium, the ubiquitin promoter (Holtorf S et al. (1995) Plant Mol Biol 29: 637-649) , the promoters of the vacuolar ATPase subunits or the promoter of a proline-rich protein from wheat (WO 91/13991).
  • the expression cassettes can also contain a chemically inducible promoter (Rewiew: Gatz (1997) Annu Rev Plant Physiol Plant Mol Biol 48: 89-108), by means of which the expression of the exogenous gene in the plant can be controlled at a specific point in time.
  • a chemically inducible promoter e.g. the PRP1 promoter (Ward et al., Plant. Mol. Biol. 22 (1993), 361-366), a salicylic acid-inducible (WO 95/19443), a benzenesulfonamide-inducible (EP-A-0388186) , an inducible by tetracycline (Gatz et al., (1992) Plant J. 2, 397-404), an inducible by abscisic acid (EP-A 335528), an by
  • Salicylic acid inducible (WO 95/19443) or an ethanol or cyclohexanone inducible (WO 93/21334) promoter can also be used.
  • promoters that are induced by biotic or abiotic stress such as the pathogen-inducible promoter of the PRPl gene (Ward et al. (1993) Plant Mol Biol 22: 361-366), the heat-inducible hsp80 promoter from tomato ( No. 5,187,267), the cold-inducible alpha-amylase promoter from the potato (WO 96/12814) or the wound-induced pinII promoter (EP375091). Ascorbic acid can act as a protective agent under these stress conditions. An inducible induction would therefore be advantageous to achieve an increased stress tolerance.
  • biotic or abiotic stress such as the pathogen-inducible promoter of the PRPl gene (Ward et al. (1993) Plant Mol Biol 22: 361-366), the heat-inducible hsp80 promoter from tomato ( No. 5,187,267), the cold-inducible alpha-amylase promoter from the potato (WO 96/12814) or the wound-induced pinII promoter
  • promoters with specificities for the anthers, ovaries, flowers, leaves, stems, roots and seeds.
  • seed-specific promoters examples include the promoter of phaseoline (US 5,504,200; Bustos MM et al. (1989) Plant Cell 1 (9): 839-53), of 2S albumingen (Joseffson LG et al. (1987) J Biol Chem 262: 12196-12201), the legumin (Shirsat A et al. (1989) Mol Gen Genet 215 (2): 326-331), the USP (unknown seed protein; Bäumlein H et al. (1991) Molecular & General Genetics 225 (3): 459-467), the Napin gene (US 5,608,152; Stalberg K, et al. (1996) L Planta 199: 515-519), the sucrose binding protein (WO 00/26388) or the legumin B4 Promoter (LeB4;
  • the promoter of the lpt2 or lptl gene (WO 95/15389, WO 95/23230) or the promoters described in WO 99/16890 (promoters of the hordein gene, the glutelin gene, the oryzine gene, etc.) can be used advantageously Prolamin gene, the gliadin gene, the glutelin gene, the zein gene, the kasirin gene or the secalin gene).
  • promoters are, for example, specific promoters for tubers, storage roots or roots, such as, for example, the patatin promoter class I (B33), the promoter of the cathepsin D inhibitor from potato, the promoter of the starch synthase (GBSS1) or the sporamine promoter and fruit-specific promoters, such as the fruit-specific promoter from tomato (EP-A 409 625).
  • specific promoters for tubers, storage roots or roots such as, for example, the patatin promoter class I (B33), the promoter of the cathepsin D inhibitor from potato, the promoter of the starch synthase (GBSS1) or the sporamine promoter and fruit-specific promoters, such as the fruit-specific promoter from tomato (EP-A 409 625).
  • Promoters which are also suitable are those which ensure leaf-specific expression. These include the promoter of the cytosolic FBPase from potatoes (WO 98/18940), the SSU promoter (small subunit) from Rubisco (ribulose-1, 5-bisphosphate carboxylase) or the ST-LSI promoter from potatoes (Stockhaus et al. (1989) EMBO J 8: 2445-245). Promoters which control expression in seeds and plant embryos are also preferred.
  • suitable promoters are, for example, fruit-ripening-specific promoters, such as the fruit-ripening-specific promoter from tomato (WO 94/21794), flower-specific promoters, such as the phytoene synthase promoter (WO 92/16635) or the promoter of the P-rr gene ( WO 98/22593) or specific plastid or chromoplast promoters, such as the RNA poly erase promoter (WO 97/06250) or the promoter of the phosphoribosyl pyrophosphate amidotransferase from Glycine max (see also Genbank Accession number U87999) or another node-specific promoter as in EP-A 249676 can be used advantageously.
  • fruit-ripening-specific promoters such as the fruit-ripening-specific promoter from tomato (WO 94/21794)
  • flower-specific promoters such as the phytoene synthase promoter (WO 92/16635) or the promoter of the P-r
  • plastid-specific promoters are preferred for the targeted expression in the plastids.
  • Suitable promoters are described, for example, in WO 98/55595. These include the rpo B promoter element, the atoB promoter element, the clpP promoter element (see also WO 99/46394) or the 16SrDNA promoter element. Viral promoters are also suitable (WO 95/16783, WO 97/06250).
  • Targeted plastid expression can also be achieved if, for example, a bacterial or bacteriophage promoter is used, the resulting expression cassette is inserted into the plastid DNA and the expression is then expressed by a fusion protein consisting of a bacterial or bacteriophage polyerase and a plastid transit peptide.
  • a corresponding method is described in US 5,925,806.
  • Genetic control sequences also include the 5 'untranslated region, introns or the non-coding 3' region of genes. It has been shown that these can play a significant role in regulating gene expression. It has been shown that 5 'untranslated sequences can increase the transient expression of heterologous genes. They can also promote tissue specificity (Rouster J et al., Plant J. 1998, 15: 435-440.). Conversely, the 5 'untranslated region of the opaque-2 gene suppresses expression. Deletion of the corresponding region leads to an increase in gene activity (Lohmer S et al., Plant Cell 1993, 5: 65-73).
  • the expression cassette can advantageously contain one or more so-called “enhancer sequences” functionally linked to the promoter, which enable increased transgenic expression of the nucleic acid sequence. Additional advantageous sequences, such as further regulatory elements or terminators, can also be inserted at the 3 'end of the nucleic acid sequences to be expressed transgenically.
  • the transgene to be expressed Nucleic acid sequences can be contained in one or more copies in the gene construct.
  • Genetic control sequences also mean sequences which code for fusion proteins consisting of a signal peptide sequence.
  • the expression of the target gene is in any desired cell compartment, e.g. the endomembrane system, the vacuole and the chloroplasts possible.
  • the secretory path desired glycosylation reactions, special folds, etc. possible.
  • Secretion of the target protein to the cell surface or secretion into the culture medium for example when using suspension-cultured cells or protoplasts, is also possible.
  • the target sequences required for this can be taken into account both in individual vector variations and can be introduced into the vector together with the target gene to be cloned by using a suitable cloning strategy. Both target genes, if available, or heterologous sequences can be used as target sequences.
  • Additional, heterologous sequences preferred but not limited to the functional linkage are further targeting sequences to ensure subcellular localization in the apoplast, in the vacuole, in plastids, in the mitochondrion, in the endoplasmic reticulum (ER), in the cell nucleus, in oil corpuscles or other compartments; and translation enhancers such as the 5 'leader sequence from the tobacco mosaic virus (Gallie et al. (1987) Nucl. Acids Res. 15: 8693-8711) and the like.
  • SSU Small subunit of ribulose bisphosphate carboxylase
  • transit peptides derived from genes of vegetable fat biosynthesis such as the transit peptide of the plastid "acyl carrier protein” (ACP), the stearyl-ACP desaturase, ⁇ -keto-acyl-ACP synthase or the acyl-ACP thioesterase.
  • ACP acyl carrier protein
  • stearyl-ACP desaturase ⁇ -keto-acyl-ACP synthase or the acyl-ACP thioesterase.
  • LHCP II genes LHCP II genes.
  • Control sequences are also to be understood as those which enable homologous recombination or insertion into the genome of a host organism or which allow removal from the genome. Methods such as cre / lox technology allow tissue-specific, possibly inducible removal of the expression cassette from the genome of the host organism (Sauer B. Methods. 1998; 14 (4): 381-92). Here certain flanking sequences are added to the target gene (lox sequences), which later enable removal using the cre recombinase.
  • Polyadenylation signals suitable as genetic control sequences are plant polyadenylation signals, preferably those which essentially correspond to T-DNA polyadenylation signals from Agrobacterium turne faciens, in particular gene 3 of T-DNA (octopine synthase) of the Ti plasmid pTiACHS (Gielen et al. ( 1984) EMBO J. 3: 835ff) or functional equivalents thereof.
  • particularly suitable terminator sequences are the OCS (octopine synthase) terminator and the NOS (nopalin synthase) terminator.
  • the expression cassettes according to the invention and the vectors derived from them can contain further functional elements.
  • Selection markers are usually required in order to successfully select homologously recombined or transformed cells.
  • the selectable marker introduced with the expression construct gives the successfully recombined or transformed cells resistance to a biocide (for example a herbicide such as phosphinothricin, glyphosate or bromoxynil), a metabolism inhibitor such as 2-deoxyglucose-6-phosphate (WO 98/45456) or Antibiotic, such as Kanamycin, G 418, bleomycin, hygromycin).
  • the selection marker permits the selection of the transformed cells from untransformed ones (McCormick et al. (1986) Plant Cell Reports 5: 81-84). Particularly preferred selection markers are those which confer resistance to herbicides.
  • selection markers are: DNA sequences which code for phosphinothricin acetyltransferases (PAT), which acetylate the free amino group of the glutamine synthase inhibitor phosphinothricin (PPT) and thus detoxify the PPT (de Block et al. (1987) EMBO J. 6: 2513-2518) (also called Bialophos ® resistance gene (bar))
  • PPT phosphinothricin acetyltransferases
  • PPT glutamine synthase inhibitor phosphinothricin
  • EDP synthase genes which confer resistance to Glyphosat® (N- (phosphonomethyl) glycine
  • NPTII kanamycin or G418 resistance gene
  • Nucleic acid sequences confer resistance to tetracycline, spectinomycin, ampecillin or chloramphenicol.
  • the gene D0G R 1 was isolated from the yeast Saccharomyces cerevisiae (EP 0 807 836). It codes for a 2-deoxyglucose-6-phosphate phosphatase that confers resistance to 2-D0G (Randez-Gil et al. 1995, Yeast 11, 1233-1240).
  • Reporter genes that code for easily quantifiable proteins and a via self-color or enzyme activity
  • This reporter gene should allow easy detection via a growth, fluorescence, chemo- or bioluminescence assay or via a photometric measurement.
  • Examples include reporter genes, hydrolase genes, fluorescence protein genes, bioluminescence genes, glucosidase genes, peroxidase genes or biological Synthetic genes such as the 2-KLG synthetic genes, the luciferase gene, ß-galactosidase gene, gfp gene, lipase gene, esterase gene, peroxidase gene, ß-lactamase gene, acetyl-, phospho- or adenyl-transferase gene called.
  • Green fluorescence protein (GFP) (Chui WL et al., Curr Biol 1996, 6: 325-330; Leffel SM et al., Biotechniques. 23 (5): 912-8, 1997; Sheen et al. ( 1995) Plant Journal 8 (5): 777-784; Haseloff et al. (1997) Proc Natl Acad Sei USA 94 (6): 2122-2127; Reichel et al. (1996) Proc Natl Acad Sei USA 93 (12) : 5888-5893; Tian et al. (1997) Plant Cell Rep 16: 267-271; WO 97/41228).
  • ⁇ -galactosidase encoded for an enzyme for which various chromogenic substrates are available.
  • GUS ⁇ -glucuronidase
  • uidA ⁇ -glucuronidase
  • R-Locus gene product protein that regulates the production of anthocyanin pigments (red coloring) in plant tissue and thus enables a direct analysis of the promoter activity without the addition of additional auxiliaries or chromogenic substrates (Dellaporta et al.,
  • Tyrosinase (Katz et al. (1983) J Gen Microbiol 129: 2703-2714), enzyme that oxidizes tyrosine to DOPA and dopaquinone, which consequently form the easily detectable melanin.
  • Aequorin (Prasher et al. (1985) Biochem Biophys Res Commun 126 (3): 1259-1268) can be used in calcium-sensitive bioluminescence detection.
  • Origins of replication which ensure an increase in the expression cassettes or vectors according to the invention in, for example, E. coli.
  • Examples are ORI (origin of DNA replication), the pBR322 ori or the P15A ori (Sambrook et al .: Molecular Cloning. A Laboratory Manual, 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1989).
  • MCS Multiple cloning regions
  • the invention further relates to vectors which comprise the nucleic acid sequences or expression cassettes according to the invention.
  • vectors which comprise the nucleic acid sequences or expression cassettes according to the invention.
  • the introduction of a nucleic acid sequence or expression cassette according to the invention into cells can advantageously be implemented using vectors into which these nucleic acid sequences or cassettes are inserted.
  • Vectors can be, for example, plasmids, cosmids, phages, viruses, retroviruses or also agrobacteria.
  • vectors for expression can be, for example, plasmids, cosmids, phages, viruses, retroviruses or also agrobacteria.
  • pQE70, pQE60 and pQE-9 are preferred in E. coli; pBluescript vectors, Phagescript vectors, pNH8A, pNHl ⁇ a, pNHl ⁇ A, pNH46A (Stratagene Cloning Systems, Inc.); ptrc99a, pKK223-3, pKK233-3, pDR540, pRIT5 (Pharmacia Biotech, Inc.); pLG338, pACYC184, pBR322, pUC18, pUC19, pKC30, pRep4, pHSl, pHS2, pPLc236, pMBL24, pLG200, pUR290, pIN-III 113 -Bl, ⁇ gtll or pBdCI. So-called “broad host range” vectors, such as pBHR1, pBBR122 or pRS201, are particularly preferred,
  • Bacillus pUBllO, pC194 or pBD214 are preferred, in Corynebacterium pSA77 or pAJ667,
  • pALSl, pIL2 or pBBH6 are preferred in fungi, 2 ⁇ M, pAG-1, YEp6, YEpl3 or pEMBLYe23 in yeasts
  • plants are preferably pLGV23, pGHlac + , pBINl9, pAK2004 or pDH51,
  • Mammals are preferred pWLNEO, pSV2CAT, pOG44, pXTl and pSG (Stratagene Inc.); pSVK3, pBPV, pMSG and pSVL (Pharmacia Biotech, Inc.).
  • inducible vectors examples include pTet-tTak, pTet-Splice, pcDNA4 / T0, pcDNA4 / TO / LacZ, pcDNA6 / TR, pcDNA4 / T0 / Myc-His / LacZ, pcDNA4 / T0 / Myc-His A, pcDNA4 / T0 / Myc -His B, pcDNA4 / T0 / Myc-His C, pVgRXR (Invitrogen, Inc.) or the pMAM series (Clontech, Inc .; GenBank Accession No.: U02443). These already provide the inducible regulatory control element, for example for chemical, inducible expression,
  • yeast for example pYES2, pYDl, pTEFl / Zeo, pYES2 / GS, pPICZ, pGAPZ, pGAPZalph, pPIC9, pPIC3.5, PHIL-D2, PHIL-Sl, PPIC3SK, pPIC9K, and PA0815 (Invitrogen, Inc.),
  • the expression cassette is introduced by means of plasmid vectors.
  • Preferred vectors are those which enable stable integration of the expression cassette into the host genome.
  • sorbose dehydrogenase and sorbosone dehydrogenase genes according to the invention are to be introduced together into one organism, then all of them together with a reporter gene or selection marker in a single vector or each individual gene with a reporter gene or selection marker in a vector in each Organism are introduced, wherein the different vectors can be introduced simultaneously or successively.
  • the invention further relates to organisms containing one of the nucleic acid sequences according to the invention, expression constructs or plasmids.
  • Organism preferably means microorganisms, animal or plant organisms or cells derived therefrom (for example mammalian cells or plant cells), as well as tissues, parts, organs or reproductive material (seeds or fruits) of the aforementioned.
  • Suitable organisms or host organisms for the process according to the invention are preferably organisms which are capable of synthesizing L-sorbose, L-sorbosone, 2-KLG or ascorbic acid. Organisms that can naturally synthesize L-sorbose, L-sorbosone, 2-KLG or ascorbic acid are preferred. However, organisms which are able to synthesize 2-KLG due to the introduction of the complete 2-KLG synthesis genes are also suitable for the process according to the invention.
  • Organisms such as bacteria, yeasts, fungi, vertebrates or invertebrates (as well as cells derived therefrom such as mammalian cells) or plants are suitable for the method according to the invention.
  • Mushrooms such as Aspergillus, Eremotheciur ⁇ , Trichoderma, Ashbya, Neurospora, Fusarium, Beauveria or others in Indian Chem Engr. Section B. Vol 37, No 1,2 (1995) on page 15, Table 6 described mushrooms.
  • the filamentous Hemiascomycet Ashbya gossypii or Eremothecium ashbyii is particularly preferred.
  • yeasts such as Candida, Saccharomyces, Hansenula or Pichia, Saccharomyces cerevisiae or Pichia pastoris (ATCC Accession No. 201178) are particularly preferred
  • Plants such as arabidopsis, tomato, potato, corn, soybean, rapeseed, barley, wheat, rye, rice, millet, cotton, sugar beet, sunflower, flax, hemp, canola, oats, tobacco, alfalfa, lettuce, rose hip or the various Tree, nut and wine types,
  • Vertebrates and invertebrates are non-human mammals such as in dogs, cats, sheep, goats, chickens, mice, rats, cattle or horses.
  • Preferred animal cells include CHO, COS, HEK293 cells.
  • Preferred invertebrates include insect cells such as Drosophila S2 and Spodoptera Sf9 or Sf21 cells,
  • prokaryotic organisms such as gram-positive or gram-negative bacteria such as Acetobacter, Gluconobacter, Corynebacterium, Brevibacterium, Bacillus, Clostridium, Cyanibacter, Escherichia (especially Escherichia coli), Serratia, Staphylococcus, Aerobacter, Alcaligenes, Penicillium Called pseudomonas or Klebsieila.
  • gram-positive or gram-negative bacteria such as Acetobacter, Gluconobacter, Corynebacterium, Brevibacterium, Bacillus, Clostridium, Cyanibacter, Escherichia (especially Escherichia coli), Serratia, Staphylococcus, Aerobacter, Alcaligenes, Penicillium Called pseudomonas or Klebsieila.
  • Organisms of the genus and species Acetobacter liquefaciens, Acetobacter aceti, Acetobacter pasteurianus, Acetobacter hansenii, Gluconobacter oxidans, Ashbya gossypii, Eremothecium ashbyii, Saccharomyces cerevisiae, Candida flaveri, Candida famata ammonium bacilli, or Corynebacterium, are particularly preferred.
  • Maize, soybean, rapeseed, barley, wheat, potato and tomato are particularly preferred as plants.
  • the DNA can be introduced directly by microinjection, electroporation or by bombardment with DNA-coated microparticles (biolistic method with the gene gun "particle bombardment").
  • the cell can also be chemically permeable, for example with polyethylene glycol, so that the DNA can get into the cell by diffusion.
  • the DNA can also be obtained by protoplast fusion with other DNA-containing units such as minicells, cells, lysosomes or liposomes.
  • Electroporation is another suitable method for introducing DNA in which the cells are reversibly permeabilized by an electrical pulse.
  • Preferred general methods should be mentioned Calcium phosphate mediated transfection, DEAE-dextran mediated transfection, cationic lipid mediated transfection, electroporation, transduction, infection.
  • Such methods are familiar to the person skilled in the art and are described, for example, 5 in Davis et al., Basic Methods In Molecular Biology (1986).
  • Another option for introducing DNA into microorganisms is conjugation, with both biparental and triparental conjugation being possible.
  • the REMI technique is based on the co-transformation of a linear DNA construct that was cut at both ends with the same restriction endonuclease, together with the restriction endonuclease used for this restriction of the DNA construct.
  • Restriction enzymes that only recognize 4 base pairs as a restriction site are less preferred because they cut too frequently in the genome or in the vector to be integrated; preference is given to enzymes that recognize 6, 7, 8 or more base pairs as an interface, such as BamHI, EcoRI, Bglll, SphI , Spei, Xbal, Xhol, Ncol, Sall, Clal, Kpnl, Hindlll, Sacl, PstI, Bpnl, Notl, Srfl or Sfil to name just a few of the possible enzymes. It is advantageous if the enzymes used no longer have interfaces in the DNA to be introduced, this increases the efficiency of the integration.
  • the enzymes are advantageously used in an aqueous solution, the substances for osmotic stabilization such as sugar such as sucrose, trehalose or glucose, polyols such as glycerol or polyethylene glycol, a buffer with an advantageous buffering in the range from pH 5 to 9, preferably 6 to 8 , particularly preferably 7 to 8 such as Tris, MOPS, HEPES, MES or PIPES and / or substances for stabilizing the nucleic acids, such as inorganic or organic salts of Mg, Cu, Co, Fe, Mn or Mo.
  • the substances for osmotic stabilization such as sugar such as sucrose, trehalose or glucose, polyols such as glycerol or polyethylene glycol, a buffer with an advantageous buffering in the range from pH 5 to 9, preferably 6 to 8 , particularly preferably 7 to 8 such as Tris, MOPS, HEPES, MES or PIPES and / or substances for stabilizing the nucleic acids, such as inorganic or organic
  • EDTA EDDA
  • DTT ß-mercaptoethanol
  • nuclease inhibitors EDTA, EDDA, DTT, ß-mercaptoethanol or nuclease inhibitors.
  • REMI technology it is also possible to carry out REMI technology without these additives.
  • the process is carried out in a temperature range from 5 to 80 ° C., preferably from 10 to 60 ° C., particularly preferably from 20 to 40 ° C.
  • All known methods for destabilizing cell membranes such as, for example, electroporation, fusion with loaded vesicles or destabilization via various alkali or alkaline earth metal salts such as lithium, rubidium or calcium salts are suitable for the process, the lithium salts being preferred.
  • Plants can also be transformed by bacterial infection using transgenic Agrobacterium tumefa ⁇ iens or Agrobacterium rhizogenes strains. These strains contain a plasmid (Ti or Ri plasmid) which is transferred to the plant after Agrobacterium infection. Part of this plasmid, called T-DNA (transferred DNA), is integrated into the genome of the plant cell.
  • the nucleic acid sequences or expression cassettes according to the invention are preferably integrated into special plasmids, either into an intermediate vector (English: shuttle or intermediate vector) or a binary vector. Binary vectors can replicate in both E.coli and Agrobacterium.
  • Agrobacterium usually contain a selection marker gene (for example, the nptll gene, which confers resistance to kanamycin) and a linker or polylinker flanked by the right and left T-DNA restriction sequences. They can be transformed directly into Agrobacterium (Holsters et al., Mol. Gen. Genet. 163 (1978), 181-187).
  • Agrobacterium tumefaciens for the transformation of plants using tissue culture explants has been described by Horsch et al. (Horsch RB (1986) Proc Natl Acad Sei USA 83 (8): 2571-2575), Fraley et al. (Fraley et al.
  • Wounded leaves or leaf pieces are bathed in an agrobacterial solution and then cultivated in suitable media.
  • the genetically modified plant cells can be regenerated using all methods known to the person skilled in the art. Appropriate methods can be found in the above-mentioned documents.
  • the construct to be expressed is preferably cloned into a vector which is suitable for transforming Agrobacterium tumefaciens, for example pBin19 (Bevan et al. (1984) Nucl Acids Res 12: 8711).
  • Agrobacterium mediated transformation is best suited for dicotyledonous plant cells, whereas the direct transformation techniques are suitable for every cell type.
  • Plasmids which are replicated autonomously in the host cell are preferably used as the vector (for example for plasmid microorganisms which carry the origin of replication of the 2 ⁇ plasmid from S. cerevisiae).
  • Pendulum vectors and "broad host range" vectors are particularly preferred which enable the replication of the vector in more than one organism.
  • linear expression cassettes can also be used which are integrated into the genome of the host. This integration can take place via hetero- or homologous recombination. However, as mentioned, preferably via homologous recombination (Steiner et al. (1995) Genetics 140: 973-987).
  • the nucleic acid sequences or expression cassettes according to the invention can be present individually in the genome at different locations or on different vectors or together in the genome or on one vector.
  • Transformed cells ie those which contain the introduced DNA integrated into the DNA of the host cell, can be selected from untransformed cells if a selectable marker is part of the introduced DNA. Any gene that can confer resistance to antibiotics or herbicides can act as a marker, for example.
  • Transformed cells that express such a marker gene are able to survive in the presence of concentrations of an appropriate antibiotic or herbicide that kill an untransformed wild type.
  • Various positive and negative selection markers are described above. Examples are the bar gene that confers resistance to the herbicide phosphinothricin (Rathore KS et al. (1993) Plant Mol Biol. 21 (5) .871-884), the nptll gene that confers resistance to kanamycin, the hpt gene, which confers resistance to hygromycin, or the EPSP gene which confers resistance to the herbicide glyphosate.
  • a complete plant can be obtained using methods known to those skilled in the art. This is based on the example of callus cultures. The formation of shoots and roots can be induced in a known manner from these still undifferentiated cell masses. The sprouts obtained can be planted out and grown.
  • cells, cell cultures, parts derived from the transgenic organisms described above - such as roots, leaves, etc., for example in the case of transgenic plant organisms - and transgenic propagation material such as seeds or fruits.
  • the invention further relates to enzyme preparations produced using one of the proteins, nucleic acid molecules, expression cassettes, vectors or organisms which contain at least one of the polypeptides according to the invention.
  • An enzyme preparation preferably contains one of the polypeptides according to the invention as shown in SEQ ID NO: 2 or 4 or one of its functional equivalents.
  • the enzyme preparation can contain the polypeptides according to the invention in unpurified, partially purified or purified form.
  • the content of the total amount of protein in the polypeptide according to the invention, for example in a partially purified enzyme preparation is at least 1%, preferably at least 10%, particularly preferably at least 50%, very particularly preferably at least 70%, most preferably at least 90%.
  • Such preparations are available, for example, from
  • the enzyme preparation can be immobilized on a water-soluble (for example polyacrylate) or water-insoluble carrier material (for example polystyrene).
  • carrier materials are known to the person skilled in the art, to which the enzyme preparations or polypeptides according to the invention can be bound covalently or via adsorption.
  • Celite, silica gel, amberlite, carrier materials made of various polymers (eg polypropylenes, polystyrene, polyurethane, polyacrylates) or sol gels are suitable as solid carriers.
  • Genetically modified plants according to the invention that can be consumed by humans and animals can also be used, for example, directly or after preparation known per se as food or feed.
  • Another object of the invention relates to the use of the above-described proteins, nucleic acid sequences, expression cassettes, vectors, enzyme preparations, organisms and the cells, cell cultures, parts (such as roots, leaves, etc.) derived from them and transgenic plant organisms transgenic propagation material (such as seeds or fruits) for the production of food or feed, pharmaceuticals or fine chemicals.
  • Fine chemicals means enzymes, vitamins, amino acids, sugar,
  • Aldehydes, ketones and carboxylic acids preferably mean sugar alcohols, ketoses, aldoses and corresponding sugar acids such as D-glucose, D-mannose, D-mannitol, L-sorbose, D-fructose, D-sorbitol, L-sorbosone, L-gulose, 2 -Keto-D-gluconic acid, L-idose, glycerol, D-gluconic acid, D-mannonic acid, L-idonic acid, 5-keto-D-gluconic acid, 5-keto-D-mannonic acid, D-glucosones.
  • L-Sorboson and 2-KLG are particularly preferred.
  • Another object of the invention relates to processes for the preparation of aldehydes, ketones or carboxylic acids starting from the corresponding alcohols or aldehydes, characterized in that the alcohol or aldehyde in the presence of one of the polypeptides according to the invention, a transgenic organism, cell cultures, parts, tissues, organs or oxidized reproductive material of the same or an enzyme preparation.
  • the production of 2-keto-L-gulonic acid by oxidation of sorbose and / or L-sorbosone is preferred.
  • the production of L-ascorbic acid using the 2-keto-L-gulonic acid prepared by the above process is also particularly preferred.
  • SEQ ID No. 1 Nucleic acid sequence coding for the
  • SEQ ID No. 2 Amino acid sequence for sorbose dehydrogenase from Acetobacter liquefaciens ATCC14835
  • SEQ ID No. 3 Nucleic acid sequence coding for the sorbosone dehydrogenase from Acetobacter liquefaciens ATCC14835
  • SEQ ID No. 4 Amino acid sequence for sorbosone dehydrogenase from Acetobacter liquefaciens ATCC14835
  • SEQ ID No. 5 Nucleic acid sequence coding for the genomic clone 17 from Acetobacter liquefaciens ATCC14835, which completely comprises the nucleic acid sequence coding for the sorbose dehydrogenase and partially encoding the nucleic acid sequence for the sorbosone dehydrogenase.
  • SEQ ID No. 6 Amino acid sequence for the sorbosone dehydrogenase from Acetobacter liquefaciens ATCC14835 (partial)
  • SEQ ID No. 7 Amino acid sequence for sorbose dehydrogenase from Acetobacter liquefaciens ATCC14835
  • SEQ ID NO. 8 oligonucleotide primer KEI9 5 '-GCTCTAGATGCCCTACAACCCTGACTTCAACG-3'
  • SEQ ID NO. 9 KEI10 5 '-CGGGATCCCGCGCCGCCCTCAACCACGTTGGA-3' oligonucleotide primer
  • SEQ ID NO. 10 KEI376 oligonucleotide primer 5 '-GCTCTAGAGGATCGCCAACGACACCGTCTACG-3' 11.
  • SEQ ID NO. 11 KEI377 oligonucleotide primer 5 '-CGGGATCCTCATGATGCGATCCAGTGCGTGCG-3'
  • SEQ ID NO. 12 KEI390 5 5 '-ACTGCGCGTCCATGGGCTGGAAGG-3' oligonucleotide primer
  • SEQ ID NO. 13 KEI720 5 '-AAAACATATGAAGATCCATGCA-3' oligonucleotide primer
  • SEQ ID NO. 14 KEI721 oligonucleotide primer 5 '-TATCTGGATCCTCATGATGCGAT-3'
  • the strain Acetobacter liquefaciens (ATCC14835) was used.
  • Example 1 Construction of a genomic bank of Acetobacter liquefaciens ATCC14835
  • genomic DNA was prepared.
  • the gene bank was then constructed using the zero background cloning kit (Invitrogen) in the vector pZerO-2 (Invitrogen).
  • the genomic DNA was digested with Sau3A and ligated into pZerO-2 vector linearized with BamHI.
  • the mean size of the 40 insert was approximately 2.7 kb.
  • the gene bank represented more than 99% of the bacterial genome.
  • the individual clones were transferred to nylon membranes, lysed and prepared for hybridization.
  • Example 3 Sequence comparison of Acetobacter liquefaciens sorbose dehydrogenase
  • a BLAST search was carried out against Genbank (Altschul et al. (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs; Nucleic Acids Res. 25: 3389ff) with the sequence from SEQ ID No: 1.
  • Homology to the sequence of a sorbose dehydrogenase from Gluconobacter oxydans (Sequence 5, patent US 5,834,263; program algorithm GAP (Wisconsin Package Version 10.0, University of Wisconsin, Genetics Computer Group (GCG), Madison, USA) Gap weight 50, Length weight 3 , Average match 10, Average mismatch 0). This resulted in 71.7% DNA sequence similarity with the SDH from G. oxydans.
  • the vector pVC-77 was cut using the restriction endonucleases Nde I and BamH I. After electrophoresis on a 1% agarose gel, a piece of gel was cut out, which corresponded to a band size of 1.6 kb.
  • the DNA was isolated from the gel matrix using the QIAquick Gel Extraction Kit (Qiagen), ligated into pT7-7 vector linearized with Nde I and BamHI and transformed into E. coli BL-21. The new plasmid was named pEVC-7.
  • ORF open reading frame
  • SEQ ID NO: 1 is the gene for a new sorbose dehydrogenase from Acetobacter liquefaciens.
  • Upstream of the sorbose dehydrogenase gene in clone 17 are another 250 nucleotides. This sequence shows similarity to the C-terminus of Gluconobacter oxydans sorbosone dehydrogenase. Therefore, as in G. oxydans in A. liquefaciens, the sorbose and sorbosone dehydrogenase genes are organized one after the other on a DNA fragment as an operon.
  • sequence information from the 250 nt was used to isolate the gene of sorbosone dehydrogenase from genomic DNA from Acetobacter liquefaciens.
  • Genomic DNA from a 30 mL overnight culture in YSM medium (yeast extract 5 g / L, D-sorbitol 50 g / L, mannitol 10 g / L, pH 5-5.5) from Acetobacter liquefaciens ATCC14835 was prepared (Genomic DNA buffer set and Genomic-tip, Qiagen) and digested at 37 ° C for 60 h with the restriction endonuclease Aatll. This was followed by electrophoresis in a 1% agarose gel. Southern blot was used to transfer the DNA to a positively charged nylon membrane (Röche Diagnostics) overnight.
  • YSM medium yeast extract 5 g / L, D-sorbitol 50 g / L, mannitol 10 g / L, pH 5-5.5
  • Acetobacter liquefaciens ATCC14835 was prepared (Genomic DNA buffer set and Genomic-tip, Qiagen) and digested at 37 ° C for 60 h
  • the 250 bp fragment of the Acetobacter liquefaciens SNDH gene from Klonl7 was used as the probe.
  • the probe was labeled using the DIG-High Prime DNA Labeling and Detection Starter II kit (Röche Diagnostics).
  • the nucleotide sequence of the primers used can be found in Table 2.
  • the probe was isolated after electrophoresis in a 1.5% agarose gel using the QIAquick Gel Extraction Kit (Qiagen) and used in the hybridization.
  • the hybridization was carried out under standard conditions (pre-hybridization 37 ° C; hybridization 37 ° C for 60 h, wash at 75 ° C in 0.1 x SSC and 0.1% SDS).
  • a positive signal with a band size of 3.6 kb could be detected by the DIG Luminescent Detection Kit (Röche Diagnostics).
  • a piece of gel corresponding to a band size of 3.6 kb was cut out from a parallel run of 1% agarose gel with AatII digested genomic DNA from A. liquefaciens.
  • the DNA was isolated from the gel matrix using the QIAquick Gel Extraction Kit (Qiagen), religated and used as a template in a polymerase chain reaction (inverse PCR).
  • the nucleotide sequence of the primers used can be found in Table 3.
  • oxydans (program algorithm GAP (Wisconsin Package Version 10.0, University of Wisconsin, Genetics Computer Group (GCG), Madison, USA) Gap weight 50, Length weight 3, Average match 10, average mismatch 0). At the amino acid level, the sequence similarity is 42.7% (program algorithm GAP (Wisconsin Package Version 10.0, University of Wisconsin, Genetics Computer Group (GCG), Madison, USA) gap weight 8, length weight 2, average match 2,912, average mismatch -2,003) ,
  • Example 7 Expression of Acetobacter liquef ciens sorbosone dehydrogenase
  • the vector pVC-96 clone 3 is used as a template in a polymerase chain reaction.
  • the nucleotide sequence of the primers used can be found in Table 3.
  • Table 4 Nucleotide sequence of the primers used After electrophoresis in a 1% agarose gel, an approximately 1.6 kb long DNA fragment is identified as the PCR product. This is cut using the restriction endonucleases Nde I and BamH I. After electrophoresis on a 1% agarose gel, a piece of gel is cut out, which corresponds to a band size of 1.6 kb.
  • the DNA is isolated from the gel matrix by the QIAquick Gel Extraction Kit (Qiagen), ligated into pT7-7 vector linearized with Nde I and BamHI and transformed into E. coli BL-21. The new plasmid is called pEVC-9.
  • ORF is an SNDH from A. liquefaciens
  • 100 mL LB medium are cultivated at 37 ° C to an optical density of 0.5.
  • 0.3 mM IPTG is added, which induces the T7 DNA polymerase integrated chromosomally under the control of the lac promoter.
  • the cells are harvested for 2 hours.

Abstract

The invention relates to polypeptides having an L-sorbose dehydrogenase (SDH) or L-sorbosone dehydrogenase (SNDH) activity and nucleic acid sequences that code for these polypeptides. The invention also relates to transgenic expression contructs, vectors and transgenic organisms containing these nucleic acid sequences, and to methods for producing 2-keto-L-gulonic acid or ascorbic acid while using the same.

Description

Verfahren zur Herstellung von 2- eto-L-gulonsäure und Vitamin CProcess for the preparation of 2-eto-L-gulonic acid and vitamin C.
Beschreibungdescription
Die vorliegende Erfindung betrifft Polypeptide mit L-Sorbose- dehydrogenase (SDH) bzw. L-Sorbosondehydrogenase (SNDH) Aktivität sowie Nukleinsauresequenzen kodierend für diese Polypeptide. Ferner betrifft die Erfindung transgene Expressionskonstrukte, Vektoren und transgene Organismen, die diese Nukleinsauresequenzen enthalten sowie Verfahren zur Herstellung von 2-Keto- L-gulonsäure oder Ascorbinsäure unter Verwendung derselben.The present invention relates to polypeptides with L-sorbose dehydrogenase (SDH) or L-sorbosone dehydrogenase (SNDH) activity and nucleic acid sequences coding for these polypeptides. The invention further relates to transgenic expression constructs, vectors and transgenic organisms which contain these nucleic acid sequences and to processes for the preparation of 2-keto-L-gulonic acid or ascorbic acid using the same.
2-Keto-L-gulonsäure (2-KLG) ist ein wichtiges Vorprodukt zur Synthese von Ascorbinsäure (Vitamin C) . Der Mensch und verschiedene Tierarten haben die Befähigung zur Synthese von Vitamin C verloren, so dass die Versorgung mit Vitamin C über die Nahrung essentiell ist. Der weltweite Verbrauch an Vitamin C ist steigend. Das aus natürlichen, pflanzlichen Quellen verfüg- bare Vitamin C ist jedoch begrenzt und würde zur Deckung des Bedarfs nicht ausreichen.2-Keto-L-gulonic acid (2-KLG) is an important intermediate for the synthesis of ascorbic acid (vitamin C). Humans and various animal species have lost the ability to synthesize vitamin C, so the supply of vitamin C through food is essential. The worldwide consumption of vitamin C is increasing. However, the vitamin C available from natural, vegetable sources is limited and would not be sufficient to meet the need.
Es ist bekannt, dass zahlreiche Mikroorganismen 2-Keto-L-gulon- säure, ausgehend von Sorbit oder L-Sorbose produzieren, bei- spielsweise Mikroorganismen der Genera Acetobacter und Pseudo- monas (siehe z.B. die Japanische Patentpublikation 40, 154;1976) . Verschiedene Verbindungen sind als Zwischenprodukte der Synthese von 2-KLG bekannt geworden (Okazaki et al. (1969) Agr Biol Che 33:207-211).It is known that numerous microorganisms produce 2-keto-L-gulonic acid starting from sorbitol or L-sorbose, for example microorganisms of the genera Acetobacter and Pseudomonas (see, for example, Japanese Patent Publication 40, 154; 1976). Various compounds have become known as intermediates in the synthesis of 2-KLG (Okazaki et al. (1969) Agr Biol Che 33: 207-211).
Chemisch kann Ascorbinsäure über 2-KLG ausgehend von D-Sorbit nach dem dem Fachmann bekannten Reichstein-Verfahren synthetisiert werden (Helv Chim Acta 17:311-328; 1934). Die Synthese von Ascorbinsäure nach diesem Verfahren erfordert die Biokonversion von Sorbit gefolgt von einem 7-stufigen chemischen Prozess. Das Verfahren ist kostenintensiv.Ascorbic acid can be chemically synthesized using 2-KLG starting from D-sorbitol using the Reichstein method known to the person skilled in the art (Helv Chim Acta 17: 311-328; 1934). The synthesis of ascorbic acid by this process requires the bioconversion of sorbitol followed by a 7-step chemical process. The process is expensive.
Bioteσhnologische Verfahren zur Herstellung von 2-KLG, das anschließend chemisch zu Ascorbinsäure umgesetzt werden kann, sind beschrieben (siehe u.a. Lazarus et al., "Vitamin C: Bioconversion via a Recombinant DNA approach" , Genetics and Molecular Biology of Industrial Microorganis s, American Society for Microbiology, Washington DC, Herausgeber CL Hershberger) . Die Synthese läuft in der Regel ausgehend von Glucose über D-Sorbit, L-Sorbose, L-Sorboson zu 2-Keto-L-gulonsäure (Makover et al. (1975) Bio- technol and Bioeng 17:1485-1514). Dabei werden die Umsetzung von Glucose zu Sorbit und die nachfolgende Zyklisierung von 2-KLG zu Ascorbinsäure in der Regel durch klassische, chemische Umsetzungen in einer dem Fachmann geläufigen Weise ausgeführt. Verschiedene Verfahren, teilweise nur für Einzelschritte der Synthese, unter Verwendung von Mikroorganismen sind beschrieben 5 (EP 0 366 922, EP 0 278 447, EP 0 518 136, EP 0 790 301). Dabei kommen unter anderem Einzel- oder Mischkulturen von Mikroorganismen der Stämme Acetobacter, Gluconobacter, Escherichia, Bacillus, Candida oder Pseudomonas zum Einsatz (Considine, "Ascorbic Acid" Van Nostrand's Scientific Encylopedia, Vol. 1, pp. 237-238, 10 1989) .Biological methods for the production of 2-KLG, which can subsequently be converted chemically to ascorbic acid, are described (see, inter alia, Lazarus et al., "Vitamin C: Bioconversion via a Recombinant DNA approach", Genetics and Molecular Biology of Industrial Microorganis s, American Society for Microbiology, Washington DC, editor CL Hershberger). The synthesis usually proceeds from glucose via D-sorbitol, L-sorbose, L-sorbosone to 2-keto-L-gulonic acid (Makover et al. (1975) Biotechnol and Bioeng 17: 1485-1514). The conversion of glucose to sorbitol and the subsequent cyclization of 2-KLG to ascorbic acid is usually carried out by classic chemical reactions in a manner familiar to the person skilled in the art. Various methods, some of them only for individual synthetic steps, using microorganisms have been described 5 (EP 0 366 922, EP 0 278 447, EP 0 518 136, EP 0 790 301). Individual or mixed cultures of microorganisms from the Acetobacter, Gluconobacter, Escherichia, Bacillus, Candida or Pseudomonas strains are used (Considine, "Ascorbic Acid" Van Nostrand's Scientific Encylopedia, Vol. 1, pp. 237-238, 10 1989) ,
Auch Fermentation anderer Mikroorganismen wie Algen ist beschrieben z.B. in Chlorella pyrenoidosa (US 5,001,059). Ferner ist die Produktion in Pflanzen beschrieben (WO 99/64618) .Fermentation of other microorganisms such as algae is also described, e.g. in Chlorella pyrenoidosa (US 5,001,059). Production in plants is also described (WO 99/64618).
1515
Die Produktion von 2-KLG unter Einsatz rekombinanter Mikroorganismen ist beschrieben. Saito et al. berichten die Herstellung eines ExpressionsSystems für die Produktion von 2-KLG aus D-Sorbit unter Verwendung von L-Sorbosedehydrogenase (SDH)The production of 2-KLG using recombinant microorganisms is described. Saito et al. report the production of an expression system for the production of 2-KLG from D-sorbitol using L-sorbose dehydrogenase (SDH)
20 und L-Sorbosondehydrogenase (SNDH) Genen (Saito Y et al.(1997) Appl Environ Microbiol 63 (2) : 454-60) .20 and L-sorbosone dehydrogenase (SNDH) genes (Saito Y et al. (1997) Appl Environ Microbiol 63 (2): 454-60).
Nukleinsauresequenzen kodierend für bestimmte Polypeptide mit SDH- und SNDH-Aktivität als auch Verfahren zur HerstellungNucleic acid sequences coding for certain polypeptides with SDH and SNDH activity as well as methods for the production
25 von 2-KLG unter Verwendung derselben sind beschrieben (US25 of 2-KLG using the same are described (US
5,861,192, US 5,753,481). EP 0 373 181 offenbart DNA-Sequenzen und Verfahren zur Herstellung von 2-KLG aus Sorboson mittels einer coenzym-unabhängigen L-Sorbosondehydrogenase. Trotz der Fortschritte in der Herstellung von 2-KLG bzw.5,861,192, US 5,753,481). EP 0 373 181 discloses DNA sequences and methods for producing 2-KLG from sorbosone using a coenzyme-independent L-sorbosone dehydrogenase. Despite the progress made in the production of 2-KLG and
30 Ascorbinsäure besteht nach wie vor ein Bedarf zur Verbesserung und Steigerung der 2- LG-Produktivität, um den steigenden Bedarf an Ascorbinsäure zu decken und die Herstellung effizienter zu gestalten. Es bestand daher die Aufgabe die 2-KLG-Produktivität weiter zu verbessern und alternative Verfahren für die Her-30 Ascorbic acid still has a need to improve and increase 2- LG productivity to meet the increasing need for ascorbic acid and to make production more efficient. The task was therefore to further improve the 2-KLG productivity and alternative processes for the
35 Stellung von 2-KGL oder Vitamin C zur Verfügung zu stellen. Diese Aufgabe wurde durch die vorliegende Erfindung gelöst.35 To provide 2-KGL or vitamin C. This object has been achieved by the present invention.
Ein erster Gegenstand der Erfindung betrifft Verfahren zur Herstellung von Vitamin C oder 2-Keto-L-gulonsäure, dadurchA first subject of the invention relates to processes for the production of vitamin C or 2-keto-L-gulonic acid, thereby
40 gekennzeichnet, dass dabei dabei ein Organismus oder eine von diesem erhaltene Enzympräparation zum Einsatz kommt, wobei der Organismus mindestens eine transgene Nukleinsäuresequenz enthält kodierend für ein Polypeptid gemäß SEQ ID NO: 2 oder 4 oder ein funktionelles Äquivalent derselben.40 characterized in that an organism or an enzyme preparation obtained from it is used, the organism containing at least one transgenic nucleic acid sequence coding for a polypeptide according to SEQ ID NO: 2 or 4 or a functional equivalent thereof.
45 In einer bevorzugten Ausführungsform umfasst das erfindungsgemäße Verfahren mindestens einen der nachfolgenden Reaktionsschritte:45 In a preferred embodiment, the process according to the invention comprises at least one of the following reaction steps:
a) Umsetzung von L-Sorbose zu L-Sorboson unter Verwendung eines Organismus oder einer von diesem erhaltene Enzympräparation, wobei der Organismus mindestens eine transgene Nuklein- säuresequenz enthält kodierend für ein Polypeptid mit Sorbosedehydrogenaseaktivität gemäß SEQ ID NO: 2 oder ein funktionelles Äquivalent desselben, odera) conversion of L-sorbose to L-sorbosone using an organism or an enzyme preparation obtained therefrom, the organism containing at least one transgenic nucleic acid sequence coding for a polypeptide with sorbose dehydrogenase activity according to SEQ ID NO: 2 or a functional equivalent thereof, or
b) Umsetzung von L-Sorboson zu 2-KLG unter Verwendung eines transgenen Organismus oder eine von diesem erhaltene Enzympräparation, wobei der Organismus mindestens eine transgene Nukleinsäuresequenz enthält kodierend für ein Polypeptid mit Sorbosondehydrogenaseaktivität gemäß SEQ ID NO: 4 oder ein funktionelles Äquivalent desselben.b) conversion of L-sorbosone to 2-KLG using a transgenic organism or an enzyme preparation obtained therefrom, the organism containing at least one transgenic nucleic acid sequence coding for a polypeptide with sorbosone dehydrogenase activity according to SEQ ID NO: 4 or a functional equivalent thereof.
Bevorzugt kommen beide der genannten Reaktionschritte a) und b) im Rahmen des erfindungsgemäßen Verfahrens zum Einsatz. Dabei können die Verfahrensschritte parallel oder sukzessiv ausgeführt werden.Both of the reaction steps a) and b) mentioned are preferably used in the process according to the invention. The process steps can be carried out in parallel or successively.
"Transgen" meint in Bezug auf eine Nukleinsäuresequenz, eine Expressionskassette, einen Vektor oder einen Organismus alle solche durch gentechnische Methoden zustande gekommene Konstruktionen, in denen sich entwederWith respect to a nucleic acid sequence, an expression cassette, a vector or an organism, “transgene” means all such constructions which have been obtained by genetic engineering methods and in which either
a) mindestens eine der zu exprimierenden Nukleinsauresequenzen,a) at least one of the nucleic acid sequences to be expressed,
(beispielsweise eine Nukleinsäuresequenz kodierend für ein Polypeptid gemäß SEQ ID NO: 2 oder 4 oder ein funktionelles Äquivalent derselben) oder(for example a nucleic acid sequence coding for a polypeptide according to SEQ ID NO: 2 or 4 or a functional equivalent thereof) or
b) mindestens eines der genetischen Kontrollelemente, die die Expression besagter zu exprimierender Nukleinsäuresequenz steuern, oderb) at least one of the genetic control elements which control the expression of said nucleic acid sequence to be expressed, or
c) (a) und (b)c) (a) and (b)
sich nicht in ihrer natürlichen, genetischen Umgebung (beispielsweise an ihrem natürlichen chromosomalen Locus) befinden oder durch gentechnische Methoden modifiziert wurden, wobei die Modifikation beispielhaft Substitutionen, Additionen, Deletionen, Inversion oder Insertionen eines oder mehrerer Nukleotidreste umfassen kann. In einer besonders bevorzugten Ausführungsform enthält der zum Einsatz kommende Organismus (bzw. der für die Herstellung der zum Einsatz kommenden Enzympräparation verwendete Organismus) mindestens jeweils eine transgene Nukleinsäuresequenz kodierend fürare not in their natural, genetic environment (for example at their natural chromosomal locus) or have been modified by genetic engineering methods, the modification may include, for example, substitutions, additions, deletions, inversions or insertions of one or more nucleotide residues. In a particularly preferred embodiment, the organism used (or the organism used for the production of the enzyme preparation used) contains at least one transgenic nucleic acid sequence coding for
i) ein Polypeptid gemäß SEQ ID NO: 2 oder ein funktionelles Äquivalent desselben undi) a polypeptide according to SEQ ID NO: 2 or a functional equivalent thereof and
ii) ein Polypeptid gemäß SEQ ID NO: 4 oder ein funktionelles Äquivalent desselben.ii) a polypeptide according to SEQ ID NO: 4 or a functional equivalent thereof.
2-KLG kann in einer dem Fachmann geläufigen Weise zu Vitamin C umgesetzt werden. Sorbose ist aus Glucose zugänglich.2-KLG can be converted into vitamin C in a manner familiar to the person skilled in the art. Sorbose is available from glucose.
Im erfindungsgemäßen Verfahren werden die für die Herstellung von 2-KLG verwendeten Organismen in einem Medium, das das Wachstum dieser Organismen ermöglicht, angezüchtet. Dieses Medium kann ein synthetisches oder ein natürliches Medium sein. Je nach Organismus werden dem Fachmann bekannte Medien verwendet. Für das Wachstum der Mikroorganismen enthalten die verwendeten Medien eine Kohlenstoffquelle, eine Stickstoffquelle, anorganische Salze und gegebenenfalls geringe Mengen an Vitaminen und Spurenelementen.In the process according to the invention, the organisms used for the production of 2-KLG are grown in a medium which enables these organisms to grow. This medium can be a synthetic or a natural medium. Depending on the organism, media known to the person skilled in the art are used. For the growth of the microorganisms, the media used contain a carbon source, a nitrogen source, inorganic salts and possibly small amounts of vitamins and trace elements.
Vorteilhafte Kohlenstoffquellen sind beispielsweise Zucker wie Mono-, Di- oder Polysaccharide wie Glucose, Fructose, Mannose, Xylose, Galactose, Ribose, Sorbose, Ribulose, Laktose, Maltose, Saccharose, Raffinose, Stärke oder Cellulose, Stärkehydrolysate, komplexe Zuckerquellen wie Melasse, Zuckerphosphate wieAdvantageous carbon sources are, for example, sugars such as mono-, di- or polysaccharides such as glucose, fructose, mannose, xylose, galactose, ribose, sorbose, ribulose, lactose, maltose, sucrose, raffinose, starch or cellulose, starch hydrolysates, complex sugar sources such as molasses, sugar phosphates how
Fructose-1, 6-bisph.osphat, Zuckeralkohole wie Mannit, Polyole wie Glycerin, Alkohole wie Methanol oder Ethanol, Carbonsäuren wie Citronensäure, Milchsäure oder Essigsäure, Fette wie Sojaöl oder Rapsöl, Aminosäuren wie ein Aminosäurengemisch beispielsweise sog. Casa ino acids (Difco) oder einzelne Aminosäuren wie Glyzin oder Asparaginsäure oder Aminozucker, die letztgenannten können auch gleichzeitig als Stickstoffquelle verwendet werden.Fructose-1,6-bisphosphate, sugar alcohols such as mannitol, polyols such as glycerol, alcohols such as methanol or ethanol, carboxylic acids such as citric acid, lactic acid or acetic acid, fats such as soybean oil or rapeseed oil, amino acids such as a mixture of amino acids, for example so-called casa acids (Difco ) or individual amino acids such as glycine or aspartic acid or aminosugar, the latter can also be used simultaneously as a nitrogen source.
Vorteilhafte Stickstoffquellen sind organische oder anorganische StickstoffVerbindungen oder Materialien, die diese Verbindungen enthalten. Beispiele sind Ammoniumsalze wie NH4CI oder ( H4)2S04/ Nitrate, Harnstoff, oder komplexe Stickstoff uellen wie Maisquellwasser, Bierhefeautolysat, Soj bohnenmehl, Weizengluten, Hefeextrakt, Fleischextrakt, Caseinhydrolysat, Hefe oder Kartoffel- protein, die häufig auch gleichzeitig als Stickstoffquelle dienen können. Beispiele für anorganische Salze sind die Salze von Calcium, Magnesium, Natrium, Kobalt, Nickel, Molybdän, Mangan, Kalium, Zink, Kupfer und Eisen. Als Anion dieser Salze sind besonders das Chlor-, Sulfat- und Phosphation zu nennen. Ein wichtiger Faktor 5 zur Steigerung der Produktivität im erfindungsgemäßen Verfahren ist die Kontrolle der Fe2+_ oder Fe3+-Ionenkonzentration im Produktionsmedium.Advantageous nitrogen sources are organic or inorganic nitrogen compounds or materials that contain these compounds. Examples are ammonium salts such as NH 4 CI or (H 4 ) 2 S0 4 / nitrate, urea, or complex nitrogen sources such as corn steep liquor, brewer's yeast autolysate, soybean meal, wheat gluten, yeast extract, meat extract, casein hydrolyzate, yeast or potato protein, which are often also used simultaneously can serve as a nitrogen source. Examples of inorganic salts are the salts of calcium, magnesium, sodium, cobalt, nickel, molybdenum, manganese, potassium, zinc, copper and iron. The chlorine, sulfate and phosphate ions are particularly worth mentioning as the anion of these salts. An important factor 5 for increasing productivity in the process according to the invention is the control of the Fe 2 + _ or Fe 3+ ion concentration in the production medium.
Gegebenenfalls werden dem Nährmedium weitere Wachstumsfaktoren 10 zugesetzt, wie beispielsweise Vitamine oder Wachstumsförderer wie Biotin, Thiamin, Folsäure, Nicotinsäure, Pantothenat oder Pyridoxin, Aminosäuren wie Alanin, Cystein, Prolin, Asparagin- säure, Glutamin, Serin, Phenylalanin, Ornithin oder Valin, Carbonsäuren wie Citronensäure, Ameisensäure, Pimelinsäure 15 oder Milchsäure, oder Substanzen wie Dithiothreitol .If necessary, further growth factors 10 are added to the nutrient medium, such as vitamins or growth promoters such as biotin, thiamine, folic acid, nicotinic acid, pantothenate or pyridoxine, amino acids such as alanine, cysteine, proline, aspartic acid, glutamine, serine, phenylalanine, ornithine or valine, carboxylic acids such as citric acid, formic acid, pimelic acid 15 or lactic acid, or substances such as dithiothreitol.
Das Mischungsverhältnis der genannten Nährstoffe hängt von der Art der Fermentation ab und wird im Einzelfall festgelegt. Die Mediumkomponenten können alle zu Beginn der Fermentation 20 vorgelegt werden, nachdem sie falls erforderlich getrennt sterilisiert oder gemeinsam sterilisiert wurden, oder aber je nach Bedarf während der Fermentation kontinuierlich oder diskontinuierlich nachgegeben werden.The mixing ratio of the nutrients mentioned depends on the type of fermentation and is determined in each individual case. The medium components can all be introduced at the beginning of the fermentation 20, after they have been sterilized separately if necessary or sterilized together, or else they can be added continuously or discontinuously during the fermentation as required.
25 Die Züchtungsbedingungen werden so festgelegt, dass die Organismen optimal wachsen und dass die bestmöglichen Ausbeuten erreicht werden. Bevorzugte Züchtungstemperaturen liegen bei 15°C bis 40°C. Besonders vorteilhaft sind Temperaturen zwischen 25°C und 37°C. Vorzugsweise wird der pH-Wert in einem25 The breeding conditions are determined in such a way that the organisms grow optimally and that the best possible yields are achieved. Preferred cultivation temperatures are 15 ° C to 40 ° C. Temperatures between 25 ° C and 37 ° C are particularly advantageous. Preferably the pH is in one
30 Bereich von 3 bis 9 festgehalten. Besonders vorteilhaft sind pH- Werte zwischen 5 und 8. Im allgemeinen ist eine Inkubationsdauer von wenigen Stunden bis zu einigen Tagen bevorzugt von 8 Stunden bis zu 21 Tagen, besonders bevorzugt von 4 Stunden bis 14 Tagen ausreichend. Innerhalb dieser Zeit reichert sich die maximale30 range from 3 to 9 recorded. PH values between 5 and 8 are particularly advantageous. In general, an incubation period of a few hours to a few days, preferably 8 hours to 21 days, particularly preferably 4 hours to 14 days, is sufficient. The maximum accumulates within this time
35 Menge an Produkt im Medium an.35 amount of product in the medium.
Wie Medien vorteilhaft optimiert werden können, kann der Fachmann beispielsweise dem Lehrbuch Applied Microbiol Physiology, ,A Practical Approach (Eds. PM Rhodes, PF Stanbury, IRL-Press,How media can be advantageously optimized, the expert can, for example, the textbook Applied Microbiol Physiology, A Practical Approach (Eds. PM Rhodes, PF Stanbury, IRL Press,
40 1997, S. 53-73, ISBN 0 19 963577 3) entnehmen. Vorteilhafte Medien und Anzuchtsbedingungen sind für Bacillus und weitere Organismen beispielsweise der Schrift EP-A-0 405 370 speziell dem Beispiel 9, für Candida der Schrift WO 88/09822 speziell Tabelle 3 und für Ashbya der Schrift von Schmidt et al. (Micro-40 1997, pp. 53-73, ISBN 0 19 963577 3). Advantageous media and growing conditions for Bacillus and other organisms are, for example, the document EP-A-0 405 370, specifically Example 9, for Candida, the document WO 88/09822, especially Table 3, and for Ashbya, the letter from Schmidt et al. (Micro-
45 biology, 142, 1996: 419-426) zu entnehmen. Das erfindungsgemäße Verfahren kann kontinuierlich oder diskontinuierlich in batch- oder fed-batch-weise durchgeführt werden.45 biology, 142, 1996: 419-426). The process according to the invention can be carried out continuously or batchwise in batch or fed-batch fashion.
Bevorzugt kann das Verfahren unter Einsatz eines Wirtsorganismus realisiert werden, der selber bereits zur 2-KLG bzw. Vitamin C Biosynthese befähigt ist. Abhängig davon wie hoch die Ausgangsproduktivität des verwendeten Organismus ist, lässt sich die 2-KLG-Produktivität durch das erfindungsgemäße Verfahren unter- schiedlich stark steigern. In der Regel lässt sich die Produktivität vorteilhaft um mindestens 5 % , bevorzugt um mindestens 10 %, besonders bevorzugt um 20 %, ganz besonders bevorzugt um mindestens 100 % jeweils gegenüber dem Ausgangsorganismus steigern.The method can preferably be implemented using a host organism which is itself already capable of 2-KLG or vitamin C biosynthesis. Depending on how high the initial productivity of the organism used is, the 2-KLG productivity can be increased by the method according to the invention to different extents. As a rule, productivity can advantageously be increased by at least 5%, preferably by at least 10%, particularly preferably by 20%, very particularly preferably by at least 100% in each case compared to the starting organism.
Alternativ kann die Umsetzung auch mit Enzympräparation abgeleitet von einem der transgenen Organismen realisiert werden. Dabei werden die Organismen aufgeschlossen. Die Enzympräparation mit Sorboson- und/oder Sorbosedehydrogenaseaktivität kann un- aufgereinigt oder ganz oder teilweise aufgereinigt eingesetzt werden. Eine Immobilisierung, beispielsweise an einem festen Trägermaterial ist weiterhin bevorzugt.Alternatively, the reaction can also be carried out with enzyme preparation derived from one of the transgenic organisms. The organisms are unlocked. The enzyme preparation with sorbosone and / or sorbose dehydrogenase activity can be used unpurified or completely or partially purified. Immobilization, for example on a solid support material, is also preferred.
Ein weiterer Gegenstand der Erfindung betrifft Polypeptide mit L-Sorbosedehydrogenase (SDH) Aktivität gemäß SEQ ID NO: 2 und L-Sorbosondehydrogenase (SNDH) Aktivität gemäß SEQ ID NO: 4 und deren funktioneile Äquivalente.Another object of the invention relates to polypeptides with L-sorbose dehydrogenase (SDH) activity according to SEQ ID NO: 2 and L-sorbosone dehydrogenase (SNDH) activity according to SEQ ID NO: 4 and their functional equivalents.
Ferner betrifft die Erfindung Nukleinsauresequenzen kodierend für das Polypeptid gemäß SEQ ID NO: 2, bevorzugt die Nukleinsäuresequenz gemäß SEQ ID: 1 oder Nukleinsauresequenzen die aufgrund der Degeneriertheit des genetischen Codes von der Polypeptide- sequenz gemäß SEQ ID NO: 2 abgeleitet werden können. Umfasst sind ferner funktioneile Äquivalente besagter Nukleinsauresequenzen.The invention further relates to nucleic acid sequences coding for the polypeptide according to SEQ ID NO: 2, preferably the nucleic acid sequence according to SEQ ID: 1 or nucleic acid sequences which can be derived from the polypeptide sequence according to SEQ ID NO: 2 due to the degeneracy of the genetic code. Functional equivalents of said nucleic acid sequences are also included.
Ferner betrifft die Erfindung Nukleinsauresequenzen kodierend für das Polypeptid gemäß SEQ ID NO: 4, bevorzugt die Nukleinsäuresequenz gemäß SEQ ID NO: 3 oder Nukleinsauresequenzen die aufgrund der Degeneriertheit des genetischen Codes von der Polypep- tidesequenz gemäß SEQ ID NO: 4 abgeleitet werden können. Umfasst sind ferner funktioneile Äquivalente besagter Nukleinsauresequenzen.The invention further relates to nucleic acid sequences coding for the polypeptide according to SEQ ID NO: 4, preferably the nucleic acid sequence according to SEQ ID NO: 3 or nucleic acid sequences which can be derived from the polypeptide sequence according to SEQ ID NO: 4 due to the degeneracy of the genetic code. Functional equivalents of said nucleic acid sequences are also included.
"Funktionelle Äquivalente" meint insbesondere natürliche oder künstliche Mutationen der Polypeptide gemäß SEQ ID NO: 2 oder 4 sowie homologe Polypeptide aus anderen Organismen, welche weiterhin im wesentlichen gleiche Eigenschaften aufweisen. Bevorzugt sind homologe Polypeptide die aus den weiter unten beschriebenen bevorzugten prokaryotischen und eukaryotischen als Wirt geeigneten Organismen, ganz besonders bevorzugt sind Homologe aus Mikroorganismen.“Functional equivalents” means in particular natural or artificial mutations of the polypeptides according to SEQ ID NO: 2 or 4 as well as homologous polypeptides from other organisms which still have essentially the same properties. Prefers are homologous polypeptides from the preferred prokaryotic and eukaryotic organisms suitable as hosts described below, homologs from microorganisms are very particularly preferred.
Gleiche Eigenschaften meint im Bezug auf funktioneile Äquivalente zu Polypeptiden gemäß SEQ ID NO: 2, solche die eine Sorbose- dehydrogenaseaktivität aufweisen. Gleiche Eigenschaften meint im Bezug auf funktioneile Äquivalente zu Polypeptiden gemäß SEQ ID NO: 4, solche die eine Sorbosondehydrogenaseaktivität aufweisen.The same properties refer to functional equivalents to polypeptides according to SEQ ID NO: 2, those which have a sorbose dehydrogenase activity. The same properties refer to functional equivalents to polypeptides according to SEQ ID NO: 4, those which have a sorbosone dehydrogenase activity.
Eine Aktivität wird im wesentlichen als gleich bezeichnet, wenn die Umsetzung eines bestimmten, geeigneten Substrates unter Ein- Wirkung eines bestimmten, funktionellen Äquivalentes zu einem Polypeptide gemäß SEQ ID NO: 2 oder 4 unter ansonsten unveränderten Bedingungen mindestens 10 %, bevorzugt mindestens 30 %, besonders bevorzugt mindesten 50 % ganz besonders bevorzugt mindestens 70 %, am meisten bevorzugt mindestens 90 % beträgt im Vergleich zu einem Umsatz erhalten unter Verwendung eines der durch SEQ ID NO: 2 oder 4 beschriebenen Polypeptide. Als geeignetes Substrat kann beispielsweise im Falle von funktionellen Äquivalenten zu Polypeptiden gemäß SEQ ID NO: 2 Sorbose verwendet werden. Als geeignetes Substrat kann beispielsweise im Falle von funktionellen Äquivalenten zu Polypeptiden gemäß SEQ ID NO: 4 Sorboson verwendet werden.An activity is essentially said to be the same if the conversion of a specific, suitable substrate under the action of a specific, functional equivalent to a polypeptide according to SEQ ID NO: 2 or 4 under otherwise unchanged conditions is at least 10%, preferably at least 30%, particularly preferably at least 50%, very particularly preferably at least 70%, most preferably at least 90% in comparison to a conversion obtained using one of the polypeptides described by SEQ ID NO: 2 or 4. Sorbose can be used as a suitable substrate, for example in the case of functional equivalents to polypeptides according to SEQ ID NO: 2. Sorbosone can be used as a suitable substrate, for example, in the case of functional equivalents to polypeptides according to SEQ ID NO: 4.
Dabei kann die Aktivität sowohl nach unten als auch nach oben im Vergleich zu dem Vergleichswert abweichen. Bevorzugt sind dabei solche Sequenzen, deren Aktivität, gemessen anhand des Umsatzes des geeigneten Substrates, unter ansonsten unveränderten Bedingungen quantitativ um nicht mehr als 50 %, bevorzugt 25 %, besonders bevorzugt 10 % von einem Vergleichswert erhalten mit einem durch SEQ ID NO: 2 oder 4 beschriebenen Polypeptides unterscheidet. Besonders bevorzugt sind solche Sequenzen, deren Aktivität, gemessen anhand des Umsatzes des geeigneten Substrates, unter ansonsten unveränderten Bedingungen quantitativ um mehr als 50 %, bevorzugt 100 %, besonders bevorzugt 500 %, ganz besonders bevorzugt 1000 % einen Vergleichswert erhalten mit einem durch SEQ ID NO: 2 oder 4 beschriebenen Polypeptides übersteigt. Entsprechende Verfahren zur Bestimmung von Sorbose- dehydrogenase- oder Sorbosondehydrogenaseaktivität sind in Beispiel 4 und 7 angegeben.The activity can differ both downwards and upwards compared to the comparison value. Preference is given to those sequences whose activity, measured on the basis of the conversion of the suitable substrate, under otherwise unchanged conditions, quantitatively by no more than 50%, preferably 25%, particularly preferably 10%, of a comparison value obtained with a by SEQ ID NO: 2 or 4 described polypeptides differs. Particularly preferred are those sequences whose activity, measured on the basis of the conversion of the suitable substrate, under otherwise unchanged conditions, quantitatively by more than 50%, preferably 100%, particularly preferably 500%, very particularly preferably 1000%, is compared with a value obtained by SEQ ID NO: 2 or 4 polypeptides described. Corresponding methods for determining sorbose dehydrogenase or sorbosone dehydrogenase activity are given in Examples 4 and 7.
Ansonsten unveränderte Bedingungen bedeutet, dass alle Rahmenbedingungen wie beispielsweise Art des WirtsOrganismus, Kulturoder Zuchtbedingungen, Assaybedingungen (wie Puffer, Temperatur, Substrate etc . ) zwischen den zu vergleichenden Aktivitäten identisch gehalten werden und die Ansätze sich allein durch die Sequenz der zu vergleichenden Polypeptide unterscheiden.Otherwise unchanged conditions means that all framework conditions such as type of host organism, culture or breeding conditions, assay conditions (such as buffer, temperature, Substrates etc. ) are kept identical between the activities to be compared and the approaches differ only in the sequence of the polypeptides to be compared.
Mutationen umfassen Substitutionen, Additionen, Deletionen, Inversion oder Insertionen eines oder mehrerer Aminosäurereste. Somit werden beispielsweise auch solche Polypeptide durch die vorliegende Erfindung mit umfasst, welche man durch Modifikation eines Polypeptides gemäß SEQ ID NO: 2 oder 4 erhält. Ziel einer solchen Modifikation kann die weitere Eingrenzung der darin enthaltenen Sequenz, die Entfernung überflüssiger Sequenzen oder das Hinzufügen weiterer Sequenzen, zum Beispiel von Sequenzen, die die Aufreinigung oder Detektion der Polypeptide erleichtern, sein.Mutations include substitutions, additions, deletions, inversions, or insertions of one or more amino acid residues. Thus, for example, the present invention also includes those polypeptides which are obtained by modifying a polypeptide according to SEQ ID NO: 2 or 4. The aim of such a modification can be to further narrow down the sequence contained therein, to remove unnecessary sequences or to add further sequences, for example sequences which facilitate the purification or detection of the polypeptides.
Unter Homologie zwischen zwei Nukleinsauresequenzen wird die Identität der Nukleinsäuresequenz über die jeweils gesamte Sequenzlänge verstanden, die durch Vergleich mit Hilfe des Programmalgorithmus GAP (Wisconsin Package Version 10.0, University of Wisconsin, Genetics Computer Group (GCG) , Madison, USA; Altschul et al . (1997) Nucleic Acids Res. 25:3389ff) unter Einstellung folgender Parameter berechnet wird:Homology between two nucleic acid sequences is understood to mean the identity of the nucleic acid sequence over the entire total length of the sequence, which is determined by comparison using the program algorithm GAP (Wisconsin Package Version 10.0, University of Wisconsin, Genetics Computer Group (GCG), Madison, USA; Altschul et al. (1997) Nucleic Acids Res. 25: 3389ff) using the following parameters:
Gap Weight: 50 Length Weight: 3Gap Weight: 50 Length Weight: 3
Average Match: 10 Average Mismatch:0Average Match: 10 Average Mismatch: 0
Beispielhaft wird unter einer Sequenz, die eine Homologie von mindestens 80 % auf Nukleinsäurebasis mit der Sequenz SEQ ID NO: 1 aufweist, eine Sequenz verstanden, die bei einem Vergleich mit der Sequenz SEQ ID NO: 1 nach obigem Programmalgorithmus mit obigem Parametersatz eine Homologie von mindestens 80 % aufweist.By way of example, a sequence which has a homology of at least 80% based on nucleic acid with the sequence SEQ ID NO: 1 is understood to mean a sequence which, when compared with the sequence SEQ ID NO: 1 according to the above program algorithm with the above parameter set, has a homology of has at least 80%.
Unter Homologie zwischen zwei Polypeptiden wird die Identität der Aminosäuresequenz über die jeweils gesamte Sequenzlänge verstanden, die durch Vergleich mit Hilfe des Programmalgorithmus GAP (Wisconsin Package Version 10.0, University of Wisconsin, Genetics Computer Group (GCG) , Madison, USA) unter Einstellung folgender Parameter berechnet wird:Homology between two polypeptides is understood to mean the identity of the amino acid sequence over the entire entire length of the sequence, which can be determined by comparison using the program algorithm GAP (Wisconsin Package Version 10.0, University of Wisconsin, Genetics Computer Group (GCG), Madison, USA) with the following parameters is calculated:
Gap Weight: 8 Length Weight: 2Gap Weight: 8 Length Weight: 2
Average Match: 2,912 Average Mismatch:-2, 003 Beispielhaft wird unter einer Sequenz, die eine Homologie von mindestens 80 % auf Proteinbasis mit der Sequenz SEQ ID NO: 2 aufweist, eine Sequenz verstanden, die bei einem Vergleich mit der Sequenz SEQ ID NO.: 2 nach obigem Programmalgorithmus mit obigem Parametersatz eine Homologie von mindestens 80 % aufweist.Average Match: 2,912 Average Mismatch: -2, 003 By way of example, a sequence which has a homology of at least 80% on a protein basis with the sequence SEQ ID NO: 2 is understood to mean a sequence which, when compared with the sequence SEQ ID NO .: 2, has homology according to the above program algorithm with the above parameter set of at least 80%.
Funktionelle Äquivalente, abgeleitet von dem erfindungsgemäßen Polypeptid gemäß SEQ ID NO: 2 durch Substitution, Insertion oder Deletion, haben eine Homologie von mindestens 85 %, bevor- zugt 90 %, vorzugsweise mindestens 95 %, besonders bevorzugt mindestens 97 %, ganz besonders bevorzugt mindestens 99 %, und zeichnen sich durch im wesentlichen gleiche Eigenschaften wie das Polypeptid gemäß SEQ ID NO: 2 aus.Functional equivalents, derived from the polypeptide according to SEQ ID NO: 2 by substitution, insertion or deletion, have a homology of at least 85%, preferably 90%, preferably at least 95%, particularly preferably at least 97%, very particularly preferably at least 99%, and are characterized by essentially the same properties as the polypeptide according to SEQ ID NO: 2.
Funktionelle Äquivalente, abgeleitet von dem erfindungsgemäßen Polypeptid gemäß SEQ ID NO: 4 durch Substitution, Insertion oder Deletion, haben eine Homologie von mindestens 45 %, bevorzugt 60 %, vorzugsweise mindestens 80 %, besonders bevorzugt mindestens 90 %, ganz besonders bevorzugt mindestens 95 %, und zeichnen sich durch im wesentlichen gleiche Eigenschaften wie das Polypeptid gemäß SEQ ID NO: 4 aus.Functional equivalents, derived from the polypeptide according to SEQ ID NO: 4 by substitution, insertion or deletion, have a homology of at least 45%, preferably 60%, preferably at least 80%, particularly preferably at least 90%, very particularly preferably at least 95% , and are characterized by essentially the same properties as the polypeptide according to SEQ ID NO: 4.
Funktionelle Äquivalente, abgeleitet von der erfindungsgemäßen Nukleinsäuresequenz gemäß SEQ ID NO: 1 durch Substitution, Insertion oder Deletion, haben eine Homologie von mindestens 75 %, bevorzugt 80 %, vorzugsweise mindestens 85 %, besonders bevorzugt mindestens 90 %, ganz besonders bevorzugt mindestens 95 %, und kodieren für Polypeptide mit im wesentlichen den gleiche Eigenschaften wie das Polypeptide gemäß SEQ ID NO: 2. Funktionelle Äquivalente, abgeleitet von der erfindungsgemäßen Nukleinsäuresequenz gemäß SEQ ID NO: 3 durch Substitution, Insertion oder Deletion, haben eine Homologie von mindestens 50 %, bevorzugt 60 %, vorzugsweise mindestens 80 %, besonders bevorzugt mindestens 90 %, ganz besonders bevorzugt mindestens 95 %, und kodieren für Polypeptide mit im wesentlichen den gleiche Eigenschaften wie das Polypeptid gemäß SEQ ID NO: 4.Functional equivalents, derived from the nucleic acid sequence according to the invention according to SEQ ID NO: 1 by substitution, insertion or deletion, have a homology of at least 75%, preferably 80%, preferably at least 85%, particularly preferably at least 90%, very particularly preferably at least 95% , and code for polypeptides with essentially the same properties as the polypeptide according to SEQ ID NO: 2. Functional equivalents, derived from the nucleic acid sequence according to the invention according to SEQ ID NO: 3 by substitution, insertion or deletion, have a homology of at least 50%, preferably 60%, preferably at least 80%, particularly preferably at least 90%, very particularly preferably at least 95%, and code for polypeptides with essentially the same properties as the polypeptide according to SEQ ID NO: 4.
Mutationen werden bevorzugt auf der Ebene der für das Polypeptid kodierenden Nukleinsäuresequenz realisiert. Wo Insertionen, Deletionen oder Substitutionen, wie z.B. Transitionen und Transversionen, in Frage kommen, können an sich bekannte Techniken, wie in vitro-Mutagenese, "primer repair" , Restriktion oder Ligation verwendet werden. Durch Manipulationen, wie z.B. Restriktion, "chewing-back" oder Auffüllen von Überhängen für "blunt ends" können komplementäre Enden der Fragmente für die Ligation zur Verfügung gestellt werden. Zu analogen Ergebnissen kann man auch unter Verwendung der Polymerasekettenreaktion (PCR) unter Verwendung spezifischer Oligonukleotid-Primer kommen. Verfahren zur Herstellung erfindungsgemäßer funktioneller Äquivalente umfasst bevorzugt die Einführung von Mutationen in eine Nukleinsäuresequenz SEQ ID NO: 1 oder 3. Eine Mutagenese kann ungerichtet ("random") erfolgen, wobei die mutagenisierten Sequenzen anschließend bezüglich ihrer Eigenschaften nach einer "trial-by-error" Prozedur durchmustert werden. Besonders vorteilhafte Selektionskriterien umfassen beispielsweise die Enzymaktivität des von der Nukleinsäure kodierten Polypeptides. Alter- nativ können nicht-essentielle Sequenzen deletiert werden ohne die genannten Eigenschaften signifikant zu beeinträchtigen. Verfahren zur Mutagenisierung von Nukleinsauresequenzen sind dem Fachmann bekannt und schließen beispielhaft die Verwendung von Oligonukleotiden mit einer oder mehr Mutationen im Vergleich zu der zu mutierenden Region ein (z.B. im Rahmen einer "Site-speci- fic mutagenesis") . Typischerweise kommen Primer mit ungefähr 15 bis ungefähr 75 Nukleotiden oder mehr zum Einsatz, wobei bevorzugt ca. 10 bis ca. 25 oder mehr Nukleotidreste an beiden Seiten der zu verändernden Sequenz lokalisiert sind. Details und Durch- führung besagter Mutageneseverfahren sind dem Fachmann geläufig (Kunkel et al. (1987) Methods Enzyol 154:367-382; Tomic et al. (1990) Nucl Acids Res 12:1656; Upender, Raj , Weir (1995) Bio- techniques 18(l):29-30; US 4,237,224, Glover DM et al. (1995) DNA Cloning Vol.l, IRL Press (ISBN 019-963476-9), Kapitel 6, S. 193 ff) . Eine Mutagenese kann auch durch Behandlung von beispielsweise Vektoren, die eine der erfindungsgemäßen Nukleinsauresequenzen enthalten, mit mutagenisierenden Agentien wie Hydroxylamin realisiert werden. Spee et al. beschreiben eine PCR-Methode unter Verwendung von dITP zur zufälligen Mutagenese (Spee et al. (1993) Nucl Acids Res 21(3): 777- 778). Die Verwendung einer "in vitro" Rekombinationstechnik für die molekulare Evolution ist beschrieben (Stemmer et al. (1994) Proc Natl Acad Sei USA 91:10747-10751) . Beschrieben ist ferner die Kombination der PCR- und Rekombinationsmethode (Moore et al. (1996) Nature Biotechnology 14:458-467) . Die veränderten Nukleinsauresequenzen werden anschließend wieder über Vektoren in die Organismen zurückgebracht .Mutations are preferably implemented at the level of the nucleic acid sequence coding for the polypeptide. Where insertions, deletions or substitutions, such as transitions and transversions, come into question, techniques known per se, such as in vitro mutagenesis, "primer repair", restriction or ligation can be used. Manipulations such as restriction, "chewing-back" or filling in overhangs for "blunt ends" can provide complementary ends of the fragments for the ligation. Analogous results can also be obtained using the polymerase chain reaction (PCR) come using specific oligonucleotide primers. A method for producing functional equivalents according to the invention preferably comprises the introduction of mutations into a nucleic acid sequence SEQ ID NO: 1 or 3. Mutagenesis can be carried out in an undirected ("random") manner, the properties of the mutagenized sequences then being followed by a "trial-by-error""Procedure to be screened. Particularly advantageous selection criteria include, for example, the enzyme activity of the polypeptide encoded by the nucleic acid. Alternatively, non-essential sequences can be deleted without significantly impairing the properties mentioned. Methods for mutagenizing nucleic acid sequences are known to the person skilled in the art and include, for example, the use of oligonucleotides with one or more mutations compared to the region to be mutated (for example in the context of a "site-specific mutagenesis"). Typically, primers with approximately 15 to approximately 75 nucleotides or more are used, preferably approximately 10 to approximately 25 or more nucleotide residues being located on both sides of the sequence to be changed. The details and implementation of said mutagenesis methods are familiar to the person skilled in the art (Kunkel et al. (1987) Methods Enzyol 154: 367-382; Tomic et al. (1990) Nucl Acids Res 12: 1656; Upender, Raj, Weir (1995) Bio - techniques 18 (l): 29-30; US 4,237,224, Glover DM et al. (1995) DNA Cloning Vol.l, IRL Press (ISBN 019-963476-9), chapter 6, p. 193 ff). Mutagenesis can also be achieved by treating, for example, vectors which contain one of the nucleic acid sequences according to the invention with mutagenizing agents such as hydroxylamine. Spee et al. describe a PCR method using dITP for random mutagenesis (Spee et al. (1993) Nucl Acids Res 21 (3): 777-778). The use of an "in vitro" recombination technique for molecular evolution has been described (Stemmer et al. (1994) Proc Natl Acad Sei USA 91: 10747-10751). The combination of the PCR and recombination method is also described (Moore et al. (1996) Nature Biotechnology 14: 458-467). The modified nucleic acid sequences are then brought back into the organisms via vectors.
Ziel einer Mutagenese der erfindungsgemäßen Nukleinsauresequenzen kann beispielsweise die Erhöhung der Enzymaktivität sein.The aim of mutagenesis of the nucleic acid sequences according to the invention can, for example, be to increase the enzyme activity.
Funktionelle Äquivalente umfasst ferner verkürzte Sequenzen, Einzelstrang-DNA und Promotorvarianten. Die Promotoren, die den angegebenen Nukleotidsequenzen gemeinsam oder einzeln vorgeschalten sind, können durch ein oder mehrere Nukleotidaustausche, durch Insertion(en) und/oder Deletion(en) verändert sein, ohne dass aber die Funktionalität bzw. Wirksamkeit der Promotoren beein- trächtigt sind. Des weiteren können die Promotoren durch Veränderung ihrer Sequenz in ihrer Wirksamkeit erhöht oder komplett durch wirksamere Promotoren auch artfremder Organismen ausgetauscht werden.Functional equivalents also include truncated sequences, single-stranded DNA and promoter variants. The promoters that precede the specified nucleotide sequences together or individually can be changed by one or more nucleotide exchanges, by insertion (s) and / or deletion (s), without however affecting the functionality or effectiveness of the promoters. are pregnant. Furthermore, the effectiveness of the promoters can be increased by changing their sequence, or completely replaced by more effective promoters, including organisms of other species.
Unter unktionellen Äquivalenten sind auch solche Sequenzen zu verstehen, deren Nukleotidsequenz vor dem Startkodon so verändert wurden, dass die Genexpression und/oder die Proteinexpression verändert, bevorzugt erhöht wird.Non-functional equivalents are also understood to mean those sequences whose nucleotide sequence has been changed before the start codon in such a way that the gene expression and / or the protein expression is changed, preferably increased.
Für eine optimale Expression heterologer Gene in Organismen ist es vorteilhaft die Nukleinsauresequenzen entsprechend des im Organismus verwendeten spezifischen "codon usage" zu verändern. Der "codon usage" lässt sich anhand von Computerauswertungen anderer, bekannter Gene des betreffenden Organismus leicht ermitteln. Entsprechende kodon-adaptierte Nukleinsauresequenzen sind ebenfalls unter dem Begriff der funktioneile Äquivalente umfasst .For optimal expression of heterologous genes in organisms, it is advantageous to change the nucleic acid sequences in accordance with the specific "codon usage" used in the organism. The "codon usage" can easily be determined on the basis of computer evaluations of other known genes of the organism in question. Corresponding codon-adapted nucleic acid sequences are also included under the term functional equivalents.
Ein weiterer Gegenstand der Erfindung betrifft chi äre Enzyme bestehend aus zwei oder mehr der erfindungsgemäßen Polypeptide, Erscheinungsformen in denen die erfindungsgemäßen Polypeptide in Form von Homo- und/oder Heterodimeren vorliegen, sowie Fusionsproteine aus den erfindungsgemäßen Polypeptiden mit anderen Aminosäuresequenzen. Beispielhaft jedoch nicht einschränkend seien für die in den Fusionsproteinen vorteilhaft zum Einsatz kommenden Aminosäuresequenzen zu nennen:The invention further relates to chimeric enzymes consisting of two or more of the polypeptides according to the invention, manifestations in which the polypeptides according to the invention are present in the form of homo- and / or heterodimers, and fusion proteins from the polypeptides according to the invention with other amino acid sequences. By way of example, but not by way of limitation, the amino acid sequences which are advantageously used in the fusion proteins should be mentioned:
a) ein Signal- oder Transitpeptid, das das Fusionsprotein an den gewünschten Wirkort (z.B. die Piastiden) leitet, odera) a signal or transit peptide which directs the fusion protein to the desired site of action (e.g. the plastids), or
b) eine antigene Polypeptidsequenz, mit deren Hilfe ein Nachweis der Expression möglich ist (z.B. myc-tag oder his-tag) , oderb) an antigenic polypeptide sequence which can be used to detect expression (e.g. myc-tag or his-tag), or
c) eine Polypeptidsequenz, mit deren Hilfe ein Aufreinigung des Fusionsproteins ermöglicht wird (z.B. Tags aus mehreren Histidinresten wie beispielsweise Hexa-His-Tag, GST-Tag usw. )c) a polypeptide sequence with the aid of which purification of the fusion protein is made possible (e.g. tags from several histidine residues such as, for example, hexa-His tag, GST tag, etc.)
d) ein anderes Enzym, bevorzugt ein die Vitamin C-Biosynthese steigerndes Enzym.d) another enzyme, preferably an enzyme which increases vitamin C biosynthesis.
Ein weiterer Gegenstand der Erfindung betrifft transgene Expressionskassetten, die die erfindungsgemäßen Nukleinsauresequenzen enthalten. In diesen ist die zu exprimierende Nuklein- säuresequenz mit mindestens einer genetischen Kontrollsequenz - bevorzugt einem Promoter - funktioneil verknüpft, der die Transkription und/oder Translation besagter Nukleinsäuresequenz gewährleistet. Ferner können besagte Expressionskonstrukte weitere genetische Kontrollsequenzen und/oder Funktionselernente enthalten.The invention further relates to transgenic expression cassettes which contain the nucleic acid sequences according to the invention. In these, the nucleic acid sequence to be expressed is functionally linked to at least one genetic control sequence, preferably a promoter, which controls the transcription and / or translation of said nucleic acid sequence guaranteed. Furthermore, said expression constructs can contain further genetic control sequences and / or functional elements.
Unter einer funktionellen Verknüpfung versteht man allgemein eine Anordnung in der eine genetische Kontrollsequenz ihre Funktion in Bezug auf die zu exprimierende Nukleinsäuresequenz ausüben kann. Funktion kann dabei beispielsweise die Kontrolle der Expression d.h. Transkription und/oder Translation der Nukleinsäuresequenz bedeuten. Kontrolle umfasst dabei beispielsweise die Initiierung, Steigerung, Steuerung oder Suppression der Expression d.h. Transkription und ggf. Translation. Die Steuerung wiederum kann beispielsweise gewebe- und oder zeitspezifisch erfolgen. Sie kann auch induzierbar zum Beispiel durch bestimmte Chemikalien, Stress, Temperatur etc. sein.A functional link is generally understood to mean an arrangement in which a genetic control sequence can perform its function in relation to the nucleic acid sequence to be expressed. Function can, for example, control expression, i.e. Mean transcription and / or translation of the nucleic acid sequence. Control includes, for example, the initiation, increase, control or suppression of expression, i.e. Transcription and, if necessary, translation. The control, in turn, can take place in a tissue-specific or time-specific manner, for example. It can also be inducible, for example, by certain chemicals, stress, temperature etc.
Unter einer funktionellen Verknüpfung versteht man zum Beispiel die sequentielle Anordnung eines Promoter, der zu exprimierenden Nukleinsäuresequenz und ggf. weiterer regulativer Elemente wie zum Beispiel einem Terminator derart, dass jedes der regulativen Elemente seine Funktion bei der Expression der Nukleinsäuresequenz erfüllen kann.A functional link is understood to mean, for example, the sequential arrangement of a promoter, the nucleic acid sequence to be expressed and, if appropriate, further regulatory elements such as, for example, a terminator such that each of the regulatory elements can fulfill its function in the expression of the nucleic acid sequence.
Dazu ist nicht unbedingt eine direkte Verknüpfung im chemischen Sinne erforderlich. Genetische Kontrollsequenzen, wie zum Beispiel Enhancer-Sequenzen, können ihre Funktion auch von weiter entfernten Positionen oder gar von anderen DNA-Molekülen aus auf die Zielsequenz ausüben. Bevorzugt sind Anordnungen, in denen die transgen zu exprimierende Nukleinsäuresequenz hinter der als Promoter fungierenden Sequenz positioniert wird, so dass beide Sequenzen kovalent miteinander verbunden sind. Bevorzugt ist dabei der Abstand zwischen der Promotorsequenz und der zu exprimierenden Nukleinsäuresequenz geringer als 200 Basenpaare, besonders bevorzugt kleiner als 100 Basenpaare, ganz besonders bevorzugt kleiner als 50 Basenpaare.This does not necessarily require a direct link in the chemical sense. Genetic control sequences, such as, for example, enhancer sequences, can also perform their function on the target sequence from more distant positions or even from other DNA molecules. Arrangements are preferred in which the nucleic acid sequence to be expressed transgenically is positioned behind the sequence which acts as a promoter, so that both sequences are covalently linked to one another. The distance between the promoter sequence and the nucleic acid sequence to be expressed is preferably less than 200 base pairs, particularly preferably less than 100 base pairs, very particularly preferably less than 50 base pairs.
Dem Fachmann sind verschiedene Wege bekannt, um zu einer erfindungsgemäßen Expressionskassette zu gelangen. Die Herstellung einer erfindungsgemäßen Expressionskassette erfolgt beispielsweise bevorzugt durch direkte Fusion einer als Promoter fungierenden Nukleinsäuresequenz mit einer zu exprimierenden Nukleotidsequenz. Die Herstellung einer funktionellen Verknüpfung kann mittels gängiger Rekombinations- und Klonierungstechniken realisiert werden, wie sie beispielsweise in T Maniatis, EF Fritsch und J Sambrook, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (1989) sowie in TJ Silhavy, ML Berman und LW Enquist, Experiments with Gene Fusions, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (1984) und in Ausubel, FM et al., Current Protocols in Molecular Biology, Greene Publishing Assoc. and Wiley Inter- science (1987) beschrieben sind. Zwischen beide Sequenzen können aber auch weitere Sequenzen positioniert werden, die zum Beispiel die Funktion eines Linkers mit bestimmten Restriktionsenzymschnittstellen oder eines Signalpeptides haben. Auch kann die Insertion von Sequenzen zur Expression von Fusionsproteinen führen.Various ways are known to the person skilled in the art to arrive at an expression cassette according to the invention. An expression cassette according to the invention is preferably produced, for example, by direct fusion of a nucleic acid sequence functioning as a promoter with a nucleotide sequence to be expressed. A functional link can be established using common recombination and cloning techniques, such as those described in T Maniatis, EF Fritsch and J Sambrook, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (1989) and in TJ Silhavy, ML Berman and LW Enquist, Experiments with Gene Fusions, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (1984) and in Ausubel, FM et al., Current Protocols in Molecular Biology, Greene Publishing Assoc. and Wiley InterScience (1987). However, further sequences can also be positioned between the two sequences, which for example have the function of a linker with certain restriction enzyme interfaces or a signal peptide. The insertion of sequences can also lead to the expression of fusion proteins.
Eine Expressionskassette kann aber auch so konstruiert werden, das die zu exprimierende Nukleinsäuresequenz beispielsweise mittels homologer Rekombination oder auch durch zufällige Insertion unter Kontrolle eines endogenen genetischen Kontroll- elementes, beispielsweise eines Promotors, gebracht wird. Solche Konstruktionen sind ebenfalls als Expressionskassetten im Rahmen der Erfindung zu verstehen. So können zur Erhöhung der Enzymaktivitäten beispielsweise veränderte Promotorbereiche vor die natürlichen Gene gebracht werden, so dass die Expression der Gene gesteigert wird und damit die Aktivität letztlich angehoben wird. Auch am 3 '-Ende können Sequenzen eingebracht werden, die beispielsweise die Stabilität der mRNA erhöhen und dadurch eine erhöhte Translation ermöglichen. Dies führt ebenfalls zu einer höheren Enzymaktivität. Vorzugsweise werden weitere Genkopien der erfindungsgemäßen Nukleinsauresequenzen in die Zelle eingebracht. Diese Genkopien können der natürlichen Regulation unterliegen, einer veränderten Regulation, wobei die natürlichen Regulationsregionen derart verändert wurden, dass sie eine erhöhte Expression der Gene ermöglicht oder aber es können Regulationssequenzen fremder oder artfremder Gene verwendet werden. Besonders vorteilhaft ist eine Kombination der oben genannten Methoden.However, an expression cassette can also be constructed in such a way that the nucleic acid sequence to be expressed is brought under the control of an endogenous genetic control element, for example a promoter, for example by means of homologous recombination or also by random insertion. Such constructions are also to be understood as expression cassettes in the context of the invention. For example, in order to increase the enzyme activities, modified promoter regions can be placed in front of the natural genes, so that the expression of the genes is increased and thus the activity is ultimately increased. Sequences can also be introduced at the 3 'end which, for example, increase the stability of the mRNA and thereby enable increased translation. This also leads to higher enzyme activity. Further gene copies of the nucleic acid sequences according to the invention are preferably introduced into the cell. These gene copies can be subject to natural regulation, a changed regulation, the natural regulatory regions being changed in such a way that they enable increased expression of the genes, or regulatory sequences of foreign or foreign genes can be used. A combination of the above methods is particularly advantageous.
Ferner sind unter einer erfindungsgemäßen Expressionskassette solche Konstrukte zu verstehen, bei denen die endogenen SDH- oder SNDH-Gene verändert werden. Die Veränderung kann dabei in der kodierenden (z.B. dem offenen Leseraster) oder nicht kodierenden Region (z.B. der Promotorregion) stattfinden. Ziel solcher Veränderungen kann beispielsweise die Expression von Enzymen mit gegenüber den Ausgangsenzymen erhöhter Aktivität sein. EineFurthermore, an expression cassette according to the invention means constructs in which the endogenous SDH or SNDH genes are changed. The change can take place in the coding (e.g. the open reading frame) or non-coding region (e.g. the promoter region). The aim of such changes can be, for example, the expression of enzymes with increased activity compared to the starting enzymes. A
Erhöhung der Enzymaktivität kann beispielsweise erreicht werden, indem durch Veränderung der katalytischen Zentren ein erhöhter Substratumsatz erfolgt oder indem die Wirkung von Enzyminhibitoren aufgehoben wird. Das bedeutet, sie weisen eine erhöhte spezifische Aktivität auf oder ihre Aktivität wird nicht gehemmt. Auch kann eine erhöhte Enzymaktivität in einer weiteren vorteilhaften Ausführungsform durch Erhöhung der Enzymsynthese in der Zelle erfolgen, beispielsweise durch Ausschaltung von Faktoren, die die Enzymsynthese reprimieren oder durch Erhöhung der Aktivität von Faktoren oder Regulatorelementen, die eine verstärkte Synthese fördern, oder bevorzugt durch Einbringen weiterer Genkopien. Durch diese Maßnahmen wird die Gesamtaktivität der Genprodukte in der Zelle erhöht, ohne die spezifische Aktivität zu verändern. Es kann auch eine Kombination dieser Methoden verwendet werden. Das bedeutet, Erhöhung der spezifischen Aktivität sowie Erhöhung der Gesamtaktivität. Die beschriebenen Veränderungen können mit den oben beschriebenen Verfahren der Mutagenese in der dem Fachmann vertrauten Weise realisiert werden, wobei die Aktivität der jeweils erhaltenen Enzyme oder Wirtsorganismen, die diese enthalten, unter Verwendung geeigneter TestSysteme analysiert wird. Entsprechende Testsysteme zur Bestimmung einer Sorbosedehydrogenase- oder Sorbosondehydrogenaseaktivität sind dem Fachmann bekannt und unter anderem in den Beispielen 4 und 7 beschrieben.Enzyme activity can be increased, for example, by increasing the substrate turnover by changing the catalytic centers or by canceling the action of enzyme inhibitors. This means that they have an increased specific activity or their activity is not inhibited. In a further advantageous embodiment, increased enzyme activity can also be increased by increasing the enzyme synthesis take place in the cell, for example by switching off factors that repress enzyme synthesis or by increasing the activity of factors or regulatory elements that promote enhanced synthesis, or preferably by introducing additional gene copies. These measures increase the overall activity of the gene products in the cell without changing the specific activity. A combination of these methods can also be used. That means increasing specific activity as well as increasing overall activity. The changes described can be implemented with the methods of mutagenesis described above in a manner familiar to those skilled in the art, the activity of the enzymes or host organisms obtained in each case containing them being analyzed using suitable test systems. Corresponding test systems for determining a sorbose dehydrogenase or sorbosone dehydrogenase activity are known to the person skilled in the art and are described, inter alia, in Examples 4 and 7.
Dem Fachmann ist ferner bekannt, dass Nukleinsäuremoleküle auch unter Verwendung künstlicher Transkriptionsfaktoren vom Typ der Zinkfingerproteine zur Expression gebracht werden können (Beerli RR et al. (2000) Proc Natl Acad Sei USA 97 (4) :1495-500) . Diese Faktoren können an jeden beliebigen Sequenzbereich adaptiert werden und erlauben eine Expression unabhängig von bestimmten Promotorsequenzen.The skilled worker is also aware that nucleic acid molecules can also be expressed using artificial transcription factors of the zinc finger protein type (Beerli RR et al. (2000) Proc Natl Acad Sei USA 97 (4): 1495-500). These factors can be adapted to any sequence region and allow expression independent of certain promoter sequences.
Der Begriff der "genetischen Kontrollsequenzen" ist breit zu verstehen und meint all solche Sequenzen, die einen Einfluss auf das Zustandekommen oder die Funktion der erfindungsgemäßen Expressionskassette haben. Genetische Kontrollsequenzen gewährleisten zum Beispiel die Transkription und gegebenenfalls Translation in prokaryotischen oder eukaryotischen Organismen. Vorzugsweise umfassen die erfindungsgemäßen Expressionskassetten 5' -stromaufwärts von der jeweiligen transgen zu exprimierenden Nukleinsäuresequenz einen Promotor und 3 ' -stromabwärts eine Terminatorsequenz als zusätzliche genetische Kontrollsequenz, sowie gegebenenfalls weitere übliche regulative Elemente, und zwar jeweils funktioneil verknüpft mit der transgen zu exprimierenden Nukleinsäuresequenz .The term “genetic control sequences” is to be understood broadly and means all those sequences which have an influence on the formation or the function of the expression cassette according to the invention. Genetic control sequences ensure, for example, transcription and, if necessary, translation in prokaryotic or eukaryotic organisms. The expression cassettes according to the invention preferably comprise a promoter 5 'upstream of the respective nucleic acid sequence to be expressed transgenically and a terminator sequence 3' downstream as an additional genetic control sequence, as well as, if appropriate, other customary regulatory elements, in each case functionally linked to the nucleic acid sequence to be expressed.
Genetische Kontrollsequenzen sind beispielsweise beschrieben bei "Goeddel; Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, CA (1990)" oder "Gruber and Crosby, in: Methods in Plant Molecular Biology and Biotechnolgy, CRC Press, Boca Raton, Florida, eds.:Glick and Thompson, Chapter 7, 89-108" sowie den dort aufgewiesenen Zitaten. Beispiele für derartige Kontrollsequenzen sind Sequenzen, an die Induktoren oder Repressoren binden und so die transgene Expression der Nukleinsäure regulieren. Zusätzlich zu diesen neuen Kontrollsequenzen oder anstelle dieser Sequenzen kann die natürliche Regulation dieser Sequenzen vor den eigentlichen Strukturgenen noch vorhanden sein und gegebenenfalls genetisch verändert worden sein, so dass die natürliche Regulation ausgeschaltet und die Expression der Gene erhöht wurde. Die Expressionskassette kann aber auch einfacher auf- gebaut sein, das heißt, es werden keine zusätzlichen Regulationssignale vor die vorstehend erwähnten Gene insertiert und der natürliche Promotor mit seiner Regulation wird nicht entfernt . Stattdessen wird die natürliche Kontrollsequenz so mutiert, dass keine Regulation mehr erfolgt und die Genexpression gesteigert wird. Diese veränderten Promotoren können auch allein vor die natürlichen Gene zur Steigerung der Aktivität gebracht werden.Genetic control sequences are described, for example, in "Goeddel; Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, CA (1990)" or "Gruber and Crosby, in: Methods in Plant Molecular Biology and Biotechnology, CRC Press, Boca Raton , Florida, eds.:Glick and Thompson, Chapter 7, 89-108 "and the citations cited therein. Examples of such control sequences are sequences to which inducers or repressors bind and thus regulate the transgenic expression of the nucleic acid. In addition to these new control sequences or instead of these sequences, the natural regulation of these sequences may still be present before the actual structural genes and may have been genetically modified so that the natural regulation has been switched off and the expression of the genes increased. However, the expression cassette can also have a simpler structure, that is to say no additional regulatory signals are inserted in front of the genes mentioned above and the natural promoter with its regulation is not removed. Instead, the natural control sequence is mutated so that regulation no longer takes place and gene expression is increased. These modified promoters can also be placed in front of the natural genes to increase activity.
Je nach nachstehend näher beschriebenen Wirtsorganismus oder Ausgangsorganismus, der durch Einbringen der Expressionskassetten oder Vektoren in einen genetisch veränderten oder transgenen Organismus überführt wird, eignen sich verschiedene Kontrollsequenzen.Depending on the host organism or starting organism described in more detail below, which is converted into a genetically modified or transgenic organism by introducing the expression cassettes or vectors, different control sequences are suitable.
Vorteilhafte Kontrollsequenzen für die erfindungsgemäßen Expressionskassetten oder Vektoren sind beispielsweise inAdvantageous control sequences for the expression cassettes or vectors according to the invention are, for example, in
Promotoren wie cos-, tac-, trp-, tet-, lpp-, lac-, laclq-, T7-, T5-, T3-, gal-, trc-, ara-, SP6-, tuf-, 1-PR- oder im 1-PL- Promotor enthalten, die vorteilhafterweise in gram-negativen Bakterien Anwendung finden.Promoters such as cos, tac, trp, tet, lpp, lac, laclq, T7, T5, T3, gal, trc, ara, SP6, tuf, 1-PR - Or contained in the 1-PL promoter, which are advantageously used in gram-negative bacteria.
Weitere vorteilhafte Kontrollsequenzen sind beispielsweise in den gram-positiven Promotoren amy und SP02, in den Hefe- oder Pilzpromotoren ADC1, MFa , AC, P-60, CYC1, GAPDH, TEF, rp28, ADH oder in den Pflanzenpromotoren CaMV/35S [Franck et al., Cell 21 (1980) 285-294], SSU, OCS, LEB4, USP, STLSl, B33, NOS; FBPaseP (WO 98/18940) oder im Ubiquitin- oder Phaseolin-Promotor enthalten.Further advantageous control sequences are, for example, in the gram-positive promoters amy and SP02, in the yeast or fungal promoters ADC1, MFa, AC, P-60, CYC1, GAPDH, TEF, rp28, ADH or in the plant promoters CaMV / 35S [Franck et al., Cell 21 (1980) 285-294], SSU, OCS, LEB4, USP, STLS1, B33, NOS; FBPaseP (WO 98/18940) or contained in the ubiquitin or phaseolin promoter.
Für eine Expression in Vertebraten, bevorzugt in Säugern, sind Vektoren wie der TK-Promotor, der RSV 3' LTR-Promotor, der CMV Promotor, der SV40 "early" oder late" Promotor, geeignet. Weitere Promotoren sind dem Fachmann geläufig. Induzierbare Promotoren geeignet für die Verwendung in Vertebraten, bevorzugt in Säugern, umfassen beispielsweise den Tet-Pro otor/Repressor induzierbar oder reprimierbar durch Tetrazyklin oder Derivate, den Dexa- methason-induzierbaren MMTV-LTR Promotor, den Drosophila minimal heat shock Promotor induzierbar durch Ecdysone oder das Analog Ponasterone A (im Rahmen beispielsweise des pVgRXR Expressionssystems; Invitrogen, Inc.).Vectors such as the TK promoter, the RSV 3 'LTR promoter, the CMV promoter, the SV40 "early" or late "promoter are suitable for expression in vertebrates, preferably in mammals. Other promoters are known to the person skilled in the art Promoters suitable for use in vertebrates, preferably in mammals, include, for example, the tet promoter / repressor inducible or repressible by tetracycline or derivatives, the dexamethasone inducible MMTV-LTR promoter, the Drosophila minimal heat shock promoter inducible by Ecdysone or the analog Ponasterone A (as part of the pVgRXR expression system; Invitrogen, Inc.).
Als Promotoren sind auch solche geeignet, die die Expression von Genen, insbesondere Fremdgenen, in Pflanzen steuern können. Bevorzugt sind Promotoren, die eine konstitutive Expression in Pflanzen ermöglichen (Benfey et al., EMBO J. 8 (1989) 2195-2202). Vorzugsweise verwendet man insbesondere einen pflanzlichen Promotor oder einen Promotor, der einem Pflanzenvirus ent- stammt. Insbesondere bevorzugt ist der der Promotor des 35S-Also suitable as promoters are those which can control the expression of genes, in particular foreign genes, in plants. Promoters which allow constitutive expression in plants are preferred (Benfey et al., EMBO J. 8 (1989) 2195-2202). In particular, a plant promoter or a promoter derived from a plant virus is preferably used. The promoter of the 35S- is particularly preferred.
Transkriptes des Blumenkohlmosaikvirus (Franck et al.(1980) Cell 21:285-294; Odell et al.(1985) Nature 313:810-812; Shewmaker et al. (1985) Virology 140:281-288; Gardner et al. (1986) Plant Mol. Biol. 6, 221-228) oder den 19S CaMV Promotor (US 5,352,605 and WO 84/02913). Ein weiterer geeigneter konstitutiver Promotor ist der "Rubisco small subunit (SSU) "-Promotor (US 4,962,028). Ein weiteres Beispiel eines geeigneten Promotors ist der LeguminB-Promotor (Accessionnr. X03677) . Weitere bevorzugte konstitutive Promotoren sind zum Beispiel der Promotor der Nopalinsynthase aus Agrobacterium, der TR-Doppelpromotor, der OCS (Octopin Synthase) Promotor aus Agrobacterium, der Ubiquitin Promotor (Holtorf S et al. (1995) Plant Mol Biol 29:637-649), die Promotoren der vakuolärer ATPase Untereinheiten oder der Promotor eines prolinreichen Proteins aus Weizen (WO 91/13991) .Cauliflower mosaic virus transcripts (Franck et al. (1980) Cell 21: 285-294; Odell et al. (1985) Nature 313: 810-812; Shewmaker et al. (1985) Virology 140: 281-288; Gardner et al. (1986) Plant Mol. Biol. 6, 221-228) or the 19S CaMV promoter (US 5,352,605 and WO 84/02913). Another suitable constitutive promoter is the "Rubisco small subunit (SSU)" promoter (US 4,962,028). Another example of a suitable promoter is the LeguminB promoter (Accession No. X03677). Further preferred constitutive promoters are, for example, the promoter of nopaline synthase from Agrobacterium, the TR double promoter, the OCS (octopine synthase) promoter from Agrobacterium, the ubiquitin promoter (Holtorf S et al. (1995) Plant Mol Biol 29: 637-649) , the promoters of the vacuolar ATPase subunits or the promoter of a proline-rich protein from wheat (WO 91/13991).
Die Expressionskassetten können auch einen chemisch induzierbaren Promotor enthalten (Rewiew: Gatz (1997) Annu Rev Plant Physiol Plant Mol Biol 48:89-108), durch den die Expression des exogenen Gens in der Pflanze zu einem bestimmten Zeitpunkt gesteuert werden kann. Derartige Promotoren, wie z.B. der PRP1 Promotor (Ward et al., Plant. Mol. Biol. 22 (1993), 361-366), ein durch Salicylsäure induzierbarer (WO 95/19443), ein durch Benzol- sulfonamid-induzierbarer (EP-A-0388186) , ein durch Tetrazyklin- induzierbarer (Gatz et al., (1992) Plant J. 2, 397-404), ein durch Abscisinsäure-induzierbarer (EP-A 335528), ein durchThe expression cassettes can also contain a chemically inducible promoter (Rewiew: Gatz (1997) Annu Rev Plant Physiol Plant Mol Biol 48: 89-108), by means of which the expression of the exogenous gene in the plant can be controlled at a specific point in time. Such promoters, e.g. the PRP1 promoter (Ward et al., Plant. Mol. Biol. 22 (1993), 361-366), a salicylic acid-inducible (WO 95/19443), a benzenesulfonamide-inducible (EP-A-0388186) , an inducible by tetracycline (Gatz et al., (1992) Plant J. 2, 397-404), an inducible by abscisic acid (EP-A 335528), an by
Salicylsäure induzierbarer (WO 95/19443) bzw. ein durch Ethanol- oder Cyclohexanon-induzierbarer (WO 93/21334) Promotor können ebenfalls verwendet werden.Salicylic acid inducible (WO 95/19443) or an ethanol or cyclohexanone inducible (WO 93/21334) promoter can also be used.
Ferner sind Promotoren bevorzugt, die durch biotischen oder abiotischen Stress induziert werden wie beispielsweise der pathogen-induzierbare Promotor des PRPl-Gens (Ward et al. (1993) Plant Mol Biol 22:361-366), der hitzeinduzierbare hsp80-Promoter aus Tomate (US 5,187,267), der kälteinduzierare alpha-Amylase Promoter aus der Kartoffel (WO 96/12814) oder der verwundungs- induzierte pinll-Promoter (EP375091) . Als Antioxidants kann Ascorbinsäure unter diesen Stressbedingungen protektiv wirken. Eine induzierbare Induktion wäre daher zum Erreichen einer erhöhten Stresstoleranz vorteilhaft.Also preferred are promoters that are induced by biotic or abiotic stress, such as the pathogen-inducible promoter of the PRPl gene (Ward et al. (1993) Plant Mol Biol 22: 361-366), the heat-inducible hsp80 promoter from tomato ( No. 5,187,267), the cold-inducible alpha-amylase promoter from the potato (WO 96/12814) or the wound-induced pinII promoter (EP375091). Ascorbic acid can act as a protective agent under these stress conditions. An inducible induction would therefore be advantageous to achieve an increased stress tolerance.
Bevorzugt sind ferner Promotoren mit Spezifitäten für die Antheren, Ovarien, Blüten, Blätter, Stengel, Wurzeln und Samens.Also preferred are promoters with specificities for the anthers, ovaries, flowers, leaves, stems, roots and seeds.
Als samenspezifische Promotoren sind beispielsweise zu nennen wie der Promotor des Phaseolins (US 5,504,200; Bustos MM et al. (1989) Plant Cell 1 (9) : 839-53) , des 2S Albumingens (Joseffson LG et al. (1987) J Biol Chem 262:12196-12201), des Legumins (Shirsat A et al. (1989) Mol Gen Genet 215 (2) :326-331) , des USP (unknown seed protein; Bäumlein H et al. (1991) Molecular & General Genetics 225 (3) :459-467) , des Napin Gens (US 5,608,152; Stalberg K, et al. (1996) L Planta 199:515-519), des Saccharosebinde- proteins (WO 00/26388) oder der Legumin B4-Promotor (LeB4;Examples of seed-specific promoters that may be mentioned include the promoter of phaseoline (US 5,504,200; Bustos MM et al. (1989) Plant Cell 1 (9): 839-53), of 2S albumingen (Joseffson LG et al. (1987) J Biol Chem 262: 12196-12201), the legumin (Shirsat A et al. (1989) Mol Gen Genet 215 (2): 326-331), the USP (unknown seed protein; Bäumlein H et al. (1991) Molecular & General Genetics 225 (3): 459-467), the Napin gene (US 5,608,152; Stalberg K, et al. (1996) L Planta 199: 515-519), the sucrose binding protein (WO 00/26388) or the legumin B4 Promoter (LeB4;
Bäumlein H et al. (1991) Mol Gen Genet 225:121-128; Baeumlein H et al. (1992) Plant Journal 2 (2) :233-239; Fiedler U et al. (1995) Biotechnology (NY) 13 (10):1090), der Oleosin-Promoter aus Arabidopsis (WO 98/45461) , der Bce4-Promoter aus Brassica (WO 91/13980) . Vorteilhaft eingesetzt werden können der Promoter des lpt2 oder lptl-Gen (WO 95/15389, WO 95/23230) oder die Promotoren beschrieben in WO 99/16890 (Promotoren des Hordein- Gens, des Glutelin-Gens, des Oryzin-Gens, des Prolamin-Gens, des Gliadin-Gens, des Glutelin-Gens, des Zein-Gens, des Kasirin-Gens oder des Secalin-Gens) .Baumlein H et al. (1991) Mol Gen Genet 225: 121-128; Baeumlein H et al. (1992) Plant Journal 2 (2): 233-239; Fiedler U et al. (1995) Biotechnology (NY) 13 (10): 1090), the oleosin promoter from Arabidopsis (WO 98/45461), the Bce4 promoter from Brassica (WO 91/13980). The promoter of the lpt2 or lptl gene (WO 95/15389, WO 95/23230) or the promoters described in WO 99/16890 (promoters of the hordein gene, the glutelin gene, the oryzine gene, etc.) can be used advantageously Prolamin gene, the gliadin gene, the glutelin gene, the zein gene, the kasirin gene or the secalin gene).
Weitere geeignete Promotoren sind beispielsweise spezifische Promotoren für Knollen, Speicherwurzeln oder Wurzeln, wie beispielsweise der Patatin Promotor Klasse I (B33), der Promotor des Cathepsin D Inhibitors aus Kartoffel, der Promotor der Stärke Synthase (GBSS1) oder der Sporamin Promotor sowie fruchtspezifische Promotoren, wie beispielsweise der fruchtspezifische Promotor aus Tomate (EP-A 409 625) .Further suitable promoters are, for example, specific promoters for tubers, storage roots or roots, such as, for example, the patatin promoter class I (B33), the promoter of the cathepsin D inhibitor from potato, the promoter of the starch synthase (GBSS1) or the sporamine promoter and fruit-specific promoters, such as the fruit-specific promoter from tomato (EP-A 409 625).
Weiterhin geeignete Promotoren sind solche, die eine blattspezifische Expression gewährleisten. Zu nennen sind der Promotor der cytosolischen FBPase aus Kartoffel (WO 98/18940), der SSU Promotor (small subunit) der Rubisco (Ribulose-1, 5-bisphosphat- carboxylase) oder der ST-LSI Promotor aus Kartoffel (Stockhaus et al. (1989) EMBO J 8:2445-245). Bevorzugt sind ferner Promotoren, die eine Expression in Samen und pflanzlichen Embryonen steuern.Promoters which are also suitable are those which ensure leaf-specific expression. These include the promoter of the cytosolic FBPase from potatoes (WO 98/18940), the SSU promoter (small subunit) from Rubisco (ribulose-1, 5-bisphosphate carboxylase) or the ST-LSI promoter from potatoes (Stockhaus et al. (1989) EMBO J 8: 2445-245). Promoters which control expression in seeds and plant embryos are also preferred.
Weitere geeignete Promotoren sind beispielsweise fruchtreifungs- spezifische Promotoren, wie beispielsweise der fruchtreifungs- spezifische Promotor aus Tomate (WO 94/21794), blütenspezifische Promotoren, wie beispielsweise der Phytoen Synthase Promotor (WO 92/16635) oder der Promotor des P-rr Gens (WO 98/22593) oder spezifische Piastiden- oder Chromoplasten-Promotoren, wie beispielsweise der RNA-Poly erase Promotor (WO 97/06250) oder auch der Promotor der Phosphoribosylpyrophosphat Amidotransferase aus Glycine max (siehe auch Genbank Accession Nummer U87999) oder ein anderer Nodien-spezifischer Promotor wie in EP-A 249676 können vorteilhaft verwendet werden.Further suitable promoters are, for example, fruit-ripening-specific promoters, such as the fruit-ripening-specific promoter from tomato (WO 94/21794), flower-specific promoters, such as the phytoene synthase promoter (WO 92/16635) or the promoter of the P-rr gene ( WO 98/22593) or specific plastid or chromoplast promoters, such as the RNA poly erase promoter (WO 97/06250) or the promoter of the phosphoribosyl pyrophosphate amidotransferase from Glycine max (see also Genbank Accession number U87999) or another node-specific promoter as in EP-A 249676 can be used advantageously.
Prinzipiell können alle natürlichen Promotoren mit ihren Regulationssequenzen wie die oben genannten für das erfindungs- gemäße Verfahren verwendet werden. Darüber hinaus können auch synthetische Promotoren vorteilhaft verwendet werden.In principle, all natural promoters with their regulatory sequences such as those mentioned above can be used for the method according to the invention. In addition, synthetic promoters can also be used advantageously.
Ferner sind für die gezielte Expression in den Piastiden plastiden-spezifische Promotoren bevorzugt. Geeignete Promotoren sind beispielsweise beschrieben in WO 98/55595. Zu nennen sind das rpo B Promotorelement, das atoB Promotorelement, das clpP Promotorelement (siehe auch WO 99/46394) oder das 16SrDNA Promotorelement. Weiterhin sind virale Promotoren geeignet (WO 95/16783, WO 97/06250).Furthermore, plastid-specific promoters are preferred for the targeted expression in the plastids. Suitable promoters are described, for example, in WO 98/55595. These include the rpo B promoter element, the atoB promoter element, the clpP promoter element (see also WO 99/46394) or the 16SrDNA promoter element. Viral promoters are also suitable (WO 95/16783, WO 97/06250).
Eine gezielte plastidäre Expression kann auch erreicht werden, wenn man zum Beispiel einen bakteriellen oder bacteriophagen Promotor verwendet, die resultierende Expressionskassette in die plastidäre DNA einbringt und die Expression dann durch ein Fusionsprotein aus einer bakteriellen oder bacteriophagen Polyerase und einem plastidären Transitpeptid exprimiert. Ein entsprechendes Verfahren ist in US 5,925,806 beschrieben.Targeted plastid expression can also be achieved if, for example, a bacterial or bacteriophage promoter is used, the resulting expression cassette is inserted into the plastid DNA and the expression is then expressed by a fusion protein consisting of a bacterial or bacteriophage polyerase and a plastid transit peptide. A corresponding method is described in US 5,925,806.
Genetische Kontrollsequenzen umfassen ferner auch die 5'-untrans- latierte Region, Introns oder die nichtkodierende 3 '-Region von Genen. Es ist gezeigt worden, dass diese eine signifikante Funktionen bei der Regulation der Genexpression spielen können. So wurde gezeigt, dass 5 '-untranslatierte Sequenzen die transiente Expression heterologer Gene verstärken können. Sie können ferner die Gewebsspezifität fördern (Rouster J et al., Plant J. 1998, 15: 435-440.). Umgekehrt unterdrückt die 5 '-untranslatierte Region des opaque-2 Gens die Expression. Eine Deletion der entsprechenden Region führt zu einer Erhöhung der Genaktivität (Lohmer S et al., Plant Cell 1993, 5:65-73).Genetic control sequences also include the 5 'untranslated region, introns or the non-coding 3' region of genes. It has been shown that these can play a significant role in regulating gene expression. It has been shown that 5 'untranslated sequences can increase the transient expression of heterologous genes. They can also promote tissue specificity (Rouster J et al., Plant J. 1998, 15: 435-440.). Conversely, the 5 'untranslated region of the opaque-2 gene suppresses expression. Deletion of the corresponding region leads to an increase in gene activity (Lohmer S et al., Plant Cell 1993, 5: 65-73).
Die Expressionskassette kann vorteilhafterweise eine oder mehrere sogenannte "enhancer Sequenzen" funktioneil verknüpft mit dem Promoter enthalten, die eine erhöhte transgene Expression der Nukleinsäuresequenz ermöglichen. Auch am 3 '-Ende der transgen zu exprimierenden Nukleinsauresequenzen können zusätzliche vorteilhafte Sequenzen insertiert werden, wie weitere regulatorische Elemente oder Terminatoren. Die transgen zu exprimierenden Nukleinsauresequenzen können in einer oder mehreren Kopien im Genkonstrukt enthalten sein.The expression cassette can advantageously contain one or more so-called “enhancer sequences” functionally linked to the promoter, which enable increased transgenic expression of the nucleic acid sequence. Additional advantageous sequences, such as further regulatory elements or terminators, can also be inserted at the 3 'end of the nucleic acid sequences to be expressed transgenically. The transgene to be expressed Nucleic acid sequences can be contained in one or more copies in the gene construct.
Genetische Kontrollsequenzen meint ferner Sequenzen, die für Fusionsproteine bestehend aus einer Signalpeptidsequenz kodieren.Genetic control sequences also mean sequences which code for fusion proteins consisting of a signal peptide sequence.
Die Expression des Zielgenes ist in jedem gewünschten Zell- kompartiment, wie z.B. dem Endomembransystem, der Vakuole und den Chloroplasten möglich. Durch Nutzung des sekretorischen Weges sind gewünschte Glykosylierungsreaktionen, besondere Faltungen u.a. möglich. Auch die Sekretion des Zielproteins zur Zelloberfläche bzw. die Sezernierung ins Kulturmedium, beispielsweise bei Nutzung suspensionskultivierter Zellen oder Protoplasten ist möglich. Die dafür notwendigen TargetSequenzen können sowohl in einzelnen Vektorvariationen berücksichtigt werden als auch durch Verwendung einer geeigneten Klonierungsstrategie gemeinsam mit dem zu klonierenden Zielgen in den Vektor mit eingebracht werden. Als Targetsequenzen können sowohl Gen eigene, sofern vorhanden, oder heterologe Sequenzen genutzt werden. Zusätz- liehe, heterologe zur funktionellen Verknüpfung bevorzugte aber nicht darauf beschränkte Sequenzen sind weitere Targeting- Sequenzen zur Gewährleistung der subzellulären Lokalisation im Apoplasten, in der Vakuole, in Piastiden, im Mitochondrium, im Endoplasmatischen Retikulum (ER) , im Zellkern, in Ölkörperchen oder anderen Kompartimenten; sowie Translationsverstärker wie die 5 '-Leadersequenz aus dem Tabak-Mosaik-Virus (Gallie et al. (1987) Nucl. Acids Res. 15 : 8693-8711) und dergleichen. Das Verfahren, an sich nicht in den Piastiden lokalisierte Proteine, gezielt in die Piastiden zu transportieren ist beschrieben (Klosgen RB und Weil JH (1991) Mol Gen Genet 225 (2) :297-304; Van Breusegem F et al. (1998) Plant Mol Biol.38 (3) :491-496) . Bevorzugte Sequenzen sind:The expression of the target gene is in any desired cell compartment, e.g. the endomembrane system, the vacuole and the chloroplasts possible. By using the secretory path, desired glycosylation reactions, special folds, etc. possible. Secretion of the target protein to the cell surface or secretion into the culture medium, for example when using suspension-cultured cells or protoplasts, is also possible. The target sequences required for this can be taken into account both in individual vector variations and can be introduced into the vector together with the target gene to be cloned by using a suitable cloning strategy. Both target genes, if available, or heterologous sequences can be used as target sequences. Additional, heterologous sequences preferred but not limited to the functional linkage are further targeting sequences to ensure subcellular localization in the apoplast, in the vacuole, in plastids, in the mitochondrion, in the endoplasmic reticulum (ER), in the cell nucleus, in oil corpuscles or other compartments; and translation enhancers such as the 5 'leader sequence from the tobacco mosaic virus (Gallie et al. (1987) Nucl. Acids Res. 15: 8693-8711) and the like. The process of specifically transporting proteins that are not located in the plastids per se into the plastids is described (Klosgen RB and Weil JH (1991) Mol Gen Genet 225 (2): 297-304; Van Breusegem F et al. (1998) Plant Mol Biol. 38 (3): 491-496). Preferred sequences are:
a) kleine Untereinheit (SSU) der Ribulosebisphosphatcarboxylase (Rubisco ssu) aus Erbse, Mais, Sonnenblumea) Small subunit (SSU) of ribulose bisphosphate carboxylase (Rubisco ssu) from pea, corn, sunflower
b) Transitpeptide abgeleitet von Genen der pflanzlichen Fettbiosynthese wie das Transitpeptid des plastidären "Acyl Carrier Protein" (ACP) , die Stearyl-ACP-Desaturase, ß-Keto- acyl-ACP Synthase oder die Acyl-ACP-Thioesterase.b) transit peptides derived from genes of vegetable fat biosynthesis such as the transit peptide of the plastid "acyl carrier protein" (ACP), the stearyl-ACP desaturase, β-keto-acyl-ACP synthase or the acyl-ACP thioesterase.
c) das Transitpeptid für GBSSI ("Starch Granule Bound Synthase I")c) the transit peptide for GBSSI ("Starch Granule Bound Synthase I")
d) LHCP II Gene. Als Kontrollsequenzen sind weiterhin solche zu verstehen, die eine homologe Rekombination bzw. Insertion in das Genom eines Wirtsorganismus ermöglichen oder die Entfernung aus dem Genom erlauben. Methoden wie die cre/lox-Technologie erlauben eine gewebsspezifische, unter Umständen induzierbare Entfernung der Expressionskassette aus dem Genom des Wirtsorganismus (Sauer B. Methods. 1998; 14(4) :381-92) . Hier werden bestimmte flankierende Sequenzen dem Zielgen angefügt (lox-Sequenzen) , die später eine Entfernung mittels der cre-Rekombinase ermöglichen.d) LHCP II genes. Control sequences are also to be understood as those which enable homologous recombination or insertion into the genome of a host organism or which allow removal from the genome. Methods such as cre / lox technology allow tissue-specific, possibly inducible removal of the expression cassette from the genome of the host organism (Sauer B. Methods. 1998; 14 (4): 381-92). Here certain flanking sequences are added to the target gene (lox sequences), which later enable removal using the cre recombinase.
Als genetische Kontrollsequenzen geeignete Polyadenylierungs- signale sind pflanzliche Polyadenylierungssignale, vorzugsweise solche, die im wesentlichen T-DNA Polyadenylierungssignale aus Agrobacterium turne faciens, insbesondere des Gens 3 der T-DNA (Octopin Synthase) des Ti-Plasmids pTiACHS entsprechen (Gielen et al.(1984) EMBO J. 3:835ff) oder funktionelle Äquivalente davon. Beispiele für besonders geeignete Terminatorsequenzen sind der OCS (Octopin-Synthase) -Terminator und der NOS (Nopalin- Synthase) -Terminator.Polyadenylation signals suitable as genetic control sequences are plant polyadenylation signals, preferably those which essentially correspond to T-DNA polyadenylation signals from Agrobacterium turne faciens, in particular gene 3 of T-DNA (octopine synthase) of the Ti plasmid pTiACHS (Gielen et al. ( 1984) EMBO J. 3: 835ff) or functional equivalents thereof. Examples of particularly suitable terminator sequences are the OCS (octopine synthase) terminator and the NOS (nopalin synthase) terminator.
Die erfindungsgemäßen Expressionskassetten und die von ihnen abgeleiteten Vektoren können weitere Funktionselemente enthalten.The expression cassettes according to the invention and the vectors derived from them can contain further functional elements.
Der Begriff Funktionselement ist breit zu verstehen und meint all solche Elemente, die einen Einfluss auf Herstellung, Vermehrung oder Funktion der erfindungsgemäßen Expressionskassetten oder von diesen abgeleitete Vektoren oder Organismen haben. Beispielhaft aber nicht einschränkend seien zu nennen:The term functional element is to be understood broadly and means all those elements which have an influence on the production, multiplication or function of the expression cassettes according to the invention or of vectors or organisms derived therefrom. Examples include, but are not limited to:
a) Selektionsmarker sind in der Regel erforderlich, um erfolgreich homolog rekombinierte oder transformierte Zellen zu selektionieren. Der mit dem Expressionskonstrukt eingebrachte selektionierbaren Marker verleiht den erfolgreich rekombinierten oder transformierten Zellen eine Resistenz gegen ein Biozid (zum Beispiel ein Herbizid wie Phosphinothricin, Glyphosat oder Bromoxynil) , einen Metabolismusinhibitor wie 2-Desoxyglucose-6-phosphat (WO 98/45456) oder ein Antibiotikum, wie zum Beispiel Kanamycin, G 418, Bleomycin, Hygromycin) verleiht. Der Selektionsmarker erlaubt die Selektion der transformierten Zellen von untransformierten (McCormick et al.(1986) Plant Cell Reports 5:81-84). Besonders bevorzugte Selektionsmarker sind solche die eine Resistenz gegen Herbizide verleihen. Beispielhaft als Selektionsmarker seien genannt: DNA Sequenzen, die für Phosphinothricinacetyltransferasen (PAT) kodieren, welche die freie Aminogruppe des Gluta- minsynthaseinhibitors Phosphinothricin (PPT) acetylierten und damit eine Detoxifizierung des PPT erreicht (de Block et al. (1987) EMBO J. 6:2513-2518) (auch Bialophos® resistenzgen (bar) genannt)a) Selection markers are usually required in order to successfully select homologously recombined or transformed cells. The selectable marker introduced with the expression construct gives the successfully recombined or transformed cells resistance to a biocide (for example a herbicide such as phosphinothricin, glyphosate or bromoxynil), a metabolism inhibitor such as 2-deoxyglucose-6-phosphate (WO 98/45456) or Antibiotic, such as Kanamycin, G 418, bleomycin, hygromycin). The selection marker permits the selection of the transformed cells from untransformed ones (McCormick et al. (1986) Plant Cell Reports 5: 81-84). Particularly preferred selection markers are those which confer resistance to herbicides. Examples of selection markers are: DNA sequences which code for phosphinothricin acetyltransferases (PAT), which acetylate the free amino group of the glutamine synthase inhibitor phosphinothricin (PPT) and thus detoxify the PPT (de Block et al. (1987) EMBO J. 6: 2513-2518) ( also called Bialophos ® resistance gene (bar))
- 5-Enolpyruvylshikimat-3-phosphatsynthasegene (EPSP Synthasegene) , die eine Resistenz gegen Glyphosat® (N- (phosphonomethyl) glycin) verleihen,5-enolpyruvylshikimate-3-phosphate synthase genes (EPSP synthase genes) which confer resistance to Glyphosat® (N- (phosphonomethyl) glycine),
das für das Glyphosat degradierende Enzyme kodierende gox Gen (Glyphosatoxidoreduktase) ,the gox gene (glyphosate oxidoreductase) coding for the glyphosate-degrading enzyme,
- das den Gen (kodierend für eine Dehalogenase, die Dalapon® inaktiviert) ,- the gene (coding for a dehalogenase which inactivates Dalapon ® ),
Sulfonylurea- und Imidazolinon inaktivierende Aceto- lactatsynthasenSulfonylurea and imidazolinone inactivating aceto-lactate synthases
- bxn Gene, die für Bromoxynil degradierende Nitrilase- enzyme kodierenbxn genes which code for bromoxynil-degrading nitrilase enzymes
das Kanamycin- bzw. G418- Resistenzgen (NPTII) . Das NPTII Gen codiert für eine Neomycinphosphotransferase, die durch eine Phosphorylierungsreaktion die inhibierende Wirkung von Kanamycin, Neomycin, G418 und Paromomycin reduziert .the kanamycin or G418 resistance gene (NPTII). The NPTII gene codes for a neomycin phosphotransferase, which reduces the inhibitory effect of kanamycin, neomycin, G418 and paromomycin through a phosphorylation reaction.
- Nukleinsauresequenzen die Resistenzen gegen Tetracyclin, Spectinomycin, Ampecillin oder Chloramphenicol verleihen.- Nucleic acid sequences confer resistance to tetracycline, spectinomycin, ampecillin or chloramphenicol.
das D0GR1-Gen. Das Gen D0GR1 wurde aus der Hefe Saccharo- myces cerevisiae isoliert (EP 0 807 836) . Es codiert für eine 2-Desoxyglukose-6-phosphat Phosphatase, die Resistenz gegenüber 2-D0G verleiht (Randez-Gil et al . 1995, Yeast 11, 1233-1240).the D0G R 1 gene. The gene D0G R 1 was isolated from the yeast Saccharomyces cerevisiae (EP 0 807 836). It codes for a 2-deoxyglucose-6-phosphate phosphatase that confers resistance to 2-D0G (Randez-Gil et al. 1995, Yeast 11, 1233-1240).
Reportergene, die für leicht quantifizierbare Proteine kodieren und über Eigenfarbe oder Enzymaktivität eineReporter genes that code for easily quantifiable proteins and a via self-color or enzyme activity
Bewertung der Transformationseffizienz, des Expressionsortes oder -Zeitpunktes gewährleisten. Dieses Reportergen sollte eine leichte Detektierbarkeit über einen Wachstums-, Fluoreszenz-, Chemo- oder Biolumineszenzassay oder über eine photometrische Messung ermöglichen. Beispielhaft seien als Reportergene Hydrolasegene, Fluoreszenzproteingene, Biolumineszenzgene, Glucosidasegene, Peroxidasegen oder Bio- synthesegene wie die 2-KLG-Synthesegene, das Luciferasegen, ß-Galactosidasegen, gfp-Gen, Lipasegen, Esterasegen, Peroxi- dasegen, ß-Lactamasegen, Acetyl-, Phospo- oder Adenyltrans- ferasegen genannt. Diese Gene ermöglichen eine leichte Mess- barkeit und Quantifizierbarkeit der Transkriptionsaktivität und damit der Expression der Gene. Damit lassen sich Genomstellen identifizieren, die eine bis zu Faktor 2 unterschiedliche Produktivität zeigen. Im Falle, dass die Biosynthesegene selber eine leichte Detektierbarkeit ermöglichen, kann auf ein zusätzliches Reportergen verzichtet werden. Ganz besonders bevorzugt sind dabei Gene kodierend für Reporter- Proteine (siehe auch Schenborn E, Groskreutz D. Mol Bio- technol. 1999; 13(l):29-44) wieEnsure evaluation of the transformation efficiency, the expression location or time. This reporter gene should allow easy detection via a growth, fluorescence, chemo- or bioluminescence assay or via a photometric measurement. Examples include reporter genes, hydrolase genes, fluorescence protein genes, bioluminescence genes, glucosidase genes, peroxidase genes or biological Synthetic genes such as the 2-KLG synthetic genes, the luciferase gene, ß-galactosidase gene, gfp gene, lipase gene, esterase gene, peroxidase gene, ß-lactamase gene, acetyl-, phospho- or adenyl-transferase gene called. These genes make it easy to measure and quantify the transcription activity and thus the expression of the genes. It can be used to identify genome sites that show up to a factor of 2 different productivity. In the event that the biosynthesis genes themselves enable easy detection, an additional reporter gene can be dispensed with. Genes coding for reporter proteins are very particularly preferred (see also Schenborn E, Groskreutz D. Mol Biotechnol. 1999; 13 (l): 29-44) such as
- "green fluorescence protein" (GFP) (Chui WL et al., Curr Biol 1996, 6:325-330; Leffel SM et al., Biotechniques . 23(5):912-8, 1997; Sheen et al. (1995) Plant Journal 8(5) :777-784; Haseloff et al.(1997) Proc Natl Acad Sei USA 94(6) :2122-2127; Reichel et al. (1996) Proc Natl Acad Sei USA 93(12) :5888-5893; Tian et al. (1997) Plant Cell Rep 16:267-271; WO 97/41228)."Green fluorescence protein" (GFP) (Chui WL et al., Curr Biol 1996, 6: 325-330; Leffel SM et al., Biotechniques. 23 (5): 912-8, 1997; Sheen et al. ( 1995) Plant Journal 8 (5): 777-784; Haseloff et al. (1997) Proc Natl Acad Sei USA 94 (6): 2122-2127; Reichel et al. (1996) Proc Natl Acad Sei USA 93 (12) : 5888-5893; Tian et al. (1997) Plant Cell Rep 16: 267-271; WO 97/41228).
Chloramphenicoltransferase,chloramphenicol,
- Luziferase (Millar et al., Plant Mol Biol Rep 1992 10:324-414; Ow et al . (1986) Science, 234:856-859); erlaubt Bioluminescenzdetektion.- Luciferase (Millar et al., Plant Mol Biol Rep 1992 10: 324-414; Ow et al. (1986) Science, 234: 856-859); allows bioluminescence detection.
ß-Galactosidase, kodiert für ein Enzym für das verschie- denen chromogene Substrate zur Verfügung stehen.β-galactosidase, encoded for an enzyme for which various chromogenic substrates are available.
ß-Glucuronidase (GUS) (Jefferson et al., EMBO J. 1987, 6, 3901-3907) oder das uidA Gen, das ein Enzym für verschiedene chromogene Substrate kodiert.β-glucuronidase (GUS) (Jefferson et al., EMBO J. 1987, 6, 3901-3907) or the uidA gene, which encodes an enzyme for various chromogenic substrates.
- R-Locus Genprodukt:Protein, das die Produktion von Antho- cyaninpigmenten (rote Färbung) in pflanzlichen Gewebe reguliert und so eine direkte Analyse der Promotoraktivität ohne Zugabe zusätzlicher Hilfsstoffe oder chromogener Substrate ermöglicht (Dellaporta et al.,- R-Locus gene product: protein that regulates the production of anthocyanin pigments (red coloring) in plant tissue and thus enables a direct analysis of the promoter activity without the addition of additional auxiliaries or chromogenic substrates (Dellaporta et al.,
In: Chromosome Structure and Function: Impact of New Concepts, 18th Stadler Genetics Symposium, 11:263-282, 1988). ß-Lactamase (Sutcliffe (1978) Proc Natl Acad Sei USA 75:3737-3741), Enzym für verschiedene chromogene Substrate (z.B. PADAC, eine chromogenes Cephalosporin) .In: Chromosome Structure and Function: Impact of New Concepts, 18 th Stadler Genetics Symposium, 11: 263-282, 1988). β-lactamase (Sutcliffe (1978) Proc Natl Acad Sei USA 75: 3737-3741), enzyme for various chromogenic substrates (eg PADAC, a chromogenic cephalosporin).
- xylE Genprodukt (Zukowsky et al. (1983) Proc Natl Acad Sei USA 80:1101-1105), Catecholdioxygenase, die chromogene Catechole umsetzen kann.- xylE gene product (Zukowsky et al. (1983) Proc Natl Acad Sei USA 80: 1101-1105), catechol dioxygenase, which can convert chromogenic catechols.
Alpha-Amylase (Ikuta et al. (1990) Bio/technol. 8:241-242).Alpha amylase (Ikuta et al. (1990) Bio / technol. 8: 241-242).
Tyrosinase (Katz et al. (1983) J Gen Microbiol 129:2703-2714), Enzym, das Tyrosin zu DOPA und Dopaquinon oxidiert, die infolge das leicht nachweisbare Melanin bilden.Tyrosinase (Katz et al. (1983) J Gen Microbiol 129: 2703-2714), enzyme that oxidizes tyrosine to DOPA and dopaquinone, which consequently form the easily detectable melanin.
Aequorin (Prasher et al. (1985) Biochem Biophys Res Commun 126 (3) :1259-1268) , kann in der Calcium-sensitiven Bioluminescenzdetektion verwendet werden.Aequorin (Prasher et al. (1985) Biochem Biophys Res Commun 126 (3): 1259-1268) can be used in calcium-sensitive bioluminescence detection.
c) Replikationsursprünge, die eine Vermehrung der erfindungsgemäßen Expressionskassetten oder Vektoren in zum Beispiel E.coli gewährleisten. Beispielhaft seien genannt ORI (origin of DNA replication) , der pBR322 ori oder der P15A ori (Sambrook et al.: Molecular Cloning. A Laboratory Manual, 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1989) .c) Origins of replication, which ensure an increase in the expression cassettes or vectors according to the invention in, for example, E. coli. Examples are ORI (origin of DNA replication), the pBR322 ori or the P15A ori (Sambrook et al .: Molecular Cloning. A Laboratory Manual, 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1989).
d) Elemente zum Beispiel "Bordersequenzen" , die einen Agro- bakterien-vermittelte Transfer in Pflanzenzellen für died) Elements, for example "border sequences", which represent an agrobacterium-mediated transfer in plant cells for the
Übertragung und Integration ins Pflanzengenom ermöglichen, wie zum Beispiel die rechte oder linke Begrenzung der T-DNA oder die vir-Region.Enables transmission and integration into the plant genome, such as the right or left border of the T-DNA or the vir region.
e) Multiple Klonierungsregionen (MCS) erlauben und erleichtern die Insertion eines oder mehrerer Nukleinsauresequenzen.e) Multiple cloning regions (MCS) allow and facilitate the insertion of one or more nucleic acid sequences.
Ein weiterer Gegenstand der Erfindung betrifft Vektoren, die die erfindungsgemäßen Nukleinsauresequenzen oder Expressionskassetten umfassen. Die Einführung einer erfindungsgemäßen Nukleins uresequenzen oder Expressionskassetten in Zellen kann vorteilhaft unter Verwendung von Vektoren realisiert werden, in die diese Nukleinsauresequenzen bzw. Kassetten insertiert werden. Vektoren können beispielhaft Plasmide, Cosmide, Phagen, Viren, Retroviren oder auch Agrobacterien sein. Als Vektoren zur ExpressionThe invention further relates to vectors which comprise the nucleic acid sequences or expression cassettes according to the invention. The introduction of a nucleic acid sequence or expression cassette according to the invention into cells can advantageously be implemented using vectors into which these nucleic acid sequences or cassettes are inserted. Vectors can be, for example, plasmids, cosmids, phages, viruses, retroviruses or also agrobacteria. As vectors for expression
a) in E.coli sind bevorzugt pQE70, pQE60 und pQE-9 (QIAGEN, Inc.); pBluescript Vektoren, Phagescript Vektoren, pNH8A, pNHlδa, pNHlδA, pNH46A (Stratagene Cloning Systems, Inc.); ptrc99a, pKK223-3, pKK233-3, pDR540, pRIT5 (Pharmacia Biotech, Inc.); pLG338, pACYC184, pBR322, pUC18, pUC19, pKC30, pRep4, pHSl, pHS2, pPLc236, pMBL24, pLG200, pUR290, pIN- III113-Bl, λgtll oder pBdCI. Besonders bevorzugt sind soge- nannte "Broad Host Range" Vektoren, wie z.B. pBHRl, pBBR122 oder pRS201,a) pQE70, pQE60 and pQE-9 (QIAGEN, Inc.) are preferred in E. coli; pBluescript vectors, Phagescript vectors, pNH8A, pNHlδa, pNHlδA, pNH46A (Stratagene Cloning Systems, Inc.); ptrc99a, pKK223-3, pKK233-3, pDR540, pRIT5 (Pharmacia Biotech, Inc.); pLG338, pACYC184, pBR322, pUC18, pUC19, pKC30, pRep4, pHSl, pHS2, pPLc236, pMBL24, pLG200, pUR290, pIN-III 113 -Bl, λgtll or pBdCI. So-called “broad host range” vectors, such as pBHR1, pBBR122 or pRS201, are particularly preferred,
b) in Streptomyces sind bevorzugt pIJlOl, pIJ364, pIJ702 oder pIJ361,b) in Streptomyces, pIJlOl, pIJ364, pIJ702 or pIJ361 are preferred,
c) in Bacillus sind bevorzugt pUBllO, pC194 oder pBD214, in Corynebacterium pSA77 oder pAJ667,c) in Bacillus pUBllO, pC194 or pBD214 are preferred, in Corynebacterium pSA77 or pAJ667,
d) in Pilzen sind bevorzugt pALSl, pIL2 oder pBBH6, in Hefen 2μM, pAG-1, YEp6, YEpl3 oder pEMBLYe23d) pALSl, pIL2 or pBBH6 are preferred in fungi, 2μM, pAG-1, YEp6, YEpl3 or pEMBLYe23 in yeasts
e) in Pflanzen sind bevorzugt pLGV23, pGHlac+, pBINl9, pAK2004 oder pDH51,e) plants are preferably pLGV23, pGHlac + , pBINl9, pAK2004 or pDH51,
f) in Eukaryoten v.a. Säugern sind bevorzugt pWLNEO, pSV2CAT, pOG44, pXTl und pSG (Stratagene Inc.); pSVK3, pBPV, pMSG und pSVL (Pharmacia Biotech, Inc.). Als induzierbare Vektoren seien pTet-tTak, pTet-Splice, pcDNA4/T0, pcDNA4/TO /LacZ, pcDNA6/TR, pcDNA4/T0/Myc-His /LacZ, pcDNA4/T0/Myc-His A, pcDNA4/T0/Myc-His B, pcDNA4/T0/Myc-His C, pVgRXR (Invitrogen, Inc.) oder die pMAM-Serie (Clontech, Inc.; GenBank Accession No. : U02443) zu nennen. Diese stellen bereits das induzierbare regulatorische Kontrollelement beispielsweise für eine chemisch, induzierbare Expression zur Verfügung,f) in eukaryotes v.a. Mammals are preferred pWLNEO, pSV2CAT, pOG44, pXTl and pSG (Stratagene Inc.); pSVK3, pBPV, pMSG and pSVL (Pharmacia Biotech, Inc.). Examples of inducible vectors are pTet-tTak, pTet-Splice, pcDNA4 / T0, pcDNA4 / TO / LacZ, pcDNA6 / TR, pcDNA4 / T0 / Myc-His / LacZ, pcDNA4 / T0 / Myc-His A, pcDNA4 / T0 / Myc -His B, pcDNA4 / T0 / Myc-His C, pVgRXR (Invitrogen, Inc.) or the pMAM series (Clontech, Inc .; GenBank Accession No.: U02443). These already provide the inducible regulatory control element, for example for chemical, inducible expression,
g) in Hefe beispielhaft pYES2, pYDl, pTEFl/Zeo, pYES2/GS, pPICZ,pGAPZ, pGAPZalph, pPIC9, pPIC3.5, PHIL-D2, PHIL-Sl, PPIC3SK, pPIC9K, und PA0815 (Invitrogen, Inc.),g) in yeast, for example pYES2, pYDl, pTEFl / Zeo, pYES2 / GS, pPICZ, pGAPZ, pGAPZalph, pPIC9, pPIC3.5, PHIL-D2, PHIL-Sl, PPIC3SK, pPIC9K, and PA0815 (Invitrogen, Inc.),
oder Derivate der vorstehend genannten Plasmide. Die genannten Plasmide stellen eine kleine Auswahl der möglichen Plasmide dar. Weitere Plasmide sind dem Fachmann wohl bekannt und können beispielsweise aus dem Buch Cloning Vektors (Eds. Pouwels P. H. et al. Elsevier, Amsterdam-New York-Oxford, 1985, ISBN 0 444 904018) entnommen werden. Geeignete pflanzliche Vektoren werden unter anderem in "Methods in Plant Molecular Biology and Biotechnology" (CRC Press), Kap. 6/7, S.71-119 beschrieben. In einer vorteilhaften Ausführungsform wird die Einführung der Expressionskassette mittels Plasmidvektoren realisiert. Bevorzugt sind solche Vektoren, die eine stabile Integration der Expressionskassette in das Wirtsgenom ermöglichen.or derivatives of the plasmids mentioned above. The plasmids mentioned represent a small selection of the possible plasmids. Further plasmids are well known to the person skilled in the art and can be found, for example, in the book Cloning Vectors (Eds. Pouwels PH et al. Elsevier, Amsterdam-New York-Oxford, 1985, ISBN 0 444 904018 ) can be removed. Suitable plant vectors are described in "Methods in Plant Molecular Biology and Biotechnology" (CRC Press), Chap. 6/7, p.71-119. In an advantageous embodiment, the expression cassette is introduced by means of plasmid vectors. Preferred vectors are those which enable stable integration of the expression cassette into the host genome.
Sollen mehrere Gene (zum Beispiel die erfindungsgemäßen Sorbose- dehydrogenase- und Sorbosondehydrogenasegene) gemeinsam in einen Organismus eingeführt werden, so können alle zusammen mit einem Reportergen oder Selektionsmarker in einem einzigen Vektor oder jedes einzelne Gen mit einem Reportergen oder Seleketionsmarker in je einem Vektor in den Organismus eingebracht werden, wobei die verschiedenen Vektoren gleichzeitig oder sukzessive eingebracht werden können.If several genes (for example the sorbose dehydrogenase and sorbosone dehydrogenase genes according to the invention) are to be introduced together into one organism, then all of them together with a reporter gene or selection marker in a single vector or each individual gene with a reporter gene or selection marker in a vector in each Organism are introduced, wherein the different vectors can be introduced simultaneously or successively.
Ein weiterer Gegenstand der Erfindung betrifft Organismen enthaltend eine der erfindungsgemäßen Nukleinsauresequenzen, Expressionskonstrukte oder Plasmide.The invention further relates to organisms containing one of the nucleic acid sequences according to the invention, expression constructs or plasmids.
Organismus meint bevorzugt Mikroorganismen, tierische oder pflanzliche Organismen oder von diesen abgeleitete Zellen (beispielsweise Säugerzellen oder Pflanzenzellen) , sowie Gewebe, Teile, Organe oder Vermehrungsgut (Samen oder Früchte) der vorgenannten.Organism preferably means microorganisms, animal or plant organisms or cells derived therefrom (for example mammalian cells or plant cells), as well as tissues, parts, organs or reproductive material (seeds or fruits) of the aforementioned.
Als Organismen bzw. WirtsOrganismen für das erfindungsgemäße Verfahren eignen sich bevorzugt Organismen, die in der Lage sind L-Sorbose, L-Sorboson, 2-KLG oder Ascorbinsäure zu synthetisieren. Bevorzugt werden Organismen, die natürlicherweise L-Sorbose, L-Sorboson, 2-KLG oder Ascorbinsäure synthetisieren können. Aber auch Organismen, die aufgrund des Einbringens der kompletten 2-KLG-Synthesegene in der Lage sind 2-KLG zu synthetisieren, sind für das erfindungsgemäße Verfahren geeignet.Suitable organisms or host organisms for the process according to the invention are preferably organisms which are capable of synthesizing L-sorbose, L-sorbosone, 2-KLG or ascorbic acid. Organisms that can naturally synthesize L-sorbose, L-sorbosone, 2-KLG or ascorbic acid are preferred. However, organisms which are able to synthesize 2-KLG due to the introduction of the complete 2-KLG synthesis genes are also suitable for the process according to the invention.
Für das erfindungsgemäße Verfahren sind Organismen wie Bakterien, Hefen, Pilze, Vertebraten oder Invertebraten (sowie von diesen abgeleitete Zellen wie z.B. Säugerzellen) oder Pflanzen geeignet.Organisms such as bacteria, yeasts, fungi, vertebrates or invertebrates (as well as cells derived therefrom such as mammalian cells) or plants are suitable for the method according to the invention.
Beispielhaft aber nicht einschränkend umfasst sindAre included by way of example but not by way of limitation
a) Pilze, wie Aspergillus, Eremotheciurα, Trichoderma, Ashbya, Neurospora, Fusarium, Beauveria oder weitere in Indian Chem Engr. Section B. Vol 37, No 1,2 (1995) auf Seite 15, Tabelle 6 beschriebene Pilze. Besonders bevorzugt ist der filamentöse Hemiascomycet Ashbya gossypii oder Eremothecium ashbyii .a) Mushrooms such as Aspergillus, Eremotheciurα, Trichoderma, Ashbya, Neurospora, Fusarium, Beauveria or others in Indian Chem Engr. Section B. Vol 37, No 1,2 (1995) on page 15, Table 6 described mushrooms. The filamentous Hemiascomycet Ashbya gossypii or Eremothecium ashbyii is particularly preferred.
b) Hefen wie Candida, Saccharomyces, Hansenula oder Pichia, besonders bevorzugt sind Saccharomyces cerevisiae oder Pichia pastoris (ATCC Accession No. 201178), c) Pflanzen wie Arabidopsis, Tomate, Kartoffel, Mais, Soja, Raps, Gerste, Weizen, Roggen, Reis, Hirse, Baumwolle, Zuckerrübe, Sonnenblume, Flachs, Hanf, Canola, Hafer, Tabak, Alfalfa, Salat, Hagebutte oder die verschiedenen Baum-, Nuss- und Weinarten,b) yeasts such as Candida, Saccharomyces, Hansenula or Pichia, Saccharomyces cerevisiae or Pichia pastoris (ATCC Accession No. 201178) are particularly preferred, c) Plants such as arabidopsis, tomato, potato, corn, soybean, rapeseed, barley, wheat, rye, rice, millet, cotton, sugar beet, sunflower, flax, hemp, canola, oats, tobacco, alfalfa, lettuce, rose hip or the various Tree, nut and wine types,
d) Vertebraten und Invertebraten. Besonders bevorzugte Vertebraten sind nicht-humane Säuger wie in Hund, Katze, Schaf, Ziege, Huhn, Maus, Ratte, Rind oder Pferd. Bevor- zugte tierische Zellen umfassen CHO, COS, HEK293 Zellen. Bevorzugte Invertebraten umfassen Insektenzellen wie Drosophila S2 und Spodoptera Sf9 oder Sf21 Zellen,d) Vertebrates and invertebrates. Particularly preferred vertebrates are non-human mammals such as in dogs, cats, sheep, goats, chickens, mice, rats, cattle or horses. Preferred animal cells include CHO, COS, HEK293 cells. Preferred invertebrates include insect cells such as Drosophila S2 and Spodoptera Sf9 or Sf21 cells,
e) prokaryontische Organismen wie gram-positive oder gram- negative Bakterien wie Acetobacter, Gluconobacter, Coryne- bacterium, Brevibacterium, Bacillus, Clostridium, Cyano- bacter, Escherichia (vor allem Escherichia coli) , Serratia, Staphylococcus , Aerobacter, Alcaligenes, Penicillium, Pseudo- monas oder Klebsieila genannt.e) prokaryotic organisms such as gram-positive or gram-negative bacteria such as Acetobacter, Gluconobacter, Corynebacterium, Brevibacterium, Bacillus, Clostridium, Cyanibacter, Escherichia (especially Escherichia coli), Serratia, Staphylococcus, Aerobacter, Alcaligenes, Penicillium Called pseudomonas or Klebsieila.
Besonders bevorzugt werden Organismen der Gattung und Art Acetobacter liquefaciens, Acetobacter aceti, Acetobacter pasteurianus, Acetobacter hansenii, Gluconobacter oxidans, Ashbya gossypii, Eremothecium ashbyii, Saccharomyces cerevisiae, Candida flaveri, Candida famata, Corynebakterium ammoniagenes oder Bacillus subtilis. Als Pflanzen werden besonders bevorzugt Mais, Soja, Raps, Gerste, Weizen, Kartoffel und Tomate.Organisms of the genus and species Acetobacter liquefaciens, Acetobacter aceti, Acetobacter pasteurianus, Acetobacter hansenii, Gluconobacter oxidans, Ashbya gossypii, Eremothecium ashbyii, Saccharomyces cerevisiae, Candida flaveri, Candida famata ammonium bacilli, or Corynebacterium, are particularly preferred. Maize, soybean, rapeseed, barley, wheat, potato and tomato are particularly preferred as plants.
Die Herstellung eines transformierten Organismus oder einer transformierten Zelle erfordert, dass die entsprechende DNAThe production of a transformed organism or cell requires that the corresponding DNA
(beispielsweise eine der erfindungsgemäßen Nukleinsauresequenzen, Expressionskassetten oder Vektoren) in die entsprechende Wirtszelle eingebracht wird. Für diesen Vorgang, der als Transformation bezeichnet wird, steht eine Vielzahl von Methoden zur Verfügung (siehe auch Keown et al. 1990 Methods in Enzymology 185:527-537) . So kann die DNA beispielhaft direkt durch Mikro- injektion, Elektroporation oder durch Bombardierung mit DNA- beschichteten Mikropartikeln (biolistische Verfahren mit der Genkanone "particle bombardment") eingeführt werden. Auch kann die Zelle chemisch, zum Beispiel mit Polyethylenglycol, permea- bilisiert werden, so dass die DNA durch Diffusion in die Zelle gelangen kann. Die DNA kann auch durch Protoplastenfusion mit anderen DNA-enthaltenden Einheiten wie Minicells, Zellen, Lyso- somen oder Liposomen erfolgen. Elektroporation ist eine weitere geeignete Methode zur Einführung von DNA, bei der die Zellen reversibel durch einen elektrischen Impuls permeabilisiert werden. Als bevorzugte allgemeine Methoden seien zu nennen Calciumphosphat vermittelte Transfektion, DEAE-Dextran vermittelte Transfektion, kationische Lipid-vermittelte Transfektion, Elektroporation, Transduktion, Infektion. Derartige Verfahren sind dem Fachmann geläufig und beispielsweise beschrieben 5 bei Davis et al., Basic Methods In Molecular Biology (1986). Eine weitere Möglichkeit zur Einführung von DNA in Mikroorganismen ist die Konjugation, wobei sowohl biparentale als auch triparentale Konjugation möglich ist.(for example one of the nucleic acid sequences, expression cassettes or vectors according to the invention) is introduced into the corresponding host cell. A large number of methods are available for this process, which is referred to as transformation (see also Keown et al. 1990 Methods in Enzymology 185: 527-537). For example, the DNA can be introduced directly by microinjection, electroporation or by bombardment with DNA-coated microparticles (biolistic method with the gene gun "particle bombardment"). The cell can also be chemically permeable, for example with polyethylene glycol, so that the DNA can get into the cell by diffusion. The DNA can also be obtained by protoplast fusion with other DNA-containing units such as minicells, cells, lysosomes or liposomes. Electroporation is another suitable method for introducing DNA in which the cells are reversibly permeabilized by an electrical pulse. Preferred general methods should be mentioned Calcium phosphate mediated transfection, DEAE-dextran mediated transfection, cationic lipid mediated transfection, electroporation, transduction, infection. Such methods are familiar to the person skilled in the art and are described, for example, 5 in Davis et al., Basic Methods In Molecular Biology (1986). Another option for introducing DNA into microorganisms is conjugation, with both biparental and triparental conjugation being possible.
10 Für Mikroorganismen kann der Fachmann entsprechende Methoden den Lehrbüchern von Sambrook, J. et al. (1989) Molecular cloning: A laboratory manual, Cold Spring Harbor Laboratory Press, von F.M. Ausubel et al. (1994) Current protocols in molecular biology, John Wiley and Sons, von D.M. Glover et al., DNA Cloning10 For microorganisms, the person skilled in the art can use the corresponding textbooks from Sambrook, J. et al. (1989) Molecular cloning: A laboratory manual, Cold Spring Harbor Laboratory Press, by F.M. Ausubel et al. (1994) Current protocols in molecular biology, John Wiley and Sons, by D.M. Glover et al., DNA cloning
15 Vol.l, (1995), IRL Press (ISBN 019-963476-9), von Kaiser et al. (1994) Methods in Yeast Genetics, Cold Spring Habor Laboratory Press oder Guthrie et al. Guide to Yeast Genetics and Molecular Biology, Methods in Enzymology, 1994, Academic Press entnehmen. Als vorteilhaft seien beispielhaft Methoden wie das Einbringen15 Vol.l, (1995), IRL Press (ISBN 019-963476-9), by Kaiser et al. (1994) Methods in Yeast Genetics, Cold Spring Habor Laboratory Press or Guthrie et al. See Guide to Yeast Genetics and Molecular Biology, Methods in Enzymology, 1994, Academic Press. For example, methods such as insertion are advantageous
20 der DNA über homologe oder heterologe Rekombination beispielsweise mit Hilfe des ura-3-Gens und/oder über die im folgenden beschriebene REMI-Methode (= "Restriktion-Enzyme-Mediated- Integration") , genannt, oder die Expression unter Verwendung von Expressionsvektoren.20 of the DNA via homologous or heterologous recombination, for example using the ura-3 gene and / or using the REMI method described below (= "Restriction Enzyme-Mediated Integration"), or expression using expression vectors ,
2525
Die REMI-Technik basiert auf der Kotransformation eines linearen DNA-Konstruktes, das an beiden Enden mit derselben Restriktionsendonuklease geschnitten wurde, zusammen mit der Restriktionsendonuklease, die für diese Restriktion des DNA-Konstrukts ver-The REMI technique is based on the co-transformation of a linear DNA construct that was cut at both ends with the same restriction endonuclease, together with the restriction endonuclease used for this restriction of the DNA construct.
30 wendet wurde, in einen Organismus. Die Restriktionsendonuklease schneidet daraufhin die genomische DNA des Organismus, in den das DNA-Konstrukt zusammen mit dem Restriktionsenzym eingebracht wurde. Dies führt zu einer Aktivierung der zelleigenen Reparaturmechanismen. Diese Reparaturmechanismen reparieren die durch die30 was turned into an organism. The restriction endonuclease then cuts the genomic DNA of the organism into which the DNA construct was introduced together with the restriction enzyme. This leads to an activation of the cell's own repair mechanisms. These repair mechanisms repair those through the
35 Endonuklease hervorgerufene Strangbrüche der genomischen DNA und bauen dabei mit einer gewissen Frequenz auch das kotransformierte DNA-Konstrukt mit ins Genom ein. In der Regel bleiben dabei die Restriktionsschnittstellen an beiden Enden der DNA erhalten. Diese Technik wurde von Bölker et al. (Mol Gen Genet, 248, 1995:35 endonuclease-induced strand breaks in the genomic DNA and at a certain frequency also incorporate the cotransformed DNA construct into the genome. As a rule, the restriction sites at both ends of the DNA are preserved. This technique was developed by Bölker et al. (Mol Gen Genet, 248, 1995:
40 547-552) für die Insertionsmutagenese von Pilzen beschrieben. Von Schiestl und Petes (Proc. Natl. Acad. Sei. USA, 88, 1991: 7585-7589) wurde die Methode zur Aufklärung, ob es bei Saccharomyces eine heterologe Rekombination gibt, verwendet. Zur stabilen Transformation und regulierten Expression eines40 547-552) for the insertion mutagenesis of fungi. Schiestl and Petes (Proc. Natl. Acad. Sei. USA, 88, 1991: 7585-7589) used the method to clarify whether there is a heterologous recombination in Saccharomyces. For stable transformation and regulated expression of a
45 induzierbaren Reportergens wurde die Methode von Brown et al. (Mol. Gen. Genet. 251, 1996: 75-80) beschrieben. Mit Hilfe der REMI-Methode können die erfindungsgemäßen Nukleinsäurefrag ente an transkriptionsaktive Stellen im Genom plaziert werden. Für das beschriebene Verfahren zur Integration von Biosynthesegenen in das Genom von Organismen eignen sich prinzipiell alle bekannten Restriktionsenzyme. Restriktionsenzyme, die nur 4 Basenpaare als Restriktionsschnittstelle erkennen, sind weniger bevorzugt, da sie zu häufig im Genom oder im zu integrierenden Vektor schneiden, bevorzugt sind Enzyme die 6, 7, 8 oder mehr Basenpaare als Schnittstelle erkennen wie BamHI, EcoRI, Bglll, SphI, Spei, Xbal, Xhol, Ncol, Sall, Clal, Kpnl, Hindlll, Sacl, PstI, Bpnl, Notl, Srfl oder Sfil um nur einige der möglichen Enzyme zu nennen. Von Vorteil ist, wenn die verwendeten Enzyme keine Schnittstellen mehr in der einzuführenden DNA haben, dies erhöht die Effizienz der Integration. In der Regel werden 5 bis 500 U, bevorzugt 10 bis 250, besonders bevorzugt 10 bis 100 U der Enzyme im REMI-Ansatz verwendet. Die Enzyme werden vorteilhaft in einer wässrigen Lösung eingesetzt, die Substanzen zur osmotischen Stabilisierung wie Zucker wie Saccharose, Trehalose oder Glucose, Polyole wie Glycerin oder Polyethylenglycol, eine Puffer mit einer vorteilhaften Pufferung im Bereich von pH 5 bis 9, bevor- zugt 6 bis 8, besonders bevorzugt 7 bis 8 wie Tris, MOPS, HEPES, MES oder PIPES und/oder Substanzen zur Stabilisierung der Nukleinsäuren enthalten wie anorganische oder organische Salze von Mg, Cu, Co, Fe, Mn oder Mo. Es können gegebenenfalls noch weitere Stoffe enthalten sein wie EDTA, EDDA, DTT, ß-Mercapto- ethanol oder Nukleasehemmstoffe. Es ist aber auch möglich die REMI-Technik ohne diese Zusätze durchzuführen. Das Verfahren wird in einem Temperaturbereich von 5 bis 80°C, bevorzugt von 10 bis 60°C, besonders bevorzugt von 20 bis 40°C durchgeführt. Für das Verfahren eignen sich alle bekannten Methoden zur Destabilisierung von Zellmembranen wie beispielsweise die Elektroporation, die Fusion mit beladenen Vesikeln oder die Destabilisierung über verschiedene Alkali- oder Erdalkalisalze wie Lithium, Rubidium- oder Calziumsalze, bevorzugt sind die Lithiumsalze.45 inducible reporter gene was the method of Brown et al. (Mol. Gen. Genet. 251, 1996: 75-80). Using the REMI method, the nucleic acid fragments according to the invention can be ducked be placed at transcriptionally active sites in the genome. In principle, all known restriction enzymes are suitable for the described method for integrating biosynthesis genes into the genome of organisms. Restriction enzymes that only recognize 4 base pairs as a restriction site are less preferred because they cut too frequently in the genome or in the vector to be integrated; preference is given to enzymes that recognize 6, 7, 8 or more base pairs as an interface, such as BamHI, EcoRI, Bglll, SphI , Spei, Xbal, Xhol, Ncol, Sall, Clal, Kpnl, Hindlll, Sacl, PstI, Bpnl, Notl, Srfl or Sfil to name just a few of the possible enzymes. It is advantageous if the enzymes used no longer have interfaces in the DNA to be introduced, this increases the efficiency of the integration. As a rule, 5 to 500 U, preferably 10 to 250, particularly preferably 10 to 100 U of the enzymes are used in the REMI approach. The enzymes are advantageously used in an aqueous solution, the substances for osmotic stabilization such as sugar such as sucrose, trehalose or glucose, polyols such as glycerol or polyethylene glycol, a buffer with an advantageous buffering in the range from pH 5 to 9, preferably 6 to 8 , particularly preferably 7 to 8 such as Tris, MOPS, HEPES, MES or PIPES and / or substances for stabilizing the nucleic acids, such as inorganic or organic salts of Mg, Cu, Co, Fe, Mn or Mo. If appropriate, further substances may also be present be like EDTA, EDDA, DTT, ß-mercaptoethanol or nuclease inhibitors. However, it is also possible to carry out REMI technology without these additives. The process is carried out in a temperature range from 5 to 80 ° C., preferably from 10 to 60 ° C., particularly preferably from 20 to 40 ° C. All known methods for destabilizing cell membranes such as, for example, electroporation, fusion with loaded vesicles or destabilization via various alkali or alkaline earth metal salts such as lithium, rubidium or calcium salts are suitable for the process, the lithium salts being preferred.
Pflanzen können auch durch bakterielle Infektion mittels trans- gener Agrobacterium tumefaσiens oder Agrobacterium rhizogenes Stämme transformiert werden. Diese Stämme enthalten ein Plasmid (Ti bzw. Ri Plasmid) , das auf die Pflanze nach Agrobacterium- Infektion übertragen wird. Ein Teil dieses Plasmids, genannt T-DNA (transferred DNA), wird in das Genom der Pflanzenzelle integriert. Die erfindungsgemäßen Nukleinsauresequenzen oder Expressionskassetten werden bevorzugt in spezielle Plasmide integriert, entweder in einen Zwischenvektor (englisch: Shuttle or intermediate vector) oder einen binären Vektor. Binäre Vektoren können sowohl in E.coli als auch in Agrobacterium replizieren. Sie enthalten in der Regel ein Selektionsmarkergen (zum Beispiel das nptll Gen, das eine Resistenz gegen Kanamycin verleiht) und einen Linker oder Polylinker flankiert von der rechten und linken T-DNA Begrenzungssequenz . Sie können direkt in Agrobacterium transformiert werden (Holsters et al.,Mol. Gen. Genet. 163 (1978), 181-187). Die Anwendung von Agrobakterium tumefaciens für die Transformation von Pflanzen unter Verwendung von Gewebekulturexplantaten wurde beschrieben von Horsch et al. (Horsch RB (1986) Proc Natl Acad Sei USA 83 (8) :2571-2575) , Fraley et al. (Fraley et al. (1983) Proc Natl Acad Sei USA 80:4803-4807) und Bevans et al. (Bevans et al. (1983) Nature 304:184-187). Verschiedene binäre Vektoren sind bekannt und teilweise kommerziell erhältlich wie zum Beispiel pBINl9 (Clontech Laboratories, Inc. USA) . Die genannten Verfahren sind beispielsweise in B Jenes et al., Techniques for Gene Transfer, in: Transgenic Plants, Vol. 1, Engineering and Utilization, herausgegeben von SD Kung und R Wu, Academic Press (1993), 128-143; Höfgen und Willmitzer (1988) Nucl. Acid Res. 16:9877 sowie in Potrykus (1991) Annu Rev Plant Physiol Plant Molec Biol 42:205-225) beschrieben. Verwundete Blätter oder Blattstücke werden in einer Agrobakterien- lösung gebadet und anschließend in geeigneten Medien kultiviert werden. Die genetisch veränderten Pflanzenzellen können über alle dem Fachmann bekannten Methoden regeneriert werden. Entsprechende Methoden können den oben genannten Schriften entnommen werden.Plants can also be transformed by bacterial infection using transgenic Agrobacterium tumefaσiens or Agrobacterium rhizogenes strains. These strains contain a plasmid (Ti or Ri plasmid) which is transferred to the plant after Agrobacterium infection. Part of this plasmid, called T-DNA (transferred DNA), is integrated into the genome of the plant cell. The nucleic acid sequences or expression cassettes according to the invention are preferably integrated into special plasmids, either into an intermediate vector (English: shuttle or intermediate vector) or a binary vector. Binary vectors can replicate in both E.coli and Agrobacterium. They usually contain a selection marker gene (for example, the nptll gene, which confers resistance to kanamycin) and a linker or polylinker flanked by the right and left T-DNA restriction sequences. They can be transformed directly into Agrobacterium (Holsters et al., Mol. Gen. Genet. 163 (1978), 181-187). The use of Agrobacterium tumefaciens for the transformation of plants using tissue culture explants has been described by Horsch et al. (Horsch RB (1986) Proc Natl Acad Sei USA 83 (8): 2571-2575), Fraley et al. (Fraley et al. (1983) Proc Natl Acad Sei USA 80: 4803-4807) and Bevans et al. (Bevans et al. (1983) Nature 304: 184-187). Various binary vectors are known and some are commercially available, for example pBIN19 (Clontech Laboratories, Inc. USA). The methods mentioned are described, for example, in B Jenes et al., Techniques for Gene Transfer, in: Transgenic Plants, Vol. 1, Engineering and Utilization, published by SD Kung and R Wu, Academic Press (1993), 128-143; Höfgen and Willmitzer (1988) Nucl. Acid Res. 16: 9877 and in Potrykus (1991) Annu Rev Plant Physiol Plant Molec Biol 42: 205-225). Wounded leaves or leaf pieces are bathed in an agrobacterial solution and then cultivated in suitable media. The genetically modified plant cells can be regenerated using all methods known to the person skilled in the art. Appropriate methods can be found in the above-mentioned documents.
Vorzugsweise wird für die Expression in Pflanzen das zu exprimierende Konstrukt in einen Vektor kloniert, der geeignet ist, Agrobacterium tumefaciens zu transformieren, beispielsweise pBinl9 (Bevan et al.(1984) Nucl Acids Res 12:8711). Die Agro- bacterium-vermittelte Transformation ist am besten für dicotyl- edone Pflanzenzellen geeignet, wohingegen die direkten Transformationstechniken sich für jeden Zelltyp eignen.For expression in plants, the construct to be expressed is preferably cloned into a vector which is suitable for transforming Agrobacterium tumefaciens, for example pBin19 (Bevan et al. (1984) Nucl Acids Res 12: 8711). The Agrobacterium mediated transformation is best suited for dicotyledonous plant cells, whereas the direct transformation techniques are suitable for every cell type.
Bevorzugt werden als Vektor Plasmide verwendet, die in der Wirtszelle autonom repliziert werden (beispielsweise für Mikroorganismen Plasmid, die den Replikationsursprung des 2 μ Plasmids aus S. cerevisiae tragen) . Besonders bevorzugt sind Pendelvektoren und "Broad Host Range" Vektoren, die die Replikation des Vektors in mehr als einem Organismus ermöglichen.Plasmids which are replicated autonomously in the host cell are preferably used as the vector (for example for plasmid microorganisms which carry the origin of replication of the 2 μ plasmid from S. cerevisiae). Pendulum vectors and "broad host range" vectors are particularly preferred which enable the replication of the vector in more than one organism.
Verwendet werden können jedoch auch lineare Expressionskassetten, die in das Genom des Wirtes integriert werden. Diese Integration kann über hetero- oder homologe Rekombination erfolgen. Bevorzugt wie erwähnt jedoch über homologe Rekombination (Steiner et al. (1995) Genetics 140:973-987). Dabei können die erfindungsgemäßen Nukleinsauresequenzen bzw. Expressionskassetten einzeln im Genom an verschiedenen Orten oder auf verschiedenen Vektoren vorliegen oder gemeinsam im Genom oder auf einem Vektor vorliegen. Transformierte Zellen d.h. solche, die die eingeführte DNA integriert in die DNA der Wirtszelle enthalten, können von untransformierten selektioniert werden, wenn ein selektionierbarer Marker Bestandteil der eingeführten DNA ist. Als Marker kann beispielhaft jedes Gen fungieren, dass eine Resistenz gegen Antibiotika oder Herbizide zu verleihen vermag. Transformierte Zellen, die ein solches Markergen exprimieren, sind in der Lage, in der Gegenwart von Konzentrationen eines entsprechenden Antibiotikums oder Herbizides zu überleben, die einen untrans- formierten Wildtyp abtöten. Verschiedene positive und negative Selektionsmarker sind weiter oben beschrieben. Beispiel sind das bar Gen, dass Resistenz gegen das Herbizid Phosphinothricin verleiht (Rathore KS et al. (1993) Plant Mol Biol. 21(5) .871-884) , das nptll Gen, dass Resistenz gegen Kanamycin verleiht, das hpt Gen, das Resistenz gegen Hygromycin verleiht, oder das EPSP-Gen, das Resistenz gegen das Herbizid Glyphosat verleiht.However, linear expression cassettes can also be used which are integrated into the genome of the host. This integration can take place via hetero- or homologous recombination. However, as mentioned, preferably via homologous recombination (Steiner et al. (1995) Genetics 140: 973-987). The nucleic acid sequences or expression cassettes according to the invention can be present individually in the genome at different locations or on different vectors or together in the genome or on one vector. Transformed cells, ie those which contain the introduced DNA integrated into the DNA of the host cell, can be selected from untransformed cells if a selectable marker is part of the introduced DNA. Any gene that can confer resistance to antibiotics or herbicides can act as a marker, for example. Transformed cells that express such a marker gene are able to survive in the presence of concentrations of an appropriate antibiotic or herbicide that kill an untransformed wild type. Various positive and negative selection markers are described above. Examples are the bar gene that confers resistance to the herbicide phosphinothricin (Rathore KS et al. (1993) Plant Mol Biol. 21 (5) .871-884), the nptll gene that confers resistance to kanamycin, the hpt gene, which confers resistance to hygromycin, or the EPSP gene which confers resistance to the herbicide glyphosate.
Sobald eine transformierte Pflanzenzelle hergestellt wurde, kann eine vollständige Pflanze unter Verwendung von dem Fachmann be- kannten Verfahren erhalten werden. Hierbei geht man beispielhaft von Kalluskulturen aus. Aus diesen noch undifferenzierten Zellmassen kann die Bildung von Spross und Wurzel in bekannter Weise induziert werden. Die erhaltenen Sprösslinge können ausgepflanzt und gezüchtet werden.Once a transformed plant cell has been made, a complete plant can be obtained using methods known to those skilled in the art. This is based on the example of callus cultures. The formation of shoots and roots can be induced in a known manner from these still undifferentiated cell masses. The sprouts obtained can be planted out and grown.
Erfindungsgemäß sind ferner von den oben beschriebenen transgenen Organismen abgeleitete Zellen, Zellkulturen, Teile - wie zum Beispiel bei transgenen pflanzlichen Organismen Wurzeln, Blätter etc.-, und transgenes Vermehrungsgut wie Saaten oder Früchte.According to the invention, cells, cell cultures, parts derived from the transgenic organisms described above - such as roots, leaves, etc., for example in the case of transgenic plant organisms - and transgenic propagation material such as seeds or fruits.
Ein weiterer Gegenstand der Erfindung betrifft Enzympräparationen hergestellt unter Verwendung eines der erfindungsgemäßen Proteine, Nukleinsäuremoleküle, Expressionskassetten, Vektoren oder Organismen, die mindestens eines der erfindungsgemäßen Poly- peptide enthalten. Dabei enthält eine Enzympräparation bevorzugt eines der erfindungsgemäßen Polypetide gemäß SEQ ID NO: 2 oder 4 oder eines seiner funktionellen Äquivalente. Die Enzympräparation kann die erfindungsgemäßen Polypeptide dabei in unaufgereinigter, partiell aufgereinigter oder aufgereinigter Form enthalten. Der Gehalt an dem erfindungsgemäßen Polypeptid an der Gesamtproteinmenge beispielsweise einer partiell aufgereinigten Enzympräparation beträgt dabei mindestens 1 %, bevorzugt mindestens 10 %, besonders bevorzugt mindestens 50 %, ganz besonders bevorzugt mindestens 70 %, am meistens bevorzugt mindestens 90 %. Solche Präparationen sind beispielsweise erhältlich durchThe invention further relates to enzyme preparations produced using one of the proteins, nucleic acid molecules, expression cassettes, vectors or organisms which contain at least one of the polypeptides according to the invention. An enzyme preparation preferably contains one of the polypeptides according to the invention as shown in SEQ ID NO: 2 or 4 or one of its functional equivalents. The enzyme preparation can contain the polypeptides according to the invention in unpurified, partially purified or purified form. The content of the total amount of protein in the polypeptide according to the invention, for example in a partially purified enzyme preparation, is at least 1%, preferably at least 10%, particularly preferably at least 50%, very particularly preferably at least 70%, most preferably at least 90%. Such preparations are available, for example, from
Kultivieren eines der erfindungsgemäßen Organismen (bevorzugt eines Mikroorganismus), Zertrümmern der Zellen, sowie ggf. Isolieren und Reinigen der erfindungsgemäßen Polypeptide aus dem zellfreien Extrakt des zertrümmerten Zellmaterials. Bei der Reinigung der erfindungsgemäßen Polypeptide können dem Fachmann geläufige Verfahren wie Ionenaustauscherchromatographie, Flüssig- keitsehromatographie, Gelfiltration, Gelelektrophorese, Aussalzen und Dialyse sowie Kombinationen aus vorgenannten Methoden zu, Einsatz kommen. In einer weiteren bevorzugten Ausführungsform kann die Enzympräparation an einem wasserlöslichen (z.B. Polyacrylate) oder wasserunlöslichen Trägermaterial (z.B. Poly- styrene) immobilisiert werden. Dem Fachmann sind verschiedene geeignete Trägermaterialien bekannt, an die die erfindungsgemäßen Enzympräparationen oder Polypeptide kovalent oder über Adsorption gebunden werden können. Als feste Träger kommen Celite, Silica- gel, Amberlite, Trägermaterialien aus diversen Polymeren (z.B. Polypropylene, Polystyrene, Polyurethan, Polyacrylate) oder Solgele in Frage.Culturing one of the organisms according to the invention (preferably a microorganism), smashing the cells and, if appropriate Isolation and purification of the polypeptides according to the invention from the cell-free extract of the broken cell material. Methods known to those skilled in the art, such as ion exchange chromatography, liquid chromatography, gel filtration, gel electrophoresis, salting out and dialysis, and combinations of the aforementioned methods, can be used to purify the polypeptides according to the invention. In a further preferred embodiment, the enzyme preparation can be immobilized on a water-soluble (for example polyacrylate) or water-insoluble carrier material (for example polystyrene). Various suitable carrier materials are known to the person skilled in the art, to which the enzyme preparations or polypeptides according to the invention can be bound covalently or via adsorption. Celite, silica gel, amberlite, carrier materials made of various polymers (eg polypropylenes, polystyrene, polyurethane, polyacrylates) or sol gels are suitable as solid carriers.
Von Menschen und Tieren verzehrbare erfindungsgemäße, genetisch veränderte Pflanzen können auch beispielsweise direkt oder nach an sich bekannter Aufbereitung als Nahrungsmittel oder Futtermittel verwendet werden.Genetically modified plants according to the invention that can be consumed by humans and animals can also be used, for example, directly or after preparation known per se as food or feed.
Ein weiterer Gegenstand der Erfindung betrifft die Verwendung der oben beschriebenen erfindungsgemäßen Proteine, Nukleinsäure- Sequenzen, Expressionskassetten, Vektoren, Enzympräparationen, Organismen und der von ihnen abgeleitete Zellen, Zellkulturen, Teile (wie zum Beispiel bei transgenen pflanzlichen Organismen Wurzeln, Blätter etc.) und transgenes Vermehrungsgut (wie beispielsweise Samen oder Früchte) zur Herstellung von Nahrungs- oder Futtermitteln, Pharmazeutika oder Feinchemikalien.Another object of the invention relates to the use of the above-described proteins, nucleic acid sequences, expression cassettes, vectors, enzyme preparations, organisms and the cells, cell cultures, parts (such as roots, leaves, etc.) derived from them and transgenic plant organisms transgenic propagation material (such as seeds or fruits) for the production of food or feed, pharmaceuticals or fine chemicals.
Feinchemikalien meint Enzyme, Vitamine, Aminosäuren, Zucker,Fine chemicals means enzymes, vitamins, amino acids, sugar,
Fettsäuren, natürliche und synthetische Geschmacks-, Aroma- und Farbstoffe. Unter Feinchemikalien sind ferner Aldehyden, Ke- tonen und Carbonsäuren zu verstehen, bevorzugt Sorboson oder 2-Keto-L-gulonsäure. Die Produktion von Pharmazeutika, wie zum Beispiel Antikörpern oder Vakzinen ist beschrieben (Hood EE, Jilka JM. (1999) Curr Opin Biotechnol. 10 (4) :382-386; Ma JK und Vine ND (1999) Curr Top Microbiol Immunol.236:275-92) .Fatty acids, natural and synthetic flavors, aromas and colors. Fine chemicals are also to be understood as meaning aldehydes, ketones and carboxylic acids, preferably sorbosone or 2-keto-L-gulonic acid. The production of pharmaceuticals, such as antibodies or vaccines, has been described (Hood EE, Jilka JM. (1999) Curr Opin Biotechnol. 10 (4): 382-386; Ma JK and Vine ND (1999) Curr Top Microbiol Immunol. 236 : 275-92).
Aldehyden, Ketonen und Carbonsäuren meint bevorzugt Zuckeralkohole, Ketosen, Aldosen sowie entsprechende Zuckersäuren wie beispielsweise D-Glucose,D-Mannose, D-Mannitol, L-Sorbose, D-Fructose, D-Sorbitol, L-Sorbosone, L-Gulose, 2-Keto-D-glucon- säure, L-Idose, Glycerol, D-Gluconsäure, D-Mannonsäure, L-Idon- säure, 5-Keto-D-gluconsäure, 5-Keto-D-mannonsäure, D-Glucosone. Besonders bevorzugt sind L-Sorboson und 2-KLG. Ein weiterer Gegenstand der Erfindung betrifft Verfahren zur Herstellung von Aldehyden, Ketonen oder Carbonsäuren ausgehend von den entsprechenden Alkoholen oder Aldehyden gekennzeichnet dadurch, dass man den Alkohol oder Aldehyd in Gegenwart eines der erfindungsgemäßen Polypeptide, eines transgenen Organismus, von Zellkulturen, Teile, Gewebe, Organe oder transgenes Vermehrungsgut desselben oder einer Enzympräparation oxidiert. Bevorzugt ist die Herstellung von von 2-Keto-L-gulonsäure durch Oxidation von Sorbose und/oder L-Sorboson. Besonders bevorzugt ist ferner die Herstellung von L-Ascorbinsäure unter Verwendung der nach obigem Verfahren hergestellten 2-Keto-L-gulonsäure.Aldehydes, ketones and carboxylic acids preferably mean sugar alcohols, ketoses, aldoses and corresponding sugar acids such as D-glucose, D-mannose, D-mannitol, L-sorbose, D-fructose, D-sorbitol, L-sorbosone, L-gulose, 2 -Keto-D-gluconic acid, L-idose, glycerol, D-gluconic acid, D-mannonic acid, L-idonic acid, 5-keto-D-gluconic acid, 5-keto-D-mannonic acid, D-glucosones. L-Sorboson and 2-KLG are particularly preferred. Another object of the invention relates to processes for the preparation of aldehydes, ketones or carboxylic acids starting from the corresponding alcohols or aldehydes, characterized in that the alcohol or aldehyde in the presence of one of the polypeptides according to the invention, a transgenic organism, cell cultures, parts, tissues, organs or oxidized reproductive material of the same or an enzyme preparation. The production of 2-keto-L-gulonic acid by oxidation of sorbose and / or L-sorbosone is preferred. The production of L-ascorbic acid using the 2-keto-L-gulonic acid prepared by the above process is also particularly preferred.
Sequenzensequences
1. SEQ ID No. 1: Nukleinsäuresequenz kodierend für die1. SEQ ID No. 1: Nucleic acid sequence coding for the
Sorbosedehydrogenase aus Acetobacter liquefaciens ATCC14835Sorbose dehydrogenase from Acetobacter liquefaciens ATCC14835
2. SEQ ID No. 2: Aminosäuresequenz für die Sorbosedehydrogenase aus Acetobacter liquefaciens ATCC148352. SEQ ID No. 2: Amino acid sequence for sorbose dehydrogenase from Acetobacter liquefaciens ATCC14835
3. SEQ ID No. 3 : Nukleinsäuresequenz kodierend für die Sorbosondehydrogenase aus Acetobacter liquefaciens ATCC148353. SEQ ID No. 3: Nucleic acid sequence coding for the sorbosone dehydrogenase from Acetobacter liquefaciens ATCC14835
4. SEQ ID No. 4: Aminosäuresequenz für die Sorbosondehydrogenase aus Acetobacter liquefaciens ATCC148354. SEQ ID No. 4: Amino acid sequence for sorbosone dehydrogenase from Acetobacter liquefaciens ATCC14835
5. SEQ ID No. 5 : Nukleinsäuresequenz kodierend für den genomischen Klon 17 aus Acetobacter liquefaciens ATCC14835, der die Nukleinsäuresequenz kodierend für die Sorbosedehydrogenase vollständig und die Nukleinsäuresequenz kodierend für die Sorbosondehydrogenase partiell umfasst.5. SEQ ID No. 5: Nucleic acid sequence coding for the genomic clone 17 from Acetobacter liquefaciens ATCC14835, which completely comprises the nucleic acid sequence coding for the sorbose dehydrogenase and partially encoding the nucleic acid sequence for the sorbosone dehydrogenase.
6. SEQ ID No. 6 : Aminosäuresequenz für die Sorbosondehydro- genäse aus Acetobacter liquefaciens ATCC14835 (partiell)6. SEQ ID No. 6: Amino acid sequence for the sorbosone dehydrogenase from Acetobacter liquefaciens ATCC14835 (partial)
7. SEQ ID No. 7 : Aminosäuresequenz für die Sorbosedehydrogenase aus Acetobacter liquefaciens ATCC148357. SEQ ID No. 7: Amino acid sequence for sorbose dehydrogenase from Acetobacter liquefaciens ATCC14835
8. SEQ ID NO. 8: Oligonukleotidprimer KEI9 5 ' -GCTCTAGATGCCCTACAACCCTGACTTCAACG-3 '8. SEQ ID NO. 8: oligonucleotide primer KEI9 5 '-GCTCTAGATGCCCTACAACCCTGACTTCAACG-3'
9. SEQ ID NO. 9: Oligonukleotidprimer KEI10 5 ' -CGGGATCCCGCGCCGCCCTCAACCACGTTGGA-3 '9. SEQ ID NO. 9: KEI10 5 '-CGGGATCCCGCGCCGCCCTCAACCACGTTGGA-3' oligonucleotide primer
10. SEQ ID NO. 10: Oligonukleotidprimer KEI376 5 ' -GCTCTAGAGGATCGCCAACGACACCGTCTACG-3 ' 11. SEQ ID NO. 11: Oligonukleotidprimer KEI377 5 ' -CGGGATCCTCATGATGCGATCCAGTGCGTGCG-3 '10. SEQ ID NO. 10: KEI376 oligonucleotide primer 5 '-GCTCTAGAGGATCGCCAACGACACCGTCTACG-3' 11. SEQ ID NO. 11: KEI377 oligonucleotide primer 5 '-CGGGATCCTCATGATGCGATCCAGTGCGTGCG-3'
12. SEQ ID NO. 12: Oligonukleotidprimer KEI390 5 5 ' -ACTGCGCGTCCATGGGCTGGAAGG-3 '12. SEQ ID NO. 12: KEI390 5 5 '-ACTGCGCGTCCATGGGCTGGAAGG-3' oligonucleotide primer
13. SEQ ID NO. 13: Oligonukleotidprimer KEI720 5 ' -AAAACATATGAAGATCCATGCA-3 '13. SEQ ID NO. 13: KEI720 5 '-AAAACATATGAAGATCCATGCA-3' oligonucleotide primer
10 14. SEQ ID NO. 14: Oligonukleotidprimer KEI721 5 ' -TATCTGGATCCTCATGATGCGAT-3 '10 14. SEQ ID NO. 14: KEI721 oligonucleotide primer 5 '-TATCTGGATCCTCATGATGCGAT-3'
BeispieleExamples
15 Allgemeine Nukleinsäureverfahren wie z.B. Klonierung,15 General nucleic acid methods such as cloning,
Restriktionsspaltungen, Agarose-Gelelektrophorese, Verknüpfen von DNA-Fragmenten, Transformation von Mikroorganismen, Anzucht von Bakterien und Sequenzanalyse rekombinanter DNA wurden wenn nichts anderes beschrieben wurde wie bei Sambrook et al. (1989)Restriction cleavages, agarose gel electrophoresis, linking of DNA fragments, transformation of microorganisms, cultivation of bacteria and sequence analysis of recombinant DNA were, unless otherwise described, as described by Sambrook et al. (1989)
20 (Cold Spring Harbor Laboratory Press: ISBN 0-87969-309-6) beschrieben durchgeführt. Die Sequenzierung rekombinanter DNA-Moleküle erfolgte mit einem Laserfluoreszenz-DNA-Sequenzierer der Firma ABI nach der Methode von Sanger (Sanger et al. (1977) Proc Natl Acad Sei USA 74:5463-5467) . Fragmente resultierend20 (Cold Spring Harbor Laboratory Press: ISBN 0-87969-309-6). The sequencing of recombinant DNA molecules was carried out with a laser fluorescence DNA sequencer from ABI according to the method of Sanger (Sanger et al. (1977) Proc Natl Acad Sei USA 74: 5463-5467). Resulting fragments
25 aus einer Polymerase Kettenreaktion wurden zur Vermeidung von Polymerasefehlern in zu exprimierenden Konstrukten sequenziert und überprüft.25 from a polymerase chain reaction were sequenced and checked to avoid polymerase errors in constructs to be expressed.
Verwendet wurden der Stamm Acetobacter liquefaciens (ATCC14835) .The strain Acetobacter liquefaciens (ATCC14835) was used.
3030
Beispiel 1 : Konstruktion einer genomischen Bank von Acetobacter liquefaciens ATCC14835Example 1: Construction of a genomic bank of Acetobacter liquefaciens ATCC14835
Mit Hilfe des Qiagen Blood & Cell Culture DNA Kit wurde 35 genomische DNA präpariert. Mit bekannten Methoden erfolgte im Anschluss die Konstruktion der Genbank mit Hilfe des Zero Back- ground Cloning Kits (Invitrogen) im Vektor pZerO-2 (Invitrogen) . Dazu wurde die genomische DNA mit Sau3A verdaut und in mit BamHI linearisierten pZerO-2 Vektor ligiert. Die mittlere Größe des 40 Inserts betrug ca. 2,7 kb. Die Genbank repräsentierte mehr als 99 % des bakteriellen Genoms. Die einzelnen Klone wurden auf Nylonmembranen transferiert, lysiert und zur Hybridisierung vorbereitet.With the help of the Qiagen Blood & Cell Culture DNA Kit, 35 genomic DNA was prepared. Using known methods, the gene bank was then constructed using the zero background cloning kit (Invitrogen) in the vector pZerO-2 (Invitrogen). For this, the genomic DNA was digested with Sau3A and ligated into pZerO-2 vector linearized with BamHI. The mean size of the 40 insert was approximately 2.7 kb. The gene bank represented more than 99% of the bacterial genome. The individual clones were transferred to nylon membranes, lysed and prepared for hybridization.
5 Beispiel 2 : Herstellung der Sonden und Hybridisierung5 Example 2: Preparation of the probes and hybridization
Als Sonde kam ein internes 500 bp Fragment des Gluconobacter oxydans SDH-Gens zum Einsatz . Die Sonde wurden mit Hilfe des DIG PCR Labeling Kits (Röche Diagnostics) markiert. Die Nukleotidsequenz der eingesetzten Primer findet sich in Tabelle 1.An internal 500 bp fragment of the Gluconobacter oxydans SDH gene was used as the probe. The probe was labeled using the DIG PCR Labeling Kit (Röche Diagnostics). The nucleotide sequence of the primers used can be found in Table 1.
Figure imgf000035_0001
Figure imgf000035_0001
Tabelle 1: Nukleotidsequenz der eingesetzten PrimerTable 1: Nucleotide sequence of the primers used
Es wurden mehrere Klone identifiziert, die mit der von dem Gen der Sorbosedehydrogenase abgeleiteten Sonde ein positives Signal gab. Das Insert einiger Klone wurden sequenziert. Die Sequenz des Inserts von Klon 17 ist in SEQ ID No: 5 angegeben. Klon 17 enthält ein 2541 Nukleotide umfassendes DNA Fragment, welches das vollständige Gen der SDH aus Acetobacter liquefaciens (SEQ ID No: 1) trägt. Dieses Gen besteht aus 1827 Nukleotiden, die für 609 Aminosäuren kodieren (SEQ ID No: 2) .Several clones were identified which gave a positive signal with the probe derived from the sorbose dehydrogenase gene. The insert of some clones were sequenced. The sequence of the insert from clone 17 is given in SEQ ID No: 5. Clone 17 contains a DNA fragment comprising 2541 nucleotides, which carries the complete gene of the SDH from Acetobacter liquefaciens (SEQ ID No: 1). This gene consists of 1827 nucleotides that code for 609 amino acids (SEQ ID No: 2).
Beispiel 3 : Sequenzvergleich der Acetobacter liquefaciens SorbosedehydrogenaseExample 3: Sequence comparison of Acetobacter liquefaciens sorbose dehydrogenase
Gegen Genbank wurde eine BLAST Suche (Altschul et al. (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs; Nucleic Acids Res. 25:3389ff) mit der Sequenz aus SEQ ID No: 1 durchgeführt. Dabei fiel eine Homologie zur Sequenz einer Sorbosedehydrogenase aus Gluconobacter oxydans auf (Sequence 5, Patent US 5,834,263; Programmalgorithmus GAP (Wisconsin Package Version 10.0, University of Wisconsin, Genetics Computer Group (GCG) , Madison, USA) Gap weight 50, Length weight 3, Average match 10, Average mismatch 0). Dabei ergab sich 71,7 % DNA-Sequenzähnlichkeit mit der SDH aus G. oxydans. Die Sequenzähnlichkeit auf Aminosäureebene beträgt 82,3 % (Programmalgorithmus GAP (Wisconsin Package Version 10.0, University of Wisconsin, Genetics Computer Group (GCG) , Madison, USA) Gap weight 8, Length weight 2, Average match 2,912, Average mismatch -2,003) . Beispiel 4: Expression der Acetobacter liquefaciens SorbosedehydrogenaseA BLAST search was carried out against Genbank (Altschul et al. (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs; Nucleic Acids Res. 25: 3389ff) with the sequence from SEQ ID No: 1. Homology to the sequence of a sorbose dehydrogenase from Gluconobacter oxydans (Sequence 5, patent US 5,834,263; program algorithm GAP (Wisconsin Package Version 10.0, University of Wisconsin, Genetics Computer Group (GCG), Madison, USA) Gap weight 50, Length weight 3 , Average match 10, Average mismatch 0). This resulted in 71.7% DNA sequence similarity with the SDH from G. oxydans. The sequence similarity at the amino acid level is 82.3% (program algorithm GAP (Wisconsin Package Version 10.0, University of Wisconsin, Genetics Computer Group (GCG), Madison, USA) Gap weight 8, Length weight 2, Average match 2,912, Average mismatch -2,003) , Example 4: Expression of Acetobacter liquefaciens sorbose dehydrogenase
Der Vektor pVC-77 wurde mit Hilfe der Restriktionsendonukleasen Nde I und BamH I geschnitten. Nach Elektrophorese an einem l%igen Agarosegel wurde ein Gelstück ausgeschnitten, das einer Bandengröße von 1,6 kb entsprach. Die DNA wurde aus der Gelmatrix durch QIAquick Gel Extraction Kit (Qiagen) isoliert, in mit Nde I und BamHI linearisierten pT7-7 Vektor ligiert und in E. coli BL-21 transformiert. Das neue Plasmid erhielt die Bezeichnung pEVC-7.The vector pVC-77 was cut using the restriction endonucleases Nde I and BamH I. After electrophoresis on a 1% agarose gel, a piece of gel was cut out, which corresponded to a band size of 1.6 kb. The DNA was isolated from the gel matrix using the QIAquick Gel Extraction Kit (Qiagen), ligated into pT7-7 vector linearized with Nde I and BamHI and transformed into E. coli BL-21. The new plasmid was named pEVC-7.
Zur Bestätigung, dass es sich bei dem offenen Leseraster (ORF) um eine Sorbosedehydrogenase aus A. liquefaciens handelt, werden 100 mL LB-Medium bei 37°C bis zu einer optischen Dichte von 0,5 kultiviert. Anschließend setzt man 0,3 mM IPTG zu, wodurch die chromosomal unter Kontrolle des lac-Promotors integrierte T7 DNA Polymerase induziert wird. Nach 2 Stunden werden die Zellen geerntet .To confirm that the open reading frame (ORF) is a sorbose dehydrogenase from A. liquefaciens, 100 mL LB medium are cultivated at 37 ° C to an optical density of 0.5. Then 0.3 mM IPTG is added, which induces the T7 DNA polymerase integrated chromosomally under the control of the lac promoter. After 2 hours, the cells are harvested.
Ca. 500 mg Biofeuchtmasse werden mit dem RiboLyser Cell Disrupter (Tristar, Thermo Hybaid, UK) aufgeschlossen. Entsprechend der Literatur wird die solubilisierte Membranfraktion durch DEAE- Chromatographie gereinigt, durch N-terminale Sequenzierung bestätigt und die Aktivität der SDH analog der von Fujisawa (EP 0 758 679; US 5,834,263) beschriebenen Vorschrift bestimmt. Zusätzlich wird die Endprobe durch HPLC untersucht. Dabei wird als Produkt L-Sorboson detektiert. Somit handelt es sich um SEQ ID NO: 1 um das Gen einer neuen Sorbosedehydrogenase aus Acetobacter liquefaciens .Approximately 500 mg of bio-moist mass are digested with the RiboLyser Cell Disrupter (Tristar, Thermo Hybaid, UK). According to the literature, the solubilized membrane fraction is purified by DEAE chromatography, confirmed by N-terminal sequencing and the activity of the SDH is determined analogously to the procedure described by Fujisawa (EP 0 758 679; US 5,834,263). In addition, the final sample is examined by HPLC. L-sorbosone is detected as the product. SEQ ID NO: 1 is the gene for a new sorbose dehydrogenase from Acetobacter liquefaciens.
Beispiel 5 : Klonierung der Acetobacter liquefaciens Sorboson- dehydrogenaseExample 5: Cloning of Acetobacter liquefaciens sorbosone dehydrogenase
Stromaufwärts des Sorbosedehydrogenase-Gens in Klon 17 befinden sich weitere 250 Nukleotide. Diese Sequenz zeigt Ähnlichkeit mit dem C-Terminus der Sorbosondehydrogenase aus Gluconobacter oxydans. Daher sind wie auch in G. oxydans in A. liquefaciens die Sorbose- und Sorbosondehydrogenase-Gene nacheinander auf einem DNA-Fragment als Operon organisiert.Upstream of the sorbose dehydrogenase gene in clone 17 are another 250 nucleotides. This sequence shows similarity to the C-terminus of Gluconobacter oxydans sorbosone dehydrogenase. Therefore, as in G. oxydans in A. liquefaciens, the sorbose and sorbosone dehydrogenase genes are organized one after the other on a DNA fragment as an operon.
Die Sequenzinfomation aus den 250 nt wurde genutzt, um aus genomischer DNA von Acetobacter liquefaciens das Gen der Sorbosondehydrogenase zu isolieren.The sequence information from the 250 nt was used to isolate the gene of sorbosone dehydrogenase from genomic DNA from Acetobacter liquefaciens.
Genomische DNA aus einer 30 mL über Nacht-Kultur in YSM-Medium (Hefeextrakt 5 g/L, D-Sorbitol 50 g/L, Mannitol 10 g/L, pH 5-5,5) von Acetobacter liquefaciens ATCC14835 wurde präpariert (Genomic DNA Buffer-Set und Genomic-tip, Qiagen) und bei 37°C für 60 h mit der Restriktionsendonuklease Aatll verdaut. Danach erfolgte Elektrophorese in einem l%igen Agarose-Gel. Durch Southern blot wurde die DNA über Nacht auf eine positiv geladene Nylon-Membran (Röche Diagnostics) transferiert.Genomic DNA from a 30 mL overnight culture in YSM medium (yeast extract 5 g / L, D-sorbitol 50 g / L, mannitol 10 g / L, pH 5-5.5) from Acetobacter liquefaciens ATCC14835 was prepared (Genomic DNA buffer set and Genomic-tip, Qiagen) and digested at 37 ° C for 60 h with the restriction endonuclease Aatll. This was followed by electrophoresis in a 1% agarose gel. Southern blot was used to transfer the DNA to a positively charged nylon membrane (Röche Diagnostics) overnight.
Als Sonde kam das 250 bp Fragment des Acetobacter liquefaciens SNDH-Gens aus Klonl7 zum Einsatz. Die Sonde wurden mit Hilfe des DIG-High Prime DNA Labeling and Detection Starter II-Kit (Röche Diagnostics) markiert. Die Nukleotidsequenz der eingesetzten Primer findet sich in Tabelle 2. Die Sonde wurde nach Elektrophorese in einem l,5%ige Agarosegel durch das QIAquick Gel Extraction Kit (Qiagen) isoliert und in die Hybridisierung eingesetzt .The 250 bp fragment of the Acetobacter liquefaciens SNDH gene from Klonl7 was used as the probe. The probe was labeled using the DIG-High Prime DNA Labeling and Detection Starter II kit (Röche Diagnostics). The nucleotide sequence of the primers used can be found in Table 2. The probe was isolated after electrophoresis in a 1.5% agarose gel using the QIAquick Gel Extraction Kit (Qiagen) and used in the hybridization.
Figure imgf000037_0001
Figure imgf000037_0001
Tabelle 2: Nukleotidsequenz der eingesetzten PrimerTable 2: Nucleotide sequence of the primers used
Die Hybridisierung erfolgte unter Standardbedingungen (Prä- hybridisierung 37°C; Hybridisierung 37°C für 60 h, wash bei 75°C in 0,1 x SSC und 0,1 % SDS). Es konnte ein positives Signal bei einer Bandengröße von 3 , 6 kb durch das DIG Luminescent Detection- Kit (Röche Diagnostics) detektiert werden.The hybridization was carried out under standard conditions (pre-hybridization 37 ° C; hybridization 37 ° C for 60 h, wash at 75 ° C in 0.1 x SSC and 0.1% SDS). A positive signal with a band size of 3.6 kb could be detected by the DIG Luminescent Detection Kit (Röche Diagnostics).
Aus einem parallel gefahrenen l%igen Agarosegel mit Aatll ver- dauter genomischer DNA von A. liquefaciens wurde ein Gelstück ausgeschnitten, das einer Bandengröße von 3,6 kb entspricht. Die DNA wurde aus der Gelmatrix durch QIAquick Gel Extraction Kit (Qiagen) isoliert, religiert und als template in eine Polymerase- Ketten-Reaktion eingesetzt (inverse PCR) . Die Nukleotidsequenz der eingesetzten Primer findet sich in Tabelle 3.A piece of gel corresponding to a band size of 3.6 kb was cut out from a parallel run of 1% agarose gel with AatII digested genomic DNA from A. liquefaciens. The DNA was isolated from the gel matrix using the QIAquick Gel Extraction Kit (Qiagen), religated and used as a template in a polymerase chain reaction (inverse PCR). The nucleotide sequence of the primers used can be found in Table 3.
Figure imgf000037_0002
Figure imgf000037_0002
Tabelle 3 : Nukleotidsequenz der eingesetzten PrimerTable 3: Nucleotide sequence of the primers used
Nach Elektrophorese in einem l%igen Agarosegel wurde als PCR- Produkt ein ca. 2 kb langes DNA-Fragment identifiziert. Dieses wurde durch QIAquick Gel Extraction Kit (Qiagen) aus dem Agarosegel extrahiert. Das Fragment wurde mit den Restriktionsendonu- kleasen BamHI und Ncol verdaut und in mit BamHI/NcoI linearisier- ten pLitmus28 Vektor (Invitrogen) ligiert. Die Transformation erfolgte durch Elektroporation in XL-1 blue elektrokompetente Zellen (Stratagene) .After electrophoresis in a 1% agarose gel, an approximately 2 kb long DNA fragment was identified as the PCR product. This was extracted from the agarose gel using the QIAquick Gel Extraction Kit (Qiagen). The fragment was labeled with the restriction endonu cleases BamHI and Ncol digested and ligated into pLitmus28 vector (Invitrogen) linearized with BamHI / NcoI. The transformation was carried out by electroporation into XL-1 blue electrocompetent cells (Stratagene).
Es wurden mehrere Klone erhalten. Das Insert eines Klons wurde sequenziert. Es enthält ein 1865 Nukleotide umfassendes DNA Fragment, welches das vollständige Gen der SNDH aus Acetobacter liquefaciens (SEQ ID No: 3) trägt. Dieses Gen enthält ein offenes Leseraster aus 1431 Nukleotiden, die für 477 Aminosäuren kodieren (SEQ ID No. 4) .Several clones were obtained. The insert of a clone was sequenced. It contains an 1865 nucleotide DNA fragment which carries the complete gene of the SNDH from Acetobacter liquefaciens (SEQ ID No: 3). This gene contains an open reading frame of 1431 nucleotides that code for 477 amino acids (SEQ ID No. 4).
Beispiel 6 : Sequenzvergleich der Acetobacter liquefaciens SorbosondehydrogenaseExample 6: Sequence comparison of Acetobacter liquefaciens sorbosone dehydrogenase
Gegen Genbank wurde eine BLAST Suche (Altschul et al. (1997), "Gapped BLAST and PSI-BLAST: a new generation of protein data- base search programs", Nucleic Acids Res., 25: 3389ff) mit der Sequenz aus SEQ ID No.2 durchgeführt. Dabei fiel Homologie zur Sequenz einer Sorbosondehydrogenase aus Gluconobacter oxydans (Sequence 5, Patent US5834263) . Dabei ergab sich 48,7 % DNA- Sequenzähnlichkeit mit der SNDH aus G. oxydans (Programmalgorithmus GAP (Wisconsin Package Version 10.0, University of Wisconsin, Genetics Computer Group (GCG) , Madison, USA) Gap weight 50, Length weight 3, Average match 10, Average mismatch 0). Auf Aminosäureebene beträgt die Sequenzähnlichkeit 42,7 % (Programmalgorithmus GAP (Wisconsin Package Version 10.0, University of Wisconsin, Genetics Computer Group (GCG) , Madison, USA) Gap weight 8, Length weight 2, Average match 2,912, Average mismatch -2,003).A BLAST search was performed against Genbank (Altschul et al. (1997), "Gapped BLAST and PSI-BLAST: a new generation of protein database search programs", Nucleic Acids Res., 25: 3389ff) with the sequence from SEQ ID No.2 performed. Homology to the sequence of a sorbosone dehydrogenase from Gluconobacter oxydans (Sequence 5, patent US5834263) fell. This resulted in 48.7% DNA sequence similarity with the SNDH from G. oxydans (program algorithm GAP (Wisconsin Package Version 10.0, University of Wisconsin, Genetics Computer Group (GCG), Madison, USA) Gap weight 50, Length weight 3, Average match 10, average mismatch 0). At the amino acid level, the sequence similarity is 42.7% (program algorithm GAP (Wisconsin Package Version 10.0, University of Wisconsin, Genetics Computer Group (GCG), Madison, USA) gap weight 8, length weight 2, average match 2,912, average mismatch -2,003) ,
Beispiel 7 : Expression der Acetobacter liquef ciens SorbosondehydrogenaseExample 7: Expression of Acetobacter liquef ciens sorbosone dehydrogenase
Der Vektor pVC-96-Klon 3 wird als template in eine Polymerase- Ketten-Reaktion eingesetzt. Die Nukleotidsequenz der eingesetzten Primer findet sich in Tabelle 3.The vector pVC-96 clone 3 is used as a template in a polymerase chain reaction. The nucleotide sequence of the primers used can be found in Table 3.
Figure imgf000038_0001
Figure imgf000038_0001
Tabelle 4: Nukleotidsequenz der eingesetzten Primer Nach Elektrophorese in einem l%igen Agarosegel wird als PCR- Produkt ein ca. 1,6 kb langes DNA-Fragment identifiziert. Dieses wird mit Hilfe der Restriktionsendonukleasen Nde I und BamH I geschnitten. Nach Elektrophorese an einem l%igen Agarosegel wird ein Gelstück ausgeschnitten, das einer Bandengröße von 1,6 kb entspricht. Die DNA wird aus der Gelmatrix durch QIAquick Gel Extraction Kit (Qiagen) isoliert, in mit Nde I und BamHI linearisierten pT7-7 Vektor ligiert und in E. coli BL-21 transformiert . Das neue Plasmid erhält die Bezeichnung pEVC-9.Table 4: Nucleotide sequence of the primers used After electrophoresis in a 1% agarose gel, an approximately 1.6 kb long DNA fragment is identified as the PCR product. This is cut using the restriction endonucleases Nde I and BamH I. After electrophoresis on a 1% agarose gel, a piece of gel is cut out, which corresponds to a band size of 1.6 kb. The DNA is isolated from the gel matrix by the QIAquick Gel Extraction Kit (Qiagen), ligated into pT7-7 vector linearized with Nde I and BamHI and transformed into E. coli BL-21. The new plasmid is called pEVC-9.
Zur Bestätigung, daß es sich bei dem ORF um eine SNDH aus A. liquefaciens handelt, werden 100 mL LB-Medium bei 37°C bis zu einer optischen Dichte von 0,5 kultiviert. Anschließend setzt man 0,3 mM IPTG zu, wodurch die chromosomal unter Kontrolle des lac-Promotors integrierte T7 DNA Polymerase induziert wird. NachTo confirm that the ORF is an SNDH from A. liquefaciens, 100 mL LB medium are cultivated at 37 ° C to an optical density of 0.5. Then 0.3 mM IPTG is added, which induces the T7 DNA polymerase integrated chromosomally under the control of the lac promoter. To
2 Stunden werden die Zellen geerntet.The cells are harvested for 2 hours.
Ca. 500 mg Biofeuchtmasse werden mit dem RiboLyser Cell Disrupter (Tristar, Thermo Hybaid, UK) aufgeschlossen. In Abwandlung der in der Literatur bekannten Vorschrift (Fujisawa, EP0758679 bzw. US5834263) wird der Rohextrakt durch Q-Sepharose-Chromatographie gereinigt, durch N-terminale Sequenzierung bestätigt und die Aktivität der SNDH analog der von Fujisawa (EP0758679 (US5834263)) beschriebenen Vorschrift bestimmt. Zusätzlich wird die Endprobe durch HPLC untersucht. Dabei wird als Produkt 2-Ke- to-L-Gulonsäure detektiert. Somit handelt es sich bei SEQ ID NO:Approximately 500 mg of bio-moist mass are digested with the RiboLyser Cell Disrupter (Tristar, Thermo Hybaid, UK). In a modification of the protocol known in the literature (Fujisawa, EP0758679 and US5834263), the crude extract is purified by Q-Sepharose chromatography, confirmed by N-terminal sequencing and the activity of the SNDH is analogous to that described by Fujisawa (EP0758679 (US5834263)) certainly. In addition, the final sample is examined by HPLC. The product 2-keto-L-gulonic acid is detected. Thus SEQ ID NO is:
3 um eine neue Sorbosondehydrogenase aus Acetobacter liquefaciens . 3 a new sorbosone dehydrogenase from Acetobacter liquefaciens.

Claims

Patentansprüche claims
1. Verfahren zur Herstellung von Vitamin C oder 2-Keto-L- gulonsäure (2-KLG) , dadurch gekennzeichnet, dass dabei ein1. A process for the preparation of vitamin C or 2-keto-L-gulonic acid (2-KLG), characterized in that a
Organismus, der mindestens eine transgene Nukleinsäuresequenz enthält, kodierend fürOrganism that contains at least one transgenic nucleic acid sequence coding for
i) ein Polypeptid gemäß SEQ ID NO: 2 oder ein funktionelles Äquivalent desselben oderi) a polypeptide according to SEQ ID NO: 2 or a functional equivalent thereof or
ii) ein Polypeptid gemäß SEQ ID NO: 4 oder ein funktionelles Äquivalent desselben,ii) a polypeptide according to SEQ ID NO: 4 or a functional equivalent thereof,
oder eine von diesem erhaltene Enzympräparation zum Einsatz kommt.or an enzyme preparation obtained from it is used.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet das der Organismus zugleich Nukleinsäuren kodierend für i) und ii) enthält .2. The method according to claim 1, characterized in that the organism also contains nucleic acids coding for i) and ii).
3. Verfahren nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass mindestens einer der nachfolgenden Reaktionsschritte umfasst ist:3. The method according to any one of claims 1 or 2, characterized in that at least one of the following reaction steps is included:
a) Umsetzung von L-Sorbose zu L-Sorboson unter Verwendung eines Organismus oder einer von diesem erhaltene Enzympräparation, wobei der Organismus mindestens eine transgene Nukleinsäuresequenz enthält kodierend für ein Polypeptid mit L-Sorbosedehydrogenaseaktivität gemäß SEQ ID NO: 2 oder ein funktionelles Äquivalent desselben,a) converting L-sorbose to L-sorbosone using an organism or an enzyme preparation obtained therefrom, the organism containing at least one transgenic nucleic acid sequence coding for a polypeptide with L-sorbose dehydrogenase activity according to SEQ ID NO: 2 or a functional equivalent thereof,
b) Umsetzung von L-Sorboson zu 2-KLG unter Verwendung eines transgener Organismus oder einer von diesem erhaltene Enzympräparation, wobei der Organismus mindestens eine transgene Nukleinsäuresequenz enthält kodierend für ein Polypeptid mit L-Sorbosondehydrogenaseaktivität gemäß SEQ ID NO: 4 oder ein funktionelles Äquivalent desselben.b) conversion of L-sorbosone to 2-KLG using a transgenic organism or an enzyme preparation obtained therefrom, the organism containing at least one transgenic nucleic acid sequence coding for a polypeptide with L-sorbosone dehydrogenase activity according to SEQ ID NO: 4 or a functional equivalent thereof ,
4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass beide Reaktionsschritte a) und b) während des Verfahrens zum Einsatz kommen.4. The method according to claim 3, characterized in that both reaction steps a) and b) are used during the process.
5. Polypeptid gemäß SEQ ID NO: 2 oder dessen funktionelle Äquivalente oder funktioneil äquivalente Teile. 5. Polypeptide according to SEQ ID NO: 2 or its functional equivalents or functionally equivalent parts.
6. Polypeptid gemäß Anspruch 5 mit einer Homologie von mindestens 85 % zu der durch SEQ ID NO: 2 beschriebenen Sequenz und kodierend für Enzyme mit L-Sorbosedehydrogenaseaktivität .6. Polypeptide according to claim 5 with a homology of at least 85% to the sequence described by SEQ ID NO: 2 and coding for enzymes with L-sorbose dehydrogenase activity.
5 7. Nukleinsauresequenzen kodierend für Polypeptide gemäß einem der Ansprüche 5 oder 6.5 7. Nucleic acid sequences coding for polypeptides according to one of claims 5 or 6.
8. Nukleinsauresequenzen gemäß Anspruch 7 , ausgewählt aus der Gruppe bestehend aus8. nucleic acid sequences according to claim 7, selected from the group consisting of
10 a) der Sequenz beschrieben durch SEQ ID NO: 1,10 a) the sequence described by SEQ ID NO: 1,
b) Sequenzen, die sich aufgrund des degenerierten genetischen Codes aus den durch Rückübersetzung der inb) sequences which, on the basis of the degenerate genetic code, result from the back translation of the in
15 SEQ ID NO: 2 dargestellten Aminosäuresequenz ableiten lassen15 SEQ ID NO: 2 deduced amino acid sequence shown
c) Sequenzen, die ein funktionelles Äquivalent zu der durch SEQ ID NO: 1 dargestellten Nukleinsäuresequenzc) Sequences that have a functional equivalent to the nucleic acid sequence represented by SEQ ID NO: 1
20 darstellen.20 represent.
9. Nukleinsauresequenzen gemäß einem der Ansprüche 7 oder 8 mit einer Homologie von mindestens 75 % zu der durch SEQ ID NO: 1 beschriebenen Sequenz und kodierend für Enzyme mit L-Sorbose-9. Nucleic acid sequences according to one of claims 7 or 8 with a homology of at least 75% to the sequence described by SEQ ID NO: 1 and coding for enzymes with L-sorbose
25 dehydrogenaseaktivität .25 dehydrogenase activity.
10. Polypeptide gemäß SEQ ID NO: 4 oder deren funktionelle Äquivalente oder funktioneil äquivalente Teile.10. Polypeptides according to SEQ ID NO: 4 or their functional equivalents or functionally equivalent parts.
30 11. Polypeptide gemäß Anspruch 10, dadurch gekennzeichnet, dass sie eine Homologie von mindestens 45 % zu der durch SEQ ID NO: 4 beschriebenen Sequenz haben und für Enzyme mit L-Sorbosondehydrogenaseaktivität kodieren.11. Polypeptides according to claim 10, characterized in that they have a homology of at least 45% to the sequence described by SEQ ID NO: 4 and code for enzymes with L-sorbosone dehydrogenase activity.
35 12. Nukleinsauresequenzen kodierend für Polypeptide gemäß einem der Ansprüche 10 oder 11.35 12. Nucleic acid sequences coding for polypeptides according to one of claims 10 or 11.
13. Nukleinsauresequenzen gemäß Anspruch 12, ausgewählt aus der Gruppe bestehend aus13. Nucleic acid sequences according to claim 12, selected from the group consisting of
40 a) der Sequenz beschrieben durch SEQ ID NO: 340 a) the sequence described by SEQ ID NO: 3
b) Sequenzen, die sich aufgrund des degenerierten genetischen Codes aus den durch Rückübersetzung der in 45 SEQ ID NO: 4 dargestellten Aminosäuresequenz ableiten lassen c) Sequenzen, die ein funktionelles Äquivalent zu der durch SEQ ID NO: 3 dargestellten Nukleinsäuresequenz darstellen.b) Sequences which can be derived from the amino acid sequence shown in 45 SEQ ID NO: 4 on the basis of the degenerate genetic code c) Sequences which are a functional equivalent to the nucleic acid sequence represented by SEQ ID NO: 3.
5 1 . Nukleinsauresequenzen gemäß einem der Ansprüche 12 oder 13 mit einer Homologie von mindestens 50 % zu der durch SEQ ID NO: 3 beschriebenen Sequenz und kodierend für Enzyme mit L-Sorbosondehydrogenaseaktivität.5 1. Nucleic acid sequences according to one of claims 12 or 13 with a homology of at least 50% to the sequence described by SEQ ID NO: 3 and coding for enzymes with L-sorbosone dehydrogenase activity.
10 15. Transgene Expressionskassetten enthaltend mindestens eine Nukleinsäuresequenz gemäß einem der Ansprüche 7 bis 9 oder 12 bis 14.15. Transgenic expression cassettes containing at least one nucleic acid sequence according to one of claims 7 to 9 or 12 to 14.
16. Vektoren enthaltend mindestens eine Nukleinsäuresequenz16. Vectors containing at least one nucleic acid sequence
15 gemäß einem der Ansprüche 7 bis 9 oder 12 bis 14 oder eine Expressionskassette gemäß Anspruch 15.15 according to one of claims 7 to 9 or 12 to 14 or an expression cassette according to claim 15.
17. Transgener Organismus enthaltend mindestens eine Nukleinsäuresequenz gemäß einem der Ansprüche 7 bis 9 oder 12 bis 1417. Transgenic organism containing at least one nucleic acid sequence according to one of claims 7 to 9 or 12 to 14
20 oder eine Expressionskassette gemäß Anspruch 15 oder einen Vektor gemäß Anspruch 16.20 or an expression cassette according to claim 15 or a vector according to claim 16.
18. Transgener Organismus nach Anspruch 17 ausgewählt aus der Gruppe bestehend aus Bacillus, Clostridium, Escherichia,18. Transgenic organism according to claim 17 selected from the group consisting of Bacillus, Clostridium, Escherichia,
25 Pichia, Candida, Cyanobacter, Corynebacterium, Brevi- bacterium, Saccharomyces, Eremothecium und Ashbya.25 Pichia, Candida, Cyanobacter, Corynebacterium, Brevibacterium, Saccharomyces, Eremothecium and Ashbya.
19. Transgener Organismus nach einem der Ansprüche 17 oder 18 ausgewählt aus der Gruppe bestehend aus Gluσobacter oxidans,19. Transgenic organism according to one of claims 17 or 18 selected from the group consisting of Gluσobacter oxidans,
30 Acetobacter xylinium, Acetobacter pasteurianus, Acetobacter aceti, Acetobacter hansenii, Acetobacter suboxidans, Escherischia coli und Pseudomonas putida.30 Acetobacter xylinium, Acetobacter pasteurianus, Acetobacter aceti, Acetobacter hansenii, Acetobacter suboxidans, Escherischia coli and Pseudomonas putida.
20. Transgener Organismus nach Ansprüche 17 ausgewählt aus der 35 Gruppe bestehend aus Arabidopsis, Tomate, Kartoffeln, Mais,20. Transgenic organism according to claims 17 selected from the group consisting of Arabidopsis, tomato, potatoes, corn,
Raps, Weizen, Gerste, Sonnenblumen, Hirse, Roggen, Hafer, Zuckerrübe, Bohnengewächse und Soja.Rapeseed, wheat, barley, sunflowers, millet, rye, oats, sugar beet, beans and soy.
21. Zellkulturen, Teile, Gewebe, Organe oder transgenes Ver-21. Cell cultures, parts, tissues, organs or transgenic ver
40 mehrungsgut abgeleitet von einem transgenen Organismus nach einem der Ansprüchen 17 bis 20.40 reproductive material derived from a transgenic organism according to one of claims 17 to 20.
22. Enzympräparation mit L-Sorbosedehydrogenaseaktivität und/oder L-Sorbosondehydrogenaseaktivität hergestellt unter Verwendung22. Enzyme preparation with L-sorbose dehydrogenase activity and / or L-sorbosone dehydrogenase activity produced using
45 eines transgenen Organismus gemäß einem der Ansprüche 17 bis 20 oder von Zellkulturen, Teile, Gewebe, Organe oder trans- genes Vermehrungsgut desselben gemäß Anspruch 21.45 of a transgenic organism according to one of claims 17 to 20 or of cell cultures, parts, tissues, organs or transgenic propagation material of the same according to claim 21.
23. Verwendung eines Polypeptides gemäß einem der Ansprüche 5, 6, 5 10 oder 11, eines transgenen Organismus gemäß einem der23. Use of a polypeptide according to one of claims 5, 6, 5 10 or 11, a transgenic organism according to one of the
Ansprüche 17 bis 20, Zellkulturen, Teile, Gewebe, Organe oder transgenes Vermehrungsgut desselben gemäß Anspruch 21 oder einer Enzympräparation gemäß Anspruch 22 zur Herstellung zur Herstellung von Nahrungs- oder Futtermitteln, Pharmazeutika 10 oder Feinchemikalien.Claims 17 to 20, cell cultures, parts, tissues, organs or transgenic propagation material of the same according to claim 21 or an enzyme preparation according to claim 22 for the production for the production of food or feed, pharmaceuticals 10 or fine chemicals.
24. Verwendung nach Anspruch 23, wobei die Feinchemikalie ein Aldehyd, Keton oder eine Carbonsäure darstellt.24. Use according to claim 23, wherein the fine chemical is an aldehyde, ketone or a carboxylic acid.
15 25. Verwendung nach einem der Ansprüche 23 oder 24, wobei die15 25. Use according to one of claims 23 or 24, wherein the
Feinchemikalie L-Sorboson, 2-Keto-l-gulonsäure oder Vitamin C darstellt.Fine chemical L-sorbosone, 2-keto-l-gulonic acid or vitamin C.
26. Verfahren zur Herstellung von Aldehyden, Ketonen oder Carbon- 20 säuren ausgehend von den entsprechenden Alkoholen oder26. A process for the preparation of aldehydes, ketones or carboxylic acids from the corresponding alcohols or
Aldehyden gekennzeichnet dadurch, dass man den Alkohol oder Aldehyd in Gegenwart eines Polypeptide gemäß einem der Ansprüche 5, 6, 10 oder 11 eines transgenen Organismus gemäß einem der Ansprüche 17 bis 20, von Zellkulturen, Teile, Ge- 25 webe, Organe oder transgenes Vermehrungsgut desselben gemäß Anspruch 21 oder einer Enzympräparation gemäß Anspruch 22 oxidiert .Aldehydes characterized in that the alcohol or aldehyde in the presence of a polypeptide according to one of claims 5, 6, 10 or 11 of a transgenic organism according to one of claims 17 to 20, of cell cultures, parts, tissues, organs or transgenic propagation material the same according to claim 21 or an enzyme preparation according to claim 22 oxidized.
27. Verfahren nach Anspruch 26 zur Herstellung von 2-Keto-L-27. The method according to claim 26 for the preparation of 2-keto-L-
30 gulonsäure oder Ascorbinsäure, dadurch gekennzeichnet, dass man L-Sorbose und/oder L-Sorboson oxidiert, und gegebenenfalls die erhaltene 2-Keto-L-gulonsäure zu L-Ascorbinsäure umsetzt.30 gulonic acid or ascorbic acid, characterized in that L-sorbose and / or L-sorbosone is oxidized, and optionally the 2-keto-L-gulonic acid obtained is converted to L-ascorbic acid.
3535
4040
45 45
PCT/EP2002/007484 2001-07-13 2002-07-05 Method for producing 2-keto-l-gulonic acid and vitamin c while using l-sorbose dehydrogenase and l-sorbosone dehydrogenase WO2003008588A2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2002328843A AU2002328843A1 (en) 2001-07-13 2002-07-05 Method for producing 2-keto-l-gulonic acid and vitamin c while using l-sorbose dehydrogenase and l-sorbosone dehydrogenase

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10133397.8 2001-07-13
DE10133397 2001-07-13

Publications (2)

Publication Number Publication Date
WO2003008588A2 true WO2003008588A2 (en) 2003-01-30
WO2003008588A3 WO2003008588A3 (en) 2003-11-06

Family

ID=7691222

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2002/007484 WO2003008588A2 (en) 2001-07-13 2002-07-05 Method for producing 2-keto-l-gulonic acid and vitamin c while using l-sorbose dehydrogenase and l-sorbosone dehydrogenase

Country Status (2)

Country Link
AU (1) AU2002328843A1 (en)
WO (1) WO2003008588A2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005052160A1 (en) * 2003-11-28 2005-06-09 North China Pharmaceutical Group Corporation A L-sorbosone dehydrogenase as well as the encoding gene and the use thereof
WO2006084720A2 (en) * 2005-02-11 2006-08-17 Dsm Ip Assets B.V. Hpr kinase from gluconobacter oxydan
CN102653767A (en) * 2012-05-26 2012-09-05 江南大学 Novel gene for L-sorbose/L-sorbosone dehydrogenase and application of novel gene
CN103254159A (en) * 2013-01-29 2013-08-21 南京凯通粮食生化研究设计有限公司 Vitamin C production process improvement method
US8945864B2 (en) 2006-06-22 2015-02-03 Ikeda Food Research Co., Ltd. Method of determining 1,5-anhydroglucitol, and reagent composition for determining 1,5-anhydroglucitol

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0276832A2 (en) * 1987-01-30 1988-08-03 F. Hoffmann-La Roche Ag Process for the preparation of cetogulonic acid
EP0753575A1 (en) * 1993-03-08 1997-01-15 Fujisawa Pharmaceutical Co., Ltd. NOVEL L-SORBOSE DEHYDROGENASE AND NOVEL L-SORBOSONE DEHYDROGENASE OBTAINED FROM $i(GLUCONOBACTER OXYDANS) T-100
EP0758679A1 (en) * 1994-02-25 1997-02-19 Fujisawa Pharmaceutical Co., Ltd. Process for producing 2-keto-l-gulonic acid

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0276832A2 (en) * 1987-01-30 1988-08-03 F. Hoffmann-La Roche Ag Process for the preparation of cetogulonic acid
EP0753575A1 (en) * 1993-03-08 1997-01-15 Fujisawa Pharmaceutical Co., Ltd. NOVEL L-SORBOSE DEHYDROGENASE AND NOVEL L-SORBOSONE DEHYDROGENASE OBTAINED FROM $i(GLUCONOBACTER OXYDANS) T-100
EP0758679A1 (en) * 1994-02-25 1997-02-19 Fujisawa Pharmaceutical Co., Ltd. Process for producing 2-keto-l-gulonic acid

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ASAKURA A ET AL: "ISOLATION AND CHARACTERIZATION OF A NEW QUINOPROTEIN DEHYDROGENASE, L-SORBOSE/L-SORBOSONE DEHYDROGENASE" BIOSCIENCE BIOTECHNOLOGY BIOCHEMISTRY, JAPAN SOC. FOR BIOSCIENCE, BIOTECHNOLOGY AND AGROCHEM. TOKYO, JP, Bd. 63, Nr. 1, Januar 1999 (1999-01), Seiten 46-53, XP001085040 ISSN: 0916-8451 *
LEE H -W ET AL: "Screening for L-sorbose and L-sorbosone dehydrogenase producing microbes for 2-keto-L-gulonic acid production." JOURNAL OF INDUSTRIAL MICROBIOLOGY & BIOTECHNOLOGY, Bd. 23, Nr. 2, August 1999 (1999-08), Seiten 106-111, XP002241676 ISSN: 1367-5435 *
SAITO Y ET AL: "CLONING OF GENES CODING FOR L-SORBOSE AND L-SORBOSONE DEHYDROGENASES FROM GLUCONOBACTER OXYDANS AND MICROBIAL PRODUCTION OF 2-KETO-L-GULONATE, A PRECURSOR OF L-ASCORBIC ACID, IN A RECOMBINANT G. OXYDANS STRAIN" APPLIED AND ENVIRONMENTAL MICROBIOLOGY, WASHINGTON,DC, US, Bd. 63, Nr. 2, 1997, Seiten 454-460, XP000886144 ISSN: 0099-2240 in der Anmeldung erw{hnt *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005052160A1 (en) * 2003-11-28 2005-06-09 North China Pharmaceutical Group Corporation A L-sorbosone dehydrogenase as well as the encoding gene and the use thereof
WO2006084720A2 (en) * 2005-02-11 2006-08-17 Dsm Ip Assets B.V. Hpr kinase from gluconobacter oxydan
WO2006084720A3 (en) * 2005-02-11 2006-09-28 Dsm Ip Assets Bv Hpr kinase from gluconobacter oxydan
US8945864B2 (en) 2006-06-22 2015-02-03 Ikeda Food Research Co., Ltd. Method of determining 1,5-anhydroglucitol, and reagent composition for determining 1,5-anhydroglucitol
CN102653767A (en) * 2012-05-26 2012-09-05 江南大学 Novel gene for L-sorbose/L-sorbosone dehydrogenase and application of novel gene
CN103254159A (en) * 2013-01-29 2013-08-21 南京凯通粮食生化研究设计有限公司 Vitamin C production process improvement method

Also Published As

Publication number Publication date
AU2002328843A1 (en) 2003-03-03
WO2003008588A3 (en) 2003-11-06

Similar Documents

Publication Publication Date Title
JP3281508B2 (en) Thermostable phytase
US5981219A (en) DNA molecules which code for a plastid 2-oxoglutarate/malate translocator
RU2113468C1 (en) Dna encoding phytase in aspergillus niger, recombinant plasmid dna for phytase expression (variants), strain-producers of phytase (variants), method of phytase preparing and recombinant phytase
US5985605A (en) DNA sequences encoding phytases of ruminal microorganisms
DE69838613T2 (en) GENE, CONTROLLING PHYTATE METABOLISM AND APPLICABLE APPLICATIONS
DE69434312T2 (en) REGULATION OF PLANT GROWTH
DE10224889A1 (en) Process for the stable expression of nucleic acids in transgenic plants
EP1009841A1 (en) Dna sequence coding for a hydroxyphenylpyruvate dioxygenase and overproduction thereof in plants
WO2000075341A1 (en) Δ6-acetylenase and δ6-desaturase from ceratodon purpureus
DE69728878T2 (en) METHOD FOR IMPROVING HEMOPROTEIN PRODUCTION IN FILAMENTOUS FUNGI
Hongoh et al. Cloning, sequence analysis and expression in Escherichia coli of the gene encoding a uricase from the yeast-like symbiont of the brown planthopper, Nilaparvata lugens
JPH08500733A (en) Fungal promoter active in the presence of glucose
WO2003074716A2 (en) Methods for the production of unsaturated fatty acids
DE19823834A1 (en) Genetic process for the production of riboflavin
EP1498489B1 (en) Ascorbic acid production from yeasts
DE10009002A1 (en) A new homogentisatephytyltransferase protein encoded by the open reading frame slr1376 from Synechocystis species. PCC6803 is useful to provide transgenic plants producing vitamin E
Hauser et al. Purification of the inducible α-agglutinin of S. cerevisiae and molecular cloning of the gene
EP1763578A2 (en) Polypeptides having tannase and/or lipase activity
WO2003008588A2 (en) Method for producing 2-keto-l-gulonic acid and vitamin c while using l-sorbose dehydrogenase and l-sorbosone dehydrogenase
DE60030466T2 (en) ASPERGILLUS NIGER BETA-GLUCOSIDASE GENE, PROTEIN, AND USES THEREOF
DE19937957A1 (en) Homogenate dioxygenase
KR20010023362A (en) Fatty acid hydroperoxide lyase nucleic acid sequences
KR20040064715A (en) Novel phytases and method for producing these phytases
WO1999050400A1 (en) Amp deaminase
EP2116136A1 (en) Novel phytases

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP