WO2002077230A1 - Nr10 splicing variants - Google Patents

Nr10 splicing variants Download PDF

Info

Publication number
WO2002077230A1
WO2002077230A1 PCT/JP2002/002769 JP0202769W WO02077230A1 WO 2002077230 A1 WO2002077230 A1 WO 2002077230A1 JP 0202769 W JP0202769 W JP 0202769W WO 02077230 A1 WO02077230 A1 WO 02077230A1
Authority
WO
WIPO (PCT)
Prior art keywords
protein
present
dna
seq
human
Prior art date
Application number
PCT/JP2002/002769
Other languages
French (fr)
Japanese (ja)
Inventor
Masatsugu Maeda
Noriko Yaguchi
Masakazu Hasegawa
Original Assignee
Chugai Seiyaku Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugai Seiyaku Kabushiki Kaisha filed Critical Chugai Seiyaku Kabushiki Kaisha
Publication of WO2002077230A1 publication Critical patent/WO2002077230A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/705Receptors; Cell surface antigens; Cell surface determinants
    • C07K14/71Receptors; Cell surface antigens; Cell surface determinants for growth factors; for growth regulators
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/566Immunoassay; Biospecific binding assay; Materials therefor using specific carrier or receptor proteins as ligand binding reagents where possible specific carrier or receptor proteins are classified with their target compounds

Definitions

  • the present invention relates to a novel hemopoietin receptor protein, a gene encoding the same, methods and uses thereof.
  • Landscape technology a novel hemopoietin receptor protein, a gene encoding the same, methods and uses thereof.
  • the present inventors have found a partial genomic sequence of the novel cytokine receptor gene NR10 by searching the human genome database, and have isolated the full-length human NR10 cDNA based on the partial sequence, It was clear.
  • the transcript of human NR10 can encode two types of tightly-coupled receptor protein and soluble secretory receptor protein, depending on the nucleotide sequence caused by the splicing variant (International Publication No. W000 / 75314). ). Disclosure of the invention
  • the present invention provides novel hemopoietin receptor proteins, and DNAs encoding them.
  • the present invention also provides a vector into which the DNA has been inserted, a transformant carrying the DNA, and an i ⁇ method for a recombinant protein using the transformant.
  • the present invention further provides a method for screening a compound that binds to the protein.
  • the present inventors can encode two types of transmembrane receptor protein and soluble secretory receptor protein in the above-mentioned human NR10 transcript, depending on the nucleotide sequence difference resulting from the splicing variant. (International Publication Number 1) 00/75314).
  • the present inventors predicted that there would be further splicing variants in the NR10 gene, and performed PCR cloning for the purpose of identifying them. As a result, Mutants were successfully isolated, and the structural analysis and gene expression of these mutants were performed. As a result, it was revealed that one of the 10 gene splicing variants has a tyrosine residue in the intracellular region.
  • the human NR10 gene exhibits diversity due to alternative splicing, particularly in the structure at the C-terminal side of the transmembrane region.
  • the present inventors named the above-mentioned splicing variant which is predicted to have a signaling function as NR10.4.
  • new splicing mutants that possess the fine J3 reticulum region but are predicted to have no signal transduction ability are named NR10.5 and NR10.6, respectively. Sequences were distinguished.
  • a new soluble secreted receptor that does not have the transmembrane region was isolated and designated as N10.7 and NR10.8. It is expected that the regulation of functional expression of the N10 gene group will be controlled by the alternative splicing specific to thread II ⁇ or specific cell type.
  • NR4, NR10.5, and Ml0.6 strong expression was detected in the responsible thread II ⁇ , hematopoietic tissues, and livestock.
  • NR10 molecules are involved in the regulation of biological immunity or hematopoietic cells, and the NR10 molecule is used to search for new hematopoietic factors that can functionally bind to the receptor Is considered very useful.
  • NR10 human N10 gene cluster splicing variants
  • the present inventors identified a mouse NR10 homologous gene corresponding to the human NR10.4 gene, isolated full-length cDNA, and analyzed the primary structure.
  • the mouse NR10 gene has been identified, isolated, and its structure has been elucidated, so that the search for mouse NR10 ligand can be developed by the same means as for the human NR10 molecule.
  • the construction of a mouse NR10 ligand retrieval system is considered to be extremely effective because it allows the NR10 ligand to be used without using human-derived test samples.
  • the details of NR10 molecular function analysis which cannot be performed with human subjects, can be analyzed using mouse subjects. It can also be implemented.
  • generation of NR10 gene-deficient mice by using a mouse genomic gene fragment encoding mouse NR10 is also considered to be extremely effective in clarifying the NRIO ⁇ function.
  • the present invention relates to novel hemopoietin receptors and their genes, and further to their use.
  • System IJ number In the amino acid sequence described in any of 4, 6, 8, 10, 12, 14, 16, or 18, one or more amino acids are substituted, deleted, inserted, and Z or added. Having the following amino acid sequence, and encoding a protein functionally equivalent to the protein consisting of the amino acid sequence of any one of SEQ ID NOs: 4, 6, 8, 10, 12, 14, 16, and 18. ,
  • System IJ number The DNA consisting of any one of 3, 5, 7, 9, 11, 13, 15, or 17 and a string IJ number under stringent conditions. DNA encoding a protein functionally equivalent to a protein consisting of the amino acid sequence described in any of 4, 6, 8, 10, 12, 14, 16, or 18;
  • System IJ number Polynucleotide containing at least 15 nucleotides complementary to DNA consisting of the base sequence described in any of 3, 5, 7, 9, 11, 13, 15, or 17 or a complementary strand thereof Nucleotides,
  • the present invention provides a novel molecule of the hemopoietin receptor NR10. GenBank database-Based on the results of horny loaf and-PCR, the present inventors found that a new human-derived mopoietin receptor gene NR10.4, NR10.5, NR10.6, NR10.7, and NR10.8 was successfully identified and isolated. Furthermore, the present inventors succeeded in isolating the mouse R10 (R10C and NR10B) genes for the first time. N 10.4, NR10.5, and NIU0.6 encoded a transmembrane receptor, and NR10.7 and NR10.8 encoded a soluble receptor. In addition, both mouse NR10C and M10B encoded a sensitive penetrating receptor.
  • the nucleotide sequences of the NR10.4, NR10.5, NR10.6, NR10.7, and N10.8 cDNAs are encoded by these cDNAs as SEQ ID NOs: 3, 5, 7, 9, and 11, respectively.
  • the amino acid sequences of the proteins are shown in SEQ ID NOs: 4, 6, 8, 10, and 12, respectively.
  • the nucleotide sequences of mouse NR10C and NR10B cDNA are shown in SEQ ID NO:
  • the amino acid sequences of the proteins encoded by these cDNAs are shown in SEQ ID NOs: 14 and 16, respectively.
  • NR10.4, NR10.5, NR10.6, NR10.7, and N10.8 are almost all the same, so that they have the same three-dimensional structure and furthermore have the same specificity. It is believed to recognize the ligand.
  • N10.4, NR10.5, and 10.6 genes were found to be in charge of evacuation, hematopoiesis, and in living tissues. Strong expression was detected. Specifically, strong expression was detected in the thymus, lymph nodes, peripheral leukocytes, lung, bone marrow, and other medullary fibers, and hematopoietic cells, and in addition, testis, prostate, placenta, uterus, etc. Strong expression was also detected in fiber and endocrine fibers. In addition, although weak expression was detected in kidney, knee, and small intestine, no expression was observed in spleen, tonsils, heart, brain, liver, skeletal muscle, and colon.
  • the gene of the present invention shows that the gene of the present invention has a novel hematopoietic factor receptor It is presumed to code the body.
  • the expression distribution was observed in thread 1 ⁇ other than the above, suggesting that the gene of the present invention may be able to regulate not only the ⁇ S system and hematopoietic system but also a wide variety of physiological functions in vivo. are doing.
  • the protein of the present invention can be applied to medical treatment.
  • the expression of the residue of the present invention in thymus and peripheral leukocytes suggests that it may be an unknown hematopoietic factor receptor. Therefore, the protein of the present invention is considered to provide a useful material for obtaining this unknown hematopoietic factor. It is also conceivable to search for an peptide capable of functionally binding to the protein of the present invention or an gonist for a peptide library or a synthetic chemical material to isolate and identify it. Further, the protein of the present invention Clinical applications such as control of living body immunity and control of hematopoietic cells by searching for novel antibodies capable of functionally binding to white matter and specific antibodies that can limit the function of the protein of the present invention are expected.
  • the expression of the residue of the present invention may be specifically expressed in a limited group of these hematopoietic cells.
  • Antibodies are useful. The cells isolated in this way can be applied to cell transplantation therapy. Further, the antibody is expected to be applied to diagnosis or treatment of disease types such as leukemia.
  • soluble proteins containing the extracellular domain of the protein of the present invention or soluble proteins such as 10.7 and NR10.8 are expected to be used as decoy receptors as inhibitors of NR10 ligand, and NR10 is involved. It can be expected to be applied to the treatment of leukemia and other diseases.
  • the present invention includes a protein functionally equivalent to the protein consisting of the amino acid sequence described in SEQ ID NO: 4, 6, 8, 10, 12, 14, 16, or 18.
  • proteins include, for example, human R10.4, ..5, ⁇ .6, fraction.7, or NR10.8 protein (SEQ ID NOs: 4, 6, 8, 10, 12, or 14, respectively),
  • a homologous protein and a variant of another organism corresponding to the mouse N10 protein (NR10C or NR10B) (SEQ ID NO: 16 or 18, respectively) are included.
  • “functionally equivalent” means that the target protein is the human NR10.4, NR10.5, NR10.6, R10.7, or R10.8 protein (SEQ ID NO: 4, 6, 8, 10, 12, or 14) or mouse NR10 protein (NR10C or NR10B; SEQ ID NO: 16 or 18, respectively).
  • the biological activity includes, for example, a method well known to those skilled in the art for preparing a protein that is functionally equivalent to a protein that is a membrane-bound or soluble hematopoietic factor receptor protein. It is known to introduce a mutation into a protein. For example, in the field If available, site-directed mutagenesis (Hashimoto-Gotoh, T. et al.
  • SEQ ID NO: 4 6, 8, 10, 12, or 14
  • mouse R10 protein (10C or NR10B) SEQ ID NO: 16 or 18
  • Amino acid mutations can also occur in nature.
  • the human NR10.4, NR10.5, NR10.6, NR10.7, or NR10.8 protein (SEQ ID NOs: 4, 6, 8, 10, 12, or 14, respectively), or mouse N 10 protein (NR10C or 10B) (SEQ ID NO: 16 or 18, respectively) having an amino acid sequence in which one or more amino acids are mutated, and the corresponding original protein (SEQ ID NO: 4, 6, respectively)
  • NR10C or 10B mouse N 10 protein having an amino acid sequence in which one or more amino acids are mutated
  • SEQ ID NO: 16 or 18 A protein functionally equivalent to 8, 10, 12, 14, 16, or 18) is also included in the protein of the present invention.
  • the protein functionally equivalent to the protein of the present invention include one or two or more in the amino acid sequence shown in SEQ ID NO: 4, 6, 8, 10, 12, 14, 16, or 18.
  • An amino acid sequence having one or more amino acids, preferably two or more and no more than 30 amino acids, more preferably two or more and no more than 10 amino acids; SEQ ID NOs: 4, 6, 8, 10, 12, 14, One or two or more, preferably two or more and thirty or less, more preferably two or more and ten or less amino acids in the amino acid sequence represented by 16, or 18 are substituted with another amino acid.
  • the mutated amino acid residue is mutated to another amino acid in which the properties of the amino acid side chain are conserved. For example, the properties of amino acid side chains are sparse
  • Human NR10.4, NR10.5, NR10.6, NR10.7, or NR10.8 protein (SEQ ID NO: 4, 6, 8, 10, 12, or 14 respectively) or mouse NR10 protein (NR10C Or NR10B) (SEQ ID NO: 16 or 18), respectively, with one or more amino acid residues added to the amino acid sequence, for example, human NR10.4, N10.5, NR10.6 , NR10.7, or NR10.8 protein (SEQ ID NOs: 4, 6, 8, 10, 12, or 14 respectively) or mouse NR10 protein (NR10C or 10B) (SEQ ID NO: 16 respectively) Or a fusion protein comprising 18).
  • the fusion protein is a fusion of these NR10 proteins with other peptides or proteins, and such fusion proteins are also included in the present invention.
  • the method for producing the fusion protein is as follows: The DNA encoding the NR10 protein and the DNA encoding the other peptide or protein may be ligated in such a manner that the frames bind to each other, introduced into an expression vector, and expressed in a host. A known method can be used.
  • the other peptide or protein to be fused with the protein of the present invention is not particularly limited.
  • peptides to be fused to the protein of the present invention include, for example, FLAG (Hopp, TP et al. (1988) BioTechnology 6, 1204-1210) and six His (histidine) residues. 6 XHis, 10XHis, influenza agglutinin (HA), human c-myc fragment, VSV-GP. Fragment, pl8HIV fragment, T7-tag, HSV-tag, E-tag, SV40T antigen fragment, lck tag, Known peptides such as a-tubulin fragment, B-tag, and Protein C fragment can be used.
  • proteins to be fused with the protein of the present invention include, for example, GST (daltathione S-transferase), HA (influenza agglutinin), immunoglobulin constant region, j3-galactosidase And MBP (maltose binding protein).
  • a fusion protein can be prepared by fusing a commercially available DNA encoding the peptide or protein with a DNA encoding the protein of the present invention, and expressing the fusion DNA prepared thereby. Wear.
  • the protein of the present invention particularly includes, in the amino acid sequence described in human NR10.4 (SEQ ID NO: 4), one or more amino acids substituted, deleted, inserted, and Z- or added amino acids.
  • the protein of the present invention has an amino acid sequence in which one or more amino acids are substituted, deleted, inserted, and Z- or added in the amino acid sequence described in human NR10.5 (SEQ ID NO: 6). And at least 7 contiguous amino acids, preferably at least 8 amino acids, more preferably at least 9 amino acids of the amino acid sequence of SEQ ID NO: 24, and the amino acid of SEQ ID NO: 6 Includes proteins functionally equivalent to proteins consisting of acid sequences.
  • Proteins functionally equivalent to human NR10.4 (SEQ ID NO: 4) and mouse NR10 protein (NR10C or ⁇ 10B) (SEQ ID NO: 16 or 18 respectively) include human NR10.4 or mouse
  • One or more amino acids in the amino acid sequence of the NR10 protein (NR10C or ⁇ NR10B) have an amino acid sequence in which one or more amino acids have been substituted, deleted, inserted, or Z-added, and B0X1 (Pro-Xaa-Pro) and B0X1 And a protein having a tyrosine residue on the C-terminal side of the protein.
  • human NR10.4, NR10.5, NR10.6, NR10.7, or N10.8 protein (SEQ ID NOs: 4, 6, 8, 10, 12, 12, or 14, respectively), or mouse NR10 protein (NR10C or «NR10B) (SEQ ID NOs: 16 and 18 respectively) are proteins encoded by DNAs that hybridize with DNAs consisting of DNAs consisting of a part thereof or humans NR10.4, N10.5, and NR10, respectively.
  • .6, NR10.7, or NR10.8 protein SEQ ID NO: 4, 6, 8, 10, 12, or 14 respectively
  • mouse R10 protein N10C or NR10B
  • Such proteins include, for example, homologues of mammals other than human and mouse (for example, proteins encoded by monkey, rat, puppies, pelvis genes).
  • the hematopoietic cell line tissue such as spleen, thymus, lymph node, bone marrow, peripheral leukocytes, etc.
  • immunocompetent cell line tissues may be preferred, but are not limited to B.
  • NR10.4, NR10.5, NR10.6, NR10.7, or NR10.8 protein (SEQ ID NO: 4, 6, 8, 10, 12, or 14, respectively) or mouse NR10 protein (NR10C or R10B)
  • the conditions for hybridization include, for example, stringent conditions.
  • the stringent condition is, for example, using HpressHyb Hybridization Solution (manufactured by Clontech) as a hybridization buffer, 42 ° (: preferably, after 50 hours at 50 ° C for one hour, and then after hybridization.
  • Washing conditions include 42 ° C, 2XSS 0.1% SDS, preferably 50 ° C, 2XSSC, 0.1% SDS, and more preferably, more stringent conditions.
  • the conditions are, for example, after hybridization in a hybridization buffer at 65 ° C for 1 hour in the above solution, and then washing conditions after hybridization include 65 ° C, 2XSSC and 0.1% SDS. Under these conditions, not only DNAs with high homology as the temperature is lowered, but also DNAs with low homology are linguistic.
  • Human NR10.4, 10.5, 10.6, 10.7, or 10.8 protein encoded by DNA isolated by these hybridization or gene amplification techniques (SEQ ID NO: 4, 6, 8, 10, 12, or 14) or a protein functionally equivalent to the mouse NR10 protein (B10C or NR10B) (SEQ ID NO: 16 or 18, respectively) is usually human NR10.4, NR10.5, NR10.6, NR10.7, Or the NR10.8 protein (SEQ ID NO: 4, 6, 8, 10, 12, or 14 respectively) or the mouse N10 protein (NR10C or NR10B) (SEQ ID NO: 16 or 18 respectively) and the amino acid sequence Have high homology.
  • the protein of the present invention includes human NR10.4, NR10.5, NR10.6, NR10.7, or NR10.8 protein (SEQ ID NO: 4, 6, 8, 10, 12, or 14, respectively) or mouse Functionally equivalent to the NR10 protein (NR10C or N10B) (SEQ ID NO: 16 or 18, respectively) and the amino acid shown in SEQ ID NO: 4, 6, 8, 10, 12, 14, 16, 16 or 18 Proteins with high homology to the sequence are also included.
  • High homology usually refers to 70% or more homology, preferably 80% or more homology, more preferably 90% or more, more preferably 95% or more identity.
  • the algorithm described in the literature Wang, WJ and Lipman, DJ (1983) Proc. Natl. Acad. Sci. USA 80, 726-730
  • the algorithm described in the literature Wang, WJ and Lipman, DJ (1983) Proc. Natl. Acad. Sci. USA 80, 726-730
  • a DNA which can be hybridized with a DNA consisting of the nucleotide sequence of SEQ ID NO: 19 or a part thereof under stringent conditions is used.
  • a human NR10.4, NR10.5, NR10.6, N10.7, or NR10.8 protein (SEQ ID NO: 4, 6, 8, 10, 12, or 14 respectively) )
  • it is a protein encoded by a DNA that hybridizes under stringent conditions with DNA consisting of the nucleotide sequence of SEQ ID NO: 20 or a part thereof, and is a transitive human NR10.4 (SEQ ID NO: 4)
  • a protein equivalent to is preferred as the protein of the present invention.
  • a human NR10.5 protein which is a protein encoded by DNA (such as cDNA) that hybridizes under stringent conditions with DNA consisting of the nucleotide sequence of SEQ ID NO: 22 or a part thereof.
  • DNA such as cDNA
  • a protein equivalent to the above is particularly preferable as the protein of the present invention.
  • the protein of the present invention may vary in amino acid sequence, amount, isoelectric point, presence / absence and form of a short chain, etc., depending on the cell, host, or purification method that produces the protein as described below.
  • the protein obtained was the human protein .4, ⁇ .5, cell .6, cell .7, or NR10.8 protein (SEQ ID NO: 4, 6, 8, 10, 12, or 14) or as long as it has a function equivalent to that of mouse NR10C or NR10B (SEQ ID NO: 16 or 18, respectively).
  • a prokaryotic cell for example, Escherichia coli
  • a methionine residue is added to the N-terminal of the amino acid sequence of the original protein.
  • the N-terminal signal sequence is removed.
  • the proteins of the present invention also include such proteins.
  • the present invention includes a protein consisting of Ala at position 52 to Val at position 764 in the amino acid sequence of SEQ ID NO: 4.
  • the amino acid sequence of SEQ ID NO: 6 it includes a protein consisting of Ala at position 52 to Val at position 764.
  • the amino acid sequence of SEQ ID NO: 8 it includes a protein consisting of Ala at position 52 to Pro at position 627.
  • it includes a protein consisting of Ala at position 52 to Ser at position 581 in the amino acid sequence of SEQ ID NO: 10.
  • the amino acid sequence of SEQ ID NO: 12 includes a protein consisting of Ala at position 52 to Asn at position 549.
  • the amino acid sequence according to 14 includes a protein consisting of Ala at position 52 to Arg at position 548.
  • the protein of the present invention can be prepared as a recombinant protein or a natural protein by methods known to those skilled in the art.
  • a DNA encoding the protein of the present invention eg, a DNA having the nucleotide sequence of SEQ ID NO: 3, 5, 7, 9, 11, 13, 13 or 15
  • the protein can be purified and prepared by subjecting the antibody to the protein of the present invention to affinity chromatography immobilized on a column, or by further combining a plurality of these columns.
  • the protein of the present invention is expressed in host cells (eg, animal cells, Escherichia coli, etc.) as a fusion protein with the dalhithione S-transferase protein or as a recombinant protein to which a plurality of histidines are added.
  • the purified recombinant protein is purified using a glutathione column or a nickel column. be able to. After purification of the fusion protein, if necessary, a region other than the target protein in the fusion protein can be cleaved with thrombin or Factor Xa and removed.
  • the protein is a natural protein, a method known to those skilled in the art, for example, an affinity in which an antibody that binds to the protein of the present invention described below is bound to a tissue or cell extract expressing the protein of the present invention, as described below. Isolation can be performed by purifying the reaction with one column.
  • the antibody may be a polyclonal antibody or a monoclonal antibody.
  • the present invention also includes partial peptides of the protein of the present invention.
  • the partial peptide having an amino acid sequence specific to the protein of the present invention has an amino acid sequence of at least 7 amino acids, preferably at least 8 amino acids, more preferably at least 9 amino acids.
  • the partial peptide can be used, for example, for preparing an antibody against the protein of the present invention, screening for a compound that binds to the protein of the present invention, and screening for promoters and inhibitors of the protein of the present invention. In addition, it can be an agonist for the ligand of the protein of the present invention.
  • the partial peptide of the protein of the present invention includes, for example, a protein comprising the amino acid sequence J! Shown in SEQ ID NO: 4, 6, 8, 10, 12, 14, 16, or 18.
  • a partial peptide consisting of an active center is exemplified. Further, a partial peptide containing one or more of a hydrophobic region and a hydrophilic region estimated from a hydrophobic plot analysis may be mentioned. These partial peptides may include part or all of one hydrophobic region, or may include part or all of one hydrophilic region. Further, for example, soluble proteins of the protein of the present invention and proteins consisting of extracellular regions are also included in the present invention.
  • the partial peptide of the protein of the present invention particularly includes a protein containing SEQ ID NO: 21 (an amino acid sequence encoded by exon CP10.4 of NR10.4) or a part thereof. Also included are proteins containing SEQ ID NO: 24 (amino acid sequence encoded by exon CP10.5 of NR10.5) or a part thereof.
  • the partial peptide of the present invention can be produced by genetic engineering techniques, known peptide synthesis methods, or by cleaving the protein of the present invention with an appropriate peptidase. As the peptide synthesis method, for example, any of a solid phase synthesis method and a liquid phase synthesis method may be used.
  • the protein containing a partial peptide of the present invention includes a chimeric protein of the protein of the present invention and another hemopoietin receptor protein.
  • a chimeric receptor in which the fine domain of the protein of the present invention is linked to an intracellular domain containing the transmembrane domain of another hemopoietin receptor protein is the present invention. It is useful for transmitting a signal of the other hemopoietin receptor protein in response to a ligand of the protein.
  • a chimeric receptor in which the extracellular domain of the hemopoietin receptor other than the protein of the present invention is linked to the intracellular domain of the protein of the present invention including the fine W communication domain comprises the other hemopoietin receptor protein. It is useful for transmitting the signal of the protein of the present invention in response to the above ligand.
  • the signal transduction effect of the protein of the present invention is examined by preparing a chimeric receptor with the protein of the present invention using the extracellular domain (ligand binding region) of the known hemopoietin receptor known as a ligand. It is possible.
  • the present invention provides a chimeric receptor in which the intracellular domain of the protein of the present invention is linked to the intracellular domain containing the transmembrane domain of another hemopoietin receptor protein, and a hemopoietin other than the protein of the present invention. It includes a chimeric receptor in which the extracellular domain of the receptor is linked to the intracellular domain of the protein of the present invention including the transmembrane domain.
  • the present invention also provides a DNA encoding the protein of the present invention.
  • the DNA of the present invention is used for production of the protein of the present invention in vivo or in vitro as described above, and for example, is a gene for a disease caused by an abnormality in the gene encoding the protein of the present invention. Application to treatment etc. is also conceivable.
  • the DNA of the present invention may be in any form as long as it can encode the protein of the present invention. That is, it does not matter whether it is cDNA synthesized from mRNA, genomic DNA, or chemically synthesized DNA.
  • the present invention DNAs having an arbitrary base sequence based on the degeneracy of the genetic code are included as long as they can encode the above protein.
  • the DNA of the present invention can be prepared by a method known to those skilled in the art.
  • a cDNA library is prepared from cells expressing the protein of the present invention, and the sequence of the DNA of the present invention (for example, SEQ ID NO: 3, 5, 7, 9, 11, 13, 15 or 17) It can be prepared by performing hybridization using a part or a part thereof as a probe.
  • the cDNA library may be prepared, for example, by the method described in «(Sambrook, J. et al., Molecular Clonings Cold Spring Harbor Laboratory Press (1989)), or a commercially available DNA library may be used. .
  • the sequence of the DNA of the present invention (for example, SEQ ID NO: 3, 5, 7, 9, 1) It can also be prepared by synthesizing oligo DNA based on (1), (13), (15), or (17)) and performing a PCR reaction using this as a primer to amplify the cDNA encoding the protein of the present invention. It is.
  • Genomic DNA can be isolated by screening the genomic DNA library using the obtained cDNA as a probe.
  • RNA for example, thymus, lymph node, peripheral leukocyte, or hematopoietic cell line fiber such as bone marrow, and cell line cell fiber for nail
  • mRNA can be isolated by known methods, for example, guanidine ultracentrifugation (Chirgwin, JM et al. (1979) Biochemis try 18, 5294-5299), AGPC method (Chomczynski, P. and Sacci, N. (1987) )
  • the total RNA can be prepared by Anal. Biochem.
  • mRNA can be purified from the total RNA using mRNA Purification Cat Kit (Pharmacia). Also, by using QuickPrep mRNA Purification Cat (Pharmacia), mRNA can also be prepared directly.
  • CDNA is synthesized from the obtained mRNA using reverse transcriptase.
  • cDNA synthesis can also be performed using AMV Reverse Transcriptase First-strand cDNA Synthesis Kit (Shii-Dagaku Kogyo) or the like.
  • AMV Reverse Transcriptase First-strand cDNA Synthesis Kit Shii-Dagaku Kogyo
  • 5′-MCE method using 5′-Ampli FINDER RACE Kit manufactured by Clontech
  • PCR polymerase chain reaction
  • -RACE method Frohman, ⁇ ⁇ A. Et al. (1988) Proc. Natl. Acad. Sci. USA 85, 8998-9002; Belyavsky, A. et al. (1989) Nucleic Acids Res. 17 , 2919-2932
  • a target DNA fragment is prepared from the obtained PCR product and ligated to a vector DNA. Furthermore, a recombinant vector is prepared from this, introduced into E. coli, etc., and colonies are selected to prepare a desired recombinant vector.
  • the nucleotide sequence of the target DNA can be confirmed by a known method, for example, the dideoxynucleotide chain-one-minute method.
  • a nucleotide sequence having higher expression efficiency can be designed in consideration of the codon usage of the host used for expression (Grantham, R. et al. (1981) Nucleic Acids Res. 9, r43-74) Q
  • the DNA of the present invention can be modified by a commercially available kit or a known method. Modifications include, for example, digestion with restriction enzymes, insertion of synthetic oligonucleotides or appropriate DNA fragments, addition of a linker, insertion of an initiation codon (ATG) and Z or a stop codon (TM, TGA, or TAG). No.
  • the DNA of the present invention includes a DNA consisting of a protein coding sequence (CDS) in the nucleotide sequence of the system (1, 3, 5, 7, 9, 11, 13, 15, or 17).
  • CDS protein coding sequence
  • the DNA of the present invention is specifically a DNA consisting of base A at position 7 to base C at position 2298 in the base sequence of SEQ ID NO: 3, and position 7 in the base sequence of SEQ ID NO: 5.
  • the DNA of the present invention is also a DNA that is eight-hybridized under stringent conditions with a DNA consisting of the nucleotide sequence of SEQ ID NO: 3, 5, 7, 9, 11, 13, 15, or 17, and DNAs encoding proteins functionally equivalent to the proteins of the invention are included.
  • Stringent conditions can be appropriately selected by those skilled in the art, and include, for example, the above-described stringent conditions. That is, for example, using ExpressHyb Hybridization Solution (manufactured by Clontech) as a hybridization buffer, the mixture was subjected to hybridization for 1 hour at 42 ° C., preferably 50 ° C., and then washed at 42 ° C. for 42 hours. C, 2XSS 0.1% SDS, and preferably 50 ° C, 2XSSC, 0.1% SDS. More preferably, more stringent conditions can be mentioned.
  • More stringent conditions include, for example, using xpressHyb Hybridization Solution (manufactured by Clontech) as a hybridization buffer, hybridizing at 42 ° C., preferably 50 ° C. for 1 hour, and then after hybridization. Wash conditions include 65 ° C, 2XSSC and 0.1% SDS. Under these conditions, DNA with higher homology can be obtained as the temperature is increased.
  • the above hybridizing DNA may preferably be a naturally occurring DNA, for example, a cDNA or a chromosomal DNA.
  • the DNA of the present invention is a DNA (such as a cDNA) that hybridizes under stringent conditions with a DNA consisting of the nucleotide sequence of SEQ ID NO: 19 or a part thereof, and includes human NR10.4, NR10.5, and R10. .6, NR10.7, or NR10.8 protein SEQ ID NO: 4, 6, 8, 10, 12, or 14) DNA that encodes a functionally equivalent protein is preferred.
  • DNA that hybridizes under stringent conditions with the DNA consisting of the NR10.4 part and that encodes a protein functionally equivalent to human NR10.4 (SEQ ID NO: 4) is preferred.
  • DNA such as a cDNA
  • DNA that hybridizes under stringent conditions with DNA consisting of the nucleotide sequence of SEQ ID NO: 22 or a part thereof, and is functionally similar to the human NR10.5 protein (SEQ ID NO: 6).
  • DNAs encoding equivalent proteins are particularly preferred.
  • DNA that hybridizes under stringent conditions with DNA consisting of the nucleotide sequence of SEQ ID NO: 23 or a part thereof, and is functionally equivalent to human NR10.5 protein (SEQ ID NO: 6) Is particularly preferred.
  • the present invention also provides a vector into which the DNA of the present invention has been inserted.
  • the vector of the present invention is useful for retaining the DNA of the present invention in a host cell or expressing the protein of the present invention.
  • the vector when Escherichia coli is used as a host, the vector is amplified in Escherichia coli to amplify the vector in large amounts in Escherichia coli (e.g., JM109, DH5o !, HB10K XLl-Blue), etc. Ori, and a transformed gene of Escherichia coli (for example, a drug jffl live gene that can be identified by any drug (ampicillin-tetracycline, kanamycin, chloramphenicol, etc.))
  • Escherichia coli for example, a drug jffl live gene that can be identified by any drug (ampicillin-tetracycline, kanamycin, chloramphenicol, etc.)
  • vectors include M13-based vectors, pUC-based vectors, pBR322, pBluescript, pCR-Script, and the like.
  • an expression vector is particularly useful.
  • an expression vector for example, in the case of expression in E. coli, in addition to having the above-mentioned characteristics such that the vector is amplified in E. coli, the host may be used in the form of 109, DH5 ⁇ , HB101, XLl-Blue, etc.
  • a promoter that can be efficiently expressed in E. coli LacZ promoter (Ward, ES et al.
  • Such vectors include PGEX-5X-1 (Pharmacia), QIAexpress systemj (Qiagen), pEGFP, or pET (in this case, the host expresses T7 RNA polymerase in addition to the above vectors).
  • BL21 is preferred).
  • the vector may also include a signal sequence for polypeptide secretion.
  • a signal sequence for protein secretion the pelB signal sequence (Lei, SP et al (1987) J. Bacteriol. 169, 4379) may be used for production in E. coli periplasm.
  • the introduction of the vector into the host cell can be performed using, for example, a calcium chloride method or an electroporation method.
  • a mammalian expression vector for example, pcDNA3 (InvitrogenviS), pEF-BOS (Mizushiraa, S. and Nagata , S. (1990) Nucleic Acids Res.
  • pEF pCDM8
  • insect vector-derived expression vector for example, ⁇ BAC-TO-BAC Baculovinis Expression Systems J (GIBC0 BRL), pBacPAK8)
  • Plant-derived expression vectors eg, ⁇ 1, ⁇ 2
  • animal virus-derived expression vectors eg, pHSV, pMV, pAdexLcw
  • retrovirus-derived expression vectors eg, ZIPneo
  • yeast-derived expression vectors eg, rpichia Express ion KitJ (Invitrogen), pNVll, SP-Q01
  • Bacillus subtilis-derived expression vectors eg, pPL608, pKTH50.
  • promoters required for expression in cells such as the SV40 promoter (Mulligan, RC et al. (1979) Nature 277, 108-114), MMLV-LTR promoter, EFla promoter (Mizushima, S. and Nagata, S. (1990) Nucleic Acids Res. 18, 5322), it is essential to have the CMV promoter all over the world, and it is essential to have a gene for selection of cell transformation (for example, drug resistance that can be determined by drug (neomycin, G418, etc.)) It is more preferable to have a gene).
  • Vectors having such characteristics include, for example, pMAM, pDR2, pBK-RSV, pBK-CMV, pOPRSV, pOP13, and the like.
  • a vector for example, pCHOI, etc.
  • MTX methotrexate
  • COS cells that have a gene that expresses the SV40 T antigen on the chromosome. Transformation with a vector (such as pcD) having the SV40 replication origin can be mentioned.
  • origin of replication those derived from poliovirus, adenovirus, sipapipioma virus (BPV) and the like can also be used.
  • the expression vector is used as a selectable marker for aminoglycoside transferase (APH) gene, thymidine kinase (TK) gene, Escherichia coli xanthinguanine phosphoribosyltransferase (Ecogpt) gene because of the gene copy number increase in the host cell system.
  • TK thymidine kinase
  • Ecogpt Escherichia coli xanthinguanine phosphoribosyltransferase
  • dhfr dihydrofolate reductase
  • the DNA of the present invention is incorporated into an appropriate vector and, for example, a retrovirus method, a ribosome method, a cationic liposome method, an adenovirus method, or the like is used.
  • a retrovirus method for example, a retrovirus method, a ribosome method, a cationic liposome method, an adenovirus method, or the like is used.
  • the vector used include, but are not limited to, an adenovirus vector (eg, pAdexlcw) and a retrovirus vector (eg, pZIPneo).
  • General manipulations such as introduction of the DNA of the present invention into a vector can be performed according to a conventional method (Sambrook, J.
  • the present invention also provides a transformant into which the DNA or the vector of the present invention has been introduced.
  • the host cell into which the vector of the present invention is introduced is not particularly limited, and for example, Escherichia coli and various animal cells can be used.
  • the host cell of the present invention can be used, for example, as a production system for producing or expressing the protein of the present invention.
  • Production systems for protein production include in vitro and in vivo production systems. Examples of the in vitro production system include a production system using eukaryotic cells and a production system using prokaryotic cells.
  • Animal cells include mammalian cells, for example, CH0, COS, 3T3, myeloma, BHK (baby hamster kidney), HeLa, Vero, amphibian cells, for example, African Xenopus oocytes (Val le, et al. 1981) Nature 291, 358-340) or insect cells such as Sf9 and Sf2 Tn5 are known.
  • CH0 cells are, in particular, CH0 cells deficient in the DHFR gene (Mr-CHO (Urlaub, G. and Chas in, LA (1980) Proc. Natl. Acad. Sci.
  • the CH0 cell is particularly preferable.
  • the introduction of the vector into the host cell is performed by, for example, a calcium phosphate method, a DEAE dextran method, a method using Cationic ribosome D0TAP (Boehringer Mannheim), It can be done by election port method, lipofection, etc.
  • a cell derived from Nicotiana tabacum is known as a protein production system, which may be callus cultured.
  • Fungal cells include yeast, for example, Saccharomyces genus, for example, Saccharomyces cerevisiae, filamentous fungi, for example, genus Aspergillus, for example, Aspergillus-Nigaichi lus niger) is known.
  • bacteria cells When prokaryotic cells are used, there are production systems using bacterial cells.
  • bacterial cells include Escherichia coli (E. coli), for example, JM109, DH5o !, HB101, and the like, and Bacillus subtilis.
  • the culturing can be performed according to a known method.
  • a culture solution of animal cells for example, DMEM, MEM, RPMI 1640 and IMDM can be used.
  • a serum replacement solution such as fetal calf serum (FCS) can be used together, or serum-free culture may be performed.
  • FCS fetal calf serum
  • the pH during culturing is preferably about 6-8. Culture is usually performed at about 30 to 40 ° C for about 15 to 200 hours, and the medium is replaced, aerated, and agitated as necessary.
  • examples of a system for producing a protein in vivo include a production system using animals and a production system using plants.
  • the target DNA is introduced into these animals or plants, and proteins are produced and recovered in the animals or plants.
  • the “host” in the present invention includes these animals and plants.
  • mammals or insects there are production systems using mammals or insects.
  • mammals goats, pigs, sheep, mice, mice, etc. can be used (Vicki Glaser, SPECTRUM Biotechnology Applicat ions, 1993).
  • a transgenic animal can be used.
  • the target DNA is prepared as a fusion gene with a gene such as goat / 3 casein, which encodes a protein uniquely produced in milk.
  • a gene such as goat / 3 casein, which encodes a protein uniquely produced in milk.
  • the DNA fragment containing the fusion gene is injected into a goat embryo, and the embryo is transplanted into a female goat.
  • the target protein can be obtained from milk produced by the transgenic goat born from the goat that has received the embryo or its progeny. Hormones may be used as appropriate in transgenics and squirrels to increase the amount of milk containing proteins produced by transgenic goats (Ebert, KM et al. (1994) Bio / Technology 12, 699-702).
  • silkworms can be used as insects, for example.
  • the target protein can be obtained from the body fluid of the silkworm by infecting the silkworm with a baculovirus into which the DNA encoding the target protein has been introduced (S Kasumi, M. et al. (1985) Nature 315, 592-594) 0
  • tobacco when using a plant, for example, tobacco can be used.
  • DNA encoding the protein of interest is introduced into a plant expression vector, for example, pMON530, and this vector is introduced into bacteria such as Agrobacteriuin tumefaciens.
  • This bacterium is infected to tobacco, for example, Nicotiana tabacum, and the desired polypeptide can be obtained from the leaves of this tobacco (Ma, JK et al. (1994) Eur. J. Immunol. 24 , 131-138).
  • the protein of the present invention thus obtained can be isolated from inside or outside the host cell (such as a medium) and purified as a substantially pure and homogeneous protein.
  • the separation and purification of the protein may be carried out by using the separation and purification methods used in ordinary protein purification, and is not limited at all. For example, chromatographic columns, filters, gel filtration, salting out, solvent precipitation, elution, distillation, immunoprecipitation, SDS-polyacrylamide gel electrophoresis, isoelectric focusing, dialysis, recrystallization, etc.
  • proteins can be separated and purified.
  • chromatography examples include affinity chromatography, ion exchange chromatography, hydrophobic chromatography, gel filtration, reverse phase chromatography, and adsorption chromatography (Strategies for Protein Purification and Characterization). ion: A Laboratory Course Manual. Ed Daniel R. Marshak et al., Cold Spring Harbor Laboratory Press, 1996). These chromatographys can be performed using liquid phase chromatography, for example, liquid phase chromatography such as HPLC and FPLC. The present invention relates to these purification methods. It also includes proteins highly purified using the method.
  • the protein can be arbitrarily modified or partially removed by the action of an appropriate protein-modifying enzyme before or after protein purification.
  • an appropriate protein-modifying enzyme for example, trypsin, chymotrypsin, lysylendopeptidase, protein kinase, dalcosidase and the like are used.
  • the present invention also provides an antibody that binds to the protein of the present invention.
  • the form of the antibody of the present invention is not particularly limited, and includes a monoclonal antibody as well as a polyclonal antibody. Also included are antisera obtained by immunizing immunized animals such as rabbits with the protein of the present invention, polyclonal antibodies and monoclonal antibodies of all classes, as well as human antibodies and humanized antibodies obtained by genetic recombination. .
  • the protein of the present invention used as a sensitizing antigen for obtaining an antibody is not limited to the animal species from which it is derived, but is preferably a protein derived from a mammal, for example, a human, a mouse or a rat, and particularly preferably a protein derived from a human.
  • Human-derived proteins can be obtained using the gene sequences or amino acid sequences disclosed herein.
  • the protein used as the sensitizing antigen may be a full-length protein or a partial peptide of the protein.
  • the partial peptide of the protein includes, for example, an amino group (N) terminal fragment and a carboxy (C) terminal fragment of the protein.
  • antibody refers to an antibody that reacts with the full length or fragment of a protein.
  • an antibody that binds to an amino acid sequence of SEQ ID NO: 21 or 24 or a peptide consisting of a part thereof is particularly preferable as the antibody of the present invention.
  • a gene encoding the protein of the present invention or a fragment thereof is inserted into a known expression vector system, and the host cell described in this specification is transformed with the vector. These can be obtained by a known method and used as a sensitizing antigen. Alternatively, a cell expressing the protein, a lysate thereof, or a protein of the present invention synthesized in a ligatory manner may be used as the sensitizing antigen. Short bubble wrap It is preferable that the antigen be appropriately bound to a carrier protein such as keyhole limpet mosquitoin, human serum albumin, and ovalbumin to obtain an antigen.
  • a carrier protein such as keyhole limpet mosquitoin, human serum albumin, and ovalbumin to obtain an antigen.
  • the mammal to be sensitized is not particularly limited, but is preferably selected in consideration of compatibility with the parent cell used for cell fusion. Eyes, egrets, and primates are used.
  • mice for example, mice, rats, hamsters and the like are used.
  • a heronoid animal for example, a heron is used.
  • monkeys are used as primates.
  • monkeys of the lower nose for example, cynomolgus monkeys, macaques, baboons, and chimpanzees are used.
  • a sensitizing antigen is injected intraperitoneally or subcutaneously into a mammal.
  • a normal adjuvant for example, Freund's complete adjuvant
  • PBS Phosphate-Buffed Saline
  • physiological saline physiological saline
  • a suitable carrier can be used at the time of immunization with the sensitizing antigen. Immunization is performed in this manner, and it is confirmed by a conventional method that the level of the desired antibody in the serum is increased.
  • the blood of a mammal sensitized with the antigen is removed after confirming that the desired antibody level in serum has increased.
  • the serum is separated from the blood by a known method.
  • a serum containing the polyclonal antibody may be used, or if necessary, a fraction containing the polyclonal antibody may be further isolated from this serum and used.
  • an affinity column to which the protein of the present invention is coupled a fraction that recognizes only the protein of the present invention is obtained.
  • immunoglobulin G or immunoglobulin G can be prepared by purification using protein G protein.
  • dead cells may be removed from the mammal and subjected to cell fusion.
  • splenocytes are particularly preferred as preferred ⁇ $ cells used for cell fusion.
  • the other parent cell to be fused with the immunocyte is preferably a mammalian myeloma cell, more preferably a myeloma cell that has acquired characteristics for selecting a fused cell by a drug.
  • the cell fusion between the cells and myeloma cells is basically a known method, for example, the method of Milstein et al. (Gal re, G. and Milstein, C. (1981) Methods Enzymol. 73, 3-46) It can be performed according to.
  • the eight hybridomas obtained by cell fusion are selected by culturing them in a normal selective culture solution, for example, a HAT culture solution (a culture solution containing hypoxanthine, aminobuterin and thymidine). Culturing in the HAT culture solution is continued for a time sufficient for the death of cells other than the desired hybridoma (non-fused cells), usually for several days to several weeks. Next, a conventional limiting dilution method is performed to screen and clone a hybridoma producing the desired antibody.
  • a normal selective culture solution for example, a HAT culture solution (a culture solution containing hypoxanthine, aminobuterin and thymidine). Culturing in the HAT culture solution is continued for a time sufficient for the death of cells other than the desired hybridoma (non-fused cells), usually for several days to several weeks.
  • a conventional limiting dilution method is performed to screen and clone a hybridoma producing the desired antibody.
  • human lymphocytes for example, human lymphocytes infected with ⁇ virus
  • proteins, protein-expressing cells or lysates thereof can be treated in vitro with proteins, protein-expressing cells or lysates thereof.
  • the sensitized lymphocytes can be fused with human-derived myeloma cells capable of permanent division, for example, U266, to obtain a hybridoma that produces the desired human antibody having protein binding activity.
  • the obtained hybridoma was transplanted into the abdominal cavity of a mouse, ascites was recovered from the mouse, and the obtained monoclonal antibody was subjected to, for example, ammonium sulfate®, protein A, protein G column, DEAE ion exchange chromatography, Power the invention protein It can be prepared by purification using a coupled affinity column or the like.
  • the antibody of the present invention is used for purification and detection of the protein of the present invention, and is also a candidate for an agonist or antagonist of the protein of the present invention. It is also conceivable to apply this antibody to antibody therapy for diseases involving the protein of the present invention.
  • a human antibody or a human antibody is preferable in order to reduce the nucleogenicity.
  • a transgenic animal having a repertoire of human antibody genes is immunized with a protein serving as an antigen, a protein-expressing cell or a lysate thereof to obtain antibody-producing cells, and a hybridoma obtained by fusing this with myeloma cells is obtained.
  • a human antibody against the protein see International Publication Nos. W092-03918, W093-2227, W094-02602, W094-25585, W096-33735 and 34096).
  • cells in which immune cells such as sensitized lymphocytes that produce antibodies are immortalized with oncogenes may be used.
  • the monoclonal antibody thus obtained can also be obtained as a recombinant antibody produced using a genetic recombination technique (for example, Borrebaeck, CAK and Larrick, JW, THERAPEUTIC MONOCLONAL ANTIBODIES, Published in the United States). Kingdom by MACMILLAN PUBLISHERS LTD, 1990).
  • Recombinant antibodies are produced by cloning DNA encoding the same from ⁇ $ cells, such as hybridomas or sensitized lymphocytes, which produce the antibody, incorporating the DNA into an appropriate vector, and introducing it into a host to produce it.
  • the present invention includes this recombinant antibody.
  • the antibody of the present invention may be a modified antibody fragment thereof as long as it binds to the protein of the present invention.
  • antibody fragments include Fab, F (ab ') 2, Fv, or a single chain Fv (scFv) obtained by linking an Fv of an H chain and an L chain with an appropriate linker (Huston, JS et al. (1988) Proc. Natl. Acad. Sci. USA 85, 5879-5883).
  • the antibody is treated with an enzyme such as papain or pepsin to generate antibody fragments, or a gene encoding these antibody fragments is constructed, and Is introduced into an expression vector and then expressed in an appropriate host cell (eg, Co, MS et al. (1994) J.
  • modified antibody an antibody bound to various molecules such as polyethylene glycol (PEG) can be used.
  • PEG polyethylene glycol
  • the “antibody” of the present invention also includes these modified antibodies.
  • Such a modified antibody can be obtained by subjecting the obtained antibody to chemical modification. These methods are already established in this field.
  • the antibody of the present invention can be prepared by using a chimeric antibody composed of a variable region derived from a non-human antibody and a constant region derived from a human antibody or a CDR (complementarity determining region) derived from a non-human antibody and a human antibody using known techniques. It can be obtained as a humanized antibody consisting of a FR (framework region) and a constant region derived therefrom.
  • the antibody obtained as described above can be purified to homogeneity.
  • the separation and purification of the antibody used in the present invention may be performed by the separation and purification methods used for ordinary proteins. For example, if chromatographic columns such as affinity chromatography, filters, gel filtration, salting out, dialysis, SDS polyacrylamide gel electrophoresis, isoelectric focusing, etc. are selected and combined, antibodies can be separated. It can be purified (Antibodies: A Laboratory Manual. Ed Harlow and David Lane, Cold Spring Harbor Laboratory, 1988), but is not limited thereto.
  • the concentration measurement of the antibody obtained above is carried out by measuring the absorbance.
  • ⁇ SP binding assay Enzyme-1 inked immunosorbent assay
  • ELISA enzyme-linked ⁇ SP binding assay
  • the force column used for affinity chromatography include a protein A column and a protein G column.
  • Columns include Hyper D, POROS, Sepharose FF (Pharmacia), etc.
  • chromatography other than affinity chromatography include, for example, ion exchange chromatography, hydrophobic chromatography, gel filtration, reverse phase chromatography, Examples include adsorption chromatography (Strategies for Protein Purification and Characterization: A Laboratory Course Manual. Ed Daniel R. Marshak et al., Cold Spring Harbor Laboratory Press, 1996). These chromatographys can be performed using liquid phase chromatography such as HPLC and FPLC.
  • Examples of the method for measuring the antigen-binding activity of the antibody of the present invention include, for example, measurement of the degree, enzyme-linked immunosorbent assay (ELISA), EIA (enzyme-linked immunosorbent assay), and RIA (enzyme-linked immunosorbent assay). (Radioimmunoassay) or a fluorescent antibody method can be used.
  • ELISA enzyme-linked immunosorbent assay
  • EIA enzyme-linked immunosorbent assay
  • RIA enzyme-linked immunosorbent assay
  • a fluorescent antibody method can be used.
  • the protein of the present invention is added to a plate on which the antibody of the present invention has been immobilized, and then a sample containing the target antibody, for example, antibody-producing cells,
  • a secondary antibody that recognizes an enzyme for example, an antibody labeled with alkaline phosphatase
  • the plate is incubated, washed, and then the enzyme substrate such as P-nitrophenyl phosphate is added to measure the degree.
  • Antigen binding activity can be evaluated.
  • a protein fragment for example, a C-terminal fragment or an N-terminal fragment thereof may be used.
  • BIAcore Pharmacia
  • the antibody of the present invention is brought into contact with a sample expected to contain the protein of the present invention, and a complex of the antibody and the protein is detected or measured.
  • the method for detecting or measuring the protein of the present invention can be carried out.
  • the protein detection or measurement method of the present invention can specifically detect or measure a protein, it is useful for various experiments and the like using proteins.
  • the present invention of the present invention is strongly expressed in ⁇ , hematopoietic crane ⁇ ⁇ ⁇ , and scar fi ⁇ , and is thought to be involved in immune and / or hematopoietic signal transduction as a hemopoietin receptor.
  • the present invention also relates to the human NR10 or the human NR10 protein (SEQ ID NO: 4, 6, 8, 10, 12, 12, or 14).
  • DNA (SEQ ID NO: 3, 5, 7, 9, 11, 13, 15, or 17) encoding a protein (NR10C or NR10B) (SEQ ID NO: 16 or 18, respectively) or complementary to its complementary strand
  • a polynucleotide may be, for example, DNA or fragile.
  • the polynucleotide of the present invention is useful, for example, for detecting, amplifying, detecting the expression of, or controlling the expression of the DNA encoding the protein of the present invention. Detection of DNA includes detection of mutations in DNA.
  • complementary strand refers to one strand of a double-stranded polynucleotide consisting of A: T (but RNA: ⁇ in the case of RNA) and G: C base pairs and the other strand.
  • the term “complementary” is not limited to a sequence completely complementary to at least 15 contiguous nucleotide regions, but is at least 70, preferably at least 80%, more preferably 90%, and even more preferably 95%. What is necessary is that they have homology on the base sequence of at least%.
  • the algorithm described in the present specification may be used as an algorithm for determining homology.
  • Such polynucleotides include human NR10.4, NR10.5, NR10.6, 10.7, or R8 protein (SEQ ID NOs: 4, 6, 8, 10, 12, or 14, respectively), or mouse NR10 protein. (R10C or ⁇ NRIOB) (SEQ ID NO: 16 or 18 respectively) DNA (SEQ ID NO: 3, 5, 7, 9, 11, 13, 15 or 17) or its complementary strand Polynucleotides containing at least 15 nucleotides are included.
  • the polynucleotide is a human N 10.4, NR10.5, NR10.6, NR10.7, or N10.8 protein (SEQ ID NO: No .: 4, 6, 8, 10, 12, or 14) or DNA encoding mouse NR10 protein (10C or N10B) (SEQ ID NO: 16 or 18 respectively) (SEQ ID NO: 3) , 5, 7, 9, 11, 13, 15 or 17) or its complementary strand.
  • the term "specifically hybridizes" means that the DNA does not significantly hybridize with DNA encoding another protein under ordinary hybridization conditions, preferably under the above-mentioned stringent hybridization conditions.
  • a polynucleotide comprising at least 15 nucleotides complementary to the nucleotide sequence of SEQ ID NO: 19 or a complementary strand thereof is a human NR10.4, NR10.5, NR10.6, NR10.7, or NR10.8 It is useful for detecting or isolating a gene containing an exon that is specific to E. coli.
  • a polynucleotide comprising at least 15 nucleotides complementary to the nucleotide sequence of SEQ ID NO: 22 or its complementary strand is useful for detecting or isolating a gene containing exon specific to human NR10.5 It is.
  • Such polynucleotides include probes and primers used for detection and amplification of DNA encoding the protein of the present invention, probe primers for detecting expression of the DNA, and proteins of the present invention.
  • a nucleotide or a nucleotide derivative for controlling expression (for example, an antisense oligonucleotide or a lipozyme, or a DNA encoding the same) is included.
  • Such a polynucleotide can also be used for producing a DNA chip or a microarray.
  • the polynucleotide of the present invention includes DNA and RNA. It also includes sense nucleotides and antisense nucleotides.
  • Antisense oligonucleotides include, for example, antisense oligonucleotides that hybridize at any position in the nucleotide sequence of SEQ ID NO: 3, 5, 7, 9, 11, 13, 15, or 17 Nucleotides.
  • This antisense oligonucleotide preferably has a nucleotide sequence of at least 15 or more consecutive nucleotides in the nucleotide sequence of SEQ ID NO: 3, 5, 7, 9, 11, 13, 15, or 17. It is an antisense oligonucleotide. Even more preferably, it is an antisense oligonucleotide in which at least 15 or more consecutive nucleotides contain a translation initiation codon.
  • the 3 ′ region can be complementary, and a restriction enzyme recognition sequence, a tag, or the like can be added to the 5 ′ region.
  • the antisense oligonucleotide derivatives and modifications thereof can be used.
  • the modified product include a modified lower alkylene phosphonate such as a methylphosphonate type or an ethylphosphonate type, a phosphorothioate modified product or a phosphoroamidate modified product.
  • Antisense oligonucleotides include not only those in which all nucleotides corresponding to nucleotides constituting a predetermined region of DNA or mRNA are complementary sequences, but also those in which DNA or mRNA and oligonucleotides have their own sequence numbers: 3, 5, 7 , 9, 11, 13, 15 or 17 may have a mismatch of one or more nucleotides as long as the nucleotide sequence can be specifically hybridized to the nucleotide sequence.
  • the antisense oligonucleotide derivative of the present invention acts on a cell producing the protein of the present invention and binds to DNA or mRNA encoding the protein, thereby inhibiting its transcription or translation or inhibiting the mRNA. By promoting ⁇ and suppressing the expression of the protein of the present invention, it has the effect of suppressing the action of the protein of the present invention.
  • the antisense oligonucleotide derivative of the present invention can be mixed with a suitable base material that is inactive against the derivative to form an external preparation such as a coating agent or a puff.
  • excipients may be added to tablets, splinters, granules, capsules, ribosome capsules, It can be a lyophilized agent such as a propellant, a liquid, a nasal drop and the like. These can be prepared using conventional techniques.
  • the antisense oligonucleotide derivative of the present invention is applied directly to the affected area of a patient. Or applied to the patient so that it can eventually reach the affected area, such as by intravenous administration. Furthermore, an antisense-encapsulated material that enhances durability and membrane permeability can be used. For example, ribosome, poly-L-lysine, lipid, cholesterol, lipofectin or derivatives thereof can be mentioned.
  • the dosage of the antisense oligonucleotide derivative of the present invention can be appropriately adjusted according to the condition of the patient, and a preferred amount can be used. For example, it can be administered in the range of 0.1 to 100 mg / kg, preferably 0.1 to 50 mg / kg.
  • the antisense oligonucleotide of the present invention inhibits the expression of the protein of the present invention and is therefore useful in suppressing the biological activity of the protein of the present invention. Further, the expression inhibitor containing the antisense oligonucleotide of the present invention is useful in that it can suppress the biological activity of the protein of the present invention.
  • the protein of the present invention is useful for screening for a compound that binds to the protein. That is, the protein of the present invention is brought into contact with a test sample expected to contain a compound that binds to the protein, the binding activity between the protein of the present invention and the compound contained in the test sample is detected, and It is used in a method for screening a compound that binds to the protein of the present invention, which comprises selecting a compound having an activity of binding to the protein of the present invention.
  • the protein of the present invention used for screening may be a recombinant protein or a naturally-derived protein. It may also be a partial peptide of the protein of the present invention. It may also be in a form expressed on the cell surface or as a membrane fraction.
  • the test sample is not particularly limited, and for example, any sample containing a test compound can be used. Specifically, for example, cell extracts, cell culture supernatants, fermented microbial products, marine organism extracts, plant extracts, purified or crudely purified proteins, peptides, non-peptide compounds, synthetic low liver compounds , And Tenshodarigo.
  • the protein of the present invention to be brought into contact with a test sample may be, for example, a purified protein, a soluble protein, a form bound to a carrier, a fusion protein with another protein, As a form expressed above, it can be applied to a test sample as a membrane fraction.
  • a method for screening a protein (ligand or the like) binding to the protein using the protein of the present invention for example, many methods known to those skilled in the art can be used. Such screening can be performed, for example, by a sedimentation method. Specifically, it can be performed as follows. By inserting the gene encoding the protein of the present invention into a vector for expressing a foreign gene such as pSV2neo, pcDNAI, or pCD8, the gene is expressed in animal cells or the like.
  • the promoters used for expression include the SV40 early promoter (Rigby In Williamson 1 ⁇ 2d.), Genetic Engineering, Vol. 3.Academic Press, London, p.
  • a recognition site (epitof) of a monoclonal antibody whose specificity is known to the N-terminus or C-terminus of the protein of the present invention a fusion protein having a recognition site of a monoclonal antibody of the present invention can be obtained.
  • the protein can be expressed.
  • epitope-antibody system commercially available ones can be used (Experimental Medicine, 85-90 (1995)).
  • Vectors capable of expressing a fusion protein with 8-galactosidase, maltose-binding protein, daltuthione S-transferase, green fluorescent protein (GFP), and the like via a multicloninda site are commercially available.
  • polyhistidine His-tag
  • influenza agglutinin HA human c-myc
  • FLAG vesicular s tomat it is viral glycoprotein (VSV-GP)
  • T7 genelO protein T7-tag
  • human simple herb Epitopes such as virus virus glycoproteins (HSV-tags) and E-tags (epitopes on a monoclonal phage) and a monoclonal antibody recognizing them
  • HSV-tags virus virus glycoproteins
  • E-tags epitopes on a monoclonal phage
  • a monoclonal antibody recognizing them can be used for screening proteins that bind to the protein of the present invention. It can be used as an antibody system (Experimental Medicine 185-90 (1995)).
  • ⁇ complex comprises the protein of the present invention, a protein capable of binding thereto, and an antibody.
  • immunoprecipitation can also be performed using antibodies against the protein of the present invention.
  • Antibodies against the protein of the present invention include, for example, a gene encoding the protein of the present invention introduced into an appropriate E. coli expression vector, expressed in E. coli, and the expressed protein is purified. It can be prepared by immunizing goats and chickens. In addition, the synthesized present invention It can also be prepared by immunizing the above animal with a partial peptide of the above protein.
  • the escape complex can be precipitated using Protein A Sepharose or Protein G Sepharose.
  • the protein of the present invention can be prepared, for example, as a fusion protein with an epitope such as GST, the protein of the present invention can be prepared using a substance that specifically binds to these epitopes such as daltathione-Sepharose 4B.
  • An immune complex can be formed as in the case of using the above antibody.
  • SDS-PAGE is generally used to analyze precipitated proteins, and the bound proteins can be analyzed based on the molecular weight of the proteins by using an appropriate concentration gel.
  • the protein bound to the protein of the present invention is generally a radioisotope, since it is difficult to detect the protein by ordinary staining methods such as Kumashi staining and silver staining.
  • 35 S- cells were cultured in Mechionin or culture medium containing 35 S- cysteine and labeled proteins in said cell, it is possible to improve the detection sensitivity by detecting this. Once the amount of protein is known, the target protein can be purified directly from SDS-polyacrylamide gel and sequenced.
  • Isolation of a protein binding thereto using the protein of the present invention is carried out, for example, using the ⁇ ⁇ ⁇ ⁇ ⁇ western blotting method (Skolnik, EY et al. (1991) Cell 65, 83-90). be able to. That is, cells that are expected to express a binding protein that binds to the protein of the present invention,
  • the expressed plaque may be detected by a label.
  • the method for labeling the protein of the present invention include a method using the binding property of biotin and avidin, and a method of specifically binding to the protein of the present invention or a peptide or polypeptide (eg, GST or the like) fused to the protein of the present invention. Examples include a method using an antibody, a method using a radioisotope, and a method using fluorescence.
  • a 2--8 hybrid system using cells Yields, S., and Sternglanz,. (1994) Trends Genet. 10, 286-292; Dalton S, and Treisman R (1992) Characterization of SAP-1, a protein recruited by serum response factor to the c-fos serum response element, Cel l 68, 597-612, ⁇ Kasumi CHMAKER Two-Hybrid System '', ⁇ Mammalian MATCHMAKER Two-Hybrid Assay Kit ”and“ MATCHMAKER One-Hybrid SystemJ (all manufactured by Clontech); rHybriZAP Two-Hybrid Vector SystemJ (Stratagene).
  • the protein of the present invention or a partial peptide thereof is fused with an SRF DNA binding region, a GAL4 fragment A binding region, or the like, and expressed in yeast cells to express a protein that binds to the protein of the present invention.
  • VP16 or GAL4 translocation region A cDNA library that can be expressed in a form fused with E. coli, etc., is prepared, introduced into the above yeast cells, and the cDNA derived from the library is isolated from the detected positive clonal cells.
  • a protein that binds to the protein of the present invention When a protein that binds to the protein of the present invention is expressed, the binding of the two activates the reporter gene, and a positive clone can be confirmed.) By introducing the isolated cDNA into Escherichia coli and expressing it, the cDNA can be expressed.
  • a protein that binds to the protein of the present invention or a gene thereof can be prepared by using the HIS3 gene in addition to the HIS3 gene. , Ade2 gene, LacZ gene, CAT gene, luciferase gene, PAI-1 (Plasminogen act ivator inhibitor typel) gene, etc. Not limited to these. Screening by the two-hybrid method is not only for yeast It can also be performed using mammalian cells and the like.
  • Screening for a protein that binds to the protein of the present invention can also be performed using affinity chromatography.
  • the protein of the present invention is immobilized on an affinity carrier, and a test sample which is expected to express a protein that binds to the protein of the present invention is applied thereto.
  • the test sample in this case includes, for example, a cell extract, a cell lysate, and the like. After applying the test sample, the column is washed to prepare a protein bound to the protein of the present invention.
  • the obtained protein is analyzed for its amino acid sequence, and based on it, an ori: iDNA is synthesized, and the DNA encoding the protein is obtained by screening a cDNA library using the DNA as a probe. Can be.
  • a biosensor utilizing a surface plasmon resonance phenomenon can be used as a means for detecting or measuring the bound protein.
  • the biosensor using the surface plasmon resonance phenomenon as an IJ is a real-time surface plasmon resonance signal without capping the interaction between the protein of the present invention and the test protein using a trace amount of protein.
  • BIAcore manufactured by Pharmacia. Therefore, it is possible to enhance the binding between the protein of the present invention and the test compound by using a biosensor such as BIAcore.
  • Methods for isolating not only proteins but also compounds (including agonists and antagonists) that bind to the protein of the present invention include, for example, immobilized proteins of the present invention, synthetic compounds, and natural compounds.
  • Method of screening ⁇ that bind to the protein of the present invention by using a product bank or a random phage peptide display library, and a screening method using high throughput by combinatorial chemistry technology (Wright on, NC et al. al. (1996) Smal l pept ides as potent mimetics of the protein hormone erythropoietin, Science 273, 458-64; Verdine, GL (1996)
  • the combinatorial chemistry of nature, Nature 384, 11-13; Hogan, JC Jr. (1996) Directed combinatorial chemistry, Nature 384, 17-19) are known to those skilled in the art.
  • Screening for a ligand that binds to the protein of the present invention comprises linking the extracellular domain of the protein of the present invention with the intracellular domain of the hemopoietin receptor protein having known signal transduction ability, including the transmembrane domain.
  • Expressing the chimera receptor prepared above on the cell surface of a suitable cell line preferably a cell line that can survive and proliferate only in the presence of a suitable growth factor (growth factor-dependent cell line). It can be performed by culturing the cell line with addition of a material expected to contain various growth factors, cytodynamic factors, hematopoietic factors, and the like.
  • This method takes advantage of the fact that the above-mentioned growth factor-dependent cell line can survive and proliferate only when the test material contains a ligand that specifically binds to the extracellular domain of the protein of the present invention. are doing.
  • hemopoietin receptors include, for example, thrompopoietin receptor, erythropoietin receptor, G-CSF receptor, gpl30, and the like.Partners of the chimeric receptor used in the screening system of the present invention include those known It is not limited to the hemopoietin receptor, and any cytoplasmic domain having a structure necessary for signal transduction activity may be used.
  • a growth factor-dependent cell line for example, an IL3-dependent cell line such as BaF3 or FDC-P1 can be used.
  • the ligand that specifically binds to the protein of the present invention may be a finely-coupled protein instead of a soluble protein.
  • the protein containing only the extracellular domain of the protein of the present invention includes, for example, a soluble receptor protein artificially prepared by inserting a stop codon at the N-terminal side of the fine transmembrane domain, or NR10.7 or ⁇ Soluble proteins such as NR10.8 are available.
  • a fusion protein to which a partial sequence of the soluble protein is added for example, a protein prepared by adding an Fc site of ⁇ globulin or a FLAG peptide to the C-terminus of the extracellular domain can be used.
  • These soluble labeled proteins can also be used for detection in the above-mentioned West Western method.
  • a chimeric protein comprising the extracellular region of the protein of the present invention and the Fc region of an antibody (eg, a human IgG antibody) can be purified using a protein A column or the like. Since such an antibody-like chimeric protein has ligand-binding activity, it can be used for screening ligands after labeling with radioisotopes and the like as appropriate (Suda, T. et al.). al., Cell, 175, 1169-1178 (1993)). In addition, since certain cytokines such as TNF family molecules are also membrane-bound, i.e., they react with various cells and anti-a chimeric protein to show the binding activity. It may be possible to isolate the ligand. In addition, a ligand can be isolated in the same manner using cells into which the cDNA library has been introduced. Furthermore, an antibody-like chimeric protein can be used as an antagonist.
  • an antibody-like chimeric protein can be used as an antagonist.
  • Compounds that can be isolated by screening become drug candidates for promoting or inhibiting the activity of the protein of the present invention, and are applicable to the treatment of diseases caused by abnormal expression or function of the protein of the present invention. Can be considered.
  • the substance obtained by using the screening method of the present invention and having a part of the structure of the compound having the activity of binding to the protein of the present invention, which is converted by addition, deletion, Z or substitution, is also a substance of the present invention. It is included in the compounds obtained by using the screening method.
  • Compounds obtained by the screening method of the present invention and proteins of the present invention can be used in human animals, such as mice, rats, guinea pigs, 'herons', chickens, cats, dogs, and higgies.
  • soluble type soluble type
  • When used as a medicinal product, as a drug it is not only that the isolated compound itself is administered directly to the patient, but also that it is administered in a well-known pharmaceutical manner. It is also possible to do.
  • sugar-coated as needed, capsules, elixir 1 micro force It can be used orally as a capsule or parenterally in the form of a sterile solution or suspension in water or other pharmaceutically acceptable liquid.
  • pharmacologically acceptable carriers or vehicles specifically, sterile water or physiological water, vegetable oils, emulsifiers, suspending agents, surfactants, stabilizers, flavoring agents, excipients, vehicles It can be formulated by mixing with preservatives, binders, etc., in admixture in unit dosage form required for generally accepted pharmaceutical practice.
  • the amount of the active ingredient in these preparations is such that an appropriate capacity within the specified range can be obtained.
  • Additives that can be incorporated into tablets and capsules include, for example, binders such as gelatin, corn starch, tragacanth gum, gum arabic, excipients such as crystalline cellulose, corn starch, gelatinous alginic acid, and the like. Swelling agents, lubricants such as magnesium stearate, sweeteners such as sucrose, lactose or saccharin, and flavoring agents such as peppermint, cocoa oil or cellulose are used.
  • the unit dosage form is a capsule, the above materials may further contain a night carrier such as an oil or fat.
  • Sterile compositions for injection can be formulated according to normal pharmaceutical practice using a vehicle such as distilled water for injection.
  • Aqueous injection solutions include, for example, physiologically sterile water, isotonic solutions containing glucose and other adjuvants, such as W-sorbitol, D-mannose, D-mannitol, sodium chloride.
  • Oils such as sesame oil, which may be used in combination with alcohols, for example, ethanol, polyalcohols, for example, propylene glycol, polyethylene glycol, nonionic surfactants, for example, polysorbate 80 (TM), HC0-50.
  • soybean oil which may be used in combination with benzoic acid or benzyl alcohol as a solubilizing agent.
  • a buffer for example, phosphate buffer, sodium acetate buffer, a soothing agent, for example, proforce hydrochloride, a stabilizer, for example, benzyl alcohol, phenol, or an antioxidant.
  • Prepared Injectables are usually filled into appropriate inflation.
  • Administration to patients can be performed, for example, by intraarterial injection, intravenous injection, subcutaneous injection, etc., or intranasally, transbronchially, intramuscularly, transdermally, or orally by methods known to those skilled in the art. Can be done.
  • the dose varies depending on the weight and age of the patient, the administration method, and the like, and those skilled in the art can select an appropriate dose.
  • the compound can be encoded by DNA
  • the DNA may be incorporated into a vector for gene therapy to perform gene therapy.
  • the dose and administration method vary depending on the patient's weight, age, symptoms, and the like, and those skilled in the art can select an appropriate dose.
  • the dose of the protein of the present invention varies depending on the administration subject, subject fl, symptom, and administration method.
  • As 60 kg would be considered to be about 100 g to 20 mg per day, preferably about 100 / g to 10 mg per day.
  • the dose of the compound that binds to the protein of the present invention or the dose of the compound that inhibits the activity of the protein of the present invention varies depending on the symptoms.
  • the amount is about 0.1 to 100 mg, preferably about 1.0 to 50 mg, more preferably about 1.0 to 20 mg per day.
  • the single dose varies depending on the subject, subject, symptoms, and administration method.
  • it is usually 1 day for an adult (with a body weight of 60 kg).
  • the dose can be administered in terms of the amount converted per 60 kg body weight or the amount converted per body surface area.
  • FIG. 1 is a diagram showing the nucleotide sequence of NI 0.3 detected from the human genome. Amino acid coding column 3 ⁇ 4 The column is shown in uppercase, and the predicted untranslated nucleotide sequence is shown in lowercase. Indicated by
  • FIG. 2 is a continuation of FIG.
  • FIG. 3 is a view showing an amino acid sequence which can be encoded by N 10.3 detected in the human genome.
  • FIG. 4 is a diagram showing the nucleotide sequence of NR10.4 detected by human genome analysis.
  • the predicted nucleotide sequence of the amino acid coding region is shown in capital letters.
  • the predicted nucleotide sequence of the untranslated region is shown in lower case.
  • FIG. 5 is a continuation of FIG.
  • FIG. 6 is a diagram showing an amino acid sequence that can be encoded by NR10.4 and detected from the human genome.
  • FIG. 7 is a diagram showing the nucleotide sequence of NR10.4 isolated from a human peripheral leukocyte cDNA library and the amino acid sequence encoded thereby. In addition, the amino acid sequence predicted to be the transmembrane region is underlined.
  • FIG. 8 is a continuation of FIG.
  • FIG. 9 is a continuation of FIG.
  • FIG. 10 shows the nucleotide sequence of NR10.5 isolated from a human thymus cDNA library and the amino acid sequence encoded by it. In addition, the amino acid sequence predicted to be a penetrating region is underlined.
  • FIG. 11 is a continuation of FIG. 10.
  • FIG. 12 is a continuation of FIG. 11.
  • FIG. 13 shows the nucleotide sequence of NR10.6 isolated from a human thymus cDNA library and the amino acid sequence encoded by it. In addition, the amino acid sequence predicted as a fine ⁇ S penetrating region is underlined.
  • Fig. 14 shows the yarn sales of Fig. 13.
  • FIG. 15 is a continuation of FIG.
  • Figure 16 shows the nucleotide sequence of NR10.7 isolated from the human thymus cDM library, and It is a figure showing the amino acid sequence encoded by it.
  • FIG. 17 is a continuation of FIG.
  • FIG. 18 is a continuation of FIG.
  • FIG. 19 shows the nucleotide sequence of R10.8 isolated from a human thymus cDNA library and the amino acid sequence encoded by it.
  • FIG. 20 is a continuation of FIG.
  • FIG. 21 is a continuation of FIG.
  • FIG. 22 is a photograph showing the results of RT-PCR of NR10 gene expression in various human organs. The size of the specific PCR amplification product of NR10 is indicated by an arrow.
  • FIG. 23 is a photograph showing the results of analysis of the expression state of the NR10 gene in human glue ⁇ and human peripheral blood cells by RT-PCR.
  • FIG. 24 is a photograph showing the results of quantitative analysis of N10 gene expression in various human organs by Southern blotting. The specific signal of NR10 detected is indicated by an arrow.
  • FIG. 25 is a photograph showing the results of Southern blotting on the expression of NR10 in various human organs and various blood cells of human peripheral blood. Arrows indicate the specific signals of NR10 detected.
  • FIG. 26 is a photograph showing the result of analyzing the expression of 10 genes in various human cell lines.
  • the results of analysis of 10 gene expression patterns in various human cell lines by RT-PCR were shown (upper panel).
  • the results of quantitative spinning by Southern blotting were shown (middle panel).
  • FIG. 27 is a diagram showing a structural schematic diagram of an expressible protein encoded by NR10 constructed in a plasmid vector that can be expressed in mammalian cells.
  • FIG. 28 shows the nucleotide sequence of niNRlO detected from a mouse genome database search. The predicted nucleotide sequence of the exon region is shown in bold. The amino acid sequences that can be encoded are also shown.
  • Figure 29 shows the amino acids that were predicted to be exonable in the Roh10 base sequence that showed a positive response to the human NR10.'4 amino acid sequence used in the query in the mouse genome database search. It is the figure which compared the sequence.
  • FIG. 30 is a diagram showing the nucleotide sequence of mouse N 1 OB isolated from one Balb / c testis cDNA library and the amino acid sequence encoded thereby. Also, the amino acid sequence predicted as a fine ⁇ -penetrating region is underlined.
  • FIG. 31 is a continuation of FIG. 30.
  • FIG. 32 is a continuation of FIG. 31.
  • FIG. 33 shows the nucleotide sequence of mouse NR10C isolated from a C57BL / 6 day8.5 embryo cDNA library and the amino acid sequence encoded thereby. The amino acid sequence predicted as a transmembrane region is underlined.
  • FIG. 34 is a continuation of FIG. 33.
  • FIG. 35 is a continuation of FIG.
  • FIG. 36 shows a comparison between the full-length amino acid sequence of human NR10.4 (hidden 10) and the full-length amino acid sequence of mouse N10B derived from Balb / c testis (MNR10). Common amino acids are indicated by an asterisk. The sequence predicted to be the penetrating region is underlined.
  • FIG. 37 is a diagram schematically showing the genomic structure of the C-terminal region from FN-III, which shows diversity in various splicing variants of human N10. The exon site is indicated by a square in the genome structure. In addition, in the exon site, a sequence portion capable of encoding a continuous amino acid translation frame by splicing was colored. BEST MODE FOR CARRYING OUT THE INVENTION Next, the present invention will be described more specifically with reference to examples, but the present invention is not limited to the following examples. All documents cited in this specification are incorporated as a part of this specification.
  • GenBank accession number: AC022265 accession number: AC022265
  • accession number: AC008857 accession number: AC008857
  • Example 2 Structure of NR10 human genome gene! For the purpose of structural analysis of a full-length genomic sequence capable of encoding the human NR10 gene, identification of the exon sequence of the human NR10 gene encoded by the BAC clone found above was attempted. The identification of the exon site was solved by conducting a BlastN (Advanced BlastN 2.0.13) search using the nucleotide sequence of human NR10.3 as a query in the aforementioned BAC clone AC022265. This search used programs in the NCBI server (http://www.ncbi.nlm.nih.gov/), and all search conditions were set to the default values.
  • NR10.4 The novel sequence detected and predicted here was named NR10.4. Genome analysis results In NR10.4, the intron during splicing to the final exon of NR10.3 is not skipped, and the amino acid translation frame continues as it is. Therefore, compared to NR10.3, which is predicted to have a short intracellular region and no signal transduction function, a long amino acid translation frame can be encoded at the C-terminus. Furthermore, the presence of three tyrosine residues in the intracellular region of NR10.4 was predicted to possess intracellular signal transduction. Incidentally, the BAC clone AC022265 cannot encode the nucleotide sequence of NR10.4 that could be encoded by BAC clone AC008857.
  • Fig.1 shows the base sequence of N 10.3 (SEQ ID NO: 1) detected from lucidity! 2 and the amino acid sequence of NR10.3 (SEQ ID NO: 2) encoded by it is shown in FIG.
  • SEQ ID NO: 3 The nucleotide sequence of NR10.4 (SEQ ID NO: 3) is shown in Figs. Was. N 10.4 could be expected to be present as a transcript due to alternative splicing of NR10.
  • iDNA primer was designed near the predicted amino acid translation initiation codon of NR10.4, while an upstream oligo DNA primer was designed in the 3 'untranslated region of NR10.4.
  • the exon site is predicted in the BAC clone sequence, and based on the predicted sequence, the following oligonucleotides specific to the human NR10.4 gene are shown.
  • NIU0.4-MET was synthesized on the sense side (downstream direction) and NR10.4-UTR was synthesized on the sense side (upstream direction).
  • Primers were synthesized using ABI 394 DNA / RA Synthesizer under the conditions of adding a 5'-terminal trityl group. Thereafter, the full-length synthetic product was purified using an OPC column (ABI # 400771) and provided to the RT-PCR method described later.
  • the NR10.4-MET primer of Example 3 was used as a sense primer, and the NR10.4-UTR primer was used as an antisense primer.
  • the RT-PCR cloning method used was tried.
  • Human PBL (human peripheral leukocyte) 1st strand cDNA (Clontech # K142-1) was used as type Advantage, and Advantage cDNA Polymerase Mix (Clontech # 8417-l) was used for PCR experiments.
  • Using a PerMn Elmer Gene Amp PCR System 2400 thermal cycler As a result of performing the PCR under the following PCR conditions, an amplification product having the expected size was obtained94. 4 minutes at C
  • PCR product was subcloned into pGEM-T Easy vector (Promega # A1360) and the nucleotide sequence was determined.
  • pGEM-T Easy vector Promega # A1360
  • a reaction was performed at 16 ° C / 2 hours using T4 DNA Ligase (Promega # A1360).
  • PCR products and recombinants of the pGEM-T Easy vector were obtained by transforming E. coli strain DH5 o! (Toyobo # DNA-903).
  • Insert Check Ready Blue Toyobo # PIK-201 was used for selecting the recombinants.
  • the determination of the salt Motohai ⁇ 1 j uses the BigDye Terminator Cycle Sequencing Ready React ion Ki t (ABI / Perkin Elmer # 4303154), was subjected to angular ⁇ Te ABI PRISM 377 DNA Sequencer Niyotsu.
  • the nucleotide sequence of all the insert fragments was determined for 12 independent clones of the recombinant, and it was confirmed that the NR10.4 gene sequence derived from the specific PCR amplification reaction was present.
  • the nucleotide sequence of a cDNA clone capable of encoding the full-length CDS of NR10.4 including the transmembrane region was determined.
  • the determined base sequence of NI 0.4 (SEQ ID NO: 5) and the amino acid sequence encoded by it (SEQ ID NO: 6) are shown in FIGS.
  • Example 5 Search for human NR10 gene splicing variants by RT-PCR method RT-PCR cloning was attempted for the purpose of identifying further splicing variants capable of encoding the human NR10 gene.
  • Human Thymus Marathon-Ready cDNA Library (Clontec # 7415-1) was used as type ⁇ . All other KR conditions were as in Example 4 above. That is, NR10.4-MET primer and NR10.4-UTR primer And the same amplification reaction was carried out using Advantage cDNA Polymerase Mix. As a result, an amplification product showing multiple sizes near the predicted size was obtained.
  • the obtained PCR product was subcloned into a pGEM-T Easy vector, and the nucleotide sequence was determined.
  • the nucleotide sequence of all insert fragments was determined for 24 independent clones, and it was confirmed that the NR10.4 gene sequence derived from the specific PCR amplification reaction was present.
  • several clones having an insert sequence different from that of NR10.4 were simultaneously obtained.
  • the clones identified were named NR10.5, NR10.6, N10.7, and R10.8, respectively.
  • the determined nucleotide sequence of NR10.5 (SEQ ID NO: 7) and the amino acid sequence encoded by it (SEQ ID NO: 8) are shown in FIGS.
  • the determined nucleotide sequence of N 10.6 (SEQ ID NO: 9) and the amino acid sequence encoded by it (SEQ ID NO: 10) are shown in FIGS.
  • the determined nucleotide sequence of NI 0.7 (SEQ ID NO: 11) and the amino acid sequence (SEQ ID NO: 12) encoding it are shown in FIGS.
  • NR10.5 and R10.6 can encode a transmembrane receptor protein having a transmembrane domain, they do not have tyrosine residues in the intracellular domain, and therefore have an intracellular signaling function. was not expected to be held.
  • NR10.7 and NR10.8 did not possess the transmembrane region, it was predicted that they could encode a soluble secretory receptor protein.
  • Table 1 summarizes the structural features of the splicing variants of the NR10 gene.
  • the genomic structure of these NR10 gene splice variants is shown in the schematic diagram of Figure 37.
  • the structure at the C-terminal side of the Hosoto penetration region shows diversity due to selective splicing. It is expected that the regulation of functional expression of the 0 gene group will be strictly controlled by alternative splicing that is specific to ⁇ or specific cell types.
  • Table 1 Structural features of the NR10 splice variant Clone CBM FN—III TM Boxl CP-Tyr
  • Example 6 Search for NRIO gene-expressing tissues by RT-PCR method and keratocarp expression expression distribution of NR10.4, NRIO.5 and NRIO.6 genes in each human fl3 ⁇ 4
  • mRNA was detected by the RT-PCR method.
  • An oligonucleotide primer having the following sequence was newly synthesized.
  • the NR10.4-TM primer was used as the sense (downstream) primer, and the R10.4-STP primer was used as the antisense (upstream) primer.
  • the synthesis and purification of the primers were performed in accordance with Example 3 described above.
  • the gall 0.4-TM primer is designed in the narrow penetration region of NR10.
  • the NR104-STP primer is designed near the amino acid translation stop codon of N10.4. Therefore, it was considered that the sequences of the three splicing mutants of NR10.4, NR10.5, and NR10.6 could be amplified and edible by these primer sets.
  • the NR10.3 gene which has a small J! »Penetrating region but has a different 3 'untranslated region sequence in the final exon, and NR10.7, which has no further fine penetrating region, and 8 is not amplified.
  • Types ⁇ include Human Multiple Tissuue cDNA (MTC) Panel I (Clontech # K1420-1), Human MTC Panel II (Clontech # K1421-l), Human Immune System MTC Panel (Clontech # K1426-l), and: Human Blood Fract ions MTC Panel (Clontech # K1428-l) was used.
  • PCR was performed using an Advantage cDNA Polymerase Mix (Clontech # 8417-l) and a Perkin Elmer Gene Amp PCR System 2400 thermal cycler. The PCR reaction was performed under the following cycle conditions to try to amplify the target gene.
  • the target gene product amplified by RT-PCR in Example 6 above was subjected to Southern Blotting using a specific cDNA fragment common to each of the NR10.4, NR10.5, and NR10.6 genes as a probe. As a result, they were confirmed to be specific amplification products.
  • the agarose gel electrophoresis of the RT-PCR product described in the preceding paragraph was followed by blotting on a charged nylon with Hybond N (+) (Amersham, cat # RPN303B), followed by hybridization.
  • the NR10.4 cDNA fragment obtained in Example 4 was used.
  • PCR products amplified by RT-PCR in the previous section may be amplification products specific to N10.4, NR10.5 and NR10.6. confirmed.
  • the comparative quantification of the expression level in each case supported the evaluation described in the previous section.
  • the method for detecting target gene expression which combines RT-PCR and Southern blotting, is an extremely sensitive detection method even when compared to other expression analysis methods. No expression was observed in spleen, tonsils, heart, brain, liver, skeletal muscle, and colon. Furthermore, no expression was detected in CD8 + T cells and activated CD19 + B cells.
  • YTN-17 Human NK cell line Human NK cel l line
  • RNA was prepared.
  • Preparation of mRNA A high-purity mRNA was purified by performing polyA positive selection using mMACS mRNA Isolate ion Kit (Miltenyi Biotec # 130-075-201) according to the manufacturer's manual. Each purified mRNA was used in lOOng to obtain RT-PCR type II. RiverTraDash (Toyobo # PCR-401) was used for the synthesis of the primary strand cDNA, and the random priming method was used. In addition, KOD Dash (Toyobo # LDP-101) was used for the RT-PCR reaction conditions according to the manual specified.
  • the primer set used for the RT-PCR amplification reaction is the same as in Example 6 described above. Furthermore, the Southern Blotting method was carried out according to Example 7 in the previous section to confirm that they were specific amplification products. As a result, as shown in FIG. 26, strong expression gene expression was detected in HL-60 and -562.
  • Example 9 Construction of NR10 Ligand Retrieval System Using Growth Factor-Dependent Cell Line Screening of a ligand protein that specifically binds to the protein of the present invention is performed using the extracellular domain and the Hosoki trans domain of the protein of the present invention.
  • a suitable cell line preferably a suitable growth factor.
  • growth factor-dependent cell line After being expressed on the cell surface of a cell line (growth factor-dependent cell line), the cell line is cultured with the addition of materials that are expected to contain various growth factors, cytodynamic factors, hematopoietic factors, etc. This can be implemented.
  • the above-mentioned growth factor-dependent cell line rapidly dies in the absence of growth factors, survival and survival only occur when a test substance contains a ligand that specifically binds to the fine domain of the protein of the present invention.
  • Establish a screening system by utilizing the possibility of multiplication.
  • difficult hemopoietin receptors include, for example, thrompopoietin receptor, erythropoietin receptor, G-CSF receptor, and gpl30.
  • the chimeric receptor used in this screening system is the known hemopoietin receptor.
  • the present invention is not limited to this, and any material may be used as long as it has a structure necessary for signal transduction activity in the cytoplasmic domain.
  • IL-3 dependent cell lines such as Ba / F3 and FDC-P2 for IJ. Therefore, first, the cDNA sequence encoding the extracellular domain and transmembrane domain of NR10.4 (amino acid sequence; Ala at position 52 to Lys at position 576) is amplified by PCR, and this DNA fragment is A fusion sequence encoding a chimeric receptor was produced by ligating the intracellular region of the mopoetin receptor to a DNA fragment encoding the same in the same translational frame.
  • NR10.4 amino acid sequence; Ala at position 52 to Lys at position 576
  • a fusion sequence encoding a chimeric receptor was produced by ligating the intracellular region of the mopoetin receptor to a DNA fragment encoding the same in the same translational frame.
  • TP0 receptor Human MPL-P
  • FIG. 27 shows a schematic structural diagram of the chimeric receptor (pCOS I NR10MPL) constructed here. This chimeric receptor expression vector is introduced into a growth factor-dependent cell line Ba / F3 and strongly expressed, and stable transfected cells are selected.
  • the selection of gene-introduced cells is based on the fact that the above-mentioned expression vector has a drug (neomycin) resistance gene, and selects only the gene-introduced cells that have acquired drug resistance in the same medium containing the drug. It is possible to proliferate.
  • the cell line expressing the chimeric receptor obtained above is switched to a culture system in the absence of a growth factor (here, IL-3), and is expected to contain the target ligand.
  • IL-3 growth factor
  • NR10.4 and NR10.6 From the NR10 cDNAs identified and isolated as described above, we attempted to construct an expression vector that can be expressed in mammalian cells using NR10.4 and NR10.6.
  • the respective cDNA clones were ligated, and the sequence from the sequence excluding the secretion signal to the coding region up to the amino acid translation stop codon was amplified by conventional PCR in a conventional manner.
  • ⁇ Advantage cDNA Polymerase Mi was used for the amplification reaction.
  • Each amplification product was ligated to the mouse IL-3 signal sequence and the FLAG peptide sequence downstream of the same amino acid translation frame to construct a plasmid vector pCOS that can be expressed in mammalian cells.
  • FIG. 27 shows a schematic diagram of these constructed expression vectors.
  • the pCOS / NR10.4 NPL vector constructed here contains from Ala at position 52 of NR10.4 to Val at position 764, and the pCOS / NR10.6 NFL vector is the Ala at position 52 of NR10.6. From position 581 to Ser 581 are included as insert sequences capable of expressing functions.
  • the pCOS / NR10.4 NFL vector can be introduced into a growth factor-dependent cell line Ba / F3 and strongly expressed in the same manner as in Example 9 to select stable gene-transfected cells.
  • the NR10.4 expressing cell line obtained in this way was switched to a culture system in the absence of growth factors (here, IL-3), and alternatively, a material expected to contain the target ligand was added.
  • growth factors here, IL-3
  • a material expected to contain the target ligand was added.
  • By culturing it is possible to identify new cytokines by developing a screening system utilizing the fact that they can survive / proliferate only when there is a ligand that specifically binds to NR10.
  • overexpression of the pCOS / NR6 NFL vector in the cell line responding to the cytodynamic force (NR10 ligand) thus identified. Therefore, it is expected that NR10.6, which has no intracellular signal transduction function, can function as a dominant deficient (dominant negative chain.
  • the C0S / NR10.6 NFL vector was
  • the pCOS / NR10.6 NFL vector expression system can be used to evaluate the cell responsiveness to NR10 ligand, that is, the details of the biological activity possessed by NR10 ligand. It is anticipated that it is possible to make horns.
  • the ligand protein that specifically binds to the protein of the present invention may be a rare but soluble protein, but not a soluble protein. Is also assumed. In such a case, it is rather expected that the ligand is expressed after labeling a protein containing only the extracellular domain of the protein of the present invention or a fusion protein in which a partial sequence of another soluble protein is added to the extracellular domain. Screening is possible by measuring the binding to the cells that are performed.
  • it can be prepared, for example, by adding a labeled peptide sequence such as an Fc site of immunoglobulin or a FLAG peptide to the C-terminus of the extracellular domain.
  • soluble labeled proteins can also be used for detection by the Westwes Even method.
  • the present inventors amplified the cDNA sequence encoding the extracellular region of NR10.4 (amino acid sequence; Ala at position 52 to Glu at position 256) by PCR, and amplified this DNA fragment with the mouse IL-3 signal.
  • the sequence was further linked downstream of the FLAG peptide sequence with the same amino acid translation frame to construct a plasmid vector PCH0 that can be expressed in mammalian cells.
  • the sequence encoding the soluble marker protein was completed.
  • a stop codon due to point mutation is inserted at the position of Glu at position 257 and below Glu at position 256 in NR10.4.
  • Figure 27 shows a schematic diagram of the constructed NR10 soluble receptor signature protein (pCHO / N 10.2 NFL).
  • This expression vector was introduced into the mammalian cell line CH0 cells and strongly expressed. Transgenic cells were selected. The above expression cells are cultured in a large halo, and the recombinant protein secreted in the culture supernatant is immunoprecipitated with an anti-FLAG peptide antibody, and further subjected to Western blotting to obtain the soluble receptor protein. Expression was confirmed. In addition, large-scale purification was carried out with an affinity ram loaded with an anti-FLAG peptide antibody.
  • the recombinant protein obtained as described above can be used not only for the above-mentioned assays and the like, but also for the specific binding activity in the presence of a material predicted to contain the target ligand, for example, in the BIA-C0RE system (Pharmacia). ), And is considered to be extremely useful for searching for new hemopoietin capable of functionally binding to NR10.
  • NR10.8 was used to construct an expression vector that can be expressed in mammalian cells.
  • a cDNA clone of NR10.8 as type II PCR amplification was carried out from the sequence excluding the secretory signal to the coding region up to the amino acid translation stop codon according to a conventional method.
  • Advantage cDNA Polymerase Mix was used for the amplification reaction.
  • the obtained amplification product was ligated with the same amino acid translation frame downstream of the mouse IL-3 signal sequence and the FLAG peptide sequence to construct a plasmid vector pCHO that can be expressed in mammalian cells.
  • Figure 27 shows a schematic diagram of the constructed expression vector.
  • the thus constructed CHO / NRlO.8 NFL vector contains from Ala at position 52 to Arg at position 548 in 10.8 as an expressible insert sequence.
  • the pCHO / NR10.8 NFL vector can be introduced into a mammalian cell line CH0 cell and strongly expressed as in Example 11 described above, and a stable gene-transfected cell can be selected.
  • the expression cells are cultured in a large amount, and the recombinant protein secreted in the culture supernatant can be immunoprecipitated with an anti-FLAG peptide antibody.
  • affinity loaded with anti-FLAG peptide antibody Large-scale purification with a single column is possible.
  • the protein By applying the protein to the Atsushi BIA-CORE system of Example 11 described above, it can also be used for measurement of specific binding activity in the presence of a material predicted to contain a target ligand.
  • the mouse N10 genomic gene showing homology to the human NR10 amino acid sequence (GenBank accession number: AZ618234 / accession number) : AZ618234) could be detected in the reverse direction.
  • the AZ618234 mouse gss base sequence selected here (SEQ ID NO: 29) and the predicted amino acid sequence of the exon site (SEQ ID NO: 30) are shown in FIG.
  • FIG. 29 shows a sequence comparison between the two sites at a site showing a positive result for the human ⁇ .4 amino acid sequence.
  • Oligonucleotide primers were designed on the mouse NR10 genomic gene sequence detected as described above, and synthesis and purification were performed under the following conditions.
  • Example 14 Design of an oligonucleotide primer specific for mouse NR10 An exon site was predicted in the AZ618234 mouse gss base sequence identified as described above, and based on the predicted sequence, oligonucleotide primers specific to the mouse NR10 gene shown below were designed.
  • primers mNRlO-S1 and mNRlO-S2 were synthesized on the sense side (downstream direction), and ⁇ -A1 and ⁇ - ⁇ 2 were synthesized on the antisense side (upstream direction).
  • the primer was synthesized according to Example 3 described above, using a 394 DNA / RNA Synthesizer manufactured by ABI under the condition of adding a 5'-terminal trityl group. Thereafter, the full-length synthetic product was purified using an OPC column, and provided to the 5′-RACE method and the 3′-RACE method described below.
  • the mNRlO-A1 primer described in Example 14 above was used for the primary PCR, and the mNRlO-A2 primer was used; ⁇ ! Use for ⁇ -! ⁇ ? I tried ⁇ .
  • the mNRlO-S1 primer of Example 14 was used for primary PCR, and the 10-32 primer was used for primary PCR. Next, we tried 3'-1 ⁇ ⁇ PCR.
  • the obtained PCR product was subcloned into pGEM-T Easy vector according to Example 4 described above, and the nucleotide sequence was determined.
  • the nucleotide sequence was the full-length nucleotide sequence of mouse NR10 gene derived from the specific PCR amplification reaction.
  • the determined sequence was designated as mouse N10B, and its nucleotide sequence (SEQ ID NO: 15) and the amino acid sequence encoded by it (SEQ ID NO: 16) are shown in FIGS.
  • mouse NR10C Mouse day 8.5 embryo (C57BL / 6 embryo 8.5 day mouse embryo) cDNA Library (GIBCO BRL) as a type III, and the target gene was isolated.
  • the sequence determined in the same manner as above was named mouse NR10C, its base sequence (SEQ ID NO: 17) and the amino acid sequence encoded by it
  • FIGS. 36 shows a comparison between the full-length amino acid sequence of mouse NR10B determined as described above and the full-length amino acid sequence of human NR10.4 determined in Example 4 described above.
  • Mouse NR10B retains 59.426% homology to human NR10.4. Based on this high homology and structural features, mouse N10 molecule is presumed to have an activity that is functionally equivalent to the biological activity of human NR10 liver.
  • a novel hemopoietin receptor protein and a DNA encoding the same are provided. Also provided are a vector into which the DNA has been inserted, a transformant carrying the DNA, and a method for producing a recombinant protein using the transformant. Further, a method for screening for a natural ligand or compound that binds to the protein was provided. Since the protein of the present invention is considered to be directly involved in the regulation of biological immunity or the regulation of hematopoietic cells, the understanding of the ⁇ response in the living body or the fundamental properties of the hematopoietic mechanism and the furnace-related diseases based on it are And application to diagnosis and treatment of hematopoietic diseases.
  • the gene of the present invention is considered to provide a useful material for obtaining unknown hematopoietic factors and agonists capable of functionally binding to the receptor: protein encoded by the gene.
  • the antibody is specifically expressed in a limited group of 13 cells in these hematopoietic fibers, and an antibody that specifically binds to the protein of the present invention is useful as a means for separating the group. It is. It can be applied to cell transplantation therapy for small bandages isolated in this way.
  • R10.8 having no transmembrane domain, soluble deletion protein, and the like are expected to be used as decoy-type receptors as inhibitors of NR10 ligand.
  • an agonist which can functionally bind to the NR10 molecule, or other inhibitors, or a specific antibody that can inhibit the function of the NR10 molecule.
  • Such an inhibitor is considered to be clinically applicable as an immunosuppressive cell or hematopoietic cell proliferation inhibitor, a differentiation inhibitor, or an immunosuppressant—an anti-inflammatory agent.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Urology & Nephrology (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • Cell Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Hematology (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Microbiology (AREA)
  • Food Science & Technology (AREA)
  • Toxicology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Biotechnology (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • Biophysics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Peptides Or Proteins (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

It is intended to provide novel hemopoietin receptor proteins, genes encoding the same and production and use thereof. Splicing variants of a human hemopoietin receptor gene NR10 are successfully isolated by PCR cloning. The protein encoded by the isolated genes occurs in two types, i.e., a transmembrane type and a soluble type. The expression of the gene encoding the transmembrane protein is found out in a tissue containing hematopoietic cells. Further, a mouse NR10 gene is identified and its full-length cDNA is isolated. Proteins encoded by these genes, which are novel hemopoietin receptor genes participating in immunomodulation and hematopoietic cell regulation (in vivo), are useful in searching for novel hematopoietic factors capable of functionally binding to the above receptor and developing remedies for immunological and hematopoietic diseases.

Description

NR 1 枝術分野  NR 1 branch surgery
本発明は新規へモポェチン受容体蛋白質、 それをコードする遺伝子、 それらの » 方法及び用途に関する。 景技術  The present invention relates to a novel hemopoietin receptor protein, a gene encoding the same, methods and uses thereof. Landscape technology
種々の細胞の増殖や分化の制御、 或いは分化成熟した細胞の機能維持、 及び賦 活化、 さらには細]^ ¾に至るまでを司る 性因子として、 これまでに数多くの サイト力インの存在が知られている。 新規サイト力イン、 中でも特にリンパ造血 系機能に対して生理活性を示す新規へモポェチン類、 及び新規リンフォポェチン 類をコードする遺伝子を同定することは、 創薬標的分子の探索として最も有効な 手段の一つであると考えられる。 しかし、 これらサイト力インにおける一次構造 上の相同性は低く、 同一のサブファミリ一に属するサイトカインメンバーの間で あっても、 アミノ酸レベルでの顕著な相同性は認められない (Murakami, M. et al., Proc. Nat l. Acad. Sci. USA, 1991, 88, 11349-11353) 0 そのため配列相 同生検索によって、 一次構造より新規メンバー遺伝子を推定することは極めて困 難である。 そこで本発明者らは、 上記標的サイト力インに対応する個々の受容体 ファミリ一の一次構造上に保存された Tir-Ser- Xaa- Trp_Ser (Xaaは任意のアミノ 酸) の 5アミノ酸から成るモチーフに注目し、 このモチーフを有する新規サイト 力イン受容体遺伝子の検索を展開してきた。 事実、 本アプローチによって IL- 11 受容体 (Robb, L. et al., J. Biol. Chem. 271 (23) , 1996, 13754-13761) , レ プチン受容体 (Gains ford T. et al., Proc. Nat l. Acad. Sci. USA, 1996, 93 (25) , 14564—8)、 IL - 13受容体 (Hi l ton D. J. et al. , Proc. Nat l. Acad. Sci. USA, 1996, 93 (1), 497-501) , 及 6 (Alexander W. S. et al. , Current Biology, 1999, 9, 605-608) が同定されている。 本発明者らはこれまでにヒトゲノムデータべ一 ス検索によって、 新規サイトカイン受容体遺伝子 NR10の部分ゲノム配列を見出し 、 その部分配列をもとに完全長ヒト NR10 cDNAを単離すると共に、 一次構造を明 らかとした。 ヒト NR10の転写産物にはスプライシング変異体に起因する塩基配列 の相違によって、 細纏貫通型受容体蛋白と可溶性分泌型受容体蛋白の二種をコ —ド可能である (国際公開番号 W000/75314)。 発明の開示 It has been known that there are a number of site-related proteins as sexual factors that control proliferation and differentiation of various cells, or maintain and activate the function of differentiated and mature cells, and even down to the point of [^]. Have been. Identification of genes encoding novel hemopoietins and novel lymphopoietins, which have physiological activity on lymphohematopoietic system function, in particular, is one of the most effective means for searching for drug discovery target molecules. It is considered to be one. However, the primary structural homology at these sites is low, and there is no significant homology at the amino acid level even between cytokine members belonging to the same subfamily (Murakami, M. et al. Natl. Acad. Sci. USA, 1991, 88, 11349-11353) 0 Therefore, it is extremely difficult to estimate new member genes from primary structure by sequence homology search. Therefore, the present inventors have developed a motif consisting of 5 amino acids of Tir-Ser-Xaa-Trp_Ser (Xaa is any amino acid) conserved on the primary structure of each receptor family corresponding to the above-mentioned target site force-in. And developed a search for a novel cytokin receptor gene with this motif. In fact, this approach allows the use of IL-11 receptor (Robb, L. et al., J. Biol. Chem. 271 (23), 1996, 13754-13761), leptin receptor (Gains ford T. et al., Proc. Natl. Acad. Sci. USA, 1996, 93 (25), 14564-8), IL-13 receptor (Hi ton DJ et al., Proc. Natl. Acad. Sci. USA, 1996, 93 (1), 497-501) and 6 (Alexander WS et al., Current Biology, 1999, 9, 605-608). The present inventors have found a partial genomic sequence of the novel cytokine receptor gene NR10 by searching the human genome database, and have isolated the full-length human NR10 cDNA based on the partial sequence, It was clear. The transcript of human NR10 can encode two types of tightly-coupled receptor protein and soluble secretory receptor protein, depending on the nucleotide sequence caused by the splicing variant (International Publication No. W000 / 75314). ). Disclosure of the invention
本発明は、 新規へモポェチン受容体蛋白質、 およびそれらをコードする DN A を提供する。 本発明はまた、 該 DN Aが挿入されたベクター、 該 DNAを保持す る形質転換体、 および該形質転換体を利用した組換え蛋白質の i ^方法を提供す る。 本発明はさらに、 該蛋白質に結合する化合物のスクリ一ニング方法を提供す る。 本発明者らは、 上記のヒト NR10の転写産物には、 スプライシング変異体に起因 する塩基配列の相違によって、 細 貫通型受容体蛋白と可溶性分泌型受容体蛋 白の 2種をコード可能であることを見出している (国際公開番号 1)00/75314)。 しカゝし、 その細胞膜貫通型受容体である觀0. 3は、 細胞内領域に JAKキナーゼ結 合部位である Boxlモチーフを保有するものの、 リガンド刺激によって活性化され る際、 NR10分子自身がリン酸化を受けるべきチロシン残基を保有していなかった 。 これらのことより 10は、 リガンド結合能を有するサイト力イン受容体 α鎖で あるものの、 その NR10を介した細胞内シグナル伝達には、 別のパートナー鎖 (サ イト力イン受容体 13鎖) が必要であると予測された。  The present invention provides novel hemopoietin receptor proteins, and DNAs encoding them. The present invention also provides a vector into which the DNA has been inserted, a transformant carrying the DNA, and an i ^ method for a recombinant protein using the transformant. The present invention further provides a method for screening a compound that binds to the protein. The present inventors can encode two types of transmembrane receptor protein and soluble secretory receptor protein in the above-mentioned human NR10 transcript, depending on the nucleotide sequence difference resulting from the splicing variant. (International Publication Number 1) 00/75314). However, although its transmembrane receptor, View 0.3, possesses the Boxl motif, a JAK kinase binding site in its intracellular domain, the NR10 molecule itself is activated by ligand stimulation. It did not carry tyrosine residues to be phosphorylated. Based on these facts, 10 is a site-force receptor α chain capable of binding ligand, but another partner chain (site-force receptor 13) is involved in intracellular signal transduction via NR10. Predicted to be necessary.
本発明者らは、 NR10遺伝子にさらなるスプライシング変異体が 在するものと 予測し、 それらの同定を目的とした PCRクローニングを実施した。 その結果、 い ズ変異体の単離に成功し、 それら変異体の構造解析、 及び 遺伝子発現謹を行った。 その結颗 10遺伝子スプライシング変異体の内の一つ が、 細胞内領域にチロシン残基を保有していることが明らかとなった。 ヒト NR10 遺伝子は、 選択的スプライシングによって、 特に細胞膜貫通領域より C末端側に おける構造に多様性を示す。 本発明者らは、 シグナル伝達機能を有すると予測さ れる上記のスプライシング変異体を NR10.4と命名した。 それ以外に、 細 J3靈貫通 領域を保有するものの、 シグナル伝達能は有していないと予測される新たなスプ ライシング変異体を、 それぞれ NR10. 5、 NR10. 6と命名することで、 それら異なる 配列を区別した。 さらに、 細翻莫貫通領域を保有しない新たな可溶性分泌型受容 体も単離され N 10. 7及び NR10.8とした。 糸 II戠特異的或いは特定の細胞種特異的 な選択的スプライシングによって、 N 10遺伝子群の機能発現調節が制御されてい るものと予測される。 ヒトにおける NR 4、 NR10. 5、 および Ml 0.6の発現を角科斤 した結果、 担当糸 II戠、 造血組織、 および生 挪戠等において強い発現が検出 された。 このような発現特性から、 これらの NR10分子は生体免疫調節、 或いは造 血細胞調節に関与していると推定され、 同受容体と機能結合し得る新規造血性因 子の検索に、 同遺 を利用することは極めて有用であると考えられる。 The present inventors predicted that there would be further splicing variants in the NR10 gene, and performed PCR cloning for the purpose of identifying them. As a result, Mutants were successfully isolated, and the structural analysis and gene expression of these mutants were performed. As a result, it was revealed that one of the 10 gene splicing variants has a tyrosine residue in the intracellular region. The human NR10 gene exhibits diversity due to alternative splicing, particularly in the structure at the C-terminal side of the transmembrane region. The present inventors named the above-mentioned splicing variant which is predicted to have a signaling function as NR10.4. In addition, new splicing mutants that possess the fine J3 reticulum region but are predicted to have no signal transduction ability are named NR10.5 and NR10.6, respectively. Sequences were distinguished. In addition, a new soluble secreted receptor that does not have the transmembrane region was isolated and designated as N10.7 and NR10.8. It is expected that the regulation of functional expression of the N10 gene group will be controlled by the alternative splicing specific to thread II 戠 or specific cell type. As a result of expression of NR4, NR10.5, and Ml0.6 in humans, strong expression was detected in the responsible thread II 血, hematopoietic tissues, and livestock. From these expression characteristics, it is presumed that these NR10 molecules are involved in the regulation of biological immunity or hematopoietic cells, and the NR10 molecule is used to search for new hematopoietic factors that can functionally bind to the receptor Is considered very useful.
これらのヒト N 10遺伝子群スプライシング変異体 (「NR10」 と総称する) が、 機能的に同等であると考えられる根拠の 1つは、 そのリガンド結合能力にある。 それらは、 C末端側における構造において、 選択的スプライシングに起因する多 様性を示すものの、 全てのクローンにおいてサイトカイン結合領域を共有してい る。 即ち、 細胞外領域においては、 何れのクロ一ンおいてもほぼ同一であるため 、 これらは同様の立«造を保有し、 さらに同一の特異的リガンドを認識すると 考えられる。 一方、 生物機能活性において、 それぞれが異なる生術幾能責任を果 たすと考えられる理由は、 それらの細胞内シグナル伝達機能の相違にある。 ヒト NR10.4遺伝子配列以下、 本発明において同定された複数のスプライシング変異体 の存在が明らかとなる以前は、 特に NR10. 1及び NR10.3の解析より、 細胞内領域 において、 C末端側に伸びるアミノ酸配列が短かったことより、 単独では細胞内 に強い増殖シグナル、 或いは分化シグナルを伝達することは難しいと考えられた 。 それは、 両者とも細胞 通領域直下に存在する Boxlモチーフ (数個の塩基 '1生 アミノ酸と複数の疎水性アミノ酸に続く、 Pro - Xaa- Pro配列) (Xaaは任意のアミ ノ酸を表す) を保有していることから、 ; fAKキナーゼの結合が予測されながら、 NR10. 1と NR10. 3の何れの場合においても、 その Box 1モチーフより C末端側の配列 内に、 自身がリン酸化を受けるためのチロシン残基が存在しなかったためである 。 以上の推測より、 同受容体ファミリーに属する、 殆どの受容体の場合と同様に 、 NR10においてもヘテロダイマー、 或いはへテロトリマーといったマルチコンプ レックスを、 別の受容体サブユニットと共に形成することによって、 細胞内シグ ナル伝達機能を成立させるものと予測された。 ところが本発明におけるシグナル 伝達型受容体 NR10.4の同定によって、 NR10は第三のパートナー鎖を必要とせず、 ホモ二量体として機能し得る可能'性も示唆される。 一方シグナル伝達機能を持た ないと予測されるスプライシング変異体 NR10. 6を、 優勢機能欠損体(ドミナント ネガティブ 鎖として細胞表面に過剰発現させることにより、 リガンド探索系の 評価に利用することも極めて有効であると考えられる。 また、 分泌型受容体 NR10. 7及びR10. 8をデコイ型受容体として利用することで、 細胞表面 NR10分子 に対する NRIOリガンド分子の結合を競合阻害 mm ) することが可能である と考えられる。 One reason that these human N10 gene cluster splicing variants (collectively "NR10") are considered to be functionally equivalent is their ligand binding ability. Although they show diversity at the C-terminal side due to alternative splicing, they share a cytokine binding region in all clones. That is, in the extracellular region, since they are almost the same in all clones, they have the same structure and are considered to recognize the same specific ligand. On the other hand, the reason that each of the biological function activities is considered to fulfill a different biologic responsibility is due to the difference in their intracellular signaling functions. Before the human NR10.4 gene sequence and below, the presence of the plurality of splicing variants identified in the present invention became apparent, in particular, analysis of NR10. Therefore, it was thought that it was difficult to transmit a strong proliferation signal or differentiation signal into cells by itself because the amino acid sequence extending to the C-terminal side was short. It is based on the Boxl motif (the Pro-Xaa-Pro sequence following several bases' one raw amino acid and multiple hydrophobic amino acids) (Xaa represents any amino acid). Possesses: fAK kinase binding is predicted, but in both cases of NR10. 1 and NR10.3, itself is phosphorylated within the sequence at the C-terminal side of the Box 1 motif. Because no tyrosine residue was present. From the above speculations, like most receptors belonging to the same receptor family, by forming a multi-complex such as a heterodimer or heterotrimer in NR10 together with another receptor subunit, It was predicted to establish the intracellular signal transmission function. However, the identification of the signaling receptor NR10.4 in the present invention also suggests that NR10 does not require a third partner chain and may function as a homodimer. On the other hand, by overexpressing the splicing mutant NR10.6, which is predicted to have no signal transduction function, as a dominant deficient mutant (dominant negative chain) on the cell surface, it is extremely effective to use it for evaluation of a ligand search system. In addition, by using the secretory receptors NR10.7 and R10.8 as decoy receptors, it is possible to competitively inhibit the binding of NRIO ligand molecules to cell surface NR10 molecules. it is conceivable that.
さらに、 本発明者らは、 ヒト NR10.4遺伝子に対応するマウス NR10相同遺伝子を 同定し、 全長 cDNAを単離すると共に、 一次構造を解析した。 本発明においてマ ウス NR10遺伝子が同定、 単離されその構造が明らかとなったことより、 ヒト NR10 分子と同様の手段によって、 マウス NR10リガンドの検索が展開可能となった。 マ ウス NR10リガンド検索系の構築は、 ヒト由来の試験検体を用いることなく NR10リ ガンドの;^が可能となるため極めて有効であると考えられる。 また、 ヒト被検 体では実施不可能な NR10分子機能解析の詳細を、 マウス被検体を利用することで 実施することもできる。 さらに、 マウス NR10をコードするマウスゲノム遺伝子断 片を用いることによって、 NR10遺伝子欠損マウスを作成することも、 NRIO^ ^機 能を角晰する上で極めて有効であると考えられる。 Furthermore, the present inventors identified a mouse NR10 homologous gene corresponding to the human NR10.4 gene, isolated full-length cDNA, and analyzed the primary structure. In the present invention, the mouse NR10 gene has been identified, isolated, and its structure has been elucidated, so that the search for mouse NR10 ligand can be developed by the same means as for the human NR10 molecule. The construction of a mouse NR10 ligand retrieval system is considered to be extremely effective because it allows the NR10 ligand to be used without using human-derived test samples. In addition, the details of NR10 molecular function analysis, which cannot be performed with human subjects, can be analyzed using mouse subjects. It can also be implemented. Furthermore, generation of NR10 gene-deficient mice by using a mouse genomic gene fragment encoding mouse NR10 is also considered to be extremely effective in clarifying the NRIO ^^ function.
すなわち、 本発明は、 新規なへモポェチン受容体およびそれらの遺伝子、 なら ぴにそれらの利用に関し、 より具体的には、  That is, the present invention relates to novel hemopoietin receptors and their genes, and further to their use.
(1) 下記 (a) から (d) のいずれかに記載の DNA、  (1) DNA according to any of (a) to (d) below,
(a) 酉己歹 IJ番号: 4、 6、 8、 10、 12、 14、 16、 または 18のいずれ かに記載のアミノ酸配列からなる蛋白質をコードする DNA、  (a) DNA encoding a protein consisting of the amino acid sequence described in any of 4, 6, 8, 10, 12, 14, 16, or 18;
(b) 配歹 IJ番号: 3、 5、 7、 9、 11、 13、 15、 または 17のいずれか に記載の塩基配列のコ一ド領域を含む DNA、  (b) System IJ number: DNA containing the coding region of the nucleotide sequence described in any of 3, 5, 7, 9, 11, 13, 15, or 17;
(c) 配歹 IJ番号: 4、 6、 8、 10、 12、 14、 16、 または 18のいずれ かに記載のアミノ酸配列において 1若しくは複数のアミノ酸が置換、 欠失、 挿入 、 および Zまたは付加したアミノ酸配列を有し、 配列番号: 4、 6、 8、 10、 12、 14、 16、 または 18のいずれかに記載のアミノ酸配列からなる蛋白質 と機能的に同等な蛋白質をコ一ドする DNA、  (c) System IJ number: In the amino acid sequence described in any of 4, 6, 8, 10, 12, 14, 16, or 18, one or more amino acids are substituted, deleted, inserted, and Z or added. Having the following amino acid sequence, and encoding a protein functionally equivalent to the protein consisting of the amino acid sequence of any one of SEQ ID NOs: 4, 6, 8, 10, 12, 14, 16, and 18. ,
(d) 配歹 IJ番号: 3、 5、 7、 9、 11、 13、 15、 または 17のいずれか に記載の塩基配列からなる DNAとストリンジェントな条件下で八ィプリダイズし 、 配歹 IJ番号: 4、 6、 8、 10、 12、 14、 16、 または 18のいずれ力に記 載のアミノ酸配列からなる蛋白質と機能的に同等な蛋白質をコ一ドする DNA、 (d) System IJ number: The DNA consisting of any one of 3, 5, 7, 9, 11, 13, 15, or 17 and a string IJ number under stringent conditions. DNA encoding a protein functionally equivalent to a protein consisting of the amino acid sequence described in any of 4, 6, 8, 10, 12, 14, 16, or 18;
(2) 配列番号: 4、 6、 8、 10、 12、 14、 16、 または 18のいずれか に記載のアミノ酸配列からなる蛋白質の部分べプチドをコ一ドする DNA、 (2) a DNA encoding a partial peptide of a protein consisting of the amino acid sequence of any one of SEQ ID NOs: 4, 6, 8, 10, 12, 14, 16, or 18;
(3) (1) または (2) に記載の DNAによりコードされる蛋白質またはペプチド  (3) A protein or peptide encoded by the DNA according to (1) or (2)
(4) (1) または (2) に記載の DNAが揷入されたベクター、 (4) a vector into which the DNA of (1) or (2) has been inserted,
(5) (1) または (2) に記載の DNAまたは (4) に記載のベクターを保持する 形質転換体、 (6) (5) に記載の形質転換体を培養し、 該形質転換体またはその培養上清か ら発現させた蛋白質を回収する工程を含む、 (3) に記載の蛋白質またはべプチ ドの製造方法、 (5) a transformant carrying the DNA of (1) or (2) or the vector of (4), (6) the step of culturing the transformant according to (5), and recovering the expressed protein from the transformant or a culture supernatant thereof; Production method,
(7) (3) に記載の蛋白質に結合する抗体、  (7) an antibody that binds to the protein according to (3),
(8) 配歹 IJ番号: 3、 5、 7、 9、 11、 13、 15、 または 17のいずれかに 記載の塩基配列からなる DNAまたはその相補鎖に相補的な少なくとも 15ヌクレオ チドを含むポリヌクレオチド、  (8) System IJ number: Polynucleotide containing at least 15 nucleotides complementary to DNA consisting of the base sequence described in any of 3, 5, 7, 9, 11, 13, 15, or 17 or a complementary strand thereof Nucleotides,
(9) (3) に記載の蛋白質に結合する化合物のスクリーニング方法であって、 (9) A method for screening a compound that binds to the protein according to (3),
(a) 該蛋白質またはその部分べプチドに被検試料を接触させる工程、 (a) contacting a test sample with the protein or a partial peptide thereof,
(b) 該蛋白質またはその部分べプチドと被検試料との結合活性を検出するェ 程、  (b) detecting the binding activity between the protein or its partial peptide and a test sample,
( c ) 該蛋白質またはその部分べプチドに結合する活性を有する化合物を選択 する工程、 を含む方法、 を提供するものである。 本発明は、 へモポェチン受容体 NR10の新規分子を提供する。 GenBankデータべ —ス角晰、 および - PCRによる角科斤の結果から、 本発明者らはヒト由来の新規へ モポェチン受容体遺伝子 NR10.4、 NR10.5, NR10.6, NR10.7、 および NR10.8を同 定し単離することに成功した。 さらに本発明者らは、 マウス R10 ( R10Cおよび NR10B)遺伝子を初めて単離することに成功した。 N 10.4、 NR10.5、および NIU0.6 は細胞膜貫通型受容体をコードしており、 NR10.7および NR10.8は可溶性受容 体をコードしていた。 またマウス NR10Cおよび M10Bは、 いずれも細謹貫通型受 容体をコードしていた。  (c) selecting a compound having an activity of binding to the protein or a partial peptide thereof. The present invention provides a novel molecule of the hemopoietin receptor NR10. GenBank database-Based on the results of horny loaf and-PCR, the present inventors found that a new human-derived mopoietin receptor gene NR10.4, NR10.5, NR10.6, NR10.7, and NR10.8 was successfully identified and isolated. Furthermore, the present inventors succeeded in isolating the mouse R10 (R10C and NR10B) genes for the first time. N 10.4, NR10.5, and NIU0.6 encoded a transmembrane receptor, and NR10.7 and NR10.8 encoded a soluble receptor. In addition, both mouse NR10C and M10B encoded a sensitive penetrating receptor.
NR10.4, NR10.5, NR10.6, NR10.7、 および N 10.8 cDNAの塩基配列を、 それぞ れ配列番号: 3、 5、 7、 9、 および 11に、 これらの cDNAによりコードされる 蛋白質のアミノ酸配列を、 それぞれ配列番号: 4、 6、 8、 10、 および 12に 示す。 また、 マウス NR10Cおよび NR10B cDNAの塩基配列を、 それぞれ配列番号: 1 3および 1 5に、 これらの cDNAによりコードされる蛋白質のアミノ酸配列を、 それぞれ配列番号: 1 4および 1 6に示す。 The nucleotide sequences of the NR10.4, NR10.5, NR10.6, NR10.7, and N10.8 cDNAs are encoded by these cDNAs as SEQ ID NOs: 3, 5, 7, 9, and 11, respectively. The amino acid sequences of the proteins are shown in SEQ ID NOs: 4, 6, 8, 10, and 12, respectively. In addition, the nucleotide sequences of mouse NR10C and NR10B cDNA are shown in SEQ ID NO: The amino acid sequences of the proteins encoded by these cDNAs are shown in SEQ ID NOs: 14 and 16, respectively.
細胞外領域においては、 NR10. 4、 NR10. 5, NR10. 6、 NR10. 7, および N 10. 8は 共にほぼ同一であるため、 これらは同様の立体構造を保有し、 さらに同一の特異 的リガンドを認識すると考えられる。  In the extracellular region, NR10.4, NR10.5, NR10.6, NR10.7, and N10.8 are almost all the same, so that they have the same three-dimensional structure and furthermore have the same specificity. It is believed to recognize the ligand.
RT- PCR法を用いて各ヒト臓器における遺伝子発現解析を実施した結果、 N 10. 4 、 NR10. 5, 及び 10. 6遺伝子においては、 避担当糸職、 造血担当 ¾戠、 及び生 組織において強い発現が検出された。 具体的には、 胸腺、 リンパ節、 末梢白血 球、 肺、 骨髄などの髓担当繊戠、 及び造血担当娜戠で強い発現が検出され、 さ らに、 精巣、 前立腺、 胎盤、 子宮などの生繊纖、 及び内分泌糸慮においても強 い発現が検出された。 その他、 腎臓、 膝臓、 小腸において弱い発現が検出された ものの、 脾臓、 扁桃、 心臓、 脳、 肝臓、 骨格筋、 結腸においては全く発現が認め られなかった。一方、血球 ffll戠細胞のうち、 CD14+単球(マクロファージ)、 CD4+T 細胞群、 静止期 CD19+B細胞においては強い発現が検出されたが、 CD8+T細胞群と 活性化 CD19+B細胞では、 全く発現が認められなかった。 これらの発現分布を総合 すると、 主に免疫担当細胞系 ffi戠、 及び造血細胞を含むと考えられる糸 II哉に強い 発現の局在が検出されたことより、 本発明の遺伝子は新規造血因子受容体をコー ドするものと推定される。 また、 上記以外の糸 1戠においても発現分布が認められ たことは、 本発明の遺伝子が^ S系及び造血系のみならず、 多岐にわたる生体内 の生理機能を調節し得る可能性をも示唆している。  As a result of gene expression analysis in each human organ using the RT-PCR method, N10.4, NR10.5, and 10.6 genes were found to be in charge of evacuation, hematopoiesis, and in living tissues. Strong expression was detected. Specifically, strong expression was detected in the thymus, lymph nodes, peripheral leukocytes, lung, bone marrow, and other medullary fibers, and hematopoietic cells, and in addition, testis, prostate, placenta, uterus, etc. Strong expression was also detected in fiber and endocrine fibers. In addition, although weak expression was detected in kidney, knee, and small intestine, no expression was observed in spleen, tonsils, heart, brain, liver, skeletal muscle, and colon. On the other hand, strong expression was detected in CD14 + monocytes (macrophages), CD4 + T cells, and quiescent CD19 + B cells among blood ffll 戠 cells, but CD8 + T cells and activated CD19 + B cells Showed no expression at all. When these expression distributions are combined, the gene of the present invention shows that the gene of the present invention has a novel hematopoietic factor receptor It is presumed to code the body. In addition, the expression distribution was observed in thread 1 戠 other than the above, suggesting that the gene of the present invention may be able to regulate not only the ^ S system and hematopoietic system but also a wide variety of physiological functions in vivo. are doing.
本発明の蛋白質には、 医療への応用が考えられる。 本発明の遺^が胸腺およ び末梢白血球に発現していることから未知の造血因子の受容体である可能性が 示唆される。 従って、 本発明の蛋白質はこの未知の造血因子を得るための有用な 材料を提供するものと考えられる。 また、 本発明の蛋白質と機能結合し得るァゴ ニス卜、 或いはアン夕ゴニストの検索を、 ペプチドライブラリー、 または合成化 学材料に対しておこない、 単離同定することも考えられる。 さらに、 本発明の蛋 白質に機能結合する新規好、 及び本発明の蛋白質の機能を制限し得る特異的抗 体の検索による、 生体免^答制御や造血細胞制御といった臨床応用が期待され る。 The protein of the present invention can be applied to medical treatment. The expression of the residue of the present invention in thymus and peripheral leukocytes suggests that it may be an unknown hematopoietic factor receptor. Therefore, the protein of the present invention is considered to provide a useful material for obtaining this unknown hematopoietic factor. It is also conceivable to search for an peptide capable of functionally binding to the protein of the present invention or an gonist for a peptide library or a synthetic chemical material to isolate and identify it. Further, the protein of the present invention Clinical applications such as control of living body immunity and control of hematopoietic cells by searching for novel antibodies capable of functionally binding to white matter and specific antibodies that can limit the function of the protein of the present invention are expected.
また、 本発明の遺^の発現はこれら造血娜戠中の限られた細 団に特異的 に発現している可能性が想定され、 この細 3 団を分离 I る手段として本発明の 蛋白質に対する抗体は有用である。 この様にして分離された細 S漠団は細胞移植 療法への応用が可能である。 さらに該抗体は白血病を初めとした疾患の病型診断 あるいは治療への応用も期待される。  In addition, it is assumed that the expression of the residue of the present invention may be specifically expressed in a limited group of these hematopoietic cells. Antibodies are useful. The cells isolated in this way can be applied to cell transplantation therapy. Further, the antibody is expected to be applied to diagnosis or treatment of disease types such as leukemia.
一方、 本発明の蛋白質の細胞外ドメインを含む可溶性蛋白質、 あるい〖 10.7 および NR10.8等の可溶型蛋白質はデコイ型受容体として NR10リガンドの阻害剤 としての利用が想定され、 NR10が関与する白血病を初めとする疾患の治療への応 用が期待できる。  On the other hand, soluble proteins containing the extracellular domain of the protein of the present invention, or soluble proteins such as 10.7 and NR10.8 are expected to be used as decoy receptors as inhibitors of NR10 ligand, and NR10 is involved. It can be expected to be applied to the treatment of leukemia and other diseases.
本発明は、 配列番号: 4、 6、 8、 10、 12、 14、 16、 または 18に記 載のアミノ酸配列からなる蛋白質と機能的に同等な蛋白質を包含する。 このよう な蛋白質には、 例えば、 ヒト R10.4、 翻.5、 麵.6、 画.7、 または NR10.8 蛋白質 (それぞれ配列番号: 4、 6、 8、 10、 12、 または 14)、 あるいは マウス N 10蛋白質 (NR10Cまたは NR10B) (それぞれ配列番号: 16または 18) に対応する他の生物のホモログ蛋白質および变異体が含まれる。 本発明において 「機能的に同等」 とは、 対象となる蛋白質が、 上記ヒト NR10.4、 NR10.5, NR10.6 、 R10.7, または R10.8蛋白質 (それぞれ配列番号: 4、 6、 8、 10、 12 、 または 14)、 あるいはマウス NR10蛋白質 (NR10Cまたは NR10B; それぞれ配列 番号: 16または 18) と同等の生物学的活性を有することを指す。 生物学的活 性としては、 例えば、 膜結合型または可溶型の造血因子受容体蛋白質活性である ある蛋白質と機能的に同等な蛋白質を調製するための、 当業者によく知られた 方法としては、 蛋白質に変異を導入する方法が知られている。 例えば、 当業者で あれば、 部位特異的変異誘発法 (Hashimoto - Gotoh, T. et al. (1995) Gene 152, 271-275; Zoller, M. J. and Smith, M. (1983) Methods Enzymol. 100, 468-500 、 Kramer, W. et al. (1984) Nucleic Acids Res. 12, 9441-9456; Kramer, W. and Fritz, H. J. (1987) Methods Enzymol. 154, 350-367; Kunkel, T. A. (1985) Proc. Natl. Acad. Sci. U S A. 82, 488-492; Kunkel T. A. (1988) Methods Enzymol. 85, 2763-2766)などを用ぃて、ヒト1¾10.4^ 0.5、1110.6、 110.7、または NR10.8 蛋白質 (それぞれ配列番号: 4、 6、 8、 10、 12、 または 14)、 あるいは マウス R10蛋白質 ( 10Cまたは NR10B) (それぞれ配列番号: 16または 18) のアミノ酸に適宜変異を導入することによりこれらの蛋白質と機能的に同等な 蛋白質を調製することができる。 また、 アミノ酸の変異は自然界においても生じ うる。 このように、 ヒト NR10.4、 NR10.5, NR10.6、 NR10.7、 または NR10.8蛋白 質 (それぞれ配列番号: 4、 6、 8、 10、 12、 または 14)、 あるいはマウ ス N 10蛋白質 (NR10Cまたは 10B) (それぞれ配列番号: 16または 18) のァ ミノ酸配列において 1もしくは複数のアミノ酸が変異したアミノ酸配列を有し、 対応する元の蛋白質 (それぞれ配列番号: 4、 6、 8、 10、 12、 14、 16 、 または 18) と機能的に同等な蛋白質もまた本発明の蛋白質に含まれる。 The present invention includes a protein functionally equivalent to the protein consisting of the amino acid sequence described in SEQ ID NO: 4, 6, 8, 10, 12, 14, 16, or 18. Such proteins include, for example, human R10.4, ..5, 麵 .6, fraction.7, or NR10.8 protein (SEQ ID NOs: 4, 6, 8, 10, 12, or 14, respectively), Alternatively, a homologous protein and a variant of another organism corresponding to the mouse N10 protein (NR10C or NR10B) (SEQ ID NO: 16 or 18, respectively) are included. In the present invention, “functionally equivalent” means that the target protein is the human NR10.4, NR10.5, NR10.6, R10.7, or R10.8 protein (SEQ ID NO: 4, 6, 8, 10, 12, or 14) or mouse NR10 protein (NR10C or NR10B; SEQ ID NO: 16 or 18, respectively). The biological activity includes, for example, a method well known to those skilled in the art for preparing a protein that is functionally equivalent to a protein that is a membrane-bound or soluble hematopoietic factor receptor protein. It is known to introduce a mutation into a protein. For example, in the field If available, site-directed mutagenesis (Hashimoto-Gotoh, T. et al. (1995) Gene 152, 271-275; Zoller, MJ and Smith, M. (1983) Methods Enzymol. 100, 468-500, Kramer , W. et al. (1984) Nucleic Acids Res. 12, 9441-9456; Kramer, W. and Fritz, HJ (1987) Methods Enzymol. 154, 350-367; Kunkel, TA (1985) Proc. Natl. Acad Sci. US A. 82, 488-492; Kunkel TA (1988) Methods Enzymol. 85, 2763-2766), and human 1、10.4 ^ 0.5, 1110.6, 110.7, or NR10.8 protein (respectively). SEQ ID NO: 4, 6, 8, 10, 12, or 14) or mouse R10 protein (10C or NR10B) (SEQ ID NO: 16 or 18) by introducing appropriate mutations into the amino acids of these proteins and their functions. It is possible to prepare a protein which is substantially equivalent. Amino acid mutations can also occur in nature. Thus, the human NR10.4, NR10.5, NR10.6, NR10.7, or NR10.8 protein (SEQ ID NOs: 4, 6, 8, 10, 12, or 14, respectively), or mouse N 10 protein (NR10C or 10B) (SEQ ID NO: 16 or 18, respectively) having an amino acid sequence in which one or more amino acids are mutated, and the corresponding original protein (SEQ ID NO: 4, 6, respectively) A protein functionally equivalent to 8, 10, 12, 14, 16, or 18) is also included in the protein of the present invention.
本発明の蛋白質と機能的に同等な蛋白質としては、 具体的には、 配列番号: 4 、 6、 8、 10、 12、 14、 16、 または 18に示されるアミノ酸配列中の 1 又は 2個以上、 好ましくは、 2個以上 30個以下、 より好ましくは 2個以上 10 個以下のアミノ酸が欠失したもの、 配列番号: 4、 6、 8、 10、 12、 14、 16、 または 18に示されるアミノ酸配列に 1又は 2個以上、 好ましくは、 2個 以上 30個以下、 より好ましくは 2個以上 10個以下のアミノ酸が付加したもの 、 配列番号: 4、 6、 8、 10、 12、 14、 16、 または 18に示されるアミ ノ酸配列中の 1又は 2個以上、 好ましくは、 2個以上 30個以下、 より好ましく は 2個以上 10個以下のアミノ酸が他のアミノ酸で置換されたものが挙げられ る。 変異するアミノ酸残基においては、 アミノ酸側鎖の性質が保存されている別の アミノ酸に変異されることが ましい。 例えばアミノ酸側鎖の性質としては、 疎Specific examples of the protein functionally equivalent to the protein of the present invention include one or two or more in the amino acid sequence shown in SEQ ID NO: 4, 6, 8, 10, 12, 14, 16, or 18. Preferably 2 or more and 30 or less, more preferably 2 or more and 10 or less amino acids are deleted, as shown in SEQ ID NO: 4, 6, 8, 10, 12, 14, 16, or 18. An amino acid sequence having one or more amino acids, preferably two or more and no more than 30 amino acids, more preferably two or more and no more than 10 amino acids; SEQ ID NOs: 4, 6, 8, 10, 12, 14, One or two or more, preferably two or more and thirty or less, more preferably two or more and ten or less amino acids in the amino acid sequence represented by 16, or 18 are substituted with another amino acid. No. Preferably, the mutated amino acid residue is mutated to another amino acid in which the properties of the amino acid side chain are conserved. For example, the properties of amino acid side chains are sparse
7K性アミノ酸 (A、 I、 L、 M、 F、 P、 W、 Y、 V)、 親水性アミノ酸 (R、 D、 N、 E 、 Q、 G、 H、 K、 S、 T)、 脂雌側鎖を有するアミノ酸 (G、 A、 V、 L、 I、 P)、 水酸 基含有側鎖を有するアミノ酸 (S、 Τ、 Υ)、 硫黄原子含有側鎖を有するアミノ酸 ( C, Μ)、 カルボン酸及びアミド含有側鎖を有するアミノ酸 (D、 N、 E、 Q)、 塩基含 有側鎖を有するアミノ離 (R、 K、 Η)、 芳香族含有側鎖を有するアミノ酸 (H、 F、 Y、 ) を挙げることができる (括弧内はいずれもアミノ酸の一文字表記を表す) 。 このように、 アミノ酸が保存的置換を受けた蛋白質は本発明の蛋白質に含まれ る。 7K amino acids (A, I, L, M, F, P, W, Y, V), hydrophilic amino acids (R, D, N, E, Q, G, H, K, S, T), fatty females Amino acids with side chains (G, A, V, L, I, P), amino acids with hydroxyl-containing side chains (S, Τ, Υ), amino acids with sulfur atom-containing side chains (C, Μ), Amino acids with carboxylic acid and amide containing side chains (D, N, E, Q), Amino elimination with base containing side chains (R, K, Η), Amino acids with aromatic containing side chains (H, F, Y,) can be mentioned (all the letters in parentheses represent the one-letter code of amino acids). Thus, proteins in which amino acids have been conservatively substituted are included in the proteins of the present invention.
なお、 あるアミノ酸配列に対する 1又は複数個のアミノ酸残基の欠失、 付加及 び Z又は他のアミノ酸による置換により修飾されたアミノ酸配列を有する蛋白 質がその生物学的活性を維持することはすでに知られている (Mark, D. F. et al. (1984) Proc. Nat l. Acad. Sci. USA 81, 5662-5666; Zol ler, M. J. and Smi th, M. (1982) Nucleic. Acids Res. 10, 6487-6500; Wang, A. et al. (1984) Science 224, 1431-1433; Dalbadie-McFarland, G. et al. (1982) Proc. Nat l. Acad. Sci. USA 79, 6409 - 6413)。  It is already known that a protein having an amino acid sequence modified by deletion or addition of one or more amino acid residues to a certain amino acid sequence and substitution by Z or another amino acid maintains its biological activity. Known (Mark, DF et al. (1984) Proc. Natl. Acad. Sci. USA 81, 5662-5666; Zoller, MJ and Smith, M. (1982) Nucleic. Acids Res. 10, 6487-6500; Wang, A. et al. (1984) Science 224, 1431-1433; Dalbadie-McFarland, G. et al. (1982) Proc. Natl. Acad. Sci. USA 79, 6409-6413).
ヒト NR10.4、 NR10. 5, NR10. 6、 NR10. 7, または NR10. 8蛋白質 (それぞれ配列 番号: 4、 6、 8、 1 0、 1 2、 または 1 4)、 あるいはマウス NR10蛋白質(NR10C または NR10B) (それぞれ配列番号: 1 6または 1 8 ) のアミノ酸配列に 1又は複 数個のアミノ酸残基が付加された蛋白質としては、 例えば、 ヒト NR10.4、 N 10. 5 、 NR10. 6, NR10. 7, または NR10. 8蛋白質 (それぞれ配列番号: 4、 6、 8、 1 0、 1 2、 または 1 4)、 あるいはマウス NR10蛋白質 (NR10Cまたは 10B) (それ ぞれ配列番号: 1 6または 1 8 ) を含む融合蛋白質が挙げられる。融合蛋白質は 、 これらの NR10蛋白質と他のペプチド又は蛋白質とが融合したものであり、 この ような融合夕ンパク質もまた本発明に含まれる。 融合蛋白質を作製する方法は、 NR10蛋白質をコードする DNAと他のぺプチド又は蛋白質をコ一ドする DNAをフレ ームがー致するように連結してこれを発現ベクターに導入し、 宿主で発現させれ ばよく、 当業者に公知の手法を用いることができる。 本発明の蛋白質との融合に 付される他のぺプチド又は蛋白質としては、 特に限定されない。 Human NR10.4, NR10.5, NR10.6, NR10.7, or NR10.8 protein (SEQ ID NO: 4, 6, 8, 10, 12, or 14 respectively) or mouse NR10 protein (NR10C Or NR10B) (SEQ ID NO: 16 or 18), respectively, with one or more amino acid residues added to the amino acid sequence, for example, human NR10.4, N10.5, NR10.6 , NR10.7, or NR10.8 protein (SEQ ID NOs: 4, 6, 8, 10, 12, or 14 respectively) or mouse NR10 protein (NR10C or 10B) (SEQ ID NO: 16 respectively) Or a fusion protein comprising 18). The fusion protein is a fusion of these NR10 proteins with other peptides or proteins, and such fusion proteins are also included in the present invention. The method for producing the fusion protein is as follows: The DNA encoding the NR10 protein and the DNA encoding the other peptide or protein may be ligated in such a manner that the frames bind to each other, introduced into an expression vector, and expressed in a host. A known method can be used. The other peptide or protein to be fused with the protein of the present invention is not particularly limited.
本発明の蛋白質との融合に付される他のペプチドとしては、 例えば、 FLAG ( Hopp, T. P. et al. (1988) BioTechnology 6, 1204-1210)、 6個の His (ヒス チジン)残基からなる 6 XHis、 10XHis、 インフルエンザ凝集素(HA)、 ヒト c- myc の断片、 VSV-GP.の断片、 pl8HIVの断片、 T7- tag、 HSV- tag、 E- tag、 SV40T抗原の 断片、 lck tag, a- tubul inの断片、 B- tag、 Protein C の断片等の公知のぺプチ ドを使用することができる。 また、 本発明の蛋白質との融合に付される他の蛋白 質としては、 例えば、 GST (ダルタチオン S-トランスフェラ一ゼ)、 HA (インフ ルェンザ凝集素)、 ィムノグロブリン定常領域、 j3 -ガラクトシダーゼ、 MBP (マ ルトース結合蛋白質) 等が挙げられる。 市販されているこれらペプチドまたは蛋 白質をコードする DNAを、 本発明の蛋白質をコードする DNAと融合させ、 これによ り調製された融合 DNAを発現させることにより、 融合蛋白質を調製することがで きる。  Other peptides to be fused to the protein of the present invention include, for example, FLAG (Hopp, TP et al. (1988) BioTechnology 6, 1204-1210) and six His (histidine) residues. 6 XHis, 10XHis, influenza agglutinin (HA), human c-myc fragment, VSV-GP. Fragment, pl8HIV fragment, T7-tag, HSV-tag, E-tag, SV40T antigen fragment, lck tag, Known peptides such as a-tubulin fragment, B-tag, and Protein C fragment can be used. Other proteins to be fused with the protein of the present invention include, for example, GST (daltathione S-transferase), HA (influenza agglutinin), immunoglobulin constant region, j3-galactosidase And MBP (maltose binding protein). A fusion protein can be prepared by fusing a commercially available DNA encoding the peptide or protein with a DNA encoding the protein of the present invention, and expressing the fusion DNA prepared thereby. Wear.
また、 本発明の蛋白質としては特に、 ヒト NR10. 4 (配列番号: 4) に記載に記 載のアミノ酸配列において 1若しくは複数のアミノ酸が置換、 欠失、 挿入、 およ び Zまたは付加したアミノ酸配列を有し、 かつ配列番号: 2 1に記載のアミノ酸 配列の連続した少なくとも 7アミノ酸、 好ましくは 8アミノ酸以上、 より好ましく は 9アミノ酸以上を含み、 配列番号: 4に記載のアミノ酸配列からなる蛋白質と 機能的に同等な蛋白質が含まれる。 また、 本発明の蛋白質には、 ヒト NR10. 5 (配 列番号: 6 ) に記載に記載のアミノ酸配列において 1若しくは複数のアミノ酸が 置換、 欠失、 挿入、 および Zまたは付加したアミノ酸配列を有し、 カゝっ配列番号 : 2 4に記載のアミノ酸配列の連続した少なくとも 7アミノ酸、 好ましくは 8アミ ノ酸以上、 より好ましくは 9アミノ酸以上を含み、 配列番号: 6に記載のァミノ 酸配列からなる蛋白質と機能的に同等な蛋白質が含まれる。 In addition, the protein of the present invention particularly includes, in the amino acid sequence described in human NR10.4 (SEQ ID NO: 4), one or more amino acids substituted, deleted, inserted, and Z- or added amino acids. A protein having a sequence and comprising at least 7 contiguous amino acids, preferably 8 amino acids or more, more preferably 9 amino acids or more in the amino acid sequence of SEQ ID NO: 21; And functionally equivalent proteins. Further, the protein of the present invention has an amino acid sequence in which one or more amino acids are substituted, deleted, inserted, and Z- or added in the amino acid sequence described in human NR10.5 (SEQ ID NO: 6). And at least 7 contiguous amino acids, preferably at least 8 amino acids, more preferably at least 9 amino acids of the amino acid sequence of SEQ ID NO: 24, and the amino acid of SEQ ID NO: 6 Includes proteins functionally equivalent to proteins consisting of acid sequences.
またヒト NR10.4 (配列番号: 4) およびマウス NR10蛋白質 (NR10Cまた〖复 10B ) (それぞれ配列番号: 16または 18) と機能的の同等な蛋白質としては、 特 に、 ヒト NR10.4またはマウス NR10蛋白質 (NR10Cまた ¾NR10B) のアミノ酸配列に おいて 1若しくは複数のアミノ酸が置換、 欠失、 挿入、 および Zまたは付カ卩した アミノ酸配列を有し、 かつ B0X1 (Pro-Xaa-Pro) と B0X1の C末端側にチロシン残基 を有する蛋白質が挙げられる。  Proteins functionally equivalent to human NR10.4 (SEQ ID NO: 4) and mouse NR10 protein (NR10C or 〖复 10B) (SEQ ID NO: 16 or 18 respectively) include human NR10.4 or mouse One or more amino acids in the amino acid sequence of the NR10 protein (NR10C or 置換 NR10B) have an amino acid sequence in which one or more amino acids have been substituted, deleted, inserted, or Z-added, and B0X1 (Pro-Xaa-Pro) and B0X1 And a protein having a tyrosine residue on the C-terminal side of the protein.
また、 ある蛋白質と機能的に同等な蛋白質を調製する当業者によく知られた他 の方法としては、 ハイブリダィゼーシヨン技術 (Sambrook, J. et al. (1989) Molecular Cloning 2nd ed. , 9. 7-9.58, Cold Spring Harbor Lab. press) を 利用する方法が挙げられる。即ち、当業者であれば、 ヒト NR10.4、 10.5, N 10.6 、 N 10.7, または NR10.8蛋白質 (それぞれ配列番号: 4、 6、 8、 10、 12 、 または 14)、 あるいはマウス NR10蛋白質 (NR10Cまたは N 10B) (それぞれ配列 番号: 16または 18) をコードする DNA配列 (配歹 II番号: 3、 5、 7、 9、 1 1、 13、 15、 または 17) もしくはその一部を基に、 これと相同性の高い DNA を単離して、 該 DNAから上記蛋白質と機能的に同等な蛋白質を単離することも通 常行いうることである。 このように、 ヒト NR10.4、 NR10.5、 NR10.6、 NR10.7, ま たは N 10.8蛋白質 (それぞれ配列番号: 4、 6、 8、 10、 12、 または 14 ), あるいはマウス NR10蛋白質 (NR10Cまた «NR10B) (それぞれ配列番号: 16ま たは 18) をコードする DNAもしくはその一部からなる DNAとハイブリダィズする DNAがコードする蛋白質であって、それぞれヒト NR10.4、 N 10.5, NR10.6、 NR10.7 、 または NR10.8蛋白質 (それぞれ配列番号: 4、 6、 8、 10、 12、 または 14)、 あるいはマウス R10蛋白質 (N 10Cまたは NR10B) (それぞれ配列番号: 1 6または 18) と機能的に同等な蛋白質もまた本発明の蛋白質に含まれる。 この ような蛋白質としては、 例えば、 ヒトおよびマウス以外の哺乳動物のホモログ ( 例えば、 サル、 ラット、 ゥサギ、 ゥシの遺伝子がコードする蛋白質) が挙げられ る。 ヒト NR10.4、 NR10.5, NR10.6, NR10.7、 または NR10.8蛋白質 (それぞれ配 列番号: 4、 6、 8、 10、 12、 または 14)、 あるいはマウス N 10蛋白質 ( NR10Cまたは N 10B) (それぞれ配列番号: 16または 18) をコードする DNAと相 同性の高い cDNAを、 動物から単離する場合、 特に脾臓、 胸腺、 リンパ節、 骨髄、 末梢白血球などの造血担当細胞系組織、 及び免疫担当細胞系組織を用いることが 好ましいと考えられるが、 それらの B に限定されない。 Other methods well known to those skilled in the art for preparing proteins that are functionally equivalent to a protein include hybridization techniques (Sambrook, J. et al. (1989) Molecular Cloning 2nd ed., 9.7-9.58, Cold Spring Harbor Lab. Press). That is, those skilled in the art will recognize that human NR10.4, 10.5, N10.6, N10.7, or NR10.8 protein (SEQ ID NOs: 4, 6, 8, 10, 12, or 14, respectively) or mouse NR10 protein ( NR10C or N10B) (SEQ ID NO: 16 or 18, respectively) (based on the sequence II number: 3, 5, 7, 9, 11, 11, 13, 15, or 17) or a portion thereof Usually, it is also possible to isolate a DNA highly homologous thereto and to isolate a protein functionally equivalent to the above protein from the DNA. Thus, human NR10.4, NR10.5, NR10.6, NR10.7, or N10.8 protein (SEQ ID NOs: 4, 6, 8, 10, 12, 12, or 14, respectively), or mouse NR10 protein (NR10C or «NR10B) (SEQ ID NOs: 16 and 18 respectively) are proteins encoded by DNAs that hybridize with DNAs consisting of DNAs consisting of a part thereof or humans NR10.4, N10.5, and NR10, respectively. .6, NR10.7, or NR10.8 protein (SEQ ID NO: 4, 6, 8, 10, 12, or 14 respectively) or mouse R10 protein (N10C or NR10B) (SEQ ID NO: 16 or 18 respectively) ) Are also included in the protein of the present invention. Such proteins include, for example, homologues of mammals other than human and mouse (for example, proteins encoded by monkey, rat, puppies, pelvis genes). You. Human NR10.4, NR10.5, NR10.6, NR10.7, or NR10.8 protein (SEQ ID NO: 4, 6, 8, 10, 12, or 14 respectively) or mouse N10 protein (NR10C or N 10B) (SEQ ID NO: 16 or 18, respectively) When isolating a cDNA highly homologous to the DNA from an animal, the hematopoietic cell line tissue such as spleen, thymus, lymph node, bone marrow, peripheral leukocytes, etc. , And immunocompetent cell line tissues may be preferred, but are not limited to B.
ヒト NR10.4、 NR10.5、 NR10.6, NR10.7、 または NR10.8蛋白質 (それぞれ配列 番号: 4、 6、 8、 10、 12、 または 14)、 あるいはマウス NR10蛋白質(NR10C またはR10B) (それぞれ配列番号: 16または 18) と機能的に同等な蛋白質を コ一ドする DNAを単離するためのハイプリダイゼ一ションの条件としては、 当業 者であれば適 択することができる。 ハイブリダィゼーシヨンの条件は、 例え ば、 ストリンジェントな条件が挙げられる。 ストリンジェントの条件とは、 例え は ½pressHyb Hybridization Solution (クロンテック社製) をハイブリダィゼ ーシヨンバッファ一として用い、 42° (:、 好ましくは 50°Cで 1時間八イブリダィズ させた後、 ハイブリダィゼーシヨン後の洗浄条件として、 42°C、 2XSS 0.1% SDSが挙げられ、 好ましくは 50°C、 2XSSC, 0.1%SDSである。 またより好ましく は、 よりストリンジェン卜な条件が挙げられる。 よりス卜リンジェン卜な条件と は、 例えば上記の溶液中でハイブリダイゼーションバッファ一中 65°Cで 1時間 ハイブリダィズさせた後、 ハイブリダィゼーシヨン後の洗浄条件として、 65°C、 2XSSC及び 0.1%SDSが挙げられる。 これらの条件において、 温度を下げる程に高 い相同性を有する DNAのみならず、 低い相同性しか有していない DNAまでも 舌的 Human NR10.4, NR10.5, NR10.6, NR10.7, or NR10.8 protein (SEQ ID NO: 4, 6, 8, 10, 12, or 14, respectively) or mouse NR10 protein (NR10C or R10B) As a condition for hybridization for isolating a DNA encoding a protein functionally equivalent to (SEQ ID NO: 16 or 18, respectively), those skilled in the art can select. The conditions for hybridization include, for example, stringent conditions. The stringent condition is, for example, using HpressHyb Hybridization Solution (manufactured by Clontech) as a hybridization buffer, 42 ° (: preferably, after 50 hours at 50 ° C for one hour, and then after hybridization. Washing conditions include 42 ° C, 2XSS 0.1% SDS, preferably 50 ° C, 2XSSC, 0.1% SDS, and more preferably, more stringent conditions. The conditions are, for example, after hybridization in a hybridization buffer at 65 ° C for 1 hour in the above solution, and then washing conditions after hybridization include 65 ° C, 2XSSC and 0.1% SDS. Under these conditions, not only DNAs with high homology as the temperature is lowered, but also DNAs with low homology are linguistic.
:得ることができる。 逆に、 温度を上げる程、 高い相同性を有する DNAのみを得 られることが期待できる。 但し、 ハイブリダィゼーシヨンのストリ :Obtainable. Conversely, it can be expected that as the temperature is increased, only DNA having high homology can be obtained. However, the hybridization story
に影響する要素としては温度以外にも塩濃度など複数の要素が考えられ、 当業者 であればこれら要素を適宜選択することで同様のストリンジエンシーを実現す ることが可能である。 また、ハイブリダィゼ一シヨンにかえて、ヒト NR10.4、 NR10.5、 NR10.6、 NR10.7 、 または NR10.8蛋白質 (それぞれ配列番号: 4、 6、 8、 10、 12、 または 14)、 あるいはマウス NR10蛋白質 (N 10Cまたは NR10B) (それぞれ配列番号: 1 6または 18) をコードする DNA (配列番号: 3、 5、 7、 9、 11、 13、 1 5、 または 17) の配列情報を基に合成したプライマーを用いる遺伝子増幅法、 例えば、 ポリメラ一ゼ連鎖反応 (PCR) 法を禾拥して目的の DNAを単離することも 可能である。 There may be a plurality of factors, such as salt concentration, other than temperature, which affect the water content. A person skilled in the art can realize a similar stringency by appropriately selecting these factors. In addition, instead of the hybridization, human NR10.4, NR10.5, NR10.6, NR10.7, or NR10.8 protein (SEQ ID NO: 4, 6, 8, 10, 12, or 14, respectively), Alternatively, the sequence information of the DNA (SEQ ID NO: 3, 5, 7, 9, 11, 13, 13, 15 or 17) encoding the mouse NR10 protein (N10C or NR10B) (SEQ ID NO: 16 or 18 respectively) is obtained. It is also possible to isolate a target DNA by performing a gene amplification method using a primer synthesized based on the base, for example, a polymerase chain reaction (PCR) method.
これらハイプリダイゼーション技術または遺伝子増幅技術により単離される DNAがコードする、 ヒト NR10.4、 10.5、 10.6、 10.7、 または 10.8蛋白質 (それぞ れ配列番号: 4、 6、 8、 10、 12、 または 14)、 あるいはマウス NR10蛋白 質 (B10Cまたは NR10B) (それぞれ配列番号: 16または 18) と機能的に同等 な蛋白質は、 通常、 ヒト NR10.4、 NR10.5、 NR10.6、 NR10.7、 または NR10.8蛋白 質 (それぞれ配列番号: 4、 6、 8、 10、 12、 または 14)、 あるいはマウ ス N 10蛋白質 (NR10Cまたは NR10B) (それぞれ配列番号: 16または 18) とァ ミノ酸配列において高い相同性を有する。 本発明の蛋白質には、 ヒト NR10.4、 NR10.5、 NR10.6, NR10.7、 または NR10.8蛋白質 (それぞれ配列番号: 4、 6、 8、 10、 12、 または 14)、 あるいはマウス NR10蛋白質 (NR10Cまたは N 10B ) (それぞれ配列番号: 16または 18) と機能的に同等であり、 力つ配列番号 : 4、 6、 8、 10、 12、 14、 16、 または 18に示されるアミノ酸配列と 高い相同性を有する蛋白質も含まれる。 高い相同性とは、 通常、 70%以上の相同 性、 好ましくは 80%以上の相同性、 さらに好ましくは 90%以上、 さらに好ましく は 95%以上の同一性を指す。 蛋白質の相同性を決定するには、 文献 (Wilbur, W. J. and Lipman, D. J. (1983) Proc. Natl. Acad. Sci. USA 80, 726-730) に記 載のアルゴリズムにしたがえばよい。  Human NR10.4, 10.5, 10.6, 10.7, or 10.8 protein encoded by DNA isolated by these hybridization or gene amplification techniques (SEQ ID NO: 4, 6, 8, 10, 12, or 14) or a protein functionally equivalent to the mouse NR10 protein (B10C or NR10B) (SEQ ID NO: 16 or 18, respectively) is usually human NR10.4, NR10.5, NR10.6, NR10.7, Or the NR10.8 protein (SEQ ID NO: 4, 6, 8, 10, 12, or 14 respectively) or the mouse N10 protein (NR10C or NR10B) (SEQ ID NO: 16 or 18 respectively) and the amino acid sequence Have high homology. The protein of the present invention includes human NR10.4, NR10.5, NR10.6, NR10.7, or NR10.8 protein (SEQ ID NO: 4, 6, 8, 10, 12, or 14, respectively) or mouse Functionally equivalent to the NR10 protein (NR10C or N10B) (SEQ ID NO: 16 or 18, respectively) and the amino acid shown in SEQ ID NO: 4, 6, 8, 10, 12, 14, 16, 16 or 18 Proteins with high homology to the sequence are also included. High homology usually refers to 70% or more homology, preferably 80% or more homology, more preferably 90% or more, more preferably 95% or more identity. To determine protein homology, the algorithm described in the literature (Wilbur, WJ and Lipman, DJ (1983) Proc. Natl. Acad. Sci. USA 80, 726-730) may be used.
本発明の蛋白質としては、 特に配列番号: 19の塩基配列もしくはその一部か らなる DNAとストリンジェントな条件で八イブリダィズする DNA (cDNAなど) によ りコードされる蛋白質であって、 ヒト NR10.4、 NR10.5, NR10.6、 N 10.7, または NR10.8蛋白質 (それぞ、れ配列番号: 4、 6、 8、 10、 12、 または 14) と機 能的に同等の蛋白質が好ましい。 中でも、 配列番号: 20の塩基配列もしくはそ の一部からなる DNAとストリンジェントな条件でハイプリダイズする DNAがコー ドする蛋白質であって、 ヒト NR10.4 (配列番号: 4) と機翻的に同等の蛋白質は 、 本発明の蛋白質として好ましい。 さらに、 配列番号: 22の塩基配列もしくは その一部からなる DNAとストリンジェン卜な条件で八ィプリダイズする DNA (cDNA など) によりコードされる蛋白質であって、 ヒト NR10.5蛋白質 (配列番号: 6) と機能的に同等の蛋白質は、 本発明の蛋白質として特に好ましい。 中でも、 配列 番号: 23に記載の塩基配列もしくはその一部からなる DNAとストリンジェント な条件でハイブリダイズする DNAがコードする蛋白質であって、 ヒト N 10.5蛋白 質 (配列番号: 6) と機能的に同等の蛋白質は、 本発明の蛋白質として特に好ま しい。 As the protein of the present invention, in particular, a DNA (cDNA or the like) which can be hybridized with a DNA consisting of the nucleotide sequence of SEQ ID NO: 19 or a part thereof under stringent conditions is used. A human NR10.4, NR10.5, NR10.6, N10.7, or NR10.8 protein (SEQ ID NO: 4, 6, 8, 10, 12, or 14 respectively) )) Are preferred. Above all, it is a protein encoded by a DNA that hybridizes under stringent conditions with DNA consisting of the nucleotide sequence of SEQ ID NO: 20 or a part thereof, and is a transitive human NR10.4 (SEQ ID NO: 4) A protein equivalent to is preferred as the protein of the present invention. Furthermore, a human NR10.5 protein (SEQ ID NO: 6), which is a protein encoded by DNA (such as cDNA) that hybridizes under stringent conditions with DNA consisting of the nucleotide sequence of SEQ ID NO: 22 or a part thereof. ) Are particularly preferred as proteins of the present invention. Among them, a protein encoded by a DNA that hybridizes under stringent conditions with a DNA consisting of the nucleotide sequence of SEQ ID NO: 23 or a part thereof, and is functional with human N10.5 protein (SEQ ID NO: 6). A protein equivalent to the above is particularly preferable as the protein of the present invention.
本発明の蛋白質は、 後述するそれを産生する細胞や宿主あるいは精製方法によ り、 アミノ酸配列、 量、 等電点又〖»鎖の有無や形態などが異なり得る。 し かしながら、 得られた蛋白質が、 ヒ卜讓 .4、 麵.5、 細.6、 細.7、 または NR10.8蛋白質 (それぞれ配列番号: 4、 6、 8、 10、 12、 または 14)、 あ るいはマウス NR10Cまたは NR10B (それぞれ配列番号: 16または 18) と同等の 機能を有している限り、 本発明に含まれる。 例えば、 本発明の蛋白質を原核細胞 、 例えば大腸菌で発現させた場合、 本来の蛋白質のアミノ酸配列の N末端にメチ ォニン残基が付加される。 また、 真核細胞、 例えば哺乳動物細胞で発現させた場 合、 N末端のシグナル配列は除去される。 本発明の蛋白質はこのような蛋白質も 包含する。  The protein of the present invention may vary in amino acid sequence, amount, isoelectric point, presence / absence and form of a short chain, etc., depending on the cell, host, or purification method that produces the protein as described below. However, the protein obtained was the human protein .4, 麵 .5, cell .6, cell .7, or NR10.8 protein (SEQ ID NO: 4, 6, 8, 10, 12, or 14) or as long as it has a function equivalent to that of mouse NR10C or NR10B (SEQ ID NO: 16 or 18, respectively). For example, when the protein of the present invention is expressed in a prokaryotic cell, for example, Escherichia coli, a methionine residue is added to the N-terminal of the amino acid sequence of the original protein. When expressed in eukaryotic cells, for example, mammalian cells, the N-terminal signal sequence is removed. The proteins of the present invention also include such proteins.
ヒト NR10.4、 讓 .5、 難.6、 讓.7、 および NM0.8蛋白質のアミノ酸配列 の一次構造 (それぞ、れ配歹 (1番号: 4、 6、 8、 10、 12、 および 14) を、 Pr edict Proteinサーバ内の蛋白質構造解析プログラム (European Molecular Bio logy Laboratory, Heidelberg, Germanyの "The PredictProtein server"のゥ エブサイ卜; ht tp://丽. emb卜 heidelberg. de/predictprotein/) を用いて角 斤 した結果、 いずれの蛋白質においても、 シグナル配列は 1位の Metから 51位のThe primary structures of the amino acid sequences of human NR10.4, δ.5, δ.6, γ.7, and NM0.8 protein (1; 4, 6, 8, 10, 12, and 14) to a protein structure analysis program (European Molecular Bio ht tp: // 丽. emb heidelberg. de / predictprotein /) of “The PredictProtein server” from logy Laboratory, Heidelberg, Germany. As a result, the signal sequence was 1st Met to 51st
Ala までと推定された。 したがって、 本発明は配列番号: 4に記載のアミノ酸 配列において、 52位の Alaから 764位の Valまでからなる蛋白質を包含する。 同様 に、 配列番号: 6に記載のアミノ酸配列において、 52位の Alaから 764位の Valま でからなる蛋白質を包含する。 さらに、 配列番号: 8に記載のアミノ酸配列にお いて、 52位の Alaから 627位の Proまでからなる蛋白質を包含する。 さらに、 配列 番号: 1 0に記載のアミノ酸配列において、 52位の Alaから 581位の Serまでから なる蛋白質を包含する。 さらに、 配列番号: 1 2に記載のアミノ酸配列において 、 52位の Alaから 549位の Asnまでからなる蛋白質を包含する。 さらに、 配列番号It was estimated to Ala. Accordingly, the present invention includes a protein consisting of Ala at position 52 to Val at position 764 in the amino acid sequence of SEQ ID NO: 4. Similarly, in the amino acid sequence of SEQ ID NO: 6, it includes a protein consisting of Ala at position 52 to Val at position 764. Furthermore, in the amino acid sequence of SEQ ID NO: 8, it includes a protein consisting of Ala at position 52 to Pro at position 627. Furthermore, it includes a protein consisting of Ala at position 52 to Ser at position 581 in the amino acid sequence of SEQ ID NO: 10. Furthermore, the amino acid sequence of SEQ ID NO: 12 includes a protein consisting of Ala at position 52 to Asn at position 549. In addition, SEQ ID NO:
: 1 4に記載のアミノ酸配列において、 52位の Alaから 548位の Argまでからなる 蛋白質を包含する。 The amino acid sequence according to 14 includes a protein consisting of Ala at position 52 to Arg at position 548.
本発明の蛋白質は、 当業者に公知の方法により、 組み換え蛋白質として、 また 天然の蛋白質として調製することが可能である。 組み換え蛋白質であれば、 本発 明の蛋白質をコードする DNA (例えば配列番号: 3、 5、 7、 9、 1 1、 1 3、 1 5、 または 1 7に記載の塩基配列を有する DNA) を、 適当な発現べクタ一に組 み込み、 これを適当な宿主細胞に導入して得た形質転換体を回収し、 抽出物を得 た後、 イオン交換、 逆相、 ゲル濾過などのクロマトグラフィー、 あるいは本発明 の蛋白質に対する抗体をカラムに固定したァフィ二ティ一クロマトグラフィー にかけることにより、 または、 さらにこれらのカラムを複数組み合わせることに より精製し、 調製することが可能である。  The protein of the present invention can be prepared as a recombinant protein or a natural protein by methods known to those skilled in the art. In the case of a recombinant protein, a DNA encoding the protein of the present invention (eg, a DNA having the nucleotide sequence of SEQ ID NO: 3, 5, 7, 9, 11, 13, 13 or 15) is used. After integration into an appropriate expression vector, introducing it into an appropriate host cell, recovering the transformant, obtaining an extract, and performing chromatography such as ion exchange, reverse phase, gel filtration, etc. Alternatively, the protein can be purified and prepared by subjecting the antibody to the protein of the present invention to affinity chromatography immobilized on a column, or by further combining a plurality of these columns.
また、 本発明の蛋白質をダル夕チオン S-トランスフェラ一ゼ蛋白質との融合 蛋白質として、 あるいはヒスチジンを複数付加させた組み換え蛋白質として宿主 細胞 (例えば、 動物細胞や大腸菌など) 内で発現させた場合には、 発現させた組 み換え蛋白質はグル夕チオンカラムあるいはニッケルカラムを用いて精製する ことができる。 融合蛋白質の精製後、 必要に応じて融合蛋白質のうち、 目的の蛋 白質以外の領域を、 トロンビンまたはファクター Xaなどにより切断し、 除去する ことも可能である。 When the protein of the present invention is expressed in host cells (eg, animal cells, Escherichia coli, etc.) as a fusion protein with the dalhithione S-transferase protein or as a recombinant protein to which a plurality of histidines are added. The purified recombinant protein is purified using a glutathione column or a nickel column. be able to. After purification of the fusion protein, if necessary, a region other than the target protein in the fusion protein can be cleaved with thrombin or Factor Xa and removed.
天然の蛋白質であれば、 当業者に周知の方法、 例えば、 本発明の蛋白質を発現 している組織や細胞の抽出物に対し、 後述する本発明の蛋白質に結合する抗体が 結合したァフィ二ティ一カラムを作用させて精製することにより単離すること ができる。 抗体はポリク口ーナル抗体であつてもモノクローナル抗体であつても よい。  If the protein is a natural protein, a method known to those skilled in the art, for example, an affinity in which an antibody that binds to the protein of the present invention described below is bound to a tissue or cell extract expressing the protein of the present invention, as described below. Isolation can be performed by purifying the reaction with one column. The antibody may be a polyclonal antibody or a monoclonal antibody.
本発明は、 また、 本発明の蛋白質の部分ペプチドを包含する。 本発明の蛋白質 に特異的なアミノ酸配列からなる部分ペプチドは、 少なくとも 7アミノ酸、 好ま しくは 8アミノ酸以上、 さらに好ましくは 9アミノ酸以上のアミノ酸配列からなる 。 該部分ペプチドは、 例えば、 本発明の蛋白質に対する抗体の作製、 本発明の蛋 白質に結合する化合物のスクリーニングゃ、 本発明の蛋白質の促進剤や阻害剤の スクリーニングに利用し得る。 また、 本発明の蛋白質のリガンドに対するアン夕 ゴニストになり得る。 本発明の蛋白質の部分ペプチドとしては、 例えば、 配列番 号: 4、 6、 8、 1 0、 1 2、 1 4、 1 6、 または 1 8に示されるアミノ酸酉己歹 !J からなる蛋白質の活性中心からなる部分ペプチドが挙げられる。 また、 疎水性プ ロット解析から推定される疎水性領域や親水性領域の 1つあるいは複数の領域 を含む部分べプチドが挙げられる。 これらの部分べプチドは 1つの疎水性領域の 一部あるいは全部を含んでいてもよいし、 1つの親水性領域の一部あるいは全部 を含んでいてもよい。 また、 例えば、 本発明の蛋白質の可溶型蛋白質や細胞外領 域からなる蛋白質も本発明に包含される。  The present invention also includes partial peptides of the protein of the present invention. The partial peptide having an amino acid sequence specific to the protein of the present invention has an amino acid sequence of at least 7 amino acids, preferably at least 8 amino acids, more preferably at least 9 amino acids. The partial peptide can be used, for example, for preparing an antibody against the protein of the present invention, screening for a compound that binds to the protein of the present invention, and screening for promoters and inhibitors of the protein of the present invention. In addition, it can be an agonist for the ligand of the protein of the present invention. The partial peptide of the protein of the present invention includes, for example, a protein comprising the amino acid sequence J! Shown in SEQ ID NO: 4, 6, 8, 10, 12, 14, 16, or 18. A partial peptide consisting of an active center is exemplified. Further, a partial peptide containing one or more of a hydrophobic region and a hydrophilic region estimated from a hydrophobic plot analysis may be mentioned. These partial peptides may include part or all of one hydrophobic region, or may include part or all of one hydrophilic region. Further, for example, soluble proteins of the protein of the present invention and proteins consisting of extracellular regions are also included in the present invention.
また、 本発明の蛋白質の部分ペプチドとしては、 特に配列番号: 2 1 (NR10.4 のェクソン CP10. 4にコードされるアミノ酸配列) もしくはその一部を含む蛋白質 が含まれる。 また、 配列番号: 2 4 (NR10. 5のェクソン CP10. 5にコードされるァ ミノ酸配列) もしくはその一部を含む蛋白質が含まれる。 本発明の部分ペプチドは、 遺伝子工学的手法、 公知のペプチド合成法、 あるい は本発明の蛋白質を適切なぺプチダーゼで切断することによって製造すること ができる。 ペプチド合成法としては、 たとえば固相合成法、 液相合成法のいずれ によっても良い。 The partial peptide of the protein of the present invention particularly includes a protein containing SEQ ID NO: 21 (an amino acid sequence encoded by exon CP10.4 of NR10.4) or a part thereof. Also included are proteins containing SEQ ID NO: 24 (amino acid sequence encoded by exon CP10.5 of NR10.5) or a part thereof. The partial peptide of the present invention can be produced by genetic engineering techniques, known peptide synthesis methods, or by cleaving the protein of the present invention with an appropriate peptidase. As the peptide synthesis method, for example, any of a solid phase synthesis method and a liquid phase synthesis method may be used.
本発明の部分べプチドを含む蛋白質には、 本発明の蛋白質と他のへモポェチン 受容体蛋白質とのキメラ蛋白質が含まれる。 例えば、 実施例に記載したような、 本発明の蛋白質の細^^ドメインと、 他のへモポェチン受容体蛋白質の細 貫 通ドメインを含む細胞内ドメインを連結させたキメラ受容体は、 本発明の蛋白質 のリガンドに応答して、 該他のへモポェチン受容体蛋白質のシグナルを伝達させ るために有用である。 また、 本発明の蛋白質以外のへモポェチン受容体の細胞外 ドメインと、 本発明の蛋白質の細^ W通ドメインを含む細胞内ドメインを連結 させたキメラ受容体は、 該他のへモポェチン受容体蛋白質のリガンドに応答して 、 本発明の蛋白質のシグナルを伝達させるために有用である。 リガンドカ知られ ている既知のへモポェチン受容体の細胞外ドメイン (リガンド結合領域) を用い て本発明の蛋白質とのキメラ受容体を作製することにより、 本発明の蛋白質のシ グナル伝達作用を検討することが可能である。 このように本発明は、 本発明の蛋 白質の細胞内ドメインと他のへモポェチン受容体蛋白質の細胞膜貫通ドメイン を含む細胞内ドメインを連結させたキメラ受容体、 ならびに本発明の蛋白質以外 のへモポェチン受容体の細胞外ドメインと、 本発明の蛋白質の細胞膜貫通ドメイ ンを含む細胞内ドメインを連結させたキメラ受容体が含まれる。  The protein containing a partial peptide of the present invention includes a chimeric protein of the protein of the present invention and another hemopoietin receptor protein. For example, as described in Examples, a chimeric receptor in which the fine domain of the protein of the present invention is linked to an intracellular domain containing the transmembrane domain of another hemopoietin receptor protein is the present invention. It is useful for transmitting a signal of the other hemopoietin receptor protein in response to a ligand of the protein. In addition, a chimeric receptor in which the extracellular domain of the hemopoietin receptor other than the protein of the present invention is linked to the intracellular domain of the protein of the present invention including the fine W communication domain comprises the other hemopoietin receptor protein. It is useful for transmitting the signal of the protein of the present invention in response to the above ligand. The signal transduction effect of the protein of the present invention is examined by preparing a chimeric receptor with the protein of the present invention using the extracellular domain (ligand binding region) of the known hemopoietin receptor known as a ligand. It is possible. As described above, the present invention provides a chimeric receptor in which the intracellular domain of the protein of the present invention is linked to the intracellular domain containing the transmembrane domain of another hemopoietin receptor protein, and a hemopoietin other than the protein of the present invention. It includes a chimeric receptor in which the extracellular domain of the receptor is linked to the intracellular domain of the protein of the present invention including the transmembrane domain.
また、 本発明は、 本発明の蛋白質をコードする DNAを提供する。本発明の DNAは 、 上述したような本発明の蛋白質の in vivoや in vi troにおける生産に禾 ij用され る他、 例えば、 本発明の蛋白質をコードする遺伝子の異常に起因する疾患の遺伝 子治療などへの応用も考えられる。 本発明の DNAは、 本発明の蛋白質をコードし うるものであれば、 いかなる形態でもよい。 即ち、 mRNAから合成された cDNAであ るか、 ゲノム DNAであるか、 化学合成 DNAであるかなどを問わない。 また、 本発明 の蛋白質をコードしうる限り、 遺伝暗号の縮重に基づく任意の塩基配列を有する DNAが含まれる。 The present invention also provides a DNA encoding the protein of the present invention. The DNA of the present invention is used for production of the protein of the present invention in vivo or in vitro as described above, and for example, is a gene for a disease caused by an abnormality in the gene encoding the protein of the present invention. Application to treatment etc. is also conceivable. The DNA of the present invention may be in any form as long as it can encode the protein of the present invention. That is, it does not matter whether it is cDNA synthesized from mRNA, genomic DNA, or chemically synthesized DNA. In addition, the present invention DNAs having an arbitrary base sequence based on the degeneracy of the genetic code are included as long as they can encode the above protein.
本発明の DNAは、 当業者に公知の方法により調製することができる。 例えば、 本発明の蛋白質を発現している細胞より cDNAライブラリ一を作製し、 本発明の DNAの配列 (例えば、 配列番号: 3、 5、 7、 9、 1 1、 1 3、 1 5、 または 1 7 ) またはその一部をプローブにしてハイプリダイゼーションを行うことにより 調製できる。 cDNAライブラリ一は、 例えば: « (Sambrook, J. et al. , Molecular Clonings Cold Spring Harbor Laboratory Press (1989) ) に記載の方法により 調製してもよいし、 市販の DNAライブラリーを用いてもよい。 また、 本発明の蛋 白質を発現している細胞より腿を調製し、 逆転写酵素により cDNAを合成した後 、 本発明の DNAの配列 (例えば、 配列番号: 3、 5、 7、 9、 1 1、 1 3、 1 5 、 または 1 7 ) に基づいてォリコ DNAを合成し、 これをプライマーとして用いて PCR反応を行い、 本発明の蛋白質をコードする cDNAを増幅させることにより調製 することも可能である。  The DNA of the present invention can be prepared by a method known to those skilled in the art. For example, a cDNA library is prepared from cells expressing the protein of the present invention, and the sequence of the DNA of the present invention (for example, SEQ ID NO: 3, 5, 7, 9, 11, 13, 15 or 17) It can be prepared by performing hybridization using a part or a part thereof as a probe. The cDNA library may be prepared, for example, by the method described in «(Sambrook, J. et al., Molecular Clonings Cold Spring Harbor Laboratory Press (1989)), or a commercially available DNA library may be used. . In addition, after preparing a thigh from cells expressing the protein of the present invention and synthesizing cDNA with a reverse transcriptase, the sequence of the DNA of the present invention (for example, SEQ ID NO: 3, 5, 7, 9, 1) It can also be prepared by synthesizing oligo DNA based on (1), (13), (15), or (17)) and performing a PCR reaction using this as a primer to amplify the cDNA encoding the protein of the present invention. It is.
また、 得られた cDNAの塩基配列を決定することにより、 それがコードする翻訳 領域を決定でき、 本発明の蛋白質のアミノ酸配列を得ることができる。 また、 得 られた cDNAをプローブとしてゲノム DNAライブラリ一をスクリ一二ングすること により、 ゲノム DNAを単離することができる。  Further, by determining the nucleotide sequence of the obtained cDNA, the translation region encoded by the cDNA can be determined, and the amino acid sequence of the protein of the present invention can be obtained. Genomic DNA can be isolated by screening the genomic DNA library using the obtained cDNA as a probe.
具体的には、 次のようにすればよい。 まず、 本発明の蛋白質を発現する細胞、 組織、 β (例えば胸腺、 リンパ節、 末梢白血球、 または骨髄などの造血担当細 胞系糸慮、 及び嫩担当細胞系糸纖など) 力ゝら、 mRNAを単離する。 mRNAの単離は 、 公知の方法、 例えば、 グァニジン超遠心法 (Chirgwin, J. M. et al. (1979) Biochemis try 18, 5294-5299) , AGPC法 (Chomczynski, P. and Sacc i, N. (1987) Anal. Biochem. 162, 156-159) 等により全 RNAを調製し、 mRNA Puri ficat ion Ki t (Pharmacia) 等を使用して全 RNAから mRNAを精製することにより行うことができ る。 また、 Qui ckPrep mRNA Puri f icat ion Ki t (Pharmacia) を用いることにより mRNAを直接調製することもできる。 Specifically, the following may be performed. First, cells or tissues expressing the protein of the present invention, β (for example, thymus, lymph node, peripheral leukocyte, or hematopoietic cell line fiber such as bone marrow, and cell line cell fiber for nail), mRNA, etc. Is isolated. mRNA can be isolated by known methods, for example, guanidine ultracentrifugation (Chirgwin, JM et al. (1979) Biochemis try 18, 5294-5299), AGPC method (Chomczynski, P. and Sacci, N. (1987) ) The total RNA can be prepared by Anal. Biochem. 162, 156-159) or the like, and mRNA can be purified from the total RNA using mRNA Purification Cat Kit (Pharmacia). Also, by using QuickPrep mRNA Purification Cat (Pharmacia), mRNA can also be prepared directly.
得られた mRNAから逆転写酵素を用いて cDNAを合成する。 cDNAの合成は、 AMV Reverse Transcriptase First-s trand cDNA Synthesis Ki t (生ィ匕学工業) 等を 用いて行うこともできる。 また、 本明細書に記載された DNA配列等を用いて、 5' -Ampl i FINDER RACE Ki t (Clontech製) およびポリメラーゼ連鎖反応 (polymerase chain react ion; PCR) を用いた 5' -MCE法や 3, -RACE法 (Frohman, Μ· A. et al. (1988) Proc. Nat l. Acad. Sc i. U. S. A. 85, 8998-9002 ; Belyavsky, A. et al. (1989) Nucleic Acids Res. 17, 2919-2932) に従い、 cDNAの合成お よび増幅を行うことができる。  CDNA is synthesized from the obtained mRNA using reverse transcriptase. cDNA synthesis can also be performed using AMV Reverse Transcriptase First-strand cDNA Synthesis Kit (Shii-Dagaku Kogyo) or the like. In addition, using the DNA sequence and the like described in the present specification, 5′-MCE method using 5′-Ampli FINDER RACE Kit (manufactured by Clontech) and polymerase chain reaction (PCR) 3, -RACE method (Frohman, Μ · A. Et al. (1988) Proc. Natl. Acad. Sci. USA 85, 8998-9002; Belyavsky, A. et al. (1989) Nucleic Acids Res. 17 , 2919-2932) to synthesize and amplify cDNA.
得られた PCR産物から目的とする DNA断片を調製し、 ベクター DNAと連結する。 さらに、 これより組み換えべクタ一を作製し、 大腸菌等に導入してコロニーを選 択して所望の組み換えベクターを調製する。 目的とする DNAの塩基配列は、 公知 の方法、 例えば、 ジデォキシヌクレオチドチェイン夕一ミネ一シヨン法により確 認することができる。  A target DNA fragment is prepared from the obtained PCR product and ligated to a vector DNA. Furthermore, a recombinant vector is prepared from this, introduced into E. coli, etc., and colonies are selected to prepare a desired recombinant vector. The nucleotide sequence of the target DNA can be confirmed by a known method, for example, the dideoxynucleotide chain-one-minute method.
また、 本発明の DNAにおいては、 発現に使用する宿主のコドン使用頻度を考慮 して、より発現効率の高い塩基配列を設計することができる(Grantham, R. et al. (1981) Nucleic Acids Res. 9, r43-74) Q また、 本発明の DNAは、 市販のキット や公知の方法によって改変することができる。 改変としては、 例えば、 制限酵素 による消化、 合成オリゴヌクレオチドや適当な DNAフラグメントの揷入、 リンカ 一の付加、 開始コドン (ATG) および Zまたは終止コドン (TM、 TGA、 または TAG ) の挿入等が挙げられる。 In the DNA of the present invention, a nucleotide sequence having higher expression efficiency can be designed in consideration of the codon usage of the host used for expression (Grantham, R. et al. (1981) Nucleic Acids Res. 9, r43-74) Q The DNA of the present invention can be modified by a commercially available kit or a known method. Modifications include, for example, digestion with restriction enzymes, insertion of synthetic oligonucleotides or appropriate DNA fragments, addition of a linker, insertion of an initiation codon (ATG) and Z or a stop codon (TM, TGA, or TAG). No.
本発明の DNAは、 配歹 (1番号 3、 5、 7、 9、 1 1、 1 3、 1 5、 または 1 7の 塩基配列中の蛋白質コード配列 (CDS) カゝらなる DNAが含まれる。 具体的には、 本 発明の DNAは、具体的には、配列番号: 3の塩基配列において 7位の塩基 Aから 2298 位の塩基 Cからなる DNA、 配列番号: 5の塩基配列において 7位の塩基 Aから 2298 位の塩基 Cからなる DNA、 配列番号: 7の塩基配列において 7位の塩基 Aから 1887 位の塩基 Cからなる DNA、 配列番号: 9の塩基配列において 7位の塩基 Aから 1749 位の塩基 Cからなる DNA、 配列番号: 1 1の塩基配列において 7位の塩基 Aから 1653位の塩基 Tからなる DNA、 配列番号: 13の塩基配列において 7位の塩基 Aか ら 1650位の塩基 Aからなる DNA、 配列番号: 15の塩基配列において 331位の塩基 Aから 2478位の塩基 Cからなる DNA、 配列番号: 17の塩基配列において 421位の 塩基 Aから 2568位の塩基 Cからなる DNAを包含する。 The DNA of the present invention includes a DNA consisting of a protein coding sequence (CDS) in the nucleotide sequence of the system (1, 3, 5, 7, 9, 11, 13, 15, or 17). Specifically, the DNA of the present invention is specifically a DNA consisting of base A at position 7 to base C at position 2298 in the base sequence of SEQ ID NO: 3, and position 7 in the base sequence of SEQ ID NO: 5. A DNA consisting of base C at position 2298 from base A of SEQ ID NO: 7; DNA consisting of base C at position 7, DNA consisting of base C at position 1749 from base A at position 7 in the base sequence of SEQ ID NO: 9, nucleotide 1613 at base 7 of position 7 in base sequence of SEQ ID NO: 11 DNA consisting of T, DNA consisting of base A at position 7 to base A at position 1650 in the base sequence of SEQ ID NO: 13, consisting of base A at position 331 to base C of position 2478 in base sequence of SEQ ID NO: 15 DNA, including DNA consisting of base A at position 421 to base C at position 2568 in the base sequence of SEQ ID NO: 17.
本発明の DNAはまた、 配列番号: 3、 5、 7、 9、 11、 13、 15、 または 17に示す塩基配列からなる DNAとストリンジェントな条件下で八イブリダイズ する DNAであり、 且つ上記本発明の蛋白質と機能的に同等な蛋白質をコードする DNAを含む。  The DNA of the present invention is also a DNA that is eight-hybridized under stringent conditions with a DNA consisting of the nucleotide sequence of SEQ ID NO: 3, 5, 7, 9, 11, 13, 15, or 17, and DNAs encoding proteins functionally equivalent to the proteins of the invention are included.
ストリンジェン卜な条件としては、 当業者であれば適宜選択することができる が、 例えば上記したストリンジェン卜な条件が挙げられる。 すなわち、 例えば ExpressHyb Hybridization Solution (クロンテック社製) をハイブリダィゼ一 シヨンバッファ一として用い、 42°C、 好ましくは 50°Cで 1時間八イブリダィズさ せた後、 ハイブリダィゼ一シヨン後の洗浄条件として、 42°C、 2XSS 0.1%SDS が挙げられ、 好ましくは 50°C、 2XSSC、 0.1%SDSである。 またより好ましくは、 よりストリンジェントな条件が挙げられる。 よりストリンジェントな条件とは、 例えば xpressHyb Hybridization Solution (クロンテック社製) をハイブリダ ィゼーシヨンバッファ一として用い、 42°C、 好ましくは 50°Cで 1時間ハイブリダ ィズさせた後、 ハイブリダィゼ一シヨン後の洗浄条件として、 65°C, 2XSSC及び 0.1%SDSが挙げられる。 これらの条件において、 温度を上げる程に高い相同性を 有する DNAを得ることができる。 上記のハイプリダイズする DNAは好ましくは天然 由来の DNA、 例えば cDNA又は染色体 DNAであってよい。  Stringent conditions can be appropriately selected by those skilled in the art, and include, for example, the above-described stringent conditions. That is, for example, using ExpressHyb Hybridization Solution (manufactured by Clontech) as a hybridization buffer, the mixture was subjected to hybridization for 1 hour at 42 ° C., preferably 50 ° C., and then washed at 42 ° C. for 42 hours. C, 2XSS 0.1% SDS, and preferably 50 ° C, 2XSSC, 0.1% SDS. More preferably, more stringent conditions can be mentioned. More stringent conditions include, for example, using xpressHyb Hybridization Solution (manufactured by Clontech) as a hybridization buffer, hybridizing at 42 ° C., preferably 50 ° C. for 1 hour, and then after hybridization. Wash conditions include 65 ° C, 2XSSC and 0.1% SDS. Under these conditions, DNA with higher homology can be obtained as the temperature is increased. The above hybridizing DNA may preferably be a naturally occurring DNA, for example, a cDNA or a chromosomal DNA.
本発明の DNAとしては、 特に配列番号: 19の塩基配列もしくはその一部から なる DNAとストリンジェン卜な条件でハイブリダィズする DNA (cDNAなど) であつ て、 ヒト NR10.4、 NR10.5, R10.6, NR10.7, または NR10.8蛋白質 (それぞれ配 列番号: 4、 6、 8、 1 0、 1 2、 または 1 4) と機能的に同等の蛋白質をコ一 ドする DNAが好ましレ^ 中でも、 配列番号: 2 0の塩基配列もしくはその一部か らなる DNAとストリンジェン卜な条件でハイブリダイズする DNAであって、 ヒト NR10.4 (配列番号: 4) と機能的に同等の蛋白質をコードする DNAは好ましい。 さらに、 配列番号: 2 2の塩基配列もしくはその一部からなる DNAとストリンジ ェントな条件でハイブリダィズする DNA (cDNAなど) であって、 ヒト NR10. 5蛋白 質 (配列番号: 6 ) と機能的に同等の蛋白質をコードする DNAは特に好ましい。 中でも、 配列番号: 2 3に記載の塩基配列もしくはその一部からなる DNAとスト リンジェン卜な条件でハイブリダィズする DNAであって、 ヒト NR10. 5蛋白質 (配 列番号: 6 ) と機能的に同等の蛋白質をコードする DNAは特に好ましい。 Particularly, the DNA of the present invention is a DNA (such as a cDNA) that hybridizes under stringent conditions with a DNA consisting of the nucleotide sequence of SEQ ID NO: 19 or a part thereof, and includes human NR10.4, NR10.5, and R10. .6, NR10.7, or NR10.8 protein SEQ ID NO: 4, 6, 8, 10, 12, or 14) DNA that encodes a functionally equivalent protein is preferred. DNA that hybridizes under stringent conditions with the DNA consisting of the NR10.4 part and that encodes a protein functionally equivalent to human NR10.4 (SEQ ID NO: 4) is preferred. Furthermore, it is a DNA (such as a cDNA) that hybridizes under stringent conditions with DNA consisting of the nucleotide sequence of SEQ ID NO: 22 or a part thereof, and is functionally similar to the human NR10.5 protein (SEQ ID NO: 6). DNAs encoding equivalent proteins are particularly preferred. Above all, DNA that hybridizes under stringent conditions with DNA consisting of the nucleotide sequence of SEQ ID NO: 23 or a part thereof, and is functionally equivalent to human NR10.5 protein (SEQ ID NO: 6) Is particularly preferred.
本発明は、 また、 本発明の DNAが挿入されたベクターを提供する。 本発明のベ クタ一としては、 宿主細胞内において本発明の DNAを保持したり、 本発明の蛋白 質を発現させるために有用である。  The present invention also provides a vector into which the DNA of the present invention has been inserted. The vector of the present invention is useful for retaining the DNA of the present invention in a host cell or expressing the protein of the present invention.
ベクターとしては、 例えば、 大腸菌を宿主とする場合には、 ベクターを大腸菌 (例えば、 JM109, DH5 o!、 HB10K XLl-Blue) などで大量に増幅させて大量調製 するために、 大腸菌で増幅されるための 「ori」 をもち、 さらに形質転換された 大腸菌の選抜遺伝子 (例えば、 なんらかの薬剤 (アンピシリンゃテトラサイクリ ン、 カナマイシン、 クロラムフエ二コール等) により判別できるような薬剤 jffl生 遺伝子) を有すれば特に制限はない。 ベクターの例としては、 M13系ベクター、 pUC系べクタ一、 pBR322、 pBluescript, pCR- Scriptなどが挙げられる。また、 cDNA のサブクローニング、 切り出しを目的とした場合、 上記ベクターの他に、 例えば 、 pGEM-T、 pDIRECT, pT7などが挙げられる。 本発明の蛋白質を生産する目的にお いてベクターを使用する場合には、 特に、 発現ベクターが有用である。 発現べク ターとしては、 例えば、 大腸菌での発現を目的とした場合は、 ベクターが大腸菌 で増幅されるような上記特徴を持つほかに、宿主を 109、 DH5 α、 HB101、 XLl-Blue などの大腸菌とした場合においては、 大腸菌で効率よく発現できるようなプロモ 一ター、 例えば、 lacZプロモータ一 (Ward, E. S. et al. (1989) Nature 341, 544-546 ; Ward, E. S. (1992) FASEB J. 6, 2422-2427) , araBプロモーター (Bet ter, M. et al. (1988) Science 240, 1041-1043)、 または T7プロモーターなどを持つ ていること力坏可欠である。 このようなベクターとしては、 上記ベクターの他に PGEX-5X-1 (Pharmacia社製)、 「QIAexpress systemj (Qiagen社製)、 pEGFP、 また は pET (この場合、 宿主は T7 RNAポリメラーゼを発現している BL21が好ましい) などが挙げられる。 For example, when Escherichia coli is used as a host, the vector is amplified in Escherichia coli to amplify the vector in large amounts in Escherichia coli (e.g., JM109, DH5o !, HB10K XLl-Blue), etc. Ori, and a transformed gene of Escherichia coli (for example, a drug jffl live gene that can be identified by any drug (ampicillin-tetracycline, kanamycin, chloramphenicol, etc.)) There is no particular limitation. Examples of vectors include M13-based vectors, pUC-based vectors, pBR322, pBluescript, pCR-Script, and the like. In addition, for the purpose of subcloning and excision of cDNA, pGEM-T, pDIRECT, pT7 and the like can be mentioned in addition to the above vectors. When a vector is used for the purpose of producing the protein of the present invention, an expression vector is particularly useful. As an expression vector, for example, in the case of expression in E. coli, in addition to having the above-mentioned characteristics such that the vector is amplified in E. coli, the host may be used in the form of 109, DH5α, HB101, XLl-Blue, etc. In the case of E. coli, a promoter that can be efficiently expressed in E. coli LacZ promoter (Ward, ES et al. (1989) Nature 341, 544-546; Ward, ES (1992) FASEB J. 6, 2422-2427), araB promoter (Bet ter, M. et. al. (1988) Science 240, 1041-1043), or having a T7 promoter. Such vectors include PGEX-5X-1 (Pharmacia), QIAexpress systemj (Qiagen), pEGFP, or pET (in this case, the host expresses T7 RNA polymerase in addition to the above vectors). BL21 is preferred).
また、 ベクターには、 ポリペプチド分泌のためのシグナル配列が含まれていて もよい。 蛋白質分泌のためのシグナル配列としては、 大腸菌のペリブラズムに産 生させる場合、 pelBシグナル配列 (Lei, S. P. et al (1987) J. Bacteriol. 169, 4379) を使用すればよい。 宿主細胞へのベクターの導入は、 例えば塩化カルシゥ ム法、 エレクトロポレーシヨン法を用いて行うことが、できる。  The vector may also include a signal sequence for polypeptide secretion. As a signal sequence for protein secretion, the pelB signal sequence (Lei, SP et al (1987) J. Bacteriol. 169, 4379) may be used for production in E. coli periplasm. The introduction of the vector into the host cell can be performed using, for example, a calcium chloride method or an electroporation method.
大腸菌以外においても、 例えば、 本発明の蛋白質を製造するためのベクタ一と して、哺乳動物由来の発現べクタ一 (例えば、 pcDNA3 (Invi trogen¾S)や、 pEF- BOS (Mizushiraa, S. and Nagata, S. (1990) Nucleic Acids Res. 18, 5322)、 pEF、 pCDM8 )、 昆虫細胞由来の発現べクタ一 (例えば 「BAC- TO- BAC Baculovinis Expression Systems J (GIBC0 BRL社製)、 pBacPAK8) , 植物由来の発現べクタ一 ( 例えば ρΜΗ1、 ρΜΗ2)、 動物ウィルス由来の発現ベクター (例えば、 pHSV、 pMV、 pAdexLcw) , レトロウイルス由来の発現ベクター (例えば、 ZIPneo) , 酵母由来 の発現ベクター (例えば、 rpichia Express ion Ki tJ (Invi trogen社製)、 pNVll 、 SP-Q01) , 枯草菌由来の発現ベクター (例えば、 pPL608、 pKTH50) が挙げられ る。  Other than Escherichia coli, for example, as a vector for producing the protein of the present invention, a mammalian expression vector (for example, pcDNA3 (InvitrogenviS), pEF-BOS (Mizushiraa, S. and Nagata , S. (1990) Nucleic Acids Res. 18, 5322), pEF, pCDM8), insect vector-derived expression vector (for example, `` BAC-TO-BAC Baculovinis Expression Systems J (GIBC0 BRL), pBacPAK8), Plant-derived expression vectors (eg, ρΜΗ1, ρΜΗ2), animal virus-derived expression vectors (eg, pHSV, pMV, pAdexLcw), retrovirus-derived expression vectors (eg, ZIPneo), yeast-derived expression vectors (eg, rpichia Express ion KitJ (Invitrogen), pNVll, SP-Q01) and Bacillus subtilis-derived expression vectors (eg, pPL608, pKTH50).
CH0細胞、 COS細胞、 NIH3T3細胞等の動物細胞での発現を目的とした場合には、 細胞内で発現させるために必要なプロモーター、 例えば SV40プロモーター ( Mul l igan, R. C. et al. (1979) Nature 277, 108—114)、 MMLV- LTRプロモータ一 、 EFl aプロモーター (Mizushima, S. and Nagata, S. (1990) Nucleic Acids Res. 18, 5322)、 CMVプロモ一夕一等を持っていることが不可欠であり、 細胞への形質 転換を選抜するための遺伝子 (例えば、 薬剤 (ネオマイシン、 G418等) により判 別できるような薬剤耐性遺伝子) を有すればさらに好ましい。 このような特性を 有するベクタ一としては、例えば、 pMAM、 pDR2、 pBK- RSV、 pBK-CMV, pOPRSV, pOP13 等が挙げられる。 When the expression is intended for expression in animal cells such as CH0 cells, COS cells, and NIH3T3 cells, promoters required for expression in cells, such as the SV40 promoter (Mulligan, RC et al. (1979) Nature 277, 108-114), MMLV-LTR promoter, EFla promoter (Mizushima, S. and Nagata, S. (1990) Nucleic Acids Res. 18, 5322), it is essential to have the CMV promoter all over the world, and it is essential to have a gene for selection of cell transformation (for example, drug resistance that can be determined by drug (neomycin, G418, etc.)) It is more preferable to have a gene). Vectors having such characteristics include, for example, pMAM, pDR2, pBK-RSV, pBK-CMV, pOPRSV, pOP13, and the like.
さらに、 細胞内での遺伝子のコピー数を増幅させ、 遺伝子を安定的に発現させ るには、 核酸合成経路を欠損した CH0細胞にそれを相補する DHFR遺伝子を有する ベクター (例えば、 pCHOI等) を導入し、 メトトレキセート (MTX) により増幅さ せる方法が挙げられ、 また、 遺伝子の一過性の発現を目的とする場合には、 SV40 T抗原を発現する遺伝子を染色体上に持つ COS細胞を用いて SV40の複製起点を持 つベクター (pcD等) で形質転換する方法が挙げられる。 複製起点としては、 ま た、 ポリオ一マウィルス、 アデノウイルス、 ゥシパピ口一マウィルス (BPV) 等 に由来するものを用いることもできる。 さらに、 宿主細胞系で遺伝子コピー数増 幅のため、 発現ベクターは選択マーカーとして、 アミノグリコシドトランスフエ ラ一ゼ (APH) 遺伝子、 チミジンキナーゼ (TK) 遺伝子、 大腸菌キサンチングァ ニンホスホリボシルトランスフェラーゼ (Ecogpt) 遺伝子、 またはジヒドロ葉酸 還元酵素 (dhfr) 遺伝子等を含むことができる。  Furthermore, in order to amplify the copy number of the gene in the cell and stably express the gene, a vector (for example, pCHOI, etc.) having the DHFR gene complementing it in CH0 cells lacking the nucleic acid synthesis pathway is used. And then amplifying it with methotrexate (MTX). For the purpose of transient gene expression, use COS cells that have a gene that expresses the SV40 T antigen on the chromosome. Transformation with a vector (such as pcD) having the SV40 replication origin can be mentioned. As the origin of replication, those derived from poliovirus, adenovirus, sipapipioma virus (BPV) and the like can also be used. Furthermore, the expression vector is used as a selectable marker for aminoglycoside transferase (APH) gene, thymidine kinase (TK) gene, Escherichia coli xanthinguanine phosphoribosyltransferase (Ecogpt) gene because of the gene copy number increase in the host cell system. Or a dihydrofolate reductase (dhfr) gene or the like.
一方、 動物の生体内で本発明の DNAを発現させる方法としては、 本発明の DNAを 適当なベクタ一に組み込み、 例えば、 レトロウイルス法、 リボソーム法、 カチォ ニックリポソーム法、 アデノウィルス法などにより生体内に導入する方法などが 挙げられる。 これにより、 本発明の遺伝子の変異に起因する疾患に対する遺伝子 治療を行うことが可能である。 用いられるベクターとしては、 例えば、 アデノウ ィルスベクター (例えば pAdexlcw) やレトロウイルスベクター (例えば pZIPneo) などが挙げられるが、 これらに制限されない。 ベクタ一への本発明の DNAの揷入 などの一般的な遺 操作は、常法に従って行うことが可能である(Sambrook, J. et al. (1989) Molecular Cloning 2nd ed., 5. 61-5. 63, Cold Spring Harbor Lab. press)。 生体内への投与は、 ex vivo法であっても、 in vivo法であってもよい。 また、 本発明は、 本発明の DNAまたはべクタ一が導入された形質転換体を提供 する。 本発明のベクターが導入される宿主細胞としては特に制限はなく、 例えば 、 大腸菌や種々の動物細胞などを用いることが可能である。 本発明の宿主細胞は 、 例えば、 本発明の蛋白質の製造や発現のための産生系として使用することがで きる。 蛋白質製造のための産生系は、 in vi troおよび in vivoの産生系がある。 in vi troの産生系としては、 真核細胞を使用する産生系や原核細胞を使用する産 生系が挙げられる。 On the other hand, as a method for expressing the DNA of the present invention in an animal body, the DNA of the present invention is incorporated into an appropriate vector and, for example, a retrovirus method, a ribosome method, a cationic liposome method, an adenovirus method, or the like is used. For example. This makes it possible to perform gene therapy for a disease caused by mutation of the gene of the present invention. Examples of the vector used include, but are not limited to, an adenovirus vector (eg, pAdexlcw) and a retrovirus vector (eg, pZIPneo). General manipulations such as introduction of the DNA of the present invention into a vector can be performed according to a conventional method (Sambrook, J. et al. (1989) Molecular Cloning 2nd ed., 5.61-). 5.63, Cold Spring Harbor Lab. press). Administration into a living body may be an ex vivo method or an in vivo method. The present invention also provides a transformant into which the DNA or the vector of the present invention has been introduced. The host cell into which the vector of the present invention is introduced is not particularly limited, and for example, Escherichia coli and various animal cells can be used. The host cell of the present invention can be used, for example, as a production system for producing or expressing the protein of the present invention. Production systems for protein production include in vitro and in vivo production systems. Examples of the in vitro production system include a production system using eukaryotic cells and a production system using prokaryotic cells.
真核細胞を使用する場合、 例えば、 動物細胞、 植物細胞、 真菌細胞を宿主に用 いることができる。 動物細胞としては、 哺学し類細胞、 例えば、 CH0、 COS, 3T3、 ミエローマ、 BHK (baby hamster kidney) , HeLa、 Vero、 両生類細胞、 例えばァ フリカツメガエル卵母細胞 (Val le, et al. (1981) Nature 291, 358 - 340)、 あ るいは昆虫細胞、 例えば、 Sf9 、 Sf2 Tn5が、知られている。 CH0細胞としては、 特に、 DHFR遺伝子を欠損した CH0細胞である (Mr- CHO (Urlaub, G. and Chas in, L. A. (1980) Proc. Nat l. Acad. Sci. USA 77, 4216-4220) や CHO K— 1 (Kao, F. T. and Puck, T. T. (1968) Proc. Nat l. Acad. Sci. USA 60, 1275-1281) を好適 に使用することができる。 動物細胞において、 大量発現を目的とする場合には特 に CH0細胞が好ましい。 宿主細胞へのベクタ一の導入は、 例えば、 リン酸カルシ ゥム法、 DEAEデキストラン法、 カチォニックリボソーム D0TAP (ベーリンガーマ ンハイム社製) を用いた方法、 エレクト口ポレーシヨン法、 リポフエクシヨンな どの方法で行うことが可能である。  When eukaryotic cells are used, for example, animal cells, plant cells, and fungal cells can be used as hosts. Animal cells include mammalian cells, for example, CH0, COS, 3T3, myeloma, BHK (baby hamster kidney), HeLa, Vero, amphibian cells, for example, African Xenopus oocytes (Val le, et al. 1981) Nature 291, 358-340) or insect cells such as Sf9 and Sf2 Tn5 are known. CH0 cells are, in particular, CH0 cells deficient in the DHFR gene (Mr-CHO (Urlaub, G. and Chas in, LA (1980) Proc. Natl. Acad. Sci. USA 77, 4216-4220) and Natl. Acad. Sci. USA 60, 1275-1281) CHO K-1 (Kao, FT and Puck, TT (1968) Proc. Natl. Acad. Sci. USA 60, 1275-1281) For large-scale expression in animal cells In this case, the CH0 cell is particularly preferable.The introduction of the vector into the host cell is performed by, for example, a calcium phosphate method, a DEAE dextran method, a method using Cationic ribosome D0TAP (Boehringer Mannheim), It can be done by election port method, lipofection, etc.
植物細胞としては、 例えば、 ニコチアナ ·タパカム (Nicot iana tabacum) 由 来の細胞が蛋白質生産系として知られており、 これをカルス培養すればよい。 真 菌細胞としては、 酵母、 例えば、 サッカロミセス (Saccharomyces) 属、 例えば 、 サッカロミセス 'セレビシェ (Saccharomyces cerevis iae)、 糸状菌、 例えば 、ァスペルギルス(Aspergi l lus)属、例えば、ァスペルギルス-二ガ一 (Aspergi l lus niger) が知られている。 As a plant cell, for example, a cell derived from Nicotiana tabacum is known as a protein production system, which may be callus cultured. Fungal cells include yeast, for example, Saccharomyces genus, for example, Saccharomyces cerevisiae, filamentous fungi, for example, genus Aspergillus, for example, Aspergillus-Nigaichi lus niger) is known.
原核細胞を使用する場合、 細菌細胞を用いる産生系がある。 細菌細胞としては 、 大腸菌 (E. col i)、 例えば、 JM109、 DH5 o!、 HB101等が挙げられ、 その他、 枯 草菌が知られている。  When prokaryotic cells are used, there are production systems using bacterial cells. Examples of bacterial cells include Escherichia coli (E. coli), for example, JM109, DH5o !, HB101, and the like, and Bacillus subtilis.
これらの細胞を、 目的とする DNAにより形質転換し、 形質転換された細胞を in vi troで培養することにより蛋白質が得られる。 培養は、 公知の方法に従い行う ことができる。例えば、動物細胞の培養液として、例えば、 DMEM、 MEM, RPMI 1640 、 IMDMを使用することができる。 その際、 牛胎児血清 (FCS) 等の血清補液を併 用することもできるし、 無血清培養してもよい。 培養時の pHは、 約 6〜8であるの が好ましい。 培養は、 通常、 約 30〜40°Cで約 15〜200時間行い、 必要に応じて培 地の交換、 通気、 攪拌を加える。  These cells are transformed with the target DNA, and the transformed cells are cultured in vitro to obtain a protein. The culturing can be performed according to a known method. For example, as a culture solution of animal cells, for example, DMEM, MEM, RPMI 1640 and IMDM can be used. At that time, a serum replacement solution such as fetal calf serum (FCS) can be used together, or serum-free culture may be performed. The pH during culturing is preferably about 6-8. Culture is usually performed at about 30 to 40 ° C for about 15 to 200 hours, and the medium is replaced, aerated, and agitated as necessary.
一方、 in vivoで蛋白質を産生させる系としては、 例えば、 動物を使用する産 生系や植物を使用する産生系が挙げられる。 これらの動物または植物に目的とす る DNAを導入し、 動物または植物の体内で蛋白質を産生させ、 回収する。 本発明 における 「宿主」 とは、 これらの動物、 植物を包含する。  On the other hand, examples of a system for producing a protein in vivo include a production system using animals and a production system using plants. The target DNA is introduced into these animals or plants, and proteins are produced and recovered in the animals or plants. The “host” in the present invention includes these animals and plants.
動物を使用する場合、 哺乳類動物、 または昆虫を用いる産生系がある。 哺乳類 動物としては、ャギ、ブタ、ヒッジ、マウス、ゥシ等を用いることができる(Vicki Glaser, SPECTRUM Biotechnology Appl icat ions, 1993)。 また、 哺乳類動物を用 いる場合、 卜ランスジェニック動物を用いることができる。  When using animals, there are production systems using mammals or insects. As mammals, goats, pigs, sheep, mice, mice, etc. can be used (Vicki Glaser, SPECTRUM Biotechnology Applicat ions, 1993). When a mammal is used, a transgenic animal can be used.
例えば、 目的とする DNAを、 ャギ /3カゼインのような乳汁中に固有に産生され る蛋白質をコードする遺伝子との融合遺伝子として調製する。 次いで、 この融合 遺伝子を含む DNA断片をャギの胚へ注入し、 この胚を雌のャギへ移植する。 胚を 受容したャギから生まれるトランスジエニックャギまたはその子孫が産生する 乳汁から、 目的の蛋白質を得ることができる。 トランスジエニックャギから産生 される蛋白質を含む乳汁量を増加させるために、 適宜ホルモンをトランスジェニ 、ソクャギに使用してもよい (Ebert, K. M. et al. (1994) Bio/Technology 12, 699—702)。 For example, the target DNA is prepared as a fusion gene with a gene such as goat / 3 casein, which encodes a protein uniquely produced in milk. Next, the DNA fragment containing the fusion gene is injected into a goat embryo, and the embryo is transplanted into a female goat. The target protein can be obtained from milk produced by the transgenic goat born from the goat that has received the embryo or its progeny. Hormones may be used as appropriate in transgenics and squirrels to increase the amount of milk containing proteins produced by transgenic goats (Ebert, KM et al. (1994) Bio / Technology 12, 699-702).
また、 昆虫としては、 例えばカイコを用いることができる。 カイコを用いる場 合、 目的の蛋白質をコードする DNAを揷入したバキュロウィルスをカイコに感染 させることにより、 このカイコの体液から目的の蛋白質を得ることができる ( S霞腿, M. et al. (1985) Nature 315, 592-594) 0 In addition, silkworms can be used as insects, for example. When a silkworm is used, the target protein can be obtained from the body fluid of the silkworm by infecting the silkworm with a baculovirus into which the DNA encoding the target protein has been introduced (S Kasumi, M. et al. (1985) Nature 315, 592-594) 0
さらに、 植物を使用する場合、 例えばタバコを用いることができる。 タバコを 用いる場合、 目的とする蛋白質をコードする DNAを植物発現用ベクター、 例えば pMON 530に揷入し、 このベクターをァグロパクテリゥム .ッメファシエンス ( Agrobacteriuin tumefaciens) のようなバクテリアに導入する。 このバクテリア をタバコ、 例えば、 ニコチアナ 'タバカム (Nicot iana tabacum) に感染させ、 本タバコの葉より所望のポリペプチドを得ることができる (Ma, J. K. et al. (1994) Eur. J. Immunol . 24, 131—138)。  Furthermore, when using a plant, for example, tobacco can be used. When tobacco is used, DNA encoding the protein of interest is introduced into a plant expression vector, for example, pMON530, and this vector is introduced into bacteria such as Agrobacteriuin tumefaciens. This bacterium is infected to tobacco, for example, Nicotiana tabacum, and the desired polypeptide can be obtained from the leaves of this tobacco (Ma, JK et al. (1994) Eur. J. Immunol. 24 , 131-138).
これにより得られた本発明の蛋白質は、 宿主細胞内または細胞外 (培地など) から単離し、 実質的に純粋で均一な蛋白質として精製することができる。 蛋白質 の分離、 精製は、 通常の蛋白質の精製で使用されている分離、 精製方法を使用す ればよく、 何ら限定されるものではない。 例えば、 クロマトグラフィーカラム、 フィルター、 P艮外濾過、 塩析、 溶媒沈澱、 溶嫩由出、 蒸留、 免疫沈降、 SDS-ポリ アクリルアミドゲル電気泳動、 等電点電気泳動法、 透析、 再結晶等を適 101択、 組み合わせれば蛋白質を分離、 精製することができる。  The protein of the present invention thus obtained can be isolated from inside or outside the host cell (such as a medium) and purified as a substantially pure and homogeneous protein. The separation and purification of the protein may be carried out by using the separation and purification methods used in ordinary protein purification, and is not limited at all. For example, chromatographic columns, filters, gel filtration, salting out, solvent precipitation, elution, distillation, immunoprecipitation, SDS-polyacrylamide gel electrophoresis, isoelectric focusing, dialysis, recrystallization, etc. By properly selecting and combining, proteins can be separated and purified.
クロマトグラフィーとしては、 例えばァフィ二ティ一クロマトグラフィー、 ィ オン交換クロマトグラフィー、 疎水性クロマトグラフィー、 ゲル濾過、 逆相クロ マトグラフィ一、 吸着クロマトグラフィー等が挙げられる (Strategies for Protein Puri f icat ion and Characterizat ion: A Laboratory Course Manual. Ed Daniel R. Marshak et al . , Cold Spring Harbor Laboratory Press, 1996)。 こ れらのクロマトグラフィーは、 液相クロマトグラフィー、 例えば HPLC、 FPLC等の 液相クロマトグラフィーを用いて行うことができる。 本発明は、 これらの精製方 法を用いて高度に精製された蛋白質も包含する。 Examples of the chromatography include affinity chromatography, ion exchange chromatography, hydrophobic chromatography, gel filtration, reverse phase chromatography, and adsorption chromatography (Strategies for Protein Purification and Characterization). ion: A Laboratory Course Manual. Ed Daniel R. Marshak et al., Cold Spring Harbor Laboratory Press, 1996). These chromatographys can be performed using liquid phase chromatography, for example, liquid phase chromatography such as HPLC and FPLC. The present invention relates to these purification methods. It also includes proteins highly purified using the method.
なお、 蛋白質の精製前または精製後に適当な蛋白質修飾酵素を作用させること により、 任意に修飾を加えたり部分的にペプチドを除去することもできる。 蛋白 質修飾酵素としては、 例えば、 トリプシン、 キモトリブシン、 リシルエンドぺプ チダーゼ、 プロテインキナーゼ、 ダルコシダ一ゼなどが用いられる。  The protein can be arbitrarily modified or partially removed by the action of an appropriate protein-modifying enzyme before or after protein purification. As the protein-modifying enzyme, for example, trypsin, chymotrypsin, lysylendopeptidase, protein kinase, dalcosidase and the like are used.
本発明は、 また、 本発明の蛋白質と結合する抗体を提供する。 本発明の抗体の 形態には、 特に制限はなく、 ポリクロ一ナル抗体の他、 モノクローナル抗体も含 まれる。 また、 ゥサギなどの免疫動物に本発明の蛋白質を免疫して得た抗血清、 すべてのクラスのポリクロ一ナル抗体およびモノクロ一ナル抗体、 さらにヒト抗 体や遺伝子組み換えによるヒト型化抗体も含まれる。  The present invention also provides an antibody that binds to the protein of the present invention. The form of the antibody of the present invention is not particularly limited, and includes a monoclonal antibody as well as a polyclonal antibody. Also included are antisera obtained by immunizing immunized animals such as rabbits with the protein of the present invention, polyclonal antibodies and monoclonal antibodies of all classes, as well as human antibodies and humanized antibodies obtained by genetic recombination. .
抗体取得の感作抗原として使用される本発明の蛋白質は、 その由来となる動物 種に制限されないが、 哺乳動物、 例えばヒト、 マウスまたはラット由来の蛋白質 が好ましく、 特にヒト由来の蛋白質が好ましい。 ヒト由来の蛋白質は、 本明細書 に開示される遺伝子配列またはアミノ酸配列を用いて得ることができる。  The protein of the present invention used as a sensitizing antigen for obtaining an antibody is not limited to the animal species from which it is derived, but is preferably a protein derived from a mammal, for example, a human, a mouse or a rat, and particularly preferably a protein derived from a human. Human-derived proteins can be obtained using the gene sequences or amino acid sequences disclosed herein.
本発明において、 感作抗原として使用される蛋白質は、 全長蛋白質であっても よいし、 また、 蛋白質の部分ペプチドであってもよい。 蛋白質の部分ペプチドと しては、 例えば、 蛋白質のアミノ基 (N) 末端断片やカルボキシ (C) 末端断片が 挙げられる。 本明細書で述べる 「抗体」 とは蛋白質の全長又は断片に反応する抗 体を意味する。 また、 例えば、 配列番号: 2 1もしくは 2 4のアミノ酸配列、 ま たはその一部からなるぺプチドに結合する抗体は、 本発明の抗体として特に好ま しい。  In the present invention, the protein used as the sensitizing antigen may be a full-length protein or a partial peptide of the protein. The partial peptide of the protein includes, for example, an amino group (N) terminal fragment and a carboxy (C) terminal fragment of the protein. As used herein, “antibody” refers to an antibody that reacts with the full length or fragment of a protein. In addition, for example, an antibody that binds to an amino acid sequence of SEQ ID NO: 21 or 24 or a peptide consisting of a part thereof is particularly preferable as the antibody of the present invention.
本発明の蛋白質またはその断片をコードする遺伝子を公知の発現ベクター系 に挿入し、 該ベクタ一により本明細書で述べた宿主細胞を形質転換させ、 該宿主 細胞内外から目的の蛋白質またはその断片を公知の方法で得て、 これらを感作抗 原として用いればよい。 また、 蛋白質を発現する細胞またはその溶解物あるいは ィ匕学的に合成した本発明の蛋白質を感作抗原として使用してもよい。 短いぺプチ ドは、 キーホールリンペットへモシァニン、 ゥシ血清アルブミン、 卵白アルブミ ンなどのキヤリァ蛋白質と適宜結合させて抗原とすることが好ましい。 A gene encoding the protein of the present invention or a fragment thereof is inserted into a known expression vector system, and the host cell described in this specification is transformed with the vector. These can be obtained by a known method and used as a sensitizing antigen. Alternatively, a cell expressing the protein, a lysate thereof, or a protein of the present invention synthesized in a ligatory manner may be used as the sensitizing antigen. Short bubble wrap It is preferable that the antigen be appropriately bound to a carrier protein such as keyhole limpet mosquitoin, human serum albumin, and ovalbumin to obtain an antigen.
感作抗原で: される哺乳動物としては、 特に限定されるものではないが、 細 胞融合に使用する親細胞との適合性を考慮して選択するのが好ましく、 HIS的に は、 げっ歯目、 ゥサギ目、 霊長目の動物が使用される。  The mammal to be sensitized is not particularly limited, but is preferably selected in consideration of compatibility with the parent cell used for cell fusion. Eyes, egrets, and primates are used.
げっ歯目の動物としては、 例えば、 マウス、 ラット、 ハムスター等が使用され る。 ゥサギ目の動物としては、 例えば、 ゥサギが使用される。 霊長目の動物とし ては、 例えば、 サルが使用される。 サルとしては、 狭鼻下目のサル(旧世界ザル ) , 例えば、 力二クイザル、 ァカゲザル、 マントヒヒ、 チンパンジー等が使用さ れる。  As rodent animals, for example, mice, rats, hamsters and the like are used.動物 As an heronoid animal, for example, a heron is used. For example, monkeys are used as primates. As the monkeys, monkeys of the lower nose (old world monkeys), for example, cynomolgus monkeys, macaques, baboons, and chimpanzees are used.
感作抗原を動物に嫉するには、 公知の方法にしたがって行われる。 HIS的方 法としては、 感作抗原を哺乳動物の腹腔内または皮下に注射する。 具体的には、 感作抗原を PBS (Phosphate-Buf fered Sal ine) や生理食塩水等で適当量に希釈、 懸濁したものに対し、 所望により通常のアジュバント、 例えば、 フロイント完全 アジュバントを適量混合し、 乳化後、 哺乳動物に投与する。 さらに、 その後、 フ ロイント不完全アジュバントに適量混合した感作抗原を、 4〜21日毎に数回投与 することが好ましい。 また、 感作抗原免疫時に適当な担体を使用することができ る。 このように免疫し、 血清中に所望の抗体レベルが上昇することを常法により 確認する。  To sensitize an animal to a sensitizing antigen, a known method is used. In the HIS method, a sensitizing antigen is injected intraperitoneally or subcutaneously into a mammal. Specifically, a normal adjuvant, for example, Freund's complete adjuvant, is mixed with an appropriate amount of the sensitizing antigen diluted and suspended with PBS (Phosphate-Buffed Saline) or physiological saline, etc., if desired. After emulsification, it is administered to mammals. Thereafter, it is preferable to administer the sensitizing antigen mixed with an appropriate amount of Freund's incomplete adjuvant several times every 4 to 21 days. In addition, a suitable carrier can be used at the time of immunization with the sensitizing antigen. Immunization is performed in this manner, and it is confirmed by a conventional method that the level of the desired antibody in the serum is increased.
ここで、 本発明の蛋白質に対するポリクロ一ナル抗体を得るには、 血清中の所 望の抗体レベルが上昇したことを確認した後、 抗原を感作した哺乳動物の血液を 取り出す。 この血液から公知の方法により血清を分離する。 ボリクロ一ナル抗体 としては、 ポリクロ一ナル抗体を含む血清を使用してもよいし、 必要に応じこの 血清からポリクロ一ナル抗体を含む画分をさらに単離して、 これを使用してもよ い。例えば、 本発明の蛋白質をカップリングさせたァフィ二ティ一カラムを用い て、 本発明の蛋白質のみを認識する画分を得て、 さらにこの画分をプロテイン A あるいはプロティン G力ラムを利用して精製することにより、 免疫グロブリン Gあ るい を調製することがでぎる。 Here, in order to obtain a polyclonal antibody against the protein of the present invention, the blood of a mammal sensitized with the antigen is removed after confirming that the desired antibody level in serum has increased. The serum is separated from the blood by a known method. As the polyclonal antibody, a serum containing the polyclonal antibody may be used, or if necessary, a fraction containing the polyclonal antibody may be further isolated from this serum and used. . For example, using an affinity column to which the protein of the present invention is coupled, a fraction that recognizes only the protein of the present invention is obtained. Alternatively, immunoglobulin G or immunoglobulin G can be prepared by purification using protein G protein.
モノクローナル抗体を得るには、 上記抗原を感作した哺乳動物の血清中に所望 の抗体レベルが上昇することを確認した後に、 哺乳動物から滅細胞を取り出し 、 細胞融合に付せばよい。 この際、 細胞融合に使用される好ましい^ $細胞とし て、 特に脾細胞が挙げられる。 前記免疫細胞と融合される他方の親細胞としては 、 好ましくは哺乳動物のミエローマ細胞、 より好ましくは、 薬剤による融合細胞 選別のための特性を獲得したミエローマ細胞が挙げられる。  In order to obtain a monoclonal antibody, after confirming that the level of the desired antibody is increased in the serum of a mammal sensitized with the antigen, dead cells may be removed from the mammal and subjected to cell fusion. In this case, splenocytes are particularly preferred as preferred ^ $ cells used for cell fusion. The other parent cell to be fused with the immunocyte is preferably a mammalian myeloma cell, more preferably a myeloma cell that has acquired characteristics for selecting a fused cell by a drug.
前記 細胞とミエローマ細胞の細胞融合は基本的には公知の方法、 例えば、 ミルスティンらの方法 (Gal f re, G. and Mi ls tein, C. (1981) Methods Enzymol. 73, 3-46) 等に準じて行うことができる。  The cell fusion between the cells and myeloma cells is basically a known method, for example, the method of Milstein et al. (Gal re, G. and Milstein, C. (1981) Methods Enzymol. 73, 3-46) It can be performed according to.
細胞融合により得られた八イブリドーマは、 通常の選択培養液、 例えば、 HAT 培養液 (ヒポキサンチン、 アミノブテリンおよびチミジンを含む培養液) で培養 することにより選択される。 当該 HAT培養液での培養は、 目的とするハイブリド 一マ以外の細胞 (非融合細胞) が死 るのに十分な時間、 通常、 数日〜数週間 継続して行う。 次いで、 通常の限界希釈法を実施し、 目的とする抗体を産生する ハイブリドーマのスクリーニングおよびクロ一ニングを行う。  The eight hybridomas obtained by cell fusion are selected by culturing them in a normal selective culture solution, for example, a HAT culture solution (a culture solution containing hypoxanthine, aminobuterin and thymidine). Culturing in the HAT culture solution is continued for a time sufficient for the death of cells other than the desired hybridoma (non-fused cells), usually for several days to several weeks. Next, a conventional limiting dilution method is performed to screen and clone a hybridoma producing the desired antibody.
また、 ヒト以外の動物に抗原を免疫して上記八イブリド一マを得る他に、 ヒト リンパ球、 例えば ΪΒウィルスに感染したヒトリンパ球を in vi troで蛋白質、 蛋白 質発現細胞またはその溶解物で感作し、 感作リンパ球をヒト由来の永久分裂能を 有するミエローマ細胞、 例えば U266と融合させ、 蛋白質への結合活性を有する所 望のヒト抗体を産生するハイプリドーマを得ることもできる (特開昭 63- 17688号 公報)。  In addition to immunizing non-human animals with an antigen to obtain the above-mentioned antibodies, human lymphocytes, for example, human lymphocytes infected with ΪΒ virus, can be treated in vitro with proteins, protein-expressing cells or lysates thereof. After sensitization, the sensitized lymphocytes can be fused with human-derived myeloma cells capable of permanent division, for example, U266, to obtain a hybridoma that produces the desired human antibody having protein binding activity. Published Japanese Patent Application No. 63-17688.
次いで、得られたハイプリドーマをマウス腹腔内に移植し、 同マウスより腹水 を回収し、 得られたモノクローナル抗体を、 例えば、 硫安 ¾®、 プロテイン A、 プロテイン Gカラム、 DEAEイオン交換クロマトグラフィー、 本発明の蛋白質を力 ップリングしたァフィ二ティーカラムなどにより精製することで調製すること が可能である。 本発明の抗体は、 本発明の蛋白質の精製、 検出に用いられる他、 本発明の蛋白質のァゴニストやアンタゴニストの候補になる。 また、 この抗体を 本発明の蛋白質が関与する疾患の抗体治療へ応用することも考えられる。 得られ た抗体を人体に投与する目的 (抗体治療) で使用する場合には、 嫩原性を低下 させるため、 ヒ卜抗体やヒ卜型抗体が好ましい。 Next, the obtained hybridoma was transplanted into the abdominal cavity of a mouse, ascites was recovered from the mouse, and the obtained monoclonal antibody was subjected to, for example, ammonium sulfate®, protein A, protein G column, DEAE ion exchange chromatography, Power the invention protein It can be prepared by purification using a coupled affinity column or the like. The antibody of the present invention is used for purification and detection of the protein of the present invention, and is also a candidate for an agonist or antagonist of the protein of the present invention. It is also conceivable to apply this antibody to antibody therapy for diseases involving the protein of the present invention. When the obtained antibody is used for the purpose of administration to the human body (antibody therapy), a human antibody or a human antibody is preferable in order to reduce the nucleogenicity.
例えば、 ヒト抗体遺伝子のレパートリーを有するトランスジエニック動物に抗 原となる蛋白質、 蛋白質発現細胞またはその溶解物を免疫して抗体産生細胞を取 得し、 これをミエローマ細胞と融合させたハイプリドーマを用いて蛋白質に対す るヒト抗体を取得することができる (国際公開番号 W092- 03918、 W093-2227, W094-02602, W094-25585, W096- 33735および 34096参照)。  For example, a transgenic animal having a repertoire of human antibody genes is immunized with a protein serving as an antigen, a protein-expressing cell or a lysate thereof to obtain antibody-producing cells, and a hybridoma obtained by fusing this with myeloma cells is obtained. Can be used to obtain a human antibody against the protein (see International Publication Nos. W092-03918, W093-2227, W094-02602, W094-25585, W096-33735 and 34096).
ハイプリドーマを用いて抗体を産生する以外に、 抗体を産生する感作リンパ球 等の免疫細胞を癌遺伝子 (oncogene) により不死化させた細胞を用いてもよい。 このように得られたモノクローナル抗体はまた、 遺伝子組み換え技術を用いて 産生させた組み換え型抗体として得ることができる (例えば、 Borrebaeck, C. A. K. and Larr ick, J. W. , THERAPEUTIC MONOCLONAL ANTIBODIES, Publ ished in the Uni ted Kingdom by MACMILLAN PUBLISHERS LTD, 1990参照)。 組み換え型抗体は 、 それをコードする DNAをハイブリドーマまたは抗体を産生する感作リンパ球等 の^ $細胞からクロ一ニングし、 適当なベクタ一に組み込んで、 これを宿主に導 入し産生させる。 本発明は、 この組換え型抗体を包含する。  In addition to producing antibodies using hybridomas, cells in which immune cells such as sensitized lymphocytes that produce antibodies are immortalized with oncogenes may be used. The monoclonal antibody thus obtained can also be obtained as a recombinant antibody produced using a genetic recombination technique (for example, Borrebaeck, CAK and Larrick, JW, THERAPEUTIC MONOCLONAL ANTIBODIES, Published in the United States). Kingdom by MACMILLAN PUBLISHERS LTD, 1990). Recombinant antibodies are produced by cloning DNA encoding the same from ^ $ cells, such as hybridomas or sensitized lymphocytes, which produce the antibody, incorporating the DNA into an appropriate vector, and introducing it into a host to produce it. The present invention includes this recombinant antibody.
さらに、 本発明の抗体は、 本発明の蛋白質に結合する限り、 その抗体断片ゃ抗 体修飾物であってよい。 例えば、 抗体断片としては、 Fab、 F (ab' ) 2、 Fvまたは H 鎖と L鎖の Fvを適当なリンカーで連結させたシングルチエイン Fv(scFv) (Huston, J. S. et al . (1988) Proc. Nat l. Acad. Sci. U. S. A. 85, 5879-5883) が挙げ られる。 具体的には、 抗体を酵素、 例えば、 パパイン、 ペプシンで処理し抗体断 片を生成させるか、 または、 これら抗体断片をコードする遺伝子を構築し、 これ を発現ベクターに導入した後、 適当な宿 細胞で発現させる (例えば、 Co, M. S. et al. (1994) J. Immunol. 152, 2968-2976 ; Bet ter, M. and Horwi tz, A. H. (1989) Methods Enzymol. 178, 476-496 ; Pluckthun, A. and Skerra, A. (1989) Methods Enzymol. 178, 497-515 ; Lamoyi, E. (1986) Methods Enzymol. 121, 652-663 ; Rousseaux, J. et al. (1986) Methods Enzymol. 121, 663-669 ; Bird, R. E. and Walker, B. W. (1991) Trends Biotechnol. 9, 132- 137参照 )。 Further, the antibody of the present invention may be a modified antibody fragment thereof as long as it binds to the protein of the present invention. For example, antibody fragments include Fab, F (ab ') 2, Fv, or a single chain Fv (scFv) obtained by linking an Fv of an H chain and an L chain with an appropriate linker (Huston, JS et al. (1988) Proc. Natl. Acad. Sci. USA 85, 5879-5883). Specifically, the antibody is treated with an enzyme such as papain or pepsin to generate antibody fragments, or a gene encoding these antibody fragments is constructed, and Is introduced into an expression vector and then expressed in an appropriate host cell (eg, Co, MS et al. (1994) J. Immunol. 152, 2968-2976; Better, M. and Horwitz, AH (1989) Methods Enzymol. 178, 476-496; Pluckthun, A. and Skerra, A. (1989) Methods Enzymol. 178, 497-515; Lamoyi, E. (1986) Methods Enzymol. 121, 652-663; Rousseaux, J. et al. (1986) Methods Enzymol. 121, 663-669; Bird, RE and Walker, BW (1991) Trends Biotechnol. 9, 132-137).
抗体修飾物として、 ポリエチレングリコール (PEG) 等の各種分子と結合した 抗体を使用することもできる。 本発明の 「抗体」 にはこれらの抗体修飾物も包含 される。 このような抗体修飾物を得るには、 得られた抗体に化学的な修飾を施す ことによって得ることができる。 これらの方法はこの分野において既に確立され ている。  As the modified antibody, an antibody bound to various molecules such as polyethylene glycol (PEG) can be used. The “antibody” of the present invention also includes these modified antibodies. Such a modified antibody can be obtained by subjecting the obtained antibody to chemical modification. These methods are already established in this field.
また、 本発明の抗体は、 公知の技術を使用して非ヒト抗体由来の可変領域とヒ 卜抗体由来の定常領域からなるキメラ抗体または非ヒト抗体由来の CDR (相補性 決定領域) とヒト抗体由来の FR (フレームワーク領域) および定常領域からなる ヒト型化抗体として得ることができる。  In addition, the antibody of the present invention can be prepared by using a chimeric antibody composed of a variable region derived from a non-human antibody and a constant region derived from a human antibody or a CDR (complementarity determining region) derived from a non-human antibody and a human antibody using known techniques. It can be obtained as a humanized antibody consisting of a FR (framework region) and a constant region derived therefrom.
前記のように得られた抗体は、 均一にまで精製することができる。 本発明で使 用される抗体の分離、 精製は通常の蛋白質で使用されている分離、 精製方法を使 用すればよい。 例えば、 ァフィ二ティークロマトグラフィー等のクロマトグラフ ィーカラム、 フィルター、 P艮外濾過、 塩析、 透析、 SDSポリアクリルアミドゲル 電気泳動、 等電点電気泳動等を適 択、 組み合わせれば、 抗体を分離、 精製す ることができる(Ant ibodies : A Laboratory Manual. Ed Harlow and David Lane, Cold Spring Harbor Laboratory, 1988) が、 これらに限定されるものではない 上記で得られた抗体の濃度測定は吸光度の測定または酵素結合 ^SP 着検定法 (Enzyme- 1 inked immunosorbent assay; ELISA) 等により行うこと力 sできる。 ァフィ二ティークロマトグラフィ一に用いる力ラムとしては、 プロティン A力 ラム、 プロテイン Gカラムが挙げられる。 例えば、 プロテイン Aカラムを用いた カラムとして、 Hyper D, POROS, Sepharose F. F. (Pharmacia) 等が挙げられる ァフィ二ティークロマトグラフィー以外のクロマトグラフィーとしては、 例え ば、 イオン交換クロマトグラフィー、 疎水性クロマトグラフィー、 ゲル濾過、 逆 相クロマトグラフィー、吸着クロマトグラフィー等が挙げられる(Strategies for Protein Puri f icat ion and Characterizat ion: A Laboratory Course Manual. Ed Daniel R. Marshak et al. , Cold Spring Harbor Laboratory Press, 1996)。 こ れらのクロマトグラフィーは HPLC、 FPLC等の液相クロマトグラフィーを用いて行 うことができる。 The antibody obtained as described above can be purified to homogeneity. The separation and purification of the antibody used in the present invention may be performed by the separation and purification methods used for ordinary proteins. For example, if chromatographic columns such as affinity chromatography, filters, gel filtration, salting out, dialysis, SDS polyacrylamide gel electrophoresis, isoelectric focusing, etc. are selected and combined, antibodies can be separated. It can be purified (Antibodies: A Laboratory Manual. Ed Harlow and David Lane, Cold Spring Harbor Laboratory, 1988), but is not limited thereto. The concentration measurement of the antibody obtained above is carried out by measuring the absorbance. Alternatively, it can be performed by an enzyme-linked ^ SP binding assay (Enzyme-1 inked immunosorbent assay; ELISA) or the like. Examples of the force column used for affinity chromatography include a protein A column and a protein G column. For example, using a protein A column Columns include Hyper D, POROS, Sepharose FF (Pharmacia), etc. Examples of chromatography other than affinity chromatography include, for example, ion exchange chromatography, hydrophobic chromatography, gel filtration, reverse phase chromatography, Examples include adsorption chromatography (Strategies for Protein Purification and Characterization: A Laboratory Course Manual. Ed Daniel R. Marshak et al., Cold Spring Harbor Laboratory Press, 1996). These chromatographys can be performed using liquid phase chromatography such as HPLC and FPLC.
また、 本発明の抗体の抗原結合活性を測定する方法として、 例えば、 度の 測定、 酵素結合免疫吸着検定法 (Enzyme- l inked immunosorbent assay; ELISA) 、 EIA (酵素免疫目』定法)、 RIA (放射免疫測定法) あるいは蛍光抗体法を用いる ことができる。 ELISAを用いる場合、 本発明の抗体を固相化したプレートに本発 明の蛋白質を添加し、 次いで目的の抗体を含む試料、 例えば、 抗体産生細胞の -立  Examples of the method for measuring the antigen-binding activity of the antibody of the present invention include, for example, measurement of the degree, enzyme-linked immunosorbent assay (ELISA), EIA (enzyme-linked immunosorbent assay), and RIA (enzyme-linked immunosorbent assay). (Radioimmunoassay) or a fluorescent antibody method can be used. When using ELISA, the protein of the present invention is added to a plate on which the antibody of the present invention has been immobilized, and then a sample containing the target antibody, for example, antibody-producing cells,
P  P
養上清や精製抗体を加える。 酵素、 例えば、 アルカリフォスファターゼ等で標識 した抗体を認識する二次抗体を添加し、 プレートをインキュベーションし、 次い で洗浄した後、 P-ニトロフエニル燐酸などの酵素基質を加えて 度を測定する ことで抗原結合活性を評価することができる。 蛋白質として、 蛋白質の断片、 例 えばその C末端からなる断片あるいは N末端からなる断片を使用してもよい。 本 発明の抗体の活性評価には、 BIAcore (Pharmacia製) を使用することができる。 これらの手法を用いることにより、 本発明の抗体と、 本発明の蛋白質が含まれ ると予想される試料とを接触せしめ、 該抗体と該蛋白質との^ ¾複合体を検出ま たは測定することカゝらなる、 本発明の蛋白質の検出または測定方法を実施するこ とができる。 Add culture supernatant and purified antibody. A secondary antibody that recognizes an enzyme, for example, an antibody labeled with alkaline phosphatase, is added, the plate is incubated, washed, and then the enzyme substrate such as P-nitrophenyl phosphate is added to measure the degree. Antigen binding activity can be evaluated. As the protein, a protein fragment, for example, a C-terminal fragment or an N-terminal fragment thereof may be used. BIAcore (Pharmacia) can be used to evaluate the activity of the antibody of the present invention. By using these techniques, the antibody of the present invention is brought into contact with a sample expected to contain the protein of the present invention, and a complex of the antibody and the protein is detected or measured. In addition, the method for detecting or measuring the protein of the present invention can be carried out.
本発明の蛋白質の検出または測定方法は、 蛋白質を特異的に検出または測定す ることができるため、 蛋白質を用いた種々の実験等に有用である。 また、 本発明 の蛋白質は爐担当辦戠、 造血鶴戠、 および生痕 fi ^において強く発現し、 へ モポェチン受容体として免疫系および/または造血系のシグナル伝達に関与して いると考えられることから、 本発明の蛋白質の検出または測定を通して、 本発明 の蛋白質の構造異常または発現異常を検査および診断することも可能である。 本発明はまた、 ヒ卜讓 .4、 翻.5、 麵.6、 誦.7、 または R10.8蛋白質 (それぞれ配列番号: 4、 6、 8、 10、 12、 または 14)、 あるいはマウス NR10蛋白質 (NR10Cまたは NR10B) (それぞれ配列番号: 16または 18) をコー ドする DNA (配列番号: 3、 5、 7、 9、 11、 13、 15、 または 17) また はその相補鎖に相補的な少なくとも 15ヌクレオチドを含むポリヌクレオチドを 提供する。 ポリヌクレオチドは、 例えば DNAであっても脆であってもよい。 本発 明のポリヌクレオチドは、 例えば本発明の蛋白質をコードする DNAの検出、 増幅 、 該 DNAの発現の検出、 または該発現の制御に有用である。 DNAの検出には、 DNA の変異の検出も含まれる。 Since the protein detection or measurement method of the present invention can specifically detect or measure a protein, it is useful for various experiments and the like using proteins. In addition, the present invention Of the present invention is strongly expressed in 爐, hematopoietic crane お よ び, and scar fi ^, and is thought to be involved in immune and / or hematopoietic signal transduction as a hemopoietin receptor. Through the detection or measurement of the protein of the present invention, it is also possible to examine and diagnose a structural abnormality or abnormal expression of the protein of the present invention. The present invention also relates to the human NR10 or the human NR10 protein (SEQ ID NO: 4, 6, 8, 10, 12, 12, or 14). DNA (SEQ ID NO: 3, 5, 7, 9, 11, 13, 15, or 17) encoding a protein (NR10C or NR10B) (SEQ ID NO: 16 or 18, respectively) or complementary to its complementary strand Provide a polynucleotide comprising at least 15 nucleotides. A polynucleotide may be, for example, DNA or fragile. The polynucleotide of the present invention is useful, for example, for detecting, amplifying, detecting the expression of, or controlling the expression of the DNA encoding the protein of the present invention. Detection of DNA includes detection of mutations in DNA.
ここで 「相補鎖」 とは、 A:T (ただし RNAの場合 «Α:ϋ)、 G:Cの塩基対からなる 2 本鎖ポリヌクレオチドの一方の鎖に対する他方の鎖を指す。 また、 「相補的」 と は、 少なくとも 15個の連続したヌクレオチド領域で完全に相補配列である場合に 限られず、 少なくとも 70、 好ましくは少なくとも 80%、 より好ましくは 90%、 さ らに好ましくは 95%以上の塩基配列上の相同性を有すればよい。 相同性を決定す るためのアルゴリズムは本明細書に記載したものを使用すればよい。  As used herein, the term “complementary strand” refers to one strand of a double-stranded polynucleotide consisting of A: T (but RNA: Α in the case of RNA) and G: C base pairs and the other strand. The term "complementary" is not limited to a sequence completely complementary to at least 15 contiguous nucleotide regions, but is at least 70, preferably at least 80%, more preferably 90%, and even more preferably 95%. What is necessary is that they have homology on the base sequence of at least%. The algorithm described in the present specification may be used as an algorithm for determining homology.
このようなポリヌクレオチドとしては、 ヒト NR10.4、 NR10.5, NR10.6、 10.7 、 または R 8蛋白質 (それぞれ配列番号: 4、 6、 8、 10、 12、 または 14)、 あるいはマウス NR10蛋白質 (R10Cまた ^NRIOB) (それぞれ配列番号: 1 6または 18) をコードする DNA (配列番号: 3、 5、 7、 9、 11、 13、 1 5、 または 17) またはその相補鎖に八イブリダィズする少なくとも 15ヌクレオ チドを含むポリヌクレオチドが含まれる。 好ましくは、 該ポリヌクレオチドは、 ヒト N 10.4、 NR10.5、 NR10.6、 NR10.7, または N 10.8蛋白質 (それぞれ配列番 号: 4、 6、 8、 1 0、 1 2、 または 1 4)、 あるいはマウス NR10蛋白質 ( 10C または N 10B) (それぞれ配列番号: 1 6または 1 8 ) をコードする DNA (配列番 号: 3、 5、 7、 9、 1 1、 1 3、 1 5、 または 1 7 ) またはその相補鎖に特異 的にハイブリダィズする。 特異的にハイブリダィズするとは、 通常のハイブリダ ィゼーションの条件下、 好ましくは上記ストリンジェン卜なハイプリダイゼーシ ヨンの条件で他の蛋白質をコードする DNAと有意にハイブリダィズしないことを 言う。 Such polynucleotides include human NR10.4, NR10.5, NR10.6, 10.7, or R8 protein (SEQ ID NOs: 4, 6, 8, 10, 12, or 14, respectively), or mouse NR10 protein. (R10C or ^ NRIOB) (SEQ ID NO: 16 or 18 respectively) DNA (SEQ ID NO: 3, 5, 7, 9, 11, 13, 15 or 17) or its complementary strand Polynucleotides containing at least 15 nucleotides are included. Preferably, the polynucleotide is a human N 10.4, NR10.5, NR10.6, NR10.7, or N10.8 protein (SEQ ID NO: No .: 4, 6, 8, 10, 12, or 14) or DNA encoding mouse NR10 protein (10C or N10B) (SEQ ID NO: 16 or 18 respectively) (SEQ ID NO: 3) , 5, 7, 9, 11, 13, 15 or 17) or its complementary strand. The term "specifically hybridizes" means that the DNA does not significantly hybridize with DNA encoding another protein under ordinary hybridization conditions, preferably under the above-mentioned stringent hybridization conditions.
特に配列番号: 1 9の塩基配列またはその相補鎖に相補的な少なくとも 15ヌク レオチドを含むポリヌクレオチドは、 ヒト NR10. 4、 NR10. 5、 NR10. 6、 NR10. 7, ま たは NR10. 8に特異的なェクソンを含む遺伝子を検出または単離するために有用 である。 また、 配列番号: 2 2の塩基配列またはその相補鎖に相補的な少なくと も 15ヌクレオチドを含むポリヌクレオチドは、 ヒト NR10. 5に特異的なェクソンを 含む遺伝子を検出または単離するために有用である。  In particular, a polynucleotide comprising at least 15 nucleotides complementary to the nucleotide sequence of SEQ ID NO: 19 or a complementary strand thereof is a human NR10.4, NR10.5, NR10.6, NR10.7, or NR10.8 It is useful for detecting or isolating a gene containing an exon that is specific to E. coli. In addition, a polynucleotide comprising at least 15 nucleotides complementary to the nucleotide sequence of SEQ ID NO: 22 or its complementary strand is useful for detecting or isolating a gene containing exon specific to human NR10.5 It is.
このようなポリヌクレオチドには、 本発明の蛋白質をコ一ドする DNAの検出や 増幅に用いるプローブやプライマ一、 該 DNAの発現を検出するためのプロ一ブゃ プライマ一、 本発明の蛋白質の発現を制御するためのヌクレオチドまたはヌクレ ォチド誘導体 (例えば、 アンチセンスオリゴヌクレオチドやリポザィム、 または これらをコードする DNA等) が含まれる。 また、 このようなポリヌクレオチドは 、 DNAチップやマイクロアレイの作製に利用することもできる。 本発明のポリヌ クレオチドには、 DNAおよび RNAが含まれる。 また、 センスヌクレオチドおよびァ ンチセンスヌクレオチドが含まれる。  Such polynucleotides include probes and primers used for detection and amplification of DNA encoding the protein of the present invention, probe primers for detecting expression of the DNA, and proteins of the present invention. A nucleotide or a nucleotide derivative for controlling expression (for example, an antisense oligonucleotide or a lipozyme, or a DNA encoding the same) is included. Such a polynucleotide can also be used for producing a DNA chip or a microarray. The polynucleotide of the present invention includes DNA and RNA. It also includes sense nucleotides and antisense nucleotides.
アンチセンスオリゴヌクレオチドとしては、 例えば、 配列番号: 3、 5、 7、 9、 1 1、 1 3、 1 5、 または 1 7の塩基配列中のいずれかの箇所にハイブリダ ィズするァンチセンスォリゴヌクレオチドが含まれる。 このアンチセンスオリゴ ヌクレオチドは、 好ましくは配列番号: 3、 5、 7、 9、 1 1、 1 3、 1 5、 ま たは 1 7の塩基配列中の連続する少なくとも 15個以上のヌクレオチドに対する アンチセンスオリゴヌクレオチドである。 さらに好ましくは、 連続する少なくと も 15個以上のヌクレオチドが翻訳開始コドンを含むァンチセンスオリゴヌクレ 才チドである。 Antisense oligonucleotides include, for example, antisense oligonucleotides that hybridize at any position in the nucleotide sequence of SEQ ID NO: 3, 5, 7, 9, 11, 13, 15, or 17 Nucleotides. This antisense oligonucleotide preferably has a nucleotide sequence of at least 15 or more consecutive nucleotides in the nucleotide sequence of SEQ ID NO: 3, 5, 7, 9, 11, 13, 15, or 17. It is an antisense oligonucleotide. Even more preferably, it is an antisense oligonucleotide in which at least 15 or more consecutive nucleotides contain a translation initiation codon.
プライマーとして用いる場合、 3'側の領域は相補的とし、 5'側には制限酵素認 識配列やタグなどを付加することができる。  When used as a primer, the 3 ′ region can be complementary, and a restriction enzyme recognition sequence, a tag, or the like can be added to the 5 ′ region.
ァンチセンスォリゴヌクレオチドとしては、 それらの誘導体や修飾体を使用す ることができる。 修飾体として、 例えばメチルホスホネート型又はェチルホスホ ネート型のような低級アルキレホスホネ一ト修飾体、 ホスホロチォエート修飾体 又はホスホロアミデート修飾体等が挙げられる。  As the antisense oligonucleotide, derivatives and modifications thereof can be used. Examples of the modified product include a modified lower alkylene phosphonate such as a methylphosphonate type or an ethylphosphonate type, a phosphorothioate modified product or a phosphoroamidate modified product.
アンチセンスオリゴヌクレオチドは、 DNA又は mRNAの所定の領域を構成するヌ クレオチドに対応するヌクレオチドが全て相補配列であるもののみならず、 DNA または mRNAとオリゴヌクレオチドとが己列番号: 3、 5、 7、 9、 1 1、 1 3、 1 5、 または 1 7に示される塩基配列に特異的に八イブリダィズできる限り、 1 又は複数個のヌクレオチドのミスマッチが 在していてもよい。  Antisense oligonucleotides include not only those in which all nucleotides corresponding to nucleotides constituting a predetermined region of DNA or mRNA are complementary sequences, but also those in which DNA or mRNA and oligonucleotides have their own sequence numbers: 3, 5, 7 , 9, 11, 13, 15 or 17 may have a mismatch of one or more nucleotides as long as the nucleotide sequence can be specifically hybridized to the nucleotide sequence.
本発明のアンチセンスオリゴヌクレオチド誘導体は、 本発明の蛋白質の産生細 胞に作用して、 該蛋白質をコードする DNAまたは mRNAに結合することにより、 そ の転写または翻訳を阻害したり、 mRNAの^^を促進したりして、 本発明の蛋白質 の発現を抑制することにより、 結果的に本発明の蛋白質の作用を抑制する効果を 有する。  The antisense oligonucleotide derivative of the present invention acts on a cell producing the protein of the present invention and binds to DNA or mRNA encoding the protein, thereby inhibiting its transcription or translation or inhibiting the mRNA. By promoting ^ and suppressing the expression of the protein of the present invention, it has the effect of suppressing the action of the protein of the present invention.
本発明のアンチセンスオリゴヌクレオチド誘導体は、 それらに対して不活性な 適当な基剤と混和して塗布剤、 パッフ 等の外用剤とすることができる。  The antisense oligonucleotide derivative of the present invention can be mixed with a suitable base material that is inactive against the derivative to form an external preparation such as a coating agent or a puff.
また、 必要に応じて、 賦形剤、 等張化剤、 溶解補助剤、 安定化剤、 防腐剤、 無 痛化剤等を加えて錠剤、 散財、 顆粒剤、 カプセル剤、 リボソームカプセル剤、 注 射剤、 液剤、 点鼻剤など、 さらに凍結乾燥剤とすることができる。 これらは常法 にした力つて調製することができる。  If necessary, excipients, isotonic agents, solubilizing agents, stabilizers, preservatives, soothing agents, etc. may be added to tablets, splinters, granules, capsules, ribosome capsules, It can be a lyophilized agent such as a propellant, a liquid, a nasal drop and the like. These can be prepared using conventional techniques.
本発明のアンチセンスオリゴヌクレオチド誘導体は患者の患部に直接適用す るか、 または血管内に投与するなどして結果的に患部に到達し得るように患者に 適用する。 さらには、 持続性、 膜透過性を高めるアンチセンス封入素材を用いる こともできる。 例えば、 リボソーム、 ポリ- L-リジン、 リピッド、 コレステロ一 ル、 リポフエクチンまたはこれらの誘導体が挙げられる。 The antisense oligonucleotide derivative of the present invention is applied directly to the affected area of a patient. Or applied to the patient so that it can eventually reach the affected area, such as by intravenous administration. Furthermore, an antisense-encapsulated material that enhances durability and membrane permeability can be used. For example, ribosome, poly-L-lysine, lipid, cholesterol, lipofectin or derivatives thereof can be mentioned.
本発明のアンチセンスオリゴヌクレオチド誘導体の投与量は、 患者の状態に応 じて適宜調整し、 好ましい量を用いることができる。 例えば、 0. 1〜100mg/kg、 好ましくは 0. l〜50mg/kgの範囲で投与することができる。  The dosage of the antisense oligonucleotide derivative of the present invention can be appropriately adjusted according to the condition of the patient, and a preferred amount can be used. For example, it can be administered in the range of 0.1 to 100 mg / kg, preferably 0.1 to 50 mg / kg.
本発明のアンチセンスオリゴヌクレオチドは本発明の蛋白質の発現を阻害し、 従って本発明の蛋白質の生物学的活性を抑制することにおいて有用である。 また 、 本発明のアンチセンスオリゴヌクレオチドを含有する発現阻害剤は、 本発明の 蛋白質の生物学的活性を抑制することが可能である点で有用である。  The antisense oligonucleotide of the present invention inhibits the expression of the protein of the present invention and is therefore useful in suppressing the biological activity of the protein of the present invention. Further, the expression inhibitor containing the antisense oligonucleotide of the present invention is useful in that it can suppress the biological activity of the protein of the present invention.
本発明の蛋白質は、 これに結合する化合物のスクリーニングに有用である。 す なわち、 本発明の蛋白質と、 該蛋白質に結合する化合物を含むと予想される被験 試料とを接触せしめ、 本発明の蛋白質と被検試料に含まれる化合物との結合活性 を検出し、 そして本発明の蛋白質に結合する活性を有する化合物を選択する、 こ とからなる本発明の蛋白質に結合する化合物をスクリーニングする方法におい て使用される。  The protein of the present invention is useful for screening for a compound that binds to the protein. That is, the protein of the present invention is brought into contact with a test sample expected to contain a compound that binds to the protein, the binding activity between the protein of the present invention and the compound contained in the test sample is detected, and It is used in a method for screening a compound that binds to the protein of the present invention, which comprises selecting a compound having an activity of binding to the protein of the present invention.
スクリ一ニングに用いられる本発明の蛋白質は組換え蛋白質であっても、 天然 由来の蛋白質であってもよい。 また上記本発明の蛋白質の部分べプチドであって もよい。 また細胞表面に発現させた形態、 または膜画分としての形態であっても よい。 被検試料としては特に制限はなく、 例えば被検化合物を含む任意の試料を 用いることができる。 具体的には、 例えば、 細胞抽出物、 細胞培養上清、 発酵微 生物産生物、 海洋生物抽出物、 植物抽出物、 精製若しくは粗精製蛋白質、 ぺプチ ド、 非ペプチド性化合物、 合成低肝化合物、 天謝匕合物が挙げられる。 被検試 料を接触させる本発明の蛋白質は、 例えば、 精製した蛋白質として、 可溶型蛋白 質として、 担体に結合させた形態として、 他の蛋白質との融合蛋白質として、 細 上に発現させた形態として、 また、 膜画分として被検試料に ¾ させること ができる。 The protein of the present invention used for screening may be a recombinant protein or a naturally-derived protein. It may also be a partial peptide of the protein of the present invention. It may also be in a form expressed on the cell surface or as a membrane fraction. The test sample is not particularly limited, and for example, any sample containing a test compound can be used. Specifically, for example, cell extracts, cell culture supernatants, fermented microbial products, marine organism extracts, plant extracts, purified or crudely purified proteins, peptides, non-peptide compounds, synthetic low liver compounds , And Tenshodarigo. The protein of the present invention to be brought into contact with a test sample may be, for example, a purified protein, a soluble protein, a form bound to a carrier, a fusion protein with another protein, As a form expressed above, it can be applied to a test sample as a membrane fraction.
本発明の蛋白質を用いて、 例えば該蛋白質に結合する蛋白質 (リガンド等) を スクリ一二ングする方法としては、 当業者に公知の多くの方法を用いることが可 能である。 このようなスクリーニングは、 例えば、 沈降法により行うことが できる。 具体的には、 以下のように行うことができる。 本発明の蛋白質をコード する遺伝子を、 pSV2neo、 pcDNA I、 pCD8などの外来遺伝子発現用のベクターに 挿入することで動物細胞などで当該遺伝子を発現させる。 発現に用いるプロモー 夕一としては SV40 early promoter (Rigby In Wi l l iamson ½d. ) , Genet ic Engineer ing, Vol. 3. Academic Press, London, p. 83-141 (1982) )、 EF-1 promoter (Kim, D. M. et al. (1990) Gene 91, 217 - 223)、 CAG promoter (Niwa, H. et al. (1991) Gene 108, 193 - 200)、 RSV LTR promoter (Cul l en, B. R. (1987) Methods in Enzymology 152, 684-704) , SR a promoter (Takebe, Y. et al. (1988) Mol . Cel l. Biol . 8, 466-472) , CMV immediate early promoter (Seed, B. and Aruffo, A. (1987) Proc. Nat l. Acad. Sci. USA 84, 3365-3369) , SV40 late promoter (Gheysen, D. and Fiers, . (1982) J. Mol. Appl. Genet. 1, 385-394 )、 Adenovirus late promoter (Kaufman, R. J. et al. (1989) Mol. Cel l. Biol. 9, 946-958)、 HSV TK promoter等の一般的に使用できるプロモ一夕一であれば 何を用いてもよい。  As a method for screening a protein (ligand or the like) binding to the protein using the protein of the present invention, for example, many methods known to those skilled in the art can be used. Such screening can be performed, for example, by a sedimentation method. Specifically, it can be performed as follows. By inserting the gene encoding the protein of the present invention into a vector for expressing a foreign gene such as pSV2neo, pcDNAI, or pCD8, the gene is expressed in animal cells or the like. The promoters used for expression include the SV40 early promoter (Rigby In Williamson ½d.), Genetic Engineering, Vol. 3.Academic Press, London, p. 83-141 (1982)) and the EF-1 promoter ( Kim, DM et al. (1990) Gene 91, 217-223), CAG promoter (Niwa, H. et al. (1991) Gene 108, 193-200), RSV LTR promoter (Cul en, BR (1987)) Methods in Enzymology 152, 684-704), SR a promoter (Takebe, Y. et al. (1988) Mol. Cel l. Biol. 8, 466-472), CMV immediate early promoter (Seed, B. and Aruffo, A. (1987) Proc. Natl. Acad. Sci. USA 84, 3365-3369), SV40 late promoter (Gheysen, D. and Fiers,. (1982) J. Mol. Appl. Genet. 1, 385-394. ), Adenovirus late promoter (Kaufman, RJ et al. (1989) Mol. Cell. Biol. 9, 946-958), HSV TK promoter, and other commonly used promoters. Is also good.
動物細胞に遺伝子を導入することで外来遺伝子を発現させるためには、 エレク トロポレーシヨン法 (Chu, G. et al. (1987) Nucleic Acid Res. 15, 1311-1326 )、 リン酸カルシウム法 (Chen, C and Okayama, H. (1987) MoL Cel l. Biol. 7, 2745 - 2752)、 DEAEデキストラン法 (Lopata, M. A. et al. (1984) Nucleic Acids Res. 12, 5707-5717 ; Sussman, D. J. and Mi lman, G. (1985) Mol. Cel l. Biol. 4, 1642-1643) ,リポフエクチン法 (Derij ard, B. (1994) Cel l 7, 1025-1037; Lamb, B. T. et al. (1993) Nature Genet ics 5, 22-30; Rabindran, S. K. et al. (1993) Science 259, 230-234) 等の方法があるが、 いずれの方法によってもよい。 特異 性の明らかとなっているモノクローナル抗体の認識部位 (ェピトーフ。) を本発明 の蛋白質の N末または C末に導入することにより、 モノク口一ナル抗体の認識部位 を有する融合蛋白質として本発明の蛋白質を発現させることができる。 用いるェ ピトープ一抗体系としては市販されているものを利用することができる (実験医 学 , 85-90 (1995))。 マルチクローニンダサイトを介して、 )8—ガラクトシダ ーゼ、 マルトース結合蛋白質、 ダル夕チオン S-トランスフェラーゼ、 緑色蛍光 蛋白質 (GFP) などとの融合蛋白質を発現することができるベクターが市販され ている。 In order to express a foreign gene by introducing the gene into animal cells, the electroporation method (Chu, G. et al. (1987) Nucleic Acid Res. 15, 1311-1326) and the calcium phosphate method (Chen, C and Okayama, H. (1987) MoL Cel l. Biol. 7, 2745-2752), DEAE dextran method (Lopata, MA et al. (1984) Nucleic Acids Res. 12, 5707-5717; Sussman, DJ and Milman, G. (1985) Mol. Cel l. Biol. 4, 1642-1643), lipofectin method (Derijard, B. (1994) Cel l 7, 1025-1037; Lamb, BT et al. (1993) Nature Genetics 5, 22-30; Rabindran, SK et al. (1993) Science 259, 230-234), but any of these methods may be used. By introducing a recognition site (epitof) of a monoclonal antibody whose specificity is known to the N-terminus or C-terminus of the protein of the present invention, a fusion protein having a recognition site of a monoclonal antibody of the present invention can be obtained. The protein can be expressed. As the epitope-antibody system to be used, commercially available ones can be used (Experimental Medicine, 85-90 (1995)). Vectors capable of expressing a fusion protein with 8-galactosidase, maltose-binding protein, daltuthione S-transferase, green fluorescent protein (GFP), and the like via a multicloninda site are commercially available.
融合蛋白質にすることにより本発明の蛋白質の性質をできるだけ変ィ匕させな いようにするために、 数個から十数個のアミノ酸からなる小さなェピ! ^一プ部分 のみを導入して、 融合蛋白質を調製する方法も報告されている。 例えば、 ポリヒ スチジン (His- tag)、 インフルエンザ凝集素 HA、 ヒト c- myc、 FLAG, Vesicular s tomat i t is ウィルス糖蛋白質 (VSV- GP)、 T7 genelO蛋白質 (T7- tag)、 ヒト単 純へルぺスウィルス糖蛋白質 (HSV- tag)、 E-tag (モノクローナルファ一ジ上の ェピトーフ。) などのェピトープとそれを認識するモノクローナル抗体を、 本発明 の蛋白質に結合する蛋白質のスクリーニングのためのェピトーブー抗体系とし て利用できる (実験医学 1 85-90 (1995))。  In order to minimize the properties of the protein of the present invention by changing it into a fusion protein, a small peptide consisting of several to a dozen or so amino acids! Methods for preparing fusion proteins have also been reported. For example, polyhistidine (His-tag), influenza agglutinin HA, human c-myc, FLAG, vesicular s tomat it is viral glycoprotein (VSV-GP), T7 genelO protein (T7-tag), human simple herb Epitopes such as virus virus glycoproteins (HSV-tags) and E-tags (epitopes on a monoclonal phage) and a monoclonal antibody recognizing them can be used for screening proteins that bind to the protein of the present invention. It can be used as an antibody system (Experimental Medicine 185-90 (1995)).
免疫沈降においては、 これらの抗体を、 適当な界面活性剤を禾棚して調製した 細胞溶解液に添加することにより^ $複合体を形成させる。 この;^複合体は本 発明の蛋白質、 それと結合能を有する蛋白質、 および抗体からなる。 上記ェピト ープに対する抗体を用いる以外に、 本発明の蛋白質に対する抗体を利用して免疫 沈降を行うことも可能である。 本発明の蛋白質に対する抗体は、 例えば、 本発明 の蛋白質をコードする遺伝子を適当な大腸菌発現ベクターに導入して大腸菌内 で発現させ、 発現させた蛋白質を精製し、 これをゥサギやマウス、 ラット、 ャギ 、 ニヮトリなどに免疫することで調製することができる。 また、 合成した本発明 の蛋白質の部分べプチドを上記の動物に免疫することによって調製することも できる。 In immunoprecipitation, these antibodies are added to a cell lysate prepared with appropriate surfactants to form a ^ $ complex. This; ^ complex comprises the protein of the present invention, a protein capable of binding thereto, and an antibody. In addition to using antibodies against the above-mentioned epitopes, immunoprecipitation can also be performed using antibodies against the protein of the present invention. Antibodies against the protein of the present invention include, for example, a gene encoding the protein of the present invention introduced into an appropriate E. coli expression vector, expressed in E. coli, and the expressed protein is purified. It can be prepared by immunizing goats and chickens. In addition, the synthesized present invention It can also be prepared by immunizing the above animal with a partial peptide of the above protein.
避複合体は、例えば、抗体がマウス IgG抗体であれば、 Protein A Sepharose や Protein G Sepharoseを用いて沈降させることができる。 また、 本発明の蛋白 質を、 例えば、 GSTなどのェピトープとの融合蛋白質として調製した場合には、 ダルタチオン- Sepharose 4Bなどのこれらェピトープに特異的に結合する物質を 利用して、 本発明の蛋白質の抗体を利用した場合と同様に、 免疫複合体を形成さ せることができる。  For example, if the antibody is a mouse IgG antibody, the escape complex can be precipitated using Protein A Sepharose or Protein G Sepharose. When the protein of the present invention is prepared, for example, as a fusion protein with an epitope such as GST, the protein of the present invention can be prepared using a substance that specifically binds to these epitopes such as daltathione-Sepharose 4B. An immune complex can be formed as in the case of using the above antibody.
避沈降の 的な方法については、 例えば、 文献 (Harlow, E. and Lane, D.: Ant ibodies, pp. 511-552, Cold Spring Harbor Laboratory publ icat ions, New York (1988) ) 記載の方法に従って、 または準じて行えばよい。  The specific method of evacuation is described, for example, in accordance with the method described in the literature (Harlow, E. and Lane, D .: Ant ibodies, pp. 511-552, Cold Spring Harbor Laboratory publicat ions, New York (1988)). , Or according to it.
沈降された蛋白質の解析には SDS- PAGEが一般的であり、 適当な濃度のゲル を用いることで結合していた蛋白質を蛋白質の分子量により解析することがで きる。 また、 この際、 一般的には本発明の蛋白質に結合した蛋白質は、 クマシ一 染色や銀染色といつた蛋白質の通常の染色法では検出することは困難であるの で、放射性同位元素である35 S-メチォニンや35 S-システィンを含んだ培養液で細胞 を培養し、 該細胞内の蛋白質を標識して、 これを検出することで検出感度を向上 させることができる。 蛋白質の^量が判明すれば直接 SDS-ポリアクリルアミド ゲルから目的の蛋白質を精製し、 その配列を決定することもできる。 SDS-PAGE is generally used to analyze precipitated proteins, and the bound proteins can be analyzed based on the molecular weight of the proteins by using an appropriate concentration gel. In this case, the protein bound to the protein of the present invention is generally a radioisotope, since it is difficult to detect the protein by ordinary staining methods such as Kumashi staining and silver staining. 35 S- cells were cultured in Mechionin or culture medium containing 35 S- cysteine and labeled proteins in said cell, it is possible to improve the detection sensitivity by detecting this. Once the amount of protein is known, the target protein can be purified directly from SDS-polyacrylamide gel and sequenced.
また、 本発明の蛋白質を用いた、 これに結合する蛋白質の単離は、 例えば、 ゥ エストウエスタンブロッテイング法 (Skolnik, E. Y. et al. (1991) Cel l 65, 83-90) を用いて行うことができる。 すなわち、 本発明の蛋白質と結合する結合 蛋白質を発現していることが予想される細胞、 編戠、 よりファージベクタ一 Isolation of a protein binding thereto using the protein of the present invention is carried out, for example, using the ウ エ ス タ ン western blotting method (Skolnik, EY et al. (1991) Cell 65, 83-90). be able to. That is, cells that are expected to express a binding protein that binds to the protein of the present invention,
(A gtll, ZAPなど) を用いた cDNAライブラリーを作製し、 これを LB-ァガロース 上で発現させ、 フィルターに発現させた蛋白質を固定し、 精製して標識した本発 明の蛋白質と上記フィルターとを反応させ、 本発明の蛋白質と結合した蛋白質を 発現するプラークを標識により検出すればよい。 本発明の蛋白質を標識する方法 としては、 ピオチンとアビジンの結合性を利用する方法、 本発明の蛋白質または 本発明の蛋白質に融合したペプチドまたはポリペプチド (例えば GSTなど) に特 異的に結合する抗体を利用する方法、 ラジオァイソトープを利用する方法または 蛍光を利用する方 が挙げられる。 (Agtll, ZAP, etc.) to prepare a cDNA library, express it on LB-agarose, fix the expressed protein on a filter, purify and label the protein of the present invention and the above filter. And reacting the protein with the protein of the present invention. The expressed plaque may be detected by a label. Examples of the method for labeling the protein of the present invention include a method using the binding property of biotin and avidin, and a method of specifically binding to the protein of the present invention or a peptide or polypeptide (eg, GST or the like) fused to the protein of the present invention. Examples include a method using an antibody, a method using a radioisotope, and a method using fluorescence.
また、 本発明のスクリーニング方法の他の態様としては、 細胞を用いた 2-八 イブリツドシステム (Fields, S., and Sternglanz, . (1994) Trends Genet. 10, 286-292 ; Dal ton S, and Treisman R (1992) Characterizat ion of SAP-1, a protein recrui ted by serum response factor to the c-fos serum response element, Cel l 68, 597—612、 「霞 CHMAKER Two-Hybrid System」、 「 Mammal ian MATCHMAKER Two-Hybrid Assay Ki t」、 「MATCHMAKER One-Hybrid Sys temJ (いずれも Clontech 社製); rHybriZAP Two-Hybrid Vector Sys temJ (Stratagene社製)) を用いて行 う方法が挙げられる。 2-ハイブリッドシステムにおいては、 本発明の蛋白質また はその部分ペプチドを SRF DNA結合領域または GAL4画 A結合領域等と融合させて 酵母細胞の中で発現させ、 本発明の蛋白質と結合する蛋白質を発現していること が予想される細胞より、 VP16または GAL4転 舌性化領域等と融合する形で発現す るような cDNAライブラリ一を作製し、 これを上記酵母細胞に導入し、 検出された 陽性ク口一ンからライブラリ一由来 cDNAを単離する (酵母細胞内で本発明の蛋白 質と結合する蛋白質が発現すると、 両者の結合によりレポーター遺伝子が活性化 され、 陽性のクローンが確認できる)。 単離した cDNAを大腸菌に導入して発現さ せることにより、 該 cDNAがコードする蛋白質を得ることができる。 これにより本 発明の蛋白質に結合する蛋白質またはその遺伝子を調製することが可能である。 2 -八イブリッドシステムにおいて用いられるレポーター遺伝子としては、 例えば 、 HIS3遺伝子の他、 Ade2遺伝子、 LacZ遺伝子、 CAT遺伝子、 ルシフェラ一ゼ遺伝 子、 PAI-1 (Plasminogen act ivator inhibi tor typel) 遺伝子等力挙げられるが 、 これらに制限されない。 2ハイブリッド法によるスクリーニングは、 酵母の他 、 哺乳動物細胞などを使って行うこともできる。 In addition, as another embodiment of the screening method of the present invention, a 2--8 hybrid system using cells (Fields, S., and Sternglanz,. (1994) Trends Genet. 10, 286-292; Dalton S, and Treisman R (1992) Characterization of SAP-1, a protein recruited by serum response factor to the c-fos serum response element, Cel l 68, 597-612, `` Kasumi CHMAKER Two-Hybrid System '', `` Mammalian MATCHMAKER Two-Hybrid Assay Kit ”and“ MATCHMAKER One-Hybrid SystemJ (all manufactured by Clontech); rHybriZAP Two-Hybrid Vector SystemJ (Stratagene). ”2-Hybrid In the system, the protein of the present invention or a partial peptide thereof is fused with an SRF DNA binding region, a GAL4 fragment A binding region, or the like, and expressed in yeast cells to express a protein that binds to the protein of the present invention. VP16 or GAL4 translocation region A cDNA library that can be expressed in a form fused with E. coli, etc., is prepared, introduced into the above yeast cells, and the cDNA derived from the library is isolated from the detected positive clonal cells. When a protein that binds to the protein of the present invention is expressed, the binding of the two activates the reporter gene, and a positive clone can be confirmed.) By introducing the isolated cDNA into Escherichia coli and expressing it, the cDNA can be expressed. Thus, a protein that binds to the protein of the present invention or a gene thereof can be prepared by using the HIS3 gene in addition to the HIS3 gene. , Ade2 gene, LacZ gene, CAT gene, luciferase gene, PAI-1 (Plasminogen act ivator inhibitor typel) gene, etc. Not limited to these. Screening by the two-hybrid method is not only for yeast It can also be performed using mammalian cells and the like.
本発明の蛋白質と結合する蛋白質のスクリーニングは、 ァフィ二テイクロマト グラフィーを用いて行うこともできる。 例えば、 本発明の蛋白質をァフィ二ティ 一力ラムの担体に固定し、 ここに本発明の蛋白質と結合する蛋白質を発現してい ることが予想される被検試料を適用する。 この場合の被検試料としては、 例えば 細胞抽出物、 細胞溶解物等が挙げられる。 被検試料を適用した後、 カラムを洗浄 し、 本発明の蛋白質に結合した蛋白質を調製することができる。  Screening for a protein that binds to the protein of the present invention can also be performed using affinity chromatography. For example, the protein of the present invention is immobilized on an affinity carrier, and a test sample which is expected to express a protein that binds to the protein of the present invention is applied thereto. The test sample in this case includes, for example, a cell extract, a cell lysate, and the like. After applying the test sample, the column is washed to prepare a protein bound to the protein of the present invention.
得られた蛋白質は、 そのアミノ酸配列を分析し、 それを基にオリ: iDNAを合成 し、 該 DNAをプローブとして cDNAライブラリ一をスクリ一二ングすることにより 、 該蛋白質をコードする DNAを得ることができる。  The obtained protein is analyzed for its amino acid sequence, and based on it, an ori: iDNA is synthesized, and the DNA encoding the protein is obtained by screening a cDNA library using the DNA as a probe. Can be.
本発明において、 結合した蛋白質を検出または測定する手段として表面プラズ モン共鳴現象を利用したバイオセンサーを使用することもできる。 表面ブラズモ ン共鳴現象を禾 IJ用したバイオセンサーは、 本発明の蛋白質と被検蛋白質との間の 相互作用を微量の蛋白質を用いてカゝっ標識することなく、 表面プラズモン共鳴シ グナルとしてリアルタイムに観察することが可能である (例えば BIAcore、 Pharmacia製)。 従って、 BIAcore等のバイオセンサ一を用いることにより本発明 の蛋白質と被検化合物との結合を Hffiすることが可能である。  In the present invention, a biosensor utilizing a surface plasmon resonance phenomenon can be used as a means for detecting or measuring the bound protein. The biosensor using the surface plasmon resonance phenomenon as an IJ is a real-time surface plasmon resonance signal without capping the interaction between the protein of the present invention and the test protein using a trace amount of protein. (For example, BIAcore, manufactured by Pharmacia). Therefore, it is possible to enhance the binding between the protein of the present invention and the test compound by using a biosensor such as BIAcore.
また、 蛋白質に限らず、 本発明の蛋白質に結合する化合物 (ァゴ二スト、 およ びアンタゴニストを含む) を単離する方法としては、 例えば、 固定した本発明の 蛋白質に、 合成化合物、 天然物バンク、 もしくはランダムファージペプチドディ スプレイライブラリ一を作用させ、 本発明の蛋白質に結合する^をスクリ一二 ングする方法や、 コンビナトリアルケミストリ一技術によるハイスループットを 用いたスクリーニング方法 (Wright on, N. C. et al. (1996) Smal l pept ides as potent mimet ics of the protein hormone erythropoietin, Science 273, 458-64; Verdine, G. L. (1996) The combinatorial chemistry of nature, Nature 384, 11-13 ; Hogan, J. C. Jr. (1996) Directed combinatorial chemistry, Nature 384, 17-19) が当業者に公知である。 Methods for isolating not only proteins but also compounds (including agonists and antagonists) that bind to the protein of the present invention include, for example, immobilized proteins of the present invention, synthetic compounds, and natural compounds. Method of screening ^ that bind to the protein of the present invention by using a product bank or a random phage peptide display library, and a screening method using high throughput by combinatorial chemistry technology (Wright on, NC et al. al. (1996) Smal l pept ides as potent mimetics of the protein hormone erythropoietin, Science 273, 458-64; Verdine, GL (1996) The combinatorial chemistry of nature, Nature 384, 11-13; Hogan, JC Jr. (1996) Directed combinatorial chemistry, Nature 384, 17-19) are known to those skilled in the art.
また、 本発明の蛋白質に結合するリガンドのスクリーニングは、 本発明の蛋白 質の細胞外ドメインと既知のシグナル伝達能を有するへモポェチン受容体蛋白 質の細胞膜貫通ドメインを含む細胞内ドメインとを連結せしめて作製したキメ ラ受容体を、 適当な細胞株、 好ましくは適当な増殖因子の存在下でのみ生存およ び増殖可能な細胞株 (増殖因子依存性細胞株) の細胞表面に発現せしめた後、 該 細胞株を種々の増殖因子、 サイト力イン、 または造血因子等を含むことが期待さ れる材料を添加して培養することにより実施可能である。 この方法は、 被検材料 中に本発明の蛋白質の細胞外ドメインと特異的に結合するリガンドが存在する 場合にのみ、 上記増殖因子依存性細胞株が生存および増殖が可能であることを利 用している。 既知のへモポェチン受容体としては、 例えば、 トロンポポェチン受 容体、 エリスロポエチン受容体、 G- CSF受容体、 gpl 30等が挙げられるが、 本発明 のスクリーニング系に用いるキメラ受容体のパートナーは、 これら既知のへモポ ェチン受容体に限定されるものではなく、 細胞質ドメインにシグナル伝達活性に 必要な構造を備えているものであれば何を用いても構わない。 増殖因子依存性細 胞株としては、 例えば、 BaF3や FDC-P1を初めとした IL3依存性細胞株を利用する ことが可能である。  Screening for a ligand that binds to the protein of the present invention comprises linking the extracellular domain of the protein of the present invention with the intracellular domain of the hemopoietin receptor protein having known signal transduction ability, including the transmembrane domain. Expressing the chimera receptor prepared above on the cell surface of a suitable cell line, preferably a cell line that can survive and proliferate only in the presence of a suitable growth factor (growth factor-dependent cell line). It can be performed by culturing the cell line with addition of a material expected to contain various growth factors, cytodynamic factors, hematopoietic factors, and the like. This method takes advantage of the fact that the above-mentioned growth factor-dependent cell line can survive and proliferate only when the test material contains a ligand that specifically binds to the extracellular domain of the protein of the present invention. are doing. Examples of known hemopoietin receptors include, for example, thrompopoietin receptor, erythropoietin receptor, G-CSF receptor, gpl30, and the like.Partners of the chimeric receptor used in the screening system of the present invention include those known It is not limited to the hemopoietin receptor, and any cytoplasmic domain having a structure necessary for signal transduction activity may be used. As a growth factor-dependent cell line, for example, an IL3-dependent cell line such as BaF3 or FDC-P1 can be used.
本発明の蛋白質と特異的に結合するリガンドとしては、 希ではあるが可溶性蛋 白質ではなく細 結合型蛋白質である可能性も想定される。 この様な場合には むしろ本発明の蛋白質の細胞外ドメインのみを含む蛋白質あるいは当該細胞外 ドメインに他の可溶性蛋白質の部分配列を付加した融合蛋白質を標識後、 リガン ドを発現していることが期待される細胞との結合を測定することによりスクリ 一二ングすることが可能である。 本発明の蛋白質の細胞外ドメインのみを含む蛋 白質としては、 例えば、 細^ 貫通ドメインの N端側に終止コドンを挿入するこ とにより人為的に作成した可溶性受容体蛋白質、 あるいは NR10. 7また ¾NR10. 8等 の可溶型蛋白質が利用可能である。 一方、 本発明の蛋白質の細 ドメインに他 の可溶性蛋白質の部分配列を付加した融合蛋白質としては、 例えば、 赚グロブ リンの Fc部位や FLAGぺプチド等を細胞外ドメインの C端に付カ卩して調製した蛋白 質が利用可能である。 これらの可溶性標識蛋白質は上述したウェストウエスタン 法における検出にも利用可能である。 The ligand that specifically binds to the protein of the present invention, though rare, may be a finely-coupled protein instead of a soluble protein. In such a case, it is rather preferable to express the ligand after labeling a protein containing only the extracellular domain of the protein of the present invention or a fusion protein obtained by adding a partial sequence of another soluble protein to the extracellular domain. It is possible to screen by measuring the expected binding to cells. The protein containing only the extracellular domain of the protein of the present invention includes, for example, a soluble receptor protein artificially prepared by inserting a stop codon at the N-terminal side of the fine transmembrane domain, or NR10.7 or可 Soluble proteins such as NR10.8 are available. On the other hand, in the fine domain of the protein of the present invention, As a fusion protein to which a partial sequence of the soluble protein is added, for example, a protein prepared by adding an Fc site of 赚 globulin or a FLAG peptide to the C-terminus of the extracellular domain can be used. These soluble labeled proteins can also be used for detection in the above-mentioned West Western method.
例えば、 本発明の蛋白質の細胞外領域と抗体 (例えばヒト IgG抗体) の Fc領域 とのキメラ蛋白質は、 プロテイン Aカラム等を用いて精製することができる。 こ のような抗体様キメラ蛋白質は、 リガンドの結合活性を有することから、 適宜、 放射†生同位元素等で標識した後、 リガンドのスクリ一二ングに用いることができ る (Suda, T. et al., Cel l, 175, 1169-1178 (1993))。 また、 TNFファミリ一分 子などのある種のサイトカインでは、 その多くが膜結合型でも: i¾することから 、 各種の細胞と抗イ機キメラ蛋白質を反応させて、 結合活性を示した細胞から、 リガンドを単離する事ができる可能性もある。 また、 cDNAライブラリ一を導入し た細胞を用いて同様にリガンドを単離することができる。 さらに、 抗体様キメラ 蛋白質をアンタゴニストとして用いることも可能である。  For example, a chimeric protein comprising the extracellular region of the protein of the present invention and the Fc region of an antibody (eg, a human IgG antibody) can be purified using a protein A column or the like. Since such an antibody-like chimeric protein has ligand-binding activity, it can be used for screening ligands after labeling with radioisotopes and the like as appropriate (Suda, T. et al.). al., Cell, 175, 1169-1178 (1993)). In addition, since certain cytokines such as TNF family molecules are also membrane-bound, i.e., they react with various cells and anti-a chimeric protein to show the binding activity. It may be possible to isolate the ligand. In addition, a ligand can be isolated in the same manner using cells into which the cDNA library has been introduced. Furthermore, an antibody-like chimeric protein can be used as an antagonist.
スクリーニングにより単離され得る化合物は、 本発明の蛋白質の活性を促進ま たは阻害するための薬剤の候補となり、 本発明の蛋白質の発現異常や機能異常な どに起因する疾患の治療への応用が考えられる。 本発明のスクリ一二ング方法を 用いて得られる、 本発明の蛋白質に結合する活性を有する化合物の構造の一部を 、 付加、 欠失及び Z又は置換により変換される物質も、 本発明のスクリーニング 方法を用いて得られる化合物に含まれる。  Compounds that can be isolated by screening become drug candidates for promoting or inhibiting the activity of the protein of the present invention, and are applicable to the treatment of diseases caused by abnormal expression or function of the protein of the present invention. Can be considered. The substance obtained by using the screening method of the present invention and having a part of the structure of the compound having the activity of binding to the protein of the present invention, which is converted by addition, deletion, Z or substitution, is also a substance of the present invention. It is included in the compounds obtained by using the screening method.
本発明のスクリ一ニング方法を用いて得られる化合物や本発明の蛋白質 (デコ ィ型 (可溶性型)) をヒトゃ動物、 例えばマウス、 ラット、 モルモット、'ゥサギ 、 ニヮトリ、 ネコ、 ィヌ、 ヒッジ、 ブ夕、 ゥシ、 サレ、 マントヒヒ、 チンパンジ 一の医薬として使用する場合には、 単離された化合物自体を直接患者に投与する 以外に、 公知の製剤学的方法により製剤ィ匕して投与を行うことも可能である。 例 えば、 必要に応じて糖衣を施した翻、 カプセル剤、 エリキシ 1 マイクロ力 プセル剤として経口的に、 あるいは水もしくはそれ以外の薬学的に許容し得る液 との無菌性溶液、 または懸濁液剤の注射剤の形で非経口的に使用できる。 例えば 、 薬理学上許容される担体もしくは媒体、 具体的には、 滅菌水や生理 «水、 植 物油、 乳化剤、 懸濁剤、 界面活性剤、 安定剤、 香味剤、 賦形剤、 べヒクル、 防腐 剤、 結合剤などと適: ¾且み合わせて、 一般に認められた製薬実施に要求される単 位用量形態で混和することによつて製剤化することが考えられる。 これら製剤に おける有効成分量は指示された範囲の適当な容量力得られるようにするもので ある。 Compounds obtained by the screening method of the present invention and proteins of the present invention (deco type (soluble type)) can be used in human animals, such as mice, rats, guinea pigs, 'herons', chickens, cats, dogs, and higgies. When used as a medicinal product, as a drug, it is not only that the isolated compound itself is administered directly to the patient, but also that it is administered in a well-known pharmaceutical manner. It is also possible to do. For example, sugar-coated as needed, capsules, elixir 1 micro force It can be used orally as a capsule or parenterally in the form of a sterile solution or suspension in water or other pharmaceutically acceptable liquid. For example, pharmacologically acceptable carriers or vehicles, specifically, sterile water or physiological water, vegetable oils, emulsifiers, suspending agents, surfactants, stabilizers, flavoring agents, excipients, vehicles It can be formulated by mixing with preservatives, binders, etc., in admixture in unit dosage form required for generally accepted pharmaceutical practice. The amount of the active ingredient in these preparations is such that an appropriate capacity within the specified range can be obtained.
錠剤、 カプセル剤に混和することができる添加剤としては、 例えばゼラチン、 コーンスターチ、 トラガントガム、 アラビアゴムのような結合剤、 結晶性セル口 —スのような賦形剤、 コーンスターチ、 ゼラチス アルギン酸のような膨化剤、 ステアリン酸マグネシウムのような潤滑剤、 ショ糖、 乳糖またはサッカリンのよ うな甘味剤、 ペパーミント、 ァカモノ油またはチェリ一のような香味剤が用いら れる。 調剤単位形態がカプセルである場合には、 上記の材料にさらに油脂のよう な夜状担体を含有することができる。 注射のための無菌組成物は注射用蒸留水の ようなべヒクルを用いて通常の製剤実施に従って処方することができる。  Additives that can be incorporated into tablets and capsules include, for example, binders such as gelatin, corn starch, tragacanth gum, gum arabic, excipients such as crystalline cellulose, corn starch, gelatinous alginic acid, and the like. Swelling agents, lubricants such as magnesium stearate, sweeteners such as sucrose, lactose or saccharin, and flavoring agents such as peppermint, cocoa oil or cellulose are used. When the unit dosage form is a capsule, the above materials may further contain a night carrier such as an oil or fat. Sterile compositions for injection can be formulated according to normal pharmaceutical practice using a vehicle such as distilled water for injection.
注射用の水溶液としては、 例えば生理滅水、 ブドウ糖やその他の補助薬を含 む等張液、 例え W¾ -ソルビトール、 D -マンノース、 D -マンニトール、 塩化ナトリ ゥムが挙げられ、 適当な溶解補助剤、 例えばアルコール、 具体的にはエタノール 、 ボリアルコール、 例えばプロピレングリコール、 ポリエチレングリコール、 非 イオン性界面活性剤、 例えばポリソルベート 80 (TM)、 HC0- 50と併用してもよい 油性液としてはゴマ油、 大豆油があげられ、 溶解補助剤として安息香酸 ル、 ベンジルアルコールと併用してもよい。 また、 緩衝剤、 例えばリン酸驢爰衝 液、 酢酸ナトリウム緩衝液、 無痛化剤、 例えば、 塩酸プロ力イン、 安定剤、 例え ばべンジルアルコール、 フエノール、 酸化防止剤と配合してもよい。 調製された 注射液は通常、 適当なアンフレに充填させる。 Aqueous injection solutions include, for example, physiologically sterile water, isotonic solutions containing glucose and other adjuvants, such as W-sorbitol, D-mannose, D-mannitol, sodium chloride. Oils, such as sesame oil, which may be used in combination with alcohols, for example, ethanol, polyalcohols, for example, propylene glycol, polyethylene glycol, nonionic surfactants, for example, polysorbate 80 (TM), HC0-50. And soybean oil, which may be used in combination with benzoic acid or benzyl alcohol as a solubilizing agent. It may also be combined with a buffer, for example, phosphate buffer, sodium acetate buffer, a soothing agent, for example, proforce hydrochloride, a stabilizer, for example, benzyl alcohol, phenol, or an antioxidant. . Prepared Injectables are usually filled into appropriate inflation.
患者への投与は、 例えば、 動脈内注射、 静脈内注射、 皮下注射などのほか、 鼻 腔内的、 経気管支的、 筋内的、 経皮的、 または経口的に当業者に の方法によ り行いうる。 投与量は、 患者の体重や年齢、 投与方法などにより変動するが、 当 業者であれば適当な投与量を適 択することが可能である。 また、 該化合物が DNAによりコードされうるものであれば、 該 DNAを遺伝子治療用ベクターに組込み 、 遺伝子治療を行うことも考えられる。 投与量、 投与方法は、 患者の体重や年齢 、 症状などにより変動するが、 当業者であれば適 ffl択することが可能である。 例えば、 本発明の蛋白質 (デコイ型 (可溶性型)) の投与量は、 その 1回投与量 は投与対象、 対象 fl 、 症状、 投与方法によっても異なるが、 例えば注射剤の形 では通常成人 (体重 60kgとして) においては、 1日あたり約 lOO gから 20 mg、 好 ましくは約 100 / gから 10 mgであると考えられる。  Administration to patients can be performed, for example, by intraarterial injection, intravenous injection, subcutaneous injection, etc., or intranasally, transbronchially, intramuscularly, transdermally, or orally by methods known to those skilled in the art. Can be done. The dose varies depending on the weight and age of the patient, the administration method, and the like, and those skilled in the art can select an appropriate dose. In addition, if the compound can be encoded by DNA, the DNA may be incorporated into a vector for gene therapy to perform gene therapy. The dose and administration method vary depending on the patient's weight, age, symptoms, and the like, and those skilled in the art can select an appropriate dose. For example, the dose of the protein of the present invention (decoy type (soluble type)) varies depending on the administration subject, subject fl, symptom, and administration method. (As 60 kg) would be considered to be about 100 g to 20 mg per day, preferably about 100 / g to 10 mg per day.
例えば、 本発明の蛋白質と結合する化合物や本発明の蛋白質の活性を阻害する ィ匕合物の投与量は、 症状により差異はあるが、 経口投与の場合、 HIS的に成人 ( 体重 60kgとして) においては、 1日あたり約 0. 1から 100mg、 好ましくは約 1. 0から 50mg、 より好ましくは約 1. 0から 20mgである。  For example, the dose of the compound that binds to the protein of the present invention or the dose of the compound that inhibits the activity of the protein of the present invention varies depending on the symptoms. , The amount is about 0.1 to 100 mg, preferably about 1.0 to 50 mg, more preferably about 1.0 to 20 mg per day.
非経口的に投与する場合は、 その 1回投与量は投与対象、 対象 S隨、 症状、 投 与方法によっても異なるが、 例えば注射剤の形では通常成人 (体重 60kgとして) においては、 1日あたり約 0. 01から 30mg、 好ましくは約 0. 1から 20mg、 より好まし くは約 0. 1から 10mg程度を静脈注射により投与するのが好都合である。 他の動物 の場合も、 体重 60kg当たりに換算した量、 あるいは体表面積あたりに換算した量 を投与することができる。 図面の簡単な説明  In the case of parenteral administration, the single dose varies depending on the subject, subject, symptoms, and administration method. For example, in the case of an injection, it is usually 1 day for an adult (with a body weight of 60 kg). It is convenient to administer about 0.01 to 30 mg, preferably about 0.1 to 20 mg, more preferably about 0.1 to 10 mg per iv. In the case of other animals, the dose can be administered in terms of the amount converted per 60 kg body weight or the amount converted per body surface area. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 ヒトゲノム角晰より検出した NI 0. 3の塩基配列を示す図である。 アミ ノ酸コ一ディンク ¾列を大文字で示し、 予測した非翻訳領域の塩基配列を小文字 で示した。 FIG. 1 is a diagram showing the nucleotide sequence of NI 0.3 detected from the human genome. Amino acid coding column ¾ The column is shown in uppercase, and the predicted untranslated nucleotide sequence is shown in lowercase. Indicated by
図 2は、 図 1の続きである。  FIG. 2 is a continuation of FIG.
図 3は、 ヒトゲノム角晰ょり検出した N 10. 3がコード可能なアミノ酸配列を 示す図である。  FIG. 3 is a view showing an amino acid sequence which can be encoded by N 10.3 detected in the human genome.
図 4は、 ヒトゲノム解析より検出した NR10. 4の塩基配列を示す図である。 予 測したアミノ酸コーディング領域の塩基配列を大文字で示した。 また、 予測した 非翻訳領域の塩基配列を小文字で示した。  FIG. 4 is a diagram showing the nucleotide sequence of NR10.4 detected by human genome analysis. The predicted nucleotide sequence of the amino acid coding region is shown in capital letters. The predicted nucleotide sequence of the untranslated region is shown in lower case.
図 5は、 図 4の続きである。  FIG. 5 is a continuation of FIG.
図 6は、 ヒトゲノム角科斤より検出した NR10. 4がコード可能なアミノ酸配列を 示す図である。  FIG. 6 is a diagram showing an amino acid sequence that can be encoded by NR10.4 and detected from the human genome.
図 7は、 ヒト末梢白血球 cDNAライブラリ一より単離した NR10. 4の塩基配列、 及びそれがコードするアミノ酸配列を示した図である。 また、 細刨莫貫通領域と 予測されたアミノ酸配列に下線を施した。  FIG. 7 is a diagram showing the nucleotide sequence of NR10.4 isolated from a human peripheral leukocyte cDNA library and the amino acid sequence encoded thereby. In addition, the amino acid sequence predicted to be the transmembrane region is underlined.
図 8は、 図 7の続きである。  FIG. 8 is a continuation of FIG.
図 9は、 図 8の続きである。  FIG. 9 is a continuation of FIG.
図 1 0は、 ヒト胸腺 cDNAライブラリーより単離した NR10. 5 の塩基配列、 及び それがコードするアミノ酸配列を示した図である。 また、 細 通領域と予測 されたアミノ酸配列に下線を施した。  FIG. 10 shows the nucleotide sequence of NR10.5 isolated from a human thymus cDNA library and the amino acid sequence encoded by it. In addition, the amino acid sequence predicted to be a penetrating region is underlined.
図 1 1は、 図 1 0の続きである。  FIG. 11 is a continuation of FIG. 10.
図 1 2は、 図 1 1の続きである。  FIG. 12 is a continuation of FIG. 11.
図 1 3は、 ヒト胸腺 cDNAライブラリーより単離した NR10. 6 の塩基配列、 及び それがコードするアミノ酸配列を示した図である。 また、 細^ S 貫通領域と予測 されたアミノ酸配列に下線を施した。  FIG. 13 shows the nucleotide sequence of NR10.6 isolated from a human thymus cDNA library and the amino acid sequence encoded by it. In addition, the amino acid sequence predicted as a fine ^ S penetrating region is underlined.
図 1 4は、 図 1 3の糸売きである。  Fig. 14 shows the yarn sales of Fig. 13.
図 1 5は、 図 1 4の続きである。  FIG. 15 is a continuation of FIG.
図 1 6は、 ヒト胸腺 cDMライブラリーより単離した NR10. 7の塩基配列、 及び それがコードするアミノ酸配列を示した図である。 Figure 16 shows the nucleotide sequence of NR10.7 isolated from the human thymus cDM library, and It is a figure showing the amino acid sequence encoded by it.
図 1 7は、 図 1 6の続きである。  FIG. 17 is a continuation of FIG.
図 1 8は、 図 1 7の続きである。  FIG. 18 is a continuation of FIG.
図 1 9は、 ヒト胸腺 cDNAライブラリーより単離した R10. 8の塩基配列、 及び それがコ一ドするアミノ酸配列を示した図である。  FIG. 19 shows the nucleotide sequence of R10.8 isolated from a human thymus cDNA library and the amino acid sequence encoded by it.
図 2 0は、 図 1 9の,続きである。  FIG. 20 is a continuation of FIG.
図 2 1は、 図 2 0の続きである。  FIG. 21 is a continuation of FIG.
図 2 2は、 ヒト各種臓器における NR10遺伝子発現様態を RT- PCR法によって角晰 した結果を示す写真である。 NR10の特異的な PCR増幅産物のサイズを矢印で示し た。  FIG. 22 is a photograph showing the results of RT-PCR of NR10 gene expression in various human organs. The size of the specific PCR amplification product of NR10 is indicated by an arrow.
図 2 3は、 ヒト各糊 β及びヒト末梢血の各 »球における NR10遺伝子発現様 態を RT-PCR法によつて解析した結果を示す写真である。  FIG. 23 is a photograph showing the results of analysis of the expression state of the NR10 gene in human glue β and human peripheral blood cells by RT-PCR.
図 2 4は、 Southern Blot t ingにより各種ヒト臓器における N 10の遺伝子発現 様態を定量角科斤した結果を示す写真である。検出した NR10の特異的なシグナルを 矢印で示した。  FIG. 24 is a photograph showing the results of quantitative analysis of N10 gene expression in various human organs by Southern blotting. The specific signal of NR10 detected is indicated by an arrow.
図 2 5は、 Southern Blot t ingにより各種ヒト臓器、 及びヒト末梢血の各種血 球における NR10の遺 発現様態を定¾科斤した結果を示す写真である。検出し た NR10の特異的なシグナルを矢印で示した。  FIG. 25 is a photograph showing the results of Southern blotting on the expression of NR10 in various human organs and various blood cells of human peripheral blood. Arrows indicate the specific signals of NR10 detected.
図 2 6は、 ヒト各種細胞株における 1 0遺伝子発現様態を解折した結果を示す 写真である。 RT - PCR法によってヒト各種細胞株における 10遺伝子発現様態を解 析した結果を示した (上パネル)。 さらに、 Southern Blot t ingによって定量角 斤 した結果を示した (中パネル)。 また、 上記 RT-PCR解析に铸型として用いた mRNA が、 各サンプル間で標準化されていることを G3PDHプライマ一セットを用いて確 認した (下パネル)。  FIG. 26 is a photograph showing the result of analyzing the expression of 10 genes in various human cell lines. The results of analysis of 10 gene expression patterns in various human cell lines by RT-PCR were shown (upper panel). In addition, the results of quantitative spinning by Southern blotting were shown (middle panel). In addition, it was confirmed using a set of G3PDH primers that the mRNA used as type III in the above RT-PCR analysis was standardized among the samples (lower panel).
図 2 7は、 哺乳動物細胞で発現可能なプラスミドベクターに構築した NR10がコ ードする、 発現可能な蛋白質の構造模式図を示す図である。 図 2 8は、 マウスゲノムデータベース検索より検出した niNRlOの塩基配列を示 す図である。 予測したェキソン領域の塩基配列を太字で示した。 また、 それがコ 一ド可能なアミノ酸配列を併記した。 FIG. 27 is a diagram showing a structural schematic diagram of an expressible protein encoded by NR10 constructed in a plasmid vector that can be expressed in mammalian cells. FIG. 28 shows the nucleotide sequence of niNRlO detected from a mouse genome database search. The predicted nucleotide sequence of the exon region is shown in bold. The amino acid sequences that can be encoded are also shown.
図 2 9は、 マウスゲノムデータベース検索において、 質問式に用いたヒト NR10.'4アミノ酸配列に対し、 陽性を示した盧10の塩基配列中、 予測したェキソ ンがコ一ド可能であったアミノ酸配列を比較した図である。  Figure 29 shows the amino acids that were predicted to be exonable in the Roh10 base sequence that showed a positive response to the human NR10.'4 amino acid sequence used in the query in the mouse genome database search. It is the figure which compared the sequence.
図 3 0は、 Balb/c精巣 cDNAライブラリ一より単離したマウス N 1 OBの塩基配列 、 及びそれがコードするアミノ酸配列を示した図である。 また、 細 β貫通領域 と予測されたアミノ酸配列に下線を施した。  FIG. 30 is a diagram showing the nucleotide sequence of mouse N 1 OB isolated from one Balb / c testis cDNA library and the amino acid sequence encoded thereby. Also, the amino acid sequence predicted as a fine β-penetrating region is underlined.
図 3 1は、 図 3 0の続きである。  FIG. 31 is a continuation of FIG. 30.
図 3 2は、 図 3 1の続きである。  FIG. 32 is a continuation of FIG. 31.
図 3 3は、 C57BL/6 day8. 5 embryo cDNAライブラリ一より単離したマウス NR10C の塩基配列、 及びそれがコードするアミノ酸配列を示した図である。 また、 細胞 膜貫通領域と予測されたアミノ酸配列に下線を施した。  FIG. 33 shows the nucleotide sequence of mouse NR10C isolated from a C57BL / 6 day8.5 embryo cDNA library and the amino acid sequence encoded thereby. The amino acid sequence predicted as a transmembrane region is underlined.
図 3 4は、 図 3 3の続きである。  FIG. 34 is a continuation of FIG. 33.
図 3 5は、 図 3 4の続きである。  FIG. 35 is a continuation of FIG.
図 3 6は、 ヒト NR10. 4の全長アミノ酸配列 (匿 10) と、 Balb/c精巣由来であ るマウス N 10Bの全長アミノ酸配列 (MNR10)を比較した図である。 共通するアミノ 酸はアスタリスクで示した。 細 貫通領域と予測された配列に下線を施した。 図 3 7は、 ヒト N 10における各種スプライシング変異体において多様性を示す 、 FN - I I Iより C末端部位のゲノム構造を模式的に記した図である。 ゲノム構造に おいてェキソン部位を四角で示した。 また、 ェキソン部位の中でも、 スプライシ ングによって連続するアミノ酸翻訳枠をコード可能な配列部位に色塗りを施し た。 発明を卖施するための最良の形態 次に、 本発明を実施例によりさらに具体的に説明するが、 本発明は下記実施例 に限定されるものではない。 なお、 本明細書において引用された文献はすべて、 本明細書の一部として組み込まれる。 FIG. 36 shows a comparison between the full-length amino acid sequence of human NR10.4 (hidden 10) and the full-length amino acid sequence of mouse N10B derived from Balb / c testis (MNR10). Common amino acids are indicated by an asterisk. The sequence predicted to be the penetrating region is underlined. FIG. 37 is a diagram schematically showing the genomic structure of the C-terminal region from FN-III, which shows diversity in various splicing variants of human N10. The exon site is indicated by a square in the genome structure. In addition, in the exon site, a sequence portion capable of encoding a continuous amino acid translation frame by splicing was colored. BEST MODE FOR CARRYING OUT THE INVENTION Next, the present invention will be described more specifically with reference to examples, but the present invention is not limited to the following examples. All documents cited in this specification are incorporated as a part of this specification.
[実施例 1 ] TblastN検索によるヒト N 10ゲノム配列の同定  [Example 1] Identification of human N10 genomic sequence by TblastN search
各種ヒトゲノム角 I斤機関によって、 精力的にヒトゲノム遺伝子配列の解読が推 進された結果、 ドラフト配列、 及び物理地図も殆ど編集完成に至っている。 実際 に GenBankデータべ一ス内においても、 全ヒトゲノム配列の約 90%以上がドラフ ト配列として既に されている。 しかしながら、 それら配列の羅列に規則性は 認められず、 今後の転写産物 (トランスクリプトーム) 角術や機能蛋白質 (プロ テオーム) 解析、 さらに SNP (—塩基変異多型) 解析が重要な課題であるとされ る (Nature, 1999, 402, p489-495 ; Nature, 2000, 405, p311- 319)。 本発明者 らはヒト N 10遺伝子をコ一ド可能な完全長ゲノム遺伝子を検出する Blas t検索を 実施した。 N 10. 3 (国際公開番号 TO00/75314) の全長アミノ酸配列を質問式と して用い、 検索対象として、 公的データベースの一つである GenBankデータべ一 ス内に整列化された、 htgs (High Throughput Genome Sequence ; ヒトゲノムド ラフトデータべ一ス) を選択した。 検索条件となるパラメ一夕は Expect値 =50、 Descr ipt i ons値 =100、 Al ignments値 =100を用いた。 また、 フィルタ一の設定は Defaul t値とした。 以上による Tblas tN (Advanced Tblas tN 2. 0. 13) プログラム を用いた検索の結果、 ヒト NR10. 3配列をコードし得る複数のヒト BACクローンが 検出された。 それら陽性クローンの中で、 最も未決定の塩基配列が少ないクロ一 ンを選定した。 その結果、 GenBank登録番号: AC022265 (ァクセッション番号: AC022265) 及び登録番号: AC008857 (ァクセッション番号: AC008857) の二つの ヒト BACクローンが選別可能であった。 ここで選別したヒト BACクローン配列を、 NR10ヒトゲノム陽性クローンとして、 下記に記す NR10ヒトゲノム構 科斤に提供 した。  As a result of vigorous decipherment of the human genome gene sequence by various human genome horns, the draft sequence and physical map have been almost completely edited. In fact, even in the GenBank database, about 90% or more of all human genome sequences are already used as draft sequences. However, there is no regularity in the arrangement of these sequences, and future transcript (transcriptome) keratotomy, functional protein (proteome) analysis, and SNP (base mutation polymorphism) analysis will be important issues. (Nature, 1999, 402, p489-495; Nature, 2000, 405, p311-319). The present inventors performed a Blast search to detect a full-length genomic gene capable of encoding the human N10 gene. Using the full-length amino acid sequence of N 10.3 (International Publication No.TO00 / 75314) as a query, htgs (sorted in the GenBank database, one of the public databases, was searched) High Throughput Genome Sequence; human genome draft database) was selected. Expect value = 50, Descriptions value = 100, and Alignments value = 100 were used as parameters for search conditions. The setting of the filter was set to the default value. As a result of the above search using the Tblas tN (Advanced Tblas tN 2.0.13) program, multiple human BAC clones capable of encoding the human NR10.3 sequence were detected. Among these positive clones, the clone having the least determined nucleotide sequence was selected. As a result, two human BAC clones, GenBank accession number: AC022265 (accession number: AC022265) and accession number: AC008857 (accession number: AC008857), could be selected. The human BAC clone sequence selected here was provided as an NR10 human genome positive clone to the NR10 human genome construct described below.
[実施例 2 ] NR10ヒトゲノム遺伝子の構»!斤 ヒト NR10遺伝子をコードし得る完全長ゲノム配列の構造解析を目的として、 上 記によって見出した BACクローンがコードするヒト NR10遺伝子のェキソン配列部 位の同定を試みた。 ェキソン部位の同定は、 前述の BACクローン AC022265 に対 しヒト NR10. 3の塩基配列を質問式とした BlastN (Advanced BlastN 2.0. 13) 検索 を 実施す る こ と で解決 し た 。 同検索 は NCBI サ ー バ ( http://www. ncbi. nlm. nih. gov/) 内のプログラムを利用し、 検索条件は全て Default値とした。 その結果、 ヒト NR10. 3遺伝子の 5'非翻訳領域、 及び polyA付カロ シグナルを含む 3' 非翻訳領域の全塩基配列を、 正方向にコード可能であること が検出された。 同様に BACクローン AC008857 に対する BlastN検索を実施する ことで上記検索結果の再検証を試みた。 その結果、 逆方向ではあるが、 AC022265 同様にヒト N 10. 3配列をコード可能であることが検出された。ところが、この BAC クローン AC008857においては、 NR10の C末端近傍における配列の相違によって、 ヒト NR10. 3配列のみならず、 新たなヒト服 lOniRNA配列をコ一ド可能であることが 予測された。 ここで検出し予測した新規配列を NR10.4と命名した。 ゲノム構 析の結果 NR10. 4は、 NR10. 3の最終ェキソンにスプライシングされる際のィントロ ンがスキップされず、 そのままアミノ酸翻訳枠が連続する。 そのため、 細胞内領 域が短くシグナル伝達機能を完全に保有しないと予測された NR10.3と比較する と、 C末端に長いアミノ酸翻訳枠をコード可能である。 さらに、 その NR10.4の細 胞内領域には三箇所のチロシン残基が存在するため、 細胞内シグナル伝達機能を 保有するものと予測可能であった。 因みに BACクローン AC008857がコード可能 であった NR10.4の塩基配列を、 BACクローン AC022265 はコードすることができ ない。 これは登録者の配列誤認であるものと考えられる。 ヒトゲノム配列の構造 角晰より検出した N 10. 3の塩基配列 (配列番号: 1 ) を図;!〜 2に示し、 それが コードする NR10. 3のアミノ酸配列 (配列番号: 2 ) を図 3に示す。 一方、 ヒトゲ ノム構^科斤より検出し予?則した NR10.4の塩基配列 (配列番号: 3) を図 4〜5 に示し、 それがコ一ドする NR10.4のアミノ酸配列 (配列番号: 4) を図 6に記し た。 N 10.4は NR10遺 の選択的スプライシングに起因する転写産物として存在 するものと予測可能であった。 そこで、 予測した NR10.4のアミノ酸翻訳開始コド ンの近傍に下流方向のオリ: iDNAプライマーを設計し、 他方 NR10.4の 3' 非翻訳領 域に上流方向のオリゴ DNAプライマ一を設計した。 これらプライマーセットを用 いた RT- PCRを実施することで、 NR10.4をコードする mRNAが正しく; i½をすること を証明可能であると考えた。 以上によって設計したオリゴヌクレオチドプライマ —は、 次項の条件によって合成、 及び精製を実施した。 [Example 2] Structure of NR10 human genome gene! For the purpose of structural analysis of a full-length genomic sequence capable of encoding the human NR10 gene, identification of the exon sequence of the human NR10 gene encoded by the BAC clone found above was attempted. The identification of the exon site was solved by conducting a BlastN (Advanced BlastN 2.0.13) search using the nucleotide sequence of human NR10.3 as a query in the aforementioned BAC clone AC022265. This search used programs in the NCBI server (http://www.ncbi.nlm.nih.gov/), and all search conditions were set to the default values. As a result, it was detected that the entire nucleotide sequence of the 5 ′ untranslated region of the human NR10.3 gene and the 3 ′ untranslated region including the caro signal with polyA can be encoded in the forward direction. Similarly, a BlastN search was performed on the BAC clone AC008857 to re-verify the search results. As a result, it was detected that the human N10.3 sequence could be encoded in the opposite direction as in AC022265. However, it was predicted that in the BAC clone AC008857, not only the human NR10.3 sequence but also a new human clothing lOniRNA sequence could be encoded due to the sequence difference near the C-terminus of NR10. The novel sequence detected and predicted here was named NR10.4. Genome analysis results In NR10.4, the intron during splicing to the final exon of NR10.3 is not skipped, and the amino acid translation frame continues as it is. Therefore, compared to NR10.3, which is predicted to have a short intracellular region and no signal transduction function, a long amino acid translation frame can be encoded at the C-terminus. Furthermore, the presence of three tyrosine residues in the intracellular region of NR10.4 was predicted to possess intracellular signal transduction. Incidentally, the BAC clone AC022265 cannot encode the nucleotide sequence of NR10.4 that could be encoded by BAC clone AC008857. This is considered to be misregistration of the registrant. Structure of human genome sequence Fig.1 shows the base sequence of N 10.3 (SEQ ID NO: 1) detected from lucidity! 2 and the amino acid sequence of NR10.3 (SEQ ID NO: 2) encoded by it is shown in FIG. On the other hand, is it expected to be detected from the human genome? The nucleotide sequence of NR10.4 (SEQ ID NO: 3) is shown in Figs. Was. N 10.4 could be expected to be present as a transcript due to alternative splicing of NR10. Thus, a downstream orientation: iDNA primer was designed near the predicted amino acid translation initiation codon of NR10.4, while an upstream oligo DNA primer was designed in the 3 'untranslated region of NR10.4. By performing RT-PCR using these primer sets, it was considered possible to prove that the mRNA encoding NR10.4 was correct; The oligonucleotide primer designed as described above was synthesized and purified under the following conditions.
[実施例 3] オリゴヌクレオチドプライマーの合成と精製  [Example 3] Synthesis and purification of oligonucleotide primer
前述の通り、 BACクローン配列内にェキソン部位を予測し、 その予測した配列 をもとに、 下記に示すヒト NR10.4遺伝子に特異的なオリゴヌクレオ  As described above, the exon site is predicted in the BAC clone sequence, and based on the predicted sequence, the following oligonucleotides specific to the human NR10.4 gene are shown.
—を設計した。 プライマーは、 センス側 (下流方向) に NIU0.4- METを、 また チセンス側 (上流方向) に NR10.4- UTRをそれぞれ合成した。 プライマーの合成に は、 ABI社の 394 DNA/R A Synthesizer を使用し、 5' -末端トリチル基付加条件に て実施した。 その後、 OPC column (ABI#400771) にて、 完全長の合成産物を精製 し後述の RT- PCR法に提供した。 — Designed. As primers, NIU0.4-MET was synthesized on the sense side (downstream direction) and NR10.4-UTR was synthesized on the sense side (upstream direction). Primers were synthesized using ABI 394 DNA / RA Synthesizer under the conditions of adding a 5'-terminal trityl group. Thereafter, the full-length synthetic product was purified using an OPC column (ABI # 400771) and provided to the RT-PCR method described later.
画. 4- MET (SN) (配列番号: 2 5) Picture. 4-MET (SN) (SEQ ID NO: 25)
5'一 CTG GGA ATG TGC ATC AGG CM CTC AAG—3' 5 'One CTG GGA ATG TGC ATC AGG CM CTC AAG—3'
NR10.4- UTR(AS) (配列番号: 2 6 ) NR10.4- UTR (AS) (SEQ ID NO: 26)
5'一 TTT TTT AGT AGT CM TGC AGT CTA AAT TGG GG -3' 5'One TTT TTT AGT AGT CM TGC AGT CTA AAT TGG GG -3 '
[実施例 4] RT- PCRクローニング法によるヒト NR10.4遺伝子の同定  [Example 4] Identification of human NR10.4 gene by RT-PCR cloning method
ヒト N 10.4の完全長コーディング配列 (CDS) を単離するために、 前記実施例 3の NR10.4- METプライマーをセンスプライマーに用い、 また、 NR10.4-UTRプライ マーをアンチセンスプライマ一として用いた RT-PCRクロ一ニング法を試みた。 錶 型として Human PBL (ヒト末梢白血球) 1st strand cDNA (Clontech#K142卜 1)を 使用し、 PCR実験には Advantage cDNA Polymerase Mix ( Clontech#8417-l )を 用いた。 PerMn Elmer Gene Amp PCR System 2400サ一マルサイクラ一を使用し 、 下記の PCR条件で実施した結果、 予測されたサイズを示す増幅産物が得られた 94。Cで 4分 To isolate the full-length coding sequence (CDS) of human N 10.4, the NR10.4-MET primer of Example 3 was used as a sense primer, and the NR10.4-UTR primer was used as an antisense primer. The RT-PCR cloning method used was tried. Human PBL (human peripheral leukocyte) 1st strand cDNA (Clontech # K142-1) was used as type Advantage, and Advantage cDNA Polymerase Mix (Clontech # 8417-l) was used for PCR experiments. Using a PerMn Elmer Gene Amp PCR System 2400 thermal cycler As a result of performing the PCR under the following PCR conditions, an amplification product having the expected size was obtained94. 4 minutes at C
[94°Cで 20秒、 62°Cで 10秒、 70°Cで 90秒] を 10サイクル  [20 seconds at 94 ° C, 10 seconds at 62 ° C, 90 seconds at 70 ° C] 10 cycles
[94°Cで 20秒、 60°Cで 10秒、 68°Cで 90秒] を 30サイクル  30 cycles of [20 seconds at 94 ° C, 10 seconds at 60 ° C, 90 seconds at 68 ° C]
72°Cで 3分  3 minutes at 72 ° C
4°Cにて終結  Terminates at 4 ° C
得られた PCR産物は、 pGEM-T Easy vector (Promega #A1360) にサブクロ一二 ングし、 塩基配列を決定した。 PCR産物の pGEM- T Easy vectorへの組換えは、 T4 DNA Ligase (Promega#A1360) によって、 16°C/2 hoursの反応をおこなった。 PCR 産物と pGEM-T Easy vectorの遺伝子組換え体は、 大腸菌株 DH5 o! (Toyobo#DNA- 903)を形質転換することによって得られた。 また、 遺伝子組換え体 の選別には、 Insert Check Ready Blue (Toyobo#PIK- 201)を用いた。 さらに、 塩 基配歹1 jの決定には、 BigDye Terminator Cycle Sequencing Ready React ion Ki t (ABI/Perkin Elmer #4303154)を使用し、 ABI PRISM 377 DNA Sequencer によつ て角晰をおこなった。 独立する 12クローンの遺伝子組換え体に対し、 全インサー ト断片の塩基配列を決定した結果、 特異的 PCR増幅反応に由来する NR10. 4遺伝子 配列が存在することを認めた。 さらに、 膜貫通領域を含む NR10. 4の完全長 CDSを コードし得る cDNAクローンの塩基配列を決定した。 決定した NI 0. 4の塩基配列 ( 配列番号: 5 )、 及びそれがコードするアミノ酸配列 (配列番号: 6 ) を図 7〜 9に示した。 The obtained PCR product was subcloned into pGEM-T Easy vector (Promega # A1360) and the nucleotide sequence was determined. For the recombination of the PCR product into the pGEM-T Easy vector, a reaction was performed at 16 ° C / 2 hours using T4 DNA Ligase (Promega # A1360). PCR products and recombinants of the pGEM-T Easy vector were obtained by transforming E. coli strain DH5 o! (Toyobo # DNA-903). In addition, Insert Check Ready Blue (Toyobo # PIK-201) was used for selecting the recombinants. Furthermore, the determination of the salt Motohai歹1 j uses the BigDye Terminator Cycle Sequencing Ready React ion Ki t (ABI / Perkin Elmer # 4303154), was subjected to angular晰Te ABI PRISM 377 DNA Sequencer Niyotsu. The nucleotide sequence of all the insert fragments was determined for 12 independent clones of the recombinant, and it was confirmed that the NR10.4 gene sequence derived from the specific PCR amplification reaction was present. Furthermore, the nucleotide sequence of a cDNA clone capable of encoding the full-length CDS of NR10.4 including the transmembrane region was determined. The determined base sequence of NI 0.4 (SEQ ID NO: 5) and the amino acid sequence encoded by it (SEQ ID NO: 6) are shown in FIGS.
[実施例 5 ] RT- PCR法によるヒ卜 NR10遺伝子スプライシング変異体の検索 ヒト NR10遺伝子をコードし得る、 さらなるスプライシング変異体の同定を目的 とした、 RT-PCRクロ一ニングを試みた。 铸型として Human Thymus Marathon- Ready cDNA Library (Clontec #7415- 1)を用いた。 それ以外の KR条件は、 全て前記 実施例 4に従った。 つまり、 NR10.4- METプライマ一及び、 NR10. 4- UTRプライマー を用い、 Advantage cDNA Polymerase Mixを使用し同様の増幅反応を実施した。 その結果、 予測されるサイズの近傍に複数のサイズを示す増幅産物が得られた。 そこで、 前記実施例 4の手法に従い、 得られた PCR産物を pGEM - T Easy vectorに サブクロ一ニングし、 塩基配列を決定した。 独立する 24クローンの遺 組換え 体に対し、 全インサート断片の塩基配列を決定した結果、 特異的 PCR増幅反応に 由来する NR10.4遺伝子配列が存在することを確認した。 しカゝし、 科斤を実施した 24クローンの遺伝子組換え体の中には、 NR10.4とは異なるィンサ一ト配列を示す 複数のクローンも同時に得られた。 それらの塩基配列より、 構 晰をおこなつ た結果、 同定したクローンをそれぞれ NR10.5、 NR10.6、 N 10.7, 及びR10.8と命 名した。 決定した NR10.5の塩基配列 (配列番号: 7)、 及びそれがコードするァ ミノ酸配列 (配列番号: 8) を図 10〜12に示した。 決定した N 10.6の塩基配 列 (配列番号: 9)、 及びそれがコードするアミノ酸配列 (配列番号: 10) を 図 13〜15に示した。 決定した NI 0.7の塩基配列 (配列番号: 1 1)、 及びそ れがコ一ドするアミノ酸配列 (配列番号: 12) を図 16〜18に示した。 決定 した NR10.8の塩基配列 (配列番号: 13)、 及びそれがコードするアミノ酸配列[Example 5] Search for human NR10 gene splicing variants by RT-PCR method RT-PCR cloning was attempted for the purpose of identifying further splicing variants capable of encoding the human NR10 gene. Human Thymus Marathon-Ready cDNA Library (Clontec # 7415-1) was used as type 铸. All other KR conditions were as in Example 4 above. That is, NR10.4-MET primer and NR10.4-UTR primer And the same amplification reaction was carried out using Advantage cDNA Polymerase Mix. As a result, an amplification product showing multiple sizes near the predicted size was obtained. Thus, according to the method of Example 4, the obtained PCR product was subcloned into a pGEM-T Easy vector, and the nucleotide sequence was determined. The nucleotide sequence of all insert fragments was determined for 24 independent clones, and it was confirmed that the NR10.4 gene sequence derived from the specific PCR amplification reaction was present. However, among the 24 clones of the transgenic plants that had been subjected to the cultivation, several clones having an insert sequence different from that of NR10.4 were simultaneously obtained. As a result of clarity based on those nucleotide sequences, the clones identified were named NR10.5, NR10.6, N10.7, and R10.8, respectively. The determined nucleotide sequence of NR10.5 (SEQ ID NO: 7) and the amino acid sequence encoded by it (SEQ ID NO: 8) are shown in FIGS. The determined nucleotide sequence of N 10.6 (SEQ ID NO: 9) and the amino acid sequence encoded by it (SEQ ID NO: 10) are shown in FIGS. The determined nucleotide sequence of NI 0.7 (SEQ ID NO: 11) and the amino acid sequence (SEQ ID NO: 12) encoding it are shown in FIGS. The determined nucleotide sequence of NR10.8 (SEQ ID NO: 13) and the amino acid sequence encoded by it
(配列番号: 14) を図 19〜21に示した。 これら、 異なるインサート配列を 示すクローンの一次構造を、 前述実施例 2に従レ、 NR10ヒトゲノム遺伝子の構造解 析結果と比較した結果、 全てのクローン共に選択的スプライシングに由来する、 NR10スプライシング変異体であることが判明した。 ここで、 NR10.5及び R10.6 は細胞膜貫通領域を保有する細胞膜貫通型受容体蛋白をコード可能であるもの の、 細胞内領域においてチロシン残基を有していないため、 細胞内シグナル伝達 機能は保有しないことが予測された。 また、 NR10.7及び遣 10.8に関しては、 細 月刨莫貫通領域を保有していなかったことより、 可溶性分泌型受容体蛋白をコード 可能であることが予測された。 (SEQ ID NO: 14) is shown in FIGS. The primary structures of these clones showing different insert sequences were compared with the results of the structural analysis of the NR10 human genomic gene according to Example 2 described above, and as a result, all clones showed NR10 splicing variants derived from alternative splicing. It turned out to be. Here, although NR10.5 and R10.6 can encode a transmembrane receptor protein having a transmembrane domain, they do not have tyrosine residues in the intracellular domain, and therefore have an intracellular signaling function. Was not expected to be held. In addition, since NR10.7 and NR10.8 did not possess the transmembrane region, it was predicted that they could encode a soluble secretory receptor protein.
NR10遺伝子のスプライシング変異体の構造的特長を表 1にまとめた。 また、 図 37の模式図中に、 これら NR10遺伝子のスプライシング変異体のゲノム構造を示 すように、 特に細藤貫通領域より C末端側における構造において、 選択的スプ ライシングに起因する多様性を示す。 娜戠特異的、 或いは特定の細胞種特異的な 選択的スプライシングによって、 0遺伝子群の機能発現調節が、 厳密に制御さ れているものと予測される。 表 1 NR10スプライシング変異体が保有する構造的特長 クローン CBM FN— I I I TM Boxl CP-Tyr Table 1 summarizes the structural features of the splicing variants of the NR10 gene. The genomic structure of these NR10 gene splice variants is shown in the schematic diagram of Figure 37. In particular, the structure at the C-terminal side of the Hosoto penetration region shows diversity due to selective splicing. It is expected that the regulation of functional expression of the 0 gene group will be strictly controlled by alternative splicing that is specific to 戠 or specific cell types. Table 1 Structural features of the NR10 splice variant Clone CBM FN—III ™ Boxl CP-Tyr
NRIO. 4 + + + + NRIO. 4 + + + +
NRIO. 5 + + + +  NRIO. 5 + + + +
NRIO. 6 + +  NRIO. 6 + +
NRIO. 7 + +  NRIO. 7 + +
NRIO. 8 + +  NRIO. 8 + +
CBM ; サイトカイン結合モジュール (Cytokine Binding Module) FN- I I I ; フイブロネクチンタイプ I I Iドメイン (FibronecUn type I I I domain) CBM; Cytokine Binding Module FN-I I; FibronecUn type I I I domain
TM ; 膜貫通ドメイン(Transmembrane domain)  TM: Transmembrane domain
Boxl ; Jakキナーゼ結合ドメイン (Jak kinase binding domain) Boxl ; Jak kinase binding domain
(Pro-Xaa-Pro mot i f) (Pro-Xaa-Pro mot i f)
CP-Tyr ; 細胞質 Tyr残基 (Cytoplasmic Tyr- res idues)  CP-Tyr; Cytoplasmic Tyr-residues
[実施例 6] RT-PCR法による NRIO遺伝子発現組織の検索と発現様態の角科斤 各ヒト fl¾における NR10.4、 NRIO. 5、 NRIO. 6遺伝子の発現分布、 及ぴ直伝子発 現様態を解析する目的で、 RT- PCR法による mRNAの検出を行った。 RT- PCR解析に用 いるためのプライマ一として、 下記配列のオリゴヌクレオチドプライマ一を新た に合成した。 センス側 (下流方向) プライマーとして NR10.4- TMプライマーを用 い、 アンチセンス側 (上流方向) プライマーとして R10.4- STPプライマーを用い た。 プライマーの合成、 及び精製は前記実施例 3に従った。 ここで胆 0.4- TMプ ライマーは NR10の細 貫通領域に設計している。 他方 NR10. 4- STPプライマ一は 、 N 10. 4のアミノ酸翻訳終止コドンの近傍に設計している。 そのため、 これらプ ライマーセットによって、 NR10. 4、 NR10. 5、 及び NR10. 6の三種のスプライシング 変異体の配列が、 増幅さ 食出可能と考えられた。 しカゝし、 細 J!»貫通領域を保 有するものの、 最終ェキソンにおいて異なる 3' 非翻訳領域配列を有する NR10. 3 遺伝子と、 さらに細^ ϋ貫通領域を保有していない NR10. 7、 及 8が増幅さ れることはない。 [Example 6] Search for NRIO gene-expressing tissues by RT-PCR method and keratocarp expression expression distribution of NR10.4, NRIO.5 and NRIO.6 genes in each human fl¾ For the purpose of analyzing E. coli, mRNA was detected by the RT-PCR method. For RT-PCR analysis An oligonucleotide primer having the following sequence was newly synthesized. The NR10.4-TM primer was used as the sense (downstream) primer, and the R10.4-STP primer was used as the antisense (upstream) primer. The synthesis and purification of the primers were performed in accordance with Example 3 described above. Here, the gall 0.4-TM primer is designed in the narrow penetration region of NR10. On the other hand, the NR104-STP primer is designed near the amino acid translation stop codon of N10.4. Therefore, it was considered that the sequences of the three splicing mutants of NR10.4, NR10.5, and NR10.6 could be amplified and edible by these primer sets. However, the NR10.3 gene, which has a small J! »Penetrating region but has a different 3 'untranslated region sequence in the final exon, and NR10.7, which has no further fine penetrating region, and 8 is not amplified.
匪 0. 4- TM (配列番号: 2 7 ) Marauder 0.4. 4-TM (SEQ ID NO: 27)
5' - GAG ATT ATC CTC ATA ACT TCT CTG ATT GGT GG -3' 5 '-GAG ATT ATC CTC ATA ACT TCT CTG ATT GGT GG -3'
hN 10.4-STP (配列番号: 2 8 ) hN 10.4-STP (SEQ ID NO: 28)
5' - GCT ATG GTC GCA TTT AGA CTT CTC CCT TGG TGT G -3'  5 '-GCT ATG GTC GCA TTT AGA CTT CTC CCT TGG TGT G -3'
錶型として、 Human Mul t iple Tissuue cDNA (MTC) Panel I (Clontech #K1420- 1) 、 Human MTC Panel I I (Clontech#K1421-l) , Human Immune System MTC Panel (Clontech#K1426-l) , 及び: Human Blood Fract ions MTC Panel (Clontech#K1428-l) を用いた。 PCRには Advantage cDNA Polymerase Mix (Clontech#8417-l) を用い 、 Perkin Elmer Gene Amp PCR Sys tem 2400サーマルサイクラ一を使用した。 PCR 反応は下記のサイクル条件にて実施することで、 標的遺伝子の増幅を試みた。  Types 錶 include Human Multiple Tissuue cDNA (MTC) Panel I (Clontech # K1420-1), Human MTC Panel II (Clontech # K1421-l), Human Immune System MTC Panel (Clontech # K1426-l), and: Human Blood Fract ions MTC Panel (Clontech # K1428-l) was used. PCR was performed using an Advantage cDNA Polymerase Mix (Clontech # 8417-l) and a Perkin Elmer Gene Amp PCR System 2400 thermal cycler. The PCR reaction was performed under the following cycle conditions to try to amplify the target gene.
94°Cで 4分  4 minutes at 94 ° C
[94°Cで 20秒、 72°Cで 1分] を 5サイクル  5 cycles of [20 seconds at 94 ° C, 1 minute at 72 ° C]
[94°Cで 20秒、、 70°Cで 1分] を 5サイクル  5 cycles of [20 seconds at 94 ° C, 1 minute at 70 ° C]
[94°Cで 20禾少、 68°Cで 1分] を 25サイクル  25 cycles of [20 hectares at 94 ° C, 1 minute at 68 ° C]
72°Cで 3分 4°Cにて終糸 3 minutes at 72 ° C Finish at 4 ° C
この結果、 図 2 2及び図 2 3に示す通り、 R10.4、 NR10. 5, 及び U0. 6遺伝子 の発現分布を総評すると、 免疫担当 ¾|戠、 造血担当 ffi戠、 及び生 «戠において 強い発現が検出された。 また角科斤に使用した全ての铸型に対して、 ヒト G3PDHプ ライマ一を用い上記 PCR条件にてハウスキーピング遺伝子 G3PDHの発現を検出す ることで、 予め铸型 mRNAのコピー数がサンプル間で標準化されていることを確認 している。 以下、 上言 BNR10の遺伝子発現が検出された βを列挙すると、 胸腺、 リンパ節、 末梢白血球、 肺、 骨髄などの嫌担当糸纖、 及び造血担当纖で強い 発現が検出された。 さらに、 精巣、 ^m, 胎盤、 子宮などの生磨 II戠、 及び内 分泌挪戠においても強い発現が検出された。 その他、 腎臓、 劂蔵、 小腸において 弱い発現が検出されたものの、 脾臓、 扁桃、 心臓、 脳、 肝臓、 骨格筋、 結腸にお いては全く発現が認められなかった。 一方、 血球組織細胞のうち、 CD14+単球 ( マクロファージ)、 CD4+T細 J3包群、 静止期 CD19+B細胞においては強い発現が検出さ れたが、 CD8+T細胞群と活性ィ匕 CD19+B細胞では、 全く発現が認められなかった。 ここで、 検出された RT-PCR増幅産物のサイズは、 予測された NR10のサイズと一致 する。 従ってこれらは、 それぞれ特異的な PCR増幅反応による産物であると考え られた。 このことを更に次項の Soutehrn Blot t ing法によって確認することで、 それらが非特異的な PCR増幅による産物である可能性を否定した。  As a result, as shown in FIG. 22 and FIG. 23, when the expression distribution of R10.4, NR10.5, and U0.6 genes were comprehensively evaluated, it was found that immunity 担当 | 戠, hematopoietic ffi 戠, and live 戠Strong expression was detected. In addition, by detecting the expression of the housekeeping gene G3PDH under the above PCR conditions using a human G3PDH primer for all the 铸 types used for It has been confirmed that it has been standardized. In the following, when the above-mentioned BNR10 gene expression was detected, β was listed. Strong expression was detected in thymus, lymph nodes, peripheral leukocytes, lungs, bone marrow, etc., and in hematopoietic fibers. In addition, strong expression was detected in testis, ^ m, placenta, uterus, etc., and in endocrine II. In addition, although weak expression was detected in kidney, kidney, and small intestine, no expression was observed in spleen, tonsil, heart, brain, liver, skeletal muscle, and colon. On the other hand, among hemocyte tissue cells, strong expression was detected in CD14 + monocytes (macrophages), CD4 + T cells in J3 package, and quiescent CD19 + B cells, but CD8 + T cells and activated CD19 + In + B cells, no expression was observed. Here, the size of the detected RT-PCR amplification product matches the predicted size of NR10. Therefore, these were considered to be products of specific PCR amplification reactions. By further confirming this by the Southehrn Blotting method described in the next section, the possibility that they were products of non-specific PCR amplification was denied.
[実施例 7] Southern Blot t ing法による RT-PCR産物の特異性確認  [Example 7] Confirmation of specificity of RT-PCR product by Southern blotting method
前項実施例 6における RT-PCRによって増幅された標的遺伝子産物は、 NR10.4、 NR10. 5、 NR10. 6遺伝子のそれぞれに共通な特異的 cDNA断片をプローブとして用い た Southern Blot t ing法を実施することで、 それらが特異的な増幅産物であるこ とを確認した。 また、 それと同時に、 RT- PCR産物を定量的に検出することで、 ヒ 卜各臓器間における遺伝子発現様態の比較測定的評価を試みた。 前項の RT- PCR産 物をァガロースゲル電気泳動後、 Hybond N (+) (Amersham, cat#RPN303B)付電荷ナ ィロン莫にブロッテイングし、 ハイブリダィゼーシヨンに供した。 プロ一ブとし て、 前述実施例 4にて得られた、 NR10. 4 cDNA断片を用いた。 プローブの調製は 、 Mega Prime Ki t (Amersham, cat#RPN1607) を使用 し [ α -32P] dCTP (Amersham,cat#M0005)によってラジオァイソトープ標識した。 八イブリダィゼ ーシヨンには Perfect Hyb (Toyobo#HYB- 101)を用い、 68°C/ 30 minのプレハイ ブリダィゼーシヨンの後、 熱変性させた標識プロ一ブを加え、 68°C/120 minの八 イブリダィゼーシヨンを実施した。下記の条件にて洗浄をおこなった後、 Imaging Plate (FUJI#BAS- I I I)に露光させ、 Image Analyzer (FUJIX, BAS-2000 I I)によ つて、 NR10特異的なシグナルを検出した。 The target gene product amplified by RT-PCR in Example 6 above was subjected to Southern Blotting using a specific cDNA fragment common to each of the NR10.4, NR10.5, and NR10.6 genes as a probe. As a result, they were confirmed to be specific amplification products. At the same time, by quantitatively detecting the RT-PCR product, an attempt was made to perform a comparative measurement evaluation of the gene expression state among human organs. The agarose gel electrophoresis of the RT-PCR product described in the preceding paragraph was followed by blotting on a charged nylon with Hybond N (+) (Amersham, cat # RPN303B), followed by hybridization. As a probe The NR10.4 cDNA fragment obtained in Example 4 was used. Preparation of probe, Mega Prime Ki t (Amersham, cat # RPN1607) using [α - 32 P] dCTP ( Amersham, cat # M0005) were radio § iso taupe labeled with. Use Perfect Hyb (Toyobo # HYB-101) for pre-hybridization at 68 ° C / 30 min, add heat-denatured labeled probe, and add 68 ° C / 120 min. No. 8 I carried out an education. After washing under the following conditions, the plate was exposed to an imaging plate (FUJI # BAS-III), and an NR10-specific signal was detected with an image analyzer (FUJIX, BAS-2000 II).
洗净条件 (1) lx SSC I 0. 1% SDS, 室温で 10分間  Washing conditions (1) lx SSC I 0.1% SDS, room temperature for 10 minutes
(2) lx SSC I 0. 1% SDS, 60。Cで 45分間  (2) lx SSC I 0.1% SDS, 60. 45 minutes at C
(3) 0. lx SSC I 0. 1% SDS, 60°Cで 45分間  (3) 0.lx SSC I 0.1% SDS, 60 ° C for 45 minutes
その結果、図 2 4及び図 2 5に示す通り、前項の RT- PCRによって増幅された PCR 産物は、 全て N 10. 4、 NR10. 5, NR10. 6に特異的な増幅産物であることが確認され た。 また各 における発現量の比較定量についても、 前項の評価を支持するも のであった。 一方、 RT-PCR法と Southern Blot t ing法を組み合わせた、 ここでの 標的遺伝子発現の検出方法は、 他の発現解析方法と比較しても極めて感度の高い 検出手段であるにも関わらず、 脾臓、 扁桃、 心臓、 脳、 肝臓、 骨格筋、 結腸にお いては全く発現が認められなかった。 さらに、 CD8+T細胞群と活性化 CD19+B細胞 おいても、 全く発現が検出されていない。  As a result, as shown in Fig. 24 and Fig. 25, all the PCR products amplified by RT-PCR in the previous section may be amplification products specific to N10.4, NR10.5 and NR10.6. confirmed. In addition, the comparative quantification of the expression level in each case supported the evaluation described in the previous section. On the other hand, the method for detecting target gene expression, which combines RT-PCR and Southern blotting, is an extremely sensitive detection method even when compared to other expression analysis methods. No expression was observed in spleen, tonsils, heart, brain, liver, skeletal muscle, and colon. Furthermore, no expression was detected in CD8 + T cells and activated CD19 + B cells.
[実施例 8 ] RT- PCR法による NR10遺伝子発現細胞株の同定  [Example 8] Identification of NR10 gene-expressing cell line by RT-PCR method
NR10.4遺伝子を高発現しているヒト細胞株を同定するために、 RT-PCR法による mR Aの検出を行った。検索の対象として、 表 2に示すヒト細胞株を選択した。 表 2 NR10.4遺伝子の発現角科斤に用いたヒト細胞株 細胞株 細胞型 Jarkat ヒト T細胞株 (Human T- cel l l ine) In order to identify a human cell line that overexpresses the NR10.4 gene, mRNA was detected by RT-PCR. The human cell lines shown in Table 2 were selected for the search. Table 2 Expression of the NR10.4 gene Jarkat human T cell line (Human T-cell ll ine)
HL-60 前骨髄球性白血病 (Promyelocyt ic leukemia)  HL-60 Promyelocytic leukemia
Raj i ノ ーキットリンパ腫 (Burki t t' s lymphoma) Raj i's lymphoma (Burkitt's lymphoma)
K-562 慢性骨髄性白血病 (Chronic myelogenous leukemia)K-562 Chronic myelogenous leukemia
YTN-17 ヒト NK細胞株 (Human NK cel l l ine) YTN-17 Human NK cell line (Human NK cel l line)
上記のヒト細胞株を常法に従い培養し、 それぞれ約 106個の細胞を収穫した後 、 niRNAの調製をおこなった。 mR Aの調製 ¾mMACS mR A Isolat ion Ki t (Mi l tenyi Biotec#130-075- 201)を使用し、 メーカーのマニュアルに従い poly A陽性選択を おこなうことで高純度の mRNAを精製した。 精製したそれぞれの mRNAを lOOng使用 し、 RT- PCRの錶型とした。一次鎖 cDNAの合成には RiverTraDash (Toyobo#PCR-401) を使用し、 ランダムプライミング法を用いた。 また、 RT- PCR反応条件はメ一力一 指定のマニュアルに従い、 KOD Dash (Toyobo#LDP - 101)を用いた。 RT- PCR増幅反応 に使用したプライマーセットは、 前述実施例 6と同様である。 さらに、 前項実施 例 7に従って Southern Blot t ing法を実施することで、 それらが特異的な増幅産 物であることを確認した。 その結果、 図 2 6に示す通り、 HL- 60及び- 562にお いて強レゝ遺伝子発現が検出された。 The above-mentioned human cell line was cultured according to a conventional method, and after harvesting about 10 6 cells, niRNA was prepared. Preparation of mRNA A high-purity mRNA was purified by performing polyA positive selection using mMACS mRNA Isolate ion Kit (Miltenyi Biotec # 130-075-201) according to the manufacturer's manual. Each purified mRNA was used in lOOng to obtain RT-PCR type II. RiverTraDash (Toyobo # PCR-401) was used for the synthesis of the primary strand cDNA, and the random priming method was used. In addition, KOD Dash (Toyobo # LDP-101) was used for the RT-PCR reaction conditions according to the manual specified. The primer set used for the RT-PCR amplification reaction is the same as in Example 6 described above. Furthermore, the Southern Blotting method was carried out according to Example 7 in the previous section to confirm that they were specific amplification products. As a result, as shown in FIG. 26, strong expression gene expression was detected in HL-60 and -562.
[実施例 9 ] 増殖因子依存性細胞株を利用した NR10リガンド検索系の構築 本発明の蛋白と特異的に結合するリガンド蛋白のスクリ一ニングは本発明の 蛋白の細胞外ドメイン及び細藤貫通ドメインを、 »のシグナル伝達能を有す るへモポェチン受容体蛋白の細胞内ドメインと連結させたキメラ受容体を適当 な細胞株、 好ましくは適当な増殖因子の存在下でのみ生存、 及び増殖可能な細胞 株 (増殖因子依存 細胞株) の細胞表面に発現させた後、 当該細胞株を種々の増 殖因子、 サイト力イン、 造血因子等を含むことが期待される材料を添加して培養 することにより実施可能である。 上記増殖因子依存性細胞株は増殖因子の非存在 下では急速に死 することから、 被検材料中に本発明蛋白の細 ドメインと特 異的に結合するリガンドが存在する場合にのみ、 生存と増殖が可能であることを 利用することによって、 スクリーニング系カ铖立する。 難へモポェチン受容体 としては例えば、 トロンポポェチン受容体、 エリスロポエチン受容体、 G-CSF受 容体、 gpl30等が挙げられるが、 本スクリーニング系に用いるキメラ受容体のパ 一トナ一は上記既知へモポエヂン受容体に限定されるものではなく、 細胞質ドメ インにシグナル伝達活性に必要な構造を備えているものであれば何を用いても 構わない。 また、 増殖因子依存性細胞株としては Ba/F3や FDC- P2を初めとした、 IL-3依存性細胞株を禾 IJ用することが可能である。 そこで先ず最初に NR10. 4の細胞 外領域及び細胞膜貫通領域 (アミノ酸配列; 52位の Alaから 576位の Lysまで) を コ一ドする cDNA配列を PCRによって増幅し、 この DNA断片を既知のへモポェチン受 容体の細胞内領域をコ―ドする DNA断片と同一翻訳枠で連結させることによって 、 キメラ受容体をコードする融合 列を作製した。 ここで、 パートナ一となる既 知へモポェチン受容体として、 前述のようにいくつかの候補が挙げられたが、 そ の中からヒト TP0受容体 (Human MPL- P)を選択した。 また、 さらに上記によって作 製したキメラ受容体配列をマウス IL- 3 シグナル配列、 さらに FLAGペプチド配列 の下流に同一のアミノ酸翻訳枠で連結し、 哺乳動物細胞で発現可能なプラスミド ベクタ一 pCOSに挿入した。 ここで構築したキメラ受容体( pCOS I NR10MPL)の構 造模式図を、 図 2 7に示す。 このキメラ受容体発現ベクターを増殖因子依存性細 胞株 Ba/F3に導入し強発現させ、 安定した遺伝子導入細胞を選択する。 ここで遺 伝子導入細胞の選択は、 上記発現ベクターが薬剤 (ネオマイシン) 耐性遺伝子を 保有していることを利用し、 同薬剤添加培地にて薬剤耐性能を獲得した遺伝子導 入細胞のみを選択的に増殖させることが可能である。 前述のように、 以上によつ て得られたキメラ受容体発現細胞株を、 増殖因子 (ここでは IL - 3) 非存在下での 培養系に切り替え、 的に標的リガンドを含むことが期待される材料を添カロし て培養することにより、 NR10と特異的に機能結合するリガンドが^ Eする場合に おいてのみ生存 Z増殖可能であることを利用したスクリーニング系を展開する ことで、 NR10のリガンドとして機能する新規サイトカインのスクリーニングを行 うことができる。 Example 9 Construction of NR10 Ligand Retrieval System Using Growth Factor-Dependent Cell Line Screening of a ligand protein that specifically binds to the protein of the present invention is performed using the extracellular domain and the Hosoki trans domain of the protein of the present invention. A chimeric receptor linked to the intracellular domain of the hemopoietin receptor protein capable of signaling »can survive and proliferate only in the presence of a suitable cell line, preferably a suitable growth factor. After being expressed on the cell surface of a cell line (growth factor-dependent cell line), the cell line is cultured with the addition of materials that are expected to contain various growth factors, cytodynamic factors, hematopoietic factors, etc. This can be implemented. Since the above-mentioned growth factor-dependent cell line rapidly dies in the absence of growth factors, survival and survival only occur when a test substance contains a ligand that specifically binds to the fine domain of the protein of the present invention. Establish a screening system by utilizing the possibility of multiplication. Examples of difficult hemopoietin receptors include, for example, thrompopoietin receptor, erythropoietin receptor, G-CSF receptor, and gpl30.The chimeric receptor used in this screening system is the known hemopoietin receptor. The present invention is not limited to this, and any material may be used as long as it has a structure necessary for signal transduction activity in the cytoplasmic domain. In addition, as growth factor dependent cell lines, it is possible to use IL-3 dependent cell lines such as Ba / F3 and FDC-P2 for IJ. Therefore, first, the cDNA sequence encoding the extracellular domain and transmembrane domain of NR10.4 (amino acid sequence; Ala at position 52 to Lys at position 576) is amplified by PCR, and this DNA fragment is A fusion sequence encoding a chimeric receptor was produced by ligating the intracellular region of the mopoetin receptor to a DNA fragment encoding the same in the same translational frame. Here, as described above, several candidates were listed as known partner hemopoietin receptors, and the human TP0 receptor (Human MPL-P) was selected from them. In addition, the chimeric receptor sequence prepared above was ligated downstream of the mouse IL-3 signal sequence and the FLAG peptide sequence with the same amino acid translation frame, and inserted into a plasmid vector pCOS that can be expressed in mammalian cells. . FIG. 27 shows a schematic structural diagram of the chimeric receptor (pCOS I NR10MPL) constructed here. This chimeric receptor expression vector is introduced into a growth factor-dependent cell line Ba / F3 and strongly expressed, and stable transfected cells are selected. Here, the selection of gene-introduced cells is based on the fact that the above-mentioned expression vector has a drug (neomycin) resistance gene, and selects only the gene-introduced cells that have acquired drug resistance in the same medium containing the drug. It is possible to proliferate. As described above, the cell line expressing the chimeric receptor obtained above is switched to a culture system in the absence of a growth factor (here, IL-3), and is expected to contain the target ligand. With the ingredients A novel cytokine that functions as a ligand for NR10 by developing a screening system that utilizes the ability to survive only when a ligand that specifically binds to NR10 functionally binds to E Screening can be performed.
[実施例 1 0] NR10.4及び 6遺伝子発現ベクターの構築  [Example 10] Construction of NR10.4 and 6 gene expression vectors
前述までに同定、 単離した NR10 cDNAのうち、 NR10.4及び NR10. 6を用い、 哺乳 動物細胞で発現可能な発現ベクターの構築を試みた。 それぞれの cDNAクローン を縛型として分泌シグナルを除いた配列から、 アミノ酸翻訳終止コドンまでのコ 一ディング領域までを常法に従レゝ PCR増幅をおこなった。 増幅反応に ^Advantage cDNA Polymerase Mi を使用した。 それぞれの増幅産物をマウス IL- 3 シグナル 配列、 さらに FLAGペプチド配列の下流に同一のアミノ酸翻訳枠で連結し、 哺乳動 物細胞で発現可能なプラスミドベクター pCOSに構築した。 構築した発現べクタ一 のィンサ一ト塩基配列はシークェンシングをおこなうことで、 アミノ酸配列の置 換を伴う点変異が存在しないことを確認し、 且つ正方向に挿入されていることを 確認した。 これら、 構築した発現べクタ一の模式図を図 2 7に示す。 ここで構築 した、 pCOS/ NR10. 4 NPLベクターは NR10. 4の 52位の Alaから 764位の Valまでを含 有し、 pCOS/ NR10. 6 NFLベクタ一は NR10. 6.の 52位の Alaから 581位の Serまでを、 それぞれ機能発現可能なインサート配列として含有している。 pCOS/ NR10.4 NFL ベクターは、 前述実施例 9同様に増殖因子依存性細胞株 Ba/F3に導入し強発現さ せ、 安定した遺伝子導入細胞を選択することが可能である。 これによつて得られ た NR10.4発現細胞株を増殖因子 (ここでは IL-3) 非存在下での培養系に切り替え 、 代替的に標的リガンドを含むことが期待される材料を添加して培養することに より、 NR10と特異的に機能結合するリガンドが存在する場合にのみ生存/増殖可 能であることを利用した、 スクリーニング系を展開することで新規サイトカイン の同定が可能である。 また、 そのようにして同定したサイト力イン (NR10リガン ド) に応答する細胞株に対し、 pCOS/ NR 6 NFLベクタ一を過剰発現させること により、 細胞内シグナル伝達機能を有さない NR10. 6が、 優勢機能欠損体 (ドミ ナントネガティつ Ί鎖として機能し得ることが期待される。従って、 C0S/ NR10. 6 NFLベクターを、 リガンド探索系の評価に利用することも極めて有効であると考 えられる。 また、 pCOS/ NR10. 6 NFLベクターの発現系により、 NR10リガンドに対 する細胞応答性、 即ち NR10リガンドが有する生物活性の詳細を角科斤することが可 能であると予測される。 From the NR10 cDNAs identified and isolated as described above, we attempted to construct an expression vector that can be expressed in mammalian cells using NR10.4 and NR10.6. The respective cDNA clones were ligated, and the sequence from the sequence excluding the secretion signal to the coding region up to the amino acid translation stop codon was amplified by conventional PCR in a conventional manner. ^ Advantage cDNA Polymerase Mi was used for the amplification reaction. Each amplification product was ligated to the mouse IL-3 signal sequence and the FLAG peptide sequence downstream of the same amino acid translation frame to construct a plasmid vector pCOS that can be expressed in mammalian cells. Sequencing of the constructed nucleotide sequence of the expression vector confirmed that there was no point mutation involving amino acid sequence substitution, and that it was inserted in the forward direction. . Figure 27 shows a schematic diagram of these constructed expression vectors. The pCOS / NR10.4 NPL vector constructed here contains from Ala at position 52 of NR10.4 to Val at position 764, and the pCOS / NR10.6 NFL vector is the Ala at position 52 of NR10.6. From position 581 to Ser 581 are included as insert sequences capable of expressing functions. The pCOS / NR10.4 NFL vector can be introduced into a growth factor-dependent cell line Ba / F3 and strongly expressed in the same manner as in Example 9 to select stable gene-transfected cells. The NR10.4 expressing cell line obtained in this way was switched to a culture system in the absence of growth factors (here, IL-3), and alternatively, a material expected to contain the target ligand was added. By culturing, it is possible to identify new cytokines by developing a screening system utilizing the fact that they can survive / proliferate only when there is a ligand that specifically binds to NR10. In addition, overexpression of the pCOS / NR6 NFL vector in the cell line responding to the cytodynamic force (NR10 ligand) thus identified. Therefore, it is expected that NR10.6, which has no intracellular signal transduction function, can function as a dominant deficient (dominant negative chain. Therefore, the C0S / NR10.6 NFL vector was In addition, the pCOS / NR10.6 NFL vector expression system can be used to evaluate the cell responsiveness to NR10 ligand, that is, the details of the biological activity possessed by NR10 ligand. It is anticipated that it is possible to make horns.
[実施例 1 1 ] 細胞分泌型、 可溶性リコンビナント N 10蛋白質の発現系構築 本発明の蛋白と特異的に結合するリガンド蛋白としては、 希ではあるが可溶性 蛋白ではなく細謹結合型蛋白である可能性も想定される。 この様な場合には寧 ろ本発明蛋白の細胞外ドメインのみを含む蛋白あるいは当該細胞外ドメインに 他の可溶性蛋白の部分配列を付加した融合蛋白を標識後、 リガンドを発現してい ることが期待される細胞との結合を測定することによりスクリ一二ングが可能 である。 前者の場合には例えば細讓貫通ドメインの N端側に終止コドンを揷入 することにより人為的に作成した可溶性受容体蛋白、 あるいは NR10の可溶型蛋白 をコードする NR10. 2、 NR10. 7、 及びR10. 8の配列が利用可能である。 また、 後者 の場合には例えば免疫グロプリンの Fc部位や FLAGぺプチド等の標識べプチド配 列を、 細胞外ドメインの C末端に付加することにより調製可能である。 またこれ らの可溶性標識蛋白質はウェストウェス夕ン法における検出にも利用可能であ る。 そこで本発明者らは、 NR10. 4の細胞外領域 (アミノ酸配列; 52位の Alaから 256位の Gluまで) をコードする cDNA配列を PCRによって増幅し、 この DNA断片をマ ウス IL- 3 シグナル配列、 さらに FLAGペプチド配列の下流に同一のアミノ酸翻訳 枠で連結し、 哺乳動物細胞で発現可能なプラスミドベクター PCH0に構築した。 こ れにより、当該可溶性標識蛋白をコードする配列が完成した。ここで NR10. 4の 256 位の Glu以下、 257位の Gluの箇所に点変異による終止コドンを挿入している。 構 築した NR10可溶性受容体票識蛋白 (pCHO/ N 10. 2 NFL)の構造模式図を図 2 7に示 す。 この発現べクタ一を哺乳動物細胞株 CH0細胞に導入し強発現させ、 安定した 遺伝子導入細胞を選択した。 上記発現細胞を大暈培養し、 その培養上清に分泌さ れる当該リコンビナントタンパク質を抗 FLAGぺプチド抗体にて免疫沈降をおこ ない、 さらにウエスタンブロッテイングを実施することにより、 当該可溶性受容 体蛋白の発現を確認した。 さらに、 抗 FLAGペプチド抗体を負荷したァフィ二ティ 一力ラムによる大量精製をおこなった。 以上により得られた当該リコンビナント タンパク質は、 上記アツセィ等に用いることができる以外に、 例えば標的リガン ドを含むと予測される材料との共存下における特異的結合活性を BIA-C0REシス テム (Pharmac ia社)にて検出することも可能であり、 NR10と機能結合し得る新規 へモポェチンを検索するために、 極めて有用であると考えられる。 Example 11 Construction of Expression System for Cellular Secretory, Soluble Recombinant N10 Protein The ligand protein that specifically binds to the protein of the present invention may be a rare but soluble protein, but not a soluble protein. Is also assumed. In such a case, it is rather expected that the ligand is expressed after labeling a protein containing only the extracellular domain of the protein of the present invention or a fusion protein in which a partial sequence of another soluble protein is added to the extracellular domain. Screening is possible by measuring the binding to the cells that are performed. In the former case, for example, NR10.2, NR10.7 encoding a soluble receptor protein artificially created by inserting a stop codon at the N-terminal side of the narrow transduction domain, or a soluble form of NR10 , And the sequences of R10.8 are available. In the latter case, it can be prepared, for example, by adding a labeled peptide sequence such as an Fc site of immunoglobulin or a FLAG peptide to the C-terminus of the extracellular domain. These soluble labeled proteins can also be used for detection by the Westwes Even method. Therefore, the present inventors amplified the cDNA sequence encoding the extracellular region of NR10.4 (amino acid sequence; Ala at position 52 to Glu at position 256) by PCR, and amplified this DNA fragment with the mouse IL-3 signal. The sequence was further linked downstream of the FLAG peptide sequence with the same amino acid translation frame to construct a plasmid vector PCH0 that can be expressed in mammalian cells. Thus, the sequence encoding the soluble marker protein was completed. Here, a stop codon due to point mutation is inserted at the position of Glu at position 257 and below Glu at position 256 in NR10.4. Figure 27 shows a schematic diagram of the constructed NR10 soluble receptor signature protein (pCHO / N 10.2 NFL). This expression vector was introduced into the mammalian cell line CH0 cells and strongly expressed. Transgenic cells were selected. The above expression cells are cultured in a large halo, and the recombinant protein secreted in the culture supernatant is immunoprecipitated with an anti-FLAG peptide antibody, and further subjected to Western blotting to obtain the soluble receptor protein. Expression was confirmed. In addition, large-scale purification was carried out with an affinity ram loaded with an anti-FLAG peptide antibody. The recombinant protein obtained as described above can be used not only for the above-mentioned assays and the like, but also for the specific binding activity in the presence of a material predicted to contain the target ligand, for example, in the BIA-C0RE system (Pharmacia). ), And is considered to be extremely useful for searching for new hemopoietin capable of functionally binding to NR10.
[実施例 1 2 ] NR10. 8遺伝子発現べクタ一の構築  [Example 1 2] Construction of NR10.8 gene expression vector
前述までに同定、 単離した NR10 cDNAのうち、 NR10. 8を用い、 哺乳動物細胞で 発現可能な発現ベクターの構築を試みた。 NR10. 8の cDNA クローンを铸型として 分泌シグナルを除いた配列から、 アミノ酸翻訳終止コドンまでのコーディング領 域までを常法に従い PCR増幅をおこなった。 増幅反応には Advantage cDNA Polymerase Mix を使用した。 得られた増幅産物をマウス IL- 3 シグナル配列、 さ らに FLAGぺプチド配列の下流に同一のアミノ酸翻訳枠で連結し、 哺乳動物細胞で 発現可能なプラスミドベクター pCHOに構築した。 構築した発現ベクターのインサ 一ト塩基配列はシークェンシングをおこなうことで、 アミノ酸配列の置換を伴う 点変異が存在しないことを確認し、 且つ正方向に挿入されていることを確認した 。構築した発現べクタ一の模式図を図 2 7に示す。 ここで構築した、 CHO/ NRlO. 8 NFL ベクタ一 «Μ10. 8 の 52位の Alaから 548位の Argまでを、 発現可能なインサ一 ト配列として含有している。 pCHO/ NR10. 8 NFL ベクタ一は、 前述実施例 1 1同 様に哺乳動物細胞株 CH0細胞に導入し強発現させ、 安定した遺伝子導入細胞を選 択可能である。 当該可溶性蛋白の発現を確認した後、 上記発現細胞を大量培養し 、 その培養上清に分泌される当該リコンビナントタンパク質を抗 FLAGぺプチド抗 体にて免疫沈降可能である。 さらに、 抗 FLAGペプチド抗体を負荷したァフィニテ ィ一カラムによる大量精製が可能である。 以上により得られた当該 1 Among the NR10 cDNAs identified and isolated as described above, NR10.8 was used to construct an expression vector that can be expressed in mammalian cells. Using a cDNA clone of NR10.8 as type II, PCR amplification was carried out from the sequence excluding the secretory signal to the coding region up to the amino acid translation stop codon according to a conventional method. Advantage cDNA Polymerase Mix was used for the amplification reaction. The obtained amplification product was ligated with the same amino acid translation frame downstream of the mouse IL-3 signal sequence and the FLAG peptide sequence to construct a plasmid vector pCHO that can be expressed in mammalian cells. By performing sequencing on the insert base sequence of the constructed expression vector, it was confirmed that there was no point mutation involving amino acid sequence substitution, and that it was inserted in the forward direction. Figure 27 shows a schematic diagram of the constructed expression vector. The thus constructed CHO / NRlO.8 NFL vector contains from Ala at position 52 to Arg at position 548 in 10.8 as an expressible insert sequence. The pCHO / NR10.8 NFL vector can be introduced into a mammalian cell line CH0 cell and strongly expressed as in Example 11 described above, and a stable gene-transfected cell can be selected. After confirming the expression of the soluble protein, the expression cells are cultured in a large amount, and the recombinant protein secreted in the culture supernatant can be immunoprecipitated with an anti-FLAG peptide antibody. In addition, affinity loaded with anti-FLAG peptide antibody Large-scale purification with a single column is possible. The above 1 obtained above
トタンパク質は、 前述実施例 1 1のアツセィゃ BIA- COREシステムに応用すること で、 標的リガンドを含むと予測される材料との共存下における、 特異的結合活性 の測定にも利用可能である。  By applying the protein to the Atsushi BIA-CORE system of Example 11 described above, it can also be used for measurement of specific binding activity in the presence of a material predicted to contain a target ligand.
[実施例 1 3 ] マウス NR10相同遺伝子の同定  [Example 13] Identification of mouse NR10 homologous gene
前述までにヒト NTR10 cDNA遺伝子群の同定、 ヒト NR10ゲノム遺伝子構造の解析 、 ヒト NR10の遺伝子発現様態の角科斤、 リコンビナントヒト NR10蛋白質の哺乳動物 細胞における発現系の構築、 及びヒト R10リガンド検索系の構築を記載した。 さ らに本発明者らは、 マウス願 0相同遺伝子の同定を試みた。  Identification of human NTR10 cDNA genes, analysis of human NR10 genomic gene structure, construction of human NR10 gene expression system, construction of recombinant human NR10 protein expression system in mammalian cells, and human R10 ligand search system The construction of was described. Further, the present inventors have attempted to identify a mouse homologous gene.
マウス NR10遺伝子を検出するために、 ヒト MU0遺伝子配列を質問式とした Bias 食索を実施した。 質問式の調製はヒト NR10. 4の cDNA配列をアミノ酸配列に 翻訳し、 その全長アミノ酸配列を用いた。 検索対象として、 公的データベースの 一つである GenBankデータベース内に整列ィ匕された、 マウス gss (Genomic Survey Sequence;ショットガン解析法による BACクローン末端配列をランダムに解読し たゲノム配列) データベースを選択した。 検索条件となるパラメータは Expec t 50、 Descript i ons値 =100、 Al ignments値 =100を用いた。 また、 フィルターの 設定 ^Defaul t値とした。 以上による Tblas tN (Advanced Tbl as tN 2. 0. 13)プログ ラムを用いた検索の結果、 ヒト NR10アミノ酸配列に対し相同性を示すマウス N 10 ゲノム遺伝子 (GenBank登録番号: AZ618234 /ァクセッション番号: AZ618234) が逆方向に検出可能であった。 ここで選別した AZ618234マウス gss塩基配列 (配 列番号: 2 9 )、 及び予測されたェキソン部位のアミノ酸配列 (配列番号: 3 0 ) を図 2 8に示す。 また、 ヒト Νΐ θ. 4アミノ酸配列に対し陽性を示した部位にお ける、 両者の配列比較を図 2 9に示す。 以上によって検出したマウス NR10ゲノム 遺伝子配列上にオリゴヌクレオチドプライマ一を設計し、 次項の条件によって合 成、 及ぴ精製を実施した。  To detect the mouse NR10 gene, we performed a Bias phagocytosis using the human MU0 gene sequence as a query. To prepare the query, the cDNA sequence of human NR10.4 was translated into an amino acid sequence, and the full-length amino acid sequence was used. A mouse gss (Genomic Survey Sequence; a genomic sequence obtained by randomly decoding the terminal sequence of a BAC clone by shotgun analysis) selected in the GenBank database, one of the public databases, is selected as a search target. did. The parameters used as search conditions were Expect 50, Descriptions value = 100, and Alignments value = 100. Filter setting ^ Default value. As a result of the above search using the Tblas tN (Advanced Tbl as tN 2.0.13) program, the mouse N10 genomic gene showing homology to the human NR10 amino acid sequence (GenBank accession number: AZ618234 / accession number) : AZ618234) could be detected in the reverse direction. The AZ618234 mouse gss base sequence selected here (SEQ ID NO: 29) and the predicted amino acid sequence of the exon site (SEQ ID NO: 30) are shown in FIG. In addition, FIG. 29 shows a sequence comparison between the two sites at a site showing a positive result for the human Νΐθ.4 amino acid sequence. Oligonucleotide primers were designed on the mouse NR10 genomic gene sequence detected as described above, and synthesis and purification were performed under the following conditions.
[実施例 1 4] マウス NR10特異的なオリゴヌクレオチドプライマ一の設計 前記によって同定した、 AZ618234マウス gss塩基配列内にェキソン部位を予測 し、 その予測した配列をもとに、 下記に示すマウス NR10遺伝子に特異的なオリゴ ヌクレオチドプライマーを設計した。 プライマーは、 センス側 (下流方向) に mNRlO- S1及び mNRlO- S2の 2本を、 またアンチセンス側 (上流方向) に πΜΙΟ- A1及 び ιι ΙΟ- Α2の 2本をそれぞれ合成した。 プライマーの合成は前述実施例 3に従い 、 ABI社の 394 DNA/RNA Synthesizer を使用し、 5' -末端トリチル基付加条件にて 実施した。その後、 OPC columnによって、完全長の合成産物を精製し後述の 5' -RACE 法、 及び 3' -RACE法に提供した。 [Example 14] Design of an oligonucleotide primer specific for mouse NR10 An exon site was predicted in the AZ618234 mouse gss base sequence identified as described above, and based on the predicted sequence, oligonucleotide primers specific to the mouse NR10 gene shown below were designed. As primers, mNRlO-S1 and mNRlO-S2 were synthesized on the sense side (downstream direction), and πΜΙΟ-A1 and ιιΙΟ-Α2 were synthesized on the antisense side (upstream direction). The primer was synthesized according to Example 3 described above, using a 394 DNA / RNA Synthesizer manufactured by ABI under the condition of adding a 5'-terminal trityl group. Thereafter, the full-length synthetic product was purified using an OPC column, and provided to the 5′-RACE method and the 3′-RACE method described below.
慮 10-S1 (配列番号: 3 1 ) Consideration 10-S1 (SEQ ID NO: 31)
5' - TAT ATC AGT GTA TCC AGT GTT GGG ACA CCG -3' 5 '-TAT ATC AGT GTA TCC AGT GTT GGG ACA CCG -3'
mN 10-S2 (配列番号: 3 2 ) mN 10-S2 (SEQ ID NO: 32)
5' - ACA CCG AGT TGG AGA GCC GTA TTC AAT C -3' 5 '-ACA CCG AGT TGG AGA GCC GTA TTC AAT C -3'
慮 10- A1 (配列番号: 3 3 ) Consideration 10-A1 (SEQ ID NO: 33)
5' - TCT TTG GCA TAA GCT TGG ATT GAA TAC -3' 5 '-TCT TTG GCA TAA GCT TGG ATT GAA TAC -3'
mN 10-A2 (配列番号: 3 4) mN 10-A2 (SEQ ID NO: 34)
5' - GGA TTG AAT ACG GCT CTC CM CTC GGT GTG -3' 5 '-GGA TTG AAT ACG GCT CTC CM CTC GGT GTG -3'
[実施例 1 5] RACE法によるマウス R10遺伝子の単離  [Example 15] Isolation of mouse R10 gene by RACE method
完全長マウス N 10に相当する cDNAクローンの N末端配列を単離するために、 前 記実施例 1 4項の mNRlO- A1プライマーを一次 PCRに用い、 また、 mNRlO- A2プライ マ一をニ;^^!^に用ぃて,-!^^?^^を試みた。 他方、 完全長マウス NR10に相当す る cDNAクローンの C末端配列を単離するために、 前記実施例 1 4の mNRlO- S1プラ イマ一を一次 PCRに用い、 また、 10-32プラィマ一をニ次?01に用ぃて3' -1^∑ PCRを試みた。 铸型として Mouse Test is (Balb/c 精巣) Marathon-Ready cDNA Library (Clontech#7455- 1)を用い、 PCR実験に ^Advantage cDNA Polymerase Mix を使用した。 Perkin Elmer Gene Amp PCR System 2400サーマルサイクラ一を使 用し、 下記の PCR条件で実施した結果、 目的のサイズを示す PCR産物が得られた 一;^ CRの条件: In order to isolate the N-terminal sequence of the cDNA clone corresponding to full-length mouse N10, the mNRlO-A1 primer described in Example 14 above was used for the primary PCR, and the mNRlO-A2 primer was used; ^^! Use for ^-! ^^? I tried ^^. On the other hand, to isolate the C-terminal sequence of a cDNA clone corresponding to full-length mouse NR10, the mNRlO-S1 primer of Example 14 was used for primary PCR, and the 10-32 primer was used for primary PCR. Next, we tried 3'-1 ^ ∑ PCR. Using Mouse Test is (Balb / c testis) Marathon-Ready cDNA Library (Clontech # 7455-1) as a 铸 type, ^ Advantage cDNA Polymerase Mix was used for PCR experiments. Using the Perkin Elmer Gene Amp PCR System 2400 thermal cycler under the following PCR conditions, a PCR product of the desired size was obtained. One; ^ CR conditions:
94。Cで 4分  94. 4 minutes at C
[94°Cで 20秒、 72°Cで 90秒] を 5サイクル  5 cycles of [20 seconds at 94 ° C, 90 seconds at 72 ° C]
[94°Cで 20秒、 70°Cで 90秒] を 5サイクル  5 cycles of [20 seconds at 94 ° C, 90 seconds at 70 ° C]
[94°Cで 20秒、 68°Cで 90秒] を 28サイクル  [20 seconds at 94 ° C, 90 seconds at 68 ° C] 28 cycles
72°Cで 3分  3 minutes at 72 ° C
4°Cにて終結  Terminates at 4 ° C
二 の条件: Two conditions:
94。Cで 4分  94. 4 minutes at C
[94°Cで 20秒、 70°Cで 90秒] を 5サイクル  5 cycles of [20 seconds at 94 ° C, 90 seconds at 70 ° C]
[94°Cで 20秒、 68°Cで 90秒] を 25サイクル  25 cycles of [20 seconds at 94 ° C, 90 seconds at 68 ° C]
72°Cで 3分  3 minutes at 72 ° C
4°Cにて終結  Terminates at 4 ° C
得られた PCR産物は前述実施例 4に従い、 pGEM-T Easy vectorにサブクロ一二 ングし、 塩基配列を決定した。 独立する複数株の遺伝子組換え体に対し、 全イン サート断片の塩基配列を決定した結果、 特異的 PCR増幅反応に由来するマウス NR10遺伝子の全長塩基配列であることを認めた。 決定した配列をマウス N 10Bと 命名し、 その塩基配列 (配列番号: 1 5 ) 及びそれがコードするアミノ酸配列 ( 配列番号: 1 6 ) を図 3 0〜3 2に示した。 また、同様のクロ一ニング法を Mouse day8. 5 embryo (C57BL/6胎生 8. 5日目マウス胚) cDNA Library (GIBCO BRL)を铸 型として用い、標的遺伝子を単離した。上記同様に決定した配列を、マウス NR10C と命名し、 その塩基配列 (配列番号: 1 7 ) 及びそれがコードするアミノ酸配列 The obtained PCR product was subcloned into pGEM-T Easy vector according to Example 4 described above, and the nucleotide sequence was determined. As a result of determining the nucleotide sequence of all the insert fragments from multiple independent recombinant strains, it was confirmed that the nucleotide sequence was the full-length nucleotide sequence of mouse NR10 gene derived from the specific PCR amplification reaction. The determined sequence was designated as mouse N10B, and its nucleotide sequence (SEQ ID NO: 15) and the amino acid sequence encoded by it (SEQ ID NO: 16) are shown in FIGS. A similar gene was cloned using Mouse day 8.5 embryo (C57BL / 6 embryo 8.5 day mouse embryo) cDNA Library (GIBCO BRL) as a type III, and the target gene was isolated. The sequence determined in the same manner as above was named mouse NR10C, its base sequence (SEQ ID NO: 17) and the amino acid sequence encoded by it
(配列番号: 1 8 ) を図 3 3〜 3 5に示した。 マウス N 10Bとマウス NR10Cの両者 間において、 アミノ酸 ffi列の変異を伴う若干の配列相違が認められる。 これは、 異なるマウス株種に由来する配列の相違であると推定されるものであり、 選択的 :由来する転写産物の相違ではない。 さらに、 以上によって決定 したマウス NR10Bの全長アミノ酸配列と、 前述実施例 4によって決定したヒト NR10.4の全長アミノ酸配列との比較を図 3 6に示した。 マウス NR10Bはヒト NR10.4に対し 59.426%の相同性を保持している。 この高い相同性と構造的特長よ りマウス N 10分子は、 ヒト NR10肝が有する生物学的活性と、 機能的に同等の活 性を保有するものと推定される。 産業上の利用の可能性 (SEQ ID NO: 18) is shown in FIGS. There are slight sequence differences between the mouse N10B and mouse NR10C with mutations in the amino acid ffi sequence. This is presumed to be sequence differences from different mouse strains, : It is not the difference of the origin transcript. FIG. 36 shows a comparison between the full-length amino acid sequence of mouse NR10B determined as described above and the full-length amino acid sequence of human NR10.4 determined in Example 4 described above. Mouse NR10B retains 59.426% homology to human NR10.4. Based on this high homology and structural features, mouse N10 molecule is presumed to have an activity that is functionally equivalent to the biological activity of human NR10 liver. Industrial applicability
本発明により新規なへモポェチン受容体蛋白質及びそれをコードする DNAが提 供された。 また、 該 DNAが挿入されたベクター、 該 DNAを保持する形質転換体、 該 形質転換体を利用した組換え蛋白質の製造方法が提供された。 さらに、 該蛋白質 に結合する天然のリガンドあるいは化合物のスクリーニング方法が提供された。 本発明の蛋白質は、 生体免疫調節、 或いは造血細胞調節に直接的に関与すると考 えられることから、 生体における^^答、 或いは造血機構の抜本的な特性の理 解と、 それに基づく爐関連疾患や造血関連疾患の診断や治療への応用が期待さ れる。  According to the present invention, a novel hemopoietin receptor protein and a DNA encoding the same are provided. Also provided are a vector into which the DNA has been inserted, a transformant carrying the DNA, and a method for producing a recombinant protein using the transformant. Further, a method for screening for a natural ligand or compound that binds to the protein was provided. Since the protein of the present invention is considered to be directly involved in the regulation of biological immunity or the regulation of hematopoietic cells, the understanding of the ^^ response in the living body or the fundamental properties of the hematopoietic mechanism and the furnace-related diseases based on it are And application to diagnosis and treatment of hematopoietic diseases.
特に、 本発明の蛋白質と機能結合し得る、 その未知の造血因子を単離すること は重要であり、 それを目的とするスクリーニングをおこなう上で、 本発明の遺伝 子を利用することは極めて有用であると考えられる。 さらに、 本発明の蛋白質と 機能結合し得るァゴニスト、 或いはアン夕ゴニストの検索を、 ペプチドライブラ リー、 または合成化学材料に対しておこない、 単離同定することも有効である。 上に述べた通り、 本発明の遺伝子は、 それがコードする受容体:蛋白と機能結合 し得る、 未知の造血因子やァゴニストを得るための有用な材料を提供するものと 考えられる。 このような機能結合物質、 或いは該受容体蛋白質の^^機能を活性 化し得る特異的抗体の生体投与により、 生体の細胞性^ Sの増強や造血機能の増 強が可能であると予根 |Jされる。 つまり、 免疫担当細胞、 或いは造血細胞の増殖促 進剤、 または分化誘導剤、 或いは免疫細胞機能活性化剤としての臨床応用が可能 であると考えられる。 また、 それらを介してある特定種の癌糸 II戠に対する細胞傷 害性^ ¾を高めることも可能であると考える。 さらに、 本発明に遺伝子の発現はIn particular, it is important to isolate an unknown hematopoietic factor capable of functionally binding to the protein of the present invention, and it is extremely useful to use the gene of the present invention in screening for the purpose. It is considered to be. Further, it is also effective to conduct a search for an agonist or an angonist capable of functionally binding to the protein of the present invention with respect to a peptide library or a synthetic chemical material to isolate and identify it. As described above, the gene of the present invention is considered to provide a useful material for obtaining unknown hematopoietic factors and agonists capable of functionally binding to the receptor: protein encoded by the gene. In vivo administration of such a function-binding substance or a specific antibody capable of activating the ^^ function of the receptor protein can enhance the cellular ^ S and the hematopoietic function of the living body. J is done. In other words, the proliferation of immunocompetent cells or hematopoietic cells It is considered that clinical application as an enhancer, a differentiation inducer, or an activator of immune cell function is possible. In addition, it is thought that it is possible to enhance the cytotoxicity of certain types of cancer thread II そ れ ら through them. Furthermore, the expression of the gene in the present invention is
、 これら造血繊戠中の限られた細 13»団に特異的に発現している可能性が想定さ れ、 この細 団を分離する手段として本発明の蛋白質に特異的に結合する抗体 は有用である。 この様にして分離された細 S纏匪ま細胞移植療法への応用が可能 である。 However, it is supposed that the antibody is specifically expressed in a limited group of 13 cells in these hematopoietic fibers, and an antibody that specifically binds to the protein of the present invention is useful as a means for separating the group. It is. It can be applied to cell transplantation therapy for small bandages isolated in this way.
一方、 膜貫通領域を持たない R10.8や可溶型の欠失蛋白質等はデコイ (decoy ) 型受容体として NR10リガンドに対する阻害剤としての利用が想定される。 また 、 NR10分子に機能結合し得るアン夕ゴニストや、 その他阻害剤、 或いは服10分子 機能を阻害し得る特異的抗体の生体投与により、 生体の細胞性免疫の抑制や造血 細胞の増殖抑制が可能であると予測される。 このような阻害物質は免疫担当細胞 や造血細胞の増殖抑制剤、 または分化抑制剤、 或いは免疫抑制剤ゃ抗炎症剤とし ての臨床応用が可能であると考えられる。 具体的には、 自己糸 II戠傷害性に起因す る自己爐疾患発症の抑制や、 移植免疫の領域において最大の問題となる、 生体 による糸1哉拒«答の抑制にも応用できる可能性もある。 さらには、 反 応の異常亢進により惹起される疾患領域に対して、 極めて有効であると考えられ 、 金属や花粉などに対する種々の抗原特異的アレルギーに対しても、 上記阻害剤 を用いた免疫抑制による解決が有効であると考えられる。  On the other hand, R10.8 having no transmembrane domain, soluble deletion protein, and the like are expected to be used as decoy-type receptors as inhibitors of NR10 ligand. In addition, it is possible to suppress the cellular immunity of the living body and suppress the growth of hematopoietic cells by in vivo administration of an agonist, which can functionally bind to the NR10 molecule, or other inhibitors, or a specific antibody that can inhibit the function of the NR10 molecule. Is expected. Such an inhibitor is considered to be clinically applicable as an immunosuppressive cell or hematopoietic cell proliferation inhibitor, a differentiation inhibitor, or an immunosuppressant—an anti-inflammatory agent. Specifically, it can be applied to the suppression of the onset of autologous furnace disease caused by autologous thread II 戠 injury, and the suppression of rejection of the thread by the living body, which is the biggest problem in the field of transplant immunity. There is also. Furthermore, it is considered to be extremely effective against a disease area caused by abnormally high response, and is also effective against various antigen-specific allergies to metals and pollen using the above-mentioned inhibitor. Is considered to be effective.

Claims

請求の範囲 The scope of the claims
1. 下記 (a) から (d) のいずれかに記載の DNA。 1. DNA described in any one of (a) to (d) below.
(a) 配歹 II番号: 4、 6、 8、 10、 12、 14、 16、 または 18のいずれか に記載のアミノ酸配列からなる蛋白質をコードする DNA。  (a) DNA encoding a protein consisting of the amino acid sequence of any one of 4, 6, 8, 10, 12, 14, 16, and 18.
(b) 配列番号: 3、 5、 7、 9、 11、 13、 15、 または 17のいずれかに 記載の塩基配列のコード領域を含む DNA。  (b) a DNA comprising the coding region of the nucleotide sequence of any one of SEQ ID NOs: 3, 5, 7, 9, 11, 13, 15, and 17;
(c) 配歹 IJ番号: 4、 6、 8、 10、 12、 14、 16、 または 18のいずれか に記載のアミノ酸配列において 1若しくは複数のアミノ酸が置換、 欠失、 挿入、 および Zまたは付加したアミノ酸配列を有し、 配列番号: 4、 6、 8、 10、 1 (c) System IJ number: Substitution, deletion, insertion, and Z or addition of one or more amino acids in the amino acid sequence described in any of 4, 6, 8, 10, 12, 14, 16, or 18 SEQ ID NOs: 4, 6, 8, 10, 1
2、 14、 16、 または 18のいずれかに記載のアミノ酸配列からなる蛋白質と 機能的に同等な蛋白質をコ一ドする DNA。 DNA encoding a protein functionally equivalent to a protein consisting of the amino acid sequence of any of 2, 14, 16, or 18.
(d) 配列番号: 3、 5、 7、 9、 11、 13、 15、 または 17のいずれかに 記載の塩基配列からなる DNAとストリンジェントな条件下で八ィプリダイズし、 配列番号: 4、 6、 8、 10、 12、 14、 16、 または 18のいずれかに記載 のアミノ酸配列からなる蛋白質と機能的に同等な蛋白質をコードする DNA。  (d) SEQ ID NOs: 4, 5, 6, 7, 8, 9, 13, 13, 15, or 17 are hybridized under stringent conditions with a DNA consisting of the nucleotide sequence of any of SEQ ID NOs: 4, 5, and 6, DNA encoding a protein functionally equivalent to the protein consisting of the amino acid sequence of any one of 8, 10, 12, 14, 16, and 18.
2. 配歹 ij番号: 4、 6、 8、 10、 12、 14、 16、 または 18のいずれ力に 記載のアミノ酸配列からなる蛋白質の部分べプチドをコ一ドする DNA。  2. System ij number: DNA that encodes a partial peptide of a protein consisting of the amino acid sequence described in any of 4, 6, 8, 10, 12, 14, 16, and 18.
3. 請求項 1または 2に記載の DNAによりコードされる蛋白質またはペプチド。 3. A protein or peptide encoded by the DNA according to claim 1 or 2.
4. 請求項 1または 2に記載の DNAが揷入されたベクター。 4. A vector into which the DNA according to claim 1 or 2 has been inserted.
5. 請求項 1または 2に記載の DNAまたは請求項 4に記載のベクタ一を保持する  5. Retains the DNA of claim 1 or 2 or the vector of claim 4
6. 請求項 5に記載の形質転換体を培養し、 該形質転換体またはその培養上清か ら発現させた蛋白質を回収する工程を含む、 請求項 3に記載の蛋白質またはぺプ チドの製造方法。 6. Production of the protein or peptide according to claim 3, comprising a step of culturing the transformant according to claim 5, and recovering the expressed protein from the transformant or a culture supernatant thereof. Method.
7. 請求項 3に記載の蛋白質に結合する抗体。 7. An antibody that binds to the protein of claim 3.
8. 配歹 IJ番号: 3、 5、 7、 9、 1 1、 1 3、 1 5、 または 1 7のいずれかに記 載の塩基配列からなる DNAまたはその相補鎖に相補的な少なくとも 15ヌクレオチ ドを含むポリヌクレオチド。 8. System IJ number: At least 15 nucleotides complementary to the DNA consisting of the base sequence described in any of 3, 5, 7, 9, 11, 11, 13, 15 or 17 or its complementary strand A polynucleotide containing
9. 請求項 3に記載の蛋白質に結合する化合物のスクリ一二ング方法であって、 9. A method for screening a compound that binds to a protein according to claim 3,
( a ) 該蛋白質またはその部分べプチドに被検試料を接触させる工程、 (a) contacting a test sample with the protein or a partial peptide thereof,
(b) 該蛋白質またはその部分べプチドと被検試料との結合活性を検出する工程  (b) a step of detecting a binding activity between the protein or a partial peptide thereof and a test sample
( c ) 該蛋白質またはその部分ぺプチドに結合する活性を有する化合物を選択す る工程、 を含む方法。 (c) selecting a compound having an activity of binding to the protein or a partial peptide thereof.
PCT/JP2002/002769 2001-03-26 2002-03-22 Nr10 splicing variants WO2002077230A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001087298 2001-03-26
JP2001-87298 2001-03-26

Publications (1)

Publication Number Publication Date
WO2002077230A1 true WO2002077230A1 (en) 2002-10-03

Family

ID=18942564

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/002769 WO2002077230A1 (en) 2001-03-26 2002-03-22 Nr10 splicing variants

Country Status (1)

Country Link
WO (1) WO2002077230A1 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007142325A1 (en) * 2006-06-08 2007-12-13 Chugai Seiyaku Kabushiki Kaisha Preventive or remedy for inflammatory disease
US7427494B2 (en) 2000-06-26 2008-09-23 Zymogenetics, Inc. Nucleic acid encoding cytokine receptor zcytor17
US7494804B2 (en) 2002-01-18 2009-02-24 Zymogenetics, Inc. Polynucleotide encoding cytokine receptor zcytor17 multimer
US7871618B2 (en) 2005-02-14 2011-01-18 Zymogenetics, Inc. Methods of treating skin disorders using an IL-31RA antagonist
US7893201B2 (en) 1999-09-27 2011-02-22 Chugai Seiyaku Kabushiki Kaisha Hemopoietin receptor protein, NR12
US7943132B2 (en) 2006-01-10 2011-05-17 Zymogenetics, Inc. Methods of treating pain using antagonists of IL-31, IL-31RA and/or OSMRB
US8013124B2 (en) 2002-01-18 2011-09-06 Zymogenetics, Inc. Antibodies to human zcytor17 ligand
US8017738B2 (en) 1999-06-02 2011-09-13 Chugai Seiyaku Kabushiki Kaisha Hemopoietin receptor protein, NR10
US8017122B2 (en) 2005-05-06 2011-09-13 Zymogenetics, Inc. Methods of using IL-31 monoclonal antibodies to reduce inflammation
US8101183B2 (en) 2005-05-06 2012-01-24 Zymogentics, Inc. Variable region sequences of IL-31 monoclonal antibodies
US8431127B2 (en) 2007-12-05 2013-04-30 Chugai Seiyaku Kabushiki Kaisha Method for treating pruritus comprising administering an NR10 antagonist
US8470979B2 (en) 2007-12-07 2013-06-25 Zymogenetics, Inc. Humanized antibody molecules specific for IL-31
US9738700B2 (en) 2002-01-18 2017-08-22 Zymogenetics Inc. ZCYTOR17 heterodimeric cytokine receptor
US9822177B2 (en) 2005-05-06 2017-11-21 Zymogenetics, Inc Method of reducing pruritus using IL-31 monoclonal antibodies
US10544227B2 (en) 2015-04-14 2020-01-28 Chugai Seiyaku Kabushiki Kaisha Pharmaceutical composition for prevention and/or treatment of atopic dermatitis comprising IL-31 antagonist as active ingredient
US11260125B2 (en) 2019-11-20 2022-03-01 Chugai Seiyaku Kabushiki Kaisha Anti-IL31RA antibody-containing formulations

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000075314A1 (en) * 1999-06-02 2000-12-14 Chugai Research Institute For Molecular Medicine, Inc. Novel hemopoietin receptor protein nr10
WO2002000721A2 (en) * 2000-06-26 2002-01-03 Zymogenetics, Inc. Cytokine receptor zcytor17

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000075314A1 (en) * 1999-06-02 2000-12-14 Chugai Research Institute For Molecular Medicine, Inc. Novel hemopoietin receptor protein nr10
WO2002000721A2 (en) * 2000-06-26 2002-01-03 Zymogenetics, Inc. Cytokine receptor zcytor17

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
ALEXANDER W.S. ET AL.: "Suckling defect in mice lacking the soluble haemopoietin receptor NR6", CURR. BIOL., vol. 3, no. 9(11), 1999, pages 605 - 608, XP002954113 *
GAINSFORD TIMOTHY ET AL.: "Leptin can induce proliferation, differentiation and functional activation of hemopoietic cells", PROC. NATL. ACAD. SCI. USA, vol. 93, 1996, pages 14564 - 14568, XP002954111 *
HILTON DOUGLAS J. ET AL.: "Cloning and characterization of a binding subunit of the interleukin 13 receptor that is also a component of the interleukin 4 receptor", PROC. NATL. ACAD. SCI. USA, vol. 93, 1996, pages 497 - 501, XP002954112 *
MURAKAMI M. ET AL.: "Critical cytoplasmic region of the interleukin 6 signal transducer gp130 is conserved in the cytokine receptor family", PROC. NATL. ACAD. SCI. USA, vol. 88, 1991, pages 11349 - 11353, XP002954109 *
ROBB LORRAINE ET AL.: "Structural analysis of the gene encoding the murine interleukin-11 receptor -chain and a related locus", J. BIOL. CHEM., vol. 271, 1996, pages 13754 - 13761, XP002954110 *

Cited By (61)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8362223B2 (en) 1999-06-02 2013-01-29 Chugai Seiyaku Kabushiki Kaisha Hemopoietin receptor protein, NR10
US8017731B2 (en) 1999-06-02 2011-09-13 Chugai Seiyaku Kabushiki Kaisha Hemopoietic receptor protein, NR10
US8017738B2 (en) 1999-06-02 2011-09-13 Chugai Seiyaku Kabushiki Kaisha Hemopoietin receptor protein, NR10
US7893201B2 (en) 1999-09-27 2011-02-22 Chugai Seiyaku Kabushiki Kaisha Hemopoietin receptor protein, NR12
US7893205B2 (en) 1999-09-27 2011-02-22 Chugai Seiyaku Kabushiki Kaisha Hemopoietin receptor protein, NR12
US7521537B2 (en) 2000-06-26 2009-04-21 Zymogenetics, Inc. Cytokine receptor zcytor17
US8309692B2 (en) 2000-06-26 2012-11-13 Zymogenetics, Inc. Antibodies to cytokine receptor ZCYTOR17
US8648182B2 (en) 2000-06-26 2014-02-11 Zymogenetics, Inc. Polynucleotides encoding antibodies to cytokine receptor zcytor17
US7947474B2 (en) 2000-06-26 2011-05-24 Zymogenetics, Inc. Nucleic acid encoding cytokine receptor ZCYTOR17
US7495080B2 (en) 2000-06-26 2009-02-24 Zymogenetics, Inc. Cytokine receptor zcytor17
US7427494B2 (en) 2000-06-26 2008-09-23 Zymogenetics, Inc. Nucleic acid encoding cytokine receptor zcytor17
US9212213B2 (en) 2002-01-18 2015-12-15 Zymogenetics, Inc. ZCYTOR17 heterodimeric cytokine receptor
US8013124B2 (en) 2002-01-18 2011-09-06 Zymogenetics, Inc. Antibodies to human zcytor17 ligand
US7494804B2 (en) 2002-01-18 2009-02-24 Zymogenetics, Inc. Polynucleotide encoding cytokine receptor zcytor17 multimer
US8647866B2 (en) 2002-01-18 2014-02-11 Zymogenetics, Inc. ZCYTOR17 heterodimeric cytokine receptor polynucleotides
US9605062B2 (en) 2002-01-18 2017-03-28 Zymogenetics Inc Polynucleotides encoding ZCYTOR17 ligand antibodies
US9738700B2 (en) 2002-01-18 2017-08-22 Zymogenetics Inc. ZCYTOR17 heterodimeric cytokine receptor
US10227415B2 (en) 2002-01-18 2019-03-12 Zymogenetics Inc. Methods of producing a zcytor17 heterodimeric cytokine receptor
US10611846B2 (en) 2005-02-14 2020-04-07 Zymogenetics, Inc. Methods of treating skin disorders using anti-IL-31RA antibodies
US9139651B2 (en) 2005-02-14 2015-09-22 Zymogenetics, Inc. Methods of treatment using IL-31RA
US11312779B2 (en) 2005-02-14 2022-04-26 Zymogenetics, Inc. Methods of treating prurigo nodularis using anti-IL-31RA antibody compositions
US7871618B2 (en) 2005-02-14 2011-01-18 Zymogenetics, Inc. Methods of treating skin disorders using an IL-31RA antagonist
US10259868B2 (en) 2005-05-06 2019-04-16 Zymogenetics, Inc. Methods of treating atopic dermatitis with IL-31 monoclonal antibodies
US10273297B2 (en) 2005-05-06 2019-04-30 Zymogenetics, Inc. Use of IL-31 monoclonal antibodies for reducing pruritus
US9822177B2 (en) 2005-05-06 2017-11-21 Zymogenetics, Inc Method of reducing pruritus using IL-31 monoclonal antibodies
US8101183B2 (en) 2005-05-06 2012-01-24 Zymogentics, Inc. Variable region sequences of IL-31 monoclonal antibodies
US9683037B2 (en) 2005-05-06 2017-06-20 Zymogenetics Inc Method of treating atopic dermatitis with IL-31 monoclonal antibodies
US8568723B2 (en) 2005-05-06 2013-10-29 Zymogenetics, Inc. Method of reducing pruritis using IL-31 monoclonal antibodies
US9512219B2 (en) 2005-05-06 2016-12-06 Zymogenetics, Inc. IL-31 monoclonal antibodies
US8017122B2 (en) 2005-05-06 2011-09-13 Zymogenetics, Inc. Methods of using IL-31 monoclonal antibodies to reduce inflammation
US9156909B2 (en) 2005-05-06 2015-10-13 Zymogenetics, Inc. Polynucleotides encoding IL-31 monoclonal antibodies
US8974783B2 (en) 2006-01-10 2015-03-10 Zymogenetics, Inc. Methods of treating pain using an IL-31Ra or OSMR-b antagonist
US9631022B2 (en) 2006-01-10 2017-04-25 Zymogenetics Inc. Method treating neuronal tissue inflammation using an IL-31RA monoclonal antibody
US7943132B2 (en) 2006-01-10 2011-05-17 Zymogenetics, Inc. Methods of treating pain using antagonists of IL-31, IL-31RA and/or OSMRB
US8105591B2 (en) 2006-01-10 2012-01-31 Zymogenetics, Inc. Methods of antagonizing signal transduction in dorsal root ganglion cells
US8685395B2 (en) 2006-01-10 2014-04-01 Zymogenetics, Inc. Methods of antagonizing signal transduction in dorsal root ganglion cells
US9334322B2 (en) 2006-01-10 2016-05-10 Zymogenetics, Inc. Methods of antagonizing signal transduction in spinal cord cells using an IL-31Ra or OSMR-b antagonist
US9828431B2 (en) 2006-01-10 2017-11-28 Zymogenetics, Inc. Use of IL-31RA monoclonal antibodies for treating neuronal inflammation
US8409571B2 (en) 2006-01-10 2013-04-02 Zymogenetics, Inc. Methods of antagonizing signal transduction in spinal cord cells
CN103272232A (en) * 2006-06-08 2013-09-04 中外制药株式会社 Preventive or remedy for inflammatory disease
JP5043008B2 (en) * 2006-06-08 2012-10-10 中外製薬株式会社 Preventive or therapeutic agent for inflammatory diseases
NO344849B1 (en) * 2006-06-08 2020-06-02 Chugai Pharmaceutical Co Ltd An anti-NR10 / IL-31RA antibody having NR10 / IL-31RA neutralizing activity for use in preventing or treating atopic dermatitis, rheumatism, or osteoarthritis, or an agent thereof.
EP2371393A1 (en) * 2006-06-08 2011-10-05 Chugai Seiyaku Kabushiki Kaisha Preventive or remedy for inflammatory disease
WO2007142325A1 (en) * 2006-06-08 2007-12-13 Chugai Seiyaku Kabushiki Kaisha Preventive or remedy for inflammatory disease
US9745378B2 (en) 2006-06-08 2017-08-29 Chugai Seiyaku Kabushiki Kaisha Antibodies that bind to cytokine receptor NR10
TWI419703B (en) * 2006-06-08 2013-12-21 Chugai Pharmaceutical Co Ltd The use of anti-NR10 antibodies with neutralizing activity against human NR10 and Cynomolgus monkey NR10
US9028821B2 (en) 2006-06-08 2015-05-12 Chugai Seiyaku Kabushiki Kaisha Method of treating an inflammatory disease comprising administering an NR 10 antibody antagonist
AU2007255753B2 (en) * 2006-06-08 2013-01-17 Chugai Seiyaku Kabushiki Kaisha Preventive or remedy for inflammatory disease
CN103272232B (en) * 2006-06-08 2018-07-24 中外制药株式会社 The prevention of inflammatory disease or medicine
US8431127B2 (en) 2007-12-05 2013-04-30 Chugai Seiyaku Kabushiki Kaisha Method for treating pruritus comprising administering an NR10 antagonist
US9982044B2 (en) 2007-12-07 2018-05-29 Zymogenetics Inc. Method of treating pruritus with IL-31 monoclonal antibody formulations
US9416184B2 (en) 2007-12-07 2016-08-16 Zymogenetics, Inc. Method of treating pruritus with IL-31 monoclonal antibodies
US9738715B2 (en) 2007-12-07 2017-08-22 Zymogenetics Inc. IL-31 monoclonal antibody formulations
US10640559B2 (en) 2007-12-07 2020-05-05 Zymogenetics, Inc. Nucleic acid molecules encoding humanized IL-31 monoclonal antibodies
US8470979B2 (en) 2007-12-07 2013-06-25 Zymogenetics, Inc. Humanized antibody molecules specific for IL-31
US9005921B2 (en) 2007-12-07 2015-04-14 Zymogenetics, Inc. Polynucleotides encoding IL-31 monoclonal antibodies
US11542327B2 (en) 2007-12-07 2023-01-03 Zymogenetics Inc. Methods of treating pruritic disease with IL-31 monoclonal antibodies
US10544227B2 (en) 2015-04-14 2020-01-28 Chugai Seiyaku Kabushiki Kaisha Pharmaceutical composition for prevention and/or treatment of atopic dermatitis comprising IL-31 antagonist as active ingredient
US11773173B2 (en) 2015-04-14 2023-10-03 Chugai Seiyaku Kabushiki Kaisha Pharmaceutical composition for prevention and/or treatment of atopic dermatitis comprising IL-31 antagonist as active ingredient
US11260125B2 (en) 2019-11-20 2022-03-01 Chugai Seiyaku Kabushiki Kaisha Anti-IL31RA antibody-containing formulations
US11723976B2 (en) 2019-11-20 2023-08-15 Chugai Seiyaku Kabushiki Kaisha Methods of administering anti-IL31A antibody-containing formulations

Similar Documents

Publication Publication Date Title
JP2020036596A (en) Novel hemopoietin receptor protein, NR10
WO2001023556A1 (en) Novel hemopoietin receptor protein, nr12
WO2002077230A1 (en) Nr10 splicing variants
US7829083B2 (en) Antibodies to brain specific membrane protein
US20090275082A1 (en) Mast Cell-Derived Membrane Proteins
EP1120426A1 (en) Novel g protein-coupled receptors
JP4590107B2 (en) New fetal gene
JP2008099690A (en) Novel hemopoietin receptor protein, nr12
EP1215284A1 (en) Tsg-like gene
WO2005030955A1 (en) Protein expressed in nk cell
US20020169301A1 (en) Novel bHLH type transcription factor genes DEC2
JP4541613B2 (en) Novel cytokine
WO2001066720A1 (en) Mouse adipocyte-origin genes
US20030138802A1 (en) Novel protein having signal sequence
JP2002000279A (en) Ys 68 gene participating in primary hemopoiesis
WO2001083738A1 (en) Sex determinative differentiation regulatory factor
JP2004267003A (en) New gene present in human leukocyte antigen region

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP