WO2001072278A2 - Method for administering insulin to the buccal region - Google Patents

Method for administering insulin to the buccal region Download PDF

Info

Publication number
WO2001072278A2
WO2001072278A2 PCT/IB2001/000564 IB0100564W WO0172278A2 WO 2001072278 A2 WO2001072278 A2 WO 2001072278A2 IB 0100564 W IB0100564 W IB 0100564W WO 0172278 A2 WO0172278 A2 WO 0172278A2
Authority
WO
WIPO (PCT)
Prior art keywords
formulation
absorption enhancing
acid
insulin
micellar
Prior art date
Application number
PCT/IB2001/000564
Other languages
French (fr)
Other versions
WO2001072278A3 (en
Inventor
Pankaj Modi
Original Assignee
Generex Pharmaceuticals Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US09/538,829 external-priority patent/US7070799B1/en
Application filed by Generex Pharmaceuticals Inc. filed Critical Generex Pharmaceuticals Inc.
Priority to AU44452/01A priority Critical patent/AU4445201A/en
Publication of WO2001072278A2 publication Critical patent/WO2001072278A2/en
Publication of WO2001072278A3 publication Critical patent/WO2001072278A3/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0043Nose
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/22Hormones
    • A61K38/28Insulins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0053Mouth and digestive tract, i.e. intraoral and peroral administration
    • A61K9/0056Mouth soluble or dispersible forms; Suckable, eatable, chewable coherent forms; Forms rapidly disintegrating in the mouth; Lozenges; Lollipops; Bite capsules; Baked products; Baits or other oral forms for animals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0053Mouth and digestive tract, i.e. intraoral and peroral administration
    • A61K9/006Oral mucosa, e.g. mucoadhesive forms, sublingual droplets; Buccal patches or films; Buccal sprays
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/107Emulsions ; Emulsion preconcentrates; Micelles
    • A61K9/1075Microemulsions or submicron emulsions; Preconcentrates or solids thereof; Micelles, e.g. made of phospholipids or block copolymers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides

Definitions

  • the present invention relates to an improved delivery system for the administration of large-molecule pharmaceuticals, e.g. peptidic drugs, vaccines and hormones.
  • large-molecule pharmaceuticals e.g. peptidic drugs, vaccines and hormones.
  • pharmaceuticals which may be administered through the oral and nasal membranes - Background to the Invention
  • the sublingual mucosa includes the membrane of ventral surface of the tongue and the floor of the mouth whereas the buccal mucosa constitutes the lining of the cheek.
  • the sublingual mucosa is relatively permeable thus giving rapid absorption and acceptable bioavailability of many drugs. Further, the sublingual mucosa is convenient, acceptable and easily accessible. This route has been investigated clinically for the delivery of a substantial number of drugs .
  • the ability of molecules to permeate through the oral mucosa appears to be related to molecular, size, li id solubility and peptide protein ionization. Small molecules, less than 1000 daltons appear to cross mucosa rapidly. As molecular size increases, the permeability decreases rapidly. Lipid soluble compounds are more permeable than non-lipid sol ble molecules. Maximum absorption occurs when molecules are un-ionized or neutral in electrical charges. Therefore charged molecules present the biggest challenges to absorption through the oral mucosae.
  • Enhancers may be characterized as chelators, bile salts, fatty acidB, synthetic hydrophillic and hydrophobia compounds, and biodegradable polymeric compounds .
  • enhancers have been tested so far and some have found to be effective in facilitating mucosal administration of large molecule drugs. However, hardly any penetration enhancing products have reached the market place. Reasons for this include.lack of a satisfactory safety profile respecting irritation, lowering of the barrier function, and impairment of the mucocilliary clearance protective mechanism.
  • the main factor to be considered in the use of enhancers especially related to bile salts, and some protein solubilizing agents is extremely bitter and unpleasant taste. This makes their use almost impossible for human consumption on a daily basis, several approaches were utilized to improve the taste of the bile salts based delivery systems, but none one of them are commercially acceptable for human consumption to date. Among the approaches utilized includes patch for buccal mucosa, bilayer tablets, controlled release tablets, use of protease inhibitors, buccally administered film patch devices, and various polymer matrices.
  • mixed micelles are extremely small in the size (1 nm to 10 nm) , and are smaller than the pores of the membranes in the oral cavity or the GX tract. It is therefore believed that the extremely small size of mixed micelles helps encapsulated molecules penetrate efficiently through the mucosal membranes of the oral cavity.
  • the amount of physiologically peptide or protein in the compositions of this invention is typically a quantity that provides an effective amount of the drug to produce the physiological activity (therapeutic plasma level) for which peptide or protein is being administered.
  • the bioavailability of any active Bubstance can never be 100%, that is to say the administered dose of the active drug is not completely absorbed, it is preferable to incorporate slightly larger amount than the desired dosage.
  • the dosage form is a spray (aerosol) or the like which is repeatedly dispensed from the same container, it is recoramendably so arranged that the unit dose will be slightly greater than the desired dose.
  • dosage should vary with species of warm blood animals such as man, domestic animals, and their body weights.
  • composition of this invention i ⁇ prepared as the icrofine droplets (l to 10 nm or less) by the virtue of its preparation methods used and suitable combinations of enhancer compound characteristics.
  • the utilization of atomizer or aerosol spray devices may be useful to further a sufficient reduction of particle size for effective inhalation from the nasal or oral cavity so the drug may successfully absorbed or reach to the specific site.
  • the therapeutic composition of the present invention can be stored at room temperature or at cold temperature. Storage of proteinic drugs is preferable at the cold temperature to prevent the degradation of t h e drugs and to extend their shelf life.
  • the sites of administration may the same as those used for the usual mucosal therapeutic preparation.
  • oral, transdermal and nasal are the favourite sites of the administration but the composition can be applied to the rectal and vaginal mucosa.
  • a specific administration method can be selected.
  • edetate is used herein to refer to pharmaceutically acceptable salts of ethylenediaminetetraacetic acid.
  • compositions have been selected to give enhancement in the penetration through pores, and facilitate absorption of the drugs to reach therapeutic levels in the plasma.
  • the present formulation may be absorbed buccally, by ensuring that the person does not inhale the formulation as it is sprayed.
  • One of the other bene its of using an atomizer or inhaler is that the potential for contamination is minimized Jbecause the devices are self contained.
  • the present invention provides a mixed micellar pharmaceutical formulation, having a pH of between 6.0 and 7.0 comprising a proteinic pharmaceutical agent in micellar form, water, an alkali metal lauryl sulphate in a concentration of from 1 to 10 wt./wt.% of the total formulation, a pharmaceutically acceptable edeta e in a concentration of from 1 to 10 wt./wt.% of the total formulation, at least one alkali metal salicylate in a concentration of from 1 to 10 wt./wt.% of the total formulation, and at least one micelle forming compound selected from the group consisting of lecithin, hyaluronic acid, pharmaceutically acceptable salts of hyaluronic acid, octylphenoxypolyethoxyethanol , glycolic acid, lactic acid, chamomile extract, cucumber extract, oleic acid, linolenic acid, borage oil, evening of primrose oil, trihydroxy oxo cholanyl
  • the alkali metal lauryl sulphate. the edetate and the alkali metal salicylate are each in a concentration of from 2 to 5 wt./wt.% of the total formulation.
  • the edetate is an alkali metal edetate.
  • the alkali metal edetate is be selected from the group consisting of disodium edetate, dipotassium edetate, and combinations thereof.
  • the alkali metal lauryl sulphate is sodium lauryl sulphate.
  • the alkali metal salicylate is sodium salicylate.
  • the lecithin is selected from the group consisting of saturated phospholipid, e.g. Phospholipon-H (trade mark) saturated phospholipid, unsaturated phospholipid, e.g. Phospholipon-G (trade mark) unsaturated phospholipid, phosphatidylcholine, phosphatidyl serine, sphingomyelin, phosphatidyl thanolamine, cephalin, and lysolecithin.
  • saturated phospholipid e.g. Phospholipon-H (trade mark) saturated phospholipid
  • unsaturated phospholipid e.g. Phospholipon-G (trade mark) unsaturated phospholipid
  • phosphatidylcholine phosphatidyl serine
  • sphingomyelin phosphatidyl thanolamine
  • cephalin e.g. Phospholipon-G
  • one of the absorption enhancing compounds is selected from the group consisting of hyaluronic acid, pharmaceutically acceptable salts of hyaluronic acid and mixtures thereof, the concentration such micelle forming compound being rom about l to about 5 w . /wt . %.
  • suitable for delivery through nasal passages mixed micellar pharmaceutical formulation is suitably diluted to avoid irritation of the nasal passages .
  • Another aspect of the present invention provides a mixed micellar pharmaceutical formulation, comprising a pharmaceutical agent in micellar form, water, an alkali metal C8 to C22 alkyl sulphate in a concentration of from 1 to 10 wt./wt.% of the total formulation, a pharmaceutically acceptable edetate in a concentration of from 1 to 10 wt./wt.% of the total formulation, at least one alkali metal salicylate in a concentration of from 1 to 10 wt./wt.% of the total formulation, and at least one micelle forming compound selected from the group consisting of lecithin, hyaluronic acid, pharmaceutically acceptable salts of hyaluronic acid, octylphenoxypolyethoxyethanol, glycolic acid, lactic acid, chamomile extract, cucumber extract, oleic acid, linolenic acid, borage oil, evening of primrose oil, menthol, trihydroxy oxo cholanylglycine and pharmaceutically
  • the mixed micellar aerosol pharmaceutical formulation additionally comprises i) a phenol selected from the group consisting of phenol and methyl phenol in a concentration of from 1 to 10 wt./wt.% of the total formulation, and i) a propellant selected from- the-group consisting of C1-C2 dialkyl ether, butanes, fluorocarbon propellant, hydrogen-containing fluorocarbon propellant, chlorofluorocarbon propellant, hydrogen-containing chlorofluorocarbon propellant, and mixtures thereof.
  • the alkali metal C8 to C22 alkyl sulphate is in a concentration of from 2 to 5 wt./wt.% of the total formulation.
  • the alkali metal C8 to C22 alkyl sulphate is sodium lauryl sulphate.
  • the lecithin is saturated or unsaturated, preferably selected from the group consisting of phosphatidylcholine, phosphatidyl ⁇ erine, sphingomyelin, phosphatidylethanolamine, cephalin, and ly ⁇ oleeithin.
  • one of the micelle forming compounds is selected from the group consisting of hyaluronic acid, pharmaceutically acceptable salts of hyaluronic acid, polidocanol alkyl ethers, trihydroxy oxo cholanyl glycine, polyoxyethylene ethers and mixtures thereof, the concentration such absorption enhancing compound being from about 1 'to about 5 wt. /wt . % .
  • the ratio of pharmaceutical agent, e.g- insulin, to propellant is from 5:95 to 25:75.
  • the propellant is selected from the group consisting of tetrafluoroethane, tetrafluoropropane, dimethylfluoropropan , heptafluoropropane, dimethyl ether, n-butane and isobutane.
  • the mixed micellar pharmaceutical formulation is contained in an aerosol dispense .
  • the composition may also contains at least one inorganic salt which opens channels in the gastrointestinal tract and may provide additional stimulation to release insulin.
  • inorganic salts are sodium, potassium, calcium and zinc salts, especially sodium chloride, potassium chloride, calcium chloride, zinc chloride and sodium bicarbonate.
  • the antioxidant is selected from the group consisting of tocopherol, deteroxime mesylate, methyl paraben, ethyl paraben and ascorbic acid and mixtures thereof .
  • a pre erred antioxidant is tocopherol .
  • at least one protease inhibitor is added to the formulation to inhibit degradation of the pharmaceutical agent by the action of proteolytic enzymes. Of the known protease inhibitors, most are effective at concentrations of from 1 to 3 wt./wt.% of the formulation.
  • Non-limiting examples of effective protease inhibitors are bacltra ⁇ in, soyabean tryp ⁇ in, aprotinin and bacitracin derivatives, e.g. bacitracin methylene diealicylate.
  • Bacitracin is the most effective of those named when used in concentrations of from 1.5 to
  • Soyabean trypsin and aprotinin two may be used in concentrations of about 1 to 2 wt./wt.% of the formulation.
  • the formulation suitable for delivery through oral mucosal membranes may be in chewable form, in which case it will be necessary to add ingredients suitable for such form.
  • ingredients suitable for such form include guar gum, powdered acacia, carrageenin, beeswax and xanthan gum.
  • the pharmaceutical agent may be selected from a wide .variety of acromolecular agents, depending on the disorder being treated, generally with molecular weights greater than about 1000 and especially between about 1000 and 2 000 000.
  • Preferred pharmaceutical agents are selected from the group consisting of insulin, heparin, low molecular weight heparin, hirulog, hirugen, huridine, inte erons, interleukins, cytokin ⁇ , mono and polyclonal antibodies, immunoglobins, chemotherapeutic agents, vaccines, glycoproteins, bacterial toxoids, hormones, calcitonins, insulin like growth factors (IGF) , glucagon like peptides (GLP-1) , large molecule antibiotics, protein based thrombolytic compounds, platelet inhibitors, DNA, RNA, gene therapeutics and antisense oligonucleotides, and small molecule drug ⁇ , e.g.
  • the present invention also provides a process for making a pharmaceutical composition suitable for delivery through transdermal membranes comprising ⁇ ⁇ .
  • micellar proteinic pharmaceutical agent composition in micellar form in an aqueous medium which has an alkali metal ⁇ alicylate in a concentration of from l to 10 wt./wt.% of the aqueous micellar pharmaceutical agent composition, an alkali metal lauryl sulphate in a concentration of from 1 to 10 wt./wt.% of the aqueous micellar pharmaceutical agent composition and a pharmaceutically acceptable edetate in a concentration of from 1 to 10 wt./wt.% of the aqueous micellar pharmaceutical agent composition; b) slowly adding the micellar proteinic pharmaceutical agent composition to at least one of the absorption enhancing compounds selected from the group consisting of lecithin, hyaluronic acid, pharmaceutically acceptable salts of hyaluronic acid, octylphenoxypolyethoxyethanol, glycolic acid, lactic acid, chamomile extract, cucumber extract, oleic acid, linolenic acid
  • the process provides an additional step of adding, while continuing vigorous mixing, at least one absorption enhancing compound di ferent from that added in step b) , selected- from the group consisting of lecithin, hyaluronic acid, pharmaceutically acceptable salts of hyaluronic acid, octylphenoxypolyethoxyethanol, glycolic acid, lactic acid, chamomile extract, cucumber extract, oleic acid, linolenic acid, borage oil, evening of primrose oil, trihydroxy oxo cholanylglycine, glycerin, polyglycerin, lysine, polylysine, triolein and mixtures thereof.
  • at least one absorption enhancing compound di ferent from that added in step b) selected- from the group consisting of lecithin, hyaluronic acid, pharmaceutically acceptable salts of hyaluronic acid, octylphenoxypolyethoxyethanol, glycolic acid, lactic acid, chamo
  • the alkali metal lauryl sulphate is sodium lauryl sulphate.
  • the alkali metal salicylate is sodium salicylate.
  • the alkali metal edetate may be selected from the group consisting of disodium edetate and dipotassiu edetate.
  • the formulation has a combinations selected from the group consisting of sodium hyaluronate and unsaturated phospholipid, ii) Ph ⁇ Bpholipon-H and glycolic acid, and iii) sodium hyaluronate and lecithin.
  • the present invention also provides a process for making a pharmaceutical composition suitable for delivery by means of an aerosol comprising: a) preparing a pharmaceutical agent composition in micellar form in an aqueous medium which has an alkali metal C8 to C22 alkyl sulphate in a concentration of from 1 to 10 wt./wt.% of the aqueous micellar pharmaceutical agent composition, a pharmaceutically acceptable edetate in a concentration of from l to 10 wt . /wt .
  • micellar proteinic pharmaceutical agent composition % of the aqueous micellar pharmaceutical agent composition, at least one alkali metal salicylate in a concentration of from 1 to 10 wt./wt.% of the aqueous micellar pharmaceutical agent composition; b) slowly adding the micellar proteinic pharmaceutical agent composition to at least one of the absorption enhancing compounds selected from the group consisting of lecithin, hyaluronic acid, pharmaceutically acceptable salts of hyaluronic acid, octylphenoxypolyethoxyethanol, glycolic acid, lactic acid, chamomile extract, cucumber extract, oleic acid, linolenic acid, borage oil, evening of primrose oil, menthol, trihydroxy oxo cholanylglycine and pharmaceutically acceptable salts thereof, glycerin, polyglycerin, lysine, polylysine, polidocanol alkyl ethers and analogues thereof, triolein and mixtures thereof, while
  • the mixed micellar formulation is formed by sonication of the aqueous micellar pharmaceutical agent composition in the presence of lecithin.
  • the present invention provides an improved method for delivery of macromolecular (high molecular weight) pharmaceutical agents, particularly through the membranes in the nose, mouth, vagina or rectum.
  • the preferred delivery is through oral and nasal cavities .
  • the pharmaceutical agents cover a wide spectrum of agents, including proteins, peptides, hormones, vaccines and drugs.
  • the molecular weights of the macromolecular pharmaceutical agents are preferably above 1000, especially between 1000 and 2 000 000.
  • hormone ⁇ which may be administered with the present invention include thyroids, androgen ⁇ , estrogens, prostaglandins, somatotropins, gonadotropins, erythropoetin, interferons, inte leukins, steroids- and cytokins.
  • Vaccines which may be administered with the present invention include bacterial and viral vaccines such as vaccines for hepatitis, influenza, tuberculosis, canary pox, chicken pox, measles, mumps, rubella, pneumonia, BCG, HIV and AIDS.
  • Bacterial toxoid ⁇ which may be administered using the present invention include diphtheria, tetanus, pseudono as and mycobactrium tuberculosis.
  • cardiovascular or thromobolytic agents examples include heparin, hirugen, hirulos and hirudin.
  • Large molecules usefully administered with the present invention include monoclonal antibodies, polyclonal antibodies and i munoglobin ⁇ .
  • the concentration of the pharmaceutical agent is an amount suf icient to be effective in treating or preventing a disorder or to regulate a physiological condition in an animal or human.
  • concentration or amount of pharmaceutical agent administered will depend on the parameters determined for the agent and the method of administration, e.g. oral, nasal.
  • nasal formulations tend to require much lower concentrations of some ingredients in order to avoid irritation or burning of the nasal passages. It is sometimes desirable to dilute an oral formulation up to 10-100 times in order to provide a suitable nasal formulation.
  • the mixed micellar formulation is prepared by first preparing a first micellar composition which contains the pharmaceutically active agents, alkali metal C8 to C22 alkyl sulphate, edetate and alkali metal salicylate.
  • a first micellar composition which contains the pharmaceutically active agents, alkali metal C8 to C22 alkyl sulphate, edetate and alkali metal salicylate.
  • the first micellar composition is then added to at least one of the absorption enhancing compounds to form a mixed micellar composition.
  • At least one other absorption enhancing compound may also be added subsequently.
  • the first absorption enhancing compound is lecithin.
  • the phenol and/or m-cresol and/or isotonic agent are then added.
  • the formulation is then put into an aerosol di ⁇ penser and the dispenser charged with the propellant.
  • the preferred propellants are hydrogen-containing chlorofluorocarbons, hydrogen-containing fluorocarbons, dimethyl ether and diethyl ether. Even more preferred is hydrofluoroalkane (HFA) 134a (1,1,1,2 tetrafluoroethane) .
  • HFA hydrofluoroalkane
  • compositions of the present invention require that the pharmaceutical formulation be in mixed micellar form.
  • the first micellar solution may be made by adding a buffer solution to powdered insulin, and then stirring until the powder is dissolved and a clear solution is obtained.
  • a typical buffer solution is an aqueous solution of sodium salicylate and sodium lauryl sulphate and dis ⁇ dium edetate.
  • Typical concentration of sodium Balicylate and sodium lauryl sulphate in the aqueous solution are about 3 to 20 wt./wt.% of each compound in the solution.
  • insulin is present in the micellar solution in an amount which will give a concentration of about 2 to 4 wt./wt.% of the final formulation.
  • the concentration may be about 10 wt./wt.% of the first micellar composition.
  • micellar solution 1B then added slowly to the first absorption enhancing compound, e.g. lecithin while mixing vigorously, e.g. sonicating, to form _a_mixed micelle liposomal solution.
  • the first absorption enhancing compound e.g. lecithin
  • the second absorption enhancing compound selected from the group consisting of lecithin, hyaluronic acid, pharmaceutically acceptable salts of hyaluronic acid, octylphenoxypolyethoxyethanol, glycolic acid, lactic acid, chamomile extract, cucumber extract, oleic acid, linolenic acid, borage oil, evening of primrose oil, trihydroxy oxo cholanylglycine, glycerin, polyglycerin, lysine, polylysine, triolein is then added.
  • the mixing may be done with a high speed mixer or sonicator to ensure uniform micelle particle size distribution within the ormulation.
  • Each of the absorption enhancing compounds when present, is in a concentration of from 1 to 10 wt./wt.% of the total formulation.
  • Preferred salts of hyaluronic acid are alkali metal hyaluronates, alkaline earth hyaluronates and aluminium hyaluronate.
  • the preferred salt is sodium hyaluronate.
  • the preferred concentration of hyaluronic acid or pharmaceutically acceptable Baits of hyaluronic acid is from 1 to 5 wt./wt.% of the total formulation. An even more preferred range is from 1.5 to 3.5 wt./wt. % of the total formulation.
  • flavouring agents may be added to the mixed micellar ⁇ olution.
  • antioxidants may be added.
  • salts may be added.
  • protease inhibitors or other pharmaceutically acceptable compound may be added.
  • the size of the micelle particles in the solution is about 1 to 10 nm, and preferably from 1 to 5 run. Such a size distribution ensures effective absorption of the formulation, and therefore the pharmaceutical agent, through the membranes, for example the membranes in the oral and nasal cavities.
  • the specific concentrations of the essential ingredients can be determined by relatively straightforward experimentation. For absorption through the nasal and oral cavities, it is often desirable to increase, e.g. double or triple, the dosage which is normally required through injection of administration through the gastrointestinal tract. As will be understood, the amount of each component of the formulation will vary depending on the pharmaceutical agent and the site of application.
  • referred formulations oral or nasal application have the following combinations: i) sodium lauryl sulphate, sodium salicylate, di ⁇ odium edetate, Phospholipon-H and sodium hyaluronate; ii) sodium lauryl sulphate, sodium salicylate, disodium edetate, lecithin and sodium hyaluronate; iii) sodium lauryl sulphate, sodium salicylate, disodium edetate, sodium hyaluronate and evening of primrose oil; iv) sodium lauryl sulphate, sodium salicylate, disodium edetate, Phospholipon-H and bacitracin; v) sodium lauryl sulphate, sodium - salicylate, disodium edetate, Phospholipon-H, sodium hyaluronate and bacitracin; and vi) sodium lauryl sulphate, sodium salicylate, disodium edetate, sodium
  • the therapeutic compositions of the present invention may be stored at room temperature or at cold temperature . Storage of proteinic drugs is preferable at a -cold temperature to prevent degradation of the drugs and to extend their shelf life.
  • oral and nasal are the favourite sites of the administration but the composition can be applied to the rectal and vaginal mucosa.
  • the dosage form and the site of administration a specific administration method can be selected.
  • composition of this invention is generally prepared as microfine mixed micellar particles (1 to 10 nm or less) by the virtue of its preparation methods used and suitable combinations of absorption enhancer characteristics .
  • sprayB are preferable, but also drops, chewable tablets, chewable gum and other suitable forms may be used.
  • Utilization of atomizer or aerosol spray devices can be used to further reduce the particle size for effective inhalation from the nasal or oral cavity so the drug may successfully reach to the specific site and be absorbed. It is also possible to utilize a drug delivery system such that an enteric coating is applied to the gelatin capsule to cause the micelles to be released only in the duodenum or in the proximity of the large intestine and not in the stomach.
  • Example 1 Example 1
  • a solution was prepared using 0.5 g sodium lauryl sulphate, 0.5 g sodium salicylate and 0.25 g disodium edetate dissolved in 10 mL of water. To this solution 40 mg (1000 unitis) of insulin was added and dissolved completely while stirring, to give about 100 unite/mL insulin solution.
  • the volunteers received 10 units insulin by injection (regular fast acting insulin, available from Eli Lilly) .
  • the volunteers received 100 units (1 mL volume per drop, approximately 20 drops) of the above-prepared oral insulin (10 times the injection dose) .
  • blood glucose levels were monitored every 15 minutes by Bayer's Glucometer Elite.
  • Example 2 Another experiment, not within the scope of the present invention, was performed for comparative purposes .
  • Oral insulin (100 units) was formulated in
  • Oral insulin (100 units) was formulated with sodium salicylate and alkali metal edetate (both 5% by wt.) to evaluate its ef icacy of blood glucose lowering in fasted state in healthy volunteers.
  • Oral insulin (100 units) was formulated using sodium salicylate and alkali metal edetate (both 5% by wt.) with Phospholipon-H (10 mg) and tested on healthy subjects. Blood glucose levels were monitored, every 15 minutes using Bayer's glucometer Elite for 3 hours and the results are shown in Table V. Table V
  • Time* 0 15 30 45 60 90 120 180 Avg : 5 .3 5 . 3 5 .3 5 . 4 5 . 6 5 . 7 5 . 7 5 . 8
  • Time* 0 15 30 60 90 120 180 Avg: 5.8 5.6 5.4 5.3 5.4 5.4 5.6
  • micellar oral insulin 50 units was formulated using alkali metal lauryl sulphate and sodium salicylate (both 4.4% by wt . ) and alkali metal edetate (2.2% by wt) with Phospholipon-H (10 mg) and tested on healthy volunteers .
  • the method involved mixing the sodium lauryl sulphate, sodiu salicylate and alkali metal edetate with water in a beaker with a magnetic stirrer at medium speed until the ingredients were dissolved, to form buffer solution. Insulin powder was placed in a beaker and to this powder was added the buffer solution. The solution was continuously stirred using a magnetic stir bar until all of the insulin powder was dis ⁇ olved and a clear solution obtained. The micellar solution so formed was stored in clean glass bottles and ref igerated.
  • micellar liposomal insulin was then prepared in a glass beaker, in which was placed the Phospholipon- H and a small amount of isopropyl alcohol. The mixture was stirred at a high speed (1000 rpm) for about 10 minutes to ensure complete dissolution of the Phospholipon-H. To this solution was added the micellar insulin solution very slowly, drop wise, using glass dropper, with continuous stirring at a high speed. The solution was stirred continuously for another 30 minutes at a high speed to ensure uniform micellar particle size distribution.
  • Phospholipon-H has a small metabolic effect on blood glucose levels in healthy volunteers.
  • the formulation was for oral administration.
  • Oral insulin (50 units) was formulated using alkali metal lauryl sulphate and sodium salicylate (both 4.4% by wt.) and alkali metal edetate (2.2% by wt.) with Phospholipon-H (10 mg) and sodium hyaluronate (1.1% by wt) . This formulation was tested on healthy subjects under fasting condition.
  • the method involved mixing the sodium lauryl sulphate, sodium salicylate and alkali metal edetate with water in a beaker with a magnetic stirrer at medium speed until the ingredients were dissolved, to form buffer solution. Insulin powder was placed in a beaker and to this powder was added the buffer solution. The solution was continuously stirred using a magnetic stir bar until all of the insulin powder was dissolved and a clear solution obtained. The micellar solution so formed was stored in clean glass bottles and . . refrigerated.
  • micellar liposomal insulin was then prepared in a glass beaker, in which was placed the Phospholipon-
  • micellar insulin solution very slowly, drop wise, using glass dropper, with continuous stirring at a high-speed.
  • the solution was stirred continuously for another 30 minutes at a high speed to ensure uniform micellar particle size distribution.
  • the hyaluronate and small amounts of menthol and ⁇ orbitol were then added, with continuous stirring.
  • the formulation was for oral administration.
  • a buffer solution was prepared using 0.5 g sodium lauryl sulphate, 0.5 g sodium salicylate and 0. 2 5 g disodium edetate dissolved in 10 mL of water. The solution was added to insulin and mixed, to form micellar insulin. Separately, 100 mg of powdered Phosphatidylcholin-H was added to a glass beaker and to this powder was added 10 mL 50% ethanol. The powder was dissolved completely. To this solution 16 mg (400 units) of micellar insulin solution dissolved in 3 L of the buffer solution to (give 30 units/mL insulin solution) was added slowly with- vigorous mixing, to form a mixed micellar solution. To this was added 0.6 mL of sodium hyaluronate and 0. ml of 2% menthol solution containing 3% sorbitol.
  • This example illustrates a method for making a mixed micellar formulation according to the present invention .
  • micellar insulin solution was then prepared in a 50 mL capacity glass beaker, into which was placed
  • micellar solution so formed was stored in clean glass bottles and refrigerated.
  • a 2% menthol solution was then prepared from 100 mg menthol crystals, dissolved in 5 mL ethanol. To this solution was added 5 mg FD & C blue dye. The solution was stirred for 10 minutes and stored in a glass bottle at room temperature.
  • phosphatidylcholine powder does not dissolve completely, then heating up to about 45°C may be required, e.g. using a water bath.
  • micellar insulin composition is not added slowly, then the mixed micellar formulation will not be formed and the formulation will be gelatinous and sticky.
  • Example 9 The formulation of Example 9 was tested in a manner similar to that indicated in Example 8 except that the formulation of the present invention was administered nasally. On the first day, the ten volunteers each received 10 units insulin injection (regular fast acting, Eli Lilly) . On the second day, the volunteers received 20 unite of the "oral" insulin of Example 9 (2 times the injection dose) . The "oral" insulin was administered as drops (0.4 L volume per drop, approximately 4 large drops in total, i.e. two drops in each nost il) .
  • results show that the nasal insulin formulation of the present invention, at a dosage of twice the injected level, is comparable to the injected insulin.
  • Example 9 The formula of Example 9 was taken and tests performed to determine the insulin action on meal glucose on healthy volunteers. Usually, diabetic patients take an insulin injection 30 minutes prior to a meal, because injected insulin takes a long time to take effect. Injected insulin is slowly absorbed into bloodstream within 60 minutes and has metabolic effect on meal glucose levels . The mixed micellar formulation of Example 9 was tested in healthy volunteers under controlled conditions to determine the oral insulin ef ect on meal glucose when compared to injected insulin.
  • the volunteers received 10 units insulin by injection (regular fast acting insulin, available f om Eli Lilly) .
  • the volunteers received 30 unit3 of the above-prepared oral insulin (3 times the injection dose) .
  • blood glucose levels were monitored every 15 minutes by Bayer's Glucometer Elite. The results are shown on the following page:
  • Example 9 The mixed micellar formulation of Example 9 was tested in diabetic volunteers under controlled conditions to determine the oral insulin effect on meal glucose when compared to injected insulin.
  • te ⁇ ts ten Type II diabetic human volunteers who took insulin, by injection three times a day, were studied. In another set of tests the volunteers were tested with insulin, taken orally. The volunteers fasted from midnight prior to the tests, with food being taken 30 minutes after dosing. The meals were standard Sastacal 240 mL liquid diet approved by the Diabetic Society, containing 400 calories.
  • the volunteers received 10 units insulin by injection (regular fast acting insulin, available from Eli Lilly) .
  • the volunteers received 30 units of the above-prepared oral insulin (3 times the injection dose) .
  • blood glucose levels were monitored every 15 minutes by Bayer's Glucometer Elite.
  • a chewable gum insulin formulation was prepared by vigorously stirring the liposomal insulin mixed micellar solution of Example 9 while adding guar gum, beeswax, powdered acacia, oleic acid, gamma-linoleic acid and sorbitol.
  • the mixture contained 100 mg guar gum, 50 mg beeswax, 50 mg powdered acacia, 100 mg oleic acid, 100 mg gamma-linoleic acid and 1 mL 3% ⁇ orbitol in ethanol BOlution.
  • the mixture was then poured into a flat tray coated with polytetrafluoroethylene until the mixture was about 10 mm deep.
  • the mixture then Bolidified and after solidification was cut into sticks about l cm by 3 cm. Each stick contained about 30 units insulin.
  • the mixed micellar formulation in chewable stick form was tested in diabetic volunteers under controlled conditions to determine the oral insulin e fect on meal glucose when compared to injected insulin. In one set of tests, five Type II diabetic human volunteers who took insulin, by injection three times a day, were studied. In another set of tests the volunteers were tested with the chewable gum insulin, taken orally. The volunteers fasted from midnight prior to the te ⁇ ts, with food being taken 30 minutes after dosing. The meals were standard Sastacal 240 mL liquid diet approved by the Diabetic Society, containing 400 calories .
  • the volunteers received 10 units insulin by injection (regular fast acting insulin, available from Eli Lilly) .
  • the volunteers received 30 units of the abov -prepared chewable gum oral insulin (3 times the injection dose) .
  • blood glucose levels were monitored every 15 minutes by Bayer's Glucometer Elite.
  • Example 14 Another experiment, within the scope of the present invention, was performed. ⁇ n this example, the formulation was for oral administration.
  • a buffer solution was prepared using 0.5 g sodium lauryl sulphate, 0.5 g sodium salicylate and 0.25 g disodium edetate dissolved in 10 mL of water. The solution was added to 8 mg (200 units) insulin and mixed, to form micellar insulin.
  • micellar solution 0.2 g bacitracin and 0.5 g evening of primrose oil and the solution was mixed vigorously to form a mixed micellar insulin solution (about 20 units/mL) .
  • the volunteers received 10 units inBulin by injection (regular faBt acting insulin, available from Eli Lilly) .
  • the volunteers received 20 units of the above-prepared oral insulin (twice the injection dose) .
  • blood glucose levels were monitored at intervals by Bayer's Glucometer Elite.
  • micellar insulin solution which had been prepared from an aqueous solution of insulin, sodium lauryl Bulphate, sodium salicylate and disodium edetate.
  • the flask was shaken with the help of shaker plate. Shaking was continued for at least 30 minutes and then the solution was sonicated with a high frequency sonicating probe for another 60 minutes in order to form small uniform mixed micelles.
  • the mixed micelles so obtained were analyzed by Malvern Zeta (trade mark) particle size distribution measurement equipment equipped with the laser light scattering device.
  • the mixed micelles particle size distribution obtained by this method was between 2 and 9nm.
  • To this solution was added 1 mL of 2% " menthol solution and 50 mg sodium hyaluronate.
  • the semi-clear, translucent, light blue colour solution (final volume 10 mL) was stored in a clean glass bottle and ref igerated.
  • the solution had a pH of 6.5.
  • a buffer solution was prepared using 0.5 g sodium lauryl sulphate, 0.5 g sodium salicylate and 0.25 g disodium edetate dissolved in 10 mL of water. .
  • the solution was added to 8 mg (200 units) insulin and mixed, to form micellar insulin.
  • micellar solution were added 0.5 g borage oil and the solution was mixed vigorously to form a mixed micellar insulin solution (about 20 units/mL ) .

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Chemical & Material Sciences (AREA)
  • Epidemiology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Medicinal Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Physiology (AREA)
  • Nutrition Science (AREA)
  • Zoology (AREA)
  • Endocrinology (AREA)
  • Otolaryngology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Immunology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Diabetes (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Dispersion Chemistry (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Medicinal Preparation (AREA)
  • Medicines Containing Plant Substances (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)

Abstract

A mixed micellar pharmaceutical formulation includes a micellar proteinic pharmaceutical agent, an alkali metal C8 to C22 alkyl sulphate, alkali metal salicylate, a pharmaceutically acceptable edetate and at least one absorption enhancing compounds. The absorption enhancing compounds are selected from the group consisting of lecithin, hyaluronic acid, pharmaceutically acceptable salts of hyaluronic acid, octylphenoxypolyethoxyethanol, glycolic acid, lactic acid, chamomile extract, cucumber extract, oleic acid, linolenic acid, borage oil, evening of primrose oil, trihydroxy oxo cholanylglycine, glycerin, polyglycerin, lysine, polylysine, triolein and mixtures thereof. The amount of each absorption enhancing compound is present in a concentration of from 1 to 10 wt./wt.% of the total formulation, and the total concentration of absorption enhancing compounds are less than 50 wt./wt.% of the formulation.

Description

MEIHOD FOR i^MINIS'IERING- TJMSULI TO'lϊ-E BUCCAL REGION
This is a continuation-in-part of Application No. 09/021,114 filed February 10, 1998. Field of the Invention
The present invention relates to an improved delivery system for the administration of large-molecule pharmaceuticals, e.g. peptidic drugs, vaccines and hormones. In particular it relates to pharmaceuticals which may be administered through the oral and nasal membranes - Background to the Invention
In spite of significant e forts in academic and commercial laboratories, major breakthroughs in oral peptide and protein formulation have not been achieved. Relatively little progress has been made in reaching the target of safe and effective oral formulations for peptides and proteins. The major barriers to developing oral formulations for proteins and peptides include poor intrinsic permeability, lumenal and cellular enzymatic degradation, rapid clearance, and chemical stability in the gastrointestinal (Gl) tract. Pharmaceutical approaches to address these barriers, whic have been successful with traditional small, organic drug molecules, have not readily translated into effective peptide and protein formulations. Although the challenges are significant, the potential therapeutic benefits remain high especially in the field of diabetes treatment using insulin. Scientists have explored various administration routes other than the injection for proteins and peptides. These routes include oral, intranasal, rectal. vaginal cavities for the effective delivery of large molecules. Out of the above four mentioned routes oral and nasal cavities have been of greatest interest to scientists. Both the oral and nasal membranes offer advantages over other routes of administration. For example, drugs administered through these membranes have a rapid onset of action, provide therapeutic plasma levels, avoid first pass effect of hepatic metabolism, and avoid exposure of the drug to hostile Gl environment. Additional advantages include easy access to the membrane sites so that the drug can be applied, localized and removed easily. Further, there is a good potential for prolonged delivery of large molecules through these membranes. The oral routes have received far more attention than has the other routes. The sublingual mucosa includes the membrane of ventral surface of the tongue and the floor of the mouth whereas the buccal mucosa constitutes the lining of the cheek. The sublingual mucosa is relatively permeable thus giving rapid absorption and acceptable bioavailability of many drugs. Further, the sublingual mucosa is convenient, acceptable and easily accessible. This route has been investigated clinically for the delivery of a substantial number of drugs .
The ability of molecules to permeate through the oral mucosa appears to be related to molecular, size, li id solubility and peptide protein ionization. Small molecules, less than 1000 daltons appear to cross mucosa rapidly. As molecular size increases, the permeability decreases rapidly. Lipid soluble compounds are more permeable than non-lipid sol ble molecules. Maximum absorption occurs when molecules are un-ionized or neutral in electrical charges. Therefore charged molecules present the biggest challenges to absorption through the oral mucosae.
Most proteinic drug molecules are extremely large molecules with molecular weight exceeding 6000 daltons. These large molecules have very poor lipid solubility and are practically impermeable. Substances that facilitate the absorption or transport of large molecules (>2000 daltons) across biological membranes are known as the enhancers, (Lee et al., Critical Reviews in Therapeutic drug Carrier Systems, 8, 91, 1991; Lee et al . , Critical Reviews in Therapeutic drug Carrier Systems, 8, 115, 1991, 1992) . Enhancers may be characterized as chelators, bile salts, fatty acidB, synthetic hydrophillic and hydrophobia compounds, and biodegradable polymeric compounds .
Various mechanisms of action of enhancers have been proposed. These mechanisms of action, at least for protein and peptidic drugs include (1) reducing viscosity and/or elasticity of mucous layer, (2) facilitating transcellular transport by increasing the fluidity of the lipid bilayer of membranes, and (3) increasing the thermodynamic activity of drugs (Critical Rev, 117-125, 1991, 1992) .
Many enhancers have been tested so far and some have found to be effective in facilitating mucosal administration of large molecule drugs. However, hardly any penetration enhancing products have reached the market place. Reasons for this include.lack of a satisfactory safety profile respecting irritation, lowering of the barrier function, and impairment of the mucocilliary clearance protective mechanism. The main factor to be considered in the use of enhancers especially related to bile salts, and some protein solubilizing agents is extremely bitter and unpleasant taste. This makes their use almost impossible for human consumption on a daily basis, several approaches were utilized to improve the taste of the bile salts based delivery systems, but none one of them are commercially acceptable for human consumption to date. Among the approaches utilized includes patch for buccal mucosa, bilayer tablets, controlled release tablets, use of protease inhibitors, buccally administered film patch devices, and various polymer matrices.
The basic problem associated with the above technologies is the use of large quantities of bile acids and their salts to promote the transport of the large molecules through membranes in the form of localized delivery system using patches or tablets. In spite of using protease inhibitors and polymer coatings the technologies failed to deliver proteinic drugs in the required therapeutic concentrations. Further, the problem is compounded because of the localized site effect of the patch which resulted in severe tissue damage in the mouth. Most attempts were made to deliver large molecules via the oral, nasal, rectal, an vaginal routes using single bile acids or enhancing agents in combination with protease inhibitors and biodegradable polymeric materials. However, it is extremely difficult to achieve therapeutic levels of proteinic drugs using these formulations. As single enhancing agents fails to loosen tight cellular junctions in the oral, nasal, rectal and vaginal cavities for a required period of time to allow passage of large molecules through the mucosal membranes without further degradation. This problem makes it impractical to use the above mentioned systems for a commercial purpose.
In order to overcome the above mentioned problem of the bitter taste, irritation and the penetration of large molecules through the sublingual, buccal and Gl tract mucosal lining, a system has now been designed where protein drug was encapsulated in mixed micelles made up of combination of enhancers, e.g. yolk proteins (lecithins) . This system allows opening of the paracellular junctions (tight junctions) in oral as well as in Gl tract by gl motility movement with high degree of protease activity preserved and protecting molecules from premature degradation in the hostile acidic and proteolytic GT environment. it is believed that the mixed micelles encapsulate molecules with high degree of efficiency (>90% encapsulation) . These mixed micelles are extremely small in the size (1 nm to 10 nm) , and are smaller than the pores of the membranes in the oral cavity or the GX tract. It is therefore believed that the extremely small size of mixed micelles helps encapsulated molecules penetrate efficiently through the mucosal membranes of the oral cavity.
The absorption of proteins and peptides is believed to be enhanced by the diffusion of large molecules entrapped in the mixed micellar form through the aqueous pores and the cell structure perturbation of the tight paracellular junctions.
The amount of physiologically peptide or protein in the compositions of this invention is typically a quantity that provides an effective amount of the drug to produce the physiological activity (therapeutic plasma level) for which peptide or protein is being administered. In consideration of the fact that the bioavailability of any active Bubstance can never be 100%, that is to say the administered dose of the active drug is not completely absorbed, it is preferable to incorporate slightly larger amount than the desired dosage. Where the dosage form is a spray (aerosol) or the like which is repeatedly dispensed from the same container, it is recoramendably so arranged that the unit dose will be slightly greater than the desired dose. it should be understood that dosage should vary with species of warm blood animals such as man, domestic animals, and their body weights. Although the composition of this invention iβ prepared as the icrofine droplets (l to 10 nm or less) by the virtue of its preparation methods used and suitable combinations of enhancer compound characteristics. The utilization of atomizer or aerosol spray devices (metered dose inhalers or nebulizers) may be useful to further a sufficient reduction of particle size for effective inhalation from the nasal or oral cavity so the drug may successfully absorbed or reach to the specific site. The therapeutic composition of the present invention can be stored at room temperature or at cold temperature. Storage of proteinic drugs is preferable at the cold temperature to prevent the degradation of the drugs and to extend their shelf life. While the mixed micellar therapeutic composition of the invention is applied to the mucosal membranes, the sites of administration may the same as those used for the usual mucosal therapeutic preparation. Generally, oral, transdermal and nasal are the favourite sites of the administration but the composition can be applied to the rectal and vaginal mucosa. According to the physiologically active peptide or protein used, the dosage form and the site of administration, a specific administration method can be selected.
As used herein, the term "edetate" is used herein to refer to pharmaceutically acceptable salts of ethylenediaminetetraacetic acid.
It has also been found that improvements in penetration and absorption of mixed micellar formulations can be achieved by mixing the mixed micellar formulation with propellants such as tetrafluoroethane, heptafluoroethane, dimethylfluoropropane, tetrafluoropropane, butane, iεobutane, dimethyl ether and other non-CFC and CFC propellants. Preferably they are delivered through metered dose spray devices. Metered dose inhalers are known and are a popular pulmonary drug delivery form for some drugs." The present formulation, including the propellant i3 intended to improve the quality of absorption, stability and performance of many formulations. The compositions have been selected to give enhancement in the penetration through pores, and facilitate absorption of the drugs to reach therapeutic levels in the plasma. The present formulation may be absorbed buccally, by ensuring that the person does not inhale the formulation as it is sprayed. One of the other bene its of using an atomizer or inhaler is that the potential for contamination is minimized Jbecause the devices are self contained. Summary of the Invention
Accordingly the present invention provides a mixed micellar pharmaceutical formulation, having a pH of between 6.0 and 7.0 comprising a proteinic pharmaceutical agent in micellar form, water, an alkali metal lauryl sulphate in a concentration of from 1 to 10 wt./wt.% of the total formulation, a pharmaceutically acceptable edeta e in a concentration of from 1 to 10 wt./wt.% of the total formulation, at least one alkali metal salicylate in a concentration of from 1 to 10 wt./wt.% of the total formulation, and at least one micelle forming compound selected from the group consisting of lecithin, hyaluronic acid, pharmaceutically acceptable salts of hyaluronic acid, octylphenoxypolyethoxyethanol , glycolic acid, lactic acid, chamomile extract, cucumber extract, oleic acid, linolenic acid, borage oil, evening of primrose oil, trihydroxy oxo cholanylglycine, glycerin, polyglycerin, lysine, polylysine, triolein and mixtures thereof, wherein the amount of each absorption enhancing compound is present in a concentration of from 1 to 10 wt. /wt.% of the total formulation, and the total concentration of absorption enhancing compounds are less than 50 wt./wt.% of the formulation.
In an embodiment, the alkali metal lauryl sulphate. the edetate and the alkali metal salicylate are each in a concentration of from 2 to 5 wt./wt.% of the total formulation.
In one embodiment, the edetate is an alkali metal edetate. Preferably the alkali metal edetate is be selected from the group consisting of disodium edetate, dipotassium edetate, and combinations thereof.
In another embodiment, the alkali metal lauryl sulphate is sodium lauryl sulphate. in a further embodiment, the alkali metal salicylate is sodium salicylate.
In another embodiment, the lecithin is selected from the group consisting of saturated phospholipid, e.g. Phospholipon-H (trade mark) saturated phospholipid, unsaturated phospholipid, e.g. Phospholipon-G (trade mark) unsaturated phospholipid, phosphatidylcholine, phosphatidyl serine, sphingomyelin, phosphatidyl thanolamine, cephalin, and lysolecithin.
In one embodiment, one of the absorption enhancing compounds is selected from the group consisting of hyaluronic acid, pharmaceutically acceptable salts of hyaluronic acid and mixtures thereof, the concentration such micelle forming compound being rom about l to about 5 w . /wt . %. in another embodiment, suitable for delivery through nasal passages, mixed micellar pharmaceutical formulation is suitably diluted to avoid irritation of the nasal passages .
Another aspect of the present invention provides a mixed micellar pharmaceutical formulation, comprising a pharmaceutical agent in micellar form, water, an alkali metal C8 to C22 alkyl sulphate in a concentration of from 1 to 10 wt./wt.% of the total formulation, a pharmaceutically acceptable edetate in a concentration of from 1 to 10 wt./wt.% of the total formulation, at least one alkali metal salicylate in a concentration of from 1 to 10 wt./wt.% of the total formulation, and at least one micelle forming compound selected from the group consisting of lecithin, hyaluronic acid, pharmaceutically acceptable salts of hyaluronic acid, octylphenoxypolyethoxyethanol, glycolic acid, lactic acid, chamomile extract, cucumber extract, oleic acid, linolenic acid, borage oil, evening of primrose oil, menthol, trihydroxy oxo cholanylglycine and pharmaceutically acceptable salts thereof, glycerin, polyglycerin, lysine, polylysine, polidocanol alkyl ethers and analogues thereof, triolein and mixtures thereof, wherein the amount of each absorption enhancing compound is present in a concentration of from 1 to 10 wt . /wt . % of the total formulation, and the total concentration of absorption enhancing compounds are less than 50 wt./wt.% of the formulation.
Yet another aspect of the present invention provides that the mixed micellar aerosol pharmaceutical formulation additionally comprises i) a phenol selected from the group consisting of phenol and methyl phenol in a concentration of from 1 to 10 wt./wt.% of the total formulation, and i) a propellant selected from- the-group consisting of C1-C2 dialkyl ether, butanes, fluorocarbon propellant, hydrogen-containing fluorocarbon propellant, chlorofluorocarbon propellant, hydrogen-containing chlorofluorocarbon propellant, and mixtures thereof. In one embodiment, the alkali metal C8 to C22 alkyl sulphate is in a concentration of from 2 to 5 wt./wt.% of the total formulation.
In another embodiment, the alkali metal C8 to C22 alkyl sulphate is sodium lauryl sulphate.
In another embodiment, the lecithin is saturated or unsaturated, preferably selected from the group consisting of phosphatidylcholine, phosphatidyl εerine, sphingomyelin, phosphatidylethanolamine, cephalin, and lyεoleeithin.
In yet another embodiment, one of the micelle forming compounds is selected from the group consisting of hyaluronic acid, pharmaceutically acceptable salts of hyaluronic acid, polidocanol alkyl ethers, trihydroxy oxo cholanyl glycine, polyoxyethylene ethers and mixtures thereof, the concentration such absorption enhancing compound being from about 1 'to about 5 wt. /wt . % .
Preferably, the ratio of pharmaceutical agent, e.g- insulin, to propellant is from 5:95 to 25:75.
In another embodiment, the propellant is selected from the group consisting of tetrafluoroethane, tetrafluoropropane, dimethylfluoropropan , heptafluoropropane, dimethyl ether, n-butane and isobutane.
In yet another embodiment, the mixed micellar pharmaceutical formulation is contained in an aerosol dispense .
For insulin-containing and some other compositions, the composition may also contains at least one inorganic salt which opens channels in the gastrointestinal tract and may provide additional stimulation to release insulin. Non-limiting examples of inorganic salts are sodium, potassium, calcium and zinc salts, especially sodium chloride, potassium chloride, calcium chloride, zinc chloride and sodium bicarbonate.
It will be recognized by those skilled in the art that for many pharmaceutical compositions it is usual to add at least one antioxidant to prevent degradation and oxidation of the pharmaceutically active ingredients. It will also be understood by those skilled in the art that colorants, flavouring agents and non-therapeutic amounts of other compounds may be included in the formulation. Typical flavouring agents are menthol and sorbitol- In one embodiment the antioxidant is selected from the group consisting of tocopherol, deteroxime mesylate, methyl paraben, ethyl paraben and ascorbic acid and mixtures thereof . A pre erred antioxidant is tocopherol . In a preferred embodiment at least one protease inhibitor is added to the formulation to inhibit degradation of the pharmaceutical agent by the action of proteolytic enzymes. Of the known protease inhibitors, most are effective at concentrations of from 1 to 3 wt./wt.% of the formulation.
Non-limiting examples of effective protease inhibitors are bacltraσin, soyabean trypεin, aprotinin and bacitracin derivatives, e.g. bacitracin methylene diealicylate. Bacitracin is the most effective of those named when used in concentrations of from 1.5 to
2 wt. /w . % . Soyabean trypsin and aprotinin two may be used in concentrations of about 1 to 2 wt./wt.% of the formulation.
The formulation suitable for delivery through oral mucosal membranes may be in chewable form, in which case it will be necessary to add ingredients suitable for such form. Such ingredients include guar gum, powdered acacia, carrageenin, beeswax and xanthan gum.
The pharmaceutical agent may be selected from a wide .variety of acromolecular agents, depending on the disorder being treated, generally with molecular weights greater than about 1000 and especially between about 1000 and 2 000 000. Preferred pharmaceutical agents are selected from the group consisting of insulin, heparin, low molecular weight heparin, hirulog, hirugen, huridine, inte erons, interleukins, cytokinø, mono and polyclonal antibodies, immunoglobins, chemotherapeutic agents, vaccines, glycoproteins, bacterial toxoids, hormones, calcitonins, insulin like growth factors (IGF) , glucagon like peptides (GLP-1) , large molecule antibiotics, protein based thrombolytic compounds, platelet inhibitors, DNA, RNA, gene therapeutics and antisense oligonucleotides, and small molecule drugε, e.g. opioids, narcotics, analgesics, NSAIDS, steroids, hypnotics, pain killers, morphine and the like. The present invention also provides a process for making a pharmaceutical composition suitable for delivery through transdermal membranes comprisingΪ~. a) preparing a proteinic pharmaceutical agent composition in micellar form in an aqueous medium which has an alkali metal θalicylate in a concentration of from l to 10 wt./wt.% of the aqueous micellar pharmaceutical agent composition, an alkali metal lauryl sulphate in a concentration of from 1 to 10 wt./wt.% of the aqueous micellar pharmaceutical agent composition and a pharmaceutically acceptable edetate in a concentration of from 1 to 10 wt./wt.% of the aqueous micellar pharmaceutical agent composition; b) slowly adding the micellar proteinic pharmaceutical agent composition to at least one of the absorption enhancing compounds selected from the group consisting of lecithin, hyaluronic acid, pharmaceutically acceptable salts of hyaluronic acid, octylphenoxypolyethoxyethanol, glycolic acid, lactic acid, chamomile extract, cucumber extract, oleic acid, linolenic acid, borage oil, evening of primrose oil, trihydroxy oxo cholanylglycine, glycerin, polyglycerin, lyεine, polylysine, triolein and mixtures thereof, while mixing vigorously, to form a mixed micellar composition; wherein the amount of the absorption enhancing compounds are each present in a concentration of from 1 to 10 wt./wt.% of the total formulation, and the total concentration of alkali metal salicylate, alkali metal lauryl sulphate, edetate and absorption enhancing compounds is less than .50 wt./wt.% of the formulation. In one embodiment, the process provides an additional step of adding, while continuing vigorous mixing, at least one absorption enhancing compound di ferent from that added in step b) , selected- from the group consisting of lecithin, hyaluronic acid, pharmaceutically acceptable salts of hyaluronic acid, octylphenoxypolyethoxyethanol, glycolic acid, lactic acid, chamomile extract, cucumber extract, oleic acid, linolenic acid, borage oil, evening of primrose oil, trihydroxy oxo cholanylglycine, glycerin, polyglycerin, lysine, polylysine, triolein and mixtures thereof.
In one embodiment the alkali metal lauryl sulphate is sodium lauryl sulphate.
In another embodiment the alkali metal salicylate is sodium salicylate.
In a further embodiment the alkali metal edetate may be selected from the group consisting of disodium edetate and dipotassiu edetate.
In yet another embodiment, the formulation has a combinations selected from the group consisting of sodium hyaluronate and unsaturated phospholipid, ii) PhθBpholipon-H and glycolic acid, and iii) sodium hyaluronate and lecithin.
The present invention also provides a process for making a pharmaceutical composition suitable for delivery by means of an aerosol comprising: a) preparing a pharmaceutical agent composition in micellar form in an aqueous medium which has an alkali metal C8 to C22 alkyl sulphate in a concentration of from 1 to 10 wt./wt.% of the aqueous micellar pharmaceutical agent composition, a pharmaceutically acceptable edetate in a concentration of from l to 10 wt . /wt . % of the aqueous micellar pharmaceutical agent composition, at least one alkali metal salicylate in a concentration of from 1 to 10 wt./wt.% of the aqueous micellar pharmaceutical agent composition; b) slowly adding the micellar proteinic pharmaceutical agent composition to at least one of the absorption enhancing compounds selected from the group consisting of lecithin, hyaluronic acid, pharmaceutically acceptable salts of hyaluronic acid, octylphenoxypolyethoxyethanol, glycolic acid, lactic acid, chamomile extract, cucumber extract, oleic acid, linolenic acid, borage oil, evening of primrose oil, menthol, trihydroxy oxo cholanylglycine and pharmaceutically acceptable salts thereof, glycerin, polyglycerin, lysine, polylysine, polidocanol alkyl ethers and analogues thereof, triolein and mixtures thereof, while mixing vigorously, to form a mixed micellar composition; and optionally c) an additional step of adding, while continuing vigorous mixing, at least one micelle forming compound di ferent from that added in step b) , selected from the group consisting of lecithin, hyaluronic acid, pharmaceutically acceptable salts of hyaluronic acid, glycolic acid, lactic acid, chamomile 'extract, cucumber extract, oleic acid, linoleic acid, linolenic acid, onoolein, borage oil, evening of primrose oil, glycerin, polyglycerin, lysine, polylysine, triolein, polyoxyethylene ethers and analogues thereof, polidocanol alkyl ethers and analogues thereof, and mixtures thereof; d) mixing the mixed micellar composition resulting f om steps a) to c) with a phenol selected from the group consisting of phenol, m-creεol and mixtures thereof; and subsequently e) placing the formulation into an aerosol dispenser and charging the dispenser a propellant; wherein each of the absorption enhancing compounds are present in a concentration of from 1 to 10 wt./wt.% of the total formulation, and the total concentration of alkali metal Balicylate, alkali metal C8 to C22 alkyl sulphate, edetate and absorption enhancing compounds is less than 50 wt./wt.% of the formulation. The vigorous mixing may be accomplished using high speed stirrers,The vigorous mixing may be accomplished by using high speed stirrers, e.g. magnetic stirrers or propeller stirrers, or by sonication.
-In one embodiment, the mixed micellar formulation is formed by sonication of the aqueous micellar pharmaceutical agent composition in the presence of lecithin.
Detailed Description of Preferred Embodiments
The present invention provides an improved method for delivery of macromolecular (high molecular weight) pharmaceutical agents, particularly through the membranes in the nose, mouth, vagina or rectum. The preferred delivery is through oral and nasal cavities . The pharmaceutical agents cover a wide spectrum of agents, including proteins, peptides, hormones, vaccines and drugs. The molecular weights of the macromolecular pharmaceutical agents are preferably above 1000, especially between 1000 and 2 000 000.
For example, hormoneε which may be administered with the present invention include thyroids, androgenε, estrogens, prostaglandins, somatotropins, gonadotropins, erythropoetin, interferons, inte leukins, steroids- and cytokins. Vaccines which may be administered with the present invention include bacterial and viral vaccines such as vaccines for hepatitis, influenza, tuberculosis, canary pox, chicken pox, measles, mumps, rubella, pneumonia, BCG, HIV and AIDS. Bacterial toxoidε which may be administered using the present invention include diphtheria, tetanus, pseudono as and mycobactrium tuberculosis. Examples of specific cardiovascular or thromobolytic agents include heparin, hirugen, hirulos and hirudin. Large molecules usefully administered with the present invention include monoclonal antibodies, polyclonal antibodies and i munoglobinε .
-As will be understood, the concentration of the pharmaceutical agent is an amount suf icient to be effective in treating or preventing a disorder or to regulate a physiological condition in an animal or human. The concentration or amount of pharmaceutical agent administered will depend on the parameters determined for the agent and the method of administration, e.g. oral, nasal. For example, nasal formulations tend to require much lower concentrations of some ingredients in order to avoid irritation or burning of the nasal passages. It is sometimes desirable to dilute an oral formulation up to 10-100 times in order to provide a suitable nasal formulation.
The mixed micellar formulation is prepared by first preparing a first micellar composition which contains the pharmaceutically active agents, alkali metal C8 to C22 alkyl sulphate, edetate and alkali metal salicylate. For those compositions intended for administration through the nasal, oral, vaginal or rectal cavities, the first micellar composition is then added to at least one of the absorption enhancing compounds to form a mixed micellar composition. At least one other absorption enhancing compound may also be added subsequently. Preferably the first absorption enhancing compound is lecithin.
When making the aerosol formulation, the phenol and/or m-cresol and/or isotonic agent are then added. The formulation is then put into an aerosol diβpenser and the dispenser charged with the propellant.
The preferred propellants are hydrogen-containing chlorofluorocarbons, hydrogen-containing fluorocarbons, dimethyl ether and diethyl ether. Even more preferred is hydrofluoroalkane (HFA) 134a (1,1,1,2 tetrafluoroethane) .
Although the present invention has such wide applicability, the invention is described hereinafter with particular reference to insulin and its analogues, which are used for the treatment of diabetes.
As indicated hereinbefore, the compositions of the present invention require that the pharmaceutical formulation be in mixed micellar form.
In the case of insulin, which 1B intended for administration through nasal or oral cavities, the first micellar solution may be made by adding a buffer solution to powdered insulin, and then stirring until the powder is dissolved and a clear solution is obtained. A typical buffer solution is an aqueous solution of sodium salicylate and sodium lauryl sulphate and disσdium edetate. Typical concentration of sodium Balicylate and sodium lauryl sulphate in the aqueous solution are about 3 to 20 wt./wt.% of each compound in the solution. Typically, insulin is present in the micellar solution in an amount which will give a concentration of about 2 to 4 wt./wt.% of the final formulation. Typically the concentration may be about 10 wt./wt.% of the first micellar composition.
The micellar solution 1B then added slowly to the first absorption enhancing compound, e.g. lecithin while mixing vigorously, e.g. sonicating, to form _a_mixed micelle liposomal solution. At least one other absorption enhancing compounds selected from the group consisting of lecithin, hyaluronic acid, pharmaceutically acceptable salts of hyaluronic acid, octylphenoxypolyethoxyethanol, glycolic acid, lactic acid, chamomile extract, cucumber extract, oleic acid, linolenic acid, borage oil, evening of primrose oil, trihydroxy oxo cholanylglycine, glycerin, polyglycerin, lysine, polylysine, triolein is then added. The mixing may be done with a high speed mixer or sonicator to ensure uniform micelle particle size distribution within the ormulation.
Each of the absorption enhancing compounds, when present, is in a concentration of from 1 to 10 wt./wt.% of the total formulation.
Preferred salts of hyaluronic acid are alkali metal hyaluronates, alkaline earth hyaluronates and aluminium hyaluronate. The preferred salt is sodium hyaluronate. The preferred concentration of hyaluronic acid or pharmaceutically acceptable Baits of hyaluronic acid is from 1 to 5 wt./wt.% of the total formulation. An even more preferred range is from 1.5 to 3.5 wt./wt. % of the total formulation.
Other ingredients may be added to the mixed micellar øolution. For example, flavouring agents, antioxidants, salts, protease inhibitors or other pharmaceutically acceptable compound may be added.
In general the size of the micelle particles in the solution is about 1 to 10 nm, and preferably from 1 to 5 run. Such a size distribution ensures effective absorption of the formulation, and therefore the pharmaceutical agent, through the membranes, for example the membranes in the oral and nasal cavities.
The specific concentrations of the essential ingredients can be determined by relatively straightforward experimentation. For absorption through the nasal and oral cavities, it is often desirable to increase, e.g. double or triple, the dosage which is normally required through injection of administration through the gastrointestinal tract. As will be understood, the amount of each component of the formulation will vary depending on the pharmaceutical agent and the site of application. referred formulations oral or nasal application have the following combinations: i) sodium lauryl sulphate, sodium salicylate, diεodium edetate, Phospholipon-H and sodium hyaluronate; ii) sodium lauryl sulphate, sodium salicylate, disodium edetate, lecithin and sodium hyaluronate; iii) sodium lauryl sulphate, sodium salicylate, disodium edetate, sodium hyaluronate and evening of primrose oil; iv) sodium lauryl sulphate, sodium salicylate, disodium edetate, Phospholipon-H and bacitracin; v) sodium lauryl sulphate, sodium - salicylate, disodium edetate, Phospholipon-H, sodium hyaluronate and bacitracin; and vi) sodium lauryl sulphate, sodium salicylate, disodium edetate, sodium hyaluronate, oleic acid and gamma linoleic acid. For aerosol formulations, the addition of a mixture of phenol and -cresol iβ preferred. Such an aerosol formulation may then be charged to an aerosol dispenser and then charged with a propellant, preferably a non-CFC propellant .
The therapeutic compositions of the present invention may be stored at room temperature or at cold temperature . Storage of proteinic drugs is preferable at a -cold temperature to prevent degradation of the drugs and to extend their shelf life.
As indicated hereinbefore, generally, oral and nasal are the favourite sites of the administration but the composition can be applied to the rectal and vaginal mucosa. According to the physiologically active peptide or protein used, the dosage form and the site of administration a specific administration method can be selected.
The composition of this invention is generally prepared as microfine mixed micellar particles (1 to 10 nm or less) by the virtue of its preparation methods used and suitable combinations of absorption enhancer characteristics .
For oral and nasal application, sprayB are preferable, but also drops, chewable tablets, chewable gum and other suitable forms may be used. Utilization of atomizer or aerosol spray devices (metered dose inhalers or nebulizers) can be used to further reduce the particle size for effective inhalation from the nasal or oral cavity so the drug may successfully reach to the specific site and be absorbed. It is also possible to utilize a drug delivery system such that an enteric coating is applied to the gelatin capsule to cause the micelles to be released only in the duodenum or in the proximity of the large intestine and not in the stomach. The invention is illustrated by reference to the following examples. Example 1
A first experiment was conducted to provide data for comparative purposes. This example does not fall within the scope of the present invention.
A solution was prepared using 0.5 g sodium lauryl sulphate, 0.5 g sodium salicylate and 0.25 g disodium edetate dissolved in 10 mL of water. To this solution 40 mg (1000 unitis) of insulin was added and dissolved completely while stirring, to give about 100 unite/mL insulin solution.
In one set of tests, five health?" non-diabetic human volunteers were tested with insulin, by injection. In another set of tests the volunteers were tested with insulin, taken orally. The volunteers fasted from midnight prior to the test, with no food being taken during, the 4 hour study.
On the first day, the volunteers received 10 units insulin by injection (regular fast acting insulin, available from Eli Lilly) . On the second day, the volunteers received 100 units (1 mL volume per drop, approximately 20 drops) of the above-prepared oral insulin (10 times the injection dose) . In both tests, blood glucose levels were monitored every 15 minutes by Bayer's Glucometer Elite.
The average results for the five volunteers, of the first day's trial (sub-cutaneous injection with 10 units) were as follows:
Table I Time*-. 0 15 30 60 75 90 120 150 180 Avg: 5.8 5.8 5.4 5.0 4.6 4.3 3.8 3-6 3.4 Time*: 210 240 Avg: 4.2 4.5
* time in minutes
.The results for each of the five volunteers, of the second day's trial (oral drops with 100 units) were as follows:
Table II
Time*: 0 15 30 60 75 90 120 150 180 Subject Nos: 1 6.2 5.8 5.2 5.0 4.9 5.0 5.0 4.8 4.7
2 5.8 5.4 5.0 4.7 4.9 4.3 5.0 5.5 5.2
3 4.8 4.6 4.3 4.3 4.4 4.6 4.8 4.7 5.2
4 6.6 6.1 5.8 5.5 5.1 4.9 5.0 5.0 5.9
5 6.0 5.8 5.7 5.5 5.1 4.8 4.7 4.9 5.0 Time*: 210 240
Subject Nos:
1 5.5 6.0
2 5.8 6.1
3 5.5 5.1 4 6.2 6.8
5 5.9 6.7
* time in minutes
These tests indicate that compeired to the injection method, oral insulin gives a faβter onset of action and lowers blood glucose levels without creating hypogiycaemic condition. Due to the hepatic glucose production, there was a rebound effect. This ±B believed to be due to the incomplete absorption of insulin.
Example 2 Another experiment, not within the scope of the present invention, was performed for comparative purposes .
Oral insulin (100 units) was formulated in
(Phospholipon-H, 10 mg) without any sodium lauryl sulphate, sodium salicylate, edetate or absorption enhancers, to evaluate its efficacy of blood glucose lowering in a fasted state, for healthy volunteers. Volunteers were asked to f st overnight and not have any breakfast prior to dosing. Volunteers were asked to take this oral insulin formulation in their mouth and swallow it . Blood glucose levels were monitored every 15 minutes using Bayer's glucometer
Elite for 3 hours, and the average results for 5 volunteers axe shown in Table III . Table III
Time*:0 15 30 45 60 75 90 120 150 180
Avg: 5.6 5.8 5.8 5.7 5.7 5.8 5.7 5.7 5.8 5.7
* time in minutes
This indicates that orally administered inBulin with lecithin alone has no effect on blood glucose lowering.
Example 3
A further experiment, not within the scope of the present invention, was performed for comparative purposes .
Oral insulin (100 units) was formulated with sodium salicylate and alkali metal edetate (both 5% by wt.) to evaluate its ef icacy of blood glucose lowering in fasted state in healthy volunteers.
Volunteers were asked to fast overnight and not have any breakfast prior to dosing. Volunteers were asked to take this oral insulin formulation in their mouth and swallow it . Blood glucose levels were monitored every 15 minutes using Bayer' ε glucometer Elite, for 3 hours and the average results for 5 volunteers are shown in Table IV.
Table IV Time*:0 15 30 45 60 75 90 120 150 180 Avg: 5.8 5.8 5.8 5.9 5.8 5.9 5.7 5.9 6.2 6.0 * time in minutes This indicates that orally administered insulin with sodium salicylate and alkali metal edetate alone has no effect on blood glucose lowering. In addition, this formulation caused irritation and burning sensation, which lasted for several hours. Example 4
A further experiment, not within the scope of the present invention, was performed for comparative purposes .
Oral insulin (100 units) was formulated using sodium salicylate and alkali metal edetate (both 5% by wt.) with Phospholipon-H (10 mg) and tested on healthy subjects. Blood glucose levels were monitored, every 15 minutes using Bayer's glucometer Elite for 3 hours and the results are shown in Table V. Table V
Time*: 0 15 30 45 60 90 120 180 Avg : 5 .3 5 . 3 5 .3 5 . 4 5 . 6 5 . 7 5 . 7 5 . 8
* time in minutes
This indicates that orally administered insulin with sodium salicylate, alkali metal edetate and Phospholipon-H has no effect on blood glucc.se lowering. Example 5
Another experiment, not within the Bcope of the present invention, was performed for comparative purposes. Oral insulin (50 units) was formulated using only alkali metal lauryl sulphate (5% by wt) . Blood glucose levels were monitored every 15 minutes using Bayer's glucometer Elite for 3 hours and the average results for four volunteers are shown in Table VT. Table VI
Time*: 0 15 30 60 90 120 180 Avg: 5.8 5.6 5.4 5.3 5.4 5.4 5.6
* time in minutes
This data shows that orally administered insulin with only alkali metal lauryl sulphate haθ little metabolic effect on the blood glucose lowering in healthy subjects. This formulation caused substantial burning sensation and irritation in the subjects and lasted for two days. Example 6
Yet another experiment, within the scope of the present invention, was performed. . .
Mixed micellar oral insulin (50 units) was formulated using alkali metal lauryl sulphate and sodium salicylate (both 4.4% by wt . ) and alkali metal edetate (2.2% by wt) with Phospholipon-H (10 mg) and tested on healthy volunteers .
The method involved mixing the sodium lauryl sulphate, sodiu salicylate and alkali metal edetate with water in a beaker with a magnetic stirrer at medium speed until the ingredients were dissolved, to form buffer solution. Insulin powder was placed in a beaker and to this powder was added the buffer solution. The solution was continuously stirred using a magnetic stir bar until all of the insulin powder was disεolved and a clear solution obtained. The micellar solution so formed was stored in clean glass bottles and ref igerated.
Mixed micellar liposomal insulin was then prepared in a glass beaker, in which was placed the Phospholipon- H and a small amount of isopropyl alcohol. The mixture was stirred at a high speed (1000 rpm) for about 10 minutes to ensure complete dissolution of the Phospholipon-H. To this solution was added the micellar insulin solution very slowly, drop wise, using glass dropper, with continuous stirring at a high speed. The solution was stirred continuously for another 30 minutes at a high speed to ensure uniform micellar particle size distribution.
Samples of the mixed micellar solution were taken orally by the volunteers.
Blood glucose levels were monitored every 15 minutes using Bayer's glucometer Elite for 3 hours, and the average results for 5 volunteers are shown in Table VII. Table VII
Time*: 0 15 30 45 60 90 120 150 180 Avg : 6 . 5 6 . 1 5 . 5 5 .3 5 . 3 5.4 5 . 5 5 . 5 5 . 5
* time in minutes
This data shows that orally administered insulin with alkali metal lauryl sulphate combined with the sodium salicylate and alkali metal edetate with
Phospholipon-H has a small metabolic effect on blood glucose levels in healthy volunteers.
Example 7
An experiment, within the scope of the present invention, was performed. In this example, the formulation was for oral administration.
Oral insulin (50 units) was formulated using alkali metal lauryl sulphate and sodium salicylate (both 4.4% by wt.) and alkali metal edetate (2.2% by wt.) with Phospholipon-H (10 mg) and sodium hyaluronate (1.1% by wt) . This formulation was tested on healthy subjects under fasting condition.
The method involved mixing the sodium lauryl sulphate, sodium salicylate and alkali metal edetate with water in a beaker with a magnetic stirrer at medium speed until the ingredients were dissolved, to form buffer solution. Insulin powder was placed in a beaker and to this powder was added the buffer solution. The solution was continuously stirred using a magnetic stir bar until all of the insulin powder was dissolved and a clear solution obtained. The micellar solution so formed was stored in clean glass bottles and . . refrigerated.
Mixed micellar liposomal insulin was then prepared in a glass beaker, in which was placed the Phospholipon-
H and a small amount of isopropyl alcohol . The mixture was stirred at a high speed (1000 rpm) for about 10 minutes to ensure complete dissolution of the Phospholipon-H. To this solution was added the micellar insulin solution very slowly, drop wise, using glass dropper, with continuous stirring at a high-speed. The solution was stirred continuously for another 30 minutes at a high speed to ensure uniform micellar particle size distribution. The hyaluronate and small amounts of menthol and εorbitol were then added, with continuous stirring.
Samples of the mixed micellar solution were taken orally by the volunteers.
Blood glucose levels were monitored every 15 minutes using Bayer's glucometer Elite for 3 hours and the average results for 5 volunteers are shown in Table VIII.
Table VIII Time*: 0 15 30 45 60 90 120 150 180 Avg: 6.5 5.9 5.6 5.4 4.9 5.0 4.9 5.2 5.4 * time in minutes
This data shows that orally administered insulin with alkali metal lauryl sulphate, sodium salicylate, alkali metal edetate, Phospholipon-H and sodium hyaluronate has reεulted in lowering of blood glucose levels in healthy subjects better than the above mentioned formulations. Example 8
A further experiment, within the scope of the present invention, was performed. In this example, the formulation was for oral administration.
A buffer solution was prepared using 0.5 g sodium lauryl sulphate, 0.5 g sodium salicylate and 0.25 g disodium edetate dissolved in 10 mL of water. The solution was added to insulin and mixed, to form micellar insulin. Separately, 100 mg of powdered Phosphatidylcholin-H was added to a glass beaker and to this powder was added 10 mL 50% ethanol. The powder was dissolved completely. To this solution 16 mg (400 units) of micellar insulin solution dissolved in 3 L of the buffer solution to (give 30 units/mL insulin solution) was added slowly with- vigorous mixing, to form a mixed micellar solution. To this was added 0.6 mL of sodium hyaluronate and 0. ml of 2% menthol solution containing 3% sorbitol.
In one set of tests, ten Type II diabetic human volunteers who took insulin, by injection three times a day, were studied. In another set of tests the volunteers were tested with insulin, £aken orally. The volunteers fasted from midnight prior to the test, with no food being taken during the 4 hour study. On the firεt day, the volunteers received 10 units insulin by injection (regular fast acting insulin, available f om Eli Lilly) . On the second day, the volunteers received 30.units (1 mL volume per drop, approximately 20 drops) of the abov -prepared oral insulin (3 tlmeε the injection dose) . In both tests, blood glucose levels were monitored every 15 minutes by Bayer's Glucometer Elite. . .
The results, showing the average for the ten volunteers, were as shown on the following page Table IX Blood glucose levels (mmol/L)
Time (minutes) Oral Dose Injection (30 units) (10 units)
0 6.4 6.8
15 5.8 6.9 30 5.4 6.1 45 5.3 5 . 8 60 5.3 5.8 75 5.2 5.8 90 5.2 5.4 105 5.2 5.4 120 5.1 5.2 135 5.1 5.1 150 5.2 4.9 165 5.3 4.9 180 5.3 4.8 195 5.4 4.8 210 5.4 5.2 225 5.6 5.2 240 5.6 5.4
The results show that the oral insulin formulation of the present invention, at a dosage of three times higher than the injected level, is comparable to the injected insulin. Example 9
This example illustrates a method for making a mixed micellar formulation according to the present invention .
In a 250 mL capacity glass beaker was added 5 g sodium lauryl sulphate, 5 g sodium salicylate and 2.5 g edetate. The beaker was placed on the hot plate with a magnetic stirrer. To this dry powder mixture was added 100 mL distilled water and the mixture was stirred, using the magnetic stir bar, at a medium speed until all the powder was dissolved. The buffer solution was stored in a clean glass bottle at room temperature (pH 6.5) .
- A micellar insulin solution was then prepared in a 50 mL capacity glass beaker, into which was placed
11.54 mg insulin powder. To this powder was added 10 mL of the buffer solution. The solution was continuously stirred using a magnetic stir bar until all of the insulin powder was dissolved and a clear solution obtained. The micellar solution so formed was stored in clean glass bottles and refrigerated.
A 2% menthol solution was then prepared from 100 mg menthol crystals, dissolved in 5 mL ethanol. To this solution was added 5 mg FD & C blue dye. The solution was stirred for 10 minutes and stored in a glass bottle at room temperature.
Mixed micellar lipoεo al insulin was then prepared in a 50 mL glass beaker, in which was placed 100 mg of phoεphatidylcholine (Sigma, type I=EH, hydrogenated) . To this powder was added 10 mL of isopropyl alcohol. The mixture was stirred at a high speed (1000 rpm) for about 10 minutes to ensure complete dissolution of the phoBphatidylcholine. To this solution was added the micellar insulin solution very slowly, drop wise, using glass dropper, with continuous stirring at a high speed. The solution was stirred continuously for another 30 minutes at a high speed to ensure uniform micellar particle size distribution. To this solution was added 1 mL of the 2% menthol solution and 50 mg sodium hyaluronate. The semi-clear, translucent, light blue colour, liposomal insulin mixed micellar solution (final volume 15 mL) was stored in a clean glass bottle and refrigerated. The solution had a pH of 6.5.
If the phosphatidylcholine powder does not dissolve completely, then heating up to about 45°C may be required, e.g. using a water bath.
It has been found that if the micellar insulin composition is not added slowly, then the mixed micellar formulation will not be formed and the formulation will be gelatinous and sticky. Example 10
The formulation of Example 9 was tested in a manner similar to that indicated in Example 8 except that the formulation of the present invention was administered nasally. On the first day, the ten volunteers each received 10 units insulin injection (regular fast acting, Eli Lilly) . On the second day, the volunteers received 20 unite of the "oral" insulin of Example 9 (2 times the injection dose) . The "oral" insulin was administered as drops (0.4 L volume per drop, approximately 4 large drops in total, i.e. two drops in each nost il) .
The results, showing the average for the .ten volunteers, were as follows:
Table X Blood glucose levels (mmol/L)
Time (minutes) Nasal Dose injection (20 units) (10 units)
0 7.4 6.8
15 6.7 7.0
30 5.9 6.8
45 5.3 6.3
60 5.0 6.3
75 5.2 5.8
90 5.1 5.2
105 5.0 5.0
Table X (continued)
Blood glucose levels (mmol/L)
Time (minutes) Nasal Dose Injection
(20 units) (10 units)
120 4.6 5.2 135 4.5 4.2
150 4.3 4.6
165 4.3 4.0
180 4.8 4.1
195 5.3 4.3 210 5.4 4.5
225 5.7 4.7
240 5.6 5.0
The results show that the nasal insulin formulation of the present invention, at a dosage of twice the injected level, is comparable to the injected insulin.
Example 11
The formula of Example 9 was taken and tests performed to determine the insulin action on meal glucose on healthy volunteers. Usually, diabetic patients take an insulin injection 30 minutes prior to a meal, because injected insulin takes a long time to take effect. Injected insulin is slowly absorbed into bloodstream within 60 minutes and has metabolic effect on meal glucose levels . The mixed micellar formulation of Example 9 was tested in healthy volunteers under controlled conditions to determine the oral insulin ef ect on meal glucose when compared to injected insulin.
In one set of tests, ten healthy non-diabetic human volunteers were tested with insulin, by injection. in another set of tests the volunteers were tested with insulin, taken orally. The volunteers fasted from midnight prior to the tests, with food being taken 30 minutes after dosing. The meals were standard Sastacal 240 mL liquid diet approved by the Diabetic Society, containing 400 calories.
On the first day, the volunteers received 10 units insulin by injection (regular fast acting insulin, available f om Eli Lilly) . On the second day, the volunteers received 30 unit3 of the above-prepared oral insulin (3 times the injection dose) . In both tests, blood glucose levels were monitored every 15 minutes by Bayer's Glucometer Elite. The results are shown on the following page:
Table XI Blood glucose levels (mmol/L)
Time (minutes) Oral Dose In ection (30 units) (10 units)
0 5.7 5.5
15 5.2 5.6
30 5.0 5.4
45 5.3 5.4 60 5.4 5.6
75 6.3 6.6
90 6.9 7.0
105 6.0 5-9
120 5.8 5.6 135 5.5 5.1
150 5.1 4.8
165 4.9 4.6
180 4.8 4.3
The results indicate that the oral insulin helps control meal glucose levels in healthy volunteers when compared to injected insulin.
Example 12
The mixed micellar formulation of Example 9 was tested in diabetic volunteers under controlled conditions to determine the oral insulin effect on meal glucose when compared to injected insulin.
In one set of teεts, ten Type II diabetic human volunteers who took insulin, by injection three times a day, were studied. In another set of tests the volunteers were tested with insulin, taken orally. The volunteers fasted from midnight prior to the tests, with food being taken 30 minutes after dosing. The meals were standard Sastacal 240 mL liquid diet approved by the Diabetic Society, containing 400 calories.
On the first day, the volunteers received 10 units insulin by injection (regular fast acting insulin, available from Eli Lilly) . On the second day, the volunteers received 30 units of the above-prepared oral insulin (3 times the injection dose) . In both tests, blood glucose levels were monitored every 15 minutes by Bayer's Glucometer Elite.
The average reεultε for the 10 volunteers were as follows:
Table XII
Blood glucose levels (mmol/L)
Time (minutes) Oral Dose Injection
(30 units) (10 units)
0 8.8 8.7
15 8.1 8.8
30 8.0 8.9
45 8.4 10.1 60 10.2 11.8 75 11.8 11.8 90 12.3 12.2 105 10.8 11.2
120 9.6 10.4 135 8.1 8.4 150 6.9 7.3 165 6.2 6.5 180 4.8 4.3
The : results indicate that oral insulin helps to control meal glucose levels in diabetic patients when compared to injected insulin. Example 13
A chewable gum insulin formulation was prepared by vigorously stirring the liposomal insulin mixed micellar solution of Example 9 while adding guar gum, beeswax, powdered acacia, oleic acid, gamma-linoleic acid and sorbitol. For each 30 unitε of insulin, the mixture contained 100 mg guar gum, 50 mg beeswax, 50 mg powdered acacia, 100 mg oleic acid, 100 mg gamma-linoleic acid and 1 mL 3% εorbitol in ethanol BOlution. The mixture was then poured into a flat tray coated with polytetrafluoroethylene until the mixture was about 10 mm deep. The mixture then Bolidified and after solidification was cut into sticks about l cm by 3 cm. Each stick contained about 30 units insulin.
The mixed micellar formulation in chewable stick form was tested in diabetic volunteers under controlled conditions to determine the oral insulin e fect on meal glucose when compared to injected insulin. In one set of tests, five Type II diabetic human volunteers who took insulin, by injection three times a day, were studied. In another set of tests the volunteers were tested with the chewable gum insulin, taken orally. The volunteers fasted from midnight prior to the teεts, with food being taken 30 minutes after dosing. The meals were standard Sastacal 240 mL liquid diet approved by the Diabetic Society, containing 400 calories .
On the first day, the volunteers received 10 units insulin by injection (regular fast acting insulin, available from Eli Lilly) . On the second day, the volunteers received 30 units of the abov -prepared chewable gum oral insulin (3 times the injection dose) . In both tests, blood glucose levels were monitored every 15 minutes by Bayer's Glucometer Elite.
The average results for the five volunteers were as follows:
Table XIII
Blood glucose
Time (minutes) Oral Dose In ection (30 units) (10 units)
0 9.1 8.8
15 9.3 8.2
30 9.3 8.0
45 10.2 8.4
60 11.2 9.2
75 12.1 10.3
90 12.9 11.8
105 13.2 11.6
120 12.8 11.0
135 12.2 10.2
150 11.6 9.6
165 11.0 9.5
180 10.6 9.1 '
195 10.0 a.7. .
210 9.5 8.2
225 8.8 8.0
240 8-2 7.5 Example 14 Another experiment, within the scope of the present invention, was performed. ∑n this example, the formulation was for oral administration.
A buffer solution was prepared using 0.5 g sodium lauryl sulphate, 0.5 g sodium salicylate and 0.25 g disodium edetate dissolved in 10 mL of water. The solution was added to 8 mg (200 units) insulin and mixed, to form micellar insulin.
.To this micellar solution were added 0.2 g bacitracin and 0.5 g evening of primrose oil and the solution was mixed vigorously to form a mixed micellar insulin solution (about 20 units/mL) .
Six human volunteers were studied. The volunteers fasted from midnight prior to the test, with no food being taken during the 4 hour study.
On the first day, the volunteers received 10 units inBulin by injection (regular faBt acting insulin, available from Eli Lilly) . On the second day, the volunteers received 20 units of the above-prepared oral insulin (twice the injection dose) . In both tests, blood glucose levels were monitored at intervals by Bayer's Glucometer Elite.
The results, showing the average for the six volunteers, were as follows: Table XIV
Blood glucose levels (mmol/L) Time (minutes) Oral Dose Injection
(20 units) (10 units)
0 8.8 7.9 15 8.4 7.9
30 8.1 8.2 45 7.4 8.3
60 6.3 7.6
90 5.1 6.2
120 5.0 5.2 150 4.8 4.6
180 5.1 3.9
210 5.3 4.4
240 5.6 5.2
.The results show that the oral insulin formulation of the present invention, at a dosage of twice the injected level, is comparable to the injected insulin. Example 15
A further experiment was performed to show another method of making the mixed micellar formulation of the present invention.
In a 250 mL round bottom flask was added 100 mg of saturated lecithin powder (Phospholipόn-90H) purchased from the American Lecithin Co. To this powder was added 5 mL of absolute ethanol (USP grade) . The flask was then attached to a rotary evaporator equipped with the vacuum pump and nitrogen inlet for inert atmosphere condition to minimize oxidation of the lecithin. The flask was rotated at 10.0-150 rp under vacuum. The solution in the flask was heated to 60°C by means of water bath to dissolve the powder completely. After complete dissolution of the powder, heating was stopped and the rotation speed was increased to 300 rpm, under vacuum in nitrogen atmosphere until the alcohol evaporated completely, leaving a uniform film on the side of the flask. The rotation was continued for at least 30 minutes to ensure uniform coating of film on the wall and complete solvent removal. After 30 minutes the rotation was stopped and the vacuum was released.
To this flask was added micellar insulin solution which had been prepared from an aqueous solution of insulin, sodium lauryl Bulphate, sodium salicylate and disodium edetate. The flask was shaken with the help of shaker plate. Shaking was continued for at least 30 minutes and then the solution was sonicated with a high frequency sonicating probe for another 60 minutes in order to form small uniform mixed micelles. The mixed micelles so obtained were analyzed by Malvern Zeta (trade mark) particle size distribution measurement equipment equipped with the laser light scattering device. The mixed micelles particle size distribution obtained by this method was between 2 and 9nm. To this solution was added 1 mL of 2% "menthol solution and 50 mg sodium hyaluronate. The semi-clear, translucent, light blue colour solution (final volume 10 mL) was stored in a clean glass bottle and ref igerated. The solution had a pH of 6.5. Example 16
Another experiment, within the scope of the present invention, was performed. A buffer solution was prepared using 0.5 g sodium lauryl sulphate, 0.5 g sodium salicylate and 0.25 g disodium edetate dissolved in 10 mL of water. . The solution was added to 8 mg (200 units) insulin and mixed, to form micellar insulin. To this micellar solution were added 0.5 g borage oil and the solution was mixed vigorously to form a mixed micellar insulin solution (about 20 units/mL) .

Claims

CLAIMS :
1. A process for making a pharmaceutical composition suitable for delivery through mucosal membranes comprisin : a) preparing a pharmaceutical agent composition in micellar form in an aqueous medium which has an alkali metal salicylate in a concentration of from 1 to 10 wt./wt.% of the aqueous micellar pharmaceutical agent composition, an alkali metal C8 to C22 alkyl sulphate in a concentration of from 1 to 10 wt./wt.% of the aqueous micellar pharmaceutical agent composition and a pharmaceutically acceptable edetate in a concentration of from 1 to 10 wt./wt.% of the aqueous micellar pharmaceutical agent composition; b) slowly adding the micellar proteinic pharmaceutical agent composition, while mixing, to at least one absorption enhancing compound, while continuing to mix vigorously, said absorption enhancing compounds being selected from the group consisting of lecithin, hyaluronic acid, pharmaceutically acceptable salts of hyaluronic acid, octylphenoxypolyethoxyethanol, glycolic acid, lactic acid, chamomile extract, cucumber extract, oleic acid, linolenic acid, borage oil, evening of primrose oil, menthol, trihydroxy oxo cholanylglycine and pharmaceutically acceptable salts thereof, glycerin, polyglycerin, lysine, polylysine, polidocanol alkyl ethers and analogues thereof, triolein and mixtures thereof, wherein the amount of each absorption enhancing compound is present in a concentration of from l to 10 wt./wt.% of the total formulation, and the total concentration of alkali metal salicylate, alkali metal C8 to C22 alkyl sulphate, edetate and absorption enhancing compounds is less than 50 wt./wt.% of the formulation.
2. A process according to Claim 1 wherein there is an additional step of adding, while continuin -mixing, at least one absorption enhancing compound different to that added in step b) , selected from the group consisting of lecithin, hyaluronic acid, pharmaceutically acceptable salts of hyaluronic acid, octylphenoxypolyethoxyethanol, glycolic acid, lactic acid, chamomile extract, cucumber extract, oleic acid, linolenic acid, borage oil, evening of primrose oil, trihydroxy oxo cholanylglycine, glycerin, polyglycerin, lysine, polylysine, triolein and mixtures thereof.
3. A process according to Claim 1 wherein the absorption enhancing compound in step b) is selected from the group consisting of saturated phospholipid, unsaturated phospholipid, phosphatidylcholine, phosphatidyl serine, sphingomyelin, phosphatidylethanolamine, cephalin, lecithin, lysolecithin and mixtures thereof .
4. A process according to Claim 1 wherein one of the absorption enhancing compounds is lecithin and another absorption enhancing compound is selected from the group consisting of hyaluronic acid, pharmaceutically acceptable salts of hyaluronic acid and mixtures thereof, the concentration such absorption enhancing compound being from about 1 to about 5 w ./wt . %.
5. A process according to Claim 1 wherein the micellar absorption enhancing compounds comprise combinations selected from the group consisting of i) saturated phospholipid and sodium hyaluronate, ii) saturated phospholipid and glycolic acid, iii) lecithin and sodium hyaluronate and iv) saturated phospholipid, glycolic acid and lactic acid.
6. A process according to Claim 1 wherein .the proteinic pharmaceutical agent is Belected from the group consisting of insulin, heparin, so-called low molecular weight heparin, hirulog, hirugen, huridin, interferons, interleukins, cytokines, mono and polyclonal antibodies, chemotherapeutic agents, vaccines, glycoproteins, bacterial toxoids, hormones, calcitonins, insulin like growth factors (IGF) , glucagon like peptides (GLP-1) , large molecule antibiotics, protein based thrombolytiσ compounds, platelet inhibitors, DNA, RNA, gene therapeutics, antisense oligonucleotides, opioids, narcoticB, analgesics, NSAIDS, steroids, hypnotics, pain killers and morphine.
7. A process according to Claim 1 wherein in step b) the micellar proteinic pharmaceutical agent composition is added to lecithin, with sonication, to form a mixed micellar composition; and c) while continuing to mix, adding at least one absorption enhancing compound selected from the group consisting of hyaluronic acid, pharmaceutically acceptable salts of hyaluronic acid, octylphenoxypolyethoxyethanol, glycolic acid, lactic acid, chamomile extract, cucumber extract, oleic. acid, linolenic acid, borage oil, evening of primrose oil, trihydroxy oxo cholanylglycine, glycerin, polyglycerin, lysine, polylysine, triolein and mixtures thereof; wherein the amount of lecithin and the absorption enhancing compound are each present in a concentration of from 1 to 10 wt./wt.% of the total formulation, and the total concentration of alkali metal salicylate, alkali metal C8 to C22 alkyl sulphate, edetate and absorption enhancing compounds is less than 50 wt./wt.% of the formulation.
8. A process according to Claim 1 wherein the absorption enhancing compound is formed into a film prior to the addition of the micellar pharmaceutical agent composition.
9. A process according Claim 1 wherein subsequent to the addition of the micellar pharmaceutical agent composition a second absorption enhancing compound is added, said second absorption enhancing compound being different from the absorption enhancing compound previously used.
10. A process according to Claim 1 'phenol selected from the group consisting of phenol, methyl phenol and mixtures thereof are added to the micellar formulation and the resulting formulation placed in a container, and the container is subsequently charged with a propellant .
11. A process according to Claim 10 wherein the propellant is selected from the group consisting of tetra luoroethane, tetrafluoropropane, dimethylfluoropropane, heptafluoropropane, dimethyl ether, n-butane and isobutane.
12. A process according to Claim 1 wherein the pharmaceutical agent is insulin.
13. A process according to Claim 11 wherein the pharmaceutical agent is insulin.
14. A mixed micellar pharmaceutical formulation comprising a pharmaceutical agent in micellar form, water, an alkali metal C8 to C22 alkyl sulphate in a concentration of from 1 to 10 wt./wt.% of the total formulation, a pharmaceutically acceptable edetate in a concentration of from 1 to 10 wt./wt.% of the total formulation, at leaBt one alkali metal salicylate in a concentration of from 1 to 10 wt./wt.% of the total formulation, and at least one absorption forming compound, said absorption forming compounds being selected from the group consisting of lecithin, hyaluronic acid, pharmaceutically acceptable salts of hyaluronic acid, octylphenoxypolyethoxyethanol, glycolic acid, lactic acid, chamomile extract, cucumber extract, oleic acid, linolenic acid, borage oil, evening of primrose oil, menthol, trihydroxy oxo cholanylglycine and pharmaceutically acceptable salts thereof, glycerin, polyglycerin, lysine, polylysine, polidocanol alkyl ethers and analogues thereof, triolein and mixtures thereof, wherein the amount of each absorption enhancing compound is present in a concentration of from 1 to 10 wt./wt.% of the total formulation, and the total concentration of absorption enhancing compounds are less than 50 wt./wt.% of the formulation.
15. A mixed micellar pharmaceutical formulation according to Claim 14, in which one of the absorption enhancing compounds is lecithin.
16. A formulation according to Claim 14 wherein the alkali metal C8 to C22 alkyl sulphate is sodium lauryl sulphate and the alkali metal salicylate is sodium salicylate.
17. A formulation according to Claim 15 wherein the lecithin is selected from the group consisting of saturated phospholipid, unsaturated phospholipid, phosphatidylcholine, phosphatidyl serine, sphingomyelin, phosphatidylethanolamine, cephalin, lysolecithin and mixtures thereo .
18. A formulation according to Claim 15 wherein the other absorption enhancing compound is selected from the group consisting of hyaluronic acid, pharmaceutically acceptable salts of hyaluronic acid and mixtures thereof, the concentration such absorption enhancing compound being from about 1 to about 5 wt./wt.%.
19. A formulation according to Claim 14 wherein the formulation comprises combinations selected from the group consisting of i) sodium lauryl sulphate, sodium salicylate, disodium edetate, saturated phospolipid and sodium hyaluronate; ii) sodium lauryl 'sulphate, sodium salicylate, diεodium edetate, lecithin and sodium hyaluronate; iii) sodium lauryl sulphate, sodium salicylate, disodium edetate, sodium hyaluronate and evening of primrose oil; iv) sodium lauryl sulphate, sodium salicylate, disodium edetate, saturated phospolipid and bacitracin; v) sodium lauryl sulphate, sodium salicylate, disodium edetate, saturated phospolipid-, - sodium .hyaluronate _and Jacitracin;_and vi)^ sodium lauryl sulphate, sodium salicylate, disodium edetate, sodium hyaluronate, oleic acid and gamma linoleic acid.
20. A formulation according to Claim 14 wherein the pharmaceutical agent is selected from the group consisting of insulin, heparin, so-called low molecular weight heparin, hirulog, hirugen, huridine, interferons, interleukins, cytokins, mono and polyclonal antibodies, chemotherapeutic agents, vaccines, glycoproteins , bacterial toxoids, hormones, calcitonins, insulin like growth factors (IGF) , glucagon like peptides (GLP-l) , large molecule antibiotics, protein based thrombolytic compounds, platelet inhibitors, DNA, RNA, gene therapeutics antisense oligonucleotideB, opioids, narcotics, analgesics, NSAIDS, steroids, hypnotics, pain killers and morphine.
21. A formulation according to Claim 14 wherein the pharmaceutical agent is insulin.
22. A formulation according to Claim 21 in which the absorption enhancing compounds are lecithin and a second absorption enhancing compound selected from the group consisting of hyaluronic acid, pharmaceutically acceptable salts of hyaluronic acid and mixtures thereof .
23. A ormulation according to Claim 14 wherein the formulation additionally comprises a phenol selected from the group consisting of phenol, methyl phenol and mixtures thereof .
24. A formulation according to Claim 23 wherein the formulation is contained in an aerosol container and the container is charged with a propellant .
25. A formulation according to Claim 24 wherein the propellant is selected from the group consisting of tetrafluoroethane, tetrafluoropropan , dimethylfluoropropane, heptafluoropropane, dimethyl ether, n-butane and isobutane.
PCT/IB2001/000564 2000-03-30 2001-02-21 Method for administering insulin to the buccal region WO2001072278A2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU44452/01A AU4445201A (en) 2000-03-30 2001-02-21 Method for administering insulin to the buccal region

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/538,829 US7070799B1 (en) 1998-02-10 2000-03-30 Method for administering insulin to the buccal region
US09/538,829 2000-03-30

Publications (2)

Publication Number Publication Date
WO2001072278A2 true WO2001072278A2 (en) 2001-10-04
WO2001072278A3 WO2001072278A3 (en) 2002-04-11

Family

ID=24148588

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2001/000564 WO2001072278A2 (en) 2000-03-30 2001-02-21 Method for administering insulin to the buccal region

Country Status (2)

Country Link
AU (1) AU4445201A (en)
WO (1) WO2001072278A2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1369113A1 (en) * 2002-06-06 2003-12-10 CHIESI FARMACEUTICI S.p.A. Solubilisation of drugs in HFA propellant by means of emulsions
FR2854072A1 (en) * 2003-04-23 2004-10-29 Centre Nat Rech Scient Vector for oral administration of pharmaceuticals, useful particularly for delivering insulin or vaccines, comprises hydrophilic matrix in which the outer surface is modified to impart lipophilicity
WO2010109180A1 (en) * 2009-03-23 2010-09-30 Ntnu Technology Transfer As Composition for the administration of polymeric drugs
US8673878B2 (en) 2005-10-06 2014-03-18 Ntnu Technology Transfer As Mucosal treatment
US8841279B2 (en) 2007-04-12 2014-09-23 Norwegian University Of Science And Technology Oligo-guluronate and galacturonate compositions
US8987215B2 (en) 2009-03-23 2015-03-24 Ntnu Technology Transfer As Composition for use in gene therapy
EP3423037A4 (en) * 2016-03-03 2019-11-27 CTT Pharma Inc. Orally administrable composition
US11298336B2 (en) 2019-05-30 2022-04-12 Soluble Technologies, Inc. Water soluble formulation
US11786475B2 (en) 2020-07-22 2023-10-17 Soluble Technologies Inc. Film-based dosage form

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107583047A (en) * 2017-09-15 2018-01-16 广东海大畜牧兽医研究院有限公司 A kind of fish oral vaccine adjuvant and its formulation method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994026302A1 (en) * 1993-05-12 1994-11-24 Genentech, Inc. Stable liquid compositions of gamma interferon
WO1996019197A1 (en) * 1994-12-22 1996-06-27 Astra Aktiebolag Aerosol formulations of peptides and proteins
WO1996036352A1 (en) * 1995-05-16 1996-11-21 Pankaj Modi Liquid formulations for proteinic pharmaceuticals comprising at least 2 absorption enhancers
WO1999040932A1 (en) * 1998-02-10 1999-08-19 Generex Pharmaceuticals, Inc. Mixed micellar pharmaceutical delivery system and method of preparation
WO2000037051A1 (en) * 1998-12-21 2000-06-29 Generex Pharmaceuticals Inc. Aerosol formulations for buccal and pulmonary application
WO2001015666A1 (en) * 1999-08-31 2001-03-08 Generex Pharmaceuticals Inc. Mixed micellar pharmaceutical delivery system and method of preparation

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994026302A1 (en) * 1993-05-12 1994-11-24 Genentech, Inc. Stable liquid compositions of gamma interferon
WO1996019197A1 (en) * 1994-12-22 1996-06-27 Astra Aktiebolag Aerosol formulations of peptides and proteins
WO1996036352A1 (en) * 1995-05-16 1996-11-21 Pankaj Modi Liquid formulations for proteinic pharmaceuticals comprising at least 2 absorption enhancers
WO1999040932A1 (en) * 1998-02-10 1999-08-19 Generex Pharmaceuticals, Inc. Mixed micellar pharmaceutical delivery system and method of preparation
WO2000037051A1 (en) * 1998-12-21 2000-06-29 Generex Pharmaceuticals Inc. Aerosol formulations for buccal and pulmonary application
WO2001015666A1 (en) * 1999-08-31 2001-03-08 Generex Pharmaceuticals Inc. Mixed micellar pharmaceutical delivery system and method of preparation

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YAMAMOTO A ET AL: "Pulmonary absorption enhancement of peptides by absorption enhancers and protease inhibitors" JOURNAL OF CONTROLLED RELEASE, vol. 41, no. 1, 1 August 1996 (1996-08-01), page 57-67 XP004037571 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003103642A1 (en) * 2002-06-06 2003-12-18 Chiesi Farmaceutici S.P.A. Solubilisation of drugs in hfa propellant by means of emulsions
EP1369113A1 (en) * 2002-06-06 2003-12-10 CHIESI FARMACEUTICI S.p.A. Solubilisation of drugs in HFA propellant by means of emulsions
FR2854072A1 (en) * 2003-04-23 2004-10-29 Centre Nat Rech Scient Vector for oral administration of pharmaceuticals, useful particularly for delivering insulin or vaccines, comprises hydrophilic matrix in which the outer surface is modified to impart lipophilicity
WO2004096172A2 (en) * 2003-04-23 2004-11-11 Centre National De La Recherche Scientifique (C.N.R.S.) Vector for oral administration
WO2004096172A3 (en) * 2003-04-23 2005-01-20 Centre Nat Rech Scient Vector for oral administration
US8673878B2 (en) 2005-10-06 2014-03-18 Ntnu Technology Transfer As Mucosal treatment
US8754063B2 (en) 2005-10-06 2014-06-17 NTNU Technology Transfers AS Use of oligouronates for treating mucus hyperviscosity
US8841279B2 (en) 2007-04-12 2014-09-23 Norwegian University Of Science And Technology Oligo-guluronate and galacturonate compositions
US8529890B2 (en) 2009-03-23 2013-09-10 Ntnu Technology Transfer As Composition for the administration of polymeric drugs
WO2010109180A1 (en) * 2009-03-23 2010-09-30 Ntnu Technology Transfer As Composition for the administration of polymeric drugs
US8987215B2 (en) 2009-03-23 2015-03-24 Ntnu Technology Transfer As Composition for use in gene therapy
EP3423037A4 (en) * 2016-03-03 2019-11-27 CTT Pharma Inc. Orally administrable composition
US11298336B2 (en) 2019-05-30 2022-04-12 Soluble Technologies, Inc. Water soluble formulation
US11786475B2 (en) 2020-07-22 2023-10-17 Soluble Technologies Inc. Film-based dosage form

Also Published As

Publication number Publication date
AU4445201A (en) 2001-10-08
WO2001072278A3 (en) 2002-04-11

Similar Documents

Publication Publication Date Title
US6231882B1 (en) Mixed micellar delivery system and method of preparation
US6221378B1 (en) Mixed micellar delivery system and method of preparation
US6432383B1 (en) Method for administering insulin
US6312665B1 (en) Aerosol formulations for buccal and pulmonary application
US6350458B1 (en) Mixed micellar drug deliver system and method of preparation
AU783431B2 (en) Pharmaceutical compositions for buccal and pulmonary application
US20100203105A1 (en) Method for administering insulin to the buccal region
US6451286B1 (en) Pharmaceutical compositions for buccal and pulmonary administration comprising an alkali metal alkyl sulfate and at least three micelle-forming compounds
US6436367B1 (en) Aerosol formulations for buccal and pulmonary application
CA2494132C (en) Pharmaceutical composition, metered dose dispenser containing same, and use of pharmaceutical composition and metered dose dispenser in administering pharmaceutical agent to oral membranes
WO2001072278A2 (en) Method for administering insulin to the buccal region
EP1338272A1 (en) Aerosol formulations for buccal and pulmonary application comprising chenodeoxycholate or deoxycholate
CA2229286C (en) Mixed micellar delivery system and method of preparation
AU2002301424B2 (en) Mixed micellar pharmaceutical delivery system and method of preparation
AU763251B2 (en) Mixed micellar pharmaceutical delivery system and method for preparation
MXPA00007802A (en) Mixed micellar pharmaceutical delivery system and method of preparation
AU2003259466A1 (en) Methods of administering and enhancing absorption of pharmaceutical agents

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
AK Designated states

Kind code of ref document: A3

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A3

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase in:

Ref country code: JP