WO2002090777A1 - Blower and air conditioner with the blower - Google Patents

Blower and air conditioner with the blower Download PDF

Info

Publication number
WO2002090777A1
WO2002090777A1 PCT/JP2001/011317 JP0111317W WO02090777A1 WO 2002090777 A1 WO2002090777 A1 WO 2002090777A1 JP 0111317 W JP0111317 W JP 0111317W WO 02090777 A1 WO02090777 A1 WO 02090777A1
Authority
WO
WIPO (PCT)
Prior art keywords
blower
blade
blades
trailing edge
impeller
Prior art date
Application number
PCT/JP2001/011317
Other languages
French (fr)
Japanese (ja)
Inventor
Zhiming Zheng
Jiro Yamamoto
Original Assignee
Daikin Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries, Ltd. filed Critical Daikin Industries, Ltd.
Priority to EP20010274219 priority Critical patent/EP1382856B1/en
Priority to DE2001618103 priority patent/DE60118103T2/en
Priority to AU2002217482A priority patent/AU2002217482B2/en
Publication of WO2002090777A1 publication Critical patent/WO2002090777A1/en
Priority to HK04104578A priority patent/HK1061707A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/28Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
    • F04D29/30Vanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/32Rotors specially for elastic fluids for axial flow pumps
    • F04D29/38Blades
    • F04D29/384Blades characterised by form
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0018Indoor units, e.g. fan coil units characterised by fans
    • F24F1/0029Axial fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/20Rotors
    • F05D2240/30Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
    • F05D2240/304Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor related to the trailing edge of a rotor blade

Definitions

  • the present invention relates to a blower characterized by a blade structure and an air conditioner including the same.
  • FIG 17 shows a conventional general-purpose axial blower Z. Is shown.
  • This axial flow blower Z. A plurality of blades 23, 23,... Are radially arranged on the outer periphery of a hap 22, and the impeller 21 is rotationally driven by a motor 24.
  • the bell mouth 25 is arranged so as to surround the.
  • the impeller 23 of the impeller 21 is a forward wing whose front edge 23 a is advanced forward in the rotational direction, and its cross section is streamlined. It is a thick wing having a shape, and is attached to the hub 22 at a predetermined attachment angle.
  • the blade 23 has a curved form having an appropriate “warpage” in the chord direction, and the concave side has a pressure surface 23 c and the convex side has a suction surface 2. 3d.
  • the impeller 21 rotates, as shown in FIG. 20, the airflow flowing from the leading edge 23 a side of the blade 23, after colliding with the leading edge 23 a, It flows separately to the pressure surface 23c side and the suction surface 23d side, and then is discharged backward from the edge 23b side.At this time, the pressure is raised by the lift action on the pressure surface 23c, It is blown out in the direction of arrow A.
  • the conventional axial blower Z In FIG. 19, as shown in FIG. 19, the “warp” of the blade 23 was generally continuous in the same direction from its leading edge 23 a to its trailing edge 23 b. This is because the “warp” generates a lift effect and the air flow is boosted, so it is effective to increase the range of the "warp” as much as possible to obtain a higher static pressure. It is based on a design philosophy that emphasizes the static pressure characteristics of blowers. However, when the blade 23 has such a configuration that its “warp” is continuous from the leading edge 23 a to the trailing edge 23 b, as described below, the trailing edge 2 Wake A discharged backward from 3b. This increases the width of the blades 23, deteriorating the aerodynamic characteristics of the blades 23, and lowering the blowing efficiency.
  • the airflow blowing direction at the trailing edge 23 b that is, the tangential direction to the curved surface near the trailing edge 23 b
  • the rotation direction of the blade 23 Of the airflow flowing on the pressure surface 23c side the airflow flowing along the pressure surface 23c and discharged backward from the trailing edge 23b is the trailing edge.
  • the blade is deflected along the blade rotation direction, so that the flow becomes unstable and turbulence is likely to occur.
  • the turbulence is promoted, and the width in the blade thickness direction, that is, the wake width S increases.
  • blower is incorporated as one of its components, such as an air conditioner. Since the power consumption of the blower is very small compared to the power consumption of other components such as the compressor, the power consumption of the entire air conditioner is examined from the viewpoint of energy saving. In such cases, compressors with higher power consumption attracted more attention, and the power consumption of blowers was rarely taken up as a problem.
  • the present invention has been made to provide a blower that achieves high efficiency by improving the blade structure, and an air conditioner equipped with the blower.
  • a blower in order to solve a powerful problem, is a blower including an impeller in which a plurality of blades are radially mounted on the outer periphery of a hap, wherein each of the blades is disposed at a trailing edge of the blade. It is characterized that a specific area extending along the blade span direction with a predetermined width is curved toward the suction side.
  • the above-mentioned effect can be obtained even when the blade is configured to have a substantially uniform blade thickness from the leading edge to the trailing edge, or when the cross section of the blade has a streamline shape. .
  • the air conditioner according to the present invention is characterized in that, in the air conditioner including the heat exchanger and the blower, the blower having the above-described configuration is applied as the blower.
  • This air conditioner has high efficiency and energy saving by having the blower of the above configuration.
  • FIG. 1 is a sectional view of a main part of an axial blower according to a first embodiment of the present invention.
  • FIG. 2 is a front view of the impeller shown in FIG.
  • FIG. 3 is a cross-sectional view taken along the line II-II of FIG.
  • FIG. 4 is an explanatory diagram of an airflow state flowing on the blade surface.
  • FIG. 5 is a cross-sectional view of a main part of a mixed flow blower according to a second embodiment of the present invention.
  • FIG. 6 is a front view of the impeller shown in FIG.
  • FIG. 7 is a cross-sectional view taken along the line VII-VII in FIG.
  • FIG. 8 is a front view of an outdoor unit of an air conditioner equipped with an axial blower.
  • FIG. 9 is a sectional view taken along the line IX-IX of FIG.
  • FIG. 10 is a sectional view taken along line XX of FIG.
  • FIG. 11 is a sectional view showing another embodiment of the blade.
  • FIG. 12 is a cross-sectional view showing another embodiment of the blade.
  • FIG. 13 is a sectional view showing another embodiment of the blade.
  • Fig. 14 is a characteristic diagram of “air flow-static pressure” of the blower.
  • Fig. 15 is a characteristic diagram of “air volume versus total pressure efficiency” of the blower.
  • Figure 16 is a characteristic diagram of the "air volume uniaxial power" of the blower.
  • FIG. 17 is a sectional view of a main part of a conventional axial blower.
  • FIG. 18 is a front view of the impeller shown in FIG.
  • FIG. 19 is a cross-sectional view of XIX_XIX of FIG.
  • FIG. 20 is an explanatory diagram of an airflow state flowing over the blade. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIGS. 1 to 13 and FIGS. 14 to 16 Similar parts in FIGS. 1 to 13 are denoted by the same reference numerals.
  • FIG. 1 shows an axial blower according to a first embodiment of the present invention.
  • the axial blower Zt is a so-called “propeller fan”, and has a plurality of (three in this embodiment) blades 3, 3, 3 radially attached to the outer periphery of the hub 2 at a predetermined mounting angle.
  • the impeller 1 is rotatably driven by a motor 4, and a bell mouth 5 is arranged around the outer periphery of the impeller 1 so as to surround the impeller 1.
  • the blade 3 of the impeller 1 is a “advanced wing” whose front edge 3 a extends forward in the rotation direction, has a relatively large blade thickness, and
  • This wing thickness is a so-called “air-foil wing” in which the thickness gradually decreases from the leading edge 3 a to the trailing edge 3 b.
  • the wing thickness has a predetermined “warp” in the chord direction.
  • the suction surface is 3 f.
  • the most characteristic point of the blade 3 is that the blade 3 has a region extending along the trailing edge 3 b at a predetermined width in the blade span direction along the trailing edge 3 b (in FIG. 1 to FIG. 3, The region near the trailing edge 3b from the line L) is defined as a specific region Q, and this specific region Q is a point that is curved toward the negative pressure surface 3f. Therefore, in the blade 3 of this embodiment, the direction of the “warp” is reversed between the leading edge 3a and the trailing edge 3b near the region line L.
  • This form of “warp” is different from the conventional blade 23 shown in FIG. 19 in which “warp” in the same direction is continuous from the leading edge 23 a to the trailing edge 23 b. It is a completely different and novel form.
  • the specific region Q set on the back 3b side of the blade 3 is curved toward the negative pressure surface 3f,
  • the suction surface 3 f it's only after flow separation area of the airflow A 2 at the trailing edge 3 b side is reduced in side A. Flow is suppressed.
  • the specific region Q is curved toward the negative pressure surface 3f side, so that the rearward direction of the airflow at the trailing edge 3b approaches the rotation direction of the blades 3 and angle difference therebetween is reduced, its Re only release backward airflow becomes smoother, which less able to promote even the disturbance merges with the rear stream a 0, stability much of the rear stream a 0 Therefore, the increase of the wake width S is suppressed.
  • the aerodynamic characteristics of the blades 3 are improved by an amount corresponding to the suppression of the increase of the wake width S, and the axial blower is improved in efficiency, and the power consumption is increased by the increase in efficiency. It will decrease and the energy saving will be improved.
  • the efficiency is improved by an extremely simple and inexpensive configuration in which the specific region Q on the trailing edge 3 b side of the blade 3 is curved toward the negative pressure surface 3 f side. And energy conservation.
  • FIGS. 14 to 16 show the results of various performance tests performed to confirm the above effects in the axial blower of this embodiment.
  • FIG. 14 shows a characteristic diagram of “air flow-static pressure”, in which a curve ai represents the characteristic of the axial flow fan of the above embodiment, and a curve L bi represents the characteristic of the conventional axial flow fan. It is shown. From the “air flow-static pressure” characteristic diagram of FIG. 14, in the axial flow blower Z i of the above embodiment, the specific area Q on the trailing edge 3 b side of the blade 3 is curved toward the negative pressure surface 3 f side. As a result, the effective area of the pressure surface 3 e, that is, the area of the part related to the air pressurizing action is reduced, and the static pressure performance is somewhat lower than that of the conventional structure. I understand.
  • Figure 1 5 is a view illustrating the "air volume one total pressure efficiency" characteristic graph
  • curve L a 2 is the axial-flow fan of the embodiment characteristic
  • curve L b 2 is a characteristic of an axial blower having a conventional structure , Each is shown. From the characteristic diagram of “air volume-total pressure efficiency” in FIG. 15, it is quicker that the axial flow fan of the above embodiment has higher total pressure efficiency than the conventional axial flow fan.
  • FIG. 16 there is shown an "air volume uniaxial power" characteristic graph, characteristic curve L a 3 are axial-flow fan of the implementation form, the curve L b 3 properties of the axial flow fan of the conventional structure, Each is shown. It can be seen from the characteristic diagram of “air flow uniaxial power” in FIG. 16 that the axial power of the axial blower of the above embodiment is much lower than that of the conventional axial blower.
  • the static pressure performance is slightly lower than that of the conventional structure, but still maintains high performance, while both the total pressure efficiency and the shaft power are higher than those of the conventional structure.
  • the superiority of the shaft power is remarkable. Therefore, when these performances are considered in comparison, the axial flow blower of this embodiment has a It can be said to be highly efficient and excellent in energy saving.
  • FIG. 5 shows a mixed flow blower Z 2 according to a second embodiment of the present invention.
  • the mixed flow blower Z 2 includes an impeller 1 having a plurality of (four in this embodiment) blades 3, 3,... Radially mounted at a predetermined mounting angle on the outer periphery of a truncated conical hub 2.
  • the impeller 1 is rotatably driven by a motor 4, and a bell mouth 5 is arranged around the impeller 1 so as to surround the impeller 1.
  • the blade 3 of the impeller 1 is a “advanced wing” whose front edge 3 a extends forward in the rotation direction, has a relatively small blade thickness, and This wing thickness gradually decreases from the leading edge 3a to the trailing edge 3b, which is a so-called "air-oil wing".
  • the wing has a predetermined "warp" in the chord direction, and its concave surface is The pressure side is 3 e and the convex side is the negative side 3 f.
  • the most characteristic feature of the blade 3 is that the blade 3 has a region extending along the trailing edge 3 b in the blade span direction along the trailing edge 3 b at a predetermined width (in FIG. 5 to FIG.
  • the region near the trailing edge 3b from the line L) is defined as a specific region Q, and this specific region Q is a point that is curved toward the negative pressure surface 3f.
  • the blade 3 of this embodiment has In this case, the direction of the “warp” is reversed between the portion closer to the leading edge 3 a and the portion closer to the trailing edge 3 b from the area line L, and the form of the “warping” is However, like the axial blower of the first embodiment, this is a novel form completely different from the structure of the conventional blade 23 (see FIG. 19).
  • a mixed flow blower having an impeller 1 having the blades 3 having such a novel configuration.
  • FIG. 8 to 10 show an outdoor unit Y of an air conditioner provided with the axial blower according to the first embodiment.
  • the outdoor unit Y the inside of a rectangular casing 10 is partitioned in the left-right direction by a partition wall 11, one side of which is a heat exchange room 12 and the other side is a machine room 13 and the heat exchange room 12
  • the axial blower and the heat exchanger 6 are arranged in the inside, and the compressor 7 is arranged in the machine room 13.
  • a grill 8 is provided at an outlet 9 facing the axial blower.
  • the outdoor unit Y when the axial blower is operated and the impeller 1 rotates, the outdoor unit Y passes through the heat exchanger 6 and the impeller 1 from the outside and is discharged from the outlet 9 to the outside. An air flow is generated, and heat is exchanged between the air flow and the refrigerant circulating in the heat exchanger 6.
  • the outdoor unit Y of this embodiment since the axial blower according to the first embodiment is provided as air supply means to the heat exchanger 6, the axial blower Zi is highly efficient and consumes less power.
  • the outdoor unit Y is an ideal outdoor unit that has both high heat exchange efficiency and energy saving because it has low energy consumption and excellent energy saving.
  • a thick-walled “air oil blade” as shown in FIG. 3 is employed as the blade 3, and the mixed flow blower of the second embodiment is used.
  • the blade 3 is a thin airfoil as shown in FIG.
  • the oil wing J is employed, the blade 3 in the present invention is not limited to such a form.
  • various forms as shown in FIGS. 11 to 13 can be employed. is there.
  • the blade 3 shown in FIG. 11 is an irregularly shaped airfoil blade in which a portion near the leading edge 3a is locally thickened and other portions are thinned.
  • the blade 3 shown in FIG. 12 has a relatively wide portion near the leading edge 3 a and a thicker portion, and the blade thickness gradually decreases from the thick portion toward the trailing edge 3 b.
  • the blade 3 shown in FIG. 13 is a plate blade formed by bending a thin plate having a constant thickness with a predetermined “warpage”.
  • the predetermined region on the trailing edge 3 b side (that is, the above-described specific region Q) is curved toward the negative pressure surface 3 ⁇ , so that the first and second embodiments can be modified. in which it is possible to obtain the same effects as according blower 2 Zeta 2.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

A blower, comprising an impeller having a plurality of blades (3) installed on the outer periphery of a hub (2), wherein the specific areas (Q) of the blades (3) extending, in a specified width, in a vane span direction along the trailing edges (3b) of the blades (3) are bent to a negative pressure surface (3f) side, whereby the separation of air flow becomes hard to occur on the negative pressure surface (3f) of the blades (3) to suppress the disturbance of a wake (A0), the stream of the air flow discharged rearward from the trailing edges (3b) becomes smooth on the pressure surface (3e) side to reduce the disturbance, and thus the width of the wake (A0) is reduced to improve the aerodynamic characteristics of the blades.

Description

明 細 書 送風機及ぴ該送風機を備えた空気調和機 技術分野  Description Blower and air conditioner equipped with the blower
本願発明は、 羽根構造に特徴をもつ送風機及びこれを備えた空気調和機に関す るものである。 背景技術  The present invention relates to a blower characterized by a blade structure and an air conditioner including the same. Background art
図 1 7には、 従来一般的な軸流送風機 Z。を示している。 この軸流送風機 Z。は、 ハプ 2 2の外周に複数枚の羽根 2 3 , 2 3 , …を放射状に配置してなる羽根車 2 1をモータ 2 4によって回転駆動するとともに、 該羽根車 2 1の外周側にこれ を囲繞するようにベルマウス 2 5を配置して構成される。 また、 上記羽根車 2 1 の上記羽根 2 3は、 図 1 8及び図 1 9に示すように、 その前縁 2 3 aを回転方向 前方へ前進させた前進翼で、 且つその断面が流線形状をもつ厚肉の翼であって、 上記ハブ 2 2に対して所定の取付角をもって取り付けられている。  Figure 17 shows a conventional general-purpose axial blower Z. Is shown. This axial flow blower Z. , A plurality of blades 23, 23,... Are radially arranged on the outer periphery of a hap 22, and the impeller 21 is rotationally driven by a motor 24. The bell mouth 25 is arranged so as to surround the. Further, as shown in FIGS. 18 and 19, the impeller 23 of the impeller 21 is a forward wing whose front edge 23 a is advanced forward in the rotational direction, and its cross section is streamlined. It is a thick wing having a shape, and is attached to the hub 22 at a predetermined attachment angle.
また、 上記羽根 2 3は、 図 1 9に示すように、 その翼弦方向において適宜の 「反り」 をもつ湾曲形態を有し、 その凹側面が圧力面 2 3 c、 凸側面が負圧面 2 3 dとされる。 そして、 上記羽根車 2 1が回転するとき、 図 2 0に示すように、 上記羽根 2 3の前縁 2 3 a側から流入する空気流は、 該前縁 2 3 aに衝突後、 そ の圧力面 2 3 c側と負圧面 2 3 d側とにそれぞれ別れて流れ、 その後縁 2 3 b側 から後方へ放出され、 このとき、 上記圧力面 2 3 cでの揚力作用によって昇圧さ れ、 矢印 A方向へ向けて吹き出されるものである。  Further, as shown in FIG. 19, the blade 23 has a curved form having an appropriate “warpage” in the chord direction, and the concave side has a pressure surface 23 c and the convex side has a suction surface 2. 3d. Then, when the impeller 21 rotates, as shown in FIG. 20, the airflow flowing from the leading edge 23 a side of the blade 23, after colliding with the leading edge 23 a, It flows separately to the pressure surface 23c side and the suction surface 23d side, and then is discharged backward from the edge 23b side.At this time, the pressure is raised by the lift action on the pressure surface 23c, It is blown out in the direction of arrow A.
ところで、 従来の軸流送風機 Z。においては、 図 1 9に示すように、 羽根 2 3 の 「反り」 がその前縁 2 3 aから後縁 2 3 bまで同一方向で連続しているのが通 例であった。 これは、 この 「反り」 によって揚力作用が発生し空気流の昇圧がな されるものであることから、 より高い静圧を得るためにはこの 「反り」 の範囲を できるだけ大きくとることが有効である、 という送風機の静圧特性を重視した設 計思想に立脚するものである。 ところが、 このように羽根 2 3がその 「反り」 を前縁 2 3 aから後縁 2 3 bに 亙って連続させた構成であると、 次述のように、 羽根 2 3の後縁 2 3 bから後方 へ放出される後流 A。の幅が増大し、 羽根 2 3の空力特性が悪化して送風効率が 低下するという問題が生じる。 By the way, the conventional axial blower Z. In FIG. 19, as shown in FIG. 19, the “warp” of the blade 23 was generally continuous in the same direction from its leading edge 23 a to its trailing edge 23 b. This is because the "warp" generates a lift effect and the air flow is boosted, so it is effective to increase the range of the "warp" as much as possible to obtain a higher static pressure. It is based on a design philosophy that emphasizes the static pressure characteristics of blowers. However, when the blade 23 has such a configuration that its “warp” is continuous from the leading edge 23 a to the trailing edge 23 b, as described below, the trailing edge 2 Wake A discharged backward from 3b. This increases the width of the blades 23, deteriorating the aerodynamic characteristics of the blades 23, and lowering the blowing efficiency.
即ち、 上記羽根 2 3の負圧面 2 3 d側においては、 凸状面が連続することから、 前縁 2 3 aから後縁 2 3 bに至るに伴って該負圧面 2 3 d上における境界層が次 第に発達することから、 後縁 2 3 b近傍において、 負圧面 2 3 d側を流れる気流 のうち、 該負圧面 2 3 dに沿って流れる気流 A2に剥離が生じ、 その結果、 該後 縁 2 3 bの後方側に放出される後流 A。は本安定で乱れた流れとなる。 一方、 羽 根 2 3の圧力面 2 3 c側においては、 後縁 2 3 bでの気流吹出方向 (即ち、 後縁 2 3 bの近傍の湾曲面に対する接線方向) と羽根 2 3の回転方向との角度差が大 きいことから、 該圧力面 2 3 c側を流れる気流のうち、 該圧力面 2 3 cに沿って 流れ該後縁 2 3 bから後方へ放出される気流 は該後縁 2 3 bからの放出直後 に羽根回転方向に沿うように偏向作用を受けることからその流れが不安定となり 乱れが生じ易くなり、 これが上記後流 A。に合流することで、 該後流 A。はその乱 れが助長され、 翼厚方向における幅、 即ち、 後流幅 Sが大きくなる。 That is, since the convex surface is continuous on the negative pressure surface 23 d side of the blade 23, the boundary on the negative pressure surface 23 d increases from the leading edge 23 a to the trailing edge 23 b. since the layer is developed following the second, at the trailing edge 2 3 b vicinity of the air flow flowing through the suction surface 2 3 d side, flaking occurs in the airflow a 2 that flows along the negative pressure surface 2 3 d, the result The wake A discharged behind the trailing edge 23b. Is a stable and turbulent flow. On the other hand, on the pressure surface 23 c side of the blade 23, the airflow blowing direction at the trailing edge 23 b (that is, the tangential direction to the curved surface near the trailing edge 23 b) and the rotation direction of the blade 23 Of the airflow flowing on the pressure surface 23c side, the airflow flowing along the pressure surface 23c and discharged backward from the trailing edge 23b is the trailing edge. Immediately after the release from 23 b, the blade is deflected along the blade rotation direction, so that the flow becomes unstable and turbulence is likely to occur. The wake A. The turbulence is promoted, and the width in the blade thickness direction, that is, the wake width S increases.
この結果、 上記羽根 2 3においては、 その空力抵抗が増大し、 送風機全体とし ての送風効率の低下を招来するとともに、 送風効率が低下する分だけモータ 2 4 の消費電力が増大することになるものである。  As a result, in the blade 23, the aerodynamic resistance increases, which causes a reduction in the blowing efficiency of the entire blower, and the power consumption of the motor 24 increases by an amount corresponding to the reduction in the blowing efficiency. Things.
このような送風機の消費電力の増大という問題は、 送風機を単体で用いる場合 には比較的認識され易いが、 例えば、 空気調和機のようにその構成要素の一つと して送風機が組み込まれたようなものにあっては、 該送風機の消費電力が他の構 成要素、 例えば圧縮機の消費電力に比較して非常に小さいことから、 省エネ性と いう観点から空気調和機全体の消費電力を検討する場合、 消費電力の大きい圧縮 機の方が注目され、 送風機の消費電力が問題として取り上げられることはほとん どなかった。  Such a problem of an increase in power consumption of a blower is relatively easy to recognize when the blower is used alone, but for example, a blower is incorporated as one of its components, such as an air conditioner. Since the power consumption of the blower is very small compared to the power consumption of other components such as the compressor, the power consumption of the entire air conditioner is examined from the viewpoint of energy saving. In such cases, compressors with higher power consumption attracted more attention, and the power consumption of blowers was rarely taken up as a problem.
ところが、 近年における環境保護とカ嗜エネ性に対する社会ニーズのより一層 の高まりを背景として、 送風機においてもその省エネ性が要求され、 これを実現 すべく、 送風機の高効率化を図る技術の開発が要請されるに至ったものである。 発明の開示 However, with the increasing social needs for environmental protection and energy efficiency in recent years, blowers are also required to be energy-saving. It has been requested. Disclosure of the invention
そこで本願努明は、 羽根構造の改善によって高効率化を実現した送風機、 及 びこの送風機を備えた空気調和機を提供することを目的としてなされたものであ る。  Accordingly, the present invention has been made to provide a blower that achieves high efficiency by improving the blade structure, and an air conditioner equipped with the blower.
力かる課題を解決するために、 本願発明の送風機は、 ハプの外周に複数枚の羽 根を放射状に取り付けてなる羽根車を備えた送風機において、 上記各羽根は、 こ の羽根の後縁に沿って所定幅で翼スパン方向へ延びる特定領域が負圧面側へ湾曲 していることを特^:としている。  In order to solve a powerful problem, a blower according to the present invention is a blower including an impeller in which a plurality of blades are radially mounted on the outer periphery of a hap, wherein each of the blades is disposed at a trailing edge of the blade. It is characterized that a specific area extending along the blade span direction with a predetermined width is curved toward the suction side.
かかる構成とすることにより次のような効果が得られる。  With this configuration, the following effects can be obtained.
( a ) 羽根の負圧面側にお!/、ては境界層の発達を助長する凸状面の範囲が減 少した分だけ気流の剥離が生じにくくなり、 後流の乱れが抑制される。 一方、 該 羽根の圧力面側においてはその後縁での気流吹出方向と羽根の回転方向との角度 差が小さくなった分だけ、 該後縁から後方へ放出される気流の流れが滑らかで乱 れの少ないものとなる。 そして、 これら両者の相乗効果として、 上記羽根の後縁 から放出される後流の後流幅が可及的に減少し、 それだけ羽根における空力特性 が改善される。 この結果、 送風機の高効率ィヒが実現されるとともに、 効率向上分 だけ消費電力が減少し、 省エネ性が向上する、  (a) On the negative pressure side of the blade! As a result, airflow separation is less likely to occur due to the reduced area of the convex surface that promotes the development of the boundary layer, and turbulence in the wake is suppressed. On the other hand, on the pressure surface side of the blade, the flow of the airflow discharged from the trailing edge to the rear is smooth and turbulent due to the decrease in the angle difference between the airflow blowing direction at the trailing edge and the rotating direction of the blade. Less. As a synergistic effect of these two, the wake width of the wake discharged from the trailing edge of the blade is reduced as much as possible, and the aerodynamic characteristics of the blade are improved accordingly. As a result, high efficiency of the blower is realized, and power consumption is reduced by the increased efficiency, and energy saving is improved.
( b ) 羽根の後縁側の特定領域のみを負圧面側に湾曲させた構成であること 力 ら、 上記圧力面における揚力作用の減少が可及的に小さく抑えられる。 この結 果、 静圧特性の低下を可及的に抑制しつつ、 上記 ( a ) に記載の効果を確保する ことができ、 送風機の高効率ィ匕と省エネ性との両立が可能となる、 等の効果が得 られる。  (b) Since only a specific area on the trailing edge side of the blade is curved toward the suction side, a reduction in the lift effect on the pressure side can be suppressed as small as possible. As a result, the effect described in the above (a) can be secured while suppressing the decrease in the static pressure characteristic as much as possible, and it becomes possible to achieve both high efficiency and energy saving of the blower. And other effects can be obtained.
上記効果は、 上記羽根を、 その前縁から後縁にかけて略均等の翼厚をもつ構成 とした場合においても、 上記羽根の断面が流線形状をもつ場合においても、 同様 に得られるものである。  The above-mentioned effect can be obtained even when the blade is configured to have a substantially uniform blade thickness from the leading edge to the trailing edge, or when the cross section of the blade has a streamline shape. .
また、 本願発明に係る空気調和器は、 熱交 と送風機とを備えて構成される 空気調和機において、 上記送風機として、 上述した構成を有する送風機を適用し たことを特 ί敷としている。 この空気調和機は、 上記構成の送風機を備えることにより、 高効率化と省エネ 性とを兼ね備えたものとなる。 図面の簡単な説明 Further, the air conditioner according to the present invention is characterized in that, in the air conditioner including the heat exchanger and the blower, the blower having the above-described configuration is applied as the blower. This air conditioner has high efficiency and energy saving by having the blower of the above configuration. BRIEF DESCRIPTION OF THE FIGURES
図 1は本願発明の第 1の実施形態に係る軸流送風機の要部断面図である。 図 2は図 1に示した羽根車の正面図である。  FIG. 1 is a sectional view of a main part of an axial blower according to a first embodiment of the present invention. FIG. 2 is a front view of the impeller shown in FIG.
図 3は図 2の I I I一 I I I断面図である。  FIG. 3 is a cross-sectional view taken along the line II-II of FIG.
図 4は羽根面上を流れる気流状態の説明図である。  FIG. 4 is an explanatory diagram of an airflow state flowing on the blade surface.
図 5は本願発明の第 2の実施形態に係る斜流送風機の要部断面図である。 図 6は図 5に示した羽根車の正面図である。  FIG. 5 is a cross-sectional view of a main part of a mixed flow blower according to a second embodiment of the present invention. FIG. 6 is a front view of the impeller shown in FIG.
図 7は図 6の V I I— V I I断面図である。  FIG. 7 is a cross-sectional view taken along the line VII-VII in FIG.
図 8は軸流送風機を備えた空気調和機の室外機の正面図である。  FIG. 8 is a front view of an outdoor unit of an air conditioner equipped with an axial blower.
図 9は図 8の I X— I X断面図である。  FIG. 9 is a sectional view taken along the line IX-IX of FIG.
図 1 0は図 8の X— X断面図である。  FIG. 10 is a sectional view taken along line XX of FIG.
図 1 1は羽根の他の形態例を示す断面図である。  FIG. 11 is a sectional view showing another embodiment of the blade.
図 1 2は羽根の他の形態例を示す断面図である。  FIG. 12 is a cross-sectional view showing another embodiment of the blade.
図 1 3は羽根の他の形態例を示す断面図である。  FIG. 13 is a sectional view showing another embodiment of the blade.
図 1 4は送風機の 「風量一静圧」 特性図である。  Fig. 14 is a characteristic diagram of “air flow-static pressure” of the blower.
図 1 5は送風機の 「風量一全圧効率」 特性図である。  Fig. 15 is a characteristic diagram of “air volume versus total pressure efficiency” of the blower.
図 1 6は送風機の 「風量一軸動力」 特性図である。  Figure 16 is a characteristic diagram of the "air volume uniaxial power" of the blower.
図 1 7は従来の軸流送風機の要部断面図である。  FIG. 17 is a sectional view of a main part of a conventional axial blower.
図 1 8は図 1 7に示した羽根車の正面図である。  FIG. 18 is a front view of the impeller shown in FIG.
図 1 9は図 1 8の X I X _ X I X断面図である。  FIG. 19 is a cross-sectional view of XIX_XIX of FIG.
図 2 0は羽根上を流れる気流状態の説明図である。 発明を実施するための最良の形態  FIG. 20 is an explanatory diagram of an airflow state flowing over the blade. BEST MODE FOR CARRYING OUT THE INVENTION
次に本発明の実施形態を図 1 ~ 1 3および図 1 4から 1 6を参照して説明する 力 図 1〜1 3において同様の部分には同じ参照番号を付している。  Next, an embodiment of the present invention will be described with reference to FIGS. 1 to 13 and FIGS. 14 to 16. Similar parts in FIGS. 1 to 13 are denoted by the same reference numerals.
(第 1の実施形態) 図 1には、 本願発明の第 1の実施形態にかかる軸流送風機 を示している。 この軸流送風機 Z tは、 所謂 「プロペラファン」 であって、 ハブ 2の外周に複数 枚 (この実施形態では三枚) の羽根 3, 3, 3を所定の取付角をもって放射状に 取り付けてなる羽根車 1を、 モータ 4によって回転駆動可能とするとともに、 該 羽根車 1の外周側にはこれを囲繞するようにしてベルマウス 5を配置して構成さ れている。 (First Embodiment) FIG. 1 shows an axial blower according to a first embodiment of the present invention. The axial blower Zt is a so-called “propeller fan”, and has a plurality of (three in this embodiment) blades 3, 3, 3 radially attached to the outer periphery of the hub 2 at a predetermined mounting angle. The impeller 1 is rotatably driven by a motor 4, and a bell mouth 5 is arranged around the outer periphery of the impeller 1 so as to surround the impeller 1.
上記羽根車 1の羽根 3は、 図 2及び図 3に示すように、 その前縁 3 aが回転方 向前方側へ延出した 「前進翼」 であるとともに、 比較的厚い翼厚をもち且つこの 翼厚が前縁 3 aから後縁 3 bにかけて次第に漸減する所謂 「エアフオイル翼」 で あって、 翼弦方向において所定の 「反り」 をもち、 その凹側面を圧力面 3 e、 凸 側面を負圧面 3 f としている。  As shown in FIGS. 2 and 3, the blade 3 of the impeller 1 is a “advanced wing” whose front edge 3 a extends forward in the rotation direction, has a relatively large blade thickness, and This wing thickness is a so-called “air-foil wing” in which the thickness gradually decreases from the leading edge 3 a to the trailing edge 3 b.The wing thickness has a predetermined “warp” in the chord direction. The suction surface is 3 f.
そして、 この羽根 3が最も特徴とする点は、 該羽根 3の後縁 3 b側に、 該後縁 3 bに沿って翼スパン方向へ所定幅で延びる領域 (図 1〜図 3において、 領域線 Lよりも後縁 3 b寄りの領域) を特定領域 Qとし、 この特定領域 Qにおいてはこ れを負圧面 3 f側へ湾曲させた点である。 従って、 この実施形態の上記羽根 3に おいては、 上記領域線 Lを境として、 これより前縁 3 a寄り部分と後縁 3 b寄り 部分との間において 「反り」 の方向が逆となっており、 かかる 「反り」 の形態は、 図 1 9に示した従来の羽根 2 3のようにその前縁 2 3 aから後縁 2 3 bまで同一 方向の 「反り」 が連続するものとは全く異なる新規な形態である。  The most characteristic point of the blade 3 is that the blade 3 has a region extending along the trailing edge 3 b at a predetermined width in the blade span direction along the trailing edge 3 b (in FIG. 1 to FIG. 3, The region near the trailing edge 3b from the line L) is defined as a specific region Q, and this specific region Q is a point that is curved toward the negative pressure surface 3f. Therefore, in the blade 3 of this embodiment, the direction of the “warp” is reversed between the leading edge 3a and the trailing edge 3b near the region line L. This form of “warp” is different from the conventional blade 23 shown in FIG. 19 in which “warp” in the same direction is continuous from the leading edge 23 a to the trailing edge 23 b. It is a completely different and novel form.
このような新規特有の構成の羽根 3をもつ羽根車 1を備えてなる軸流送風機 Z iにおいては、 次のような特有の作用効果が得られるものである。  In the axial flow blower Zi including the impeller 1 having the blades 3 having such a new specific configuration, the following specific functions and effects can be obtained.
即ち、 図 4に示すように、 上記羽根車 1が回転するとき、 上記羽根 3の圧力面 3 eと負圧面 3 f にはそれぞれその面に沿って前縁 3 a側から後縁 3 b側へ向け て流れる気流 及び気流 A2が生じる。 そして、 この両気流 A A2のうち、 上 記負圧面 3 f に沿って流れる気流 A2は、 後縁 3 b近傍において剥離し、 不安定 で乱れた流れの後流 A。を生じる。 一方、 上記圧力面 3 eに沿って流れる気流 は、 後縁 3 bから後方へ放出されたのち、 上記後流 A0に合流する。 That is, as shown in FIG. 4, when the impeller 1 rotates, the pressure surface 3 e and the suction surface 3 f of the blade 3 respectively extend from the leading edge 3 a side to the trailing edge 3 b side along the surfaces. airflow and the airflow A 2 flows toward the results. Then, of the two air flow AA 2, the airflow A 2 that flows along the upper Symbol suction surface 3 f is detached at the trailing edge 3 b near wake of unstable turbulent flow A. Is generated. Meanwhile, the airflow flowing along the pressure surface 3 e, after which the rear edge 3 b emitted backward, merges with the downstream A 0.
この場合、 この実施形態の軸流送風機 においては、 上述のように、 上記羽 根 3の後緣 3 b側に設定した特定領域 Qを負圧面 3 f側へ湾曲させているので、 上記負圧面 3 f側においては後縁 3 b側での気流 A2の剥離領域が減少しそれだ け後流 A。の流れが抑制される。 一方、 上記圧力面 3 e側においては、 上記特定 領域 Qを負圧面 3 f側へ湾曲させたことで、 後縁 3 bにおける気流 の後方へ の吹出方向が上記羽根 3の回転方向に近づきこれら両者間の角度差が減少し、 そ れだけ気流 の後方への放出が滑らかとなり、 これが上記後流 A0と合流しても その乱れを助長することが少なく、 それだけ該後流 A0の安定ィ匕が促進され、 後 流幅 Sの増大が抑制されることになる。 In this case, in the axial-flow blower of this embodiment, as described above, the specific region Q set on the back 3b side of the blade 3 is curved toward the negative pressure surface 3f, The suction surface 3 f it's only after flow separation area of the airflow A 2 at the trailing edge 3 b side is reduced in side A. Flow is suppressed. On the other hand, on the pressure surface 3e side, the specific region Q is curved toward the negative pressure surface 3f side, so that the rearward direction of the airflow at the trailing edge 3b approaches the rotation direction of the blades 3 and angle difference therebetween is reduced, its Re only release backward airflow becomes smoother, which less able to promote even the disturbance merges with the rear stream a 0, stability much of the rear stream a 0 Therefore, the increase of the wake width S is suppressed.
この結果、 後流幅 Sの増大が抑制される分だけ、 上記羽根 3における空力特性 が改善され、 上記軸流送風機 の高効率化が実現されるとともに、 この効率向 上分だけその消費電力が減少し省エネ性も改善されるものである。  As a result, the aerodynamic characteristics of the blades 3 are improved by an amount corresponding to the suppression of the increase of the wake width S, and the axial blower is improved in efficiency, and the power consumption is increased by the increase in efficiency. It will decrease and the energy saving will be improved.
さらに、 この実施形態のものでは、 上述のように、 上記羽根 3の後縁 3 b側の 特定領域 Qのみを負圧面 2 3 d側に湾曲させた構成であること力 ら、 該特定領域 Qの設定に起因する上記圧力面 3 eの揚力作用の減少が可及的に小さく抑えられ、 静圧特性が良好に維持されるものである。  Further, in this embodiment, as described above, only the specific region Q on the trailing edge 3 b side of the blade 3 is curved toward the negative pressure surface 23 d side. The reduction of the lift effect of the pressure surface 3e due to the setting of the above is suppressed as small as possible, and the static pressure characteristics are favorably maintained.
このように、 この実施形態の軸流送風機 においては、 上記羽根 3の後縁 3 b側の上記特定領域 Qを負圧面 3 f側へ湾曲させるという極めて簡単且つ安価な 構成によって、 その高効率化と省エネ性との両立を図ることが可能となるもので ある。  As described above, in the axial blower according to this embodiment, the efficiency is improved by an extremely simple and inexpensive configuration in which the specific region Q on the trailing edge 3 b side of the blade 3 is curved toward the negative pressure surface 3 f side. And energy conservation.
図 1 4〜図 1 6には、 この実施形態の軸流送風機 における上記各効果を確 認すべく各種性能試験を行った結果を示している。  FIGS. 14 to 16 show the results of various performance tests performed to confirm the above effects in the axial blower of this embodiment.
図 1 4は、 「風量一静圧」 特性図を示すものであって、 曲線し a iは上記実施 形態の軸流送風機 の特性、 曲線 L b iは従来構造の軸流送風機の特性を、 それ ぞれ示すものである。 この図 1 4の 「風量ー静圧」 特性図からは、 上記実施形態 の軸流送風機 Z iにおいては羽根 3の後縁 3 b側の上記特定領域 Q部分を負圧面 3 f側へ湾曲させたことで、 圧力面 3 eの有効面積、 即ち、 空気の昇圧作用に関 与する部分の面積が減少したことに伴って、 静圧性能が従来構造のものよりも幾 分低下していることが解る。  FIG. 14 shows a characteristic diagram of “air flow-static pressure”, in which a curve ai represents the characteristic of the axial flow fan of the above embodiment, and a curve L bi represents the characteristic of the conventional axial flow fan. It is shown. From the “air flow-static pressure” characteristic diagram of FIG. 14, in the axial flow blower Z i of the above embodiment, the specific area Q on the trailing edge 3 b side of the blade 3 is curved toward the negative pressure surface 3 f side. As a result, the effective area of the pressure surface 3 e, that is, the area of the part related to the air pressurizing action is reduced, and the static pressure performance is somewhat lower than that of the conventional structure. I understand.
図 1 5は、 「風量一全圧効率」 特性図を示すものであって、 曲線 L a 2は上記 実施形態の軸流送風機 の特性、 曲線 L b 2は従来構造の軸流送風機の特性を、 それぞれ示すものである。 この図 1 5の 「風量一全圧効率」 特性図からは、 上記 実施形態の軸流送風機 の方が従来の軸流送風機の場合よりも全圧効率が高い ことが角早る。 Figure 1 5 is a view illustrating the "air volume one total pressure efficiency" characteristic graph, curve L a 2 is the axial-flow fan of the embodiment characteristic, curve L b 2 is a characteristic of an axial blower having a conventional structure , Each is shown. From the characteristic diagram of “air volume-total pressure efficiency” in FIG. 15, it is quicker that the axial flow fan of the above embodiment has higher total pressure efficiency than the conventional axial flow fan.
図 1 6は、 「風量一軸動力」 特性図を示すものであって、 曲線 L a 3は上記実 施形態の軸流送風機 の特性、 曲線 L b 3は従来構造の軸流送風機の特性を、 そ れぞれ示すものである。 この図 1 6の 「風量一軸動力」 特性図からは、 上記実施 形態の軸流送風機 の軸動力が従来の軸流送風機の軸動力より大幅に低いこと が解る。 Figure 1 6, there is shown an "air volume uniaxial power" characteristic graph, characteristic curve L a 3 are axial-flow fan of the implementation form, the curve L b 3 properties of the axial flow fan of the conventional structure, Each is shown. It can be seen from the characteristic diagram of “air flow uniaxial power” in FIG. 16 that the axial power of the axial blower of the above embodiment is much lower than that of the conventional axial blower.
このように、 この実施形態の軸流送風機 においては、 静圧性能は従来構造 のものよりも若干落ちるものの依然として高い性能を維持する一方、 全圧効率と 軸動力の双方においては従来構造のものよりも優れ、 特に軸動力についてはその 優位性が格段であり、 従って、 これら諸性能を比較勘案すれば、 トータル的にみ て、 この実施形態の軸流送風機 は従来構造のものに比して、 高効率で且つ省 エネ性に優れたものと言える。  Thus, in the axial blower of this embodiment, the static pressure performance is slightly lower than that of the conventional structure, but still maintains high performance, while both the total pressure efficiency and the shaft power are higher than those of the conventional structure. In particular, the superiority of the shaft power is remarkable. Therefore, when these performances are considered in comparison, the axial flow blower of this embodiment has a It can be said to be highly efficient and excellent in energy saving.
(第 2の実施形態)  (Second embodiment)
図 5には、 本願発明の第 2の実施形態にかかる斜流送風機 Z 2を示している。 この斜流送風機 Z 2は、 円錐台状のハブ 2の外周に複数枚 (この実施形態では四 枚) の羽根 3 , 3 , · ■を所定の取付角をもって放射状に取り付けてなる羽根車 1を、 モータ 4によって回転駆動可能とするとともに、 該羽根車 1の外周側には これを囲繞するようにしてベルマウス 5を配置して構成されている。 FIG. 5 shows a mixed flow blower Z 2 according to a second embodiment of the present invention. The mixed flow blower Z 2 includes an impeller 1 having a plurality of (four in this embodiment) blades 3, 3,... Radially mounted at a predetermined mounting angle on the outer periphery of a truncated conical hub 2. The impeller 1 is rotatably driven by a motor 4, and a bell mouth 5 is arranged around the impeller 1 so as to surround the impeller 1.
上記羽根車 1の羽根 3は、 図 6及び図 7に示すように、 その前縁 3 aが回転方 向前方側へ延出した 「前進翼」 であるとともに、 比較的薄い翼厚をもち且つこの 翼厚が前縁 3 aから後綠 3 bにかけて次第に漸減する所謂 「エアフオイル翼」 で あって、 図 3に示すように、 翼弦方向において所定の 「反り」 をもち、 その凹側 面を圧力面 3 e、 凸側面を負圧面 3 f としている。  As shown in FIGS. 6 and 7, the blade 3 of the impeller 1 is a “advanced wing” whose front edge 3 a extends forward in the rotation direction, has a relatively small blade thickness, and This wing thickness gradually decreases from the leading edge 3a to the trailing edge 3b, which is a so-called "air-oil wing". As shown in Fig. 3, the wing has a predetermined "warp" in the chord direction, and its concave surface is The pressure side is 3 e and the convex side is the negative side 3 f.
そして、 この羽根 3が最も特徴とする点は、 該羽根 3の後縁 3 b側に、 該後縁 3 bに沿って翼スパン方向へ所定幅で延びる領域 (図 5〜図 7において、 領域線 Lよりも後縁 3 b寄りの領域) を特定領域 Qとし、 この特定領域 Qにおいてはこ れを負圧面 3 f側へ湾曲させた点である。 従って、 この実施形態の上記羽根 3に おいては、 上記領域線 Lを境として、 これより前縁 3 a寄り部分と後縁 3 b寄り 部分との間において 「反り」 の方向が逆となっており、 かかる 「反り」 の形態は、 上記第 1の実施形態の軸流送風機 と同様に、 従来の羽根 2 3 (図 1 9を参 照) の構成とは全く異なる新規な形態である。 The most characteristic feature of the blade 3 is that the blade 3 has a region extending along the trailing edge 3 b in the blade span direction along the trailing edge 3 b at a predetermined width (in FIG. 5 to FIG. The region near the trailing edge 3b from the line L) is defined as a specific region Q, and this specific region Q is a point that is curved toward the negative pressure surface 3f. Therefore, the blade 3 of this embodiment has In this case, the direction of the “warp” is reversed between the portion closer to the leading edge 3 a and the portion closer to the trailing edge 3 b from the area line L, and the form of the “warping” is However, like the axial blower of the first embodiment, this is a novel form completely different from the structure of the conventional blade 23 (see FIG. 19).
このような新規な構成の羽根 3, 3, · ·を備えた羽根車 1をもつ斜流送風機 A mixed flow blower having an impeller 1 having the blades 3 having such a novel configuration.
Z2においては、 送風時における空気流の流れ方向が異なる点を除いて、 上記第 1の実施形態の軸流送風機 における場合と同様の作用効果が得られるもので ある。 従って、 ここでは、 上記第 1の実施形態における該当説明を援用すること で、 以下の説明を省略する。 In Z 2, except for the flow direction of air flow differs during air blowing, in which the same operational effects as in the axial flow fan of the first embodiment can be obtained. Therefore, here, the following description will be omitted by using the corresponding description in the first embodiment.
(第 3の実施形態)  (Third embodiment)
図 8〜図 1 0には、 上記第 1の実施形態に係る軸流送風機 を備えた空気調 和機の室外機 Yを示している。 この室外機 Yは、 矩形筐状のケーシング 1 0内を、 隔壁 1 1によって左右方向に仕切り、 その一方側を熱交換室 1 2、 他方側を機械 室 1 3とし、 該熱交換室 1 2内に上記軸流送風機 と熱交換器 6とを配置する とともに、 上記機械室 1 3内には圧縮機 7を配置して構成されている。 また、 上 記軸流送風機 が臨む吹出口 9には、 グリル 8が備えられている。  8 to 10 show an outdoor unit Y of an air conditioner provided with the axial blower according to the first embodiment. In the outdoor unit Y, the inside of a rectangular casing 10 is partitioned in the left-right direction by a partition wall 11, one side of which is a heat exchange room 12 and the other side is a machine room 13 and the heat exchange room 12 The axial blower and the heat exchanger 6 are arranged in the inside, and the compressor 7 is arranged in the machine room 13. Further, a grill 8 is provided at an outlet 9 facing the axial blower.
この室外機 Yにおいては、 上記軸流送風機 が運転され上記羽根車 1が回転 することで、 室外から上記熱交換器 6及び上記羽根車 1を通過し、 上記吹出口 9 から室外へ排出される空気流が発生し、 該空気流と上記熱交換器 6内を循環する 冷媒との間で熱交換が行われるものである。  In the outdoor unit Y, when the axial blower is operated and the impeller 1 rotates, the outdoor unit Y passes through the heat exchanger 6 and the impeller 1 from the outside and is discharged from the outlet 9 to the outside. An air flow is generated, and heat is exchanged between the air flow and the refrigerant circulating in the heat exchanger 6.
この実施形態の室外機 Yにおいては、 上記熱交 6への空気供給手段として 上記第 1の実施形態に係る軸流送風機 を備えているので、 該軸流送風機 Z iが 高効率で且つ消費電力の少ない省エネ性に優れたものであることから、 この室外 機 Yは高い熱交換効率と省エネ性とを兼ね備えた理想的な室外機となるものであ る。  In the outdoor unit Y of this embodiment, since the axial blower according to the first embodiment is provided as air supply means to the heat exchanger 6, the axial blower Zi is highly efficient and consumes less power. The outdoor unit Y is an ideal outdoor unit that has both high heat exchange efficiency and energy saving because it has low energy consumption and excellent energy saving.
(変形例)  (Modified example)
上記第 1の実施形態の軸流送風機 Z iにおいては、 上記羽根 3として図 3に示 すような厚肉の 「エアフオイル翼」 を採用しており、 また上記第 2の実施形態の 斜流送風機 Z。においては、 上記羽根 3として図 7に示すような薄肉の 「エアフ オイル翼 J を採用しているが、 本願発明における羽根 3はこのような形態のもの に限定されるものではなく、 例えば図 1 1〜図 1 3に示すような各種形態を採用 し得るものである。 In the axial flow blower Zi of the first embodiment, a thick-walled “air oil blade” as shown in FIG. 3 is employed as the blade 3, and the mixed flow blower of the second embodiment is used. Z. In FIG. 7, the blade 3 is a thin airfoil as shown in FIG. Although the oil wing J is employed, the blade 3 in the present invention is not limited to such a form. For example, various forms as shown in FIGS. 11 to 13 can be employed. is there.
図 1 1に示す羽根 3は、 その前縁 3 a寄り部分を局部的に厚肉とし、 それ以外 の部位を薄肉とした異形のエアフォイル翼である。  The blade 3 shown in FIG. 11 is an irregularly shaped airfoil blade in which a portion near the leading edge 3a is locally thickened and other portions are thinned.
図 1 2に示す羽根 3は、 その前縁 3 a寄りの比較的広い部分を厚肉とするとと もに、 該厚肉部分から後縁 3 bに向かうに従って次第に翼厚を減少させた異形の エアフォイル翼である。  The blade 3 shown in FIG. 12 has a relatively wide portion near the leading edge 3 a and a thicker portion, and the blade thickness gradually decreases from the thick portion toward the trailing edge 3 b. Airfoil wings.
図 1 3に示す羽根 3は、 一定厚さの薄板を所定の 「反り」 を持たせて湾曲形成 したプレート翼である。  The blade 3 shown in FIG. 13 is a plate blade formed by bending a thin plate having a constant thickness with a predetermined “warpage”.
これら何れの形態の羽根 3においても、 その後縁 3 b側の所定領域 (即ち、 上 記特定領域 Q) を負圧面 3 ί側へ湾曲させることで、 上記第 1及び第 2の実施形 態にかかる送風機 2 Ζ 2と同様の作用効果を得ることができるものである。 In any of these forms of the blade 3, the predetermined region on the trailing edge 3 b side (that is, the above-described specific region Q) is curved toward the negative pressure surface 3 ί, so that the first and second embodiments can be modified. in which it is possible to obtain the same effects as according blower 2 Zeta 2.

Claims

請 求 の 範 囲 The scope of the claims
1. ハブ (2) の外周に複数枚の羽根 (3, 3, ...)を放射状に取り付けてな る羽根車 (1) を備えた送風機において、 1. A fan equipped with an impeller (1) in which a plurality of blades (3, 3, ...) are radially mounted on the outer periphery of a hub (2).
上記各羽根 (3) は、 該羽根の後縁 (3 b) に沿って所定幅で翼スパン方向へ 延びる特定領域 (Q) が負圧面 (3 f ) 側へ湾曲していることを特徴とする送風  Each of the blades (3) is characterized in that a specific region (Q) extending in the blade span direction with a predetermined width along the trailing edge (3b) of the blade is curved toward the suction surface (3f). Blowing
2. 請求項 1記載の送風機において、 2. In the blower according to claim 1,
上記羽根 (3) 力 その前縁 (3 a) から後縁 (3 b) にかけて略均等の冀厚 をもつことを特 ί敷とする送風機。  Above blade (3) Force A blower that is characterized by having a substantially uniform thickness from its leading edge (3a) to its trailing edge (3b).
3. 請求項 1記載の送風機において、 3. In the blower according to claim 1,
上記羽根 (3) の断面が流線形状をもつことを特徴とする送風機。  A blower characterized in that the cross section of the blade (3) has a streamline shape.
4. 請求項 1記載の送風機において、 4. In the blower according to claim 1,
空気調和機に設けられていることを特徴とする送風機。  A blower provided in an air conditioner.
5. 熱交!^ (6) と送風機 (Ζν Ζ2) とを備えて構成される空気調和機で あって、 5. Hot exchange! ^ (6) and an air conditioner comprising a blower (Ζ ν Ζ 2 ),
上記送風機 (Ζ Ζ2) として請求項 1, 2又は 3に記載の送風機を適用した ことを特徴とする空気調和機。 An air conditioner characterized by applying the blower according to claim 1, 2 or 3 as said blower (Ζ Ζ 2 ).
PCT/JP2001/011317 2001-04-26 2001-12-25 Blower and air conditioner with the blower WO2002090777A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP20010274219 EP1382856B1 (en) 2001-04-26 2001-12-25 Blower and air conditioner with the blower
DE2001618103 DE60118103T2 (en) 2001-04-26 2001-12-25 FAN AND AIR CONDITIONING WITH THIS FAN
AU2002217482A AU2002217482B2 (en) 2001-04-26 2001-12-25 Blower and Air Conditioner with the Blower
HK04104578A HK1061707A1 (en) 2001-04-26 2004-06-25 Blower and air conditioner with the blower

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001/129321 2001-04-26
JP2001129321 2001-04-26

Publications (1)

Publication Number Publication Date
WO2002090777A1 true WO2002090777A1 (en) 2002-11-14

Family

ID=18977863

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/011317 WO2002090777A1 (en) 2001-04-26 2001-12-25 Blower and air conditioner with the blower

Country Status (8)

Country Link
EP (1) EP1382856B1 (en)
CN (1) CN1201090C (en)
AU (1) AU2002217482B2 (en)
DE (1) DE60118103T2 (en)
ES (1) ES2263554T3 (en)
HK (1) HK1061707A1 (en)
TW (1) TW524928B (en)
WO (1) WO2002090777A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2006276567B2 (en) * 2005-08-01 2009-12-17 Daikin Industries, Ltd. Axial flow fan

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004301451A (en) * 2003-03-31 2004-10-28 Toshiba Kyaria Kk Outdoor machine for air conditioner
JP4501575B2 (en) * 2004-07-26 2010-07-14 三菱電機株式会社 Axial blower
FR2953571B1 (en) * 2009-12-07 2018-07-13 Valeo Systemes Thermiques FAN PROPELLER, ESPECIALLY FOR A MOTOR VEHICLE
US9394911B2 (en) * 2010-05-13 2016-07-19 Mitsubishi Electric Corporation Axial flow fan
CN103185037B (en) * 2011-12-28 2015-12-02 珠海格力电器股份有限公司 Axial fan and there is its air conditioner

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5281538U (en) * 1975-12-17 1977-06-17
JPH0285898U (en) * 1988-12-21 1990-07-06
JP2000110790A (en) * 1998-10-02 2000-04-18 Toshiba Corp Axial-flow fan

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL1007774C1 (en) * 1997-12-12 1999-06-15 Arthur Van Moerkerken Improved wing and propeller blade shape.
JP3204208B2 (en) * 1998-04-14 2001-09-04 松下電器産業株式会社 Mixed-flow blower impeller
US6116856A (en) * 1998-09-18 2000-09-12 Patterson Technique, Inc. Bi-directional fan having asymmetric, reversible blades

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5281538U (en) * 1975-12-17 1977-06-17
JPH0285898U (en) * 1988-12-21 1990-07-06
JP2000110790A (en) * 1998-10-02 2000-04-18 Toshiba Corp Axial-flow fan

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1382856A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2006276567B2 (en) * 2005-08-01 2009-12-17 Daikin Industries, Ltd. Axial flow fan

Also Published As

Publication number Publication date
EP1382856A4 (en) 2005-01-05
AU2002217482B2 (en) 2007-04-05
DE60118103D1 (en) 2006-05-11
TW524928B (en) 2003-03-21
CN1201090C (en) 2005-05-11
EP1382856B1 (en) 2006-03-22
EP1382856A1 (en) 2004-01-21
HK1061707A1 (en) 2004-09-30
CN1449472A (en) 2003-10-15
ES2263554T3 (en) 2006-12-16
DE60118103T2 (en) 2006-11-02

Similar Documents

Publication Publication Date Title
JP3204208B2 (en) Mixed-flow blower impeller
US5769607A (en) High-pumping, high-efficiency fan with forward-swept blades
EP1616102B1 (en) High performance axial fan
JP2007024004A (en) Axial fan
JP2010133254A (en) Centrifugal blower, and air conditioner provided with the same
JPWO2002029331A1 (en) Air conditioner
CN100494640C (en) Big and small blade tandem blade cascade impeller and compressor
JP2002235695A (en) Turbo fan, blowing device using turbo fan and air conditioner
WO2009111956A1 (en) An axial flow fan for decreasing the noise and the energy consumption
JP3649157B2 (en) Centrifugal fan and air conditioner equipped with the centrifugal fan
JP2009250225A (en) Moving blade and axial flow blower using the same
JP2002106494A (en) Axial flow type fan
WO2002090777A1 (en) Blower and air conditioner with the blower
JP6739656B2 (en) Impeller, blower, and air conditioner
JP2012107538A (en) Axial-flow fan or diagonal-flow fan, and air conditioner mounted outdoor unit with the same
CN200985903Y (en) Tube-axial fan
JP2003013892A (en) Blower and air conditioner with blower
JP4727425B2 (en) Centrifugal impeller and clean system equipped with it
JP2000345995A (en) Fan
JPH05296195A (en) Axial fan
JP2000130799A (en) Outdoor unit of air conditioner
JPH11280696A (en) Propeller fan
JP3938252B2 (en) Multi-blade blower
JP2001304185A (en) Blower impeller and air conditioner provided with the blower impeller
JP2762884B2 (en) Blow mechanism

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU CN

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

WWE Wipo information: entry into national phase

Ref document number: 2002217482

Country of ref document: AU

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2001274219

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 018146686

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2001274219

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 2001274219

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 2002217482

Country of ref document: AU