WO2002047104A1 - A field emitting cathode and a light source using a field emitting cathode - Google Patents

A field emitting cathode and a light source using a field emitting cathode Download PDF

Info

Publication number
WO2002047104A1
WO2002047104A1 PCT/SE2001/002687 SE0102687W WO0247104A1 WO 2002047104 A1 WO2002047104 A1 WO 2002047104A1 SE 0102687 W SE0102687 W SE 0102687W WO 0247104 A1 WO0247104 A1 WO 0247104A1
Authority
WO
WIPO (PCT)
Prior art keywords
cathode
field emission
light source
anode
emission cathode
Prior art date
Application number
PCT/SE2001/002687
Other languages
French (fr)
Inventor
Gunnar Forsberg
Original Assignee
Lightlab Ab
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US09/731,737 external-priority patent/US20020070648A1/en
Priority claimed from SE0004556A external-priority patent/SE0004556L/en
Application filed by Lightlab Ab filed Critical Lightlab Ab
Priority to AU2002221226A priority Critical patent/AU2002221226A1/en
Publication of WO2002047104A1 publication Critical patent/WO2002047104A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/04Electrodes; Screens; Shields
    • H01J61/06Main electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J1/00Details of electrodes, of magnetic control means, of screens, or of the mounting or spacing thereof, common to two or more basic types of discharge tubes or lamps
    • H01J1/02Main electrodes
    • H01J1/30Cold cathodes, e.g. field-emissive cathode
    • H01J1/304Field-emissive cathodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J63/00Cathode-ray or electron-stream lamps
    • H01J63/02Details, e.g. electrode, gas filling, shape of vessel
    • H01J63/04Vessels provided with luminescent coatings; Selection of materials for the coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2201/00Electrodes common to discharge tubes
    • H01J2201/30Cold cathodes
    • H01J2201/304Field emission cathodes
    • H01J2201/30446Field emission cathodes characterised by the emitter material
    • H01J2201/30453Carbon types
    • H01J2201/30469Carbon nanotubes (CNTs)

Definitions

  • This invention relates to a field emission cathode for a light source, said cathode comprising at least one base body having an emission surface.
  • the invention also concerns a light source comprising such a cathode.
  • a third category of illumination devices is field emission devices and, accordingly, cathodes used in this kind of devices are called field emission cathodes.
  • field emission cold cathodes which do not require a heat source to operate, are preferably used.
  • Field emission cold cathodes used in light sources for illumination has several advantages over devices using thermionic stimulus. Field emission cold cathode devices generally require less power in order to produce the same emission current than a thermionic device.
  • a field emission source may be 1000 times brighter, compared to a thermionic device.
  • thermionic devices tend to have a short life span, due to burn out. They are also temperature dependent, resulting in bad performance in extreme temperature surroundings . This is not the case with field emission cold cathode devices being based solely on electric field strength and applied voltage over the anode and the cathode.
  • fluorescent tubes employing gas discharge for emitting radiation onto a fluorescent material that in turn emits light, do overcome some of the disadvantages with for example the light bulb, such as their short life span and their relatively low brightness.
  • fluorescent tubes require complicated external electrical devices for their function and they typically contain materials, such as mercury, having negative environmental effects. This is not the case with field emission devices.
  • an object of the invention is to achieve a further improved field emission cold cathode for use in light sources, said cathode being inexpensive and easy to manufacture, even in large volumes, as well as requiring a relatively low voltage application in order to generate significant and stable electron emission.
  • a further object is to achieve a cold cathode able to produce a high field emission density.
  • Yet another object is to achieve a field emission cathode that is efficient and durable.
  • a further object is to accomplish a light source with a field emission cathode, said light source constituting a stable and forgiving system for illumination purposes.
  • a cathode in which said base body is formed by a structured material, and said emission surface is at least partly covered by a field emitting nano-structured material.
  • a nano-structured material is defined as a material with physical structures in the range 0.1-100 nm.
  • This construction with a combination of a structured, oriented material and sharp emitting points created by the nano-structure, results in a cathode requiring a relatively low voltage application in order to generate significant electron emission.
  • said emission surface of said base body is formed as to constitute a three dimensional surface structure, including several protruding areas, at least said protruding areas being covered by nano-structured material .
  • This construction result in areas of emissive nano-structured material on the emission surface, said areas being positioned closer to an presumptuous anode than other areas of the emission surface of the base body, when the cathode is placed in a light source system. Consequently, due to the distance dependence (between anode and cathode) of light emission, emission will occur mainly from said protruding areas, not from the areas in-between. In this way the emission may be controlled. Further, the three-dimensional surface has the advantage of separating the emissive points from each other, much like a matrix structure or the like.
  • This design is advantageous regarding the voltage that must be applied over the cathode in order to achieve a high field emission, since a planar surface with a compact layer of emissive points have somewhat a tendency of acting as a compact, homogeneous material, with the result that a high voltage is needed for field emission.
  • the above- mentioned drawback is avoided with said three-dimensional surface structure.
  • said protruding areas preferably form an essentially periodical surface structure.
  • said periodical surface structure has an essentially square-wave cross section. This structure is fairly easy to produce and offers well- defined areas of emissive material.
  • said periodical surface structure has an essentially sinusoidal cross section. This structure provides for an emissive surface without sharp edges in order to achieve a stable emission, without aging due to blunting of sharp edges of the material .
  • said periodical surface structure has an essentially saw-tooth shaped cross section. This structure is also quite simple to manufacture . Other shapes and structures are of cause possible. Furthermore said structures may be periodical in one or two dimensions.
  • said structured, oriented material is constituted by a porous carbon material such as a porous carbon foam material, e.g. Reticulated Vitreous CarbonTM.
  • a field emission cathode manufactured from such a material has especially advantageous properties regarding efficiency and durability as well as simple and inexpensive manufacture.
  • the structured, oriented material is constituted by a semiconductor material.
  • said nano-structured material is advantageously constituted by a layer of carbon nanotubes being arranged on said base body. This provides for a perfect covering of carbon nanotube material, resulting in an even distribution of sharp emissive points over the emission surface.
  • the invention further relates to a light source, comprising an anode, a cathode and an evacuated container enclosing said anode and said cathode, wherein said container have at least one inner wall being provided with a luminescent layer as well as a conductive layer forming said anode, said light source being characterized in that said cathode is a field emission cathode as described above .
  • said evacuated container forms the outer boundaries of the light source.
  • This construction includes a minimal number of components, since the anode is integrated with the component forming the outer boundary of the light source .
  • said evacuated container is essentially enclosed in a cover/diffusor forming the outer boundaries of the light source.
  • a light source with a field emission cathode is a much flexible illumination device. It may be formed in any shape, for example as a regular light bulb, making the construction consumer friendly.
  • the construction may easily be manufactured with a regular bulb socket, making it possible to readily exchange any regular light bulb for a field emission lamp, having the above stated advantages.
  • Fig 1 is a perspective view of a field emission cathode in accordance with the invention
  • Fig 2a is a cross section view of a field emission cathode with a surface structure according to one embodiment of the invention
  • Fig 2b is a cross section view of a field emission cathode with a surface structure according to a second embodiment of the invention
  • Fig 2c is a cross section view of a field emission cathode with a surface structure according to a third embodiment of the invention
  • Fig 3 is a schematic view of a light source with a field emission cathode in accordance with one embodiment of the invention
  • Fig 4a is a schematic view of a field emission cathode in accordance with a second embodiment of the invention.
  • Fig 4b is a schematic view of light source using the field emission cathode shown in fig 4a,
  • Fig 4c is a schematic cross section view of a light source in accordance with fig 4b, being positioned in a light bulb like construction.
  • Fig 5a is a schematic cross section view of light source using a field emission cathode basically as shown in fig 1, and
  • Fig 5b is a schematic cross section view of a light source in accordance with fig 5a, being positioned in a light bulb like construction.
  • Fig 1 shows a field emission cathode 1 in accordance with a first embodiment of the invention.
  • the field emission cathode 1 comprises a base body 3, in this case being formed of a porous carbon material, e.g. Reticulated Vitreous CarbonTM, an open cell, reticulated foam material, having a random pore structure with good uniform pore distribution statistically.
  • a porous carbon material e.g. Reticulated Vitreous CarbonTM, an open cell, reticulated foam material, having a random pore structure with good uniform pore distribution statistically.
  • said base body 3 has a three- dimensionally formed emission surface 3'.
  • this three-dimensionally formed surface 3' has an essentially square-wave formed cross section, for example as shown in fig 2a, but the field emission cathode 1 may have other cross sections, as shown in fig 2b and 2c.
  • the forming of the surface structure may be made by cutting or by other per se known methods, and this will not be described here.
  • a cathode is shown in fig 4a-4c.
  • Fig 4a shows the cathode base body 3, essentially formed as a cylinder. On the cylinder surface 3' of said body an essentially helical protrusion is formed, resulting in protruding emission surfaces 3" .
  • the emission surfaces essentially have the appearance of the corresponding emission surfaces of fig 1, being covered with a nanostructured material .
  • Said nanostructured material has a random structure.
  • the base body 3 may be said to have a large and a small-scale structure.
  • the large scale structure is constituted by said forming of the emission surface and the protruding emission surfaces 3", and is preferably periodical and the small scale structure is constituted by said random pore structure of the base body material, and is non-periodical.
  • the open cell structure of the base body material is highly advantageous compared with more homogeneous materials in that it for the same applied voltage produces a higher field emission density over the structure.
  • the embodiment as shown in fig 4b is a so-called diode mode cathode. It is also possible to include a grid or the like (not shown) between the cathode 1 and the anode 5 in order to control the emission flow. This kind of cathode is referred to as a triode mode cathode.
  • the emission surface 3' of the base body 3 is, at least partly, covered with a nanostructured material 2.
  • a nanostructured material 2 In the embodiment shown in fig 1 only the protrusions 3" of the three-dimensional surface 3' are covered with the nano-structured material 2, since these, due to the facts stated above, are the only areas from which emission is likely to occur. However, due to manufacturing techniques it is often simpler and less expensive to cover the entire emissive surface 3' with the nano-structured material 2.
  • This nano-structured material 2 may be accomplished either by treating the material of the base body 3 in order to create nano- structures on its surface or by applying a separate layer of carbon nanotubes (CNT) on the emission surface 3' of the base body 3 on per se known manners .
  • Said nanotubes may be single wall nanotubes (SW/CNT) , Multi wall nanotubes (MW/CNT) or multi wall open nanotubes
  • said nano structures 2 constitute emission points and their emissive ends are treated and trained in order to stabilize the emission current during emission. This training may be done in various ways, for example as in the applicant's previous patent application PCT/SEOO/01226, and this will not be further described here.
  • the light source comprises a bulb 6 constituting an evacuated chamber, said bulb 6 being attached to a regular size socket 7. Between the socket 7 and the bulb 6, a casing 10 is arranged, in which electronic circuits needed to operate the lamp is positioned.
  • the inside of the bulb 6 is at least partly coated with two overlapping layers, a first layer 5 by a conductive material constituting an anode and a second layer 4 by a fluorescent material .
  • a field emission cathode 1 of the above-described type is incorporated in the bulb, and the cathode surface has essentially the same shape as the inner surface of said bulb 6.
  • the anode 5 as well as the cathode 1 is electrically connected with respective terminals of the socket 7 for enabling application of an electric field over the cathode 1 and anode 5.
  • the above-described configuration may be referred to as a diode mode.
  • the above described light source may be equipped with an electrically connected grid or modulator (not shown) arranged between the cathode 1 and the anode 5 in order to further control the streams of electrons from the cathode 1 to the anode 5. This case is referred to as triode mode.
  • the light source comprises an evacuated chamber 6, said chamber 6 being attached to a regular size socket 7.
  • the inside of the chamber 6 is at least partly coated with two overlapping layers, a first layer 5 by a conductive material constituting an anode and a second layer 4 by a fluorescent material .
  • a cylindrical field emission cathode 1 of the above- described type is incorporated in the chamber 6.
  • the anode 5 as well as the cathode 2 is electrically connected with respective terminals on the socket 7.
  • an electrically connected modulator (not shown) may be arranged between the cathode 1 and the anode 5.
  • this construction includes a cover/diffusor 8, with the appearance of a regular light bulb.
  • the inner evacuated chamber 6 may be made as a small standard component and may later be equipped with covers of different shapes and colors, creating different spreading of the light as well as different color temperatures.
  • the diffusor may be manufactured from various glass and plastic materials.
  • FIG. 5a-5b Yet another embodiment of the invention is shown in fig 5a-5b. This embodiment differs from the embodiment shown in fig 4a-4c only in the configuration of the evacuated chamber 6.
  • a field emission cathode 1 of the type shown in fig 1 is incorporated in the chamber 6.
  • the anode 5 as well as the cathode 2 is electrically connected with respective terminals on the socket 7.
  • an electrically connected modulator 9 is arranged between the cathode 1 and the anode 5.
  • this construction also includes a cover/diffusor 8, with the appearance of a regular light bulb.
  • a cathode construction according to this invention is highly suitable for mass production. This is for example due to simple shaping of the base body and the nano-structured material. This shaping, as for example described in WO 99/43870, may be done by laser cutting. Laser cutting of for example Reticulated Vitreous CarbonTM result in a shorter training period (also called aging periods) for the cathode before a stabilization of the emission current is achieved. This is due to the fact that laser cutting introduce fewer contaminants to the emission surface than for example manual cutting, and consequently a clean surface, adapted for use in vacuum, is produced on the cathode, without the need of gassing or the like. Consequently, the training and the cutting may be done in one step, resulting in easy manufacture.
  • a presently preferred method of producing the above described field emission cathode is described in the PCT patent application with application number PCT/SEOO/01226.
  • the above-described cathode may have other shapes and cross sections than those described above.
  • the cathode may for example be planar.
  • the appearance of the light source may be varied in order to create lamps for different purposes.
  • the base body shown is essentially plane and provided with a layer of nanotubes on one side. It is however possible to create a cylindrical base body with circumferencially arranged nanotubes. Other possible shapes of the base body are for example spheres or cubes.
  • the light source may or may not be equipped with a screw base or the like, in order to fit different standards, and further, drive electronics for the light source may be integrated with the socket .
  • the second layer 4 by a fluorescent material is arranged on the inner surface of the bulb/evacuated chamber 6 and the first layer 5 by a conductive material constituting an anode is arranged upon said second layer 4, as best seen in fig 3.
  • the position of these layers may be interchanged.
  • cathode is referred to as a cathode used in a light source, it is also possible to construct for example cathode-ray tubes using the above- described cathode.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Discharge Lamps And Accessories Thereof (AREA)

Abstract

This invention relates to a field emission cathode (1) for a light source. The cathode (1) comprises at least one base body (3) having an emission surface (3'). Further, the base body (3) is formed by a structured material, and the emission surface (3') is at least partly covered by a field emitting nano-structured material (2). Moreover, this invention relates to a light source, comprising an anode (5), a cathode (1) and an evacuated container (6) enclosing the anode (5) and the cathode (1). The container (6) have at least one inner wall being provided with a luminescent layer (4) as well as a conductive layer forming said anode (5) and the cathode (1) is a field emission cathode of the above mentioned type.

Description

A FIELD EMITTING CATHODE AND A LIGHT SOURCE USING A FIELD
EMITTING CATHODE
FIELD OF THE INVENTION
This invention relates to a field emission cathode for a light source, said cathode comprising at least one base body having an emission surface. The invention also concerns a light source comprising such a cathode.
BACKGROUND OF THE INVENTION
On the market today, there are a great number of different illumination devices. The most common are light bulbs, based on thermionic stimulus, and fluorescent tubes, based on gas discharge. A third category of illumination devices is field emission devices and, accordingly, cathodes used in this kind of devices are called field emission cathodes. For illumination purposes, field emission cold cathodes, which do not require a heat source to operate, are preferably used. However, the use of field emission devices for illumination purposes is currently not wide spread. Field emission cold cathodes used in light sources for illumination has several advantages over devices using thermionic stimulus. Field emission cold cathode devices generally require less power in order to produce the same emission current than a thermionic device. As a matter of fact a field emission source may be 1000 times brighter, compared to a thermionic device. Further, thermionic devices tend to have a short life span, due to burn out. They are also temperature dependent, resulting in bad performance in extreme temperature surroundings . This is not the case with field emission cold cathode devices being based solely on electric field strength and applied voltage over the anode and the cathode. Further, fluorescent tubes, employing gas discharge for emitting radiation onto a fluorescent material that in turn emits light, do overcome some of the disadvantages with for example the light bulb, such as their short life span and their relatively low brightness. However, fluorescent tubes require complicated external electrical devices for their function and they typically contain materials, such as mercury, having negative environmental effects. This is not the case with field emission devices.
Consequently, there are many advantages pointing towards a more extended use of field emission cold cathode devices for illumination purposes.
Some efforts have been done in constructing a light source utilizing a field emission cold cathode. An example of such a construction is described in the patent document WO 98/57345, showing a cold field emission cathode for use in a field emission light source. This construction includes a base body and field emitting fibers being attached to the body, said fibers having field emitting irregular surfaces at their free ends. This cathode has been proven to function well, but is however somewhat complicated and time consuming to manufacture, resulting in a rather expensive construction.
Further, various materials have been proven to be feasible when constructing field emission cathodes. However, carbon-based materials have turned out to be especially useful in this area. Field emission cathodes using compact, essentially homogeneous carbon and graphite have been developed, but these cathodes all require the application of a substantial voltage before generating significant electron emission. Other cathodes using for example individual fiber bundle formations, as in WO 98/57345, and matrix formations in which carbon surfaces are formed by photolithography or the like, have also been suggested, but these cathodes have proven not to be suitable for mass production.
Resent developments in the carbon material field has resulted in structured, oriented carbon materials, making it possible to lower the field emission cathode voltages required to produce substantial electron emission. Such a material, and its use in a field emission cathode, is described in the publication WO 99/43870. This material is referred to as porous carbon foam, a material having an emissive surface, which define a multiplicity of emissive edges. Regarding this material and its characteristics, reference is given to WO 99/43870, incorporated herein by reference. This material, also referred to as Reticulated Vitreous Carbon™, has the advantages of being easy to shape and cut, and a field emission cathode manufactured from this material is comparatively inexpensive. However, the field emission density accomplished with this cathode is still rather low, due to problems in adapting the surface of the material to its purpose.
SUMMARY OF THE INVENTION
Consequently, an object of the invention is to achieve a further improved field emission cold cathode for use in light sources, said cathode being inexpensive and easy to manufacture, even in large volumes, as well as requiring a relatively low voltage application in order to generate significant and stable electron emission. A further object is to achieve a cold cathode able to produce a high field emission density. Yet another object is to achieve a field emission cathode that is efficient and durable. A further object is to accomplish a light source with a field emission cathode, said light source constituting a stable and forgiving system for illumination purposes.
These objects are achieved by a cathode according to the introduction, in which said base body is formed by a structured material, and said emission surface is at least partly covered by a field emitting nano-structured material. In this application, a nano-structured material is defined as a material with physical structures in the range 0.1-100 nm. This construction, with a combination of a structured, oriented material and sharp emitting points created by the nano-structure, results in a cathode requiring a relatively low voltage application in order to generate significant electron emission. Preferably, said emission surface of said base body is formed as to constitute a three dimensional surface structure, including several protruding areas, at least said protruding areas being covered by nano-structured material . This construction result in areas of emissive nano-structured material on the emission surface, said areas being positioned closer to an presumptuous anode than other areas of the emission surface of the base body, when the cathode is placed in a light source system. Consequently, due to the distance dependence (between anode and cathode) of light emission, emission will occur mainly from said protruding areas, not from the areas in-between. In this way the emission may be controlled. Further, the three-dimensional surface has the advantage of separating the emissive points from each other, much like a matrix structure or the like. This design is advantageous regarding the voltage that must be applied over the cathode in order to achieve a high field emission, since a planar surface with a compact layer of emissive points have somewhat a tendency of acting as a compact, homogeneous material, with the result that a high voltage is needed for field emission. The above- mentioned drawback is avoided with said three-dimensional surface structure.
Further, said protruding areas preferably form an essentially periodical surface structure. In this way the emission may be controlled in order to achieve an even and continuous emission, which is advantageous for acquiring a stable illumination device. According to one embodiment of the invention said periodical surface structure has an essentially square-wave cross section. This structure is fairly easy to produce and offers well- defined areas of emissive material. According to another embodiment of the invention said periodical surface structure has an essentially sinusoidal cross section. This structure provides for an emissive surface without sharp edges in order to achieve a stable emission, without aging due to blunting of sharp edges of the material . According to a third embodiment said periodical surface structure has an essentially saw-tooth shaped cross section. This structure is also quite simple to manufacture . Other shapes and structures are of cause possible. Furthermore said structures may be periodical in one or two dimensions.
Preferably, said structured, oriented material is constituted by a porous carbon material such as a porous carbon foam material, e.g. Reticulated Vitreous Carbon™. A field emission cathode manufactured from such a material has especially advantageous properties regarding efficiency and durability as well as simple and inexpensive manufacture. According to another embodiment of the invention, the structured, oriented material is constituted by a semiconductor material. Further, said nano-structured material is advantageously constituted by a layer of carbon nanotubes being arranged on said base body. This provides for a perfect covering of carbon nanotube material, resulting in an even distribution of sharp emissive points over the emission surface.
The invention further relates to a light source, comprising an anode, a cathode and an evacuated container enclosing said anode and said cathode, wherein said container have at least one inner wall being provided with a luminescent layer as well as a conductive layer forming said anode, said light source being characterized in that said cathode is a field emission cathode as described above .
In accordance with one embodiment of the invention, said evacuated container forms the outer boundaries of the light source. This construction includes a minimal number of components, since the anode is integrated with the component forming the outer boundary of the light source . In accordance with another embodiment of the invention said evacuated container is essentially enclosed in a cover/diffusor forming the outer boundaries of the light source. This result in a flexible solution, where a standard size component, comprising the anode as well as the cathode, may be used for manufacturing illumination devices with different outer appearances. This also points towards the fact that the field emission device basically is size independent and may be embodied in virtually any size, independently of the desired luminous flux. This is a significant advantage over for example the compact fluorescent tube, in which size of the illumination device is directly connected to the luminous flux of the light source.
According to the above a light source with a field emission cathode is a much flexible illumination device. It may be formed in any shape, for example as a regular light bulb, making the construction consumer friendly.
Further, the construction may easily be manufactured with a regular bulb socket, making it possible to readily exchange any regular light bulb for a field emission lamp, having the above stated advantages.
BRIEF DESCRIPTION OF DRAWINGS
The invention will hereinafter be described in closer detail with reference to the accompanying drawings, in which: Fig 1 is a perspective view of a field emission cathode in accordance with the invention, Fig 2a is a cross section view of a field emission cathode with a surface structure according to one embodiment of the invention,
Fig 2b is a cross section view of a field emission cathode with a surface structure according to a second embodiment of the invention,
Fig 2c is a cross section view of a field emission cathode with a surface structure according to a third embodiment of the invention, Fig 3 is a schematic view of a light source with a field emission cathode in accordance with one embodiment of the invention,
Fig 4a is a schematic view of a field emission cathode in accordance with a second embodiment of the invention,
Fig 4b is a schematic view of light source using the field emission cathode shown in fig 4a,
Fig 4c is a schematic cross section view of a light source in accordance with fig 4b, being positioned in a light bulb like construction.
Fig 5a is a schematic cross section view of light source using a field emission cathode basically as shown in fig 1, and
Fig 5b is a schematic cross section view of a light source in accordance with fig 5a, being positioned in a light bulb like construction.
DESCRIPTION OF PREFERRED EMBODIMENTS
Fig 1 shows a field emission cathode 1 in accordance with a first embodiment of the invention. The field emission cathode 1 comprises a base body 3, in this case being formed of a porous carbon material, e.g. Reticulated Vitreous Carbon™, an open cell, reticulated foam material, having a random pore structure with good uniform pore distribution statistically. For further information about this material, see the patent document WO 99/43870. Further, said base body 3 has a three- dimensionally formed emission surface 3'. In the embodiment shown in fig 1 this three-dimensionally formed surface 3' has an essentially square-wave formed cross section, for example as shown in fig 2a, but the field emission cathode 1 may have other cross sections, as shown in fig 2b and 2c. The forming of the surface structure may be made by cutting or by other per se known methods, and this will not be described here.
One example of a cathode is shown in fig 4a-4c. Fig 4a shows the cathode base body 3, essentially formed as a cylinder. On the cylinder surface 3' of said body an essentially helical protrusion is formed, resulting in protruding emission surfaces 3" . The emission surfaces essentially have the appearance of the corresponding emission surfaces of fig 1, being covered with a nanostructured material . Said nanostructured material has a random structure. Thus, the base body 3 may be said to have a large and a small-scale structure. The large scale structure is constituted by said forming of the emission surface and the protruding emission surfaces 3", and is preferably periodical and the small scale structure is constituted by said random pore structure of the base body material, and is non-periodical. The open cell structure of the base body material is highly advantageous compared with more homogeneous materials in that it for the same applied voltage produces a higher field emission density over the structure.
Consequently, due to the three-dimensional surface structure, there are areas of the emission surface being positioned closer to a presumptive anode, than other areas of the emission surface 3'. These protrusions 3" will, due to a shorter distance to a presumptive anode, define the emission areas of the emission surface 3' due to the fact that field emission is distance dependent, and the areas of emission may therefore be controlled. As seen in fig 4b, as well as in fig 3, the distance between the emission surfaces 3" and an anode 5 is essentially constant, providing an even field emission from the cathode to the anode, since field emission is distance dependent .
The embodiment as shown in fig 4b is a so-called diode mode cathode. It is also possible to include a grid or the like (not shown) between the cathode 1 and the anode 5 in order to control the emission flow. This kind of cathode is referred to as a triode mode cathode.
As best seen in fig 1, the emission surface 3' of the base body 3 is, at least partly, covered with a nanostructured material 2. In the embodiment shown in fig 1 only the protrusions 3" of the three-dimensional surface 3' are covered with the nano-structured material 2, since these, due to the facts stated above, are the only areas from which emission is likely to occur. However, due to manufacturing techniques it is often simpler and less expensive to cover the entire emissive surface 3' with the nano-structured material 2. This nano-structured material 2 may be accomplished either by treating the material of the base body 3 in order to create nano- structures on its surface or by applying a separate layer of carbon nanotubes (CNT) on the emission surface 3' of the base body 3 on per se known manners . Said nanotubes may be single wall nanotubes (SW/CNT) , Multi wall nanotubes (MW/CNT) or multi wall open nanotubes
(MWO/CNT) , each with previously known features and advantages. In any case, said nano structures 2 constitute emission points and their emissive ends are treated and trained in order to stabilize the emission current during emission. This training may be done in various ways, for example as in the applicant's previous patent application PCT/SEOO/01226, and this will not be further described here.
In fig 3 a light source with the appearance of a regular light bulb is shown. The light source comprises a bulb 6 constituting an evacuated chamber, said bulb 6 being attached to a regular size socket 7. Between the socket 7 and the bulb 6, a casing 10 is arranged, in which electronic circuits needed to operate the lamp is positioned. The inside of the bulb 6 is at least partly coated with two overlapping layers, a first layer 5 by a conductive material constituting an anode and a second layer 4 by a fluorescent material . A field emission cathode 1 of the above-described type is incorporated in the bulb, and the cathode surface has essentially the same shape as the inner surface of said bulb 6. The anode 5 as well as the cathode 1 is electrically connected with respective terminals of the socket 7 for enabling application of an electric field over the cathode 1 and anode 5. The above-described configuration may be referred to as a diode mode. Further, the above described light source may be equipped with an electrically connected grid or modulator (not shown) arranged between the cathode 1 and the anode 5 in order to further control the streams of electrons from the cathode 1 to the anode 5. This case is referred to as triode mode. When putting a voltage over the cathode 1 and the anode 5, electrons will emanate from the nanotube layer 2 of the cathode 1 and move towards the anode 5. When the electrons hit the fluorescent layer 4, light will emit through the anode 2 and the bulb 6 resulting in illumination of the surrounding area.
An alternative embodiment of the invention is shown in fig 4a-4c. Here the light source comprises an evacuated chamber 6, said chamber 6 being attached to a regular size socket 7. The inside of the chamber 6 is at least partly coated with two overlapping layers, a first layer 5 by a conductive material constituting an anode and a second layer 4 by a fluorescent material . A cylindrical field emission cathode 1 of the above- described type is incorporated in the chamber 6. The anode 5 as well as the cathode 2 is electrically connected with respective terminals on the socket 7. Further, an electrically connected modulator (not shown) may be arranged between the cathode 1 and the anode 5. Moreover, this construction includes a cover/diffusor 8, with the appearance of a regular light bulb. This construction has a great advantage in that the inner evacuated chamber 6 may be made as a small standard component and may later be equipped with covers of different shapes and colors, creating different spreading of the light as well as different color temperatures. The diffusor may be manufactured from various glass and plastic materials.
Yet another embodiment of the invention is shown in fig 5a-5b. This embodiment differs from the embodiment shown in fig 4a-4c only in the configuration of the evacuated chamber 6. A field emission cathode 1 of the type shown in fig 1 is incorporated in the chamber 6. The anode 5 as well as the cathode 2 is electrically connected with respective terminals on the socket 7. Further, an electrically connected modulator 9 is arranged between the cathode 1 and the anode 5. Moreover, this construction also includes a cover/diffusor 8, with the appearance of a regular light bulb.
As mentioned above, a cathode construction according to this invention is highly suitable for mass production. This is for example due to simple shaping of the base body and the nano-structured material. This shaping, as for example described in WO 99/43870, may be done by laser cutting. Laser cutting of for example Reticulated Vitreous Carbon™ result in a shorter training period (also called aging periods) for the cathode before a stabilization of the emission current is achieved. This is due to the fact that laser cutting introduce fewer contaminants to the emission surface than for example manual cutting, and consequently a clean surface, adapted for use in vacuum, is produced on the cathode, without the need of gassing or the like. Consequently, the training and the cutting may be done in one step, resulting in easy manufacture. However, a presently preferred method of producing the above described field emission cathode is described in the PCT patent application with application number PCT/SEOO/01226.
Many different embodiments apart from the ones being described above can be made within the scope of this invention. For example, the above-described cathode may have other shapes and cross sections than those described above. The cathode may for example be planar. Further, the appearance of the light source may be varied in order to create lamps for different purposes.
Moreover, the base body shown is essentially plane and provided with a layer of nanotubes on one side. It is however possible to create a cylindrical base body with circumferencially arranged nanotubes. Other possible shapes of the base body are for example spheres or cubes.
The light source may or may not be equipped with a screw base or the like, in order to fit different standards, and further, drive electronics for the light source may be integrated with the socket . Further, in the above described embodiments, the second layer 4 by a fluorescent material is arranged on the inner surface of the bulb/evacuated chamber 6 and the first layer 5 by a conductive material constituting an anode is arranged upon said second layer 4, as best seen in fig 3. However, in accordance with prior art, the position of these layers may be interchanged.
Although the above cathode is referred to as a cathode used in a light source, it is also possible to construct for example cathode-ray tubes using the above- described cathode.
Finally it shall be understood that even if the materials of the cathode described above are very suitable for this field emission application, there are other materials, such as other vitreous carbon materials, that may be used for said cathode.

Claims

1. A field emission cathode (1) for a light source, said cathode (1) comprising at least one base body (3) having an emission surface (3') c h a r a c t e r i z e d in that said base body (3) is formed by a structured, oriented material, and said emission surface (3') is at least partly covered by a field emitting nano-structured material (2) .
2. A field emission cathode according to claim 1, wherein said emission surface (3') of said base body (3) is formed as to constitute a three dimensional surface structure, including several protruding areas (3"), at least said protruding areas (3") being covered by nanostructured material (2) .
3. A field emission cathode according to claim 2, wherein said protruding areas (3') are arranged to form an essentially periodical surface structure.
4. A field emission cathode according to claim 3, wherein said periodical surface structure has an essentially square-wave cross section.
5. A field emission cathode according to claim 3, wherein said periodical surface structure has an essentially sinusoidal cross section.
6. A field emission cathode according to claim 3, wherein said periodical surface structure has an essentially saw-tooth shaped cross section.
7. A field emission cathode according to any one the claims 1-6, wherein said structured, oriented material is constituted by a porous carbon material such as a porous carbon foam material, e.g. Reticulated Vitreous Carbon™.
8. A field emission cathode according to any one of the claims 1-6, wherein said structured, oriented material is constituted by a semiconductor material .
9. A field emission cathode according to anyone of the claims 1-8, wherein said carbon nano structured material (2) is constituted by a layer of carbon nanotubes arranged on said base body (3) .
10. A field emission cathode according to anyone of the claims 1-9, wherein said emission surface (3') is entirely covered by a field emitting carbon nano structured material (2) .
11. A light source, comprising an anode (5), a cathode (1) and an evacuated container (6) enclosing said anode (5) and said cathode (1) , wherein said container (6) have at least one inner wall being provided with a luminescent layer (4) as well as a conductive layer forming said anode (5) , characterized in that said cathode (1) is a field emission cathode as defined in any of claims 1-8.
12. A light source in accordance with claim 11, wherein said evacuated container (6) is arranged to form the outer boundaries of the light source.
13. A light source in accordance with claim 11, wherein said evacuated container (6) is essentially enclosed in a cover (8) being arranged to form the outer boundaries of the light source.
PCT/SE2001/002687 2000-12-08 2001-12-06 A field emitting cathode and a light source using a field emitting cathode WO2002047104A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2002221226A AU2002221226A1 (en) 2000-12-08 2001-12-06 A field emitting cathode and a light source using a field emitting cathode

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US09/731,737 US20020070648A1 (en) 2000-12-08 2000-12-08 Field emitting cathode and a light source using a field emitting cathode
US09/731,737 2000-12-08
SE0004556-7 2000-12-08
SE0004556A SE0004556L (en) 2000-12-08 2000-12-08 A field emitting cathode and a light source using a field emitting cathode

Publications (1)

Publication Number Publication Date
WO2002047104A1 true WO2002047104A1 (en) 2002-06-13

Family

ID=26655335

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/SE2001/002687 WO2002047104A1 (en) 2000-12-08 2001-12-06 A field emitting cathode and a light source using a field emitting cathode

Country Status (2)

Country Link
AU (1) AU2002221226A1 (en)
WO (1) WO2002047104A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2337432A1 (en) * 2009-12-21 2011-06-22 LightLab Sweden AB Resonance circuitry for a field emission lighting arrangement
WO2012037718A1 (en) * 2010-09-20 2012-03-29 海洋王照明科技股份有限公司 Field emission light source device and manufacturing method thereof
EP2784800A1 (en) * 2013-03-25 2014-10-01 LightLab Sweden AB Shaped cathode for a field emission arrangement
DE102014226048A1 (en) * 2014-12-16 2015-09-17 Siemens Aktiengesellschaft Field emission cathode

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07141984A (en) * 1993-11-22 1995-06-02 Futaba Corp Manufacture of field emission cathode
WO1998057345A1 (en) * 1997-06-13 1998-12-17 Lightlab Ab Field emission cathode and a light source including a field emission cathode
EP0913508A2 (en) * 1997-10-30 1999-05-06 Canon Kabushiki Kaisha Carbon nanotube device, manufacturing method of carbon nanotube device, and electron emitting device
WO1999043870A1 (en) * 1998-02-27 1999-09-02 The Regents Of The University Of California Field emission cathode fabricated from porous carbon foam material
WO1999065821A1 (en) * 1998-06-19 1999-12-23 The Research Foundation Of State University Of New York Free-standing and aligned carbon nanotubes and synthesis thereof
US6097138A (en) * 1996-09-18 2000-08-01 Kabushiki Kaisha Toshiba Field emission cold-cathode device
DE10005057A1 (en) * 2000-02-04 2000-08-24 Jisoon Ihm Field emission tips, useful as electron emission tips in field emission displays, consist of carbon nanotubes with sloping cut ends

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07141984A (en) * 1993-11-22 1995-06-02 Futaba Corp Manufacture of field emission cathode
US6097138A (en) * 1996-09-18 2000-08-01 Kabushiki Kaisha Toshiba Field emission cold-cathode device
WO1998057345A1 (en) * 1997-06-13 1998-12-17 Lightlab Ab Field emission cathode and a light source including a field emission cathode
EP0913508A2 (en) * 1997-10-30 1999-05-06 Canon Kabushiki Kaisha Carbon nanotube device, manufacturing method of carbon nanotube device, and electron emitting device
WO1999043870A1 (en) * 1998-02-27 1999-09-02 The Regents Of The University Of California Field emission cathode fabricated from porous carbon foam material
WO1999065821A1 (en) * 1998-06-19 1999-12-23 The Research Foundation Of State University Of New York Free-standing and aligned carbon nanotubes and synthesis thereof
DE10005057A1 (en) * 2000-02-04 2000-08-24 Jisoon Ihm Field emission tips, useful as electron emission tips in field emission displays, consist of carbon nanotubes with sloping cut ends

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2337432A1 (en) * 2009-12-21 2011-06-22 LightLab Sweden AB Resonance circuitry for a field emission lighting arrangement
WO2011076522A1 (en) * 2009-12-21 2011-06-30 Lightlab Sweden Ab Resonance circuitry for a field emission lighting arrangement
WO2012037718A1 (en) * 2010-09-20 2012-03-29 海洋王照明科技股份有限公司 Field emission light source device and manufacturing method thereof
CN103026455A (en) * 2010-09-20 2013-04-03 海洋王照明科技股份有限公司 Field emission light source device and manufacturing method thereof
CN103026455B (en) * 2010-09-20 2015-11-25 海洋王照明科技股份有限公司 Field emission light source device and preparation method thereof
EP2784800A1 (en) * 2013-03-25 2014-10-01 LightLab Sweden AB Shaped cathode for a field emission arrangement
WO2014154505A1 (en) * 2013-03-25 2014-10-02 Lightlab Sweden Ab Shaped cathode for a field emission arrangement
JP2016517143A (en) * 2013-03-25 2016-06-09 ライトラブ スウェーデン アクティエボラーグ Forming cathode for field emission device
US10043649B2 (en) 2013-03-25 2018-08-07 Lightlab Sweden Ab Shaped cathode for a field emission arrangement
DE102014226048A1 (en) * 2014-12-16 2015-09-17 Siemens Aktiengesellschaft Field emission cathode

Also Published As

Publication number Publication date
AU2002221226A1 (en) 2002-06-18

Similar Documents

Publication Publication Date Title
US20020070648A1 (en) Field emitting cathode and a light source using a field emitting cathode
US7683530B2 (en) Cathodoluminescent light source having an electron field emitter coated with nanocarbon film material
AU696412B2 (en) Fluorescent lamp
EP2375435B1 (en) Field emission cathode
WO1997007531A9 (en) Fluorescent lamp
JP4783074B2 (en) Dielectric barrier discharge lamp
US7663298B2 (en) Light source apparatus using field emission cathode
JP6571251B2 (en) Power control of field emission lighting system
WO2002047104A1 (en) A field emitting cathode and a light source using a field emitting cathode
RU2274924C1 (en) Cathodoluminescence light source (alternatives)
US7290916B2 (en) Field emission light source and a related backlight device
US7489069B2 (en) Field emission light source and a related backlight device
US7446466B2 (en) Field emission light source
RU2479065C2 (en) Light source
RU1790011C (en) Cathode-luminiscent lamp
RU2028695C1 (en) Cathode luminescent lamp
KR101531096B1 (en) Lighting device of light source exchange type
KR200321330Y1 (en) Long type halogen lamp by low voltage having multi radiance point
JP2004022167A (en) Electron emitting element, its manufacturing method, and image display device using element
TWM448782U (en) Field emission anode and field emission lamp thereof
US20060197425A1 (en) Field emission light source
MXPA99011522A (en) A light source including a field emission cathode, and a field emission cathode

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ CZ DE DE DK DK DM DZ EC EE EE ES FI FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING LOSS OF RIGHTS PURSUANT TO RULE 69(1) EPC (EPO FORM 1205A DATED 10.09.03).

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP