WO2001096900A1 - Method and device for improving the temperature stability and resistance to ageing of radar level meters using a mechanical reference - Google Patents

Method and device for improving the temperature stability and resistance to ageing of radar level meters using a mechanical reference Download PDF

Info

Publication number
WO2001096900A1
WO2001096900A1 PCT/DE2001/002133 DE0102133W WO0196900A1 WO 2001096900 A1 WO2001096900 A1 WO 2001096900A1 DE 0102133 W DE0102133 W DE 0102133W WO 0196900 A1 WO0196900 A1 WO 0196900A1
Authority
WO
WIPO (PCT)
Prior art keywords
radar
mechanical reference
radar level
reflected
distance
Prior art date
Application number
PCT/DE2001/002133
Other languages
German (de)
French (fr)
Inventor
Rolf Gluth
Original Assignee
Eads Deutschland Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eads Deutschland Gmbh filed Critical Eads Deutschland Gmbh
Priority to AU2001268946A priority Critical patent/AU2001268946A1/en
Publication of WO2001096900A1 publication Critical patent/WO2001096900A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • G01S13/32Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • G01S13/34Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/22Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water
    • G01F23/28Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring the variations of parameters of electromagnetic or acoustic waves applied directly to the liquid or fluent solid material
    • G01F23/284Electromagnetic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/40Means for monitoring or calibrating
    • G01S7/4004Means for monitoring or calibrating of parts of a radar system
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications

Definitions

  • the invention relates to a method and a device for improving the temperature stability and aging resistance of radar level gauges, according to the features of claim 1.
  • the documents DE 3830992 and EP 0887658 describe devices and methods for level measurement using FMCW radars.
  • the distance between the radar system and the surface of a filling material is derived from the frequency difference between the current frequency of the transmitting oscillator and the frequency of the received wave, which is proportional to the running time of a transmitted wave.
  • DE 44 19462 C2 describes a radar level meter in which the radar signal is conducted into a still pipe to increase the measuring accuracy. Through the stillpipe, e.g. dampened the movements of the filling material. The signals reflected by the reference elements arranged in the surge pipe are used to calibrate the level and to check the function of the radar level meter.
  • a beat signal is determined from the signal component reflected by the filling material and the signal component reflected from reference elements, the frequency of which is determined. The level is then determined from the frequency of the beat signal.
  • a level meter for reducing interference signals is described in DE 42 41 910 A1.
  • the measurement signal received by a receiving antenna is compared with a threshold value. This allows interference signals to be filtered out of the measurement signal, for example due to contamination of the antenna.
  • the temperature effect on the active and passive components of an FMCW radar system creates temperature-dependent distance sensors in particular when using devices that work at high frequencies. These measurement errors are independent of the absolute distance between the radar system and the product and are expressed in a distance offset. This offset is of the order of a few millimeters. Such a measurement error is particularly not permitted for devices for level measurement which are to be used as verifiable devices according to the OIML Recommendation R85.
  • the object is achieved in that, from knowledge of the distance of the radar system from the mechanical reference d R ⁇ fe.enz, changes in the electrical distance d e ⁇ _ R efe.e n z can be recognized and taken into account in the calculation of the filling level of the filling material h f .
  • the electrical distance d e ⁇ _Refe.enz for mechanical reference is determined so that from knowledge of the distances between the radar system and container bottom h M and between the radar system and mechanical reference d r ⁇ rence the filling level of the filling material hf can be determined.
  • An advantageous device is characterized in that a mechanical reference is introduced into the transmit / receive branch of the radar full-level sensor, so that a significant signal component of a wave is reflected thereon. It is advantageous to integrate a dielectric object into the antenna feed of the radar level sensor as a mechanical reference.
  • the object is, for example, a disc or a cylinder and preferably has a bead which is inserted into a groove in the waveguide. It is advantageous here to design the bead in a ring shape.
  • FIG. 1 shows a schematic illustration of an arrangement of a radar level meter suitable for carrying out the method according to the invention, as is known from the prior art, and
  • Figure 2 is a schematic representation of an embodiment of an advantageous device in which the reference target is integrated in the antenna feed.
  • Figure 3 shows a cross section through a mechanical reference in the form of a disc.
  • FIG. 4 shows a cross section through an antenna arrangement in the antenna feed of which a mechanical reference in the form of a cylinder tapering at its ends is integrated.
  • FIG. 5 shows a cross section through a further advantageous arrangement of a cylindrical reference (as known from FIG. 4) within the antenna arrangement.
  • FMCW frequency-modulating radar system
  • a high-frequency signal generated by the generator (101) is passed via a line (102) to a directional coupler (104). From there it reaches the surface of a filling material (108) via an antenna feed (105) and the antenna (106) as a radar beam (107) through the free space.
  • the antenna feed (105) usually consists of several individual components. To simplify matters, it is shown here as a single component.
  • the radar echo (110) resulting from the reflection of the radar beam on the surface (108) is conducted via the antenna (106), the derivative (105), the directional coupler (104) and the feed line (111) to the mixer (112).
  • a signal (204) is converted in the mixer (112) with a frequency proportional to the running time of the emitted radar wave. This signal (204) is fed to the evaluation electronics (114), in which the distance calculation takes place.
  • the thus determined "electrical" distance is d e ⁇ _ feet iiung.
  • dj_ e ⁇ is a constant
  • the assumption that dj_ e ⁇ is a constant is only approximate.
  • deviations due to temperature influences are particularly evident also due to aging of components.
  • a radar target is therefore to be attached to a defined distance from the radar system and the echo reflected by this target is to be evaluated.
  • Exemplary devices suitable for carrying out the method according to the invention are described in the published documents DE 4327333 A1 and WO 9512113.
  • the devices described therein describe the attachment of a microwave-permeable cutting disc (e.g. a dielectric plate of suitable thickness) between the antenna of the radar system and a liquid level.
  • a microwave-permeable cutting disc e.g. a dielectric plate of suitable thickness
  • Such a cutting disc is always necessary anyway if the liquid in a container has a damaging effect on the antenna due to its vapor, in particular due to corrosion.
  • the cutting disc thus separates the volume of the container in which the liquid is located from the volume receiving the antenna. If the microwave signal emitted by the antenna hits the cutting disc, part of the energy of the microwave signal is reflected back from the upper surface of the cutting disc to the radar system.
  • Reflections on the underside of the cutting disc which return to the radar system, superimpose the mentioned signal in such a way that the amplitude of the sum signal depends on the thickness and the dielectric constant of the cutting disc.
  • the reflected signal can be optimized by suitable selection of these values.
  • the method according to the invention now makes use of the signal reflected on the cutting disc in such a way that it feeds this reference echo via an antenna, the antenna feed, the directional coupler and the connection to the mixer and compares it there with the reference frequency.
  • the signal generated in this way is processed in the evaluation electronics in the same way as the radar echo.
  • This calculation rule is independent of di_ e ⁇ and is used in the solution according to the invention instead of equation 2 for calculating the fill level.
  • temperature changes and aging influences on the way via dj_ e ⁇ no longer influence the measurement result.
  • a cutting disc as a mechanical reference, it is nevertheless also possible to insert another object that reflects electromagnetic waves, for example a grating or a dielectric or metallic reflector, into the beam path between the antenna of the radar level meter and the surface of the filling material (108).
  • another object that reflects electromagnetic waves for example a grating or a dielectric or metallic reflector
  • a device containing a reference target in such a way that this reference target is integrated into the antenna feed near the antenna.
  • a device as also shown in detail by way of example in FIG. 3, can be produced in a mechanically simpler and more robust manner than that known from the prior art.
  • the use of such a device for carrying out the method according to the invention is particularly advantageous because thermal and aging-related changes in the dimensions of the dimensions of the antenna (106) of the radar system are negligible with suitable dimensions.
  • Figure 2 shows schematically an embodiment of such a simple and robust variant of the device according to the invention.
  • the reference target (301) is integrated into the antenna feed near the antenna. Components that have remained the same as in FIG. 1 are provided with the same reference symbols.
  • equation 3 the following applies: dj_ e
  • d ⁇
  • Figures 3 to 5 show possible advantageous installation positions and configurations of reference targets (301a) and (301b) as they can be integrated into the antenna feed.
  • FIG. 3 shows an advantageous embodiment of a reference target (301 b) suitable for an advantageous device, which has a ring-shaped retaining bead (310).
  • the bead (310) serves as a mechanical holder and seal against the penetration of condensing vapors (here: by clamping between two components connected by means of a screw connection). The reflection takes place on the disk itself, the ratio of the thickness to the wavelength being important for the amplitude of the reflected signal.
  • the bead (310) must be dimensioned in a suitable manner.
  • the disc is provided with a concave trough (320), which points towards the antenna opening during installation and serves to drain condensate into the less critical edge areas of the antenna.
  • FIGS. 4 and 5 show further advantageous possible embodiments of an advantageous device.
  • This is the configuration of the reference target (301 a) in the form of a dielectric cylinder which tapers at its ends and has an annular retaining bead (310).
  • the holding bead (310) also serves mechanical and electrical purposes here.
  • the reference target (301 a) has peaks. On the one hand for the sliding adaptation of the wave resistance to the antenna feed and the free space and on the other hand as a drain of condensate forming on the antenna into the tank.
  • the disk-shaped reference target (301 b) can of course also be used Figure 3 can be installed. In an advantageous manner, however, it is also conceivable to introduce a reference target (301) in each of the two installation positions.
  • the design of the reference targets (301) is of course in no way restricted to the embodiments (301 a) or (301 b) shown in FIGS. 3 to 5.
  • the method according to the invention can be profitably expanded by using a plurality of reference targets (301) introduced into the transmit / receive branch. This not only allows an offset that may be present in the distance measurement to be corrected, but also by evaluating at least two transit times multiplicative error term (gain error) are eliminated. This is possible because the system knows the correct runtime difference with which an actual runtime difference can be compared.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Electromagnetism (AREA)
  • Thermal Sciences (AREA)
  • Fluid Mechanics (AREA)
  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

A signal part of a wave that is emitted by a radar level meter, which is reflected on a mechanical reference is evaluated in order to improve the temperature stability and resistance to ageing of said radar level meter. This reflected signal part is evaluated in the evaluating electronics unit in the same way as the radar echo. In addition to the electrical distance del filling to the filling surface that is determined, the electrical distance del reference to the mechanical reference is determined so that the level of the filling hf can be determined from the known distances between the radar system and the container floor hM and between the radar system and the mechanical reference dreference. To this end, a mechanical reference is introduced into the transmit-receive branch of the radar level meter, so that a significant signal part of a wave is reflected on the same. The mechanical reference is preferably a dielectric object which is integrated into the antenna feed of the radar level meter.

Description

Verfahren und Vorrichtung zur Verbesserung der Temperaturstabilität und Alte- rungsbeständigkeit von Radarfüllstandsmessern mittels einer mechanischenMethod and device for improving the temperature stability and aging resistance of radar level meters by means of a mechanical
Referenzreference
Die Erfindung betrifft ein Verfahren und eine Vorrichtung zur Verbesserung der Temperaturstabilität und Alterungsbeständigkeit von Radarfüllstandsmessern, gemäß den Merkmalen des Anspruches 1.The invention relates to a method and a device for improving the temperature stability and aging resistance of radar level gauges, according to the features of claim 1.
Zur Messung der Füllstandes von Behältern wurden während der vergangenen Jahre eine Vielzahl von Meßverfahren und -Vorrichtungen mittels Radarsystemen vorgeschlagen. Die Schriften DE 3830992 und EP 0887658 beschreiben Vorrichtungen und Verfahren zur Füllstandsmessung mittels FMCW-Radaren. Hierbei wird die Entfernung zwischen Radarsystem und der Oberfläche eines Füllgutes aus der zur Laufzeit einer ausgesandten Welle proportionalen Frequenzdifferenz zwischen aktueller Frequenz des Sendeoszillators und der Frequenz der empfangenen Welle hergeleitet.A large number of measuring methods and devices using radar systems have been proposed for measuring the fill level of containers in recent years. The documents DE 3830992 and EP 0887658 describe devices and methods for level measurement using FMCW radars. Here, the distance between the radar system and the surface of a filling material is derived from the frequency difference between the current frequency of the transmitting oscillator and the frequency of the received wave, which is proportional to the running time of a transmitted wave.
In DE 44 19462 C2 wird ein Radarfüllstandsmesser beschrieben, bei dem zur Steigerung der Meßgenauigkeit das Radarsignal in ein Schwallrohr geleitet wird. Durch das Schwallrohr werden z.B. die Bewegungen des Füllgutes gedämpft. Die von den im Schwallrohr angeordneten Referenzelemente reflektierten Signale dienen zur Ei- chung der Füllstandshöhe und der Funktionskpntrolle des Radarfullstandsmessers.DE 44 19462 C2 describes a radar level meter in which the radar signal is conducted into a still pipe to increase the measuring accuracy. Through the stillpipe, e.g. dampened the movements of the filling material. The signals reflected by the reference elements arranged in the surge pipe are used to calibrate the level and to check the function of the radar level meter.
In dem in DE 28 12 871 beschriebenen Füllstandsmesser wird aus dem vom Füllgut reflektierten Signalanteil und dem an Referenzelementen reflektierten Signalanteil ein Schwebungssignal bestimmt, dessen Frequenz bestimmt wird. Aus der Frequenz des Schwebungssignals wird dann die Füllstandshöhe bestimmt. Ein Füllstandsmesser zur Minderung von Störsignalen wird in DE 42 41 910 A1 beschrieben. Hierbei wird das von einer Empfangsantenne empfangene Meßsignal mit einem Schwellenwert verglichen. Dadurch lassen sich Störsignale, z.B. aufgrund ei- ner Verunreinigung der Antenne aus dem Meßsignal ausfiltern.In the level meter described in DE 28 12 871, a beat signal is determined from the signal component reflected by the filling material and the signal component reflected from reference elements, the frequency of which is determined. The level is then determined from the frequency of the beat signal. A level meter for reducing interference signals is described in DE 42 41 910 A1. Here, the measurement signal received by a receiving antenna is compared with a threshold value. This allows interference signals to be filtered out of the measurement signal, for example due to contamination of the antenna.
Durch Temperatureinwirkung auf die aktiven und passiven Komponenten eines FMCW Radarsystems entstehen insbesondere beim Einsatz von Geräten, welche bei hohen Frequenzen Arbeiten in der Regel temperaturabhängige Entfernungsmeßfeh- ler. Diese Meßfehler sind unabhängig von der absoluten Entfernung zwischen Radarsystem und Füllgut und äußern in einem Entfemungs-Offset. Dieser Offset liegt in er Größenordnung von einigen Millimetern. Ein solcher Meßfehler ist vor allem bei Geräten zur Füllstandsmessung, welche nach den OIML Recommendation R85 als eichfähige Geräte eingesetzt werden sollen, nicht zulässig.The temperature effect on the active and passive components of an FMCW radar system creates temperature-dependent distance sensors in particular when using devices that work at high frequencies. These measurement errors are independent of the absolute distance between the radar system and the product and are expressed in a distance offset. This offset is of the order of a few millimeters. Such a measurement error is particularly not permitted for devices for level measurement which are to be used as verifiable devices according to the OIML Recommendation R85.
In der Schrift US 5406842 beschreibt Locke eine Vorrichtung innerhalb eines Radarsystems, welche im wesentlichen aus einer Verzögerungsleitung bekannter Länge besteht. Das in der Schrift beschriebene Verfahren zur Kalibration des Füllstandsmessers vergleicht den zurückgelegen Weg einer in den leeren Meßraum ausge- sandten Welle mit der Laufzeit dieser Welle durch die Verzögerungsleitung. Die Integration einer solchen Verzögerungsleitung zusätzlich zu der noch notwendigen Inkorporation einer Vergleichsmimik zur Kalibration des Systems stellt einen nicht unerheblichen Realisierungsaufwand dar.In US 5406842 Locke describes a device within a radar system which essentially consists of a delay line of known length. The method for calibrating the level meter described in the document compares the distance traveled by a wave sent into the empty measuring space with the transit time of this wave through the delay line. The integration of such a delay line in addition to the still necessary incorporation of a comparison facial expression for the calibration of the system represents a not inconsiderable implementation effort.
Aufgabe ist es deshalb, ein Verfahren und eine Vorrichtung zu finden, welche es ermöglichen Auswirkung von Temperaturschwankungen und Alterungserscheinungen auf die aktiven und passiven Komponenten eines zur Füllstandsmessung verwendeten Radarsystems zu kompensiert.It is therefore an object to find a method and a device which make it possible to compensate for the effects of temperature fluctuations and signs of aging on the active and passive components of a radar system used for level measurement.
Die Aufgabe wird dadurch gelöst, dass aus Kenntnis der Entfernung des Radarsystems von der mechanischen Referenz dRΘfe.enz Veränderungen in der elektrischen Entfernung deι_Refe.enz erkannt und bei der Berechnung der Füllhöhe des Füllgutes hf berücksichtigt werden können. In vorteilhafter Weise, wird hierbei zusätzlich zur ermittelten elektrischen Entfernung dΘι_iiung zur Füllmitteloberfläche auch noch die elektrische Entfernung deι_Refe.enz zur mechanischen Referenz bestimmt, so daß aus Kenntnis der Entfernungen zwischen Radarsystem und Behälterboden hM sowie zwischen Radarsystem und der mechanischen Referenz dRΘferenz die Füllhöhe des Füllgutes hf bestimmt werden kann.The object is achieved in that, from knowledge of the distance of the radar system from the mechanical reference d RΘfe.enz, changes in the electrical distance d e ι_ R efe.e n z can be recognized and taken into account in the calculation of the filling level of the filling material h f . In an advantageous manner, in addition to the determined electrical distance d Θ ι_ iiung to the filler surface, the electrical distance d e ι_Refe.enz for mechanical reference is determined so that from knowledge of the distances between the radar system and container bottom h M and between the radar system and mechanical reference d r Θ rence the filling level of the filling material hf can be determined.
Eine vorteilhafte Vorrichtung zeichnet sich dadurch aus, daß eine mechanische Referenz in den Sende-Empfangs-Zweig des Radarfullstandsmessers eingebracht ist, so daß ein signifikanter Signalanteil einer Welle daran reflektiert wird. Vorteilhaft ist hierbei als mechanische Referenz ein dielektrisches Objekt in die Antennenzuführung des Radarfullstandsmessers zu integrieren. Wobei das Objekt beispielsweise eine Scheibe oder ein Zylinder ist und vorzugsweise einen Wulst besitzt, der in eine Nut des Wellenleiters eingelegt wird. Hierbei ist es vorteilhaft, den Wulst ringförmig aus- zuführen.An advantageous device is characterized in that a mechanical reference is introduced into the transmit / receive branch of the radar full-level sensor, so that a significant signal component of a wave is reflected thereon. It is advantageous to integrate a dielectric object into the antenna feed of the radar level sensor as a mechanical reference. The object is, for example, a disc or a cylinder and preferably has a bead which is inserted into a groove in the waveguide. It is advantageous here to design the bead in a ring shape.
Die Erfindung wird nachfolgend anhand von Ausführungsbeispielen und Figuren näher erläutert. Dabei zeigtThe invention is explained in more detail below on the basis of exemplary embodiments and figures. It shows
Figur 1 eine schematische Darstellung einer zur Durchführung des erfindungsgemäßen Verfahrens geeigneten Anordnung eines Radarfullstandsmessers wie sie aus dem Stand der Technik bekannt ist, undFIG. 1 shows a schematic illustration of an arrangement of a radar level meter suitable for carrying out the method according to the invention, as is known from the prior art, and
Figur 2 eine schematische Darstellung einer Ausgestaltung einer vorteilhaften Vorrichtung, bei welcher das Referenzziel in die Antennenzuführung integriert ist. Figur 3 zeigt einen Querschnitt durch eine mechanische Referenz in Form einer Scheibe.Figure 2 is a schematic representation of an embodiment of an advantageous device in which the reference target is integrated in the antenna feed. Figure 3 shows a cross section through a mechanical reference in the form of a disc.
Figur 4 zeigt einen Querschnitt durch eine Antennenanordnung in deren Antennenzuführung eine mechanische Referenz in Form eines an seinen Enden spitz zulaufenden Zylinders integriert ist. Figur 5 zeigt eine Querschnitt durch eine weitere, vorteilhafte Anordnung einer zylin- derförmigen Referenz (wie aus Figur 4 bekannt) innerhalb der Antennenanordnung. Die schematische Darstellung einer Anordnung eines Radarfullstandsmessers, wie sie zur Durchführung des erfindungsgemäßen Verfahrens geeignet ist, ist in Figur 1 dargestellt. Die Anordnung basiert auf einer aus dem Stand der Technik bekannten Anordnung eines frequenzmodulierenden Radarsystem (FMCW-Radar oderFIG. 4 shows a cross section through an antenna arrangement in the antenna feed of which a mechanical reference in the form of a cylinder tapering at its ends is integrated. FIG. 5 shows a cross section through a further advantageous arrangement of a cylindrical reference (as known from FIG. 4) within the antenna arrangement. The schematic representation of an arrangement of a radar zero level meter, as is suitable for carrying out the method according to the invention, is shown in FIG. The arrangement is based on an arrangement known from the prior art of a frequency-modulating radar system (FMCW or
SFMCW- RADAR) und einem Behälter (Tank). Dabei wird ein vom Generator (101) erzeugtes Hochfrequenzsignals über eine Leitung (102) zu einem Richtkoppler (104) geleitet. Von dort gelangt es über eine Antennenzuführung (105) und die Antenne (106) als Radarstrahl (107) durch den Freiraum zur Oberfläche eines Füllgutes (108). Die Antennenzuführung (105) besteht in der Regel aus mehreren Einzelkomponenten. Sie ist hier zur Vereinfachung als eine einzige Komponente dargestellt. Das aus der Reflexion des Radarstrahl an der Oberfläche (108) resultierende Radarecho (110) wird über die Antenne (106), die Ableitung (105), den Richtkoppler (104) und die Zuleitung (111) zum Mischer (112) geleitet. Dort wird es mit einem über die Lei- tung (103) zugeführten, in fester Beziehung zu dem im Generator (101) erzeugten Hochfrequenzsignal stehenden Referenzsignal verglichen (multipliziert). Infolgedessen, wird im Mischer (112) ein Signal (204) mit einer zur Laufzeit der ausgesandten Radarwelle proportionalen Frequenz umgewandelt. Dieses Signal (204) wird der Auswerteelektronik (114) zugeführt, in der die Entfernungsberechnung erfolgt.SFMCW-RADAR) and a container (tank). A high-frequency signal generated by the generator (101) is passed via a line (102) to a directional coupler (104). From there it reaches the surface of a filling material (108) via an antenna feed (105) and the antenna (106) as a radar beam (107) through the free space. The antenna feed (105) usually consists of several individual components. To simplify matters, it is shown here as a single component. The radar echo (110) resulting from the reflection of the radar beam on the surface (108) is conducted via the antenna (106), the derivative (105), the directional coupler (104) and the feed line (111) to the mixer (112). There it is compared (multiplied) with a reference signal supplied via the line (103) and in a fixed relationship to the high-frequency signal generated in the generator (101). As a result, a signal (204) is converted in the mixer (112) with a frequency proportional to the running time of the emitted radar wave. This signal (204) is fed to the evaluation electronics (114), in which the distance calculation takes place.
Die so ermittelte "elektrische" Entfernung sei deι_iiung. Um daraus die zur Berechnung des Füllstandes hf benötigte Größe dRadar zu berechnen, muß die durch die Laufzeit des Radarsignals und des Radarechos im Gerät selbst bestimmte Größe dj_ei bekannt sein. Es gelten die Gleichungen: d adar = de|_Fülluπg " dj_e| GI.1The thus determined "electrical" distance is d e ι_ feet iiung. In order to calculate the quantity d rad ar required for calculating the filling level h f , the quantity dj_ei determined by the transit time of the radar signal and the radar echo in the device itself must be known. The equations apply: d adar = d e | _Fülluπg "dj_ e | GI.1
hf =
Figure imgf000006_0001
- deMFüllung + dj_e| GI.2
hf =
Figure imgf000006_0001
- deMFülllung + dj_ e | GI.2
Unter der Annahme, daß dj_eι eine Konstante ist, genügt es, diesen Wert einmal für eine Baureihe oder, in Abhängigkeit von den Exemplarstreuungen der verwendeten Bauteile einmal für jedes Radargerät einer Serie durch Eichung zu bestimmen. Die Annahme, dj_eι sei eine Konstante trifft jedoch nur näherungsweise zu. Bei sehr präzise arbeitenden Geräten mit einer Auflösung in der Größenordnung von einem Millimeter zeigen sich insbesondere Abweichungen durch Temperatureinflüsse aber auch durch Alterung von Komponenten. In vorteilhafter Weise, ist deshalb an einer definierten Entfernung vom Radarsystem ein Radarziel anzubringen und das von diesem Ziel reflektierte Echo auszuwerten.Assuming that dj_ e ι is a constant, it is sufficient to determine this value once for a series or, depending on the sample scatter of the components used, once for each radar device in a series by calibration. However, the assumption that dj_ e ι is a constant is only approximate. In the case of very precisely working devices with a resolution of the order of one millimeter, deviations due to temperature influences are particularly evident also due to aging of components. Advantageously, a radar target is therefore to be attached to a defined distance from the radar system and the echo reflected by this target is to be evaluated.
Beispielhafte für die Durchführung des erfindungsgemäßen Verfahrens geeignete Vorrichtungen werden in den Offenlegungsschriften DE 4327333 A1 und WO 9512113 beschrieben. Die dort beschriebenen Vorrichtungen beschreiben die Anbringung einer für Mikrowellen durchlässige Trennscheibe (z.B. eine dielektrische Platte geeigneter Dicke) zwischen der Antenne des Radarsystems und einem Flüssigkeitsspiegel. Eine solche Trennscheibe ist ohnehin immer dann notwendig, wenn die in einem Behälter befindliche Flüssigkeit durch ihren Dampf eine schädigende Wirkung, insbesondere durch Korrosion, auf die Antenne besitzt. Die Trennscheibe trennt also das Volumen des Behälters, in dem sich die Flüssigkeit befindet von dem die Antenne aufnehmenden Volumen. Trifft nun das von der Antenne abgestrahlte Mikrowellensignal auf die Trennscheibe, so wird ein Teil der Energie des Mikrowellensignals von der oberen Oberfläche der Trennscheibe zum Radarsystem zurückreflektiert. Reflexionen an der Unterseite der Trennscheibe, welche zum Radarsystem zurück gelangen überlagern das genannte Signal so, daß die Amplitude des Sum- mensignals von der Dicke und der Dielektrizitätskonstante der Trennscheibe abhängen. Durch geeignete Wahl dieser Werte kann das reflektierte Signal optimiert werden.Exemplary devices suitable for carrying out the method according to the invention are described in the published documents DE 4327333 A1 and WO 9512113. The devices described therein describe the attachment of a microwave-permeable cutting disc (e.g. a dielectric plate of suitable thickness) between the antenna of the radar system and a liquid level. Such a cutting disc is always necessary anyway if the liquid in a container has a damaging effect on the antenna due to its vapor, in particular due to corrosion. The cutting disc thus separates the volume of the container in which the liquid is located from the volume receiving the antenna. If the microwave signal emitted by the antenna hits the cutting disc, part of the energy of the microwave signal is reflected back from the upper surface of the cutting disc to the radar system. Reflections on the underside of the cutting disc, which return to the radar system, superimpose the mentioned signal in such a way that the amplitude of the sum signal depends on the thickness and the dielectric constant of the cutting disc. The reflected signal can be optimized by suitable selection of these values.
Das erfindungsgemäße Verfahren macht nun von dem an der Trennscheibe reflek- tierten Signal dahingehend Gebrauch, daß es dieses Referenz-Echo über eine Antenne, die Antennenzuführung, den Richtkoppler und die Verbindung dem Mischer zuführt und dort mit der Referenzfrequenz vergleicht. Das so erzeugte Signal wird in der Auswerteelektronik in gleicher weise wie das Radar-Echo weiterverarbeitet. Da Referenz- und Radar-Echo die selben Pfade durchlaufen unterliegen die so ermittel- ten Meßwerte deι_RΘferenz und deι_Füiiung den gleichen temperaturabhängigen Schwankungen von dj ei- Es gilt: dj el = del_Referenz- d Referenz GI.3 Einsetzen in Gleichung 2 liefert hf = hwi -de|_Füllung + deι_Referenz -dReferenz GI.4The method according to the invention now makes use of the signal reflected on the cutting disc in such a way that it feeds this reference echo via an antenna, the antenna feed, the directional coupler and the connection to the mixer and compares it there with the reference frequency. The signal generated in this way is processed in the evaluation electronics in the same way as the radar echo. Since the reference and radar echoes follow the same paths, the measured values d e ι_R Θ reference and d e ι_Füiiung determined in this way are subject to the same temperature-dependent fluctuations of dj ei- The following applies: dj el = d e l_Referenz- d reference GI.3 Substituting into equation 2 gives hf = hwi -d e | _filling + d e ι_reference -dreference GI.4
Diese Berechnungsvorschrift ist von di_eι unabhängig und wird in der erfindungsge- mäßen Lösung statt Gleichung 2 zur Berechnung des Füllstandes verwendet. Somit haben Temperaturänderungen und Alterungseinflüsse auf dem Weg über dj_eι keinen Einfluß auf des Meßergebnis mehr.This calculation rule is independent of di_ e ι and is used in the solution according to the invention instead of equation 2 for calculating the fill level. Thus, temperature changes and aging influences on the way via dj_ e ι no longer influence the measurement result.
Anstelle der Verwendung einer Trennscheibe als mechanische Referenz ist es aber gleichwohl auch möglich, ein anderes, elektromagnetische Wellen reflektierendes Objekt beispielsweise ein Gitter oder einen dielektrischen oder metallischen Reflektor in den Strahlengang zwischen Antenne des Radarfullstandsmessers und der Oberfläche des Füllgutes (108) einzubringen.Instead of using a cutting disc as a mechanical reference, it is nevertheless also possible to insert another object that reflects electromagnetic waves, for example a grating or a dielectric or metallic reflector, into the beam path between the antenna of the radar level meter and the surface of the filling material (108).
Es ist aber auch denkbar in erfinderischer Weise eine ein Referenzziel enthaltende Vorrichtung dergestalt zu Realisieren, daß dieses Referenzziel nahe der Antenne in die Antennenzuführung integriert wird. Eine solche Vorrichtung, wie auch beispielhaft in Figur 3 im Detail gezeigt, ist gegenüber den aus dem Stand der Technik bekannten mechanisch simpler und robuster herzustellen. Die Verwendung einer solchen Vor- richtung zur Durchführung des erfindungsgemäßen Verfahrens ist vor allem vorteilhaft, weil thermische und alterungsbedingte Änderungen der Abmaße der Dimensionen der Antenne (106 ) des Radarsystems bei geeigneter Dimensionierung vernachlässigbar sind.However, it is also conceivable in an inventive manner to implement a device containing a reference target in such a way that this reference target is integrated into the antenna feed near the antenna. Such a device, as also shown in detail by way of example in FIG. 3, can be produced in a mechanically simpler and more robust manner than that known from the prior art. The use of such a device for carrying out the method according to the invention is particularly advantageous because thermal and aging-related changes in the dimensions of the dimensions of the antenna (106) of the radar system are negligible with suitable dimensions.
Figur 2 zeigt schematisch ein Ausführungsbeispiel einer solchen einfachen und robusten Variante der erfindungsgemäßen Vorrichtung. Hier ist das Referenzziel (301) nahe der Antenne in die Antennenzuführung integriert. Komponenten, welche gegenüber Figur 1 gleich geblieben sind, sind mit den selben Bezugszeichen versehen. An Stelle von Gleichung 3 gilt hier: dj_e| = dΘ| Referenz + Antenne el GI.5 Einsetzen in Gleichung 2 liefertFigure 2 shows schematically an embodiment of such a simple and robust variant of the device according to the invention. Here, the reference target (301) is integrated into the antenna feed near the antenna. Components that have remained the same as in FIG. 1 are provided with the same reference symbols. Instead of equation 3 the following applies: dj_ e | = d Θ | Reference + antenna el GI.5 Substituting in equation 2 provides
hp =
Figure imgf000009_0001
dΘl_Füllung + de|_Referenz + dAntenne_el GI.6
hp =
Figure imgf000009_0001
d Θ l_Fülllung + d e | _Referenz + dAntenne_el GI.6
Diese Berechnungsvorschrift ist nur vom Anteil dAntenne_ei aus dj_eι abhängig. Der Wert dAntenne_ei unterliegt bei richtigem Entwurf weitaus geringeren Schwankungen als dj_eι-This calculation rule only depends on the proportion d An tenne_ei from dj_ e ι. If the design is correct, the value d an t e nne_ei is subject to far fewer fluctuations than dj_ e ι-
Die Figuren 3 bis 5 zeigen mögliche vorteilhafte Einbaupositionen und Ausgestaltungen von Referenzzielen (301a) bzw. (301b) wie sie in die Antennenzuführung integriert werden können.Figures 3 to 5 show possible advantageous installation positions and configurations of reference targets (301a) and (301b) as they can be integrated into the antenna feed.
Figur 3 zeigt einen vorteilhafte Ausgestaltung eines für eine vorteilhafte Vorrichtung geeigneten Referenzzieles (301 b), welches einen ringförmig umlaufenden Haltewulst (310) aufweist. Der Wulst (310) dient als mechanische Halterung und Abdichtung gegen eindringende kondensierende Dämpfe (hier: durch Einklemmen zwischen zwei mittels Verschraubung verbundener Bauteile). Dabei erfolgt die Reflexion an der Scheibe selbst, wobei das Verhältnis der Dicke zur Wellenlänge für die Amplitude des reflektierten Signals von Bedeutung ist. Der Wulst (310) ist hierzu in geeigneter Weise zu dimensionieren. Die Scheibe ist mit einer konkaven Mulde (320) versehen, die beim Einbau zur Antennenöffnung zeigt und dem Ablauf von Kondensat in die weniger kritischen Randbereiche der Antenne dient.FIG. 3 shows an advantageous embodiment of a reference target (301 b) suitable for an advantageous device, which has a ring-shaped retaining bead (310). The bead (310) serves as a mechanical holder and seal against the penetration of condensing vapors (here: by clamping between two components connected by means of a screw connection). The reflection takes place on the disk itself, the ratio of the thickness to the wavelength being important for the amplitude of the reflected signal. For this purpose, the bead (310) must be dimensioned in a suitable manner. The disc is provided with a concave trough (320), which points towards the antenna opening during installation and serves to drain condensate into the less critical edge areas of the antenna.
In den Figuren 4 und 5 sind weitere vorteilhafte Ausführungsmöglichkeiten einer vorteilhaften Vorrichtung dargestellt. Es handelt sich hierbei um die Ausgestaltung des Referenzzieles (301 a) in Form eines dielektrischen Zylinders, welcher an seinen Enden spitz zuläuft und einen ringförmig umlaufenden Haltewulst (310) aufweist. Der Haltewulst (310) dient auch hier mechanischen und elektrischen Zwecken. Das Refe- renzziel (301 a) ist mit Spitzen versehen. Einerseits zur gleitenden Anpassung des Wellenwiderstandes an die Antennenzuführung und den Freiraum und andererseits als Ablauf von sich an der Antenne bildendem Kondensat in den Tank.FIGS. 4 and 5 show further advantageous possible embodiments of an advantageous device. This is the configuration of the reference target (301 a) in the form of a dielectric cylinder which tapers at its ends and has an annular retaining bead (310). The holding bead (310) also serves mechanical and electrical purposes here. The reference target (301 a) has peaks. On the one hand for the sliding adaptation of the wave resistance to the antenna feed and the free space and on the other hand as a drain of condensate forming on the antenna into the tank.
An den in den Figuren 4 und 5 dargestellten Einbaupositionen des Referenzzieles (301 a) kann selbstverständlich auch das scheibenförmige Referenzziel (301 b) aus Figur 3 eingebaut werden. In vorteilhafter Weise, ist es aber auch denkbar, in beide Einbaupositionen jeweils ein Referenzziel (301) einzubringen.At the installation positions of the reference target (301 a) shown in FIGS. 4 and 5, the disk-shaped reference target (301 b) can of course also be used Figure 3 can be installed. In an advantageous manner, however, it is also conceivable to introduce a reference target (301) in each of the two installation positions.
Die Gestaltung der Referenzziele (301) beschränkt sich selbstverständlich in keiner Weise auf die in den Figuren 3 bis 5 aufgezeigten Ausführungsformen (301 a) oder (301 b).The design of the reference targets (301) is of course in no way restricted to the embodiments (301 a) or (301 b) shown in FIGS. 3 to 5.
Gewinnbringend läßt sich das erfindungsgemäße Verfahren durch die Verwendung von mehreren, in den Sende-Empfangs-Zweig eingebrachter Referenzziele (301) erweitern- Hierdurch kann nicht nur ein eventuell vorhandener Offset bei der Entfernungsmessung korrigiert werden, sondern zusätzlich anhand der Auswertung von wenigstens zwei Laufzeiten ein multiplikativer Fehlerterm (Gain-Error) beseitigt werden. Dies wird dadurch möglich, daß dem System die korrekte Laufzeitdifferenz be- kannt ist, mit welcher eine tatsächliche Laufzeitdifferenz verglichen werden kann. The method according to the invention can be profitably expanded by using a plurality of reference targets (301) introduced into the transmit / receive branch. This not only allows an offset that may be present in the distance measurement to be corrected, but also by evaluating at least two transit times multiplicative error term (gain error) are eliminated. This is possible because the system knows the correct runtime difference with which an actual runtime difference can be compared.

Claims

Patentansprüche claims
1. Verfahren zur Verbesserung der Temperaturstabilität und Alterungsbeständigkeit von Radarfüllstandsmessern, wobei der an einer mechanischen Referenz (201 oder 301) reflektierte Signalanteil einer vom Radarfüllstandsmesser ausgesandten Welle bezüglich ihrer Laufzeit ausgewertet wird, dadurch gekennzeichnet, dass aus Kenntnis der Entfernung des Radarsystems von der mechanischen Referenz dReferenz Veränderungen in der elektrischen Entfernung deι_Referenz erkannt und bei der Berechnung der Füllhöhe des Füllgutes hf be- rücksichtigt werden können.1. A method for improving the temperature stability and aging resistance of radar level meters, wherein the signal component reflected from a mechanical reference (201 or 301) of a wave emitted by the radar level meter is evaluated with regard to its transit time, characterized in that from knowledge of the distance of the radar system from the mechanical reference d Re ference changes in the electrical distance d e f erence ι_Re detected and when calculating the fill level of the filling material hf can be taken into account.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, daß der reflektierte Signalanteil in der Auswerteelektronik in gleicher Weise wie das Radar-Echo ausgewertet wird und die Auswerteelektronik, zusätzlich zur ermittelten elektrischen Entfernung deι_Füiiung zur Füllmitteloberfläche (108) auch noch die elektri- sehe Entfernung
Figure imgf000011_0001
zur mechanischen Referenz (201 oder 301) bestimmt, so daß aus Kenntnis der Entfernungen zwischen Radarsystem und Behälterboden hj i sowie zwischen Radarsystem und der mechanischen Referenz dReferenz die Füllhöhe des Füllgutes hf bestimmt werden kann, entsprechend der Beziehung:
2. The method according to claim 1, characterized in that the reflected signal component in the evaluation electronics is evaluated in the same way as the radar echo and the evaluation electronics, in addition to the determined electrical distance d e ι_Füiiung to the filler surface (108) also see the electrical distance
Figure imgf000011_0001
the mechanical reference (201 or 301), so that, from knowledge of the distances between the radar system and the container bottom hj i and between the radar system and the mechanical reference d R e f erence the filling height of the filling h f can be determined according to the relationship:
hf = hiυi — del_Füllung + de|_Referenz " dReferenzhf = hiυi - del_Füllung + d e | _Referenz "dReferenz
3. Verfahren nach einem der Ansprüche 1 bis 2, dadurch gekennzeichnet, daß durch die Auswertung von mindestens zwei Signallaufzeiten, welche durch Re- flektionen an zwei bezüglich Ihrer Entfernung bekannten Zielen entstanden sind, ein multiplikativer Fehlerterm (Gain-Error) bei der Entfernungsmessung beseitigt werden kann.3. The method according to any one of claims 1 to 2, characterized in that a multiplicative error term (gain error) in the distance measurement is eliminated by evaluating at least two signal propagation times which have arisen from reflections on two targets known with regard to their distance can be.
4. Vorrichtung zur Durchführung eines Verfahrens nach einem der vorangehenden Ansprüchen, dadurch gekennzeichnet, daß mindestens eine mechanische Referenz (201 oder 301) in den Sende-Empfangs-Zweig des Radarfullstandsmessers vorhanden ist, so daß ein signifikanter Signalanteil einer Welle daran re- flektiert wird. 4. Device for carrying out a method according to one of the preceding claims, characterized in that at least one mechanical reference (201 or 301) is present in the transmit / receive branch of the radar level sensor, so that a significant signal component of a wave is reflected thereon ,
5. Vorrichtung nach Anspruch 4, dadurch gekennzeichnet, daß als mechanische Referenz ein dielektrisches Objekt (301) in die Antennenzuführung des Radarfullstandsmessers integriert wird.5. The device according to claim 4, characterized in that a dielectric object (301) is integrated as a mechanical reference in the antenna feed of the radar level sensor.
6. Vorrichtung nach Anspruch 5, dadurch gekennzeichnet, daß die mechanische Referenz über einen Haltewulst (310) verfügt, der als mechanische Halterung und zur Abdichtung gegen eindringende kondensierende Dämpfe dient.6. The device according to claim 5, characterized in that the mechanical reference has a retaining bead (310) which serves as a mechanical holder and for sealing against the ingress of condensing vapors.
7. Vorrichtung nach einem der Ansprüche 5 oder 6, dadurch gekennzeichnet, daß das dielektrische Objekt (301 b) eine Scheibe ist.7. Device according to one of claims 5 or 6, characterized in that the dielectric object (301 b) is a disc.
8. Vorrichtung nach Anspruch 7, dadurch gekennzeichnet, daß die Dicke der Scheibe einem ungeradzahligen Vielfachen eines Viertels der Wellenlänge der vom Radarfüllstandsmesser ausgesandten Wellen im Dielektrikum entspricht.8. The device according to claim 7, characterized in that the thickness of the disc corresponds to an odd multiple of a quarter of the wavelength of the waves emitted by the radar level in the dielectric.
9. Vorrichtung nach einem der Ansprüche 7 oder 8, dadurch gekennzeichnet, daß die Scheibe auf einer Seite über eine konkave Mulde (320) verfügt.9. Device according to one of claims 7 or 8, characterized in that the disc has on one side a concave trough (320).
10. Vorrichtung nach einem der Ansprüche 5 oder 6, dadurch gekennzeichnet, daß das dielektrische Objekt (301 a) ein Zylinder ist.10. Device according to one of claims 5 or 6, characterized in that the dielectric object (301 a) is a cylinder.
11. Vorrichtung nach Anspruch 10, dadurch gekennzeichnet, daß das der Zylinder an seinen Enden spitz zuläuft.11. The device according to claim 10, characterized in that the cylinder tapers at its ends.
12. Vorrichtung nach einem der Ansprüche 7 bis 11 , dadurch gekennzeichnet, daß der Haltewulst (310) so ausgebildet ist, daß er eine elektrische Reflexionsstelle darstellt. 12. The device according to one of claims 7 to 11, characterized in that the retaining bead (310) is designed such that it represents an electrical reflection point.
PCT/DE2001/002133 2000-06-10 2001-06-07 Method and device for improving the temperature stability and resistance to ageing of radar level meters using a mechanical reference WO2001096900A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2001268946A AU2001268946A1 (en) 2000-06-10 2001-06-07 Method and device for improving the temperature stability and resistance to ageing of radar level meters using mechanical reference

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE2000128864 DE10028864A1 (en) 2000-06-10 2000-06-10 Temperature and aging stability enhancement method for radar fill level meter, involves determining distance of radar system to dielectric reference disk
DE10028864.2 2000-06-10

Publications (1)

Publication Number Publication Date
WO2001096900A1 true WO2001096900A1 (en) 2001-12-20

Family

ID=7645418

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2001/002133 WO2001096900A1 (en) 2000-06-10 2001-06-07 Method and device for improving the temperature stability and resistance to ageing of radar level meters using a mechanical reference

Country Status (3)

Country Link
AU (1) AU2001268946A1 (en)
DE (1) DE10028864A1 (en)
WO (1) WO2001096900A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003056357A3 (en) * 2001-12-22 2003-09-18 Conti Temic Microelectronic Method for measuring distance

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7173436B2 (en) * 2004-11-24 2007-02-06 Saab Rosemount Tank Radar Ag Antenna device for level gauging
NL1031209C2 (en) * 2006-02-22 2007-08-24 Enraf Bv Method and device for accurately determining the level L of a liquid with the aid of radar signals radiated to the liquid level and radar signals reflected by the liquid level.
DE102006045711A1 (en) * 2006-09-27 2008-04-03 Siemens Ag Method for discrimination of different filling materials that are available in definite concentrated volume and accessible from adjacent gas volume, involves carrying out microwave measurement by microwave transmitting and receiving device
EP2023097B1 (en) 2007-07-31 2015-03-04 Siemens Aktiengesellschaft A radar level gauge
WO2020119879A1 (en) * 2018-12-10 2020-06-18 Abb Schweiz Ag Radar sensor and robot using the same
DE102019002278B4 (en) 2019-03-29 2023-01-19 OndoSense GmbH Radar unit for measuring a distance to a reflecting surface

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2812871A1 (en) * 1977-03-25 1978-10-05 Sumitomo Metal Ind METHOD AND APPARATUS FOR MEASURING SLAG FOAM IN A CONVERTER DURING BOWING WITH THE USE OF A MICROWAVE LEVEL METER
DE3830992A1 (en) * 1988-09-12 1990-03-22 Messerschmitt Boelkow Blohm RADAR ALTIMETER
EP0534654A2 (en) * 1991-09-26 1993-03-31 Solartron Group Limited RF water level measurement
DE4241910A1 (en) * 1992-12-11 1994-06-16 Endress Hauser Gmbh Co Level measuring device working with microwaves
DE4327333A1 (en) * 1993-08-15 1995-02-16 Krohne Messtechnik Kg Method for measuring the filling level of a liquid in a container, using the radar principle
US5406842A (en) * 1993-10-07 1995-04-18 Motorola, Inc. Method and apparatus for material level measurement using stepped frequency microwave signals
WO1995012113A1 (en) * 1993-10-26 1995-05-04 Endress + Hauser Gmbh + Co. Device for measuring the level of container contents
DE4419462A1 (en) * 1994-06-05 1995-12-07 Krohne Messtechnik Kg Contactless level meter
DE19632889A1 (en) * 1996-08-16 1998-02-19 Bosch Gmbh Robert Radar system with continuous wave frequency modulated transmission
US5847567A (en) * 1994-09-30 1998-12-08 Rosemount Inc. Microwave level gauge with remote transducer
EP0887658A1 (en) * 1997-06-27 1998-12-30 Daimler-Benz Aerospace Aktiengesellschaft Radar level gauge

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2812871A1 (en) * 1977-03-25 1978-10-05 Sumitomo Metal Ind METHOD AND APPARATUS FOR MEASURING SLAG FOAM IN A CONVERTER DURING BOWING WITH THE USE OF A MICROWAVE LEVEL METER
DE3830992A1 (en) * 1988-09-12 1990-03-22 Messerschmitt Boelkow Blohm RADAR ALTIMETER
EP0534654A2 (en) * 1991-09-26 1993-03-31 Solartron Group Limited RF water level measurement
DE4241910A1 (en) * 1992-12-11 1994-06-16 Endress Hauser Gmbh Co Level measuring device working with microwaves
DE4327333A1 (en) * 1993-08-15 1995-02-16 Krohne Messtechnik Kg Method for measuring the filling level of a liquid in a container, using the radar principle
US5406842A (en) * 1993-10-07 1995-04-18 Motorola, Inc. Method and apparatus for material level measurement using stepped frequency microwave signals
WO1995012113A1 (en) * 1993-10-26 1995-05-04 Endress + Hauser Gmbh + Co. Device for measuring the level of container contents
DE4419462A1 (en) * 1994-06-05 1995-12-07 Krohne Messtechnik Kg Contactless level meter
US5847567A (en) * 1994-09-30 1998-12-08 Rosemount Inc. Microwave level gauge with remote transducer
DE19632889A1 (en) * 1996-08-16 1998-02-19 Bosch Gmbh Robert Radar system with continuous wave frequency modulated transmission
EP0887658A1 (en) * 1997-06-27 1998-12-30 Daimler-Benz Aerospace Aktiengesellschaft Radar level gauge

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003056357A3 (en) * 2001-12-22 2003-09-18 Conti Temic Microelectronic Method for measuring distance

Also Published As

Publication number Publication date
DE10028864A1 (en) 2001-12-20
AU2001268946A1 (en) 2001-12-24

Similar Documents

Publication Publication Date Title
EP2128576B1 (en) Evaluation of an echo shape of filling level sensors
WO1994014037A1 (en) Microwave-operated level gauge
EP2179273B1 (en) Method and device for humidity and/or density measurement
DE102013213340A1 (en) Determining a distance and a flow velocity of a medium
DE102005063079B4 (en) Method for detecting and monitoring the level of a medium in a container
DE102017209628A1 (en) FMCW radar sensor for motor vehicles
EP1695044A2 (en) Filling level measurement device and filling level measurement and monitoring method
DE102017105783B4 (en) Method for determining a distance and a speed of an object
EP2848902B1 (en) Method for determining a fill level of a medium and device for determining a fill level of a medium
DE102014101904A1 (en) Efficient dispersion correction for FMCW radar in a tube
DE102008029771A1 (en) Arrangement for level measurement
DE19510484C2 (en) Level meter
EP3578930A1 (en) Conveyor belt monitoring method
WO2020069921A1 (en) Radar system for a vehicle
EP2652465A1 (en) Determination of media characteristics during filling level measurement
WO2001096900A1 (en) Method and device for improving the temperature stability and resistance to ageing of radar level meters using a mechanical reference
DE102013104699A1 (en) Device for determining the filling level by means of a helical antenna
DE19961855B4 (en) Method and device for determining the fill level of a product in a container
DE102021100695B4 (en) Method of operating a topology sensing radar system inside a vessel
EP3418699B1 (en) Fill level radar device with controlled transmission power
DE10063694A1 (en) Measuring position and shape of trays in cooking oven involves measuring with radar beams during individual measurements, especially using frequency-modulated continuous wave radar
EP2739946B1 (en) Linear relationship between tracks
DE102015109480B3 (en) Method and device for determining the filling level of a filling material in a container
DE102018132739B4 (en) Method for FMCW-based distance measurement
EP1126251A2 (en) Device for level measurement

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DK EE ES FI GB GE GH GM HR HU ID IL IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP