WO2002040071A1 - Compositions for forming bone or periodontium and injections for forming bone or periodontium - Google Patents

Compositions for forming bone or periodontium and injections for forming bone or periodontium Download PDF

Info

Publication number
WO2002040071A1
WO2002040071A1 PCT/JP2001/009800 JP0109800W WO0240071A1 WO 2002040071 A1 WO2002040071 A1 WO 2002040071A1 JP 0109800 W JP0109800 W JP 0109800W WO 0240071 A1 WO0240071 A1 WO 0240071A1
Authority
WO
WIPO (PCT)
Prior art keywords
bone
composition
cells
prp
periodontal tissue
Prior art date
Application number
PCT/JP2001/009800
Other languages
French (fr)
Japanese (ja)
Inventor
Minoru Ueda
Yasuhiro Okazaki
Ken-Ichiro Hata
Youichi Yamada
Original Assignee
Osteogenesis Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osteogenesis Co., Ltd. filed Critical Osteogenesis Co., Ltd.
Priority to AU2002212739A priority Critical patent/AU2002212739A1/en
Priority to JP2002542441A priority patent/JPWO2002040071A1/en
Publication of WO2002040071A1 publication Critical patent/WO2002040071A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/38Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells
    • A61L27/3804Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells characterised by specific cells or progenitors thereof, e.g. fibroblasts, connective tissue cells, kidney cells
    • A61L27/3821Bone-forming cells, e.g. osteoblasts, osteocytes, osteoprogenitor cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/02Inorganic materials
    • A61L27/12Phosphorus-containing materials, e.g. apatite
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/22Polypeptides or derivatives thereof, e.g. degradation products
    • A61L27/227Other specific proteins or polypeptides not covered by A61L27/222, A61L27/225 or A61L27/24
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/3604Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix characterised by the human or animal origin of the biological material, e.g. hair, fascia, fish scales, silk, shellac, pericardium, pleura, renal tissue, amniotic membrane, parenchymal tissue, fetal tissue, muscle tissue, fat tissue, enamel
    • A61L27/3616Blood, e.g. platelet-rich plasma
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/3641Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix characterised by the site of application in the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/3641Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix characterised by the site of application in the body
    • A61L27/3645Connective tissue
    • A61L27/365Bones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/02Stomatological preparations, e.g. drugs for caries, aphtae, periodontitis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/08Drugs for skeletal disorders for bone diseases, e.g. rachitism, Paget's disease

Definitions

  • the present invention relates to a composition for forming bone or periodontal tissue that can be used for repairing or regenerating bone or periodontal tissue.
  • PRP Platelet-rich Plasma
  • Fiblin Glue fibrin glue
  • PRP Planar-derived Growth Factor
  • TGF- ⁇ 1 Transforming growth factor ⁇ 1
  • TGF- Transforming growth factor ⁇ 2
  • PDGF is a glycoprotein having a molecular weight of about 30 kD and has been confirmed to have an effect of promoting wound healing.
  • PDGF promotes cell mitosis, improves blood circulation by promoting the formation of capillaries, or promotes differentiation and proliferation of fibroblasts, osteoblasts, etc. by enhancing the effects of other growth factors. Is thought to promote wound healing.
  • the present invention aims at providing a composition for forming bone or periodontal tissue used in the method in order to provide a novel method for regenerating bone or periodontal tissue which can be applied to clinical practice.
  • Target a composition for forming bone or periodontal tissue used in the method in order to provide a novel method for regenerating bone or periodontal tissue which can be applied to clinical practice.
  • the present inventors have conducted intensive studies in view of the above problems. First, when a transplant material was constructed by combining PRP and an inorganic bioabsorbable material, and bone regeneration was examined using this material, the bone inducing ability for cells existing in the adaptation site at the application site was amplified. And a high bone regeneration effect was found. It was also suggested that inclusion of a particulate inorganic bioabsorbable material in PRP facilitates appropriate plasticity and shape retention.
  • a first aspect of the present invention is a composition for forming a bone or periodontal tissue, which comprises PRP and an inorganic bioabsorbable material and has fluidity during use.
  • a second aspect of the present invention is a composition for forming a bone or periodontal tissue having fluidity at the time of use, comprising PRP and cells having an osteogenic ability.
  • Still another aspect of the present invention is a composition for forming a bone or periodontal tissue having fluidity during use, comprising fibrinogen, an inorganic bioabsorbable material, and cells having bone forming ability. It is. Still another aspect of the present invention is a composition for forming bone or periodontal tissue having fluidity during use, comprising PRP, alginate (alginate), and cells having bone forming ability. It is.
  • the fluidity of the composition for forming bone or periodontal tissue depends on the injection container at the time of use. It is preferable to have fluidity that can be used by injection.
  • composition for forming bone or periodontal tissue of the present invention can be prepared further containing a gelling material.
  • Thrombin and calcium chloride can be used as the gelling material.
  • composition for forming bone or periodontal tissue of the present invention can be used after being frozen once and then thawed from the frozen state at the time of use.
  • composition for forming bone or periodontal tissue can be sealed in an injection container to form an injection for forming bone or periodontal tissue.
  • the inorganic bioabsorbable material in the present invention includes one selected from the group consisting of: 3-tricalcium phosphate, ⁇ -tricalcium phosphate, tetracalcium phosphate, octacalcium phosphate, and amorphous calcium phosphate.
  • two or more inorganic bioabsorbable materials can be used.
  • the inorganic bioabsorbable material those having an average particle diameter of 0.5 m to 50 / m can be used.
  • the content of the inorganic bioabsorbable material can be, for example, 30% by weight to 75% by weight.
  • the growth site can be used at an application site (transplant site) by these growth factors. Effective regeneration of bone tissue or periodontal tissue can be expected.
  • it since it has fluidity at the time of use, it is versatile because it is not necessary to pre-mold it in accordance with the shape of the bone or periodontal tissue defect, and its handling is easy.
  • autologous PRPs allows the application of non-toxic and immune-inactive growth factors, and their safety is high.
  • the inorganic bioabsorbable material becomes a scaffold for bone cells and the like at the application site, and can further promote regeneration of bone tissue and the like.
  • inorganic bioabsorbable materials will be replaced by bone tissue in the future. Its safety is high.
  • a bone or periodontal tissue defect can be effectively repaired and regenerated without collecting autologous bone, and bone or bone having high operability and safety can be obtained.
  • a composition for periodontal tissue formation is provided.
  • Fig. 1 shows a photograph of the results of the PRP group in Example 4 (right side of the maxillary sinus implanted with the PRP gel containing / 3-TCP) two weeks after transplantation.
  • Gray HE Hematoxylin Eosin stained histology is shown.
  • 3-TCP accumulates and fills the transplanted bone, and a large number of osteoblasts surround it. Osteoblasts are also observed in 13-TCP. Juvenile new bone is observed around some
  • FIG. 2 is a photograph showing the results of the 4 weeks after transplantation of the PRP group (the right side of the maxillary sinus transplanted with the PRP gel containing / 3-TCP) in Example 4; Gray HE (Hematoxylin Eosin) stained histology is shown. I3-TCP has decreased compared to 2 weeks after transplantation. ) It is observed that osteoblasts are encapsulated all around the 3-TCP. In addition, the formation of new bone is observed around 3-TCP. It is observed that many osteoblasts also exist around the new bone. There is a cement line in the new bone.
  • FIG. 3 is a photograph showing the results of the control group in Example 4 (left side of the maxillary sinus to which only I3-TCP was transplanted) two weeks after transplantation. Hematoxylin eosin) The stained histology is shown. ) 3-TCP is present in the transplanted bone as a square, and osteoblasts are observed around J3-TCP. Also, Slight formation of new bone is observed.
  • FIG. 4 is a photograph showing the results of the control group in Example 4 (left side of the maxillary sinus transplanted with only
  • Fig. 5 is a photograph showing the results of the PRP group in Example 4 (the right side of the maxillary sinus transplanted with the PRP gel containing / 3-TCP) 8 weeks after transplantation, and demineralization of the transplanted portion 8 weeks after transplantation.
  • HE hematoxylin eosin stained histology is shown. Increased bone mass is seen at and around the implant.
  • Figure 6 is an enlarged (16x) view of a portion of Figure 5.
  • the formation of new bone (B) is observed so as to be in contact with the i3-TCP-containing PRP gel implant (A).
  • FIG. 7 is an enlarged (16x) view of a part of Fig. 5, similar to Fig. 6.
  • formation of new bone (B) is observed so as to be in contact with the 3-TCP-containing PRP graft (A).
  • FIG. 8 is a photograph showing the results of the control group in Example 4 (left side of the maxillary sinus transplanted with -TCP alone) at 8 weeks after transplantation. (Matoxylinje) A stained histological image is shown. There is almost no increase in bone mass compared to 4 weeks after transplantation.
  • Figure 9 is an enlarged (16x) view of part of Figure 8. It is observed that the fibrous connective tissue (c) surrounds the j3-TCP gel implant (a). Bone (b) is outside fibrous connective tissue (c).
  • FIG. 10 is a graph summarizing the results of Example 4, and shows the ratio (%) of the ossified portion to the entire transplanted portion. The amounts of newly formed bone and the amount of 3-TCP remaining at 2, 4 and 8 weeks after transplantation are shown.
  • (+) indicates the results of the PRP group
  • (1) indicates the results of the control group. 8 weeks after transplantation It can be seen that the amount of new bone in the test group is significantly higher than that in the control group. It is also observed that the PRP group absorbed 0-TCP better.
  • FIG. 11 is a photograph showing two weeks (2 W), four weeks (4 W), and eight weeks (8 W) after transplantation of the PCBM transplanted part in Example 8, and demineralization of the transplanted part.
  • HE hematoxylin eosin stained histology is shown.
  • FIG. 12 is a diagram showing photographs at two weeks (2 W), four weeks (4 W), and eight weeks (8 W) after the transplantation of the PRP-cell gel-transplanted part in Example 8.
  • the decalcified HE (hematoxylin eosin) stained histology is shown.
  • FIG. 13 is a diagram showing photographs of the results at 2 weeks (2 W), 4 weeks (4 W), and .8 weeks (8 W) after the transplantation of the PRP gel transplant portion in Example 8.
  • the decalcified HE (hematoxylin eosin) stained histology is shown.
  • FIG. 14 is a view showing a photograph of the result of the control group in Example 8. Photographs at 2 weeks (2 W), 4 weeks (4 W), and 8 weeks (8 W) of the defect left untransplanted, with decalcified HE (hematoxylin and eosin) staining The histology is shown.
  • FIG. 15 is a photograph showing a directly observed transplantation site 8 weeks after the transplantation of the transplantation composition (fibrinogen-j3-TCP-cell-containing composition). A white lump is observed at the transplant (arrow).
  • Fig. 16 shows the HE-stained tissue images at 2 weeks (2W), 4 weeks (4W), and 8 weeks (8W) after transplantation of the transplantation composition (fibrinogen-) 3-TCP-cell-containing composition.
  • 8 weeks (8W) after transplantation a partial laminar structure is seen (arrow), and bone maturation can be observed.
  • FIG. 17 is a view showing an HE-stained tissue image of the control group with the transplantation composition (fibrinogen-
  • FIG. 18 (A) is a diagram showing an H.E.-stained tissue image of the transplanted part 16 weeks after transplantation of (PRP-alginate-one-cell-containing composition).
  • FIG. 18 (B) is a view showing an H.E.-stained tissue image of the transplanted portion 16 weeks after transplantation of the control group (transplanted with alginate).
  • the group (A) into which the composition for transplantation was transplanted new bone was observed (arrow), and it was confirmed that bone regeneration was performed.
  • the transplanted alginate is observed by staining (arrow), but no new bone formation is observed.
  • PRP refers to platelet-rich plasma, that is, a platelet-rich plasma. In other words, it refers to platelet-enriched plasma.
  • PRP is prepared, for example, by subjecting collected blood to centrifugation according to the method of Whitman et al. (Dean H. Whitman et al .: J Oral Maxillofac Surg, 55, 1294-1299 (1997)). can do.
  • PRP is known to be rich in growth factors such as Platelet-derived Growth Factor (PDGF), Transforming growth factor ⁇ 1 (TGF- ⁇ 1), and Transforming growth factor ⁇ 2 (TGF- ⁇ 2).
  • PDGF Platelet-derived Growth Factor
  • TGF- ⁇ 1 Transforming growth factor ⁇ 1
  • TGF- ⁇ 2 Transforming growth factor ⁇ 2
  • darry J. Peterson Oral surg Oral Med Oral Pathol Oral Radiol Endod, 85, 638-646 (1998)).
  • an example of a method for preparing PRP is as follows. First, an anticoagulant such as sodium citrate is added to the collected blood and left at room temperature for a predetermined time. Thereafter, centrifugation is performed under conditions (for example, about 5,400 rpm) at which blood cells and buffy coat separate. This separates into two layers (the upper layer is called platelet-poor plasma; the lower layer contains blood cells and buffy coat). After removing the upper layer, centrifugation is further performed under conditions that allow red blood cells to be separated (for example, about 2,400 rpm). The resulting fraction substantially free of red blood cells (Platelet-rich Plasma: PRP) is collected. How to prepare PRP The method is not limited to this method, and can be prepared by a method modified as necessary.
  • an anticoagulant such as sodium citrate is added to the collected blood and left at room temperature for a predetermined time. Thereafter, centrifugation is performed under conditions (for example, about 5,400 rpm) at which blood cells and buffy coat separate. This separate
  • autologous PRP is used. This eliminates the risk of toxicity or immune rejection.
  • PRP is rich in platelet, growth factors such as TGF-i31, TGF- ⁇ 2, and fibrinogen. Therefore, platelets, a growth factor such as TGF-i31, and fibrinogen can be prepared, and a mixture thereof can be used as the PRP in the present invention. Platelets, various growth factors, and fibrinogen can be prepared by a known method or commercially available. On the other hand, PRP is particularly rich in platelets and has a high fibrinogen content.Therefore, instead of PRP, platelets, fibrinogen, or platelets and fibrinogen are used to form bone or periodontal tissue. It is expected that a bone regenerating effect can be obtained even when the composition for use is constituted.
  • the bone or periodontal tissue forming composition of the present invention by using platelets, fibrinogen, or platelets and fiprinogen instead of PRP.
  • fibrin can be used instead of fibrinogen here. That is, for example, the composition of the present invention can be constituted by containing fibrin glue instead of PRP.
  • the degree of fluidity during use of the composition of the present invention is not particularly limited, and may be a gel, a slurry, a paste, a clay, a high-viscosity fluid, or the like. Preferably, it is in the form of a gel or a paste. Possible by gel or paste A composition for forming bone or periodontal tissue having excellent plasticity is obtained. Therefore, it can be applied without being previously formed into the shape of the application portion. That is, application to the application section can be easily performed. In addition, a composition for forming a bone or a periodontal tissue having a good fixation property in an application portion is obtained.
  • the fluidity is such that it can be injected using an injection container at the time of use. With such fluidity, application to the application section becomes even easier.
  • desired fluidity can be obtained depending on the application section. For example, when injecting under the periosteum, it is preferable to make the liquid more fluid (a state having a lower viscosity).
  • the composition of the present invention only needs to have fluidity at least at the time of use, and may be in the form of powder or solid before use. Therefore, the composition of the present invention can be in a frozen state. Further, the composition of the present invention can be used in a lyophilized state. By making the frozen or lyophilized state before use, long-term storage becomes possible, and handling before use becomes easy. Furthermore, since the antigenicity can be expected to be reduced by the freeze treatment or the freeze-drying treatment, the safety when using the same kind of PRP instead of the own PRP is improved.
  • the kind of the inorganic bioabsorbable material in the present invention is not particularly limited, tricalcium phosphate (hereinafter, referred to as “—TCPJ”), ⁇ -tricalcium phosphate (hereinafter, referred to as “ ⁇ -TCPJ”), tetracalcium phosphate
  • TCPJ tricalcium phosphate
  • ⁇ -TCPJ ⁇ -tricalcium phosphate
  • tetracalcium phosphate A material selected from the group consisting of octacalcium phosphate, and amorphous calcium phosphate can be used, and these materials can be used alone, or a combination of two or more arbitrarily selected materials can be used.
  • i3-TC ⁇ or ⁇ -TC ⁇ , or a combination of these in any proportion is used.
  • 3-TCP is used as the inorganic bioabsorbable material. .
  • the inorganic bioabsorbable material can be obtained by a known method.
  • commercially available inorganic bioabsorbable materials can also be used.
  • jS—For TCP for example, Olympus Optical Industrial Co., Ltd. can be used.
  • the inorganic bioabsorbable material is in the form of powder having a particle size such that the composition for forming bone or periodontal tissue of the present invention (hereinafter, referred to as “the present invention composition”) becomes fluid when used. Is preferred.
  • the powdered inorganic bioabsorbable material can be prepared by crushing and pulverizing an inorganic bioabsorbable material processed into an appropriate size to a desired particle size.
  • the average particle size of the inorganic bioabsorbable material is 0.5! It is preferably set to 50 / m. More preferably, an inorganic bioabsorbable material having an average particle diameter of 0.5; tim to 10 / m is used. Still more preferably, the average particle diameter is 1 t ⁇ ! Use an inorganic bioabsorbable material of ⁇ 5 // m. It is also possible to use a combination of a plurality of types of inorganic bioabsorbable materials having different particle diameters.
  • the inorganic bioabsorbable material preferably contains 30% by weight to 75% by weight based on the whole composition of the present invention.
  • the fluidity of the composition of the present invention can be adjusted by the particle size and content of the inorganic bioabsorbable material, and a desired fluidity can be obtained by appropriately adjusting both.
  • a gelling material and / or a thickener described below are added, the fluidity can be adjusted also by the amount of these added.
  • the composition of the present invention may further comprise a gelling material.
  • the composition of the present invention can be constituted by adding thrombin and calcium chloride. By adding them, thrombin acts on fibrinogen in PRP to generate fibrin. Then, the viscosity increases due to the aggregation action of fibrin.
  • the type of the gelling agent is not particularly limited, and those which act on the components in the PRP to increase the viscosity as described above or those which exert a thickening effect by themselves can be appropriately selected and used.
  • composition of the present invention acts after application (after transplantation) 9800
  • a second gelling material that changes the fluidity (viscosity) of No. 12 can also be used in combination.
  • transplantation is easy because of appropriate fluidity at the time of use, and fixation at the application site is improved by increasing the viscosity after application, and bone or periodontal tissue Repair or regeneration can be performed effectively.
  • fixation at the application site is improved by increasing the viscosity after application, and bone or periodontal tissue Repair or regeneration can be performed effectively.
  • the gelling material a material having high biocompatibility is preferably used.
  • collagen or fipurin glue can be used.
  • various collagens can be selected and used, it is preferable to use collagen suitable for the application purpose (application tissue) of the composition of the present invention.
  • application tissue for example, type I collagen can be used.
  • the collagen used is preferably soluble (acid-soluble collagen, alkali-soluble collagen, enzyme-soluble collagen, etc.).
  • the flowability of the composition of the present invention can be adjusted by adding a thickener.
  • a thickening agent thickening polysaccharides such as sodium alginate, glycerin, petrolatum, etc. can be used.However, from the viewpoint of safety and Z or bone formation ability, it has high biocompatibility and is bioabsorbable or bioabsorbable. It is preferable to use a decomposable material. By adding glycerin and the like, the effect of preventing frost damage can be obtained.
  • alginate alginate
  • PRP PRP
  • the composition of the present invention may contain an aqueous solvent. That is, in the first aspect of the present invention, at least PRP and an inorganic bioabsorbable material may be mixed in an aqueous solvent. In the second aspect of the present invention, at least PRP and cells having osteogenic ability are mixed in an aqueous solvent. It may be configured.
  • aqueous solvent sterile water, physiological saline, a buffer solution such as a phosphate solution and the like can be used.
  • composition of the present invention may contain, in addition to the above components, a stabilizer, a preservative, a pH adjuster, and the like. It can also contain growth factors, especially osteoinductive factors (BMP).
  • BMP osteoinductive factors
  • the cells having osteogenic ability refer to cells capable of forming bone tissue, and include osteoblasts, preosteoblasts, mesenchymal stem cells that have acquired the ability to differentiate into osteogenic cells, and the like. These cells may be used in any combination.
  • J that has acquired the ability to differentiate into bone cells refers to a state in which an undifferentiated state has been oriented to differentiate into bone cells.
  • mesenchymal stem cells that have acquired the ability to differentiate into bone cells
  • autologous cells not only autologous cells but also allogeneic allogeneic cells
  • allogeneic allogeneic cells can be used.
  • cells derived from human mesenchymal stem cells can be used.
  • osteoblast-acquiring cells convert undifferentiated mesenchymal stem cells (MSCs) into bone cells.
  • MSCs mesenchymal stem cells
  • the culture conditions are not limited to those described above, and known conditions for inducing differentiation into bone cells can be employed.
  • Sources of undifferentiated mesenchymal stem cells include bone marrow, periosteum, pulp, and cord blood. After collecting them according to a conventional method, undifferentiated mesenchymal cells are selected based on the presence or absence of adhesiveness. In other words, select cells that have adhesive properties from cells contained in bone marrow, etc. As a result, undifferentiated mesenchymal stem cells can be obtained.
  • the present invention composition can be constituted by adding the extracellular matrix of the cells.
  • the extracellular matrix is expected to serve as a scaffold for the cells having the ability to acquire bone differentiation at the site to which the composition of the present invention is applied, and it is considered that the cells having the ability to acquire bone differentiation can be easily fixed at the site to which the composition is applied.
  • it also serves as a scaffold for bone cells existing around the application site, so that high bone inducing ability can be expected.
  • BMPs and other factors contained in the extracellular matrix are included in the composition of the present invention, and the cells having the ability to differentiate into osteogenic cells themselves, and the bone cells around the application site or stem cells having the ability to differentiate into osteogenic cells. It is expected to promote growth, proliferation and differentiation.
  • the extracellular matrix is a matrix (matrix) that surrounds the cells having the osteogenic potential.
  • the extracellular matrix of autologous cells but also the extracellular matrix of allogeneic cells of the same type can be used. This is because BMPs and the like contained in such extracellular matrix are of the same species, so that the same effect can be expected even when allogeneic cells are used. As described above, the fact that not only the extracellular matrix of autologous cells but also the extracellular matrix of allogeneic cells can be used facilitates the preparation of the extracellular matrix of cells having the osteogenic differentiation potential.
  • the cells with the ability to acquire bone differentiation potential added simultaneously may not be living cells. This means that it is not necessary to treat the cells with the ability to acquire bone differentiation potential in the state of living cells, which is desirable from the viewpoint of handling. For example, after obtaining cells having bone differentiation potential, those obtained by freeze-drying or the like are prepared, and these can be used as cells having bone differentiation potential and their extracellular matrix.
  • the content of the bone based differentiation capacitation cells in the compositions of the present invention is preferably be 1 X 1 0 5 or more cells are present in lml, more preferably 1 X 1 0 6 ⁇ 1 X 1 it is preferable that 0 7 cells are present. This is because by setting such a cell content, bone formation can be effectively induced.
  • a composition for forming bone or periodontal tissue can be constituted by containing the above-mentioned cells having bone forming ability. In this case, the composition may be constituted by adding the extracellular matrix (extracellular matrix) of the cells having the ability to obtain bone differentiation.
  • the composition of the present invention is prepared by mixing the above components.
  • a method for preparing a gel composition by mixing PRP,) 3-TCP (inorganic bioabsorbable material), and thrombin and calcium chloride An example is shown below.
  • PRP is prepared by the method described above, and / 3-TCP is added thereto and mixed. Then, add a mixture of calcium chloride solution and thrombin, and stir well with air in the syringe.
  • the composition of the present invention When the composition of the present invention is prepared in a frozen state or a lyophilized state, the composition has a desired fluidity when used. In the case of a frozen state, it is returned to the state before freezing by thawing. At this time, a desired fluidity can be adjusted by adding physiological saline or the like. On the other hand, in the case of a freeze-dried state, a solvent such as physiological saline is added to obtain a fluidity before the freeze-drying treatment or a state having a desired fluidity.
  • an injection for bone or periodontal tissue formation (hereinafter referred to as “the injection of the present application”) can be obtained.
  • the composition of the present invention prepared in a fluid state is sealed in an injection container, and then frozen or freeze-dried to obtain the injection of the present invention.
  • handling becomes easier. That is, a desired effect can be expected by injecting the present injection transdermally or transmucosally without making an incision in the skin or mucous membrane as in the prior art at the time of application.
  • Such an injection of the present invention is used after the bone or periodontal tissue forming composition enclosed therein is brought into a state having desired fluidity similarly to the above.
  • the type of injection container is not particularly limited, and for example, a commercially available syringe can be used.
  • Each preserved blood sample was transferred to a 10 ml centrifuge tube, and centrifuged at 5,400 rpm for 5 minutes using a centrifuge.
  • the centrifuged blood separated into three layers depending on the density. In order from the upper layer, there are three layers: Platelet-poor Plasma (Platelet-free plasma, PPP), Platelet-rich Prasma (PRP), and red blood cells.
  • PPP Platelet-poor Plasma
  • PRP Platelet-rich Prasma
  • red blood cells The top PPP (approximately 5.5 ml) was removed using a micro-mouth pipet.
  • the remaining blood components about 3.5 ml
  • red blood cells and PRP were separated.
  • the upper layer was PRP, which was collected using a micropit. About 0.35 ml of PRP was finally collected from each blood sample (9 ml).
  • 3-TCP powder was placed in a 2.5 ml syringe (manufactured by Terumo Corporation). 35 ml of the PRPO prepared in Example 1 was aspirated with a micropipette; injected into a syringe containing 8-TCP powder; and mixed with) 3-TCP powder. After stirring well in a syringe, j8-TCP was dissolved in PRP. On the other hand, a mixture of 10 ml of 10% calcium chloride solution and 10,000 units of bovine thrombin (GEN-TRAC) for topical use was prepared, and 0.035 ml of this mixture was added to a syringe containing 3-TCP and PRP. Mix with O.lcc air in syringe. This initiated coagulation and formed a / 3-TCP containing PRP gel.
  • GRP bovine thrombin
  • Example 2 Twenty-four (24) Japanese white egrets from which blood was collected in Example 1 were shaved. After shaving, the remaining hair in the shaved area was completely removed with a depilatory cream. Next, the heron was fixed on the stomach, and the surgical field was disinfected with a chlorhexidine dalconate swab. After that, a 10 mm length skin incision was made in the upper part, and the mucosa and periosteum were peeled off to expose the bone surface of the anterior wall of the maxillary sinus. Then, the bone of the anterior wall of the maxillary sinus was removed with a diameter of about 7 mm using a dental diamond blade. Finally, the maxillary sinus mucosa was carefully dissected upward using an exfoliator to form a space for transplantation of the PRP gel containing / 3-TCP. (4-1-2)) 3—Transplantation of TCP-containing PRP grey
  • Example 3 Obtained in Example 3; 0.175 ml of PRP gel containing 8-TCP was weighed and collected by using a 5 mm ⁇ 5 mm ⁇ 7 mm homemade space maker and implanted into the space of the right maxillary sinus just created. On the left side, a saline solution was used to give the same viscosity as i3-TCP containing PRP gel.) 3-TCP paste was transplanted. After the mucosa and periosteum were returned to their original positions, the wound was closed with suture, and the transplantation of the 3-TCP-containing PRP gel was completed.
  • the bone formation was evaluated by visually observing the transplanted part after a predetermined period. First, at 2 weeks and 4 weeks after transplantation, the heron transplanted at (4-2) was sacrificed, and the upper jaw and nose were removed in one lump. The extract was fixed with a 10% phosphate buffered formalin solution and decalcified with a 10% formic acid aqueous solution. Thereafter, paraffin embedding was performed, a frontal section having a thickness of 5 mm was prepared, stained with hematoxylin eosin, and observed under an optical microscope.
  • Figure 1 shows the transplantation site two weeks after transplantation. J3-TCP was accumulated and filled in the transplanted bone, and a large number of osteoblasts were observed to surround it. Osteoblasts were also observed in the accumulated / 3-TCP. A small amount of new bone was found around some ⁇ -TCP. Platelets were observed throughout the implanted bone. Thus, it was observed that bone formation was progressing as compared with the control group.
  • FIG. 2 shows the state of the transplantation site four weeks after transplantation. 3) TCP decreased compared to 2 weeks after transplantation. It was observed that osteoblasts were encapsulated all around J3-TCP. In addition, new bone formation was observed around J3-TCP, and 2 weeks after transplantation Than had increased. Many osteoblasts also existed around the new bone. In addition, a cement line was found in the new bone. Thus, remarkable bone formation was observed as compared with the control group.
  • Control group left maxillary sinus transplanted with i3-TCP only
  • Figure 3 shows the state of the transplantation site two weeks after transplantation. i3-TCP was present in the transplanted bone as a square, and) osteoblasts were observed around 3-TCP. In addition, new bone formation was slightly observed.
  • Figure 4 shows the transplantation site four weeks after transplantation. Many -TCPs were still observed in blocks at the implant, and new bone formation was observed around them. A cement line was found in the trabeculae of the new bone.
  • FIG. 5 shows the state of the 3-RP containing PRP gel transplantation site (8 weeks after transplantation).
  • Figure 5 shows a hematoxylin-eosin stained image (decalcified H.E. stained tissue image). Increased bone mass is noted at and around the implant.
  • FIG. 6 and 7 show enlarged (16x) parts of Fig. 5. 3)
  • the formation of new bone (B) is observed so as to be in contact with the 3-TCP-containing PRP transplant (A). That is, formation of new bone is observed in a state where no fibrous connective tissue is interposed between the transplanted portion and the new bone.
  • i3-TCP containing PRP gel It has been shown that the transplantation of osteoporosis actively forms new bone, ie, osteoinduction.
  • Control group left maxillary sinus transplanted with i3-TCP only
  • Figure 8 shows the state of the / 3 -TCP gel transplantation site 8 weeks after transplantation.
  • Figure 8 shows the hematoxylin-eosin stained image (decalcified H.E. stained tissue image). There is almost no increase in bone mass compared to 4 weeks after transplantation.
  • Figure 9 shows an enlarged (16x) view of a portion of Figure 8.
  • the fibrous connective tissue (c) surrounds the 3-TCP gel implant (a). That is, fibrous connective tissue (c) is interposed between the transplanted part (a) and the bone (b). Therefore, it is considered that the bone observed in this photograph is not the new bone formed by the induction of (3-graft) induced by 3-TCP, but the bone metabolism originally formed by the living body.
  • FIG. 10 is a graph summarizing the ratio (%) of the ossified portion to the whole transplanted portion. The amount of newly formed bone and the amount of newly formed bone at 2, 4 and 8 weeks after transplantation are shown. -Shows the remaining amount of TCP. In the figure, (+) indicates the results for the PRP group, and (-) indicates the results for the control group. At 8 weeks after transplantation, the amount of new bone in the PRP group was significantly higher than that in the control group. It can also be seen that the PRP group absorbed) 3-TCP better.
  • Example 2 Before transplantation, blood was collected from two dogs weighing 15-17 kg, and treated in the same manner as in Example 1. PRP was separated and purified. Each blood sample (50 ml) resulted in approximately 5 ml of PRP each. The number of platelets in the PRP was counted in the same manner as in Example 2, and it was confirmed that the platelets were contained abundantly.
  • the iliac bone marrow fluid was collected from a dog iliac bone using a bone marrow puncture needle into a lOcc syringe (manufactured by Terumo Corporation) and injected into a centrifuge tube containing a heparin-containing basic medium.
  • the flask seeded with bone marrow fluid transferred into Inkyubeta were cultured under conditions of 5% C0 2, 37 ° C .
  • the medium was replaced 24 hours after seeding the bone marrow cells in order to remove the blood cells contained in the culture medium and select and adherent cells for culture. Thereafter, culturing was continued for about 7 days in the culture medium until the cells became subconfluent. During that time, medium exchange was performed once every three days.
  • the flask seeded with bone marrow fluid was transferred into Inkyube Isseki were cultured under conditions of 5% C0 2, 37.
  • the medium was replaced 24 hours after seeding the bone marrow cells in order to remove the blood cells contained in the culture medium and select and adherent cells for culture. Thereafter, culturing was continued for about 7 days until the cells became subconfluent in the culture solution. During that time, the medium was changed once every three days.
  • MSCGM, 50 U / ml penicillin G, and 50 pg / ml streptomycin manufactured by Poietics
  • the medium was removed from the flask, leaving a small amount of medium.
  • the cells were detached from the flask using Trypsin / EDTA.
  • the detached cells were transferred to a centrifuge tube (FALCON ECTON DICKINSON USA) together with the medium, and subjected to centrifugation (1500 rpm, 5 min). The supernatant was aspirated and the cell components were collected.
  • Example 6 The cell component recovered in Example 6 was suspended in a small amount of PRP to prepare a cell suspension. 3.5 ml of the PRP obtained in Example 5, 0.5 ml of a 10% calcium chloride solution, and topical bovine thrombin (0000 units of GEN-TRAC) were mixed in a syringe to form a PRP-cell-containing gel.
  • a gel prepared by mixing PRP, a 10% calcium chloride solution, and topical bovine thrombin was prepared as a control.
  • Example 5 The dog from which blood was collected in Example 5 was fixed on the stomach, and the surgical field was disinfected with a chlorhexidine dalconate swab. Then, extract the teeth one month beforehand A skin incision about 100 mm in length was made in the jaw, and the mucosa and periosteum were peeled off to expose the bone surface of the jawbone. Then, using a trephine pad, a jaw bone defect was created with a size of about 10 mm.
  • the bone regeneration ability of each group was histologically evaluated and compared by visually observing the transplanted part after a predetermined period.
  • transplanted parts were removed from dogs transplanted at (8-2).
  • the extract was fixed with a 10% phosphate buffered formalin solution and decalcified with a 10% aqueous formic acid solution. Thereafter, tissue-stained sections were prepared by embedding in paraffin, stained with hematoxylin and eosin, and observed under an optical microscope.
  • PCBM group autologous bone transplantation
  • Figure 11 shows the two weeks (2 W), four weeks (4 W), and eight weeks (8 W) after transplantation of the PCBM transplant. Two weeks after transplantation, it is observed that bone regeneration has already taken place. At the same time, absorption of the transplanted PCBM is also observed. Eight weeks after transplantation, good bone regeneration was obtained up to the margin of the defect (arrow E in the figure).
  • Fig. 12 shows the results of two weeks (2 W), four weeks (4 W), and eight weeks (8 W) after transplantation of the PRP-cell-containing gel transplant. It was observed that the amount of new bone (arrow F in the figure) increased over time after transplantation, and good bone regeneration was performed up to the margin of the defect (arrow G in the figure) at 8 weeks after transplantation. You can see it is being done. It is also observed that precise bone regeneration is being performed. Furthermore, abundant angiogenesis (arrow H in the figure) was observed, It can be seen that the formation of new bone is induced. The degree of bone regeneration at 4 weeks and 8 weeks after transplantation was similar to that of the PCBM group (Fig. 11).
  • Fig. 13 shows the state of the PRP gel transplantation site at 2 weeks (2 W), 4 weeks (4 W), and 8 weeks (8 W) after transplantation. After transplantation, bone regeneration is observed to occur gradually from the bottom of the defect (arrow I in the figure), but the degree of bone regeneration is low. Even at 8 weeks after transplantation, bone regeneration was not performed up to the defect margin (arrow J in the figure).
  • Fig. 14 shows the state of the defect left without transplantation at 2 weeks (2 W), 4 weeks (4 W), and 8 weeks (8 W).
  • the PRP gel group it is observed that osteogenesis occurs gradually from the bottom of the defect (arrow K in the figure).
  • the degree of bone regeneration is extremely low. Even after 8 weeks, almost no bone regeneration has occurred at the periphery of the defect, and fibrous cells are observed to be aggregated (arrow L in the figure).
  • the completed porous 3-TCP block has a three-dimensional porous structure in which all pores are continuous. It was made. Using this, a cylindrical block with a diameter of about 5 mm and a height of about 4 mm was manufactured, and the pore diameter was adjusted to 200 to 400 ⁇ and the porosity was adjusted to about 90%.
  • Bone marrow cells were collected from the femur of a 7-week-old male male rat.
  • the collected bone marrow cells were cultured in Minimum Essential Medium (MEM medium) supplemented with 15% fetal calf serum and antibiotics (penicillin 1000 U / ml, streptomycin 0.1 mg / ml, amphotericin B 0.25 ⁇ ig / ml).
  • MEM medium Minimum Essential Medium
  • antibiotics penicillin 1000 U / ml, streptomycin 0.1 mg / ml, amphotericin B 0.25 ⁇ ig / ml.
  • Primary culture was performed for one day. Culturing was carried out at 37 ° C, 5% C0 2 below. Thereafter, a cell suspension was prepared by trypsin-EDTA treatment, and the cell concentration was adjusted to 10 6 cells / ml.
  • a cell / ⁇ -TCP complex was prepared by immersing the ⁇ -TCP block in the above cell suspension.
  • Cells /) 3 -TCP complex the medium 10 ⁇ 8 ⁇
  • Dexamethasone Sigma Chemical Co., St Louis, USA Seo, lOmM ⁇ -glycerophosphate (Sigma Chemical Co. , St Louis, US)> 50 ⁇ g / ml VitaminC phosphate (L-ascoroic acid phosphate magnesium salt n _ hydrate> Sigma Chemical Co., St Louis, USA) were added thereto to carry out a 20-day subculture. in the culture, media exchange was performed three times a week, the In each case, 3) -glycerophosphate Dexamethasone and OitaminC phosphate were added to the culture solution.
  • Solution A consisting of a suspension of fibrinogen (80 mg) and fibrin stabilizing factor XIII (75 units) in 1 ml of plasmin inhibitor and aprotinin (1000 kIE / ml) (Kumamoto, Japan).
  • Example 12 Bone formation using a composition for transplantation (fibrinogen-1) 3-TCP-cell-containing composition
  • the bone regeneration ability was evaluated by histological observation of the transplanted part at 2, 4 and 8 weeks after transplantation.
  • the transplanted part was removed, fixed with 10% phosphate buffer formalin, and then decalcified with 10% formic acid aqueous solution. Thereafter, tissue staining sections were prepared by embedding in paraffin, stained with hematoxylin and eosin (H.E.), and observed under an optical microscope.
  • FIG. 15 is a photograph showing a directly observed transplantation site 8 weeks after transplantation. A white lump is observed at the transplant (arrow).
  • Fig. 16 shows the H.E.-stained tissue images at 2 weeks (2W), 4 weeks (4W), and 8 weeks (8W) after transplantation of the transplanted part.
  • Two weeks after transplantation osteoblast lining is seen (arrow), indicating that bone formation is taking place.
  • bone cells became visible (arrows), indicating that active bone formation was progressing.
  • Eight weeks after transplantation some lamellar structures are seen (arrows), and bone maturation can be observed.
  • FIG. 17 is a HE-stained tissue image of the control group at 8 weeks after transplantation.
  • Figure 1 As shown in Fig. 7, the control group showed only a slight bone formation 8 weeks after transplantation.
  • PRP was isolated and purified from rat peripheral blood in the same manner as in Example 1. From each blood sample (50 ml), about 5 m of PRP was finally obtained.
  • the iliac bone marrow fluid was collected from a human iliac bone using a bone marrow puncture needle into a lOcc syringe (manufactured by Terumo Corporation) and injected into a centrifugal tube containing a heparin-containing basic medium.
  • the flask inoculated with the bone marrow fluid was transferred into Incube overnight, and cultured under the conditions of 5% C02, 37.
  • the medium was replaced 24 hours after seeding the bone marrow cells in order to remove the blood cells contained in the culture medium and select and adherent cells for culture. Thereafter, culturing was continued for about 7 days in the culture solution until the cells became subconfluent. During that time, medium exchange was performed once every three days.
  • the flask seeded with bone marrow fluid was transferred into the Inkyubeta, under conditions of 5% C0 2, 37 ° C Cultured.
  • the medium was replaced 24 hours after seeding the bone marrow cells in order to remove the blood cells contained in the culture medium and select and adherent cells for culture. After that, the culture was continued for about 7 days in the culture solution until it became subconfluent. During that time, the medium was changed once every three days.
  • MSCGM, 50 U / ml penicillin G, and 50 g / ml streptomycin manufactured by Poietics
  • the medium was removed from the flask, leaving a small amount of medium.
  • the cells were detached from the flask using Trypsin / EDTA.
  • the detached cells were transferred to a centrifuge tube (FALCON ECTON DICKINSON USA) together with the medium, and subjected to a centrifugation treatment (1500 rpm, 5 min). The supernatant was aspirated and the cell components were collected.
  • Example 15 Preparation of transplantation composition (PRP-alginate-cell-containing composition)
  • the cell component recovered in Example 14 was suspended in a small amount of PRP to prepare a cell suspension.
  • About 0.15 ml of the obtained PRP was mixed in a syringe to form a composition for transplantation (PRP-arginine-cell-containing composition).
  • Example 16 Bone formation using a composition for transplantation (PRP-alginate-cell-containing composition)
  • composition for transplantation About 1.5 ml of the composition for transplantation was subcutaneously transplanted to the back of a 4-week-old KSN nude mouse. On the other hand, those to which an arginite was transplanted in place of the composition for transplantation were used as a control group.
  • FIG. 18 shows an H.E.-stained tissue image of 16 weeks after transplantation ((A) is a group transplanted with the composition for transplantation, (B) is a control group). In the group (A) into which the transplant composition was transplanted, new bone was observed (arrow), and it was confirmed that bone regeneration was performed.
  • the composition for forming bone or periodontal tissue of the present invention can repair and regenerate bone tissue or periodontal tissue. It can be applied to various fields required. For example, it can be applied to bone augmentation when implanting artificial dental roots in a ridge with high bone resorption. In addition, the present invention can be applied to regeneration of bone tissue at a bone defect caused by trauma or various bone diseases, and reinforcement or supplementation of bone. In addition, the present invention can be applied to regeneration of alveolar bone and periodontal tissue in a defective portion of alveolar bone due to periodontal disease or the like. As an application method, a bone-forming composition such as a gel or a paste is filled, injected, or applied to the application site.
  • a bone-forming composition such as a gel or a paste is filled, injected, or applied to the application site.
  • the composition for synthesizing bone or periodontal tissue of the present invention contains a large number of growth factors capable of promoting the proliferation or differentiation of cells of the osteogenic system. Therefore, the cells of the osteogenic system can be efficiently proliferated or differentiated at the application part (transplantation part), and the formation of bone tissue or periodontal tissue can be promoted.
  • the use of autologous PRP is considered to improve the quality and quantity of bone tissue or periodontal tissue regeneration by the above non-toxic and immunoinactive growth factors.
  • the first aspect of the present invention contains an inorganic bioabsorbable material serving as a scaffold for bone-forming cells, the growth of the bone-forming cells in the application portion is promoted, and appropriate plasticity is imparted. The form can be maintained.
  • the composition for forming bone or periodontal tissue of the present invention since it has a gel-like fluidity, it can be easily inserted into the application area using a syringe needle or the like (it is also possible to apply without opening the wound area). High versatility without the need for pre-molding. As described above, by using the composition for forming bone or periodontal tissue of the present invention, it is not necessary to collect autologous bone and subject it to transplantation, and it is possible to easily grow bone or periodontal tissue. Become.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biomedical Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Transplantation (AREA)
  • Epidemiology (AREA)
  • Dermatology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Botany (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Physical Education & Sports Medicine (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Vascular Medicine (AREA)
  • Cell Biology (AREA)
  • Urology & Nephrology (AREA)
  • Zoology (AREA)
  • Inorganic Chemistry (AREA)
  • Hematology (AREA)
  • Molecular Biology (AREA)
  • Rheumatology (AREA)
  • Materials For Medical Uses (AREA)

Abstract

Compositions for forming a bone or a periodontium being excellent in handling properties and safety whereby a defect in a bone or a periodontium can be effectively repaired and regenerated without collecting autologous bone. A gel composition is prepared by mixing PRP (platelet-rich plasma) with ß-TCP having an average grain size of 1 to 5 νm and then stirring the obtained mixture together with thrombin and a calcium chloride solution.

Description

骨又は歯周組織形成用組成物、 及び骨又は歯周組織形成用注射剤 Composition for forming bone or periodontal tissue, and injection for forming bone or periodontal tissue
技術分野 Technical field
本発明は、 骨組織又は歯周組織の修復、 再生に利用できる骨又は歯周組織形成 用組成物に関する。 明  The present invention relates to a composition for forming bone or periodontal tissue that can be used for repairing or regenerating bone or periodontal tissue. Light
田 背景技術  Field background technology
骨組織、 歯周組織の損傷、 欠損等を修復し又は再生することを目的とした様々 な手法の開発が行われている。 その一つとして、 Platelet-rich Plasma (P R P) を用いた手法が試みられている。 P R Pは、 血小板を多く含む血漿であり、 採取 した血液を所定の条件にて遠心することにより調製される(Dean H. Whitman et al.:J Oral Maxillofac Surg, 55, 1294- 1299 (1997))。 従来、 外科手術後の治癒促進 剤としてフイブリン糊 (Fiblin Glue) が広く使用されているが (Renato Saltz et al.:Plastic And Reconstructive Surgery,88,1005- 1015(1991))、 P R Pをフイブ リン糊の代替として使用することにより、 創傷部の治癒促進、 また骨移植等の効 果の向上等を図る研究が行われている (Dean H. Whitman et al.:J Oral Maxillofac Surg,55,1294"1299 (1997))。  Various techniques have been developed to repair or regenerate bone tissue and periodontal tissue damage and defects. As one of them, a method using Platelet-rich Plasma (PRP) has been attempted. PRP is a platelet-rich plasma and is prepared by centrifuging the collected blood under specified conditions (Dean H. Whitman et al .: J Oral Maxillofac Surg, 55, 1294-1299 (1997)) . Conventionally, fibrin glue (Fiblin Glue) has been widely used as a healing promoter after surgery (Renato Saltz et al .: Plastic And Reconstructive Surgery, 88, 1005-1015 (1991)). Studies have been conducted to promote the healing of wounds and to improve the effects of bone grafting, etc., by using it as an alternative to detoxification (Dean H. Whitman et al .: J Oral Maxillofac Surg, 55, 1294 ") 1299 (1997)).
P R Pの適用分野は広く、 例えば、 耳鼻咽喉科、 口腔外科、 顎顔面外科等の分 野において骨の再建等に応用されている (Eduardo Anitua:Int Oral Maxillofac Inplants, 14,529-535 (1999)、 Dean H. Whitman et al.:J Oral Maxillofac Surg,55,1294-1299 (1997))。 P R P には、 Platelet-derived Growth Factor (PDGF)、 Transforming growth factor β 1 (TGF- β 1 )、 Transforming growth factor β 2 (TGF— )3 2 ) 等の成長因子を豊富に含んでおり、 これらの 成長因子が複合的に作用することにより、 骨組織の再生等を促すものと考えられ ている (Marx RE. et al.: Oral Surg Oral Med Oral Pathol, 85, 638-646(1998))。 The field of application of PRP is wide, and it is applied to bone reconstruction in fields such as otolaryngology, oral surgery, and maxillofacial surgery (Eduardo Anitua: Int Oral Maxillofac Inplants, 14,529-535 (1999), Dean H. Whitman et al .: J Oral Maxillofac Surg, 55, 1294-1299 (1997)). PRP is rich in growth factors such as Platelet-derived Growth Factor (PDGF), Transforming growth factor β1 (TGF-β1), and Transforming growth factor β2 (TGF-) 32). It is thought that growth factors act in combination to promote bone tissue regeneration, etc. (Marx RE. Et al .: Oral Surg Oral Med Oral Pathol, 85, 638-646 (1998)).
PDGFに関していえば、 PDGFは約 30kDの分子量の糖タンパクであり、 創傷治 癒を促進させる効果を有することが確認されている。 PDGFは、 細胞の有糸分裂 の促進、 毛細血管の新生を促すことによる血行の改善、 或いは他の増殖因子の効 果を高めることによる繊維芽細胞、 骨芽細胞等の分化、 増殖の促進等を介して創 傷治癒を促進するものと考えられている。 As for PDGF, PDGF is a glycoprotein having a molecular weight of about 30 kD and has been confirmed to have an effect of promoting wound healing. PDGF promotes cell mitosis, improves blood circulation by promoting the formation of capillaries, or promotes differentiation and proliferation of fibroblasts, osteoblasts, etc. by enhancing the effects of other growth factors. Is thought to promote wound healing.
一方、 近年において、 歯槽堤萎縮症に対してインプラント治療が行われている が、 高度歯槽堤萎縮症例では骨移植が必要となる場合がある。 一例を示せば、 上 顎高度歯槽堤萎縮症例の治療には、 骨移植を伴う上顎洞底挙上術が行われる。 し かしながら、 上顎洞底挙上術の治癒期間が長期に渡るため、 インプラント治療の 治療期間を長期化しているのが現状である。 最近、 顎骨欠損に対する骨移植にお いて P R Pを用い、 これによりその治癒期間が短縮されたとの報告がなされ (Marx RE. et al. : Oral Surg Oral Med Oral Pathol,85, 638-646(1998)) ¾ ィン プラント治療においても P R Pを用いることの有用性が示されている。 発明の開示 On the other hand, in recent years, implant treatment has been performed for alveolar atrophy, but bone transplantation may be necessary in advanced alveolar atrophy cases. As an example, the treatment of maxillary alveolar ridge atrophy involves maxillary sinus floor elevation with bone grafting. However, since the healing period of maxillary sinus elevation is long, the current treatment period for implant treatment is prolonged. Recently, it has been reported that PRP was used in bone transplantation for jaw bone defects, and that this shortened the healing period (Marx RE. Et al .: Oral Surg Oral Med Oral Pathol, 85, 638-646 (1998)). ) ¾ are shown utility of using PRP even fin plant treatment. Disclosure of the invention
以上のように、 P R Pを用いた臨床的な研究がなされているものの、 臨床応用 が先行し、 基礎的研究による骨動態についての報告がないこともあって、 P R P の作用についての知見が十分でなく、 実際の臨床に応用できる骨叉は歯周組織の 再生方法の開発が切望されているのが現状である。 かかる再生方法には、 骨又は 歯周組織の再生効果が高いことは勿論のこと、 操作性及び安全性の高いことが要 求される。  As described above, although clinical research using PRP has been conducted, clinical application has preceded it, and basic research has not reported on bone kinetics. At present, there is an urgent need to develop a method for regenerating bone and periodontal tissues that can be applied to actual clinical practice. Such a regeneration method is required not only to have a high bone or periodontal tissue regeneration effect, but also to have high operability and safety.
そこで、 本発明は、 臨床に応用し得る新規な骨又は歯周組織の再生方法を提供 すべく、 当該方法に使用される骨又は歯周組織形成用組成物を提供することを目 的とする。 Therefore, the present invention aims at providing a composition for forming bone or periodontal tissue used in the method in order to provide a novel method for regenerating bone or periodontal tissue which can be applied to clinical practice. Target.
本発明者らは、 以上の課題に鑑み鋭意検討を行った。 第一に、 P R Pと無機系 生体吸収性材料とを組み合わせて移植材料を構成しこれを用いた骨再生の検討を 行ったところ、 適用箇所において適応部に存在する細胞に対する骨誘導能を増幅 させることができ、 高い骨再生効果が認められることを見出した。 また、 P R P に粒子状の無機系生体吸収性材料を含有することにより、 適度な可塑性ならびに 形態の保持を有することが容易になることも示唆された。  The present inventors have conducted intensive studies in view of the above problems. First, when a transplant material was constructed by combining PRP and an inorganic bioabsorbable material, and bone regeneration was examined using this material, the bone inducing ability for cells existing in the adaptation site at the application site was amplified. And a high bone regeneration effect was found. It was also suggested that inclusion of a particulate inorganic bioabsorbable material in PRP facilitates appropriate plasticity and shape retention.
一方、 P R Pと骨形成能を有する細胞とを混合しこれをゲル化したものを移植 材料として用いて骨再生を試みたところ、 良好な骨再生効果が認められた。 更に、 フイブリノ一ゲンと、 無機系生体吸収性材料と、 骨形成能を有する細胞 とを混和した移植材料を用いて骨再生を試みたところ、 高い骨再生効果が認めら れた。 また、 P R Pと、 アルギン酸塩 (アルジネート) と、 骨形成能を有する細 胞とを混和した移植材料を用いて骨形成を試みたところ、 良好な骨再生効果が認 められた。  On the other hand, when PRP and cells having osteogenic ability were mixed and gelled, and bone regeneration was attempted, a favorable bone regeneration effect was observed. Furthermore, when bone regeneration was attempted using a graft material in which fibrinogen, an inorganic bioabsorbable material, and cells having bone forming ability were mixed, a high bone regeneration effect was observed. In addition, when bone formation was attempted using a graft material obtained by mixing PRP, alginate (alginate), and cells capable of forming bone, a favorable bone regeneration effect was observed.
本発明は以上の検討の結果に基づくものであり、 次の構成からなる。 即ち、 本 発明の第 1の局面は、 P R Pと、 無機系生体吸収性材料とを含んでなり、 使用時 において流動性を有する骨又は歯周組織形成用組成物である。 また、 本発明の第 2の局面は、 P R Pと骨形成能を有する細胞とを含んでなり、 使用時において流 動性を有する骨又は歯周組織形成用組成物である。  The present invention is based on the results of the above study, and has the following configuration. That is, a first aspect of the present invention is a composition for forming a bone or periodontal tissue, which comprises PRP and an inorganic bioabsorbable material and has fluidity during use. Further, a second aspect of the present invention is a composition for forming a bone or periodontal tissue having fluidity at the time of use, comprising PRP and cells having an osteogenic ability.
更に本発明の他の局面は、 フイブリノ一ゲンと、 無機系生体吸収性材料と、 骨 形成能を有する細胞とを含んでなり、 使用時において流動性を有する骨又は歯周 組織形成用組成物である。 本発明の更なる他の局面は、 P R Pと、. アルギン酸塩 (アルジネート) と、 骨形成能を有する細胞とを含んでなり、 使用時において流 動性を有する骨又は歯周組織形成用組成物である。  Still another aspect of the present invention is a composition for forming a bone or periodontal tissue having fluidity during use, comprising fibrinogen, an inorganic bioabsorbable material, and cells having bone forming ability. It is. Still another aspect of the present invention is a composition for forming bone or periodontal tissue having fluidity during use, comprising PRP, alginate (alginate), and cells having bone forming ability. It is.
ここで、 骨又は歯周組織形成用組成物の流動性は、 使用時において注射容器を 用いて注入可能な流動性を有することが好ましい。 Here, the fluidity of the composition for forming bone or periodontal tissue depends on the injection container at the time of use. It is preferable to have fluidity that can be used by injection.
本発明の骨又は歯周組織形成用組成物は、 ゲル化材料をさらに含んで調製する ことができる。 ゲル化材料としてはトロンビン及び塩化カルシウムを用いること ができる。  The composition for forming bone or periodontal tissue of the present invention can be prepared further containing a gelling material. Thrombin and calcium chloride can be used as the gelling material.
本発明の骨又は歯周組織形成用組成物は、 一旦凍結状態にした後、 使用時に凍 結状態から解凍して使用することができる。  The composition for forming bone or periodontal tissue of the present invention can be used after being frozen once and then thawed from the frozen state at the time of use.
一方、 上記の骨又は歯周組織形成用組成物を注射容器に封入して骨又は歯周組 織形成用注射剤を構成することができる。  On the other hand, the composition for forming bone or periodontal tissue can be sealed in an injection container to form an injection for forming bone or periodontal tissue.
本発明における無機系生体吸収性材料としては、 ;3—リン酸三カルシウム、 α 一リン酸三カルシウム、 リン酸四カルシウム、 リン酸八カルシウム、 及び非結晶 質リン酸カルシウムからなる群から選択される一又は二以上の無機系生体吸収性 材料を用いることができる。 無機系生体吸収性材料としては、 平均粒子径が 0 . 5 m〜 5 0 / mのものを用いることができる。 また、 無機系生体吸収性材料の 含有量としては、 例えば、 3 0重量%〜 7 5重量%とすることができる。  The inorganic bioabsorbable material in the present invention includes one selected from the group consisting of: 3-tricalcium phosphate, α-tricalcium phosphate, tetracalcium phosphate, octacalcium phosphate, and amorphous calcium phosphate. Alternatively, two or more inorganic bioabsorbable materials can be used. As the inorganic bioabsorbable material, those having an average particle diameter of 0.5 m to 50 / m can be used. Further, the content of the inorganic bioabsorbable material can be, for example, 30% by weight to 75% by weight.
以上のような本発明の構成によれば、 骨形成系の細胞の増殖、 分化促進効果を 有する成長因子を豊富に含む P R Pを含有するため、 これらの成長因子により、 適用部位 (移植部) において効果的な骨組織又は歯周組織の再生が期待できる。 また、 使用時において流動性を有することにより、 骨又は歯周組織欠損部の形 状に合わせて予め成型する必要がないため汎用的であり、 また、 その取り扱いも 容易である。  According to the configuration of the present invention as described above, since PRP containing a growth factor rich in promoting proliferation and differentiation of osteogenic cells is contained, the growth site can be used at an application site (transplant site) by these growth factors. Effective regeneration of bone tissue or periodontal tissue can be expected. In addition, since it has fluidity at the time of use, it is versatile because it is not necessary to pre-mold it in accordance with the shape of the bone or periodontal tissue defect, and its handling is easy.
さらに、 自家の P R Pを用いれば毒性がなく、 しかも免疫非活性な成長因子を 適用することができその安全性は高い。  In addition, the use of autologous PRPs allows the application of non-toxic and immune-inactive growth factors, and their safety is high.
加えて、 無機系生体吸収性材料を併せて用いることにより、 これが適用部位に おける骨細胞等の足場となり、 骨組織等の再生をより促進させることができる。 また、 無機系生体吸収性材料は将来骨組織への置き換えが行われるものであって その安全性が高い。 In addition, by using the inorganic bioabsorbable material together, it becomes a scaffold for bone cells and the like at the application site, and can further promote regeneration of bone tissue and the like. In addition, inorganic bioabsorbable materials will be replaced by bone tissue in the future. Its safety is high.
^他方、 骨形成能を有する細胞を含むことにより、 それ自体による直接的な骨組 織の再生が期待できる。  ^ On the other hand, by including cells having osteogenic ability, direct regeneration of bone tissue by itself can be expected.
このように、 本発明の構成によれば、 自家骨を採取することなく、 骨又は歯周 組織欠損部の修復、 再生を効果的に行うことができ、 かつ操作性、 安全性の高い 骨又は歯周組織形成用組成物が提供される。 図面の簡単な説明  As described above, according to the configuration of the present invention, a bone or periodontal tissue defect can be effectively repaired and regenerated without collecting autologous bone, and bone or bone having high operability and safety can be obtained. A composition for periodontal tissue formation is provided. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 実施例 4における PRP群 (/3 -TCP含有 PRPゲルを移植した上顎洞 右側) の移植後 2週の結果の写真を示した図であり、 移植後 2週における移植部 の脱灰 H.E. (へマトキシリンェォジン) 染色組織像が示される。 )3 - TCPが移植 骨内に集積して充満しており、 その周囲を多数の骨芽細胞が取り囲んでいるのが 観察される。 また、 13 -TCP内にも骨芽細胞が観察される。 一部の |8 -TCPの周囲 には幼若な新生骨が認められる。  Fig. 1 shows a photograph of the results of the PRP group in Example 4 (right side of the maxillary sinus implanted with the PRP gel containing / 3-TCP) two weeks after transplantation. Gray HE (Hematoxylin Eosin) stained histology is shown. 3) It is observed that 3-TCP accumulates and fills the transplanted bone, and a large number of osteoblasts surround it. Osteoblasts are also observed in 13-TCP. Juvenile new bone is observed around some | 8-TCP.
図 2は、 実施例 4における PRP群 (/3 -TCP含有 PRPゲルを移植した上顎洞 右側) の移植後 4週の結果の写真を示した図であり、 移植後 4週における移植部 の脱灰 H.E. (へマトキシリンェォジン) 染色組織像が示される。 I3 -TCPは移植 後 2週に比べて減少している。 )3 -TCP の周囲を全周にわたって骨芽細胞が被包 しているのが観察される。 また、 3 -TCPの周囲には新生骨の形成が認められる。 新生骨周囲にも多数の骨芽細胞が存在しているのが観察される。 新生骨内にはセ メントラインが認められる。  FIG. 2 is a photograph showing the results of the 4 weeks after transplantation of the PRP group (the right side of the maxillary sinus transplanted with the PRP gel containing / 3-TCP) in Example 4; Gray HE (Hematoxylin Eosin) stained histology is shown. I3-TCP has decreased compared to 2 weeks after transplantation. ) It is observed that osteoblasts are encapsulated all around the 3-TCP. In addition, the formation of new bone is observed around 3-TCP. It is observed that many osteoblasts also exist around the new bone. There is a cement line in the new bone.
図 3は、 実施例 4におけるコントロール群 (I3 -TCP のみを移植した上顎洞左 側) の移植後 2週の結果の写真を示す図であり、 移植後 2週における移植部の脱 灰 H.E. (へマトキシリンェォジン) 染色組織像が示される。 )3 - TCPが四角形を 呈して移植骨内に存在しており、 J3 -TCPの周囲に骨芽細胞が認められる。また、 新生骨の形成がわずかに認められる。 FIG. 3 is a photograph showing the results of the control group in Example 4 (left side of the maxillary sinus to which only I3-TCP was transplanted) two weeks after transplantation. Hematoxylin eosin) The stained histology is shown. ) 3-TCP is present in the transplanted bone as a square, and osteoblasts are observed around J3-TCP. Also, Slight formation of new bone is observed.
図 4は、 実施例 4におけるコントロール群 (|8 -TCP のみを移植した上顎洞左 側) の移植後 4週の結果の写真を示す図であり、 移植後 4週における移植部の脱 灰 H.E. (へマトキシリンェォジン) 染色組織像が示される。 移植部には、 多くの /3 -TCP がブロック状に観察され、 その周囲には新生骨の形成が認められる。 新 生骨の骨梁内にはセメントラインが認められる。  FIG. 4 is a photograph showing the results of the control group in Example 4 (left side of the maxillary sinus transplanted with only | 8-TCP) 4 weeks after transplantation. (Hematoxylin eosin) The stained tissue image is shown. Many / 3 -TCPs are observed in blocks at the implant site, and new bone formation is observed around them. A cement line is found in the trabecular bone of the new bone.
図 5は、 実施例 4における PRP群 (/3 -TCP含有 PRPゲルを移植した上顎洞 右側) の移植後 8週の結果の写真を示す図であり、 移植後 8週における移植部の 脱灰 H.E. (へマトキシリンェォジン) 染色組織像が示される。 移植部及びその周 囲で骨量の増加が認められる。  Fig. 5 is a photograph showing the results of the PRP group in Example 4 (the right side of the maxillary sinus transplanted with the PRP gel containing / 3-TCP) 8 weeks after transplantation, and demineralization of the transplanted portion 8 weeks after transplantation. HE (hematoxylin eosin) stained histology is shown. Increased bone mass is seen at and around the implant.
図 6は、 図 5の一部を拡大 (16倍) した図である。 i3 - TCP含有 PRPゲル移植 部 (A ) に接するように新生骨 (B ) の形成が認められる。  Figure 6 is an enlarged (16x) view of a portion of Figure 5. The formation of new bone (B) is observed so as to be in contact with the i3-TCP-containing PRP gel implant (A).
図 7は、図 6と同様に図 5の一部を拡大(16倍) した図である。図 6と同様に、 3 -TCP含有 PRP移植部 (A ) に接するように新生骨 (B ) の形成が認められる。 図 8は、 実施例 4におけるコントロール群 ( -TCP のみを移植した上顎洞左 側) の移植後 8週の結果の写真を示す図であり、 移植後 8週における移植部の脱 灰 H.E. (へマトキシリンェ才ジン) 染色組織像が示される。 移植後 4週と比較し てほとんど骨量の増加は認められない。  Fig. 7 is an enlarged (16x) view of a part of Fig. 5, similar to Fig. 6. As in FIG. 6, formation of new bone (B) is observed so as to be in contact with the 3-TCP-containing PRP graft (A). FIG. 8 is a photograph showing the results of the control group in Example 4 (left side of the maxillary sinus transplanted with -TCP alone) at 8 weeks after transplantation. (Matoxylinje) A stained histological image is shown. There is almost no increase in bone mass compared to 4 weeks after transplantation.
図 9は、 図 8の一部を拡大 (16倍) した図である。 j3 -TCPゲル移植部 (a ) を繊維性結合組織 (c ) が取り囲んで存在する様子が観察される。 骨 (b ) は繊 維性結合組織 (c ) の外側に存在している。  Figure 9 is an enlarged (16x) view of part of Figure 8. It is observed that the fibrous connective tissue (c) surrounds the j3-TCP gel implant (a). Bone (b) is outside fibrous connective tissue (c).
図 1 0は、 実施例 4の結果をまとめたグラフ図であり、 移植部全体に対する骨 化した部分の割合 (%) が示される。 移植後 2週、 4週、 及ぴ 8週における新生 骨 (Newly formed bone) の量、 及び 3 -TCPの残存量が示される。 図中 (+ ) は PRP群、 (一) はコントロール群の結果である。 移植後 8週において、 PRP群に おける新生骨量がコントロール群に比較して有意に多いことが分る。 また、 PRP 群の方が 0 -TCPの吸収が良好に行われていることが認められる。 FIG. 10 is a graph summarizing the results of Example 4, and shows the ratio (%) of the ossified portion to the entire transplanted portion. The amounts of newly formed bone and the amount of 3-TCP remaining at 2, 4 and 8 weeks after transplantation are shown. In the figure, (+) indicates the results of the PRP group, and (1) indicates the results of the control group. 8 weeks after transplantation It can be seen that the amount of new bone in the test group is significantly higher than that in the control group. It is also observed that the PRP group absorbed 0-TCP better.
図 1 1は、実施例 8における PCBM移植部の移植後 2週( 2 W)、 4週( 4 W)、 及ぴ 8週 (8 W) の写真を示す図であり、 移植部の脱灰 H.E. (へマトキシリンェ ォジン) 染色組織像が示される。  FIG. 11 is a photograph showing two weeks (2 W), four weeks (4 W), and eight weeks (8 W) after transplantation of the PCBM transplanted part in Example 8, and demineralization of the transplanted part. HE (hematoxylin eosin) stained histology is shown.
図 1 2は、 実施例 8における PRP-細胞ゲル移植部の移植後 2週 (2 W)、 4週 ( 4 W)、 及び 8週 (8 W) の写真を示す図であり、 移植部の脱灰 H.E. (へマト キシリンェォジン) 染色組織像が示される。  FIG. 12 is a diagram showing photographs at two weeks (2 W), four weeks (4 W), and eight weeks (8 W) after the transplantation of the PRP-cell gel-transplanted part in Example 8. The decalcified HE (hematoxylin eosin) stained histology is shown.
図 1 3は、 実施例 8における PRPゲル移植部の移植後 2週 (2 W)、 4週 (4 W)、 及び.8週 ( 8 W) の結果の写真を示す図であり、 移植部の脱灰 H.E. (へマ トキシリンェォジン) 染色組織像が示される。  FIG. 13 is a diagram showing photographs of the results at 2 weeks (2 W), 4 weeks (4 W), and .8 weeks (8 W) after the transplantation of the PRP gel transplant portion in Example 8. The decalcified HE (hematoxylin eosin) stained histology is shown.
図 1 4は、 実施例 8における対照群の結果の写真を示す図である。 移植を行わ ずに放置した欠損部の 2週後 (2 W)、 4週後 (4 W)、 及び 8週後 (8 W) の写 真であり、 脱灰 H.E. (へマトキシリン · ェォジン) 染色組織像が示される。 図 1 5は、 移植用組成物 (フイブリノ一ゲン— j3 -TCP—細胞含有組成物) を移 植後 8週における移植部を直接観察した写真を示す図である。 移植部 (矢印) に 白い塊状物が観察される。  FIG. 14 is a view showing a photograph of the result of the control group in Example 8. Photographs at 2 weeks (2 W), 4 weeks (4 W), and 8 weeks (8 W) of the defect left untransplanted, with decalcified HE (hematoxylin and eosin) staining The histology is shown. FIG. 15 is a photograph showing a directly observed transplantation site 8 weeks after the transplantation of the transplantation composition (fibrinogen-j3-TCP-cell-containing composition). A white lump is observed at the transplant (arrow).
図 1 6は、 移植用組成物 (フイブリノ一ゲン— )3 -TCP—細胞含有組成物) を移 植後 2週 (2W)、 4週 (4W)、 8週 (8W)の H.E.染色組織像を示した図である。 移植 後 2週 (2W)では、 骨芽細胞によるライニングが見られ (矢印)、 骨形成が行われ つつあることが認められる。 移植後 4週 (4W)では、 骨細胞が見られるようになり (矢印)、 活発な骨形成が進行していることがわかる。 移植後 8週 (8W)では一部 に層板構造が見られ (矢印)、 骨の成熟が観察できる。  Fig. 16 shows the HE-stained tissue images at 2 weeks (2W), 4 weeks (4W), and 8 weeks (8W) after transplantation of the transplantation composition (fibrinogen-) 3-TCP-cell-containing composition. FIG. Two weeks after transplantation (2W), lining with osteoblasts is seen (arrow), indicating that bone formation is taking place. Four weeks after transplantation (4W), osteocytes became visible (arrows), indicating that active bone formation was progressing. At 8 weeks (8W) after transplantation, a partial laminar structure is seen (arrow), and bone maturation can be observed.
図 1 7は、 移植用組成物 (フイブリノ一ゲン— |3 -TCP—細胞含有組成物) に対 するコントロール群の移植後 8週における H.E.染色組織像を示す図である。若干 の骨形成が認められる。 FIG. 17 is a view showing an HE-stained tissue image of the control group with the transplantation composition (fibrinogen- | 3-TCP-cell-containing composition) at 8 weeks after transplantation. Slightly Bone formation is observed.
図 1 8 (A)は、 (PRP—アルジネート一細胞含有組成物) を移植後 1 6週におけ る移植部の H.E.染色組織像を示す図である。 図 1 8 (B)は、 コントロール群 (ァ ルジネートを移植)の移植後 1 6週における移植部の H.E.染色組織像を示す図で ある。 移植用組成物を移植した群 (A) では、 新生骨が観察され (矢印)、 骨の再 生が行われていることが認められる。 一方、 コントロール群 (B) では、 移植し たアルジネートが染色して観察されるが (矢印)、 新生骨の形成は認められない。 発明を実施するための最良の形態  FIG. 18 (A) is a diagram showing an H.E.-stained tissue image of the transplanted part 16 weeks after transplantation of (PRP-alginate-one-cell-containing composition). FIG. 18 (B) is a view showing an H.E.-stained tissue image of the transplanted portion 16 weeks after transplantation of the control group (transplanted with alginate). In the group (A) into which the composition for transplantation was transplanted, new bone was observed (arrow), and it was confirmed that bone regeneration was performed. On the other hand, in the control group (B), the transplanted alginate is observed by staining (arrow), but no new bone formation is observed. BEST MODE FOR CARRYING OUT THE INVENTION
P R Pとは、 Platelet-rich Plasmaのことをいい、 即ち血小板を豊富に含む血 漿である。 換言すれば、 血小板が濃縮された血漿のことをいう。 P R Pは、 例え ば、 Whitman ら の方法 ( Dean H. Whitman et al.:J Oral Maxillofac Surg, 55,1294-1299 (1997)) に準じて、 採取した血液を遠心分離処理に供するこ とにより調製することができる。 P R Pは、 Platelet-derived Growth Factor (PDGF)、 Transforming growth factor β 1 (TGF- β 1 )、 Transforming growth factor β 2 (TGF- β 2 ) 等の成長因子を豊富に含むことが知られてい る 、 darry J. Peterson:Oral surg Oral Med Oral Pathol Oral Radiol Endod, 85,638-646(1998))。  PRP refers to platelet-rich plasma, that is, a platelet-rich plasma. In other words, it refers to platelet-enriched plasma. PRP is prepared, for example, by subjecting collected blood to centrifugation according to the method of Whitman et al. (Dean H. Whitman et al .: J Oral Maxillofac Surg, 55, 1294-1299 (1997)). can do. PRP is known to be rich in growth factors such as Platelet-derived Growth Factor (PDGF), Transforming growth factor β1 (TGF-β1), and Transforming growth factor β2 (TGF-β2). darry J. Peterson: Oral surg Oral Med Oral Pathol Oral Radiol Endod, 85, 638-646 (1998)).
ここで、 P R Pの調製方法の一例を示せば、 まず、 採取した血液にクェン酸ナ トリウム等の凝固防止剤を添加し、 室温で所定時間放置する。 その後、 血球及び 軟膜が分離する条件(例えば約 5 , 400 r pm)で遠心処理する。 これにより、 2層 (上層は Platelet-poor Plasmaと呼ばれる。 下層には、 血球及び軟膜が含ま れる) に分離される。 上層を取り除いた後、 更に、 赤血球が分離される条件 (例 えば、 約 2 , 40 0 r pm) で遠心処理する。 その結果得られた赤血球を実質的 に含まない画分 (Platelet-rich Plasma: P R P ) を採取する。 P R Pの調製方 法は当該方法に限定されるものではなく、 必要に応じて修正を加えた方法により 調製することができる。 Here, an example of a method for preparing PRP is as follows. First, an anticoagulant such as sodium citrate is added to the collected blood and left at room temperature for a predetermined time. Thereafter, centrifugation is performed under conditions (for example, about 5,400 rpm) at which blood cells and buffy coat separate. This separates into two layers (the upper layer is called platelet-poor plasma; the lower layer contains blood cells and buffy coat). After removing the upper layer, centrifugation is further performed under conditions that allow red blood cells to be separated (for example, about 2,400 rpm). The resulting fraction substantially free of red blood cells (Platelet-rich Plasma: PRP) is collected. How to prepare PRP The method is not limited to this method, and can be prepared by a method modified as necessary.
P R Pに含まれる血小板の量についての一般的な定義はないが、 採取した血液 に比較して約 5倍〜約 2 0倍の血小板を含有する血漿を本発明における P R Pと して用いることができる。 尚、 その調製が可能であり、 かつ調製に際して非現実 的な負担のない限りにおいて、 血小板の含有量ができるだけ豊富なものを用いる ことが好ましい。  There is no general definition of the amount of platelets contained in PRP, but plasma containing about 5 to about 20 times platelets compared to the collected blood can be used as PRP in the present invention. . In addition, as long as the preparation is possible and there is no unreasonable burden in the preparation, it is preferable to use a platelet having as large a content of platelets as possible.
好ましくは、 自己血の P R Pを用いる。 これにより、 毒性ないし免疫拒絶反応 の恐れがなくなる。  Preferably, autologous PRP is used. This eliminates the risk of toxicity or immune rejection.
P R Pは血小板、 TGF— i3 1、 TGF - β 2等の成長因子 (Growth Factor)、 及 ぴフイブリノ一ゲンを豊富に含む。 そこで、 血小板、 TGF— i3 1等の成長因子、 及びフィブリノ一ゲンをそれぞれ用意し、 これらを混合したものを本発明におけ る P R Pとして用いることもできる。 血小板、 各種の成長因子、 及びフイブリノ 一ゲンは公知の方法により調製したもの、又は市販のものを用いることができる。 一方、 P R Pは特に血小板を豊富に含み、 フイブリノ一ゲンの含有量も多いこ とから、 P R Pに代えて、 血小板、 フイブリノ一ゲン、 又は血小板及びフィプリ ノ一ゲンを用いて骨又は歯周組織形成用組成物を構成した場合においても骨再生 効果が得られるものと予測される。 このことから、 P R Pの代わりに、 血小板、 フイブリノ一ゲン、 又は血小板及びフィプリノーゲンを用いて本発明の骨又は齒 周組織形成用組成物を構成することも可能である。 また、 ここでのフイブリノ一 ゲンの代わりにフイブリンを用いることもできる。 即ち、 例えば P R Pの代わり にフイブリン糊を含有させて本発明の組成物を構成できる。  PRP is rich in platelet, growth factors such as TGF-i31, TGF-β2, and fibrinogen. Therefore, platelets, a growth factor such as TGF-i31, and fibrinogen can be prepared, and a mixture thereof can be used as the PRP in the present invention. Platelets, various growth factors, and fibrinogen can be prepared by a known method or commercially available. On the other hand, PRP is particularly rich in platelets and has a high fibrinogen content.Therefore, instead of PRP, platelets, fibrinogen, or platelets and fibrinogen are used to form bone or periodontal tissue. It is expected that a bone regenerating effect can be obtained even when the composition for use is constituted. From this, it is possible to construct the bone or periodontal tissue forming composition of the present invention by using platelets, fibrinogen, or platelets and fiprinogen instead of PRP. In addition, fibrin can be used instead of fibrinogen here. That is, for example, the composition of the present invention can be constituted by containing fibrin glue instead of PRP.
本発明組成物の使用時における流動性の程度は特に限定されず、 ゲル状、 スラ リー状、 ペースト状、 粘土状、 高粘度流動体状等とすることができる。 好ましく は、 ゲル状又はペースト状である。 ゲル状又はペースト状とすることにより、 可 塑性に優れた骨又は歯周組織形成用組成物となる。 したがって、 予め適用部の形 状に成型することなく適用できる。即ち、適用部への適用が容易に行える。また、 適用部において定着性の良い骨又は歯周組織形成用組成物となる。 The degree of fluidity during use of the composition of the present invention is not particularly limited, and may be a gel, a slurry, a paste, a clay, a high-viscosity fluid, or the like. Preferably, it is in the form of a gel or a paste. Possible by gel or paste A composition for forming bone or periodontal tissue having excellent plasticity is obtained. Therefore, it can be applied without being previously formed into the shape of the application portion. That is, application to the application section can be easily performed. In addition, a composition for forming a bone or a periodontal tissue having a good fixation property in an application portion is obtained.
また、 使用時において注射容器を用いて注入可能な程度の流動性であることが 好ましい。 かかる流動性とすることにより、 適用部への適用が一層容易となる。 尚、 適用部に応じて所望の流動性とすることができる。 例えば、 骨膜下に注入 する場合には、 より流動性を有する状態 (粘度の低い状態) にすることが好まし い。  Further, it is preferable that the fluidity is such that it can be injected using an injection container at the time of use. With such fluidity, application to the application section becomes even easier. In addition, desired fluidity can be obtained depending on the application section. For example, when injecting under the periosteum, it is preferable to make the liquid more fluid (a state having a lower viscosity).
本発明の組成物は、 少なくとも使用時において流動性を有しておればよく、 使 用前においては粉状ないし固形状であっても良い。 したがって、 凍結した状態を もって本発明の組成物とすることができる。 また、 凍結乾燥した状態をもって本 発明の組成物とすることもできる。 使用前において凍結状態又は凍結乾燥状態と することにより長期の保存が可能となり、また、使用前の取り扱いも容易となる。 さらには、 凍結処理又は凍結乾燥処理により抗原性の低下が期待できるため、 自 家の P R Pではなく同種の他家の P R Pを用いた場合の安全性が向上される。 本発明における無機系生体吸収性材料の種類は特に限定されないが、 ーリン 酸三カルシウム (以下、 「 — T C P Jという)、 α—リン酸三カルシウム (以下、 「α— T C P Jという)、 リン酸四カルシウム、 リン酸八カルシウム、 及ぴ非結晶質 リン酸カルシウムからなる群から選択される材料を用いることができる。 これら の材料は単独で用いることができることはもちろんのこと、 任意に選択した 2種 以上を組み合わせて用いても良い。 好ましくは、 i3— T C Ρ又は α— T C Ρのい ずれか、 又はこれらを任意の割合で組み合わせて用いる。 さらに好ましくは )3— T C Pを無機系生体吸収性材料として用いる。  The composition of the present invention only needs to have fluidity at least at the time of use, and may be in the form of powder or solid before use. Therefore, the composition of the present invention can be in a frozen state. Further, the composition of the present invention can be used in a lyophilized state. By making the frozen or lyophilized state before use, long-term storage becomes possible, and handling before use becomes easy. Furthermore, since the antigenicity can be expected to be reduced by the freeze treatment or the freeze-drying treatment, the safety when using the same kind of PRP instead of the own PRP is improved. Although the kind of the inorganic bioabsorbable material in the present invention is not particularly limited, tricalcium phosphate (hereinafter, referred to as “—TCPJ”), α-tricalcium phosphate (hereinafter, referred to as “α-TCPJ”), tetracalcium phosphate A material selected from the group consisting of octacalcium phosphate, and amorphous calcium phosphate can be used, and these materials can be used alone, or a combination of two or more arbitrarily selected materials can be used. Preferably, either i3-TCΡ or α-TCΡ, or a combination of these in any proportion is used. More preferably,) 3-TCP is used as the inorganic bioabsorbable material. .
無機系生体吸収性材料は公知の方法により得ることができる。 また、 市販され る無機系生体吸収性材料を用いることもできる。 jS— T C Pとしては、 例えば、 オリンパス光学工業株式会社製のものを利用できる。 The inorganic bioabsorbable material can be obtained by a known method. In addition, commercially available inorganic bioabsorbable materials can also be used. jS—For TCP, for example, Olympus Optical Industrial Co., Ltd. can be used.
無機系生体吸収性材料は、 本発明の骨又は歯周組織形成用組成物 (以下、 「本発 明組成物」という)が使用時において流動性となるような粒子径を有する粉末状で あることが好ましい。 - 粉末状の無機系生体吸収性材料は、 適当な大きさに加工された無機系生体吸収 性材料を、 所望の粒子径となるまで破砕、 粉砕することにより調製することがで きる。 無機系生体吸収性材料の平均粒子径を、 0 . 5 !〜 5 0 / mとすること が好ましい。 さらに好ましくは、 平均粒子径 0 . 5 ;ti m~ 1 0 / mの無機系生体 吸収性材料を用いる。 さらにさらに好ましくは、 平均粒子径 1 t π!〜 5 // mの無 機系生体吸収性材料を用いる。 粒子径の異なる複数種類の無機系生体吸収性材料 を組み合わせて用いることも可能である。  The inorganic bioabsorbable material is in the form of powder having a particle size such that the composition for forming bone or periodontal tissue of the present invention (hereinafter, referred to as “the present invention composition”) becomes fluid when used. Is preferred. -The powdered inorganic bioabsorbable material can be prepared by crushing and pulverizing an inorganic bioabsorbable material processed into an appropriate size to a desired particle size. The average particle size of the inorganic bioabsorbable material is 0.5! It is preferably set to 50 / m. More preferably, an inorganic bioabsorbable material having an average particle diameter of 0.5; tim to 10 / m is used. Still more preferably, the average particle diameter is 1 t π! Use an inorganic bioabsorbable material of ~ 5 // m. It is also possible to use a combination of a plurality of types of inorganic bioabsorbable materials having different particle diameters.
無機系生体吸収性材料は本発明組成物全体に対して 3 0重量%〜7 5重量%含 有することが好ましい。  The inorganic bioabsorbable material preferably contains 30% by weight to 75% by weight based on the whole composition of the present invention.
尚、 本発明組成物の流動性は、 無機系生体吸収性材料の粒子径、 及び含有率で 調整することができ、 両者を適宜調整することにより所望の流動性を得ることが できる。 また、 後述のゲル化材料、 及び又は増粘剤を添加する場合には、 これら の添加量によっても流動性の調整を行うことができる。  The fluidity of the composition of the present invention can be adjusted by the particle size and content of the inorganic bioabsorbable material, and a desired fluidity can be obtained by appropriately adjusting both. In addition, when a gelling material and / or a thickener described below are added, the fluidity can be adjusted also by the amount of these added.
ゲル化材料をさらに含有させて本発明組成物を構成することもできる。例えば、 トロンビンと塩化カルシウムを添加して本発明組成物を構成することができる。 これらを添加することにより、 トロンビンが P R P中のフイブリノ一ゲンに作用 しフイブリンが生ずる。 そして、 フイブリンの凝集作用により粘性が増加する。 ゲル化剤の種類は特に限定されず、 上記のように P R P中の成分に作用して粘性 を増加させるもの、 又はそれ自身により増粘効果を奏するものを適宜選択して用 いることができる。  The composition of the present invention may further comprise a gelling material. For example, the composition of the present invention can be constituted by adding thrombin and calcium chloride. By adding them, thrombin acts on fibrinogen in PRP to generate fibrin. Then, the viscosity increases due to the aggregation action of fibrin. The type of the gelling agent is not particularly limited, and those which act on the components in the PRP to increase the viscosity as described above or those which exert a thickening effect by themselves can be appropriately selected and used.
また、 上記のゲル化材料に加えて、 適用後 (移植後) に作用して本発明組成物 9800 In addition to the above gelled material, the composition of the present invention acts after application (after transplantation) 9800
12 の流動性 (粘度) を変化させる第 2のゲル化材料を併用することもできる。 この ような構成とすれば、使用時には適度な流動性を有するために移植が容易であり、 かつ、 適用後にはより粘度が増すことにより適用部位における定着性が向上し、 骨又は歯周組織の修復又は再生を効果的に行うことができる。 また、 予め適用部 位の形状に成型する必要がなく、 汎用性が高い。 A second gelling material that changes the fluidity (viscosity) of No. 12 can also be used in combination. With such a configuration, transplantation is easy because of appropriate fluidity at the time of use, and fixation at the application site is improved by increasing the viscosity after application, and bone or periodontal tissue Repair or regeneration can be performed effectively. In addition, there is no need to pre-mold into the shape of the application part, so versatility is high.
ゲル化材料は、生体親和性が高いものを用いることが好ましく、上記の例の他、 コラーゲン又はフィプリン糊等を用いることができる。 コラーゲンとしては種々 のものを選択して用いることができるが、 本発明組成物の適用目的 (適用組織) に適したものを採用することが好ましい。 骨組織の再生を目的とする場合には、 例えば、 I 型コラ一ゲンを用いることができる。 用いるコラーゲンは可溶性 (酸 可溶性コラーゲン、 アルカリ可溶性コラーゲン、 酵素可溶性コラーゲン等) であ ることが好ましい。  As the gelling material, a material having high biocompatibility is preferably used. In addition to the above-mentioned examples, collagen or fipurin glue can be used. Although various collagens can be selected and used, it is preferable to use collagen suitable for the application purpose (application tissue) of the composition of the present invention. For the purpose of regenerating bone tissue, for example, type I collagen can be used. The collagen used is preferably soluble (acid-soluble collagen, alkali-soluble collagen, enzyme-soluble collagen, etc.).
増粘剤を添加することにより、本発明組成物の流動性を調整することもできる。 増粘剤としては、 アルギン酸ナトリウム等の増粘多糖類、 グリセリン、 ワセリン 等を用いることができるが、 安全性及び Z又は骨形成能の観点から、 生体親和性 が高く、 かつ生体吸収性又は生体分解性のものを用いることが好ましい。 グリセ リン等を添加することにより、 凍害防止の効果も得られる。  The flowability of the composition of the present invention can be adjusted by adding a thickener. As the thickening agent, thickening polysaccharides such as sodium alginate, glycerin, petrolatum, etc. can be used.However, from the viewpoint of safety and Z or bone formation ability, it has high biocompatibility and is bioabsorbable or bioabsorbable. It is preferable to use a decomposable material. By adding glycerin and the like, the effect of preventing frost damage can be obtained.
例えば、 アルギン酸塩 (アルジネ一ト〉 を採用することにより、 アルギン酸塩 と、 骨形成能を有する細胞と、 P R Pとを含有させてなる組成物を構成すること ができる。 この組合せによる組成物を用いることにより、 良好な骨再生効果が認 められる (後述の実施例を参照)。  For example, by employing alginate (alginate), it is possible to constitute a composition containing alginate, cells having bone forming ability, and PRP. As a result, a good bone regeneration effect is observed (see Examples below).
本発明組成物は、 水系の溶媒を含むものであってもよい。 即ち、 本発明の第 1 の局面では、 水系の溶媒中において少なくとも P R Pと無機系生体吸収性材料と が混合されて構成されるものであってもよい。 本発明の第 2の局面においては、 水系の溶媒中において少なくとも P R Pと骨形成能を有する細胞とが混合されて 構成されるものであってもよい。 水系の溶媒としては、 滅菌水、 生理食塩水、 リ ン酸塩溶液等の緩衝液等を用いることができる。 The composition of the present invention may contain an aqueous solvent. That is, in the first aspect of the present invention, at least PRP and an inorganic bioabsorbable material may be mixed in an aqueous solvent. In the second aspect of the present invention, at least PRP and cells having osteogenic ability are mixed in an aqueous solvent. It may be configured. As the aqueous solvent, sterile water, physiological saline, a buffer solution such as a phosphate solution and the like can be used.
本発明組成物は、 上記の成分の他、 安定化剤、 保存剤、 p H調整剤等を含んで いても良い。 また、 成長因子、 特に骨誘導因子 (B M P ) を含有させることもで きる。  The composition of the present invention may contain, in addition to the above components, a stabilizer, a preservative, a pH adjuster, and the like. It can also contain growth factors, especially osteoinductive factors (BMP).
骨形成能を有する細胞とは骨組織を形成し得る細胞をいい、 骨芽細胞、 前骨芽 細胞、 骨系細胞への分化能を獲得した間葉系幹細胞等が含まる。 これらの細胞を 任意に組み合わせて用いてもよい。 好まし: は、 骨形成能を有する細胞として、 骨系細胞への分化能を獲得した細胞を用いる。 ここで、 「骨系細胞への分化能を獲 得した Jとは、未分化の状態であったものが骨系細胞へ分化すべく方向づけられた 状態をいう。  The cells having osteogenic ability refer to cells capable of forming bone tissue, and include osteoblasts, preosteoblasts, mesenchymal stem cells that have acquired the ability to differentiate into osteogenic cells, and the like. These cells may be used in any combination. Preferred: Uses cells that have acquired the ability to differentiate into osteogenic cells as the cells having the ability to form bone. Here, “J that has acquired the ability to differentiate into bone cells refers to a state in which an undifferentiated state has been oriented to differentiate into bone cells.
骨系細胞への分化能を獲得した間葉系幹細胞として、 自家細胞に限らず、 同種 由来の他家細胞を用いることができる。 特に、 人の間葉系幹細胞由来の細胞を用 いることができる。  As the mesenchymal stem cells that have acquired the ability to differentiate into bone cells, not only autologous cells but also allogeneic allogeneic cells can be used. In particular, cells derived from human mesenchymal stem cells can be used.
骨系細胞への分化能を獲得した間葉系幹細胞 (以下、 「骨系分化能獲得細胞」と いう) は、 未分化の間葉系幹細胞 (Mesenchymal Stem Cells:MSCs) を骨系細 胞への分化を誘導する条件下で培養することにより調製することができる。 例え ば、 β -グリセロリン酸( β -glycerophosphate) デキサメタゾン(Dexamethason)、 L -ァスコルビン酸 (L-ascorbic acid) を含む培地で未分化の間葉系細胞を培養す ることにより、 骨系細胞への分化を誘導することができる。 もちろん、 培養条件 はこれに限定されるものではなく、 骨系細胞への分化を誘導する条件として公知 のものを採用することができる。  Mesenchymal stem cells that have acquired the ability to differentiate into bone cells (hereinafter referred to as “osteoblast-acquiring cells”) convert undifferentiated mesenchymal stem cells (MSCs) into bone cells. Can be prepared by culturing the cells under conditions that induce differentiation. For example, by culturing undifferentiated mesenchymal cells in a medium containing β-glycerophosphate (Dexamethason) and L-ascorbic acid (L-ascorbic acid), Differentiation can be induced. Of course, the culture conditions are not limited to those described above, and known conditions for inducing differentiation into bone cells can be employed.
未分化の間葉系幹細胞源としては、 骨髄、 骨膜、 歯髄、 さい帯血を挙げること ができる。 これらを常法に従い採取した後、 未分化の間葉系細胞を接着性の有無 により選択する。 即ち、 骨髄等に含まれる細胞の中で接着性を有するものを選択 することにより、 未分化の間葉系幹細胞が得られる。 Sources of undifferentiated mesenchymal stem cells include bone marrow, periosteum, pulp, and cord blood. After collecting them according to a conventional method, undifferentiated mesenchymal cells are selected based on the presence or absence of adhesiveness. In other words, select cells that have adhesive properties from cells contained in bone marrow, etc. As a result, undifferentiated mesenchymal stem cells can be obtained.
骨系分化能獲得細胞を含有させる場合に、 該細胞の細胞外基質をも加えて本発 明組成物を構成することができる。 本発明組成物を適用した部位において、 細胞 外基質が骨分化能獲得細胞の足場となることが期待され、 適用部位において骨分 化能獲得細胞が定着し易くなると考えられるからである。 また、 適用部位周囲に 存在する骨系細胞の足場ともなり、 高い骨誘導能が期待できるからである。 さら に、 細胞外基質に含まれる B M P等の因子が本願組成物に含有される骨系分化能 獲得細胞自体、 及び適用部周囲の骨系細胞ないしは骨系細胞への分化能を備えた 幹細胞の成長、 増殖、 分化を促進することが期待できるからである。 ここでの細 胞外基質とは、 骨系分化能獲得細胞を取り巻いて存在する基質 (マトリックス) である。  When the cells having bone differentiation potential are included, the present invention composition can be constituted by adding the extracellular matrix of the cells. This is because the extracellular matrix is expected to serve as a scaffold for the cells having the ability to acquire bone differentiation at the site to which the composition of the present invention is applied, and it is considered that the cells having the ability to acquire bone differentiation can be easily fixed at the site to which the composition is applied. In addition, it also serves as a scaffold for bone cells existing around the application site, so that high bone inducing ability can be expected. In addition, BMPs and other factors contained in the extracellular matrix are included in the composition of the present invention, and the cells having the ability to differentiate into osteogenic cells themselves, and the bone cells around the application site or stem cells having the ability to differentiate into osteogenic cells. It is expected to promote growth, proliferation and differentiation. Here, the extracellular matrix is a matrix (matrix) that surrounds the cells having the osteogenic potential.
自家細胞の細胞外基質に限らず、 同種の他家細胞の細胞外基質を用いることも できる。 かかる細胞外基質に含まれる B M P等が同種であるため、 他家細胞を用 いた場合においても同様の効果が期待できるからである。 このように、 自家細胞 の細胞外基質のみならず同種細胞の細胞外基質をも用いることができることは、 骨系分化能獲得細胞の細胞外基質の調製を容易とするものである。  Not only the extracellular matrix of autologous cells but also the extracellular matrix of allogeneic cells of the same type can be used. This is because BMPs and the like contained in such extracellular matrix are of the same species, so that the same effect can be expected even when allogeneic cells are used. As described above, the fact that not only the extracellular matrix of autologous cells but also the extracellular matrix of allogeneic cells can be used facilitates the preparation of the extracellular matrix of cells having the osteogenic differentiation potential.
細胞外基質を加える場合には、 同時に加えられる骨系分化能獲得細胞は生細胞 でなくても良い。 このことは骨系分化能獲得細胞を生細胞の状態で取り扱わなく ても良いことを意味し、 取り扱いの観点から望ましいものといえる。 例えば、 骨 系分化能獲得細胞を得た後、 凍結乾燥処理等をしたものを用意し、 これを骨系分 化能獲得細胞及びその細胞外基質として用いることができる。  When the extracellular matrix is added, the cells with the ability to acquire bone differentiation potential added simultaneously may not be living cells. This means that it is not necessary to treat the cells with the ability to acquire bone differentiation potential in the state of living cells, which is desirable from the viewpoint of handling. For example, after obtaining cells having bone differentiation potential, those obtained by freeze-drying or the like are prepared, and these can be used as cells having bone differentiation potential and their extracellular matrix.
本発明の組成物における骨系分化能獲得細胞の含有量は、 組成物 l m l 中に 1 X 1 0 5個以上の細胞が存在することが好ましく、 さらに好ましくは 1 X 1 0 6〜 1 X 1 0 7個の細胞が存在することが好ましい。 かかる細胞含有量とすることに より、 効果的に骨形成を誘導できるからである。 本発明の第 1の局面においても、 上記骨形成能を有する細胞を含有させて骨又 は歯周組織形成用組成物を構成することができる。 この場合には、 骨系分化能獲 得細胞の細胞外基質(細胞外マトリックス)をも加えて組成物を構成してもよい。 本発明の組成物は上記の各成分を混合することにより調製される。 本発明の第 1の局面として、 P R P、 )3 - T C P (無機系生体吸収性材料)、 及びトロンビン 及び塩化カルシウム (ゲル化材料) を混合してゲル状の組成物を調製する場合の 調製方法の一例を示す。 まず、 P R Pを上記の方法により調製し、 これへ /3— T C Pを添加して混合する。 その後、 塩化カルシウム溶液とトロンビンとの混合液 を加え、 シリンジ内で空気とともによく攪拌する。 The content of the bone based differentiation capacitation cells in the compositions of the present invention, the composition is preferably be 1 X 1 0 5 or more cells are present in lml, more preferably 1 X 1 0 6 ~ 1 X 1 it is preferable that 0 7 cells are present. This is because by setting such a cell content, bone formation can be effectively induced. Also in the first aspect of the present invention, a composition for forming bone or periodontal tissue can be constituted by containing the above-mentioned cells having bone forming ability. In this case, the composition may be constituted by adding the extracellular matrix (extracellular matrix) of the cells having the ability to obtain bone differentiation. The composition of the present invention is prepared by mixing the above components. As a first aspect of the present invention, a method for preparing a gel composition by mixing PRP,) 3-TCP (inorganic bioabsorbable material), and thrombin and calcium chloride (gelling material) An example is shown below. First, PRP is prepared by the method described above, and / 3-TCP is added thereto and mixed. Then, add a mixture of calcium chloride solution and thrombin, and stir well with air in the syringe.
本発明の組成物を凍結した状態又は凍結乾燥した状態として調製した場合には, 使用時に所望の流動性を有する状態にする。 凍結状態の場合には、 解凍すること により凍結前の状態に戻される。 このとき、 生理食塩水等を加えて所望の流動性 に調整することもできる。 他方、 凍結乾燥状態の場合には、 生理食塩水等の溶媒 を加えることにより凍結乾燥処理前の流動性又は所望の流動性を有する状態にす る。  When the composition of the present invention is prepared in a frozen state or a lyophilized state, the composition has a desired fluidity when used. In the case of a frozen state, it is returned to the state before freezing by thawing. At this time, a desired fluidity can be adjusted by adding physiological saline or the like. On the other hand, in the case of a freeze-dried state, a solvent such as physiological saline is added to obtain a fluidity before the freeze-drying treatment or a state having a desired fluidity.
本発明の組成物を注射容器に封入することにより骨又は齒周組織形成用注射剤 (以下、 「本願注射剤」という) とすることができる。 例えば、 流動性を有する状 態で調製した本願組成物を注射容器に封入し、 その後凍結又は凍結乾燥させて本 願注射剤とする。このような注射剤とすることにより取り扱いが一層容易となる。 すなわち、 適用時に従来のごとく皮膚又は粘膜に切開を加えることなく経皮的又 は経粘膜的に本願注射剤を注入することで所望の効果を期待できる。 このような 本願注射剤は、 その中に封入される骨又は歯周組織形成用組成物を上記同様に所 望の流動性を有する状態にした後、 使用されるものである。 注射容器の種類は特 に限定されず、 例えば市販の注射器を用いることができる。  By enclosing the composition of the present invention in an injection container, an injection for bone or periodontal tissue formation (hereinafter referred to as “the injection of the present application”) can be obtained. For example, the composition of the present invention prepared in a fluid state is sealed in an injection container, and then frozen or freeze-dried to obtain the injection of the present invention. By using such an injection, handling becomes easier. That is, a desired effect can be expected by injecting the present injection transdermally or transmucosally without making an incision in the skin or mucous membrane as in the prior art at the time of application. Such an injection of the present invention is used after the bone or periodontal tissue forming composition enclosed therein is brought into a state having desired fluidity similarly to the above. The type of injection container is not particularly limited, and for example, a commercially available syringe can be used.
以下、 本発明の第 1の局面における実施例を説明する。 [実施例 1 ] PRPの採取 Hereinafter, examples according to the first aspect of the present invention will be described. [Example 1] Collection of PRP
( 1— 1 ) ゥサギからの血液採取  (1-1) Blood collection from egret
体重 3.1— 3.3kgの日本白色ゥサギ 2 4匹の耳介静脈からペントバルビタールを 投与して全身麻酔を行った後、 耳介から 9 ml の血液を 20cc の滅菌シリンジ (テ ルモ株式会社製) により採取した。 次に、 3.8 %クェン酸ナトリウム溶液 0.5mlを 真空採血管 (4.5cc、 テルモ株式会社製) 2本にそれぞれ入れた後、 採取した血液 9mlを 4.5mlずつに分けて注入し、 室温にて保存した。 このようにして、 各ゥサギ についての血液サンプルを得た。  After giving general anesthesia by administering pentobarbital from the pinna vein of four of the four Japanese white herons weighing 3.1-3.3 kg, 9 ml of blood was injected through the pinna with a 20 cc sterile syringe (manufactured by Terumo Corporation). Collected. Next, 0.5 ml of a 3.8% sodium citrate solution was placed in each of two vacuum blood collection tubes (4.5 cc, manufactured by Terumo Corporation), and 9 ml of the collected blood was divided into 4.5 ml and injected, and stored at room temperature. did. In this way, a blood sample was obtained for each egret.
( 1 - 2 ) PRPの分離  (1-2) Separation of PRP
保存した各血液サンプルを 10mlの遠沈管に移し、遠心分離器を用いて 5,400rpm で 5分間の遠心分離を行った。 遠心分離された血液は、 密度の違いにより三つの 層に分かれた。 上層から順に、 Platelet- poor Plasma (無血小板血漿、 PPP)、 Platelet-rich Prasma (PRP)、 赤血球の 3層である。 最上層の PPP (約 5.5ml) をマ イク口ピペッ トを用いて除去した。 次に、 PPP以外の残り (約 3.5ml) の血液成分 に対して遠心分離器を用いて 2,400rpmで 5分間の遠心分離を行った。この操作に より、 赤血球と PRPが分離された。 上層が P R Pであり、 これをマイクロピぺッ トを用いて採取した。 各血液サンプル (9ml) から最終的にそれぞれ約 0.35ml の PRPが採取された。  Each preserved blood sample was transferred to a 10 ml centrifuge tube, and centrifuged at 5,400 rpm for 5 minutes using a centrifuge. The centrifuged blood separated into three layers depending on the density. In order from the upper layer, there are three layers: Platelet-poor Plasma (Platelet-free plasma, PPP), Platelet-rich Prasma (PRP), and red blood cells. The top PPP (approximately 5.5 ml) was removed using a micro-mouth pipet. Next, the remaining blood components (about 3.5 ml) other than PPP were centrifuged at 2,400 rpm for 5 minutes using a centrifuge. By this operation, red blood cells and PRP were separated. The upper layer was PRP, which was collected using a micropit. About 0.35 ml of PRP was finally collected from each blood sample (9 ml).
[実施例 2 ] PRP中の血小板数の測定  [Example 2] Measurement of platelet count in PRP
体重 3.1— 3.3kgの日本白色ゥサギ 2 4匹の耳介静脈からペントバルビタールを 投与して全身麻酔を行った後、 耳介から各々 9mlの血液 20ccの滅菌シリンジ (テ ルモ株式会社製) により採取した。 2 4匹のうち 1 2匹から採取した血液に含ま れる血小板数を測定したところ、 平均 43.4 104ノ!!11113であった。 また、 残りの 1 2匹から採取した血液を用いて実施例 1 と同様に PRPを調製し、 PRP中の血小板 数を測定したところ平均 457. δ Χ ΙΟ4/^!!!3であった。 この結果から、 ゥサギの末 梢血液中に比べて実施例 1で調製した PRPの中にはかなり多くの血小板が含まれ ていることが確認された。 Japanese white heron weighing 3.1-3.3 kg 24 Pentobarbital was administered from the auricular vein of 4 animals to perform general anesthesia, and then collected from the auricle using 9 ml of blood, each with a 20 cc sterile syringe (manufactured by Terumo Corporation). did. 2 Four of was measured number of platelets contained in the blood collected from a 1 two animals, an average 43.4 10 4 Bruno !! 1111 3. Further, by using the collected from the remaining 1 2 animals blood was similarly prepared PRP as in Example 1, an average 457. δ Χ ΙΟ 4 / ^ !!! 3 was measured number of platelets in PRP . From this result, the end of the egret It was confirmed that the PRP prepared in Example 1 contained much more platelets than the peripheral blood.
[実施例 3] 骨形成用組成物 (/3-TCP含有 PRPゲル) の調製  [Example 3] Preparation of osteogenic composition (PRP gel containing / 3-TCP)
( 3 - 1 ) i3- TCP粉末の調製  (3-1) Preparation of i3-TCP powder
/3-TCP (ォリンパス光学工業株式会社製、 気孔率 90%) を機械的に粉碎し、 粒子径を平均 2 /im程に調整した。 このようにして調製した /3- TCP粉末をォ一ト クレーブ滅菌した。  / 3-TCP (Olympus Optical Co., Ltd., porosity 90%) was mechanically pulverized to adjust the particle diameter to about 2 / im on average. The thus prepared / 3-TCP powder was autoclaved.
(3— 2) |8-TCP含有 PRPゲルの調製  (3-2) | Preparation of PRP gel containing 8-TCP
0.175 gの) 3 -TCP粉末を 2.5mlのシリンジ(テルモ株式会社製)の中に入れた。 実施例 1で調製した PRPO.35ml をマイクロピペットにて吸引し、 ;8 -TCP粉末の 入ったシリンジ内へ注入して )3 -TCP粉末と混和した。シリンジ内でよく撹拌し、 j8-TCPを PRPに溶解させた。 一方、 10%塩化カルシウム溶液 10mlと局所用牛ト ロンビン (GEN- TRAC) 10000単位の混和.液を調製し、 この混和液のうち 0.035ml を)3- TCP と PRPが入ったシリンジに加え、 シリンジ内で O.lccの空気とともに 混和した。 これにより凝固が開始され、 /3- TCP含有 PRPゲルが形成された。  0.175 g) 3-TCP powder was placed in a 2.5 ml syringe (manufactured by Terumo Corporation). 35 ml of the PRPO prepared in Example 1 was aspirated with a micropipette; injected into a syringe containing 8-TCP powder; and mixed with) 3-TCP powder. After stirring well in a syringe, j8-TCP was dissolved in PRP. On the other hand, a mixture of 10 ml of 10% calcium chloride solution and 10,000 units of bovine thrombin (GEN-TRAC) for topical use was prepared, and 0.035 ml of this mixture was added to a syringe containing 3-TCP and PRP. Mix with O.lcc air in syringe. This initiated coagulation and formed a / 3-TCP containing PRP gel.
[実施例 4] /3- TCP含有 PRPゲルを用いた骨形成  [Example 4] Bone formation using PRP gel containing / 3-TCP
(4— 1 ) )3- TCP含有 PRPゲルを移植するスペースの形成  (4-1)) 3-Space for transplanting PRP gel containing TCP
実施例 1で血液の採取を行った日本白色ゥサギ 24匹の両側頰部の剃毛を行つ た。 剃毛後、 除毛クリームで剃毛部における残りの毛を完全に除去した。 次に、 ゥサギを腹ばいの状態で固定し、 術野をダルコン酸クロルへキシジン綿球で消毒 した。 その後、 頰部に 10mmの長さで皮膚切開を加え、 粘膜および骨膜を剥離し て上顎洞前壁の骨面を露出させた。 そして、 歯科用ダイヤモンドバ一を用いて上 顎洞前壁の骨を約 7mm径の大きさで削除した。 最後に、 剥離子を用いて、 上顎洞 粘膜を注意しながら上方へ剥離し、 /3- TCP含有 PRPゲルを移植するスペースを 形成した。 (4一 2) )3— TCP含有 PRPゲ レの移植 Twenty-four (24) Japanese white egrets from which blood was collected in Example 1 were shaved. After shaving, the remaining hair in the shaved area was completely removed with a depilatory cream. Next, the heron was fixed on the stomach, and the surgical field was disinfected with a chlorhexidine dalconate swab. After that, a 10 mm length skin incision was made in the upper part, and the mucosa and periosteum were peeled off to expose the bone surface of the anterior wall of the maxillary sinus. Then, the bone of the anterior wall of the maxillary sinus was removed with a diameter of about 7 mm using a dental diamond blade. Finally, the maxillary sinus mucosa was carefully dissected upward using an exfoliator to form a space for transplantation of the PRP gel containing / 3-TCP. (4-1-2)) 3—Transplantation of TCP-containing PRP grey
実施例 3で得られた; 8 -TCP含有 PRPゲルの 0.175mlを、 5mmX5mmX7mmの自 家製スペースメーカ一を用いることにより計量、 採取し、 直前に作製した右側の 上顎洞のスペースへ移植した。 また、 左側には生理食塩水を用いて i3- TCP 含有 PRP ゲルと同程度の粘性をもたせた) 3-TCP ペーストを移植した。 粘膜および骨 膜を元の位置に戻した後、 創を縫合閉鎖し )3- TCP含有 PRPゲルの移植術を終了 した。  Obtained in Example 3; 0.175 ml of PRP gel containing 8-TCP was weighed and collected by using a 5 mm × 5 mm × 7 mm homemade space maker and implanted into the space of the right maxillary sinus just created. On the left side, a saline solution was used to give the same viscosity as i3-TCP containing PRP gel.) 3-TCP paste was transplanted. After the mucosa and periosteum were returned to their original positions, the wound was closed with suture, and the transplantation of the 3-TCP-containing PRP gel was completed.
(4 - 3) 骨形成の評価  (4-3) Evaluation of bone formation
所定期間後の移植部を肉眼的に観察することにより骨形成評価を行った。まず、 移植後 2週及び 4週に (4一 2) で移植を行ったゥサギを屠殺し、 上顎と鼻部と を一塊に摘出した。 摘出物を 10%リン酸緩衝ホルマリン溶液で固定し、 10%蟻酸 水溶液で脱灰した。 その後、 パラフィン包埋を行い、 厚さ の前頭断切片を 作製し、 へマトキシリンェォジンで染色して光学顕微鏡下で観察を行った。  The bone formation was evaluated by visually observing the transplanted part after a predetermined period. First, at 2 weeks and 4 weeks after transplantation, the heron transplanted at (4-2) was sacrificed, and the upper jaw and nose were removed in one lump. The extract was fixed with a 10% phosphate buffered formalin solution and decalcified with a 10% formic acid aqueous solution. Thereafter, paraffin embedding was performed, a frontal section having a thickness of 5 mm was prepared, stained with hematoxylin eosin, and observed under an optical microscope.
1 ) PRP群 ()3 -TCP含有 PRPゲルを移植した上顎洞右側)  1) PRP group (right side of maxillary sinus transplanted with PRP gel containing () 3-TCP)
移植後 2週  2 weeks after transplant
図 1に移植後 2週における移植部の様子が示される。 J3-TCP は移植骨内に集 積して充満しており、 その周囲を多数の骨芽細胞が取り囲んでいるのが観察され た。 また、 集積した /3- TCP内にも骨芽細胞が観察された。 一部の β -TCPの周囲 には幼弱な新生骨が認められた。 移植骨内にはところどころに血小板が観察され た。 このように、 コントロール群に比較して骨形成が進行していることが観察さ れた。  Figure 1 shows the transplantation site two weeks after transplantation. J3-TCP was accumulated and filled in the transplanted bone, and a large number of osteoblasts were observed to surround it. Osteoblasts were also observed in the accumulated / 3-TCP. A small amount of new bone was found around some β-TCP. Platelets were observed throughout the implanted bone. Thus, it was observed that bone formation was progressing as compared with the control group.
移植後 4週  4 weeks after transplant
図 2に移植後 4週における移植部の様子が示される。 )3- TCP は移植後 2週に 比べて減少している。 J3-TCP の周囲を全周にわたって骨芽細胞が被包している のが観察された。 また J3- TCP の周囲には新生骨の形成が認められ、 移植後 2週 よりも増加していた。 新生骨周囲にも多数の骨芽細胞が存在していた。 また、 新 生骨内にはセメントラインが認められた。 このように、 コントロール群に比較し て、 顕著な骨形成が観察された。 Figure 2 shows the state of the transplantation site four weeks after transplantation. 3) TCP decreased compared to 2 weeks after transplantation. It was observed that osteoblasts were encapsulated all around J3-TCP. In addition, new bone formation was observed around J3-TCP, and 2 weeks after transplantation Than had increased. Many osteoblasts also existed around the new bone. In addition, a cement line was found in the new bone. Thus, remarkable bone formation was observed as compared with the control group.
2 ) コントロール群 (i3 -TCPのみを移植した上顎洞左側)  2) Control group (left maxillary sinus transplanted with i3-TCP only)
移植後 2週  2 weeks after transplant
図 3に移植後 2週における移植部の様子が示される。 i3 - TCP が四角形を呈し て移植骨内に存在しており、 )3 - TCP の周囲に骨芽細胞が認められた。 また、 新 生骨の形成がわずかに認められた。  Figure 3 shows the state of the transplantation site two weeks after transplantation. i3-TCP was present in the transplanted bone as a square, and) osteoblasts were observed around 3-TCP. In addition, new bone formation was slightly observed.
移植後 4週  4 weeks after transplant
図 4に移植後 4週における移植部の様子が示される。 移植部にはまだ多くの -TCP がブロック状に観察され、 その周囲には新生骨の形成が認めらた。 新生骨 の骨梁内にはセメントラインが認められた。  Figure 4 shows the transplantation site four weeks after transplantation. Many -TCPs were still observed in blocks at the implant, and new bone formation was observed around them. A cement line was found in the trabeculae of the new bone.
( 4 - 4 ) 移植後 8週における骨形成の評価  (4-4) Evaluation of bone formation 8 weeks after transplantation
i8 -TCP含有 PRPゲル移植後 8週において、 骨形成の評価を再び行った。 評価 方法は上記の移植後 2週及び 4週の場合と同様とした。  Eight weeks after transplantation of the i8-TCP-containing PRP gel, bone formation was evaluated again. The evaluation method was the same as in the above-mentioned cases 2 and 4 weeks after transplantation.
1 ) PRP群 -TCP含有 PRPゲルを移植した上顎洞右側)  1) PRP group-TCP-containing PRP gel implanted on the right maxillary sinus)
移植後 8週  8 weeks after transplant
図 5に移植後 8週における)3 - TCP含有 PRPゲル移植部の様子が示される。 図 5は、 へマトキシリンェォジン染色像 (脱灰 H.E.染色組織像) を示したものであ る。 移植部及ぴその周囲で骨量が増加しているのが認められる。  Fig. 5 shows the state of the 3-RP containing PRP gel transplantation site (8 weeks after transplantation). Figure 5 shows a hematoxylin-eosin stained image (decalcified H.E. stained tissue image). Increased bone mass is noted at and around the implant.
図 6及び図 7に図 5の一部を拡大 (16倍) した図を示す。 )3 - TCP含有 PRP移 植部 (A ) に接するように新生骨 (B ) の形成が認められる。 即ち、 移植部と新 生骨との間に繊維性結合組織が介在しない状態で、 新生骨の形成が認められる。 このことから、 移植した j3 - TCP含有 PRPゲルに含まれる成分により、 明らかに 骨形成が強く誘導されていると考えられる。 このように、 i3 - TCP含有 PRPゲル を移植することにより積極的に新生骨の形成、 即ち骨誘導が行われることが示さ れた。 Figures 6 and 7 show enlarged (16x) parts of Fig. 5. 3) The formation of new bone (B) is observed so as to be in contact with the 3-TCP-containing PRP transplant (A). That is, formation of new bone is observed in a state where no fibrous connective tissue is interposed between the transplanted portion and the new bone. This suggests that the components contained in the transplanted j3-TCP-containing PRP gel clearly induced strong osteogenesis. Thus, i3-TCP containing PRP gel It has been shown that the transplantation of osteoporosis actively forms new bone, ie, osteoinduction.
2 ) コントロール群 (i3 -TCPのみを移植した上顎洞左側)  2) Control group (left maxillary sinus transplanted with i3-TCP only)
移植後 8週  8 weeks after transplant
図 8に移植後 8週における /3 -TCP ゲル移植部の様子が示される。 図 8はへマ トキシリンェォジン染色像 (脱灰 H.E.染色組織像) を示したものである。 移植後 4週と比較してほとんど骨量の増加は認められない。  Figure 8 shows the state of the / 3 -TCP gel transplantation site 8 weeks after transplantation. Figure 8 shows the hematoxylin-eosin stained image (decalcified H.E. stained tissue image). There is almost no increase in bone mass compared to 4 weeks after transplantation.
図 9に、 図 8の一部を拡大 (16倍) した図を示す。 )3 -TCPゲル移植部 (a ) を繊維性結合組織 (c ) が取り囲んで存在する様子が観察される。 即ち、 移植部 ( a ) と骨 (b ) との間に繊維性結合組織 (c ) が介在する。 したがって、 この 写真において観察される骨は、 移植された) 3 -TCP により誘導されて形成された 新生骨ではなく、 生体が本来有する骨代謝により形成されたものであると考えら れる。  Figure 9 shows an enlarged (16x) view of a portion of Figure 8. ) It is observed that the fibrous connective tissue (c) surrounds the 3-TCP gel implant (a). That is, fibrous connective tissue (c) is interposed between the transplanted part (a) and the bone (b). Therefore, it is considered that the bone observed in this photograph is not the new bone formed by the induction of (3-graft) induced by 3-TCP, but the bone metabolism originally formed by the living body.
以上のように、移植後 8週の観察では PRP群とコントロール群との間の骨形成 の状態は一層顕著に異なるものとなった。 また、 PRP群では強い骨誘導が行われ ていることが明らかとなつた。  As described above, the state of osteogenesis between the PRP group and the control group became more remarkably different at the 8 weeks after transplantation. It was also clear that strong bone induction was performed in the PRP group.
図 1 0は移植部全体に対する骨化した部分の割合 ( % ) をまとめたグラフであ り、 移植後 2週、 4週、 及び 8週における新生骨 (Newly formed bone) の量、 及ぴ j3 -TCP の残存量が示される。 図中 (+ ) は PRP群、 (―) はコントロール 群の結果である。 移植後 8週において、 PRP群における新生骨量がコントロール 群に比較して有意に多いことが分る。 また、 PRP群の方が )3 -TCPの吸収が良好 に行われていることが認められる。  FIG. 10 is a graph summarizing the ratio (%) of the ossified portion to the whole transplanted portion. The amount of newly formed bone and the amount of newly formed bone at 2, 4 and 8 weeks after transplantation are shown. -Shows the remaining amount of TCP. In the figure, (+) indicates the results for the PRP group, and (-) indicates the results for the control group. At 8 weeks after transplantation, the amount of new bone in the PRP group was significantly higher than that in the control group. It can also be seen that the PRP group absorbed) 3-TCP better.
次に、 本発明の第 2の局面における実施例について説明する。  Next, an example according to the second aspect of the present invention will be described.
[実施例 5 ] PRPの採取 [Example 5] Collection of PRP
移植前に体重 15— 17kg のィヌ 2匹より採血を行い、 実施例 1と同様の方法で PRP を分離、 精製した。 各血液サンプル (50ml) から、 最終的にそれぞれ約 5ml の PRPが得られた。 尚、 実施例 2と同様に PRP中の血小板数をカウントし、 血小 板が豊富に含まれていることを確認した。 Before transplantation, blood was collected from two dogs weighing 15-17 kg, and treated in the same manner as in Example 1. PRP was separated and purified. Each blood sample (50 ml) resulted in approximately 5 ml of PRP each. The number of platelets in the PRP was counted in the same manner as in Example 2, and it was confirmed that the platelets were contained abundantly.
[実施例 6] 骨髄細胞の調製  [Example 6] Preparation of bone marrow cells
(6— 1 ) ィヌ腸骨のからの骨髄液の摘出  (6-1) Removal of bone marrow fluid from dog iliac bone
lOcc用のシリンジ (テルモ株式会社 製) に、 ィヌ腸骨より骨髄穿刺針を用い て腸骨骨髄液を採取し、 へパリン含有基本培地の入った遠心管に注入した。  The iliac bone marrow fluid was collected from a dog iliac bone using a bone marrow puncture needle into a lOcc syringe (manufactured by Terumo Corporation) and injected into a centrifuge tube containing a heparin-containing basic medium.
(6 - 2) 骨髄細胞の播種  (6-2) Seeding bone marrow cells
遠沈管に回収された骨髄液の懸濁液に基本培地を適量 (濃度 30%) 加え、 フラ スコ (80cm2、 Greiner labortec nik Germany) に骨髄液の懸濁液を播種した。 (6 - 3) 接着性細胞 (未分化間葉系幹細胞) の選択、 及び培養 An appropriate amount (concentration: 30%) of the basal medium was added to the bone marrow suspension collected in the centrifuge tube, and the bone marrow suspension was seeded on a flask (80 cm 2 , Greiner labortec nik Germany). (6-3) Selection and culture of adherent cells (undifferentiated mesenchymal stem cells)
骨髄液を播種したフラスコをィンキュベータ内に移し、 5%C02、 37°Cの条件で 培養した。 培養液中に含まれる血球系の細胞を除去し、 接着性の細胞を選択して 培養するために、 骨髄細胞の播種から 24 時間後に培地交換を行った。 その後、 培養液中で、 サブコンフルェントになるまで約 7 日間培養を続けた。 その間、 培 地交換を 3日に一回の頻度で行った。 The flask seeded with bone marrow fluid transferred into Inkyubeta were cultured under conditions of 5% C0 2, 37 ° C . The medium was replaced 24 hours after seeding the bone marrow cells in order to remove the blood cells contained in the culture medium and select and adherent cells for culture. Thereafter, culturing was continued for about 7 days in the culture medium until the cells became subconfluent. During that time, medium exchange was performed once every three days.
(6 - 4) 接着性細胞 (未分化間葉系幹細胞) の選択、 及び培養  (6-4) Selection and culture of adherent cells (undifferentiated mesenchymal stem cells)
骨髄液を播種したフラスコをィンキュベ一夕内に移し、 5%C02、 37 の条件で 培養した。 培養液中に含まれる血球系の細胞を除去し、 接着性の細胞を選択して 培養するために、 骨髄細胞の播種から 24 時間後に培地交換を行った。 その後、 培養液中でサブコンフルェントになるまで約 7日間培養を続けた。 その間、 培地 交換を 3 日に一回の頻度で行った。尚、培養液中には、 MSCGM、50U/ml penicillin G, 50pg/ml streptomycin (Poietics 社製) を添加した。 The flask seeded with bone marrow fluid was transferred into Inkyube Isseki were cultured under conditions of 5% C0 2, 37. The medium was replaced 24 hours after seeding the bone marrow cells in order to remove the blood cells contained in the culture medium and select and adherent cells for culture. Thereafter, culturing was continued for about 7 days until the cells became subconfluent in the culture solution. During that time, the medium was changed once every three days. In addition, MSCGM, 50 U / ml penicillin G, and 50 pg / ml streptomycin (manufactured by Poietics) were added to the culture solution.
続いて、 0.05%トリプシンを用いて細胞を剥離し、 面積比にして 2 ~4倍とな るように播種して継代培養した。 ( 6 - 5 ) 未分化間葉系幹細胞の分化誘導 Subsequently, the cells were detached using 0.05% trypsin, inoculated so that the area ratio became 2 to 4 times, and subcultured. (6-5) Induction of differentiation of undifferentiated mesenchymal stem cells
まず、 継代から約 6 日間培養し、 サブコンフルェントに達したのを確認して培 液 ίこ |3 -glycerophosphate Sigma Chemical Co., St Louis, US ) 、 Dexamethasone ( Sigma Chemical Co., St Louis, USA )、 及び VitaminC phosphate(L-ascorbic acid phosphate magnesium salt n-hydrate、 Sigma Chemical Co., St Louis, USA)を、 それぞれ、 10 mM、 10·8 M、 及び 0.05mMと なるように添加して (骨誘導培地) 培養を続けた。 培地交換は 3日毎に行い、 そ のつこ上 と同 に |3 -glyceropnosphate、 Dexamethasone、 及ひ VitaminC phosphateを培養液に添加した。  After culturing for about 6 days from the passage, confirm that the cells have reached subconfluence. Culture medium Pico | 3-glycerophosphate Sigma Chemical Co., St Louis, US), Dexamethasone (Sigma Chemical Co., St Louis , USA), and VitaminC phosphate (L-ascorbic acid phosphate magnesium salt n-hydrate, Sigma Chemical Co., St Louis, USA) to 10 mM, 10.8 M, and 0.05 mM, respectively. (Bone induction medium) The culture was continued. The medium was replaced every three days, and | 3-glyceropnosphate, Dexamethasone, and VitaminC phosphate were added to the culture medium in the same manner as above.
( 6 - 6 ) 細胞成分の回収  (6-6) Recovery of cell components
少量の培地を残して、 培地をフラスコ内から除去した。 そして、 Trypsin/EDTA を用いて細胞をフラスコから剥離した。 剥離した細胞を培地とともに遠沈管 (FALCON ECTON DICKINSON USA) に移し、 遠沈処理(1500rpm, 5min) に供した。 上清を吸引し、 細胞成分を回収した。  The medium was removed from the flask, leaving a small amount of medium. The cells were detached from the flask using Trypsin / EDTA. The detached cells were transferred to a centrifuge tube (FALCON ECTON DICKINSON USA) together with the medium, and subjected to centrifugation (1500 rpm, 5 min). The supernatant was aspirated and the cell components were collected.
[実施例 7 ] 骨形成用組成物 (PRP—細胞含有ゲル) の調製  [Example 7] Preparation of osteogenic composition (PRP-cell-containing gel)
実施例 6で回収された細胞成分を少量の PRPに懸濁して細胞懸濁液を調製した。 実施例 5で得られた PRP 3.5ml、 10 %塩化カルシウム溶液 0.5ml、 及び局所用牛ト ロンビン(GEN- TRAC 0000単位をシリンジ内で混和し、 PRP—細胞含有ゲルを形 成した。  The cell component recovered in Example 6 was suspended in a small amount of PRP to prepare a cell suspension. 3.5 ml of the PRP obtained in Example 5, 0.5 ml of a 10% calcium chloride solution, and topical bovine thrombin (0000 units of GEN-TRAC) were mixed in a syringe to form a PRP-cell-containing gel.
一方、 対照用として、 PRP、 10 %塩化カルシウム溶液、 及び局所用牛トロンビ ンを混和したゲル (PRPゲル) を調製した。  On the other hand, a gel (PRP gel) prepared by mixing PRP, a 10% calcium chloride solution, and topical bovine thrombin was prepared as a control.
[実施例 8 ] PRP—細胞含有ゲルを用いた骨形成  [Example 8] Bone formation using PRP-cell-containing gel
( 8 — 1 ) 移植スペースの形成  (8 — 1) Creating transplant space
実施例 5で血液の採取を行ったィヌを腹ばいの状態で固定し、 術野をダルコン 酸クロルへキシジン綿球で消毒した。 その後、 1ヶ月前にあらかじめ抜歯してお いた顎部に約 100mmの長さで皮膚切開を加え、 粘膜および骨膜を剥離して顎骨 の骨面を露出させた。そして、 トレフィンパ一を用いて、顎骨欠損部を約 10mm の大きさで作製した。 The dog from which blood was collected in Example 5 was fixed on the stomach, and the surgical field was disinfected with a chlorhexidine dalconate swab. Then, extract the teeth one month beforehand A skin incision about 100 mm in length was made in the jaw, and the mucosa and periosteum were peeled off to expose the bone surface of the jawbone. Then, using a trephine pad, a jaw bone defect was created with a size of about 10 mm.
( 8— 2 ) PRP—細胞含有ゲルの移植  (8-2) Transplantation of PRP-cell-containing gel
実施例 7で調製した PRP—細胞含有ゲル約 4mlを、 顎骨欠損部に注入した。 対 照として、 PCBMを移植 (自家骨移植) した群、 実施例 7で得られた PRPゲルを 移植した群、 欠損のみ (移植なし) の群を用意した。  About 4 ml of the PRP-cell-containing gel prepared in Example 7 was injected into the jaw bone defect. As a control, a group in which PCBM was transplanted (autologous bone transplantation), a group in which the PRP gel obtained in Example 7 was transplanted, and a group in which only the defect was obtained (no transplantation) were prepared.
( 8 - 3 ) 骨再生能力 (骨形成) の評価  (8-3) Evaluation of bone regeneration ability (osteogenesis)
所定期間後の移植部を肉眼的に観察することにより、 各群の骨再生能力を組織 学的に評価、 比較した。  The bone regeneration ability of each group was histologically evaluated and compared by visually observing the transplanted part after a predetermined period.
まず、 移植後 2週、 4週、 及び 8週に、 (8— 2 ) で移植を行ったィヌより移植 部を摘出した。 摘出物を 10 %リン酸緩衝ホルマリン溶液で固定し、 10 %蟻酸水溶 液で脱灰した。 その後パラフィン包埋を行い組織染色切片を作製し、 へマトキシ リン · ェォジンで染色して光学顕微鏡下で観察を行った。  First, at 2, 4 and 8 weeks after transplantation, transplanted parts were removed from dogs transplanted at (8-2). The extract was fixed with a 10% phosphate buffered formalin solution and decalcified with a 10% aqueous formic acid solution. Thereafter, tissue-stained sections were prepared by embedding in paraffin, stained with hematoxylin and eosin, and observed under an optical microscope.
1 ) PCBM群 (自家骨移植) 1) PCBM group (autologous bone transplantation)
図 1 1に PCBM移植部の移植後 2週 (2 W)、 4週 ( 4 W)、 及ぴ 8週 ( 8 W) の様子を示す。移植後 2週において骨再生が既に行われていることが観察される。 同時に移植 PCBMの吸収も観察される。 移植後 8週では、 欠損辺縁部 (図中矢印 E) まで良好な骨再生が得られている。  Figure 11 shows the two weeks (2 W), four weeks (4 W), and eight weeks (8 W) after transplantation of the PCBM transplant. Two weeks after transplantation, it is observed that bone regeneration has already taken place. At the same time, absorption of the transplanted PCBM is also observed. Eight weeks after transplantation, good bone regeneration was obtained up to the margin of the defect (arrow E in the figure).
2 ) PRP—細胞群 (PRP—細胞含有ゲルを移植した群) 2) PRP-cell group (PRP-cell-containing gel transplant group)
図 1 2に PRP—細胞含有ゲル移植部の移植後 2週 (2 W)、 4週 (4 W)、 及ぴ 8週 (8 W) の様子を示す。 移植後時間が経過するに従って新生骨 (図中矢印 F) の量が増加しているのが観察され、 移植後 8週では欠損辺縁部 (図中矢印 G) ま で良好な骨再生が行われているのが分る。 また、 緻密な骨再生が行われているこ とが観察される。 さらに、 豊富な血管新生 (図中矢印 H) が観察され、 積極的に 新生骨の形成が誘導されていることが分る。 尚、 移植後 4週、 及び 8週における 骨再生の程度は、 PCBM群 (図 1 1 ) のそれと同等である。 Fig. 12 shows the results of two weeks (2 W), four weeks (4 W), and eight weeks (8 W) after transplantation of the PRP-cell-containing gel transplant. It was observed that the amount of new bone (arrow F in the figure) increased over time after transplantation, and good bone regeneration was performed up to the margin of the defect (arrow G in the figure) at 8 weeks after transplantation. You can see it is being done. It is also observed that precise bone regeneration is being performed. Furthermore, abundant angiogenesis (arrow H in the figure) was observed, It can be seen that the formation of new bone is induced. The degree of bone regeneration at 4 weeks and 8 weeks after transplantation was similar to that of the PCBM group (Fig. 11).
3 ) PRP群 (PRPゲルを移植した群)  3) PRP group (PRP gel implanted group)
図 1 3に PRPゲル移植部の移植後 2週 ( 2 W)、 4週 (4 W)、 及び 8週 ( 8 W) の様子を示す。 移植後、 欠損底部 (図中矢印 I) より徐々に骨新生が起きている のが観察されるが、 骨再生の程度は低い。 移植後 8週においても欠損辺縁部 (図 中矢印 J) までは骨再生がされていない。  Fig. 13 shows the state of the PRP gel transplantation site at 2 weeks (2 W), 4 weeks (4 W), and 8 weeks (8 W) after transplantation. After transplantation, bone regeneration is observed to occur gradually from the bottom of the defect (arrow I in the figure), but the degree of bone regeneration is low. Even at 8 weeks after transplantation, bone regeneration was not performed up to the defect margin (arrow J in the figure).
4 ) 欠損のみ (移植なし)  4) Defect only (no transplant)
図 1 4に移植を行わずに放置した欠損部の 2週後 (2 W)、 4週後 (4 W)、 8 週後(8 W) の様子を示す。 PRPゲル群と同様に欠損底部(図中矢印 K) より徐々 に骨新生がおきているのが観察される。 骨再生の程度は極めて低く、 8週後にお いても欠損部辺縁にはほとんど骨再生はされておらず、 繊維性細胞が凝集してい るのが観察される (図中矢印 L)。  Fig. 14 shows the state of the defect left without transplantation at 2 weeks (2 W), 4 weeks (4 W), and 8 weeks (8 W). As in the case of the PRP gel group, it is observed that osteogenesis occurs gradually from the bottom of the defect (arrow K in the figure). The degree of bone regeneration is extremely low. Even after 8 weeks, almost no bone regeneration has occurred at the periphery of the defect, and fibrous cells are observed to be aggregated (arrow L in the figure).
以上のように、 PRP-細胞含有ゲルを用いることにより PCBM と同等の良好な 骨再生が得られることが分った。 即ち、 自家骨移植 (PCBM) と比較しても、 注 入型による PRP と骨形成能を有する細胞との組合せにより十分な骨再生効果が 得られることが示された。  As described above, it was found that the use of the gel containing PRP-cells provided good bone regeneration equivalent to that of PCBM. In other words, it was shown that a sufficient bone regeneration effect can be obtained by the combination of injectable PRP and cells having osteogenic ability even in comparison with autologous bone transplantation (PCBM).
次に、 フイブリノ一ゲン、 i3 -TCP、 骨形成能を有する細胞を組み合わせてなる 組成物を用いた骨形成能評価試験 (実施例 9〜実施例 1 2 ) について説明する。  Next, an osteogenic ability evaluation test (Examples 9 to 12) using a composition obtained by combining fibrinogen, i3-TCP, and osteogenic cells will be described.
[実施例 9 ] 多孔性 i3 -TCPブロックの作製 [Example 9] Fabrication of porous i3-TCP block
まず、 炭酸カルシウム、 リン酸水素カルシウムと水とを混合して、 機械的に衝 撃を加え粉砕し、 メカノケミカル的に合成した。 その後、 乾燥、 焼成 (900°C、 5 時間) を行い、 造粒後、 流動性のある泥状混合物を調製した。 さらに可燃性スポ ンジに含潰し、 乾燥させた後、 再度焼成 (1125^0、 3時間) を行った。  First, calcium carbonate, calcium hydrogen phosphate and water were mixed, mechanically impacted and pulverized, and mechanochemically synthesized. After that, drying and firing (900 ° C, 5 hours) were performed, and after granulation, a fluid muddy mixture was prepared. After immersion in a combustible sponge, drying and firing again (1125 ^ 0, 3 hours).
完成した多孔性 3 -TCP ブロックは全ての気孔が連続する三次元的な多孔質構 造となった。 これを用いて、 直径を約 5mm、 高さを約 4mmの円柱状ブロックを 作製し、 気孔径は 200〜400 πι、 気孔率は約 90 %に調整した。 The completed porous 3-TCP block has a three-dimensional porous structure in which all pores are continuous. It was made. Using this, a cylindrical block with a diameter of about 5 mm and a height of about 4 mm was manufactured, and the pore diameter was adjusted to 200 to 400 πι and the porosity was adjusted to about 90%.
[実施例 1 0 ] 細胞の採取および培養  [Example 10] Collection and culture of cells
フィ ッシヤー系 7週令雄性ラッ トの大腿骨より骨髄細胞の採取を行った。 採取 した骨髄細胞は、 15 %牛胎仔血清および抗生剤 (ペニシリン 1000U/ml、 ス トレ プトマイシン 0.1mg/ml、 アンホテリシン B 0.25 ^i g/ml) を添加した Minimum Essential Medium (MEM培地)中にて 10 日間初代培養を行った。培養は 37°C、 5 % C02下にて行った。 その後、 トリプシン- EDTA処理により細胞懸濁液を作製 し、 細胞濃度は 106cells/mlに調整した。 Bone marrow cells were collected from the femur of a 7-week-old male male rat. The collected bone marrow cells were cultured in Minimum Essential Medium (MEM medium) supplemented with 15% fetal calf serum and antibiotics (penicillin 1000 U / ml, streptomycin 0.1 mg / ml, amphotericin B 0.25 ^ ig / ml). Primary culture was performed for one day. Culturing was carried out at 37 ° C, 5% C0 2 below. Thereafter, a cell suspension was prepared by trypsin-EDTA treatment, and the cell concentration was adjusted to 10 6 cells / ml.
[実施例 1 1 ] 移植用組成物の調製  [Example 11] Preparation of transplant composition
上記の細胞懸濁液に β -TCPブロックを浸漬することにより細胞/ β -TCP複合 体を作製した。 細胞 / )3 -TCP 複合体は、 上記培地に 10·8Μ Dexamethasone (Sigma Chemical Co., St Louis, USAソ、 lOmM β -glycerophosphate (Sigma Chemical Co., St Louis, US) > 50 β g/ml VitaminC phosphate(L-ascoroic acid phosphate magnesium salt n_hydrate> Sigma Chemical Co., St Louis, USA)を 加え、 20日間継代培養を行った。 培養中、 培地交換は週に 3回行い、 そのつど上 §己と I口]棟に)3 -glycerophosphate Dexamethasone、 及ひ itaminC phosphate を培養液に添加した。 A cell / β-TCP complex was prepared by immersing the β-TCP block in the above cell suspension. Cells /) 3 -TCP complex the medium 10 · 8 Μ Dexamethasone (Sigma Chemical Co., St Louis, USA Seo, lOmM β -glycerophosphate (Sigma Chemical Co. , St Louis, US)> 50 β g / ml VitaminC phosphate (L-ascoroic acid phosphate magnesium salt n _ hydrate> Sigma Chemical Co., St Louis, USA) were added thereto to carry out a 20-day subculture. in the culture, media exchange was performed three times a week, the In each case, 3) -glycerophosphate Dexamethasone and OitaminC phosphate were added to the culture solution.
培養が終了した細胞 3 -TCP 複合体をピンセッ トで破砕し、 培養液中に懸濁さ せた。 この懸濁液を、 フイブリノ一ゲン (80 mg) とフイブリン安定化因子 XIII ( 75 units) をプラスミンインヒビター、 ァプロチニン (1000kIE/ml) 溶液 1 mlに溶解したものからなる A液 (財団法人化学及血清療法研究所、 熊本、 日本) に再び懸濁した。 このようにして得られた MSCs/ β -TCP複合体を含む懸濁液と、 lmlの 53mM CaCh溶液に溶解させたトロンビン (250units) を含む B液 (財団 法人化学及血清療法研究所、 熊本、 日本) とを滅菌済みシリンジ (5ml) 内で混 和し、 移植用組成物 (フイブリノ一ゲン— |3 -TCP—細胞含有組成物) を形成した (A液: B液 = 1: 1 (volume/volume) ) o この混和物内の MSCs濃度は約 10 X 106 cells/mlであった。 尚、 A液と B液とを室温で混和することにより、 凝固作用が 生じて半剛性三次元組織からなるフイブリン糊 (fiblin glue) が形成される。 The cultured 3-cell complex was disrupted with forceps and suspended in the culture medium. Solution A consisting of a suspension of fibrinogen (80 mg) and fibrin stabilizing factor XIII (75 units) in 1 ml of plasmin inhibitor and aprotinin (1000 kIE / ml) (Kumamoto, Japan). A suspension containing the MSCs / β-TCP complex obtained in this way and a solution B containing thrombin (250 units) dissolved in 1 ml of 53 mM CaCh solution (Kumamoto Institute for Chemistry and Serum Therapy, Kumamoto, Japan) in a sterile syringe (5 ml) To form a composition for transplantation (fibrinogen- | 3-TCP-cell-containing composition) (Solution A: Solution B = 1: 1 (volume / volume)) o The concentration of MSCs in this admixture is It was about 10 × 10 6 cells / ml. By mixing the solution A and the solution B at room temperature, a coagulation action occurs to form a fibrin glue consisting of a semi-rigid three-dimensional tissue.
[実施例 1 2 ] 移植用組成物 (フイブリノ一ゲン一 ]3 -TCP—細胞含有組成物) を 用いた骨形成 [Example 12] Bone formation using a composition for transplantation (fibrinogen-1) 3-TCP-cell-containing composition
( 1 2 - 1 ) 移植用組成物の移植  (12-1) Transplantation of transplant composition
移植用組成物約 1.5 mlを同系ラッ 卜の背部皮下に移植した。コントロールとし て、 骨髄細胞を含まない多孔性 ;3 -TCP ブロックを破砕し、 フイブリノ一ゲンと 混ぜてゲル状にしたものを同系ラッ トの背部皮下に移植した (コントロール群)。 ( 1 2 - 2 ) 骨再生能力 (骨形成能) の評価  About 1.5 ml of the composition for transplantation was transplanted subcutaneously on the back of a syngeneic rat. As a control, a porous; 3-TCP block containing no bone marrow cells was crushed and mixed with fibrinogen to form a gel, which was transplanted subcutaneously on the back of a syngeneic rat (control group). (1 2-2) Evaluation of bone regeneration ability (osteogenesis ability)
移植後 2週、 4週、 8週に移植部を組織学的に観察することにより、 骨再生能 力を評価した。 移植部を摘出し、 10 %リン酸緩衝液ホルマリンにて固定後、 10 % 蟻酸水溶液で脱灰した。 その後、 パラフィン包埋を行い組織染色切片を作製し、 へマトキシリン · ェォジン (H.E.)で染色して光学顕微鏡下で観察を行った。  The bone regeneration ability was evaluated by histological observation of the transplanted part at 2, 4 and 8 weeks after transplantation. The transplanted part was removed, fixed with 10% phosphate buffer formalin, and then decalcified with 10% formic acid aqueous solution. Thereafter, tissue staining sections were prepared by embedding in paraffin, stained with hematoxylin and eosin (H.E.), and observed under an optical microscope.
1 ) 移植用組成物 (フイブリノ一ゲン一 i3 -TCP—細胞含有組成物) を移植した群 図 1 5は、 移植後 8 週における移植部を直接観察した写真を示した図である。 移植部 (矢印) に白い塊状物が観察される。  1) Group transplanted with transplantation composition (fibrinogen-i3-TCP-cell-containing composition) FIG. 15 is a photograph showing a directly observed transplantation site 8 weeks after transplantation. A white lump is observed at the transplant (arrow).
図 1 6に移植部の移植後 2週 (2W)、 4週 (4W)、 8週 (8W)の H.E.染色組織像を 示す。 移植後 2週では、 骨芽細胞によるライニングが見られ (矢印)、 骨形成が行 われつつあることが認められる。 移植後 4週では、 骨細胞が見られるようになり (矢印)、 活発な骨形成が進行していることがわかる。 移植後 8週では、 一部に層 板構造が見られ (矢印)、 骨の成熟が観察できる。  Fig. 16 shows the H.E.-stained tissue images at 2 weeks (2W), 4 weeks (4W), and 8 weeks (8W) after transplantation of the transplanted part. Two weeks after transplantation, osteoblast lining is seen (arrow), indicating that bone formation is taking place. At 4 weeks after transplantation, bone cells became visible (arrows), indicating that active bone formation was progressing. Eight weeks after transplantation, some lamellar structures are seen (arrows), and bone maturation can be observed.
2 ) コントロール群 '  2) Control group ''
図 1 7は、 コントロール群の移植後 8週における H.E.染色組織像である。 図 1 7に示されるように、 コントロール群では移植後 8週において若干の骨形成が認 められるに過ぎない。 FIG. 17 is a HE-stained tissue image of the control group at 8 weeks after transplantation. Figure 1 As shown in Fig. 7, the control group showed only a slight bone formation 8 weeks after transplantation.
以上の結果から、移植用組成物(フイブリノーゲン一 )3 -TCP—細胞含有組成物) を移植した群では、 コントロール群に比較して有意な骨再生が認められた。  From the above results, significant bone regeneration was observed in the group transplanted with the transplant composition (fibrinogen-1) 3-TCP-cell-containing composition as compared with the control group.
次に、 PRP、 アルギン酸塩 (アルジネート)、 骨形成能を有する細胞を組み合わ せてなる組成物を用いた骨形成能評価試験 (実施例 1 3〜実施例 1 6 ) について 説明する。  Next, an osteogenic ability evaluation test (Examples 13 to 16) using a composition obtained by combining PRP, alginate (alginate), and cells having osteogenic ability will be described.
[実施例 1 3] PRPの採取  [Example 13] Collection of PRP
ラッ ト末梢血から、 実施例 1と同様の方法で PRPを分離、 精製した。 各血液サ ンプル (50ml) から、 最終的にそれぞれ約 5m】の PRPが得られた。  PRP was isolated and purified from rat peripheral blood in the same manner as in Example 1. From each blood sample (50 ml), about 5 m of PRP was finally obtained.
[実施例 1 4] 骨髄細胞の調製  [Example 14] Preparation of bone marrow cells
( 1 4 - 1 ) ヒト腸骨からの骨髄液の摘出  (14-1) Removal of bone marrow fluid from human iliac bone
lOcc用のシリンジ (テルモ株式会社 製) に、 ヒト腸骨より骨髄穿刺針を用い て腸骨骨髄液を採取し、 へパリン含有基本培地の入った遠心菅に注入した。  The iliac bone marrow fluid was collected from a human iliac bone using a bone marrow puncture needle into a lOcc syringe (manufactured by Terumo Corporation) and injected into a centrifugal tube containing a heparin-containing basic medium.
( 1 4 - 2) 骨髄細胞の播種  (14-2) Seeding bone marrow cells
遠沈管に回収された骨髄液の懸濁液に基本培地を適量 (濃度 30%) 加え、 フラ スコ (80cm2、 Greiner labortechnik Germany) に骨髄液の懸濁液を播種した。 ( 1 4 - 3) 接着性細胞 (未分化間葉系幹細胞) の選択、 及び培養  An appropriate amount (concentration: 30%) of the basal medium was added to the bone marrow suspension collected in the centrifuge tube, and the bone marrow suspension was seeded on a flask (80 cm2, Greiner labortechnik Germany). (14-3) Selection and culture of adherent cells (undifferentiated mesenchymal stem cells)
骨髄液を播種したフラスコをィンキュベ一夕内に移し、 5%C02、 37 の条件で 培養した。 培養液中に含まれる血球系の細胞を除去し、 接着性の細胞を選択して 培養するために、 骨髄細胞の播種から 24 時間後に培地交換を行った。 その後、 培養液中で、 サブコンフルェントになるまで約 7日間培養を続けた。 その間、 培 地交換を 3日に一回の頻度で行った。  The flask inoculated with the bone marrow fluid was transferred into Incube overnight, and cultured under the conditions of 5% C02, 37. The medium was replaced 24 hours after seeding the bone marrow cells in order to remove the blood cells contained in the culture medium and select and adherent cells for culture. Thereafter, culturing was continued for about 7 days in the culture solution until the cells became subconfluent. During that time, medium exchange was performed once every three days.
( 1 4一 4) 接着性細胞 (未分化間葉系幹細胞) の選択、 及び培養  (14-14) Selection and culture of adherent cells (undifferentiated mesenchymal stem cells)
骨髄液を播種したフラスコをィンキュベータ内に移し、 5%C02、 37°Cの条件で 培養した。 培養液中に含まれる血球系の細胞を除去し、 接着性の細胞を選択して 培養するために、 骨髄細胞の播種から 24 時間後に培地交換を行った。 その後、 培養液中でサブコンフルェントになるまで約 7 日間培養を続けた。 その間、 培地 交換を 3日に一回の頻度で行った。尚、培養液中には、 MSCGM、 50U/ml penicillin G, 50 g/ml streptomycin (Poietics 社製) を添カロした。 The flask seeded with bone marrow fluid was transferred into the Inkyubeta, under conditions of 5% C0 2, 37 ° C Cultured. The medium was replaced 24 hours after seeding the bone marrow cells in order to remove the blood cells contained in the culture medium and select and adherent cells for culture. After that, the culture was continued for about 7 days in the culture solution until it became subconfluent. During that time, the medium was changed once every three days. In addition, MSCGM, 50 U / ml penicillin G, and 50 g / ml streptomycin (manufactured by Poietics) were added to the culture solution.
続いて、 0.05%トリプシンを用いて細胞を剥離し、 面積比にして 2〜 4倍とな るように播種して継代培養した。  Subsequently, cells were detached using 0.05% trypsin, seeded so that the area ratio became 2 to 4 times, and subcultured.
( 1 4 - 5 ) 未分化間葉系幹細胞の分化誘導  (14-5) Differentiation induction of undifferentiated mesenchymal stem cells
まず、 継代から約 6 日間培養し、 サブコンフルェントに達したのを確認して培 液 ίこ j3 -glycerophosphate Sigma Chemical Co., St Louis, US ノ 、 Dexamethasone ( Sigma Chemical Co., St Louis, USA )、 及び VitaminC phosphate(L-ascorbic acid phosphate magnesium salt n-hydrate、 Sigma Chemical Co., St Louis, USA)を、 それぞれ、 10 mM、 10"8 M、 及び 0.05mMと なるように添加して (骨誘導培地) 培養を続けた。 培地交換は 3日毎に行い、 そ のつど上記と同様に jS -glycerophosphate、 Dexamethasone、 及び VitaminC phosphateを培養液に添加した。  First, culture was performed for about 6 days from the passage, and it was confirmed that the cells reached subconfluency. USA), and VitaminC phosphate (L-ascorbic acid phosphate magnesium salt n-hydrate, Sigma Chemical Co., St Louis, USA) to 10 mM, 10 "8 M, and 0.05 mM, respectively. (Osteogenesis medium) The culture was continued The medium was changed every three days, and jS-glycerophosphate, Dexamethasone, and VitaminC phosphate were added to the culture solution each time as described above.
( 1 4 - 6 ) 細胞成分の回収  (14-6) Recovery of cell components
骨誘導培地で約 6 日間培養した後、 少量の培地を残して、 培地をフラスコ内か ら除去した。 そして、 Trypsin/EDTA を用いて細胞をフラスコから剥離した。 剥 離した細胞を培地とともに遠沈管 (FALCON ECTON DICKINSON USA) に移し、 遠沈処理(1500rpm, 5min)に供した。 上清を吸引し、 細胞成分を回収し た。  After culturing in osteoinductive medium for about 6 days, the medium was removed from the flask, leaving a small amount of medium. The cells were detached from the flask using Trypsin / EDTA. The detached cells were transferred to a centrifuge tube (FALCON ECTON DICKINSON USA) together with the medium, and subjected to a centrifugation treatment (1500 rpm, 5 min). The supernatant was aspirated and the cell components were collected.
[実施例 1 5 ] 移植用組成物 (PRP-アルジネート-細胞含有組成物) の調製 実施例 1 4で回収された細胞成分を少量の PRPに懸濁して細胞懸濁液を調製し た。 この細胞懸濁液とアルジネート (シグマ社製) 約 1.5 ml、 実施例 1 3で得ら れた PRP 約 0.15 mlをシリンジ内で混和し、 移植用組成物 (PRP-アルジネ一ト- 細胞含有組成物) を形成した。 [Example 15] Preparation of transplantation composition (PRP-alginate-cell-containing composition) The cell component recovered in Example 14 was suspended in a small amount of PRP to prepare a cell suspension. About 1.5 ml of this cell suspension and alginate (manufactured by Sigma), obtained in Example 13 About 0.15 ml of the obtained PRP was mixed in a syringe to form a composition for transplantation (PRP-arginine-cell-containing composition).
[実施例 1 6 ] 移植用組成物 (PRP-アルジネート—細胞含有組成物) を用いた骨 形成  [Example 16] Bone formation using a composition for transplantation (PRP-alginate-cell-containing composition)
( 1 6— 1 ) 移植用組成物の移植  (16-1) Transplantation of transplant composition
移植用組成物約 1.5 mlを 4週令の KSNヌードマウスの背部皮下に移植した。 一方、 移植用組成物の代わりにアルジネ一トを移植したものをコントロール群と した。  About 1.5 ml of the composition for transplantation was subcutaneously transplanted to the back of a 4-week-old KSN nude mouse. On the other hand, those to which an arginite was transplanted in place of the composition for transplantation were used as a control group.
( 1 6— 2 ) 骨再生能力 (骨形成能) の評価  (16-2) Evaluation of bone regeneration ability (osteogenesis ability)
移植後 1 6週に移植部を組織学的に観察し、 骨再生能力を評価した。 まず、 移 植部を摘出し、 10 %リン酸緩衝液ホルマリンにて固定後、 10%蟻酸水溶液で脱灰 した。 その後、 パラフィン包埋を行い組織染色切片を作製し、 へマトキシリン - ェォジン (H.E.)で染色して光学顕微鏡下で観察を行った。 図 1 8に移植後 1 6週 の H.E.染色組織像を示す ((A) は移植用組成物を移植した群、 (B)はコント口一 ル群)。 移植用組成物を移植した群 (A) では、 新生骨が観察され (矢印)、 骨の 再生が行われていることが認められる。 一方、 コントロール群 (B) では、 移植 したアルジネートが染色されて観察されるが(矢印)、新生骨の形成は認められな レ 以上より、 移植用組成物 (PRP-アルジネート—細胞含有組成物) を移植した 群では、 コントロール群に比較して有意に骨の再生が行われることが示された。 この発明は、 上記発明の実施の形態及び実施例の説明に何ら限定されるもので はない。特許請求の範囲の記載を逸脱せず、当業者が容易に想到できる範囲で種々 の変形態様もこの発明に含まれる。 産業上の利用の可能性  At 16 weeks after the transplantation, the transplanted site was observed histologically and the bone regeneration ability was evaluated. First, the transplanted part was excised, fixed with 10% phosphate buffer formalin, and then decalcified with a 10% formic acid aqueous solution. Thereafter, tissue staining sections were prepared by embedding in paraffin, stained with hematoxylin-eosin (H.E.), and observed under an optical microscope. FIG. 18 shows an H.E.-stained tissue image of 16 weeks after transplantation ((A) is a group transplanted with the composition for transplantation, (B) is a control group). In the group (A) into which the transplant composition was transplanted, new bone was observed (arrow), and it was confirmed that bone regeneration was performed. On the other hand, in the control group (B), the transplanted alginate was stained and observed (arrow), but no new bone formation was observed. It was shown that in the group transplanted with, bone regeneration was significantly performed as compared with the control group. The present invention is not limited to the description of the above embodiment and Examples. Various modifications are included in the present invention without departing from the scope of the claims and within the scope of those skilled in the art. Industrial applicability
本発明の骨又は歯周組織形成用組成物は、 骨組織又は歯周組織の修復、 再生が 必要とされる各種の分野に適用することができるものである。 例えば、 高度な骨 吸収が認められる顎堤に人工歯根の植立を行う場合の骨増生に適用することがで きる。 また、 外傷、 各種骨疾患により生ずる骨欠損部における骨組織の再生、 骨 の補強又は補填に適用することができる。 また、 歯周病等による歯槽骨の欠損部 における歯槽骨、 歯周組織の再生に適用することができるものである。 適用方法 としては、 ゲル状、 ペースト状等の骨形成組成物を適用部位に填入、 注入、 又は 塗布等する。 The composition for forming bone or periodontal tissue of the present invention can repair and regenerate bone tissue or periodontal tissue. It can be applied to various fields required. For example, it can be applied to bone augmentation when implanting artificial dental roots in a ridge with high bone resorption. In addition, the present invention can be applied to regeneration of bone tissue at a bone defect caused by trauma or various bone diseases, and reinforcement or supplementation of bone. In addition, the present invention can be applied to regeneration of alveolar bone and periodontal tissue in a defective portion of alveolar bone due to periodontal disease or the like. As an application method, a bone-forming composition such as a gel or a paste is filled, injected, or applied to the application site.
本発明の骨又は歯周組織 成用組成物には、 骨形成系の細胞の増殖或いは分化 を促進させる能力をもつ成長因子が数多く含まれる。 従って、 適用部 (移植部) において骨形成系の細胞を効率的に増殖或いは分化させ、 骨組織又は歯周組織の 形成を促進することができる。 自家の P R Pを用いることにより、 毒性がなく、 しかも免疫非活性である上記の成長因子により、 骨組織又は歯周組織の再生は、 質、 量ともに向上するものと考えられる。 また、 本発明の第 1の局面では骨形成 系細胞の足場となる無機系生体吸収性材料を含むため、 適用部における骨形成系 細胞の増殖が促進されるとともに、 適度な可塑性が付与され、 形態の保持も図る ことができる。 また、 ゲル状等の流動性であるため、 注射針等を用いて適用部に 容易に填入でき (創部を開放することなく適用することも可能である)、 また、 骨 欠損部の形状に合わせて予め成型することを要せず、 その汎用性が高い。 このよ うに、 本発明の骨又は歯周組織形成用組成物を用いることにより、 自家骨を採取 して移植に供する必要がなくなり、 容易に骨又は歯周組織の増生を図ることが可 能となる。  The composition for synthesizing bone or periodontal tissue of the present invention contains a large number of growth factors capable of promoting the proliferation or differentiation of cells of the osteogenic system. Therefore, the cells of the osteogenic system can be efficiently proliferated or differentiated at the application part (transplantation part), and the formation of bone tissue or periodontal tissue can be promoted. The use of autologous PRP is considered to improve the quality and quantity of bone tissue or periodontal tissue regeneration by the above non-toxic and immunoinactive growth factors. Further, since the first aspect of the present invention contains an inorganic bioabsorbable material serving as a scaffold for bone-forming cells, the growth of the bone-forming cells in the application portion is promoted, and appropriate plasticity is imparted. The form can be maintained. In addition, since it has a gel-like fluidity, it can be easily inserted into the application area using a syringe needle or the like (it is also possible to apply without opening the wound area). High versatility without the need for pre-molding. As described above, by using the composition for forming bone or periodontal tissue of the present invention, it is not necessary to collect autologous bone and subject it to transplantation, and it is possible to easily grow bone or periodontal tissue. Become.

Claims

請 求 の 範 囲 The scope of the claims
1. P RPと、 無機系生体吸収性材料とを含んでなり、 使用時において流動性 を有する骨又は歯周組織形成用組成物。 1. A composition for forming bone or periodontal tissue, which comprises PRP and an inorganic bioabsorbable material and has fluidity during use.
2. 血小板と、 フイブリノ一ゲンと、 無機系生体吸収性材料とを含んでなり、 使用時において流動性を有する骨又は歯周組織形成用組成物。  2. A composition for forming bone or periodontal tissue which has fluidity during use, comprising platelets, fibrinogen, and an inorganic bioabsorbable material.
3. 血小板と、 フイブリンと、 無機系生体吸収性材料とを含んでなり、 使用時 において流動性を有する骨又は歯周組織形成用組成物。  3. A composition for forming bone or periodontal tissue having fluidity during use, comprising platelets, fibrin, and an inorganic bioabsorbable material.
4. 血小板と、 無機系生体吸収性材料とを含んでなり、 使用時において流動性 を有する骨又は歯周組織形成用組成物。  4. A composition for forming bone or periodontal tissue, which comprises platelets and an inorganic bioabsorbable material and has fluidity during use.
5. 前記無機系生体吸収性材料は、 )3—リン酸三カルシウム、 α—リン酸三力 ルシゥム、 リン酸四カルシウム、 リン酸八カルシウム、 及び非結晶質リン酸カル シゥムからなる群から選択される一又は二以上の無機系生体吸収性材料である、 ことを特徴とする請求の範囲第 1項ないし第 4項のいずれかに記載の骨又は歯周 組織形成用組成物。  5. The inorganic bioabsorbable material is selected from the group consisting of:) 3-tricalcium phosphate, α-triphosphate phosphate, tetracalcium phosphate, octacalcium phosphate, and amorphous calcium phosphate. The composition for forming a bone or periodontal tissue according to any one of claims 1 to 4, wherein the composition is one or more inorganic bioabsorbable materials.
6.前記無機系生体吸収性材料は、平均粒子径が 0. 5 ;tim~50 imである、 ことを特徴とする請求の範囲第 1項ないし第 5項のいずれかに記載の骨又は歯周 組織形成用組成物。  6. The bone or tooth according to any one of claims 1 to 5, wherein the inorganic bioabsorbable material has an average particle diameter of 0.5; tim to 50 im. Peripheral tissue forming composition.
7. 前記無機系生体吸収性材料は、 30重量%~ 75重量%含有される、 こと を特徴とする請求の範囲第 1項ないし第 6項のいずれかに記載の骨又は歯周組織 形成用組成物。  7. The bone or periodontal tissue formation according to any one of claims 1 to 6, wherein the inorganic bioabsorbable material is contained in an amount of 30% by weight to 75% by weight. Composition.
8. 骨形成能を有する細胞をさらに含んで調製される、 ことを特徴とする請求 の範囲第 1項ないし第 7項のいずれかに記載の骨又は歯周組織形成用組生物。  8. The composition for forming a bone or periodontal tissue according to any one of claims 1 to 7, which is prepared further comprising cells having an osteogenic ability.
9. PRPと、 骨形成能を有する細胞とを含んでなり、 使用時において流動性 を有する骨又は歯周組織形成用組成物。 9. A composition for forming bone or periodontal tissue, which comprises PRP and cells having osteogenic ability and has fluidity during use.
1 0.血小板と、 フイブリノーゲンと、骨形成能を有する細胞とを含んでなり、 使用時において流動性を有する骨又は齒周組織形成用組成物。 10. A composition for forming bone or periodontal tissue having fluidity during use, comprising platelets, fibrinogen, and cells capable of forming bone.
1 1. 血小板と、 フイブリンと、 骨形成能を有する細胞とを含んでなり、 使用 時において流動性を有する骨又は歯周組織形成用組成物。  1 1. A composition for forming bone or periodontal tissue which has fluidity when used, comprising platelets, fibrin, and cells capable of forming bone.
1 2. 血小板と、 骨形成能を有する細胞とを含んでなり、 使用時において流動 性を有する骨又は歯周組織形成用組成物。  1 2. A composition for forming bone or periodontal tissue, which comprises platelets and cells having an osteogenic ability and has fluidity during use.
1 3. フイブリノ一ゲンと、 無機系生体吸収性材料と、 骨形成能を有する細胞 とを含んでなり、 使用時において流動性を有する骨又は歯周組織形成用組成物。  1 3. A composition for forming bone or periodontal tissue having fluidity during use, comprising fibrinogen, an inorganic bioabsorbable material, and cells having an osteogenic ability.
14. 前記無機系生体吸収性材料は、 /3—リン酸三カルシウム、 α—リン酸三 カルシウム、 リン酸四カルシウム、 リン酸八カルシウム、 及び非結晶質リン酸力 ルシゥムからなる群から選択される一又は二以上の無機系生体吸収性材料である、 ことを特徴とする請求の範囲第 1 3項に記載の骨又は歯周組織形成用組成物。  14. The inorganic bioabsorbable material is selected from the group consisting of / 3-tricalcium phosphate, α-tricalcium phosphate, tetracalcium phosphate, octacalcium phosphate, and amorphous phosphate. 14. The composition for forming bone or periodontal tissue according to claim 13, wherein the composition is one or more inorganic bioabsorbable materials.
1 5. PRPと、 アルギン酸塩と、 骨形成能を有する細胞とを含んでなり、 使 用時において流動性を有する骨又は歯周組織形成用組成物。  1 5. A composition for forming bone or periodontal tissue which has fluidity when used, comprising PRP, alginate, and cells having bone forming ability.
1 6. 使用時において注射容器を用いて注入可能な流動性を有する、 ことを特 徴とする請求の範囲第 1項ないし第 1 5項のいずれかに記載の骨又は歯周組織形 成用組成物。  1 6. A bone or periodontal tissue forming device according to any one of claims 1 to 15, characterized in that the device has fluidity that can be injected using an injection container at the time of use. Composition.
1 7. ゲル化材料をさらに含んで調製される、 ことを特徴とする請求の範囲第 1項ないし第 1 6項のいずれかに記載の骨又は歯周組織形成用組成物。  1 7. The composition for forming a bone or periodontal tissue according to any one of claims 1 to 16, wherein the composition further comprises a gelling material.
1 8. 前記ゲル化材料は、 トロンビン及ぴ塩化カルシウムである、 ことを特徴 とする請求の範囲第 1 7項に記載の骨又は歯周組織形成用組成物。  18. The composition for forming bone or periodontal tissue according to claim 17, wherein the gelling material is thrombin and calcium chloride.
1 9. 使用時に凍結状態から解凍されて使用される、 ことを特徴とする請求の 範囲第 1項ないし第 1 8項のいずれかに記載の骨又は歯周組織形成用組成物。  1 9. The composition for forming bone or periodontal tissue according to any one of claims 1 to 18, wherein the composition is used after being thawed from a frozen state at the time of use.
20. 請求の範囲第 1項ないし第 1 9項のいずれかに記載の骨又は歯周組織形 成用組成物を注射容器に封入してなる骨又は歯周組織形成用注射剤。  20. An injection for forming bone or periodontal tissue, wherein the composition for forming bone or periodontal tissue according to any one of claims 1 to 19 is enclosed in an injection container.
PCT/JP2001/009800 2000-11-14 2001-11-08 Compositions for forming bone or periodontium and injections for forming bone or periodontium WO2002040071A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU2002212739A AU2002212739A1 (en) 2000-11-14 2001-11-08 Compositions for forming bone or periodontium and injections for forming bone orperiodontium
JP2002542441A JPWO2002040071A1 (en) 2000-11-14 2001-11-08 Composition for forming bone or periodontal tissue, and injection for forming bone or periodontal tissue

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2000-347287 2000-11-14
JP2000347287 2000-11-14
JP2001-36415 2001-02-14
JP2001036415 2001-02-14
JP2001-150010 2001-05-18
JP2001150010 2001-05-18

Publications (1)

Publication Number Publication Date
WO2002040071A1 true WO2002040071A1 (en) 2002-05-23

Family

ID=27345189

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/009800 WO2002040071A1 (en) 2000-11-14 2001-11-08 Compositions for forming bone or periodontium and injections for forming bone or periodontium

Country Status (3)

Country Link
JP (1) JPWO2002040071A1 (en)
AU (1) AU2002212739A1 (en)
WO (1) WO2002040071A1 (en)

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004012750A1 (en) * 2002-08-02 2004-02-12 Emi Sumida Method of preparing platelet rich plasma
JP2004143067A (en) * 2002-10-23 2004-05-20 Kazutomo Inoue Neovascularization-inducing agent
JP2004305260A (en) * 2003-04-02 2004-11-04 Olympus Corp Biological tissue prosthesis and production method thereof
JP2005110710A (en) * 2003-10-02 2005-04-28 Olympus Corp Bone replacing material and its manufacturing method
JP2005111130A (en) * 2003-10-10 2005-04-28 Olympus Corp Method of manufacturing bone prosthetic material
JP2005170816A (en) * 2003-12-09 2005-06-30 Naoki Ishiguro Material for restoring cartilage, and method for producing the same
WO2006123579A1 (en) * 2005-05-17 2006-11-23 National University Corporation Nagoya University Method of preparing cell for bone tissue formation and application of cell for bone tissue formation
JP2006346420A (en) * 2005-06-13 2006-12-28 Univ Nagoya Grafting material and bone improver
JP2007037635A (en) * 2005-08-01 2007-02-15 Hitachi Medical Corp Gelled composition for periodontium regeneration
US7497686B2 (en) 2004-09-02 2009-03-03 Odontis Ltd. Bone regeneration
WO2011048803A1 (en) * 2009-10-20 2011-04-28 日東電工株式会社 Material for induction of hard tissue regeneration
JP2011525380A (en) * 2008-06-23 2011-09-22 サントル ナショナル ドゥ ラ ルシェルシュ シアンティフィク Biomaterials containing calcium phosphate
WO2014017147A1 (en) 2012-07-27 2014-01-30 株式会社ジーシー Tissue regeneration construct, and method for producing tissue regeneration construct
JP2014057595A (en) * 2005-12-13 2014-04-03 President & Fellows Of Harvard College Scaffolds for cell transplantation
JP2016052520A (en) * 2006-07-21 2016-04-14 ゲネラ・イストラジヴァンジャ・ディーオーオー Bmp-1 procollagen c-proteinase for diagnosis and treatment of loss and disorder of bone and soft tissue
US9370558B2 (en) 2008-02-13 2016-06-21 President And Fellows Of Harvard College Controlled delivery of TLR agonists in structural polymeric devices
US9381235B2 (en) 2009-07-31 2016-07-05 President And Fellows Of Harvard College Programming of cells for tolerogenic therapies
US9486512B2 (en) 2011-06-03 2016-11-08 President And Fellows Of Harvard College In situ antigen-generating cancer vaccine
EP3144017A1 (en) * 2015-09-17 2017-03-22 Metrex Research LLC Plasma-enriched hydroxyapatite-based filler material and method of forming the same
US9675561B2 (en) 2011-04-28 2017-06-13 President And Fellows Of Harvard College Injectable cryogel vaccine devices and methods of use thereof
US9821045B2 (en) 2008-02-13 2017-11-21 President And Fellows Of Harvard College Controlled delivery of TLR3 agonists in structural polymeric devices
US9937249B2 (en) 2012-04-16 2018-04-10 President And Fellows Of Harvard College Mesoporous silica compositions for modulating immune responses
US10045947B2 (en) 2011-04-28 2018-08-14 President And Fellows Of Harvard College Injectable preformed macroscopic 3-dimensional scaffolds for minimally invasive administration
US10682400B2 (en) 2014-04-30 2020-06-16 President And Fellows Of Harvard College Combination vaccine devices and methods of killing cancer cells
US11150242B2 (en) 2015-04-10 2021-10-19 President And Fellows Of Harvard College Immune cell trapping devices and methods for making and using the same
US11202759B2 (en) 2010-10-06 2021-12-21 President And Fellows Of Harvard College Injectable, pore-forming hydrogels for materials-based cell therapies
US11555177B2 (en) 2016-07-13 2023-01-17 President And Fellows Of Harvard College Antigen-presenting cell-mimetic scaffolds and methods for making and using the same
US11752238B2 (en) 2016-02-06 2023-09-12 President And Fellows Of Harvard College Recapitulating the hematopoietic niche to reconstitute immunity
US11786457B2 (en) 2015-01-30 2023-10-17 President And Fellows Of Harvard College Peritumoral and intratumoral materials for cancer therapy

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0345267A (en) * 1989-07-12 1991-02-26 Mitsubishi Materials Corp Filling material for bone-defective part and bone-vacant part
WO1993016657A1 (en) * 1992-02-28 1993-09-02 Collagen Corporation Injectable ceramic compositions and methods for their preparation and use
WO1994007548A1 (en) * 1992-09-30 1994-04-14 Inoteb Method of preparing a biological adhesive enriched with platelet factors, and application
JPH10243996A (en) * 1997-03-07 1998-09-14 Kagaku Gijutsu Shinko Jigyodan Vital material for promoting hard tissue calcification
JPH11253547A (en) * 1998-03-11 1999-09-21 Kunio Ishikawa Cell blocking film

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0345267A (en) * 1989-07-12 1991-02-26 Mitsubishi Materials Corp Filling material for bone-defective part and bone-vacant part
WO1993016657A1 (en) * 1992-02-28 1993-09-02 Collagen Corporation Injectable ceramic compositions and methods for their preparation and use
WO1994007548A1 (en) * 1992-09-30 1994-04-14 Inoteb Method of preparing a biological adhesive enriched with platelet factors, and application
JPH10243996A (en) * 1997-03-07 1998-09-14 Kagaku Gijutsu Shinko Jigyodan Vital material for promoting hard tissue calcification
JPH11253547A (en) * 1998-03-11 1999-09-21 Kunio Ishikawa Cell blocking film

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MARX R.E. ET AL.: "Platelet rich plasma: growth factor enhancement for bone grafts", ORAL SURGERY, MEDICINE, PATHOLOGY, RADIOLOGY AND ENDODONTICS, vol. 85, no. 6, 1998, pages 638 - 646, XP002909077 *

Cited By (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004012750A1 (en) * 2002-08-02 2004-02-12 Emi Sumida Method of preparing platelet rich plasma
JP2004143067A (en) * 2002-10-23 2004-05-20 Kazutomo Inoue Neovascularization-inducing agent
JP2004305260A (en) * 2003-04-02 2004-11-04 Olympus Corp Biological tissue prosthesis and production method thereof
JP2005110710A (en) * 2003-10-02 2005-04-28 Olympus Corp Bone replacing material and its manufacturing method
JP2005111130A (en) * 2003-10-10 2005-04-28 Olympus Corp Method of manufacturing bone prosthetic material
JP2005170816A (en) * 2003-12-09 2005-06-30 Naoki Ishiguro Material for restoring cartilage, and method for producing the same
US7497686B2 (en) 2004-09-02 2009-03-03 Odontis Ltd. Bone regeneration
WO2006123579A1 (en) * 2005-05-17 2006-11-23 National University Corporation Nagoya University Method of preparing cell for bone tissue formation and application of cell for bone tissue formation
JPWO2006123579A1 (en) * 2005-05-17 2008-12-25 国立大学法人名古屋大学 Method for preparing cells for bone tissue formation and utilization of cells for bone tissue formation
JP2006346420A (en) * 2005-06-13 2006-12-28 Univ Nagoya Grafting material and bone improver
JP2007037635A (en) * 2005-08-01 2007-02-15 Hitachi Medical Corp Gelled composition for periodontium regeneration
JP2014057595A (en) * 2005-12-13 2014-04-03 President & Fellows Of Harvard College Scaffolds for cell transplantation
US9446107B2 (en) 2005-12-13 2016-09-20 President And Fellows Of Harvard College Scaffolds for cell transplantation
US11096997B2 (en) 2005-12-13 2021-08-24 President And Fellows Of Harvard College Scaffolds for cell transplantation
US10149897B2 (en) 2005-12-13 2018-12-11 President And Fellows Of Harvard College Scaffolds for cell transplantation
US10137184B2 (en) 2005-12-13 2018-11-27 President And Fellows Of Harvard College Scaffolds for cell transplantation
JP2015226540A (en) * 2005-12-13 2015-12-17 プレジデント・アンド・フェロウズ・オブ・ハーバード・カレッジ Scaffolds for cell transplantation
JP2017079778A (en) * 2005-12-13 2017-05-18 プレジデント・アンド・フェロウズ・オブ・ハーバード・カレッジ Scaffolds for cell transplantation
JP2016052520A (en) * 2006-07-21 2016-04-14 ゲネラ・イストラジヴァンジャ・ディーオーオー Bmp-1 procollagen c-proteinase for diagnosis and treatment of loss and disorder of bone and soft tissue
US10568949B2 (en) 2008-02-13 2020-02-25 President And Fellows Of Harvard College Method of eliciting an anti-tumor immune response with controlled delivery of TLR agonists in porous polymerlc devices
US10328133B2 (en) 2008-02-13 2019-06-25 President And Fellows Of Harvard College Continuous cell programming devices
US10258677B2 (en) 2008-02-13 2019-04-16 President And Fellows Of Harvard College Continuous cell programming devices
US9821045B2 (en) 2008-02-13 2017-11-21 President And Fellows Of Harvard College Controlled delivery of TLR3 agonists in structural polymeric devices
US9370558B2 (en) 2008-02-13 2016-06-21 President And Fellows Of Harvard College Controlled delivery of TLR agonists in structural polymeric devices
JP2011525380A (en) * 2008-06-23 2011-09-22 サントル ナショナル ドゥ ラ ルシェルシュ シアンティフィク Biomaterials containing calcium phosphate
JP2014195712A (en) * 2008-06-23 2014-10-16 サントル ナショナル ドゥ ラ ルシェルシュ シアンティフィク Calcium phosphate-containing biomaterial
US9421227B2 (en) 2008-06-23 2016-08-23 Centre National De La Recherche Scientifique Biomaterials containing calcium phosphate
US9233124B2 (en) 2008-06-23 2016-01-12 Centre National De La Recherche Scientifique Biomaterials containing calcium phosphate
US9381235B2 (en) 2009-07-31 2016-07-05 President And Fellows Of Harvard College Programming of cells for tolerogenic therapies
US10080789B2 (en) 2009-07-31 2018-09-25 President And Fellows Of Harvard College Programming of cells for tolerogenic therapies
US9040070B2 (en) 2009-10-20 2015-05-26 Nitto Denko Corporation Material for induction of hard tissue regeneration
WO2011048803A1 (en) * 2009-10-20 2011-04-28 日東電工株式会社 Material for induction of hard tissue regeneration
CN102665775A (en) * 2009-10-20 2012-09-12 日东电工株式会社 Material for induction of hard tissue regeneration
JPWO2011048803A1 (en) * 2009-10-20 2013-03-07 日東電工株式会社 Materials for guiding hard tissue regeneration
US11202759B2 (en) 2010-10-06 2021-12-21 President And Fellows Of Harvard College Injectable, pore-forming hydrogels for materials-based cell therapies
US9675561B2 (en) 2011-04-28 2017-06-13 President And Fellows Of Harvard College Injectable cryogel vaccine devices and methods of use thereof
US10045947B2 (en) 2011-04-28 2018-08-14 President And Fellows Of Harvard College Injectable preformed macroscopic 3-dimensional scaffolds for minimally invasive administration
US9486512B2 (en) 2011-06-03 2016-11-08 President And Fellows Of Harvard College In situ antigen-generating cancer vaccine
US10406216B2 (en) 2011-06-03 2019-09-10 President And Fellows Of Harvard College In situ antigen-generating cancer vaccine
US11278604B2 (en) 2012-04-16 2022-03-22 President And Fellows Of Harvard College Mesoporous silica compositions comprising inflammatory cytokines comprising inflammatory cytokines for modulating immune responses
US9937249B2 (en) 2012-04-16 2018-04-10 President And Fellows Of Harvard College Mesoporous silica compositions for modulating immune responses
WO2014017147A1 (en) 2012-07-27 2014-01-30 株式会社ジーシー Tissue regeneration construct, and method for producing tissue regeneration construct
US10682400B2 (en) 2014-04-30 2020-06-16 President And Fellows Of Harvard College Combination vaccine devices and methods of killing cancer cells
US11786457B2 (en) 2015-01-30 2023-10-17 President And Fellows Of Harvard College Peritumoral and intratumoral materials for cancer therapy
US11150242B2 (en) 2015-04-10 2021-10-19 President And Fellows Of Harvard College Immune cell trapping devices and methods for making and using the same
EP3144017A1 (en) * 2015-09-17 2017-03-22 Metrex Research LLC Plasma-enriched hydroxyapatite-based filler material and method of forming the same
US11752238B2 (en) 2016-02-06 2023-09-12 President And Fellows Of Harvard College Recapitulating the hematopoietic niche to reconstitute immunity
US11555177B2 (en) 2016-07-13 2023-01-17 President And Fellows Of Harvard College Antigen-presenting cell-mimetic scaffolds and methods for making and using the same

Also Published As

Publication number Publication date
JPWO2002040071A1 (en) 2004-03-18
AU2002212739A1 (en) 2002-05-27

Similar Documents

Publication Publication Date Title
WO2002040071A1 (en) Compositions for forming bone or periodontium and injections for forming bone or periodontium
Tahmasebi et al. Current biocompatible materials in oral regeneration: a comprehensive overview of composite materials
JP5408578B2 (en) Composition for autologous or allogeneic transplantation using dental pulp stem cells and use thereof
Shayesteh et al. Sinus augmentation using human mesenchymal stem cells loaded into a β-tricalcium phosphate/hydroxyapatite scaffold
JP4982841B2 (en) Regenerative medical bone composition
Yazdanian et al. Decellularized and biological scaffolds in dental and craniofacial tissue engineering: A comprehensive overview
US20090298173A1 (en) Method of preparing cell for bone tissue formation and application of cell for bone tissue formation
Qiu et al. Bone regeneration in minipigs via calcium phosphate cement scaffold delivering autologous bone marrow mesenchymal stem cells and platelet‐rich plasma
JP2011516436A (en) Methods and compositions for tissue regeneration using stem cells or bone marrow cells
Zhu et al. A comparative histologic analysis of tissue-engineered bone using platelet-rich plasma and platelet-enriched fibrin glue
JP2012515041A (en) Solid scaffold consisting of bone powder and fibrin glue
Alshehadat et al. Scaffolds for dental pulp tissue regeneration: A review
CN112587729A (en) Bone repair material
JP5456031B2 (en) Combination of blood and biphasic calcium phosphate ceramic particles
JP2006122518A (en) Composition for forming bone or periodontium
JP4842579B2 (en) Gelling composition for periodontal tissue regeneration
Yaltirik et al. Platelet-rich plasma in trauma patients
Eissa et al. Effect of autogenous bone marrow mesenchymal stem cells in healing of mandibular osseous defects grafted with beta tricalcium phosphate in dogs
WO2002017983A1 (en) Medicinal compositions for forming tissue around bone or tooth, process for preparing the same, injections for forming tissue around bone or tooth and process for preparing the same
Rady Comparing the osteogenic and bone regenerative capacities of MTA, nano MTA, nano hydroxyapatite and injectable platelet rich fibrin in a rat bony defect model. An in vivo study
RU2809154C1 (en) Tissue-bioengineering design for replenishing volume of bone tissue of jaw bones
JP2014230685A (en) Periodontal tissue forming material
JP2005270647A (en) Regeneration method of dentine, and implant entity used for this
Tuersun et al. Application of filling materials in autologous tooth transplantation
Abdelhamid et al. Implications of Platelet-Rich Fibrin in Oral and Maxillofacial Surgery: A Review

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PH PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2002542441

Country of ref document: JP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase