WO2002063871A1 - Digital camera - Google Patents

Digital camera Download PDF

Info

Publication number
WO2002063871A1
WO2002063871A1 PCT/JP2002/000904 JP0200904W WO02063871A1 WO 2002063871 A1 WO2002063871 A1 WO 2002063871A1 JP 0200904 W JP0200904 W JP 0200904W WO 02063871 A1 WO02063871 A1 WO 02063871A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
image
signal processing
subject
digital camera
Prior art date
Application number
PCT/JP2002/000904
Other languages
French (fr)
Japanese (ja)
Inventor
Seishin Okazaki
Original Assignee
Sanyo Electric Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co., Ltd. filed Critical Sanyo Electric Co., Ltd.
Publication of WO2002063871A1 publication Critical patent/WO2002063871A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/80Camera processing pipelines; Components thereof
    • H04N23/84Camera processing pipelines; Components thereof for processing colour signals
    • H04N23/88Camera processing pipelines; Components thereof for processing colour signals for colour balance, e.g. white-balance circuits or colour temperature control

Definitions

  • the present invention relates to a digital camera, and more particularly to, for example, a digital camera that performs signal processing on a captured image signal to generate a recording image signal.
  • Conventional technology a digital camera that performs signal processing on a captured image signal to generate a recording image signal.
  • a subject is photographed by an image sensor, and the photographed image signal is subjected to signal processing such as white balance adjustment, color correction, YUV conversion, and contour correction, thereby generating a recording image signal.
  • the image quality of the recording image signal changes depending on the parameter values used for signal processing, but the desired image quality depends on the nature of the subject and the preference of the operator. I can't decide. For this reason, conventionally, the same subject is photographed a plurality of times, and each photographed signal is subjected to signal processing according to different parameter values. However, in such a conventional technique, it is necessary to photograph a subject a plurality of times, and thus there is a problem that each recorded image is shifted due to camera shake. The problem of camera shake becomes more pronounced as the zoom magnification is increased. Summary of the Invention
  • a main object of the present invention is to provide a novel digital camera.
  • Another object of the present invention is to provide a digital camera capable of obtaining a plurality of recorded images of the same subject with different image qualities and preventing each recorded image from being shifted due to camera shake. It is.
  • a digital camera includes: an image sensor for photographing a subject; a memory for storing a photographed image signal corresponding to the subject; reading means for repeatedly reading the photographed image signal from the memory; Signal processing for performing signal processing according to mutually different parameter values on each captured image signal Recording means for recording a plurality of recording image signals generated by the signal processing means on a recording medium.
  • a photographed image signal corresponding to the photographed subject is stored in the memory.
  • the captured image signal stored in the memory is repeatedly read by the reading means.
  • the signal processing means performs signal processing according to mutually different parameter values on each of the read captured image signals, and the recording means stores a plurality of recording image signals generated by the signal processing means on a recording medium. Record. Since signal processing according to mutually different parameter values is performed, a plurality of recorded images having different image qualities can be obtained for the same subject. Further, since the photographed image signal is stored in the memory and the same photographed image signal is repeatedly read out from the memory card, it is possible to prevent each recorded image from being shifted due to camera shake.
  • the parameter value is an adjustment value of white balance adjustment.
  • the optimum adjustment value of the white balance adjustment may be calculated by the calculating means, and the adjustment value may be changed by the adjustment value changing means based on the calculated optimum adjustment value.
  • the adjustment value is changed along the color temperature curve, good image quality can be obtained for any of the recorded images.
  • the zoom magnification of the subject to be photographed is controlled by the control means.
  • the position of the optical axis method of the zoom lens may be controlled by the control means.
  • FIG. 1 is a block diagram showing a configuration of one embodiment of the present invention
  • FIG. 2 is an illustrative view showing a complementary color filter
  • FIG. 3 is a block diagram showing a mating state of the SDRAM
  • Figure 4 is a block diagram showing the configuration of the signal processing circuit
  • FIG. 5 is an illustrative view showing a plane having a U signal as a horizontal axis and a V axis as a vertical axis, and a color temperature curve existing on this plane; and FIG. 6 is a flow chart showing a part of the operation of the FIG. 1 embodiment; and FIG. 7 is a flow chart showing another part of the operation of the FIG. 1 embodiment.
  • a digital camera 10 of this embodiment includes a zoom lens 12a and a focus lens 12b, and an optical image of a subject is passed through these lenses 12a and 12b to form a progressive scan CCD imager. Irradiated at 14.
  • a complementary color filter 14a as shown in FIG. 2 is mounted on the light receiving surface of the CCD imager 14, and the amount of charge generated in each pixel reflects the light intensity of the Ye, Cy, G or Mg color.
  • the system controller 40 When the power is turned on, the system controller 40 provides a corresponding status signal to the CPU 40. Then, the CPU 40 activates a signal processing block including the TG 18 and the signal processing circuit 28 and an encoder block including the video encoder 30 and the monitor 32.
  • the TG 18 drives the CCD imager 14 by a thinning-out reading method.
  • a low-resolution raw image signal (charge) corresponding to the subject image is read from the CCD imager 14 at a predetermined frame rate.
  • the read raw image signal of each frame is supplied to the memory control circuit 24 through the CDSZAGC circuit 20 and the A / D converter 22, and is written to the SDRAM 26 by the memory control circuit 24.
  • a raw image area 26a is formed in the SDRAM 26 as shown in FIG. 3, and a raw image signal of each frame is written in the raw image area 26a.
  • the signal processing circuit 28 reads the raw image signal stored in the raw image area 26a for each frame through the memory control circuit 24, and converts the read raw image signal into RGB conversion, color separation, white balance adjustment, and key adjustment. Performs a series of processing of correction, YUV conversion, and contour correction.
  • the YUV signal of each frame subjected to the contour correction is written into the display YUV area 26b shown in FIG. 3 by the memory control circuit 24.
  • the video encoder 30 reads the series of YUV signals written in the display YUV area 26b through the memory control circuit 24, and converts the read YUV signals into a composite image signal.
  • the converted composite image The signal is provided to the monitor 32, whereby a real-time moving image (through image) of the subject is displayed on the screen.
  • a corresponding state signal is given from the system controller 42 to the CPU 40.
  • the CPU 40 drives the zoom lens 12a through the driver 16a, whereby the zoom lens 12a moves in the optical axis direction.
  • a telephoto image is displayed on the monitor 32.
  • a wide-angle image is displayed on the monitor 32.
  • the signal processing circuit 28 is specifically configured as shown in FIG. Since the CCD imager 14 is equipped with the complementary color filter 14a shown in FIG. 2, each pixel of the raw image signal output from the AZD converter 22 is one of Ye, Cy, G, and Mg. This is a signal having one color component.
  • the RGB conversion circuit 28a performs such RGB conversion on the raw image signal to generate an RGB signal in which each pixel has one of R, G, and B color components.
  • the RGB signal output from the RGB conversion circuit 28b is subjected to color separation, whereby each pixel generates an R GB signal having all the R, G and B color components. Generated.
  • the R signal is supplied to an amplifier correction circuit 28e via an amplifier 28c
  • the G signal is directly supplied to an amplifier correction circuit 22e
  • the B signal is supplied to an amplifier correction circuit 28d via an amplifier 28d.
  • Circuit 28e In the amplifier 28c, the gain is added to the R signal, and in the amplifier 28b, the gain] 3 is added to the B signal, whereby the white balance is adjusted.
  • the key correction circuit 28e performs key correction on the RGB signal that has been subjected to the white balance adjustment, and supplies the corrected RGB signal to the YUV conversion circuit 28f.
  • the RGB signal is converted into a YUV signal at a ratio of 4: 2: 2 in the ⁇ 11 ⁇ conversion circuit 28f.
  • the U signal and the V signal are output as they are, and the Y signal is output through the contour correction in the contour correction circuit 28g.
  • the Y signal output from the contour correction circuit 28g and the U signal and V signal output from the YUV conversion circuit 28f are also supplied to a thinning circuit 28h.
  • the thinning circuit 28h is activated when a high-resolution raw image signal is output from the CCD imager 14, and performs thinning processing on the high-resolution YUV signal. This allows the monitor A low-resolution YUV signal is generated for display on 32.
  • the RGB signal output from the color separation circuit 22a is also input to a color evaluation circuit 38 shown in FIG.
  • the color evaluation circuit 38 integrates each of the R signal, the G signal, and the B signal for each frame period to obtain color evaluation values Ir, Ig, and lb.
  • the CPU 40 fetches the color evaluation values Ir, Ig, and Ib obtained for each frame from the color evaluation circuit 38, and based on the color evaluation values Ir, Ig, and Ib, the amplifier 28c and the amplifier 28c. And the gain ⁇ and) 3 set to 28 d. This adjusts the white balance of the RGB signal.
  • a corresponding state signal is given from the system controller 42 to the CPU 40.
  • the CPU 40 first performs exposure adjustment and focus adjustment.
  • the desired aperture amount and the desired exposure time are set in the aperture unit (not shown) and the TG 18 by the exposure adjustment, and the position of the focus lens 12b in the optical axis direction is adjusted by the focus adjustment.
  • the focus lens 12b is driven by a dryino 16b.
  • the main exposure and all-pixel reading are performed by the TG 18, and a high-resolution raw image signal is output from the CCD imager 14.
  • the read raw image signal passes through a CDSZAGC circuit 20 and an AZD converter 22, and is then written by a memory control circuit 24 into a raw image area 26a shown in FIG.
  • the signal processing circuit 28 reads a raw image signal from the raw image area 26a through the memory control circuit 24, and performs the above-described signal processing on the read raw image signal.
  • the RGB signal generated in the course of the series of signal processing is provided to a color evaluation circuit 38, which calculates color evaluation values Ir, Ig and lb based on the supplied RGB signal.
  • the CPU 40 calculates the optimum gains as and 13 s based on the calculated color evaluation values Ir, Ig and Ib, and compares the obtained optimum gains s and ⁇ s with the amplifiers 28 c and 28 shown in FIG. Set to d.
  • the memory control circuit 24 repeatedly reads a high-resolution raw image signal from the raw image area 26a in response to a request from the signal processing circuit 28.
  • the CPU 40 compresses the JPEG codec 34 every time the raw image signal of one frame is subjected to signal processing. Command the compression processing, and change the gains ⁇ and 3 to be set for the amplifiers 28 c and 28 d based on the optimum gains as and / 3 s.
  • the gains a and j8 are specifically changed along the color temperature curve shown in FIG.
  • the signal processing circuit 28 generates high-resolution YUV signals of a plurality of frames having different image qualities, and each high-resolution YUV signal is written to the recording YUV area 26c shown in FIG.
  • the JPEG codec 34 reads the YUV signal of each frame from the recording YUV area 26c through the memory control circuit 24, and performs JPEG compression on the read YUV signal.
  • the compressed YUV signal (compressed image signal) is stored in the compressed image area 26 d shown in FIG.
  • the CPU 40 reads these compressed image signals through the memory control circuit 24, and the read compressed image signals are stored in the removable recording medium 3. Record in 6.
  • the bracket shooting is completed.
  • the thinning circuit 28h shown in FIG. 4 is activated during bracket shooting, and a low-resolution YUV signal having a different image quality is output from the thinning circuit 28h for each frame.
  • the low-resolution YUV signal of each frame is written to the display YUV area 26 b shown in FIG. 4, and then read out by the video encoder 30.
  • the image quality of the still image (freeze image) displayed on the monitor 32 changes every frame period.
  • the CPU 40 operates according to the flowcharts shown in FIGS. 6 and 7 when the shirt button 45 is pressed in the state where the bracket shooting mode is selected.
  • the program corresponding to this flowchart is stored in the ROM 50.
  • step S1 the count value N of the counter 40a is set to "0", and exposure adjustment (AE processing) and focus adjustment (AF processing) are performed in steps S3 and S5.
  • AE processing exposure adjustment
  • AF processing focus adjustment
  • the main exposure is performed by the TG 1 in step S7.
  • Command 8 The TG 18 performs the main exposure for the set optimal exposure time, and reads out the raw image signal generated by the main exposure from the CCD imager 14 by the all-pixel readout method. Read high The raw image signal having the resolution is written to a raw image area 26 a shown in FIG. 3 through a CDSZAGC circuit 20, an AZD converter 22 and a memory control circuit 24, and then read out by a signal processing circuit 28.
  • the raw image signal based on the main exposure is read from the SDRAM 26 by the memory control circuit 24, and subjected to RGB conversion and color separation by the RGB conversion circuit 28a and the color separation circuit 28b shown in FIG.
  • the color-separated RGB signals are integrated by the color evaluation circuit 38 over one frame period. However, since it takes time from the start of the main exposure to the completion of the integration processing, the process waits in step S11 for this time.
  • the color evaluation values I ⁇ r, Ig, and lb captured in step S13 are evaluation values based on the raw image signal obtained by the main exposure.
  • 8 s are calculated based on the taken color evaluation values Ir, Ig and Ib.
  • step S17 the process proceeds to step S17, and the gains a and 3 are changed based on the optimum gains s and) Ss.
  • N 4
  • the gains ⁇ and) 3 are changed along the color temperature curve.
  • step S19 the optimum gains s and; 8s calculated in step S15 and the gain ⁇ changed in step S17) are set to the amplifiers 28c and 28d shown in FIG.
  • the process waits for a predetermined time in step S21.
  • the raw image signal read from the raw image area 26a after the gain setting is subjected to signal processing by the signal processing circuit 28, and the high-resolution YUV signal and the low-resolution YUV output from the signal processing circuit 28 This corresponds to the time until the signal is written to the recording YUV area 26c and the display YUV area 26b shown in FIG.
  • the gain set in step S19 A high-resolution YUV signal and a low-resolution YUV signal having an image quality according to a (as) and i3 (3 s) are secured in the SDRAM 26, and a freeze image based on the low-resolution YUV signal is displayed on the monitor 32.
  • step S23 the JPEG codec 34 is instructed to perform JPEG compression.
  • the JPEG codec 34 reads the high-resolution YUV signal from the recording YUV area 26, applies JPEG compression to the read high-resolution YUV signal, and converts the compressed image signal into a compressed image area 26d shown in FIG. Write.
  • step S17 the gains a; and 3) corresponding to the count value N are set in the amplifiers 28c and 28d, and the signal processing circuit 28 generates a high-resolution YUV signal and a low-resolution YUV signal having different image qualities.
  • the image quality of the freeze image displayed on the monitor 32 changes for each frame, and compressed image signals having different image qualities are accumulated in the compressed image area 26d for each frame period.
  • step S27 Nmax
  • step S29 the process proceeds from step S27 to step S29 to perform a recording process. Specifically, the compressed image signal stored in the compressed image area 26 d is read, and each read compressed image signal is recorded on the recording medium 36. When the recording of the compressed image signal for 5 frames is completed, the routine returns to the upper layer routine. An image file is created for each compressed image signal in the recording medium 36, and an identification number is assigned to each image file in the order of increasing (or decreasing) color temperature.
  • a raw image signal (photographed image signal) of the subject is stored in the SDRAM 26.
  • the raw image signal stored in the SD RAM 26 is repeatedly read by the memory control circuit 24.
  • the signal processing circuit 28 performs signal processing on each of the read raw image signals to generate a plurality of high-resolution YUV signals.
  • white balance adjustment is performed.
  • the gains ⁇ and 3 for white balance adjustment differ for each raw image signal.
  • each generated high resolution YUV signal has a different image quality.
  • the JPEG codec 34 converts the generated high-resolution YUV signal
  • the compressed image signals are separately compressed to generate a plurality of compressed image signals, and the CPU 40 records each of the generated compressed image signals on the recording medium 36.
  • each raw image signal is subjected to signal processing according to different parameter values, a plurality of recorded images having different image qualities can be obtained for the same subject.
  • the raw image signal is temporarily stored in the SDRAM 26 and the same raw image signal is repeatedly read from the SDRAM 26, it is possible to prevent a shift in each recorded image due to camera shake.
  • the problem of camera shake becomes more pronounced when a telephoto image is taken with the zoom lens 12a placed on the telephoto side.
  • only one shooting is required, so the position of the zoom lens 12a The problem of camera shake can be solved regardless of.
  • a progressive scan type CCD imager is used.
  • an in-line race scan type CCD imager may be used instead.
  • a CMOS image sensor may be used instead of the CCD image sensor.
  • the complementary color filter is mounted on the light receiving surface of the CCD imager, but a primary color filter may be mounted instead. In this case, the RGB conversion circuit becomes unnecessary.
  • the optical zoom is performed by the zoom lens in order to obtain a telephoto image or a wide-angle image.
  • a digital zoom may be performed instead of or in addition to the optical zoom.
  • the white balance adjustment value (gain or
  • the saturation can be adjusted by the YUV conversion circuit. For this reason, instead of the white balance adjustment value or together with the white balance adjustment value, at least one of the key correction value, the contour correction value, and the saturation may be changed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Color Television Image Signal Generators (AREA)
  • Studio Devices (AREA)
  • Image Input (AREA)
  • Television Signal Processing For Recording (AREA)
  • Processing Of Color Television Signals (AREA)
  • Facsimile Image Signal Circuits (AREA)
  • Color Image Communication Systems (AREA)
  • Image Processing (AREA)

Abstract

A digital camera includes a CCD imager (14). A raw image signal of an object picked up by the CCD imager (14) is temporarily stored in an SDRAM (26). The raw image signal stored in the SDRAM (26) is repeatedly read out by a memory control circuit (24). A signal processing circuit (28) performs a signal processing of each of the raw image signals which have been read out and creates a plurality of YUV signals of high resolution. During the signal processing, a white balance adjustment is performed. The gain for the white balance adjustment differs from one raw image signal to another. For this, the high-resolution YUV signals have different image qualities from one another. A JPEG codec (34) compresses each of the plurality of high-resolution YUV signals so as to create a plurality of compressed image signals. A CPU (40) records the created compressed image signals in a recording medium (36).

Description

ディジタルカメラ 技術分野  Digital camera technical field
この発明は、 ディジタルカメラに関し、 特にたとえば、 撮影画像信号に信号処 理を施して記録用画像信号を生成する、 ディジタルカメラに関する。 従来技術  The present invention relates to a digital camera, and more particularly to, for example, a digital camera that performs signal processing on a captured image signal to generate a recording image signal. Conventional technology
ディジタルカメラでは、 被写体はイメージセンサによって撮影され、 撮影画像 信号は白バランス調整, ァ捕正, YUV変換,輪郭補正などの信号処理を施され、 これによつて記録用画像信号が生成される。 記録用画像信号の画質は、 どのよう なパラメータ値で信号処理を施すかによつて変化するが、 どのような画質が望ま しいかは被写体の性質やオペレータの好みによって異なり、 カメラ側で一概に決 めることはできない。 このため、 従来は、 同じ被写体を複数回撮影し、 各々の撮 影信号に互いに異なるパラメ一夕値に従って信号処理を施すようにしていた。 しかし、 このような従来技術では、 被写体を複数回にわたって撮影する必要が あるため、 手ぶれによつて各々の記録画像にずれが生じるという問題があつた。 なお、 手ぶれの問題は、 ズーム倍率を高くするほど顕著になる。 発明の概要  In a digital camera, a subject is photographed by an image sensor, and the photographed image signal is subjected to signal processing such as white balance adjustment, color correction, YUV conversion, and contour correction, thereby generating a recording image signal. The image quality of the recording image signal changes depending on the parameter values used for signal processing, but the desired image quality depends on the nature of the subject and the preference of the operator. I can't decide. For this reason, conventionally, the same subject is photographed a plurality of times, and each photographed signal is subjected to signal processing according to different parameter values. However, in such a conventional technique, it is necessary to photograph a subject a plurality of times, and thus there is a problem that each recorded image is shifted due to camera shake. The problem of camera shake becomes more pronounced as the zoom magnification is increased. Summary of the Invention
それゆえに、 この発明の主たる目的は、 新規なディジタルカメラを提供するこ とである。  Therefore, a main object of the present invention is to provide a novel digital camera.
この発明の他の目的は、 同じ被写体について画質の異なる複数の記録画像を得 ることができ、 かつ手ぶれによって各々の記録画像にずれが生じるのを防止する ことができる、 ディジタルカメラを提供することである。  Another object of the present invention is to provide a digital camera capable of obtaining a plurality of recorded images of the same subject with different image qualities and preventing each recorded image from being shifted due to camera shake. It is.
この発明に従うディジタルカメラは、 次のものを備える:被写体を撮影するィ メージセンサ;被写体に対応する撮影画像信号を格納するメモリ ;撮影画像信号 をメモリから繰り返し読み出す読み出し手段;読み出し手段によって読み出され た各々の撮影画像信号に互いに異なるパラメータ値に従う信号処理を施す信号処 理手段;および信号処理手段によって生成された複数の記録用画像信号を記録媒 体に記録する記録手段。 A digital camera according to the present invention includes: an image sensor for photographing a subject; a memory for storing a photographed image signal corresponding to the subject; reading means for repeatedly reading the photographed image signal from the memory; Signal processing for performing signal processing according to mutually different parameter values on each captured image signal Recording means for recording a plurality of recording image signals generated by the signal processing means on a recording medium.
イメージセンサによって被写体が撮影されると、 撮影された被写体に対応する 撮影画像信号がメモリに格納される。 メモリに格納された撮影画像信号は、 読み 出し手段によって繰り返し読み出される。 信号処理手段は、 読み出された各々の 撮影画像信号に互いに異なるパラメ一夕値に従う信号処理を施し、 記録手段は、 信号処理手段によつて生成された複数の記録用画像信号を記録媒体に記録する。 互いに異なるパラメータ値に従う信号処理が行なわれるため、 同じ被写体につい て画質の異なる複数の記録画像を得ることができる。 また、 撮影画像信号をメモ リに格納し、 同じ撮影画像信号をメモリカ ^ら繰り返し読み出すようにしたため、 手ぶれによつて各々の記録画像にずれが生じるのを防止することができる。 信号処理手段は撮影画像信号に白バランス調整を施す場合、 パラメータ値は白 バランス調整の調整値である。 このとき、 白バランス調整の最適調整値を算出手 段によって算出し、 算出された最適調整値を基準に調整値変更手段によつて調整 値を変更するようにしてもよい。 ここで、 色温度曲線に沿って調整値を変更する ようにすれば、 いずれの記録画像についても良好な画質が得られる。  When a subject is photographed by the image sensor, a photographed image signal corresponding to the photographed subject is stored in the memory. The captured image signal stored in the memory is repeatedly read by the reading means. The signal processing means performs signal processing according to mutually different parameter values on each of the read captured image signals, and the recording means stores a plurality of recording image signals generated by the signal processing means on a recording medium. Record. Since signal processing according to mutually different parameter values is performed, a plurality of recorded images having different image qualities can be obtained for the same subject. Further, since the photographed image signal is stored in the memory and the same photographed image signal is repeatedly read out from the memory card, it is possible to prevent each recorded image from being shifted due to camera shake. When the signal processing means performs white balance adjustment on the captured image signal, the parameter value is an adjustment value of white balance adjustment. At this time, the optimum adjustment value of the white balance adjustment may be calculated by the calculating means, and the adjustment value may be changed by the adjustment value changing means based on the calculated optimum adjustment value. Here, if the adjustment value is changed along the color temperature curve, good image quality can be obtained for any of the recorded images.
さらに好ましくは、 撮影される被写体のズーム倍率が制御手段によって制御さ れる。 このとき、 ズームレンズの光軸方法の位置を制御手段によって制御するよ うにしてもよい。  More preferably, the zoom magnification of the subject to be photographed is controlled by the control means. At this time, the position of the optical axis method of the zoom lens may be controlled by the control means.
この発明の上述の目的, その他の目的, 特徴および利点は、 図面を参照して行 う以下の実施例の詳細な説明から一層明らかとなろう。 図面の簡単な説明  The above objects, other objects, features and advantages of the present invention will become more apparent from the following detailed description of embodiments with reference to the drawings. BRIEF DESCRIPTION OF THE FIGURES
図 1はこの発明の一実施例の構成を示すブロック図であり;  FIG. 1 is a block diagram showing a configuration of one embodiment of the present invention;
図 2は補色フィルタを示す図解図であり;  FIG. 2 is an illustrative view showing a complementary color filter;
図 3は S D RAMのマツビング状態を示すブロック図であり;  FIG. 3 is a block diagram showing a mating state of the SDRAM;
図 4は信号処理回路の構成を示すブロック図であり ;  Figure 4 is a block diagram showing the configuration of the signal processing circuit;
図 5は U信号を横軸とし V軸を縦軸とする平面とこの平面上に存在する色温 度曲線とを示す図解図であり ;そして 図 6は図 1実施例の動作の一部を示すフロー図であり;そして 図 7は図 1実施例の動作の他の一部を示すフロー図である。 発明を実施するための最良の形態 FIG. 5 is an illustrative view showing a plane having a U signal as a horizontal axis and a V axis as a vertical axis, and a color temperature curve existing on this plane; and FIG. 6 is a flow chart showing a part of the operation of the FIG. 1 embodiment; and FIG. 7 is a flow chart showing another part of the operation of the FIG. 1 embodiment. BEST MODE FOR CARRYING OUT THE INVENTION
図 1を参照して、 この実施例のディジタルカメラ 10はズームレンズ 12 aお ょぴフォーカスレンズ 12 bを含み、 被写体の光学像は、 これらのレンズ 12 a および 12 bを通してプログレッシブスキャン型の CCDイメージャ 14に照射 される。 CCDイメージャ 14の受光面には図 2に示すような補色フィルタ 14 aが装着されており、 各画素において生成される電荷量は Ye, Cy, Gまたは M gの色の光強度を反映する。  Referring to FIG. 1, a digital camera 10 of this embodiment includes a zoom lens 12a and a focus lens 12b, and an optical image of a subject is passed through these lenses 12a and 12b to form a progressive scan CCD imager. Irradiated at 14. A complementary color filter 14a as shown in FIG. 2 is mounted on the light receiving surface of the CCD imager 14, and the amount of charge generated in each pixel reflects the light intensity of the Ye, Cy, G or Mg color.
電源が投入されると、 システムコントローラ 40は対応する状態信号を CPU 40に与える。 すると、 CPU 40は、 TG18, 信号処理回路 28などを含む 信号処理ブロックならびにビデオエンコーダ 30, モニタ 32などを含むェンコ ードブロックを起動する。 TG18は、 CCDイメージャ 14を間引き読み出し 方式で駆動する。 これによつて、 被写体像に対応する低解像度の生画像信号 (電 荷) が CCDイメージャ 14から所定フレームレートで読み出される。 読み出さ れた各フレームの生画像信号は、 CDSZAGC回路 20および A/D変換器 2 2を通してメモリ制御回路 24に与えられ、 メモリ制御回路 24によって SDR AM 26に書き込む。 SDRAM 26には図 3に示すように生画像エリア 26 a が形成されており、 各フレームの生画像信号はこの生画像エリァ 26 aに書き込 まれる。  When the power is turned on, the system controller 40 provides a corresponding status signal to the CPU 40. Then, the CPU 40 activates a signal processing block including the TG 18 and the signal processing circuit 28 and an encoder block including the video encoder 30 and the monitor 32. The TG 18 drives the CCD imager 14 by a thinning-out reading method. As a result, a low-resolution raw image signal (charge) corresponding to the subject image is read from the CCD imager 14 at a predetermined frame rate. The read raw image signal of each frame is supplied to the memory control circuit 24 through the CDSZAGC circuit 20 and the A / D converter 22, and is written to the SDRAM 26 by the memory control circuit 24. A raw image area 26a is formed in the SDRAM 26 as shown in FIG. 3, and a raw image signal of each frame is written in the raw image area 26a.
信号処理回路 28は、 生画像エリア 26 aに格納された生画像信号をメモリ制 御回路 24を通して 1フレーム毎に読み出し、 読み出された生画像信号に RGB 変換, 色分離, 白バランス調整, ァ捕正, YUV変換および輪郭補正の一連の処 理を施す。 輪郭補正が施された各フレームの YUV信号は、 メモリ制御回路 24 によって図 3に示す表示用 YUVエリア 26 bに書き込まれる。  The signal processing circuit 28 reads the raw image signal stored in the raw image area 26a for each frame through the memory control circuit 24, and converts the read raw image signal into RGB conversion, color separation, white balance adjustment, and key adjustment. Performs a series of processing of correction, YUV conversion, and contour correction. The YUV signal of each frame subjected to the contour correction is written into the display YUV area 26b shown in FIG. 3 by the memory control circuit 24.
一方、 ビデオエンコーダ 30は、 表示用 YUVエリア 26 bに書き込まれた一 連のフレ一ムの YUV信号をメモリ制御回路 24を通して読み出し、 読み出され た YUV信号をコンポジット画像信号に変換する。 変換されたコンポジット画像 信号はモニタ 32に与えられ、 これによつて、 被写体のリアルタイム動画像 (ス ルー画像) が画面に表示される。 On the other hand, the video encoder 30 reads the series of YUV signals written in the display YUV area 26b through the memory control circuit 24, and converts the read YUV signals into a composite image signal. The converted composite image The signal is provided to the monitor 32, whereby a real-time moving image (through image) of the subject is displayed on the screen.
スルー画像が表示されているときにオペレータがズームキー 46を操作すると、 対応する状態信号がシステムコントローラ 42から CPU40に与えられる。 C PU40はドライバ 16 aを通してズームレンズ 12 aを駆動し、 これによつて ズームレンズ 12 aが光軸方向に移動する。 ズームレンズ 12 aがテレ側に移動 したときは望遠画像がモニタ 32に表示され、 ズームレンズ 12 aがワイド側に 移動したときは広角画像がモニタ 32に表示される。  When the operator operates the zoom key 46 while the through image is displayed, a corresponding state signal is given from the system controller 42 to the CPU 40. The CPU 40 drives the zoom lens 12a through the driver 16a, whereby the zoom lens 12a moves in the optical axis direction. When the zoom lens 12a moves to the telephoto side, a telephoto image is displayed on the monitor 32. When the zoom lens 12a moves to the wide side, a wide-angle image is displayed on the monitor 32.
信号処理回路 28は、 具体的には図 4に示すように構成される。 CCDィメ一 ジャ 14には図 2に示す補色フィルタ 14 aが装着されているため、 AZD変換 器 22から出力される生画像信号は、 各々の画素が Ye, Cy, Gおよび Mgの いずれか 1つの色成分を持つ信号である。 RGB変換回路 28 aは、 このような 生画像信号に RGB変換を施し、 各画素が R, Gおよび Bのいずれか 1つの色成 分を持つ RGB信号を生成する。 続く色分離回路 22 aでは、 RGB変換回路 2 8 bから出力された RGB信号に色分離が施され、 これによつて各画素が R, G および Bの全ての色成分を持つ R GB信号が生成される。  The signal processing circuit 28 is specifically configured as shown in FIG. Since the CCD imager 14 is equipped with the complementary color filter 14a shown in FIG. 2, each pixel of the raw image signal output from the AZD converter 22 is one of Ye, Cy, G, and Mg. This is a signal having one color component. The RGB conversion circuit 28a performs such RGB conversion on the raw image signal to generate an RGB signal in which each pixel has one of R, G, and B color components. In the subsequent color separation circuit 22a, the RGB signal output from the RGB conversion circuit 28b is subjected to color separation, whereby each pixel generates an R GB signal having all the R, G and B color components. Generated.
生成された RGB信号のうち、 R信号はアンプ 28 cを介してァ補正回路 28 eに与えられ、 G信号はそのままァ補正回路 22 eに与えられ、 B信号はアンプ 28 dを介してァ補正回路 28 eに与えられる。 アンプ 28 cではゲインひが R 信号に付与され、 アンプ 28 bではゲイン] 3が B信号に付与され、 これによつて 白バランスが調整される。 ァ補正回路 28 eは、 白バランス調整が施された RG B信号にァ補正を施し、補正された RGB信号を YUV変換回路 28 f に与える。  Among the generated RGB signals, the R signal is supplied to an amplifier correction circuit 28e via an amplifier 28c, the G signal is directly supplied to an amplifier correction circuit 22e, and the B signal is supplied to an amplifier correction circuit 28d via an amplifier 28d. Circuit 28e. In the amplifier 28c, the gain is added to the R signal, and in the amplifier 28b, the gain] 3 is added to the B signal, whereby the white balance is adjusted. The key correction circuit 28e performs key correction on the RGB signal that has been subjected to the white balance adjustment, and supplies the corrected RGB signal to the YUV conversion circuit 28f.
RGB信号は、 丫11¥変換回路28 fにおいて 4: 2 : 2の比率で YUV信号に 変換される。 変換された YUV信号のうち、 U信号および V信号はそのまま出力 され、 Y信号は輪郭補正回路 28 gにおける輪郭補正を経て出力される。 The RGB signal is converted into a YUV signal at a ratio of 4: 2: 2 in the {11} conversion circuit 28f. Among the converted YUV signals, the U signal and the V signal are output as they are, and the Y signal is output through the contour correction in the contour correction circuit 28g.
輪郭補正回路 28 gから出力された Y信号ならびに YUV変換回路 28 fから 出力された U信号および V信号は、 間引き回路 28 hにも与えられる。 間引き回 路 28 hは CCDイメージャ 14から高解像度の生画像信号が出力されたときに 能動化され、 高解像度の YUV信号に間引き処理を施す。 これによつて、 モニタ 32に表示するための低解像度 YUV信号が生成される。 The Y signal output from the contour correction circuit 28g and the U signal and V signal output from the YUV conversion circuit 28f are also supplied to a thinning circuit 28h. The thinning circuit 28h is activated when a high-resolution raw image signal is output from the CCD imager 14, and performs thinning processing on the high-resolution YUV signal. This allows the monitor A low-resolution YUV signal is generated for display on 32.
色分離回路 22 aから出力された RGB信号は、 図 1に示す色評価回路 38に も入力される。 色評価回路 38は、 R信号, G信号および B信号の各々を 1フレ ーム期間毎に積分し、 色評価値 I r, I gおよび l bを求める。 CPU40は、 各フレームで求められた色評価値 I r, I gおよび I bを色評価回路 38から取 り込み、 取り込んだ色評価値 I r, I gおよび I bに基づいてアンプ 28 cおよ び 28 dに設定するゲイン αおよび) 3を制御する。 これによつて RGB信号の白 パランスが調整される。  The RGB signal output from the color separation circuit 22a is also input to a color evaluation circuit 38 shown in FIG. The color evaluation circuit 38 integrates each of the R signal, the G signal, and the B signal for each frame period to obtain color evaluation values Ir, Ig, and lb. The CPU 40 fetches the color evaluation values Ir, Ig, and Ib obtained for each frame from the color evaluation circuit 38, and based on the color evaluation values Ir, Ig, and Ib, the amplifier 28c and the amplifier 28c. And the gain α and) 3 set to 28 d. This adjusts the white balance of the RGB signal.
モ一ド切換スィツチ 48によってブラケット撮影モードが選択され、 かつシャ ッタボタン 44が押されると、 対応する状態信号がシステムコントローラ 42か ら CPU 40に与えられる。 CPU40はまず、 露光調整およびフォーカス調整 を行なう。 露光調整によって所望の絞り量および所望の露光時間が絞りュニット (図示せず) および TG 18に設定され、 フォーカス調整によってフォーカスレ ンズ 12 bの光軸方向の位置が調整される。 なお、 フォーカスレンズ 12 bは、 ドライノ 16 bによって駆動される。  When the bracket photographing mode is selected by the mode switching switch 48 and the shutter button 44 is pressed, a corresponding state signal is given from the system controller 42 to the CPU 40. The CPU 40 first performs exposure adjustment and focus adjustment. The desired aperture amount and the desired exposure time are set in the aperture unit (not shown) and the TG 18 by the exposure adjustment, and the position of the focus lens 12b in the optical axis direction is adjusted by the focus adjustment. The focus lens 12b is driven by a dryino 16b.
露光調整およびフォーカス調整が完了すると、 TG18によって本露光および 全画素読み出しが行なわれ、 CCDイメージャ 14から高解像度の生画像信号が 出力される。 読み出された生画像信号は、 CDSZAGC回路 20および AZD 変換器 22を経た後、 メモリ制御回路 24によって図 3に示す生画像ェリア 26 aに書き込まれる。 信号処理回路 28は、 メモリ制御回路 24を通して生画像ェ リア 26 aから生画像信号を読み出し、 読み出された生画像信号に上述の信号処 理を施す。 一連の信号処理の過程で生成された RGB信号は色評価回路 38に与 えられ、 色評価回路 38は、 与えられた RGB信号に基づいて色評価値 I r, I gおよび l bを算出する。 CPU40は、 算出された色評価値 I r, I gおよび I bに基づいて最適ゲイン a sおよび 13 sを求め、 求められた最適ゲインひ sお よび β sを図 4に示すアンプ 28 cおよび 28 dに設定する。  When the exposure adjustment and the focus adjustment are completed, the main exposure and all-pixel reading are performed by the TG 18, and a high-resolution raw image signal is output from the CCD imager 14. The read raw image signal passes through a CDSZAGC circuit 20 and an AZD converter 22, and is then written by a memory control circuit 24 into a raw image area 26a shown in FIG. The signal processing circuit 28 reads a raw image signal from the raw image area 26a through the memory control circuit 24, and performs the above-described signal processing on the read raw image signal. The RGB signal generated in the course of the series of signal processing is provided to a color evaluation circuit 38, which calculates color evaluation values Ir, Ig and lb based on the supplied RGB signal. The CPU 40 calculates the optimum gains as and 13 s based on the calculated color evaluation values Ir, Ig and Ib, and compares the obtained optimum gains s and β s with the amplifiers 28 c and 28 shown in FIG. Set to d.
メモリ制御回路 24は、 信号処理回路 28からの要求に応答して高解像度の生 画像信号を生画像ェリア 26 aから繰り返し読み出す。 一方、 C P U 40は、 1 フレームの生画像信号に信号処理が施される毎に、 J PEGコーデック 34に圧 縮処理を命令し、 かつアンプ 2 8 cおよび 2 8 dに設定するゲイン αおよび 3を 最適ゲイン a sおよび /3 sを基準に変更する。 ゲイン aおよび j8は、 具体的には 図 5に示す色温度曲線に沿って変更される。 信号処理回路 2 8では画質が互いに 異なる複数フレームの高解像度 Y U V信号が生成され、 各々の高解像度 Y U V信 号は図 3に示す記録用 YUVエリァ 2 6 cに書き込まれる。 The memory control circuit 24 repeatedly reads a high-resolution raw image signal from the raw image area 26a in response to a request from the signal processing circuit 28. On the other hand, the CPU 40 compresses the JPEG codec 34 every time the raw image signal of one frame is subjected to signal processing. Command the compression processing, and change the gains α and 3 to be set for the amplifiers 28 c and 28 d based on the optimum gains as and / 3 s. The gains a and j8 are specifically changed along the color temperature curve shown in FIG. The signal processing circuit 28 generates high-resolution YUV signals of a plurality of frames having different image qualities, and each high-resolution YUV signal is written to the recording YUV area 26c shown in FIG.
J P E Gコーデック 3 4は、 メモリ制御回路 2 4を通して記録用 YUVエリア 2 6 cから各フレームの YUV信号を読み出し、 読み出された YUV信号に J P E G圧縮を施す。 圧縮された YUV信号 (圧縮画像信号) は、 メモリ制御回路 2 4を通して図 3に示す圧縮画像エリア 2 6 dに格納されていく。 複数フレームの 圧縮画像信号が圧縮画像エリア 2 6 dに蓄積されると、 C P U 4 0がこれらの圧 縮画像信号をメモリ制御回路 2 4を通して読み出し、 読み出した圧縮画像信号を 着脱自在の記録媒体 3 6に記録する。 全ての圧縮画像信号が記録媒体 3 6に記録 された時点で、 ブラケット撮影が完了する。  The JPEG codec 34 reads the YUV signal of each frame from the recording YUV area 26c through the memory control circuit 24, and performs JPEG compression on the read YUV signal. The compressed YUV signal (compressed image signal) is stored in the compressed image area 26 d shown in FIG. When the compressed image signals of a plurality of frames are accumulated in the compressed image area 26d, the CPU 40 reads these compressed image signals through the memory control circuit 24, and the read compressed image signals are stored in the removable recording medium 3. Record in 6. When all the compressed image signals have been recorded on the recording medium 36, the bracket shooting is completed.
なお、 図 4に示す間引き回路 2 8 hはブラケット撮影が行なわれる期間に能動 化され、 間引き回路 2 8 hからは画質の異なる低解像度の YUV信号が 1フレー ム毎に出力される。 各フレームの低解像度 YUV信号は図 4に示す表示用 YUV エリア 2 6 bに書き込まれ、その後ビデオエンコーダ 3 0によって読み出される。 この結果、 モニタ 3 2に表示される静止画像 (フリーズ画像) の画質は、 1フレ ーム期間毎に変化する。  The thinning circuit 28h shown in FIG. 4 is activated during bracket shooting, and a low-resolution YUV signal having a different image quality is output from the thinning circuit 28h for each frame. The low-resolution YUV signal of each frame is written to the display YUV area 26 b shown in FIG. 4, and then read out by the video encoder 30. As a result, the image quality of the still image (freeze image) displayed on the monitor 32 changes every frame period.
C P U 4 0は、 ブラケット撮影モードが選択された状態でシャツ夕ポタン 4 4 が押されたとき、 図 6および図 7に示すフロー図に従って動作する。 なお、 この フロー図に対応するプログラムは、 ROM 5 0に記憶されている。  The CPU 40 operates according to the flowcharts shown in FIGS. 6 and 7 when the shirt button 45 is pressed in the state where the bracket shooting mode is selected. The program corresponding to this flowchart is stored in the ROM 50.
まずステップ S 1でカウンタ 4 0 aのカウント値 Nを " 0 " に設定し、 続くス テツプ S 3および S 5で露光調整(AE処理)およびフォーカス調整(A F処理) を行なう。 AE処理によって最適絞り量および最適露光時間が絞りュニットおよ び T G 1 8に設定され、 AF処理によってフォーカスレンズ 1 2 bが合焦位置に 設定されると、 ステップ S 7で本露光を T G 1 8に命令する。 T G 1 8は設定さ れた最適露光時間にわたって本露光を行ない、 これによつて生成された生画像信 号を C C Dイメージャ 1 4から全画素読み出し方式で読み出す。 読み出された高 解像度の生画像信号は、 CDSZAGC回路 20, AZD変換器 22およびメモ リ制御回路 24を経て図 3に示す生画像ェリア 26 aに書き込まれ、 その後信号 処理回路 28によって読み出される。 First, in step S1, the count value N of the counter 40a is set to "0", and exposure adjustment (AE processing) and focus adjustment (AF processing) are performed in steps S3 and S5. When the optimal aperture and the optimal exposure time are set to the aperture unit and TG 18 by the AE processing, and the focus lens 12 b is set to the in-focus position by the AF processing, the main exposure is performed by the TG 1 in step S7. Command 8 The TG 18 performs the main exposure for the set optimal exposure time, and reads out the raw image signal generated by the main exposure from the CCD imager 14 by the all-pixel readout method. Read high The raw image signal having the resolution is written to a raw image area 26 a shown in FIG. 3 through a CDSZAGC circuit 20, an AZD converter 22 and a memory control circuit 24, and then read out by a signal processing circuit 28.
ステップ S I 1では、 カウント値 Nを判別する。 N=0のときは、 ステップ S 11における所定時間の待機の後にステップ S 13に進み、 色評価回路 38から 色評価値 I r, I gおよび I bを取り込む。 本露光に基づく生画像信号はメモリ 制御回路 24によって SDRAM26から読み出され、 図 4に示す RGB変換回 路 28 aおよび色分離回路 28 bによって RGB変換および色分離を施される。 そして、 色分離された RGB信号が、 色評価回路 38によって 1フレーム期間に わたって積分される。 ただし、 本露光の開始から積分処理の完了までに時間がか かるため、 この時間だけステップ S 11で待機する。 この結果、 ステップ S 13 で取り込まれる色評価値 I· r, I gおよび l bは、 本露光によって得られた生画 像信号に基づく評価値となる。ステップ S 15では、取り込まれた色評価値 I r, I gおよび I bに基づいて最適ゲイン sおよび |8 sを算出する。  In step SI1, the count value N is determined. If N = 0, the process proceeds to step S13 after waiting for a predetermined time in step S11, and fetches the color evaluation values Ir, Ig and Ib from the color evaluation circuit 38. The raw image signal based on the main exposure is read from the SDRAM 26 by the memory control circuit 24, and subjected to RGB conversion and color separation by the RGB conversion circuit 28a and the color separation circuit 28b shown in FIG. The color-separated RGB signals are integrated by the color evaluation circuit 38 over one frame period. However, since it takes time from the start of the main exposure to the completion of the integration processing, the process waits in step S11 for this time. As a result, the color evaluation values I · r, Ig, and lb captured in step S13 are evaluation values based on the raw image signal obtained by the main exposure. In step S15, the optimum gains s and | 8 s are calculated based on the taken color evaluation values Ir, Ig and Ib.
一方、 N>0のときはステップ S 17に進み、 最適ゲインひ sおよび) S sを基 準としてゲイン aおよび3を変更する。 図 5を参照して、 N=lのときは最適ゲ イン sおよび) 3 sに " 0, 9"および " 1. 1" を掛け算し、 N= 2のときは 最適ゲインひ sおよび iS sに " 0. 8" および " 1. 2" を掛け算し、 N=3の ときは最適ゲイン《 sおよび sに "1. 1" および " 0. 9" を掛け算し、 そ して N= 4のときは最適ゲイン sおよび) 3 sに " 1. 2" および " 0. 9" を 掛け算する。これによつて、ゲイン αおよび )3は色温度曲線に沿って変更される。 ステップ S 19では、 ステップ S 15で算出された最適ゲインひ sおよび ;8 s あるいはステップ S 17で変更されたゲイン αおよび) 3を図 4に示すアンプ 28 cおよび 28 dに設定し、 ゲイン設定が完了すると、 ステップ S 21で所定時間 待機する。 所定時間は、 ゲイン設定の後に生画像ェリア 26 aから読み出された 生画像信号が信号処理回路 28によって信号処理を施され、 信号処理回路 28か ら出力された高解像度 YUV信号および低解像度 YUV信号が図 3に示す記録用 YUVエリア 26 cおよび表示用 YUVエリア 26 bに書き込まれるまでの時間 に相当する。 所定時間が経過した時点では、 ステップ S 19で設定されたゲイン a (a s) および i3 (3 s) に従う画質を持つ高解像度 YUV信号および低解像 度 YUV信号が SDRAM26に確保され、 モニタ 32には低解像度 YUV信号 に基づくフリーズ画像が表示される。 On the other hand, when N> 0, the process proceeds to step S17, and the gains a and 3 are changed based on the optimum gains s and) Ss. Referring to FIG. 5, when N = l, the optimal gain s and) 3 s are multiplied by “0, 9” and “1.1”, and when N = 2, the optimal gain s and iS s Is multiplied by "0.8" and "1.2", and when N = 3, the optimal gains << s and s are multiplied by "1.1" and "0.9", and N = 4 In case of, multiply the optimal gain s and) 3 s by "1.2" and "0.9". As a result, the gains α and) 3 are changed along the color temperature curve. In step S19, the optimum gains s and; 8s calculated in step S15 and the gain α changed in step S17) are set to the amplifiers 28c and 28d shown in FIG. When is completed, the process waits for a predetermined time in step S21. During the predetermined time, the raw image signal read from the raw image area 26a after the gain setting is subjected to signal processing by the signal processing circuit 28, and the high-resolution YUV signal and the low-resolution YUV output from the signal processing circuit 28 This corresponds to the time until the signal is written to the recording YUV area 26c and the display YUV area 26b shown in FIG. When the predetermined time has elapsed, the gain set in step S19 A high-resolution YUV signal and a low-resolution YUV signal having an image quality according to a (as) and i3 (3 s) are secured in the SDRAM 26, and a freeze image based on the low-resolution YUV signal is displayed on the monitor 32.
ステップ S 23では、 J PEGコーデック 34に J PEG圧縮を命令する。 J PEGコーデック 34は、 高解像度 YUV信号を記録用 YUVエリア 26じから 読み出し、 読み出された高解像度 YUV信号に J PEG圧縮を施し、 そして圧縮 画像信号を図 3に示す圧縮画像エリァ 26 dに書き込む。 ステツプ S 25では力 ゥンタ 40 aをインクリメントし、 続くステップ S 27ではカウント値 Nを最大 値 Nmax (=5) と比較する。 ここで Nく Nma xであれば、 N=Nmaxと なるまでステップ S 17〜S 25の処理を繰り返す。  In step S23, the JPEG codec 34 is instructed to perform JPEG compression. The JPEG codec 34 reads the high-resolution YUV signal from the recording YUV area 26, applies JPEG compression to the read high-resolution YUV signal, and converts the compressed image signal into a compressed image area 26d shown in FIG. Write. In step S25, the power counter 40a is incremented, and in the following step S27, the count value N is compared with the maximum value Nmax (= 5). Here, if N <Nmax, the processing of steps S17 to S25 is repeated until N = Nmax.
ステップ S 17ではカウント値 Nに応じたゲイン a;および) 3がアンプ 28 cお よび 28 dに設定され、 信号処理回路 28は互いに画質の異なる高解像度 YUV 信号および低解像度 YUV信号を生成する。 この結果、 モニタ 32に表示される フリーズ画像の画質は 1フレーム毎に変化し、 圧縮画像エリア 26 dには互いに 異なる画質を持つ圧縮画像信号が 1フレーム期間毎に蓄積されていく。  In step S17, the gains a; and 3) corresponding to the count value N are set in the amplifiers 28c and 28d, and the signal processing circuit 28 generates a high-resolution YUV signal and a low-resolution YUV signal having different image qualities. As a result, the image quality of the freeze image displayed on the monitor 32 changes for each frame, and compressed image signals having different image qualities are accumulated in the compressed image area 26d for each frame period.
N=Nm axとなるとステップ S 27からステップ S 29に進み、 記録処理を 行なう。 具体的には、 圧縮画像エリア 26 dに蓄積された圧縮画像信号を読み出 し、 読み出された各々の圧縮画像信号を記録媒体 36に記録する。 5フレーム分 の圧縮画像信号の記録が完了すると、 上階層のル一チンに復帰する。 なお、 記録 媒体 36には圧縮画像信号毎に画像ファイルが作成され、 各々の画像ファイルに は色温度が高くなる順 (または低くなる順) に識別番号が割り当てられる。  When N = Nmax, the process proceeds from step S27 to step S29 to perform a recording process. Specifically, the compressed image signal stored in the compressed image area 26 d is read, and each read compressed image signal is recorded on the recording medium 36. When the recording of the compressed image signal for 5 frames is completed, the routine returns to the upper layer routine. An image file is created for each compressed image signal in the recording medium 36, and an identification number is assigned to each image file in the order of increasing (or decreasing) color temperature.
この実施例によれば、 CCDイメージャ 14によって被写体が撮影されると、 当該被写体の生画像信号 (撮影画像信号) が SDRAM 26に格納される。 SD RAM 26に格納された生画像信号は、 メモリ制御回路 24によって繰り返し読 み出される。 信号処理回路 28は、 読み出された各々の生画像信号に信号処理を 施し、 複数の高解像度 YUV信号を生成する。 信号処理の過程では白バランス調 整が行なわれるが、 この白バランス調整のためのゲイン αおよび 3は生画像信号 毎に異なる。 これによつて、 生成された各々の高解像度 YUV信号は互いに異な る画質を持つ。 J PEGコ一デック 34は、 生成された高解像度 YUV信号を個 別に圧縮して複数の圧縮画像信号を生成し、 C P U 4 0は、 生成された各々の圧 縮画像信号を記録媒体 3 6に記録する。 According to this embodiment, when a subject is photographed by the CCD imager 14, a raw image signal (photographed image signal) of the subject is stored in the SDRAM 26. The raw image signal stored in the SD RAM 26 is repeatedly read by the memory control circuit 24. The signal processing circuit 28 performs signal processing on each of the read raw image signals to generate a plurality of high-resolution YUV signals. In the process of signal processing, white balance adjustment is performed. The gains α and 3 for white balance adjustment differ for each raw image signal. As a result, each generated high resolution YUV signal has a different image quality. The JPEG codec 34 converts the generated high-resolution YUV signal The compressed image signals are separately compressed to generate a plurality of compressed image signals, and the CPU 40 records each of the generated compressed image signals on the recording medium 36.
このように、 各々の生画像信号に互いに異なるパラメ一夕値に従う信号処理を 施すようにしたため、 同じ被写体について画質の異なる複数の記録画像を得るこ とができる。 また、 生画像信号を S D RAM 2 6に一旦格納し、 同じ生画像信号 を S D RAM 2 6から繰り返し読み出すようにしたため、 手ぶれによって各々の 記録画像にずれが生じるのを防止することができる。 なお、 手ぶれの問題はズー ムレンズ 1 2 aをテレ側に配置して望遠画像を撮影するときほど顕著となるが、 この実施例では、 撮影は 1回でよいため、 ズームレンズ 1 2 aの位置に関係なく 手ぶれの問題を解消することができる。  As described above, since each raw image signal is subjected to signal processing according to different parameter values, a plurality of recorded images having different image qualities can be obtained for the same subject. In addition, since the raw image signal is temporarily stored in the SDRAM 26 and the same raw image signal is repeatedly read from the SDRAM 26, it is possible to prevent a shift in each recorded image due to camera shake. Note that the problem of camera shake becomes more pronounced when a telephoto image is taken with the zoom lens 12a placed on the telephoto side. However, in this embodiment, only one shooting is required, so the position of the zoom lens 12a The problem of camera shake can be solved regardless of.
なお、 上述の実施例では、 プログレッシブスキャン型の C C Dイメージャを用 いているが、 これに代えてィン夕レーススキヤン型の C C Dイメージャを用いる ようにしてもよい。 さらには、 C C D型のイメージセンサに代えて CMO S型の イメージセンサを用いてもよい。  In the above-described embodiment, a progressive scan type CCD imager is used. However, an in-line race scan type CCD imager may be used instead. Further, a CMOS image sensor may be used instead of the CCD image sensor.
また、 この実施例では、 C C Dイメージャの受光面に補色フィル夕を装着する ようにしているが、 これに代えて原色フィル夕を装着するようにしてもよい。 こ の場合、 R G B変換回路は不要となる。  Further, in this embodiment, the complementary color filter is mounted on the light receiving surface of the CCD imager, but a primary color filter may be mounted instead. In this case, the RGB conversion circuit becomes unnecessary.
さらに、 この実施例では、 望遠画像または広角画像を得るためにズームレンズ による光学ズームを行なうようにしているが、 光学ズームに代えてあるいは光学 ズームとともに、 ディジタルズームを行なうようにしてもよい。  Further, in this embodiment, the optical zoom is performed by the zoom lens in order to obtain a telephoto image or a wide-angle image. However, a digital zoom may be performed instead of or in addition to the optical zoom.
さらにまた、 この実施例では、 互いに異なる画質を持つ画像信号を生成するた めに白バランス調整値 (ゲインひまたは |8 ) を変更するようにしでいるが、 画質 はァ補正値や輪郭補正値によっても変化し、 さらに彩度は YUV変換回路で調整 することができる。 このため、 白バランス調整値の代わりにあるいは白パランス 調整値とともに、 ァ補正値, 輪郭補正値および彩度の少なくとも 1つを変更する ようにしてもよい。  Further, in this embodiment, the white balance adjustment value (gain or | 8) is changed in order to generate image signals having mutually different image qualities. The saturation can be adjusted by the YUV conversion circuit. For this reason, instead of the white balance adjustment value or together with the white balance adjustment value, at least one of the key correction value, the contour correction value, and the saturation may be changed.
この発明が詳細に説明され図示されたが、 それは単なる図解および一例として 用いたものであり、 限定であると解されるべきではないことは明らかであり、 こ の発明の精神および範囲は添付されたクレームの文言によってのみ限定される。  While this invention has been described and illustrated in detail, it is obvious that it is used by way of illustration and example only and should not be construed as limiting, the spirit and scope of the invention being attached to Limited only by the language of the claim.

Claims

請求の範囲 The scope of the claims
1 . ディジタルカメラであって、 次のものを備える:  1. A digital camera with the following:
被写体を撮影するイメージセンサ;  An image sensor for photographing the subject;
前記被写体に対応する撮影画像信号を格納するメモリ ;  A memory for storing a captured image signal corresponding to the subject;
前記撮影画像信号を前記メモリから繰り返し読み出す読み出し手段;  Reading means for repeatedly reading the photographed image signal from the memory;
前記読み出し手段によって読み出された各々の撮影画像信号に互いに異なるパ ラメータ値に従う信号処理を施す信号処理手段;および  Signal processing means for performing signal processing according to mutually different parameter values on each captured image signal read by the reading means;
前記信号処理手段によって生成された複数の記録用画像信号を記録媒体に記録 する記録手段。  Recording means for recording a plurality of recording image signals generated by the signal processing means on a recording medium;
2. クレーム 1に従属するディジタルカメラであって、  2. A digital camera dependent on claim 1,
前記信号処理手段は前記撮影画像信号に白バランス調整を施し、  The signal processing means performs white balance adjustment on the captured image signal,
前記パラメータ値は前記白バランス調整の調整値であり、  The parameter value is an adjustment value of the white balance adjustment,
前記白バランス調整の最適調整値を算出する算出手段、 および  Calculating means for calculating an optimal adjustment value for the white balance adjustment; and
前記最適調整値を基準に前記調整値を変更する調整値変更手段をさらに備える。 The apparatus further includes an adjustment value changing unit that changes the adjustment value based on the optimum adjustment value.
3 . クレーム 2に従属するディジタルカメラであって、 3. A digital camera dependent on claim 2,
前記調整値変更手段は色温度曲線に沿って前記調整値を変更する。  The adjustment value changing means changes the adjustment value along a color temperature curve.
4. クレーム 1に従属するディジタルカメラであって、  4. A digital camera subject to claim 1,
前記被写体のズーム倍率を制御する制御手段をさらに備える。  The image processing apparatus further includes control means for controlling a zoom magnification of the subject.
5 . クレーム 4に従属するディジタルカメラであって、  5. A digital camera subject to claim 4, wherein
前記被写体の光学像を前記ィメージセンサの受光面に照射するズームレンズを さらに備え、  A zoom lens that irradiates an optical image of the subject on a light receiving surface of the image sensor;
前記制御手段は前記ズームレンズの光軸方向の位置を制御する。  The control means controls the position of the zoom lens in the optical axis direction.
PCT/JP2002/000904 2001-02-06 2002-02-04 Digital camera WO2002063871A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001-29411 2001-02-06
JP2001029411A JP2002232766A (en) 2001-02-06 2001-02-06 Digital camera

Publications (1)

Publication Number Publication Date
WO2002063871A1 true WO2002063871A1 (en) 2002-08-15

Family

ID=18893765

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/000904 WO2002063871A1 (en) 2001-02-06 2002-02-04 Digital camera

Country Status (3)

Country Link
JP (1) JP2002232766A (en)
TW (1) TW548994B (en)
WO (1) WO2002063871A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6721724B1 (en) 2000-03-31 2004-04-13 Microsoft Corporation Validating multiple execution plans for database queries
JP4250436B2 (en) 2003-02-27 2009-04-08 キヤノン株式会社 Display control device
WO2015170503A1 (en) * 2014-05-08 2015-11-12 ソニー株式会社 Information processing apparatus and information processing method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01221994A (en) * 1988-02-29 1989-09-05 Fuji Photo Film Co Ltd Electronic still camera
JPH05110937A (en) * 1991-10-18 1993-04-30 Canon Inc Shooting and recording device
JPH09130660A (en) * 1995-10-31 1997-05-16 Ricoh Co Ltd Digital still video camera
JP2001045500A (en) * 1999-07-26 2001-02-16 Olympus Optical Co Ltd Electronic camera
JP2001218077A (en) * 2000-02-03 2001-08-10 Ricoh Co Ltd Image processor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01221994A (en) * 1988-02-29 1989-09-05 Fuji Photo Film Co Ltd Electronic still camera
JPH05110937A (en) * 1991-10-18 1993-04-30 Canon Inc Shooting and recording device
JPH09130660A (en) * 1995-10-31 1997-05-16 Ricoh Co Ltd Digital still video camera
JP2001045500A (en) * 1999-07-26 2001-02-16 Olympus Optical Co Ltd Electronic camera
JP2001218077A (en) * 2000-02-03 2001-08-10 Ricoh Co Ltd Image processor

Also Published As

Publication number Publication date
TW548994B (en) 2003-08-21
JP2002232766A (en) 2002-08-16

Similar Documents

Publication Publication Date Title
TWI422219B (en) Imaging device, imaging method and computer-readable recording medium
JP4591325B2 (en) Imaging apparatus and program
US8284264B2 (en) Imaging apparatus, method, and program
US7330206B2 (en) Auto white balance controlling method and electronic camera
JP2001251551A (en) Electronic camera
JP2006025238A (en) Imaging device
JP2007215091A (en) Imaging apparatus and program therefor
JP5614425B2 (en) Imaging apparatus and program
US20040179131A1 (en) Image capturing apparatus and exposure setting method thereof
JP2008092440A (en) Camera, and image processing program
JP6717690B2 (en) Imaging device, imaging method, and program
JP2004328117A (en) Digital camera and photographing control method
US7925149B2 (en) Photographing apparatus and method for fast photographing capability
JP4123352B2 (en) Movie imaging device and movie playback device
JP4033456B2 (en) Digital camera
JP4059704B2 (en) Video camera
JP2007049320A (en) Electronic camera
JP4013026B2 (en) Electronic camera and image display method during automatic focus adjustment
WO2002063871A1 (en) Digital camera
WO2006054763A1 (en) Electronic camera
JP2004145022A (en) Digital camera
JP4163546B2 (en) Digital camera and imaging control method
JP4236603B2 (en) Electronic camera
JP2009044671A (en) Photographing device, database generating method and usage thereof
JP2007243769A (en) Camera

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN ID KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): DE FR GB

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase