WO2001060291A1 - Shoulder brace - Google Patents

Shoulder brace Download PDF

Info

Publication number
WO2001060291A1
WO2001060291A1 PCT/US2001/005300 US0105300W WO0160291A1 WO 2001060291 A1 WO2001060291 A1 WO 2001060291A1 US 0105300 W US0105300 W US 0105300W WO 0160291 A1 WO0160291 A1 WO 0160291A1
Authority
WO
WIPO (PCT)
Prior art keywords
shoulder
individual
arm
frame member
shoulder brace
Prior art date
Application number
PCT/US2001/005300
Other languages
French (fr)
Inventor
Bruce Kania
Original Assignee
Fountainhead
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fountainhead filed Critical Fountainhead
Priority to US10/204,077 priority Critical patent/US7135005B2/en
Priority to AU2001241571A priority patent/AU2001241571A1/en
Publication of WO2001060291A1 publication Critical patent/WO2001060291A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F5/00Orthopaedic methods or devices for non-surgical treatment of bones or joints; Nursing devices; Anti-rape devices
    • A61F5/37Restraining devices for the body or for body parts, e.g. slings; Restraining shirts
    • A61F5/3715Restraining devices for the body or for body parts, e.g. slings; Restraining shirts for attaching the limbs to other parts of the body
    • A61F5/3723Restraining devices for the body or for body parts, e.g. slings; Restraining shirts for attaching the limbs to other parts of the body for the arms
    • A61F5/3753Abduction support
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F5/00Orthopaedic methods or devices for non-surgical treatment of bones or joints; Nursing devices; Anti-rape devices
    • A61F5/01Orthopaedic devices, e.g. splints, casts or braces
    • A61F5/0102Orthopaedic devices, e.g. splints, casts or braces specially adapted for correcting deformities of the limbs or for supporting them; Ortheses, e.g. with articulations
    • A61F5/013Orthopaedic devices, e.g. splints, casts or braces specially adapted for correcting deformities of the limbs or for supporting them; Ortheses, e.g. with articulations for the arms, hands or fingers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F5/00Orthopaedic methods or devices for non-surgical treatment of bones or joints; Nursing devices; Anti-rape devices
    • A61F5/37Restraining devices for the body or for body parts, e.g. slings; Restraining shirts
    • A61F5/3715Restraining devices for the body or for body parts, e.g. slings; Restraining shirts for attaching the limbs to other parts of the body
    • A61F5/3723Restraining devices for the body or for body parts, e.g. slings; Restraining shirts for attaching the limbs to other parts of the body for the arms
    • A61F5/3738Slings

Definitions

  • the present invention relates generally to orthopedic braces, particulary to a shoulder
  • brace for providing support to the shoulder area.
  • the ball and socket joint of the human shoulder provides for free movement of the
  • composition of the shoulder is the subject of extensive medical study and while a more
  • the shoulder joint is capable of flexion, extension, abduction, adduction,
  • humeral head are inadequate or excessive force is being applied, usually when the shoulder is
  • glenoid fossa being the socket of what is commonly referred to as the ball and socket joint of
  • braces and harnesses known in the art that alleviate pressure on
  • ligaments in the shoulder area also provides support to prevent the dislocation of the
  • the shoulder brace taught by McGuire et al. includes
  • a sleeve portion which is designed to fit around the upper end of the upper arm of a patient and it includes straps that are wrapped over and around the sleeve portion and attached to a
  • McGuire et al. exerts a substantial amount of force to the top of the shoulder and the upper
  • brace that provides strong posterior, anterior and/or medial pressure to the shoulder joint of a patient wearing the shoulder strap while not excessively inhibiting motion of the arm.
  • Movement of a patient's shoulder can be broken down into safe zones and danger zones.
  • anterior dislocation are even greater.
  • a shoulder brace including a shoulder member mountable to a shoulder of a patient's arm, and
  • a positioning device configured to increase a pressure to the shoulder of the patient in
  • the shoulder brace includes a shoulder
  • substantially rigid first and second arms and a positioning device configured to vary the
  • the present invention avoids undue restriction of
  • the positioning device is configured to:
  • first and second tension triggering straps configured to provide
  • first mounting member mountable to a user's pectoral area
  • second mounting member mountable to a user's pectoral area
  • a positioning device is configured to increase a pressure to the user's
  • shoulder brace As
  • the shoulder brace efficiently communicates movements of the user's upper arm to the
  • Fig. 1 is a front view of a patient wearing a shoulder brace according to the present invention
  • Fig. 2 is a side view of the shoulder brace shown in Fig. 1;
  • Fig. 3 is a rear view of the shoulder brace shown in Fig. 1;
  • Fig. 4 is an enlarged view of the shoulder brace shown in Fig. 1;
  • Figs. 4a, 4b and 4c are cross-sectional views I-I and II-II shown in Fig. 4;
  • Fig. 5 is a side view of an alternative embodiment of the shoulder brace according to
  • Fig. 6 is a front view of an anchor strap according to the shoulder brace of the present
  • Figs. 7 and 8 are side views of a further embodiment of the shoulder brace of the
  • Fig. 9 is a further embodiment of the shoulder brace according to the present
  • Figs. 10-15 are side views of further embodiments of biasing and relaxing devices
  • Fig. 16 is a further embodiment of the shoulder brace of the present invention.
  • Fig. 17 is a further embodiment of the shoulder brace of the present invention.
  • Fig. 18 is an additional side view of the embodiment shown in Fig. 17 according to
  • Fig. 19 is a side view of the embodiment shown in Fig. 18;
  • Fig. 20 is a front view of a further embodiment of the shoulder brace of the present
  • Fig. 21 is a side view of the embodiment shown in Fig. 20;
  • Fig. 22 is a side view of a further embodiment of the shoulder brace according to the
  • Fig. 23 is a front view of a further embodiment of the shoulder brace of the present
  • Fig. 24 is a front view of a further embodiment of the shoulder brace of the present
  • Fig. 25 is a front view of a further embodiment of the shoulder brace of the present
  • Fig. 26 is a side view of a patient wearing a further embodiment of the shoulder brace
  • Fig. 27 is a front view of the patient wearing the shoulder brace shown in Fig. 26;
  • Fig. 28 illustrates an alternative alignment and anchor strap of the shoulder brace
  • Figs. 29a-b are cross-sectional side views of an actuating mechanism included in the
  • Fig. 30 is a side view of a patient wearing yet another embodiment of the shoulder
  • Fig. 31 is a front view of the patient wearing the shoulder brace shown in Fig. 30;
  • Fig. 32 is a schematic of a compression mechanism included in the shoulder brace
  • Fig. 33 is a schematic of another compression mechanism included in the shoulder brace shown in Figs. 31 and 32;
  • Fig. 34 is a schematic of yet another compression mechanism included in the shoulder
  • Fig. 35 is a schematic illustrating an adjustment mechanism for a rear frame member
  • Fig. 36 is a schematic illustrating a gear box included in the compression mechanism
  • Figures 37-41 are copies of photographs of a person wearing the shoulder brace
  • a shoulder strap 10 being worn by a patient 12 is
  • Shoulder brace 10 generally includes shoulder joint member 14, and
  • shoulder joint member 14 is generally
  • Brace 10 may
  • alignment strap 16 which generally has a front end 24 attached to a front
  • front end 24 and rear end 28 of alignment strap 16 are attached
  • strap 16 may be made of elastic, or include an elastic portion (not shown) so as to provide a bias
  • Alignment strap 16 may also include a support strap 34 shown in phantom lines in
  • anchor strap 18 is wrapped around a patient's torso 36.
  • Anchor strap 18 is preferably positioned according to the preferences of the patient. As
  • anchor strap 18 is provided in an upper abdominal region of the patient's
  • anchor strap 18 may alternatively be provided
  • anchor strap 18 may be provided in
  • Positioning device 20 may be comprised of tension triggering strap 21 and a
  • triggering strap 21 is connected at lower end 38 to
  • anchor strap 18 and connected to front lower end 40 and rear lower end 42 of shoulder joint
  • Tension triggering strap may be constructed out
  • positioning unit 25 is constructed of tensioning ring 46 and eyelets 50 which are
  • strap 21 is first
  • tensioning ring 46 threaded through tensioning ring 46 at a lower end 48 of tensioning ring 46, then through
  • eyelets 50 formed on lower ends 40 and 42 of shoulder joint member 14 and then through an
  • tensioning ring 46 More specifically, a first portion 54 of strap 21 is threaded upwards through tensioner ring 46 then through eyelet 50 of front lower portion 40
  • tensioner ring 46 such that when strap 21 is provided with tension when a patient wearing the
  • shoulder brace 10 raises their arm, the positioning device 20 contracts shoulder joint member
  • positioning device 20 efficiently transmits the downward
  • positioning device 20 transmits nearly a 1:1 ratio of compression between eyelets 50 to the
  • tensioner ring 46 Furthermore, tensioner ring
  • tensioner ring 46 threaded through tensioner ring 46 and contacts it at the upper portion 52 of tensioner ring 46,
  • positioning device 20 may take other forms, such as that
  • tension triggering strap 23 is made from a wide strap such as a nylon
  • positioning unit 25 includes tensioning loop 59 and eyelets 50 wherein
  • triggering strap 23 is connected to loop 59. Also shown in Fig. 5 is an alternative design for
  • eyelets 50 formed on the front and rear lower ends of shoulder joint member 14. As shown
  • eyelets 50 are constructed of metal rings connected to ends 40 and 42.
  • shoulder joint member 14 is preferably generally
  • shoulder joint member 14 includes a flexible portion 60 formed
  • shoulder joint member 14 is more easily compressed in the directions of A and B as
  • rigid arms 26 and 30 efficiently transfer the compression force in the directions of A and B
  • arms 26 and 30 By aligning arms 26 and 30 as such, arms 26 and 30 will apply a direct force in
  • arms 26 and 30, or other members could be a ⁇ anged at other
  • Shoulder joint member 14 can be constructed from a single piece as shown in Fig. 4.
  • joint member 14 When constructed as such, the rigidity of joint member 14 can be varied along its length by
  • joint member 14 can be made relatively thick along front and rear arm portions
  • Flexible portion 60 may have a uniform thickness across its length such as that
  • flexible portion 60 may have a spacing
  • portion 66 which is relatively thicker than flexible portion 60.
  • rear arm 30 are moved towards each other in directions A and B, respectively.
  • flexible portion 60 may optionally be constructed with hinges
  • flexible member 60 may be constructed with a single
  • hinge 73 or the combination of a front hinge 74, a rear hinge 76 and a spacer element 78.
  • front and rear flexible portions 68 and 70 shown in Fig. 4 Similar to the function of the front and rear flexible portions 68 and 70 shown in Fig. 4, front and rear flexible portions 68 and 70 shown in Fig. 4, front and rear flexible portions 68 and 70 shown in Fig. 4, front and rear flexible portions 68 and 70 shown in Fig. 4, front and rear flexible portions 68 and 70 shown in Fig. 4, front and rear flexible portions 68 and 70 shown in Fig. 4, front and rear flexible portions 68 and 70 shown in Fig. 4, front
  • member 14 may be provided with cross-sections of varying shape or size along its length.
  • cross-sections I-I and II-II can be of a channel shape wherein the cross-section at I-I is more shallow relative to the depth of the cross-
  • Fig. 4b shows a cross-sectional that is a solid rectangle.
  • Fig. 4c shows a
  • cross-section that is oval wherein the cross-section at II-II is substantially hollow thereby
  • portions are more flexible and thereby provide the flexation which allows shoulder joint
  • front arm 26 and rear arm 30 with increased cross-sectional depth
  • arms 26 and 30 efficiently transfer the
  • the shoulder joint member 14 can be made out
  • thermoplastics and other composite materials such as carbon
  • the shoulder strap preferably includes cushion 80 which is positioned
  • cushion 80 is shaped to evenly distribute the compression forces transmitted to it by the
  • Shoulder joint member 14 may also be provided with a rear cushion 82 so as to provide
  • FIG. 6 an alternative embodiment of anchor strap 18 is shown.
  • anchor strap 18 may be constructed as strap 84 such that it wraps
  • strap may be constructed as strap 88 which wraps around a patient's waste or hips or finally,
  • anchor strap 18 may be wrapped around a patient's upper thigh as strap 90. In each case,
  • tension triggering straps 21 or 23 would be attached to the anchor strap in an area below the
  • strap 84 is the prefe ⁇ ed configuration of anchor
  • positioning unit 25 includes a relaxing device 92 connected
  • shoulder joint member 14 can be held in place by alignment strap 16, around
  • the shoulder brace in this embodiment can include
  • member 14 is biased in a direction so as to compress in an anterior-posterior direction
  • Relaxing device 92 is
  • tension triggering strap 98 is connected to relaxing device 92 at
  • tension triggering strap 98 is pulled in a downward direction as viewed in Fig. 8
  • relaxing device 92 comprises a wedge-shaped
  • shoulder joint member 4 By constructing shoulder joint member 4 so that it biased in a compressive state, and
  • shoulder joint member 14 is biased
  • the relaxing device can be constructed in a number of ways.
  • the relaxing device 92 shown in Figs. 12-14 includes a pivot boss 108 which is
  • pivot rods 110 Similar to the operation of the wedge-shaped member 106, when the tension triggering strap 98 is pulled in a direction of a ⁇ ow C, pivot rods 110 are
  • joint member 14 apart in the direction of a ⁇ ows D and E, respectively, as shown in Fig. 13.
  • Figures 14 and 15 show further embodiments of the relaxing device 92 where
  • an upper biasing device 112 such as a spring.
  • shoulder joint member 14 is an upper biasing device 112 such as a spring.
  • member 120 such as a spring may be used and optionally an additional upper biasing member
  • Fig. 16 illustrates a further alternative embodiment to the present invention. In this
  • the shoulder brace is provided with limiter 122 which is attached to alignment
  • pivot plate 124 which is in turn pivotally mounted to pivot 32.
  • Limiter member 122 extends
  • Limiter member 122 is preferably made of a semi-rigid material which can flex
  • limiter member 122 will be described below.
  • limiter member 122 is hinged to alignment
  • Hinge 126 also allows a user to
  • hinge 26 will allow limiter member 122 to rotate around
  • hinge 126 and thereby allow the patient's arm to move in adduction. Also as shown in Fig.
  • alignment strap 16 is constructed with a telescoping portion 132. Telescoping portion
  • Sleeve element 136 is
  • telescoping portion provides greater mobility in that when the shoulders of the patient are
  • the telescoping portion can contract and sleeve element 136 can rotate
  • Sleeve element 136 may optionally include a biasing device (not shown) such as a
  • FIG. 17 a further embodiment of the present invention is shown
  • the shoulder brace is provided with an anti-rotation strap
  • end 142 of anti-rotation strap 140 is pivotally connected to pivot 32 and lower end 144 of
  • anti-rotation strap is connected to anti-rotation anchor 146. Arranged as such, anti -rotation
  • anti-rotation strap 140 resists rotation of the patient's arm in the direction of a ⁇ ow G as shown in Fig. 17. However, anti-rotation strap 140 does not inhibit upward motion of the patient's arm as
  • FIG. 22 A further embodiment of the present invention is shown in Fig. 22. As shown in this
  • positioning device includes a reference orientation detecting device 148, an arm
  • orientation detecting device 150 and a compression device 152.
  • 148 and 150 can be constructed of inclinometers, for example.
  • inclinometers for example.
  • compression device 152 is configured to pull front arm 26 and rear arm 30 in a direction of
  • Compression device 152 may be constructed of a solenoid or other electronic or hydraulic
  • orientation detecting device 148 can provide a signal co ⁇ esponding to
  • shoulder joint member 14 remains relatively
  • a comparator (not shown) which may be inco ⁇ orated into orientation detecting
  • orientation detecting devices 148 and 150 determines if the patient's arm is in a danger
  • compression device 152 and therefore require additional weight. This embodiment is also particularly useful for patient's who have experienced an extreme injury or disability. Since
  • this embodiment does not rely on any motion of the patient's arm to provide energy for
  • this embodiment allows for
  • first mounting member 160 constructed of a first mounting member 160 configured to fit over at least a pectoral area of a
  • a second mounting member 162 is configured to be mountable to an
  • First mounting member 160 may be constructed out
  • first mounting member 160 is made from at
  • At least a semirigid material such as plastic or even light metals such as aluminum.
  • a semirigid material such as plastic or even light metals such as aluminum.
  • first mounting member 160 is made from a rigid material, so as to avoid
  • mounting member 162 may also be made of an at least a semirigid material such as plastic or
  • second mounting member 162 made from the at least
  • semirigid material is preferably made as small as possible, while the remaining portion 163 of
  • second mounting member 162 is made from a fabric so as to maximize comfort.
  • a connecting member 166 is attached to a first mounting
  • connecting member 166 First end 168 of connecting member 166 is slidably connected to slots 172 and
  • mounting members 176 and 178 may
  • threaded fasteners (not shown) for anchoring the connection between the first end 168
  • connecting member 166 to first mounting member 160. This allows a user to install the
  • positioning device 180 is formed of two springs 182 and 184
  • positioning device 180 may be formed
  • connecting member 166 is in the form of a plate.
  • connecting member 166 is in the form of a plate.
  • connecting member 176 is made from a semirigid material that allows some flexation, so that
  • a patient may have some mobility. However, for certain injuries, it may be desirable to construct a connecting member 166 from a rigid material having a thickness which would
  • connecting member 166 from a more flexible material, such as a hard rubber
  • the shoulder base may include a second connecting member (not shown)
  • shoulder brace provides additional support and symmetry to the forces imparted to the
  • FIGS 24 and 25 illustrate other embodiments of the shoulder brace of the present
  • the positioning unit 20 includes at least one additional
  • Figure 24 illustrates the tension triggering strap 200 connected to an arm band 212 on
  • the tension triggering strap 200 is passed
  • One end 204 of the tension triggering strap is attached to the arm band 212.
  • the one end 204 of the tension triggering strap is attached to the arm band 212.
  • the arm band 212 may be riveted, clamped, sewn, etc., so that the one end 204 is fixedly secured to the arm band 212. Further, the arm band 212 is placed as close to an armpit of the user so that a shirt
  • Another end 214 of the tension triggering strap 200 is looped through the ring 202 and then
  • a binder for example (similar to the binder 58 discussed in
  • tension triggering strap 21 is also fixed at the end
  • tensioner ring 46 such that when the strap 200 is provided with tension when a patient
  • the tension triggering strap 200 provides additional compression of the front arm 26 towards
  • the shoulder brace 10 shown in Figures 24 and 25 may also include alignment straps,
  • anchor strap 18 may be positioned
  • anchor strap 18 may alternatively be
  • the anchor be provided approximately around the midriff, thigh or hips, for example. That is, the anchor
  • strap 18 may be placed at a most comfortable position for the patient and which provides a
  • the ring 202 may be secured to the anchor 18 by sewing, a binder, glue or may be
  • the strap 200 may be looped through a hole provided in the anchor 18.
  • the triggering strap 200 may be fixedly secured to the anchor 18 in a similar fashion as the triggering strap 21.
  • Figure 25 is similar to Figure 24 but the first and second ends 204 and 214 of the
  • triggering strap 10 are attached (e.g., fixedly secured) to the arm band 212.
  • the arm band 212 e.g., fixedly secured
  • Figure 25 illustrates two portions of the strap 200 passing through the tensioner ring 46
  • the lengths of the straps 21 and 200 may be varied by using clamps rather than
  • pressure of the shoulder brace may be adjusted by adjusting a slack in the tensioning straps
  • triggering straps be included into a single tension triggering strap which performs the same
  • FIGS 26-29b illustrate another embodiment of the shoulder brace of the present
  • Figure 26 illustrates the patient 12 wearing a shoulder brace 201
  • the actuators 249, 250 compress the shoulder joint when the actuators 249, 250 compress the shoulder joint when the actuators 249, 250 compress the shoulder joint when the actuators 249, 250 compress the shoulder joint when the actuators 249, 250 compress the shoulder joint when the actuators 249, 250 compress the shoulder joint when the actuators 249, 250 compress the shoulder joint when the actuators 249, 250 compress the shoulder joint when the actuators 249, 250 compress the shoulder joint when the actuators 249, 250 compress the shoulder joint when the actuators 249, 250 compress the shoulder joint when the actuators 249, 250 compress the shoulder joint when the actuators 249, 250 compress the shoulder joint when the actuators 249, 250 compress the shoulder joint when the actuators 249, 250 compress the shoulder joint when the actuators 249, 250 compress the shoulder joint when the actuators 249, 250 compress the shoulder joint when the actuators 249, 250 compress the shoulder joint when the actuators 249, 250 compress the shoulder joint when the actuators 249, 250 compress the shoulder joint when the actuators 249, 250 compress the shoulder joint when the actuator
  • a rigid frame which includes an arm frame
  • the straps 16 and 18 may also be used for aligning and securing the shoulder brace 201.
  • the straps 16 and 18 may also be used for aligning and securing the shoulder brace 201.
  • Figure 27 illustrates a front view of the shoulder brace 201 shown in Figure 26 and
  • the rigid arm frame member 256 is also moved (e.g., in the direction of the a ⁇ ow Y).
  • Figure 28 illustrates an alternative alignment and anchor strap 17 from the alignment
  • anchor strap 18 in Figure 27 are combined into a single strap 17 for aligning and securing the
  • the anchoring and alignment strap 17 reduces the number of straps and
  • FIGS 29a and 29b are cross-sectional side views of the front
  • Figure 29a illustrates a disassembled view of the
  • the arm frame member 256 causes
  • the pressure is generated towards the patient's shoulder because the shoulder frame member 258 remains in essentially a fixed position (i.e., the frame member
  • the rear actuator 249 operates in a similar fashion.
  • Figure 29b illustrates an assembled view of the rear actuator 249 including the frame
  • the threaded portion 261 includes left-hand threads, whereas the threaded portion 260
  • threaded portions 260 and 261 are oppositely threaded.
  • front and rear pressure pads 252, 254 may be connected to the arm
  • the projecting portions 262 are smaller than the diameters of the holes 264, and thus the
  • the front and rear pads 252, 254 may be assembled by pushing the projection portion
  • the frame portions may include a fiber-reinforced plastic, injected molded
  • FIGs. 30-36 illustrate yet another embodiment of the shoulder
  • Fig. 30 illustrates the individual 12 wearing a shoulder brace 300, which includes a front frame member 304, a rear frame member 306, a
  • front pressure pad 308 a rear pressure pad 310, an arm cuff 314 and a support frame member
  • the front and rear pressure pads 308, 310 are respectively positioned on front and rear
  • portions of the individual's shoulder joint and the support member 312 is positioned at a mid-
  • the front frame member 304 is connected to the support
  • brace 300 also includes a cord 316 which traverses over the individual's shoulder.
  • Figure 31 illustrates a front view of the shoulder brace 300 shown in Figure 30 and
  • the arm cuff 314 is moved away from the body (e.g., in the direction of the a ⁇ ow Y), the arm cuff 314 is
  • FIG. 31 Also shown in Figure 31 is an anchor strap 318 for securing the support
  • the anchor strap 318 may be a nylon
  • gear box 302 connected to the support frame member 312.
  • the cord 316 is routed from an anchor point 329 on the arm cuff (not shown) through the gear
  • the cord 316 is pulled so as to compress the front and
  • front and rear pressure pads 308, 310 press against the individual's shoulder joint.
  • the gear box 302 (shown in more detail in Fig. 36) provides the efficient conversion ratio
  • a plurality of pulleys may be positioned along the route of the cord 316 so as
  • a pulley 328 is
  • a plurality of pulleys may also be positioned along the rear frame
  • the cord 316 may be anchored by
  • Another method of securing the cord is by using a screw and washer type mechanism to
  • the cord 316 is routed from an
  • cord 316 is pulled so as to compress the front and rear pressure pads 308, 310 against the
  • rear frame member 306 in Fig. 33 does not include a
  • Fig. 34 illustrates yet another example of the compression mechanism according to
  • Fig. 34 is similar to Fig. 33, except the cord 316 is routed from
  • the cord 316 may be anchored onto the front frame member 304.
  • front pressure pad 308 is moveably connected to the front frame
  • member 304 (e.g., via a ball and socket type connection) and may be "snapped" onto the front
  • the front pressure pad 308 may be movable to accommodate movement
  • both the front shoulder joint tends to move more than the rear shoulder joint when the individual's arm is moved.
  • rear pressure pads 308, 310 may be movably connected to, or permanently fixed to, the
  • the front frame member 304 is pivotably connected
  • Figure 36 illustrates an adjustment mechanism configured to adjust the location of the
  • the rear frame For example, as shown, the rear frame
  • fasteners 340 e.g., a nut and bolt used to lock the
  • the rear frame member 306 into the desired adjustment.
  • the rear frame member may be set
  • the front and rear pads 308, 310 may also be adjusted on the front and rear frame
  • the arm cuff 314 may be made from a rigid plastic material and include a
  • velcro portion so as to be easily positioned and secured to the arm of the individual.
  • the arm cuff 314 may be placed around the individual's arm and then secured via the
  • the support frame member 312 may be made from a rigid plastic material
  • the front and rear frame members may be made from a rigid lightweight
  • the front and rear pads and the arm cuff 314 may be made from
  • a rigid plastic material such as polystyrene
  • thermoplastic padding to provide comfort and to provide location stability.
  • the cord material may be a
  • braided cord having sufficient strength to withstand the tensions to compress the front
  • the gear box 302 includes a first wheel 332 and a second wheel 334 attached to the
  • first wheel 332 the first and second wheels 332, 334 may be a single component (e.g.,
  • the second wheel 334 has a larger diameter than the diameter of the
  • the cord 316 is routed from the arm cuff (not shown) through
  • the cord 316 may be a
  • a shoulder injury may be efficiently treated
  • the compression mechanism compresses the front and rear frame members
  • the support frame member may also be adjusted and the support frame member may be secured to the mid-section of the
  • Figs. 37-40 are copies of photographs of a person wearing the shoulder brace 300.
  • Figs. 37-39 are a side view, rear view and front view of the individual, and Fig. 40
  • the shoulder brace is made to conform with the
  • front and rear frame members 304 are illustrated.
  • the fiber cord is routed over the
  • wounds may appear or be at locations where the shoulder brace
  • a bacteria static material may be applied to these regions to prevent
  • static material that is activated by moisture such as a silver nylon material made by Omishield,
  • Sacuoito may be applied on the inner surfaces of the front and rear pads, support
  • the bacteria static material kills unwanted organisms and other odor causing organisms.
  • Another bacteria static material which may be applied to areas on the shoulder
  • brace is one manufactured by Becker Technology Group under the Trademark
  • static materials such as silver-impregnated fabric.
  • thermoplastic material provided on parts of the shoulder brace (e.g.,
  • the front and rear pads which provide location stability for the front and rear pads (e.g., the front and rear pads).
  • the pads may be more likely to slip. Therefore, it may be preferable to apply the
  • the present inventor has determined the amount of pressure to be applied

Landscapes

  • Health & Medical Sciences (AREA)
  • Nursing (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Vascular Medicine (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Orthopedics, Nursing, And Contraception (AREA)

Abstract

A shoulder brace (10) including front (80) and rear pressure pads to be respectively positioned on front and rear portions of an individual's shoulder joint, a support member (18) to be positioned at a mid-section of the individual, a front frame member connected to the support member and the front pressure pad, and a rear frame member connected to the support member and the rear pressure pad. Also included is an arm cuff to be positioned on the arm of the individual, and a compression mechanism (20) configured to compress the front and rear frame members in accordance with a movement of the individual's arm such that the front and rear pressure pads press against the individual's shoulder joint.

Description

CROSS-REFERENCE TO A RELATED APPLICATIONS
This application is related to U.S. application S/N 09/363,924, filed on July 30, 1999;
and U.S. application S/N 09/506,012, filed on February 17, 2000; U.S. provisional
application S/N 60/183,559, filed on February 18, 2000; U.S. provisional application filed on
April 13, 2000; and U.S. and PCT application S/N XXX,XXX, filed on February 18, 2001,
all of which are incoφorated in their entirety.
TITLE OF THE INVENTION
SHOULDER BRACE
BACKGROUND OF THE INVENTION
Field of the Invention:
The present invention relates generally to orthopedic braces, particulary to a shoulder
brace for providing support to the shoulder area.
Description of the Related Art:
The ball and socket joint of the human shoulder provides for free movement of the
arm. The area of contact between the various bones in the shoulder is minimal and the
shoulder joint is dependent upon surrounding muscles, and to a lesser extent ligaments,
tendons and fibrocartiledge, for its integrity and functionality. The muscular and bone
composition of the shoulder is the subject of extensive medical study and while a more
detailed discussion of the anatomy of the shoulder is not necessary for the puφoses here, such a discussion can be found in most basic human anatomy books. Because of its
construction, the shoulder joint is capable of flexion, extension, abduction, adduction,
rotation and circumduction movement. Also because of its construction, the shoulder joint is
susceptible to a great number of injuries.
Injuries are commonplace in various activities that require constant motion of the
shoulder joint or subject the shoulder to stress. For example, the overhand throwing motion
used in baseball is an unnatural motion that can cause shoulder muscle strains or tears,
including injury to the deep rotator muscles or rotator cuff of the shoulder and arm.
Participants in contact sports such as rugby and football often suffer shoulder injuries, e.g.,
dislocation of the ball and socket joint as well. Once an injury to the shoulder area has
occurred, it is frequently necessary to support the joint area to both facilitate the convalescing
process in certain situations, and minimize discomfort due to the injury. Additionally, it is
advantageous to provide support to the shoulder area to help prevent shoulder injuries to
individuals who are particularly susceptible to such injuries.
Anterior shoulder instability most commonly develops when the restraints of the
humeral head are inadequate or excessive force is being applied, usually when the shoulder is
in abduction, external rotation, and extension. Anterior shoulder stability is usually
maintained by the anteroinferior glenohumeral ligament as well as the subscapularis muscle
and the middle glenohumeral ligament. Weakness in these allows excessive anterior
translation of the humeral head in the glenoid fossa, the humeral head being the ball and the
glenoid fossa being the socket of what is commonly referred to as the ball and socket joint of
the shoulder. Since the anteroinferior glenohumeral ligament is especially stressed when the arm is positioned in abduction, extension or external rotation, it is reasonable to assume that
preventing or limiting these positions might be beneficial for patients with instability.
However, by preventing or limiting those positions, athletes who suffer these types of injuries
or weaknesses would be particularly impaired in their ability to perform their respective
activity.
There are a number of braces and harnesses known in the art that alleviate pressure on
various points of the shoulder joint. For example, U.S. Patent No. 3,906,944 issued to
Christian discloses a shoulder harness that prevents damage to the muscles, tendons and
ligaments in the shoulder area and also provides support to prevent the dislocation of the
shoulder. The shoulder harness disclosed in the Christian patent, however, severely restricts
the movement of the upper arm with respect to the shoulder, thereby restricting the movement
of the ball and socket joint. Furthermore, existing braces, such as the Christian harness, are
cumbersome and difficult for a wearer to put on, particularly because of the shoulder injury.
Most known braces and harnesses also neither allow the wearer to increase or decrease the
amount of support around the area of the shoulder, nor are capable of being adjusted to
conform to the particular body size of the wearer.
Furthermore, known shoulder braces are generally excessively restrictive on arm
movement while they provide inadequate support for preventing anterior dislocation of the
shoulder joint.
U.S. Patent No. 5,188,587 issued to McGuire et al. teaches an active shoulder brace
made of a resilient fabric-like material. The shoulder brace taught by McGuire et al. includes
a sleeve portion which is designed to fit around the upper end of the upper arm of a patient and it includes straps that are wrapped over and around the sleeve portion and attached to a
torso belt which anchors the straps attached to the sleeve portion. When a patient wearing the
shoulder strap taught by McGuire et al. raises their arm, the straps tighten and provide
support to the shoulder joint.
However, as with the other known shoulder straps, the shoulder strap taught by
McGuire et al. exerts a substantial amount of force to the top of the shoulder and the upper
arm when the patient wearing the strap raises their arm and far less pressure or support to the
anterior, posterior and medial side of the shoulder joint. The result is that the shoulder strap
provides a strong force which inhibits upward movement of the arm of the patient yet
provides only moderate or little support or pressure to the anterior, posterior and medial sides
of the shoulder joint. As discussed above, patients with chronically dislocating shoulders
experience problems with the humeral head of the shoulder moving in an anterior direction
out of the glenoid fossa and thereby dislocating. Therefore, the shoulder straps of the prior
art provide an excessive amount of force that inhibits motion of the arm while ineffectively
preventing the anterior dislocation of the shoulder joint. Therefore, it is desirable to provide a
shoulder brace which can compensate for weaknesses in tissues such as the glenohumeral
ligament, the subscapularis muscle and the middle glenohumeral ligament, without causing
excessive restriction to arm movement.
SUMMARY OF THE INVENTION
It is therefore desirable and an object of the present invention to provide a shoulder
brace that provides strong posterior, anterior and/or medial pressure to the shoulder joint of a patient wearing the shoulder strap while not excessively inhibiting motion of the arm.
Movement of a patient's shoulder can be broken down into safe zones and danger zones.
When a patient moves their arm so that their elbow is above the shoulder joint when the
patient is in a standing position, or when the elbow is behind the plane passing between the
front and rear side of the body, or when the arm is in excessive external rotation, movements
into any such areas would be into a danger zone where the likelihood of an anterior
dislocation greatly increases. Furthermore, if such a movement occurs during an athletic
activity, where other forces and stresses are exerted upon the shoulder joint, the chances of an
anterior dislocation are even greater.
It is a further object of the present invention to provide a shoulder brace that provides
anterior and posterior compression of the shoulder joint when the arm of the patient is moved
into a danger zone.
It is a further object of the present invention to provide a shoulder brace that is less
intrusive than that of the braces used in the prior art, causing less interference with a patient's
movements and allowing greater range of motion.
It is yet another object of the present invention to provide a shoulder brace that can
provide anterior and posterior compression of a shoulder joint without inhibiting motion of
the patient's arm in the upward direction.
These and other objects are achieved according to the present invention by providing
a shoulder brace including a shoulder member mountable to a shoulder of a patient's arm, and
a positioning device configured to increase a pressure to the shoulder of the patient in
accordance with a position of the user's arm. In one embodiment of the present invention, the shoulder brace includes a shoulder
member mountable to a shoulder of a patient's arm with an open portion forming
substantially rigid first and second arms and a positioning device configured to vary the
spacing of the first and second arms according to the position of the patient's arm. By
constructing the shoulder brace as such, the present invention avoids undue restriction of
movement of the user's arm while efficiently transforming the energy directed into the
shoulder brace by the movement of the user's arm into a pressure to the user's shoulder.
According to another embodiment of the present invention, the positioning device
includes a tensioning ring and first and second tension triggering straps configured to provide
anterior and posterior compression of the shoulder joint when the arm of the patient is moved
into a danger zone.
According to another embodiment of the present invention, the shoulder brace
includes a first mounting member mountable to a user's pectoral area, a second mounting
member mountable to a user's upper arm, and a connecting member connected to the first
mounting member at a first end, and connected to the second mounting member at a second
end. Additionally, a positioning device is configured to increase a pressure to the user's
shoulder according to the movement of the user's arm. By constructing the shoulder brace as
such, the shoulder brace efficiently communicates movements of the user's upper arm to the
shoulder brace to thereby effect the pressure directed to the shoulder joint.
BRIEF DESCRIPTION OF THE DRAWINGS
Fig. 1 is a front view of a patient wearing a shoulder brace according to the present invention;
Fig. 2 is a side view of the shoulder brace shown in Fig. 1;
Fig. 3 is a rear view of the shoulder brace shown in Fig. 1;
Fig. 4 is an enlarged view of the shoulder brace shown in Fig. 1;
Figs. 4a, 4b and 4c are cross-sectional views I-I and II-II shown in Fig. 4;
Fig. 5 is a side view of an alternative embodiment of the shoulder brace according to
the present invention;
Fig. 6 is a front view of an anchor strap according to the shoulder brace of the present
invention;
Figs. 7 and 8 are side views of a further embodiment of the shoulder brace of the
present invention;
Fig. 9 is a further embodiment of the shoulder brace according to the present
invention;
Figs. 10-15 are side views of further embodiments of biasing and relaxing devices
according to the present invention;
Fig. 16 is a further embodiment of the shoulder brace of the present invention;
Fig. 17 is a further embodiment of the shoulder brace of the present invention;
Fig. 18 is an additional side view of the embodiment shown in Fig. 17 according to
the present invention;
Fig. 19 is a side view of the embodiment shown in Fig. 18;
Fig. 20 is a front view of a further embodiment of the shoulder brace of the present
invention; Fig. 21 is a side view of the embodiment shown in Fig. 20;
Fig. 22 is a side view of a further embodiment of the shoulder brace according to the
present invention;
Fig. 23 is a front view of a further embodiment of the shoulder brace of the present
invention;
Fig. 24 is a front view of a further embodiment of the shoulder brace of the present
invention;
Fig. 25 is a front view of a further embodiment of the shoulder brace of the present
invention;
Fig. 26 is a side view of a patient wearing a further embodiment of the shoulder brace
of the present invention;
Fig. 27 is a front view of the patient wearing the shoulder brace shown in Fig. 26;
Fig. 28 illustrates an alternative alignment and anchor strap of the shoulder brace
shown in Fig. 26;
Figs. 29a-b are cross-sectional side views of an actuating mechanism included in the
shoulder brace shown in Figs. 26 and 28;
Fig. 30 is a side view of a patient wearing yet another embodiment of the shoulder
brace of the present invention;
Fig. 31 is a front view of the patient wearing the shoulder brace shown in Fig. 30;
Fig. 32 is a schematic of a compression mechanism included in the shoulder brace
shown in Figs. 31 and 32;
Fig. 33 is a schematic of another compression mechanism included in the shoulder brace shown in Figs. 31 and 32;
Fig. 34 is a schematic of yet another compression mechanism included in the shoulder
brace shown in Figs. 31 and 32;
Fig. 35 is a schematic illustrating an adjustment mechanism for a rear frame member
of the shoulder brace according to the present invention;
Fig. 36 is a schematic illustrating a gear box included in the compression mechanism
according to the present invention; and
Figures 37-41 are copies of photographs of a person wearing the shoulder brace
shown in Figures 30, 31 and 32.
DESCRIPTION OF THE PREFERRED EMBODIMENTS
Referring now to the nonlimiting example of the drawings, wherein like reference
numerals designate identical or coπesponding parts throughout the several views, and more
particularly to Figs. 1 through 4, thereof, a shoulder strap 10 being worn by a patient 12 is
generally shown. Shoulder brace 10 generally includes shoulder joint member 14, and
positioning device 20. As shown in Figs. 1 and 2, shoulder joint member 14 is generally
annularly shaped so as to fit generally over a shoulder joint 22 of a patient 12. Brace 10 may
optionally include alignment strap 16 which generally has a front end 24 attached to a front
arm 26 of shoulder joint member 14 and a rear end 28 attached to a rear arm 30 of shoulder
joint member 14. Preferably, front end 24 and rear end 28 of alignment strap 16 are attached
to shoulder joint member 14 at a pivot 32. Such a pivot allows the shoulder joint member 14
to rotate relative to anchor strap 16 when a patient raises their arm, without significant
impingement or distortion of the strap 16 or shoulder joint member 14. Additionally, strap 16 may be made of elastic, or include an elastic portion (not shown) so as to provide a bias
pulling shoulder joint member 14 towards the torso of the patient.
Alignment strap 16 may also include a support strap 34 shown in phantom lines in
Figs. 1 and 3, thereby ensuring that alignment strap 16 does not inadvertently fall from a
proper alignment for maintaining shoulder joint member 14 in alignment with a patient's
shoulder joint 22.
As shown in Figs. 1 and 2, anchor strap 18 is wrapped around a patient's torso 36.
Anchor strap 18 is preferably positioned according to the preferences of the patient. As
shown in Fig. 1, anchor strap 18 is provided in an upper abdominal region of the patient's
torso 36. However, as shown in Fig. 2, anchor strap 18 may alternatively be provided
approximately around the patient's waste. Additionally, anchor strap 18 may be provided in
other configurations discussed in greater detail later.
Positioning device 20 may be comprised of tension triggering strap 21 and a
positioning unit 25. In this embodiment, triggering strap 21 is connected at lower end 38 to
anchor strap 18 and connected to front lower end 40 and rear lower end 42 of shoulder joint
member 14 at an upper end 44 of strap 21. Tension triggering strap may be constructed out
of any flexible material formed into any shape including a woven cable or a band. In this
embodiment, positioning unit 25 is constructed of tensioning ring 46 and eyelets 50 which are
constructed to receive one end of triggering strap 21. As better seen in Fig. 4, strap 21 is first
threaded through tensioning ring 46 at a lower end 48 of tensioning ring 46, then through
eyelets 50 formed on lower ends 40 and 42 of shoulder joint member 14 and then through an
upper end 52 of tensioning ring 46. More specifically, a first portion 54 of strap 21 is threaded upwards through tensioner ring 46 then through eyelet 50 of front lower portion 40
of shoulder joint member 14 through the upper portion 52 of tensioning ring 46, then through
eyelet 50 of rear lower portion 42 of shoulder joint member 14 then again through lower
portion 48 of tension ring 46 wherein a double-back portion 56 of strap 21 is secured to the
first portion 54 of strap 21 with a binder 58. Threaded as such, strap 21 is guided through
tensioner ring 46 such that when strap 21 is provided with tension when a patient wearing the
shoulder brace 10 raises their arm, the positioning device 20 contracts shoulder joint member
14 such that front arm 26 of shoulder joint member 14 is compressed towards rear arm 30 so
as to cause an anterior-posterior compression of the shoulder joint. By threading strap 21
through tensioner ring 46 as such, positioning device 20 efficiently transmits the downward
pulling of strap 21 through the ring to the eyelets 50 of shoulder joint member 14 in a
direction nearly peφendicular to the direction strap 21 enters tensioning ring 46. Thereby,
positioning device 20 transmits nearly a 1:1 ratio of compression between eyelets 50 to the
length of strap 21 pulled downward through tensioner ring 46. Furthermore, tensioner ring
46 is maintained in the vertical position shown by the tension in strap 21 since strap 21 is
threaded through tensioner ring 46 and contacts it at the upper portion 52 of tensioner ring 46,
as shown in Fig. 4. However, positioning device 20 may take other forms, such as that
shown in Fig. 5, where tension triggering strap 23 is made from a wide strap such as a nylon
strap and where positioning unit 25 includes tensioning loop 59 and eyelets 50 wherein
triggering strap 23 is connected to loop 59. Also shown in Fig. 5 is an alternative design for
eyelets 50 formed on the front and rear lower ends of shoulder joint member 14. As shown
there, eyelets 50 are constructed of metal rings connected to ends 40 and 42. Referring again to Figs. 1 through 4, shoulder joint member 14 is preferably generally
annularly shaped with a front arm 26 and a rear arm 30. In order to provide efficient transfer
of the pulling force generated in positioning device 20 by the upward movement of a patient's
arm into a compression force, preferably an anterior-posterior compression of the shoulder
joint by the movement of front arm 26 and rear arm 30 towards each other in the direction of
arrows A and B respectively, shoulder joint member 14 includes a flexible portion 60 formed
between arms 26 and 30. By providing a flexible portion 60 between arms 26 and 30,
shoulder joint member 14 is more easily compressed in the directions of A and B as
compared to an annular member with uniform rigidity. Also preferably, front arm 26 and rear
arm 30 are constructed so as to be substantially rigid. Constructed as such, the relatively
rigid arms 26 and 30 efficiently transfer the compression force in the directions of A and B
while flexible portion 60 allows arms 26 and 30 to move in directions A and B without
excessive resistance.
By aligning arms 26 and 30 as such, arms 26 and 30 will apply a direct force in
directions of A and B and thereby stabilize the glenohumeral head. It is also conceived,
however, that arms 26 and 30, or other members (not shown) could be aπanged at other
locations on the arm so that a force is can be applied on the arm and close enough to the
shoulder joint so that the resultant indirect force would provide sufficient posteriorward force
on the humeral head, in an indirect manner.
Shoulder joint member 14 can be constructed from a single piece as shown in Fig. 4.
When constructed as such, the rigidity of joint member 14 can be varied along its length by
changing its cross-sectional shape. For example, as shown in Fig. 4, the cross-sectional thickness of joint member 14 can be made relatively thick along front and rear arm portions
26 and 30 and relatively thinner at flexible portions 60 between decreasing thickness sections
62 and 64. Flexible portion 60 may have a uniform thickness across its length such as that
shown in the broken line in Fig. 4. Alternatively, flexible portion 60 may have a spacing
portion 66 which is relatively thicker than flexible portion 60. By providing flexible portion
60 with a spacing portion 66, flexible portion 60 is effectively broken into two flexible
portions, front flexible portion 68 and rear flexible portion 70. By constructing the flexible
portion 60 as such, impingement of the upper portion of a patient's shoulder can be reduced
since the folding or creasing of shoulder joint member 14 is inhibited when front arm 26 and
rear arm 30 are moved towards each other in directions A and B, respectively.
Referring now to Fig. 5, flexible portion 60 may optionally be constructed with hinges
72. In the embodiment shown in Fig. 5, flexible member 60 may be constructed with a single
hinge 73 or the combination of a front hinge 74, a rear hinge 76 and a spacer element 78.
Similar to the function of the front and rear flexible portions 68 and 70 shown in Fig. 4, front
and rear hinges 74 and 76 similarly can reduce impingement of the upper part of the patient's
shoulder when the front and rear arms 26 and 30 of shoulder joint member 14 are moved
towards each other in the direction of aπows A and B, respectively.
As discussed above, in order to produce areas of differing rigidity, shoulder joint
member 14 may be provided with cross-sections of varying shape or size along its length.
Referring now to Figs. 4a, 4b and 4c, optional cross-sectional shapes are shown for the cross-
sections at I-I for front flexible portion 68 for example and cross-section II-II for the rigid
portion of front arm 26. As shown in Fig. 4a, cross-sections I-I and II-II can be of a channel shape wherein the cross-section at I-I is more shallow relative to the depth of the cross-
section at II-II. Fig. 4b shows a cross-sectional that is a solid rectangle. Fig. 4c shows a
cross-section that is oval wherein the cross-section at II-II is substantially hollow thereby
providing for a lightweight design which does not have shaφ edges on an outer surface so as
to cause unattractive protrusions in the outer clothing of a patient wearing the shoulder strap.
By providing for the reduced thickness cross-section at flexible portions 68 and 70, those
portions are more flexible and thereby provide the flexation which allows shoulder joint
member 14 to compress in the directions of A and B without excessive resistance.
Furthermore, by providing front arm 26 and rear arm 30 with increased cross-sectional depth
such as those shown in Figs. 4a through 4c, arms 26 and 30 efficiently transfer the
compression force imparted upon arms 26 and 30 by positioning device 20 to the anterior and
posterior areas of a patient's shoulder joint 22, similar to the operation of a hand-held nut¬
cracker. Although the cross-sections shown in Figs. 4a through 4c are not drawn to scale,
they are meant only to illustrate the concept of reducing the width or thickness of the cross-
section of the joint shoulder member 14 to provide for relatively rigid portions and relatively
flexible portions. Using such a configuration, the shoulder joint member 14 can be made out
a variety of materials including thermoplastics and other composite materials such as carbon
fiber. Although, when using more brittle or fatigue sensitive materials such as carbon fiber or
metals such as aluminum or titanium, it may be necessary to use hinges rather than areas of
reduced cross-sectional thickness in order to allow the shoulder joint member to compress in
the directions of arrows A and B without excessive resistance.
In order to provide greater comfort to a patient wearing the shoulder strap according to the present invention, the shoulder strap preferably includes cushion 80 which is positioned
to be aligned generally with the anterior portion of a patient's shoulder joint 22. Preferably,
cushion 80 is shaped to evenly distribute the compression forces transmitted to it by the
compression of front arm 26 towards rear arm 30 yet small enough so as to minimize
impingement of the pad when the patient moves their arm towards their chest, i.e., adduction.
Shoulder joint member 14 may also be provided with a rear cushion 82 so as to provide
additional comfort for the patient's back upon compression of front arm 26 and rear arm 30
towards each other in the directions of arrows A and B, respectively. Cushions 80 and 82
may be constructed of any known cushioning material such as foam, rubber compounds, or
other soft materials, but are preferably constructed of PDE.
Referring now to Fig. 6, an alternative embodiment of anchor strap 18 is shown. As
shown in the figure, anchor strap 18 may be constructed as strap 84 such that it wraps
diagonally around an upper abdominal region of 86 of a patient. Alternatively, the anchor
strap may be constructed as strap 88 which wraps around a patient's waste or hips or finally,
anchor strap 18 may be wrapped around a patient's upper thigh as strap 90. In each case,
tension triggering straps 21 or 23 would be attached to the anchor strap in an area below the
patient's arm as shown in the solid and dotted lines. However, it has been found that straps
such as 88 and 90 are less stable, less comfortable and/or are affected by other body motions,
and are thereby less reliable in providing tension to shoulder strap member 14 to compress
front and rear arms 26 and 30. Therefore, strap 84 is the prefeπed configuration of anchor
strap 18.
Referring now to Figs. 7-15, a further embodiment of the present invention is shown therein. As shown in the figures, positioning unit 25 includes a relaxing device 92 connected
between the two open ends 94 and 96 of shoulder joint member 14. As in the previous
embodiment, shoulder joint member 14 can be held in place by alignment strap 16, around
the shoulder joint of a patient. Optionally, the shoulder brace in this embodiment can include
a cushion 80 alone or in addition to a rear cushion 82. In this embodiment, shoulder joint
member 14 is biased in a direction so as to compress in an anterior-posterior direction
shoulder joint 22 of a patient, so that the front arm 26 and rear arm 30 of shoulder joint
member 14 are biased in the directions of aπows A and B respectively. Relaxing device 92 is
configured such that when it is urged downward in the direction of arrow C, the open ends 94
and 96 of shoulder joint member 14 are spread apart thereby relaxing the compression in the
direction of arrows A and B on the shoulder joint 22. In order to urge relaxing device 92 in
the downward direction, tension triggering strap 98 is connected to relaxing device 92 at
upper end 100 and attached to anchor strap 102 at lower end 104, as shown in Fig. 8.
Connected as such, when a patient has their arm in a lowered position, such as that shown in
Fig. 8, tension triggering strap 98 is pulled in a downward direction as viewed in Fig. 8
thereby pulling relaxing device 92 in a downward direction and thereby spreading front arm
26 and rear arm 30 of shoulder joint member 14 in the direction of aπows D and E,
respectively.
As better seen in Figs. 10 and 11 , relaxing device 92 comprises a wedge-shaped
member 106 that is configured to be received by the open ends 94 and 96 of shoulder joint
member 14 such that as wedge-shaped member 106 is pulled downward in the direction of
arrow C, to the downward position shown in Fig. 11, open ends 94 and 96 of shoulder joint member 14 are pushed apart thereby relaxing the anterior-posterior contraction of the
shoulder joint member 14.
By constructing shoulder joint member 4 so that it biased in a compressive state, and
providing a relaxing device for opposing the bias of the shoulder joint member 14, the
shoulder brace according to this embodiment operates in a substantially opposite manner as
that of the previous embodiment. For example, in the previous embodiment, the energy
transfeπed to the shoulder joint member 14 by the movement of the patient's arm in an
upward direction caused the shoulder joint member 14 to be compressed in an anterior-
posterior direction which thereby inherently causes at least some resistance to the patient's
arm movement. However, in the present embodiment, shoulder joint member 14 is biased
toward a compressive state, and is released when the patient moves their arm in an upward
direction. Furthermore, because relaxing device 92 maintains tension in tension triggering
strap 98 when the patient's arm is in a lowered position, the tension in tension triggering strap
98 aids the patient in raising their arm, while gravity aids in lowering of the arm. This
embodiment thereby provides a substantial benefit to patients suffering from a serious injury
or disability where any resistance to the movement of their arm in an upward direction would
prevent them from moving their arm at all, which thereby enhances the disability, and slows
physical therapy and recovery.
As shown in Figs. 12-15, the relaxing device can be constructed in a number of ways.
For example, the relaxing device 92 shown in Figs. 12-14, includes a pivot boss 108 which is
oriented vertically between the free ends of shoulder joint member 14, as viewed in Figs. 12-
14, and a pair of pivot rods 110. Similar to the operation of the wedge-shaped member 106, when the tension triggering strap 98 is pulled in a direction of aπow C, pivot rods 110 are
urged to rotate in the direction of arrow C, and therefor push the open ends 94, 96 of shoulder
joint member 14 apart in the direction of aπows D and E, respectively, as shown in Fig. 13.
Although this embodiment requires a greater number of moving parts, this embodiment
inherently has less frictional resistance compared to the operation of the wedge-shaped
member 106. Figures 14 and 15 show further embodiments of the relaxing device 92 where
an upper biasing device 112 such as a spring. In this embodiment, shoulder joint member 14
may be constructed of two separate pieces 114 and 116 which are attached at hinge 118. In
order to provide a bias to joint member 14, when it is constructed as such, a lower biasing
member 120 such as a spring may be used and optionally an additional upper biasing member
may be used. This aπangement would be particularly useful when shoulder joint member 14
is constructed of brittle and/or fatigue sensitive materials such as resin-matrix composites
such as carbon fiber, or metals such as aluminum or titanium.
Fig. 16 illustrates a further alternative embodiment to the present invention. In this
embodiment, the shoulder brace is provided with limiter 122 which is attached to alignment
pivot plate 124 which is in turn pivotally mounted to pivot 32. Limiter member 122 extends
downwardly from hinge 126 the patient's upper arm, curls along an inside surface 128 of a
patient's arm then behind the elbow of the patient's arm at an elbow end 130 of limiter
member 122. Limiter member 122 is preferably made of a semi-rigid material which can flex
with movement of the user but provides, however, a desired amount of resistance to specified
motions. For example, with the configuration as described above, limiter member 122 will
provide strong resistance to the movement of the patient's arm in a rearward direction along arrow F shown in Fig. 21. However, because limiter member 122 is hinged to alignment
plate 124, which is in turn pivotally attached to shoulder joint member 14, limiter member
122 can freely rotate around pivot 32 so that a movement of the patient's arm in the direction
of aπow G, as shown in Fig. 20, is not excessively resisted. Hinge 126 also allows a user to
move their arm in adduction without excessive impingement. For example, if a user moves
their arm from the position shown in Fig. 20 by moving the arm shown so that the elbow
moves towards the patient's chest, hinge 26 will allow limiter member 122 to rotate around
hinge 126 and thereby allow the patient's arm to move in adduction. Also as shown in Fig.
16, alignment strap 16 is constructed with a telescoping portion 132. Telescoping portion
132 includes a tongue element 134 and the sleeve element 136. Sleeve element 136 is
hingedly attached to alignment plate 124 with telescope hinge 138. Constructed as such, the
telescoping portion provides greater mobility in that when the shoulders of the patient are
shrugged forward, the telescoping portion can contract and sleeve element 136 can rotate
around telescope hinge 138 so that impingement is prevented. This provides greater comfort
for a user. Sleeve element 136 may optionally include a biasing device (not shown) such as a
spring to bias tongue element 134 into sleeve element 13.
Referring now to Fig. 17, a further embodiment of the present invention is shown
therein. As shown in the figure, the shoulder brace is provided with an anti-rotation strap
which is wound helically around the upper arm of the patient with at least one turn. Upper
end 142 of anti-rotation strap 140 is pivotally connected to pivot 32 and lower end 144 of
anti-rotation strap is connected to anti-rotation anchor 146. Arranged as such, anti -rotation
strap 140 resists rotation of the patient's arm in the direction of aπow G as shown in Fig. 17. However, anti-rotation strap 140 does not inhibit upward motion of the patient's arm as
shown in Fig. 18.
A further embodiment of the present invention is shown in Fig. 22. As shown in this
figure, positioning device includes a reference orientation detecting device 148, an arm
orientation detecting device 150 and a compression device 152. Orientation detecting devices
148 and 150 can be constructed of inclinometers, for example. In this embodiment,
compression device 152 is configured to pull front arm 26 and rear arm 30 in a direction of
aπows A and B respectively, when the patient's arm is moved into a "danger zone".
Compression device 152 may be constructed of a solenoid or other electronic or hydraulic
device. In operation, orientation detecting device 148 can provide a signal coπesponding to
the orientation of the patient's shoulder since shoulder joint member 14 remains relatively
stationary with respect to the patient's shoulder joint 22. Orientation detecting device 150
provides a signal coπesponding to the orientation of the patient's upper arm. In this
embodiment, a comparator (not shown) which may be incoφorated into orientation detecting
device 150 or 148, or into compression device 152, compares the orientation signals output
by orientation detecting devices 148 and 150 and determines if the patient's arm is in a danger
zone. If the patient's arm is in a danger zone, then the comparator signals compression device
152 to compress front arm 26 and rear arm 30 of shoulder joint member 14 in the directions
of aπows A and B respectively. In this embodiment, it may be preferable to incoφorate
hinges 72 into flexible portion 60 so as to minimize resistance to the compression caused by
compression device 152 since any resistance will require additional power to be supplied to
compression device 152, and therefore require additional weight. This embodiment is also particularly useful for patient's who have experienced an extreme injury or disability. Since
this embodiment does not rely on any motion of the patient's arm to provide energy for
compressing or releasing the anterior-posterior compression of the patient's shoulder joint,
there is no inhibition of the patient's arm movements. Therefore, this embodiment allows for
maximum movement of the patient's arm and therefore aids the patient in the movements that
may be required in physical therapy.
Refeπing now to Figure 23, a further embodiment of the present invention is
constructed of a first mounting member 160 configured to fit over at least a pectoral area of a
user or patient 12. A second mounting member 162 is configured to be mountable to an
upper arm portion 164 of a patient's arm. First mounting member 160 may be constructed out
of any material. However, it is preferable that first mounting member 160 is made from at
least a semirigid material such as plastic or even light metals such as aluminum. Preferably,
only a portion of first mounting member 160 is made from a rigid material, so as to avoid
impingement upon the user's skin. The remaining portion 161 of first mounting member 160
could be made from spandex or other materials so as to provide maximum comfort. Second
mounting member 162 may also be made of an at least a semirigid material such as plastic or
light metals. Similarly, the portion of second mounting member 162 made from the at least
semirigid material is preferably made as small as possible, while the remaining portion 163 of
second mounting member 162 is made from a fabric so as to maximize comfort.
As shown in Figure 23, a connecting member 166 is attached to a first mounting
member 160 at a first end 168 and is attached to second mounting member 162 at a second
end 170. Also shown in Figure 23, are two parallel slots 172 and 174 formed in first mounting
member 160. First end 168 of connecting member 166 is slidably connected to slots 172 and
174 via mounting members 176 and 178. Optionally, mounting members 176 and 178 may
include threaded fasteners (not shown) for anchoring the connection between the first end 168
of connecting member 166 to first mounting member 160. This allows a user to install the
shoulder brace in such a way so as to immobilize the patient's shoulder, which may be
desirable immediately after an injury, for example.
As shown in Figure 23, positioning device 180 is formed of two springs 182 and 184
which bias the connecting members towards a medially inward direction, i.e., in the direction
of arrow A shown in Figure 23. By construction of the shoulder brace as such, a patient's
weakened glenohumeral ligaments, which may have been weakened by a dislocation injury,
are prevented from being stressed by the medially inward bias created by the positioning
device 180. Although not illustrated in Figure 23, positioning device 180 may be formed
with a single slot and/or a single spring.
One advantage of forming the shoulder brace with slots 172 and 174 and springs 182
and 184, is that when a user rotates their upper arm 164 in the direction of aπow B, mounting
member 178 is pushed in the direction of aπow C, thereby adding tension into spring 184,
thereby causing additional medially inward pressure, thereby preventing stress being
imparted to the glenohumeral ligaments.
As shown in Figure 23, connecting member 166 is in the form of a plate. Preferably,
connecting member 176 is made from a semirigid material that allows some flexation, so that
a patient may have some mobility. However, for certain injuries, it may be desirable to construct a connecting member 166 from a rigid material having a thickness which would
prevent movement of the user's upper arm 164 forward or backwards. On the other hand, by
constructing connecting member 166 from a more flexible material, such as a hard rubber, the
patient or user is not preventing from moving their upper arm 164 forward or backward, and
is thereby provided with some flexibility.
Additionally, the shoulder base may include a second connecting member (not shown)
configured to be aπanged in essentially an identical configuration shown in Figure 23, but
aπanged on the user's back. By adding an additional connector member 166 as such, the
shoulder brace provides additional support and symmetry to the forces imparted to the
shoulder joint.
Figures 24 and 25 illustrate other embodiments of the shoulder brace of the present
invention. The shoulder braces shown in Figures 24 and 25 are similar to that shown in
Figures 1 and 2, for example, but the positioning unit 20 includes at least one additional
tension triggering strap 200. The elements shown in Figures 24 and 25 which have the same
reference numerals as in Figures 1-23 are not described for simplicity puφoses. However, it
is to be noted that any of the shoulder braces previously discussed and shown in the Figures
may be used with the additional tension triggering strap 200.
Figure 24 illustrates the tension triggering strap 200 connected to an arm band 212 on
an upper arm portion 206 of the patient 12. The tension triggering strap 200 is passed
through the tensioner ring 46 and looped through a ring 202 attached to the anchor strap 18.
One end 204 of the tension triggering strap is attached to the arm band 212. The one end 204
may be riveted, clamped, sewn, etc., so that the one end 204 is fixedly secured to the arm band 212. Further, the arm band 212 is placed as close to an armpit of the user so that a shirt
may be easily placed over the shoulder brace 10 including the tension triggering strap 200.
Another end 214 of the tension triggering strap 200 is looped through the ring 202 and then
attached to the strap 200 with a binder, for example (similar to the binder 58 discussed in
Figures 1 and 2, for example). Further, the tension triggering strap 21 is also fixed at the end
214 of the tension triggering strap 200. Threaded as such, the strap 200 is guided through the
tensioner ring 46 such that when the strap 200 is provided with tension when a patient
wearing a shoulder brace 10 raises their arm, the positioning device 20 contracts shoulder
joint member 14 such that the front arm 26 of the shoulder joint member 14 is compressed
towards rear arm 30 so as to cause an interior-posterior compression of the shoulder joint.
The tension triggering strap 200 provides additional compression of the front arm 26 towards
the rear arm 30 indicated by aπows A and B.
The shoulder brace 10 shown in Figures 24 and 25 may also include alignment straps,
such as an alignment strap 16 shown in Figures 1 and 2. In addition, the anchor strap 18 is
shown wrapped around a patient's torso 36. However, the anchor strap 18 may be positioned
according to the preferences of the patient. In addition, the anchor strap 18 may alternatively
be provided approximately around the midriff, thigh or hips, for example. That is, the anchor
strap 18 may be placed at a most comfortable position for the patient and which provides a
sufficient tension for the triggering straps 21 and 200.
The ring 202 may be secured to the anchor 18 by sewing, a binder, glue or may be
omitted. That is, the strap 200 may be looped through a hole provided in the anchor 18.
Alternatively, the triggering strap 200 may be fixedly secured to the anchor 18 in a similar fashion as the triggering strap 21.
Figure 25 is similar to Figure 24 but the first and second ends 204 and 214 of the
triggering strap 10 are attached (e.g., fixedly secured) to the arm band 212. In addition,
Figure 25 illustrates two portions of the strap 200 passing through the tensioner ring 46,
whereas Figure 24 illustrates only one portion of the strap 200 passing through the tensioner
In addition, the lengths of the straps 21 and 200 may be varied by using clamps rather
than glueing or sewing the ends 204 and 214 (in both of Figures 24 and 25). Thus, the
pressure of the shoulder brace may be adjusted by adjusting a slack in the tensioning straps
21 and 200 and clamping the ends 204 and 214 with a clamp. Further, Figs. 24 and 25
illustrate two tension triggering straps 21 and 210. However, it is possible that these two
triggering straps be included into a single tension triggering strap which performs the same
functions as the two tension triggering straps.
Figures 26-29b illustrate another embodiment of the shoulder brace of the present
invention. In particular, Figure 26 illustrates the patient 12 wearing a shoulder brace 201
which includes actuators 249, 250. The actuators 249, 250 compress the shoulder joint when
the patient's arm is moved. Also shown is a rigid frame which includes an arm frame
member 256 and a shoulder frame member 258. The alignment strap 16 and anchor strap 18
may also be used for aligning and securing the shoulder brace 201. The straps 16 and 18
have previously been described and accordingly a detailed description is now omitted.
However, note Figure 28 (which is discussed later) illustrates an alternative aπangement for
aligning and securing the shoulder brace. Figure 27 illustrates a front view of the shoulder brace 201 shown in Figure 26 and
will be used to describe an operation thereof. As shown, when the right arm of the patient 12
is moved (e.g., in the direction of the aπow Y), the rigid arm frame member 256 is also
moved causing a clockwise force (in the direction of the aπow X) on the actuator 250. This
clockwise force causes front and rear pads 252, 254 (only the front pad 252 is shown in
Figure 27) to press against the shoulder joint of the patient 12 (and thus compress the
shoulder joint). The more the arm is moved, the greater the compression force. The actuators
249, 250 are discussed in more detail with reference to Figures 29a-b.
Figure 28 illustrates an alternative alignment and anchor strap 17 from the alignment
strap 16 and anchor strap 18 discussed previously. As shown, the alignment strap 16 and
anchor strap 18 in Figure 27 are combined into a single strap 17 for aligning and securing the
shoulder brace 201. The anchoring and alignment strap 17 reduces the number of straps and
provides more comfort to the individual.
Turning now to Figures 29a and 29b, which are cross-sectional side views of the front
and rear actuators 249, 250. In particular, Figure 29a illustrates a disassembled view of the
front actuator 250, which includes the shoulder frame member 258 threadably engaged with
the frame member 256 (via a threaded portion 260). The arm frame member 256 is securely
fastened (e.g., integrally molded) with the threaded portion 260, such that when the arm
frame member 256 is moved away from the body, the threaded portion 260 is rotated inwards
so as to press the front pressure pad 252 against the patient's shoulder joint.
In more detail, when the patient's arm is moved, the arm frame member 256 causes
the threaded portion 260 to rotate such that the front pressure pad 252 presses against the
patient's shoulder joint. The pressure is generated towards the patient's shoulder because the shoulder frame member 258 remains in essentially a fixed position (i.e., the frame member
258 does not move). Thus, the threaded portion 260 rotates towards the patient's shoulder
joint. The rear actuator 249 operates in a similar fashion.
Figure 29b illustrates an assembled view of the rear actuator 249 including the frame
member 258 threadably engaged with the frame member 256 (via a threaded portion 261).
The threaded portion 261 includes left-hand threads, whereas the threaded portion 260
includes right-hand threads, such that the threaded portions rotate inwards so as to press the
front and rear pressure pads 252, 254 against the patient's shoulder joint. That is, the
threaded portions 260 and 261 are oppositely threaded.
In addition, the front and rear pressure pads 252, 254 may be connected to the arm
frame member 256 such that the pads do not rotate when the actuator rotates. This may be
accomplished by including a projecting portion 262 of the pressure pad which freely rotates
in a passageway 264 of the arm frame member 256 (see Figs. 29a and 29b). The diameters of
the projecting portions 262 are smaller than the diameters of the holes 264, and thus the
pressure pads are free to rotate.
The front and rear pads 252, 254 may be assembled by pushing the projection portion
262 into the passageway 264 until the projecting portion 262 "snaps" into place, thereby
securing the front and rear pressure pads 252, 254 to the frame member 256.
In addition, the frame portions may include a fiber-reinforced plastic, injected molded
plastic, etc., with a sufficient rigidity to function as a frame for supporting the actuators 249,
250.
Turning now to Figs. 30-36, which illustrate yet another embodiment of the shoulder
brace of the present invention. In particular, Fig. 30 illustrates the individual 12 wearing a shoulder brace 300, which includes a front frame member 304, a rear frame member 306, a
front pressure pad 308, a rear pressure pad 310, an arm cuff 314 and a support frame member
312. The front and rear pressure pads 308, 310 are respectively positioned on front and rear
portions of the individual's shoulder joint and the support member 312 is positioned at a mid-
section of the individual. Further, the front frame member 304 is connected to the support
frame member 312 and the front pressure pad 308. Similarly, the rear frame member 306 is
connected to the support frame member 312 and the rear pressure pad 310. The shoulder
brace 300 also includes a cord 316 which traverses over the individual's shoulder.
Figure 31 illustrates a front view of the shoulder brace 300 shown in Figure 30 and
will be used to describe an operation thereof. As shown, when the right arm of the individual
12 is moved away from the body (e.g., in the direction of the aπow Y), the arm cuff 314 is
also moved, which pulls the cord 316. This causes the compression mechanism (described in
more detail later) to compress the front and rear frame members 304, 306 in accordance with
the movement of the individual's arm such that the front and rear pressure pads 308, 310
press against the individual's shoulder joint. The more the arm is moved, the greater the
compression force. Also shown in Figure 31 is an anchor strap 318 for securing the support
frame member onto the mid-section of the individual. The anchor strap 318 may be a nylon
belt, for example.
Turning now to the different examples of the compression mechanisms according to
the present invention. In the first example, as shown in Figure 32, the compression
mechanism includes a gear box 302 connected to the support frame member 312. In addition,
the cord 316 is routed from an anchor point 329 on the arm cuff (not shown) through the gear
box 302, onto a surface of the rear frame member 306, over the individual's shoulder, and onto an anchor point 326 on the front frame member 304.
Thus, according to this example, the cord 316 is pulled so as to compress the front and
rear frame members 304, 306 in accordance with the movement of the individual's arm such
that the front and rear pressure pads 308, 310 press against the individual's shoulder joint.
The gear box 302 (shown in more detail in Fig. 36) provides the efficient conversion ratio
(e.g. a 4:1 gear ratio or any other gear ration necessary to achieve to amount of pressure
required to compress the shoulder joint) so that the further movement of the individual's arm
away from the body results in a greater compression force.
Further, a plurality of pulleys may be positioned along the route of the cord 316 so as
to facilitate the easy movement of the cord 316. For example, in Figure 32, a pulley 328 is
provided on the support member 312 so as to facilitate the easy movement of the cord
between the gear box 302 and the arm cuff 314. Also shown is a cord anchor 326 for
anchoring the cord 316 onto the front frame member 304. In addition, the rear frame member
includes a groove 320 for receiving and routing the cord 316 along the surface of the rear
frame member 306. Note, a plurality of pulleys may also be positioned along the rear frame
member to facilitate a movement of the cord. For example, the cord 316 may be anchored by
passing it through a plurality of hole in the frame member and securing an end of the cord
through at least one loop created by the cord passing in and out of the plurality of holes.
Another method of securing the cord is by using a screw and washer type mechanism to
secure fasten the cord to the frame member.
Turning now to Figure 33, which illustrates another example of the compression
mechanism according to the present invention. As shown, the cord 316 is routed from an
anchor point 329 on the arm cuff (not shown), through the gear box 302, onto a pulley 328 included on the rear frame member, under the individual's shoulder (note this differs from
Figure 32 in which the cord 316 is routed over the individual's shoulder), through a pulley
328 included on the front frame member 304, and back under the individual's shoulder to an
anchor point 326 on the rear frame member 306. Thus, as the individual's arm is moved, the
cord 316 is pulled so as to compress the front and rear pressure pads 308, 310 against the
individual's shoulder joint. Note the rear frame member 306 in Fig. 33 does not include a
groove as in Fig. 32.
Fig. 34 illustrates yet another example of the compression mechanism according to
the present invention. Note Fig. 34 is similar to Fig. 33, except the cord 316 is routed from
the anchor point 329 on the arm cuff (not shown), through the gear box 302, onto a surface of
the rear frame member 306 through the groove 320, under the individual's shoulder to a
pulley 328 included on the front frame member 304, and back under the individual's shoulder
to an anchor point 326 included on the rear frame member 306. Thus, as the individual's arm
is moved, the cord 316 is pulled so as to compress the front and rear pressure pads 308, 310
against the individual's shoulder joint.
In addition, it is also possible to not loop back the cord 316 under the individual's
shoulder. That is, the cord 316 may be anchored onto the front frame member 304.
However, looping the cord 316 between the front and rear frame members 304, 306 provides
an additional compression force.
In addition, the front pressure pad 308 is moveably connected to the front frame
member 304 (e.g., via a ball and socket type connection) and may be "snapped" onto the front
frame member 304. The front pressure pad 308 may be movable to accommodate movement
of the individual's front shoulder joint. That is, the front shoulder joint tends to move more than the rear shoulder joint when the individual's arm is moved. Alternatively, both the front
and rear pressure pads 308, 310, may be movably connected to, or permanently fixed to, the
front and rear frame members 304, 306.
Further, as shown in Figs. 32-34, the front frame member 304 is pivotably connected
to the support frame member 312 at an end thereof (i.e., pivoted about a pivot joint 324 in a
direction of the aπow H).
Figure 36 illustrates an adjustment mechanism configured to adjust the location of the
rear pad 310 on the individual's shoulder joint. For example, as shown, the rear frame
member 306 and the support member 312 include slots 336, 338 at an interconnection region
thereof such that the positioning of the rear pressure pad 310 on the individual's shoulder
joint may be adjusted. Also shown are fasteners 340 (e.g., a nut and bolt) used to lock the
rear frame member 306 into the desired adjustment. Thus, the rear frame member may be set
into a desired position so as to set the position of the rear pad 310 on the individual's shoulder
joint. The front and rear pads 308, 310 may also be adjusted on the front and rear frame
members 304 and 306, respectively.
In addition, the arm cuff 314 may be made from a rigid plastic material and include a
velcro portion so as to be easily positioned and secured to the arm of the individual. For
example, the arm cuff 314 may be placed around the individual's arm and then secured via the
velcro strap.
In addition, the support frame member 312 may be made from a rigid plastic material
such as polystyrene, the front and rear frame members may be made from a rigid lightweight
metal, such as aluminum, and the front and rear pads and the arm cuff 314 may be made from
a rigid plastic material (such as polystyrene) including a thermoplastic padding to provide comfort and to provide location stability. The material selected for the shoulder brace should
provide the sufficient rigidity required and be lightweight. The cord material may be a
braided cord having sufficient strength to withstand the tensions to compress the front and
rear frame members 304, 306 in accordance with the movement of the individual's arm (such
as a braided cord manufactured by Western Filament under the trademark SPECTRA).
Turning now to Figure 35, which illustrates the gear box 302 in more detail. As
shown, the gear box 302 includes a first wheel 332 and a second wheel 334 attached to the
first wheel 332. Note, the first and second wheels 332, 334 may be a single component (e.g.,
be integrally molded). The second wheel 334 has a larger diameter than the diameter of the
first wheel 332. Thus, because the second wheel 334 has a larger diameter than the first
wheel 332, a larger pulling force on the front and rear frame members 304, 306 is created
with a movement of the individual's arm. That is, the gearbox 302 converts the pulling force
created by the movement of the arm cuff 314 into a larger pulling force (e.g., a pulling force
which is 4 times greater) used to pull the front and rear members 304, 306 together.
In addition, as shown, the cord 316 is routed from the arm cuff (not shown) through
the pulleys 328 provided on the support frame member 312 into the gear box 302 and is
wound around (at least once) the first and second wheels 332, 334. The cord 316 then exits
the gear box 302 and is routed over a pulley 328 into the rear frame member 306 (via a
through hole) and onto the groove 320 of the rear frame member 306. The cord 316 may be a
single cord as shown in the figures, or may be, for example, two separate cords: a first cord
connected to the first wheel 332 and a second cord connected to the second wheel 334.
Thus, according to the present invention, a shoulder injury may be efficiently treated
via the shoulder brace shown in the Figs. 30-36 by positioning the front and rear pressure pads on front and rear portions of the individual's shoulder joint, positioning the shoulder
member at a mid-section of the individual, and positioning the arm cuff on the arm of the
individual Then, the compression mechanism compresses the front and rear frame members
in accordance with a movement of the individual's arm such that the front and rear pressure
pads press against the individual's shoulder joint. The positions of the front and rear pads
may also be adjusted and the support frame member may be secured to the mid-section of the
individual.
Figs. 37-40 are copies of photographs of a person wearing the shoulder brace 300. In
particular, Figs. 37-39 are a side view, rear view and front view of the individual, and Fig. 40
is a view illustrating the individual's arm being raised. As shown in figures, the should brace
fits close to the body of the individual (i.e., the shoulder brace is made to conform with the
natural contours of the body). Further illustrated are the front and rear frame members 304,
306; the front and rear pads 308, 310; the support frame member 312; the anchor strap 318;
the arm cuff 314 and the fiber cord 316. In these figures, the fiber cord is routed over the
individual's shoulder (similar to the shoulder brace shown in Figs. 30-32).
Further, because wounds may appear or be at locations where the shoulder brace
contacts the individual's skin (e.g., at the front and rear pressure pads, on the inner surface of
the arm cuff, etc.), a bacteria static material may be applied to these regions to prevent
infection and/or to reduce the odor associated with such wounds. In more detail, a bacteria
static material that is activated by moisture (such a silver nylon material made by Omishield,
Sacuoito, or Swift) may be applied on the inner surfaces of the front and rear pads, support
frame member, arm cuff, etc. (the inner surfaces being defined as the surfaces which contact
the skin). The bacteria static material kills unwanted organisms and other odor causing organisms. Another bacteria static material which may be applied to areas on the shoulder
brace is one manufactured by Becker Technology Group under the Trademark
SILVERAPLPHA. The inventor of the present application has filed several related bacteria
static material applications related to preventing odor and unwanted organisms using bacteria
static materials such as silver-impregnated fabric.
In addition, it may be preferable to apply the bacteria static material only on certain
portions of the front and rear pressure pads (and other skin touching areas on the shoulder
brace). That is, there is a thermoplastic material provided on parts of the shoulder brace (e.g.,
the front and rear pads), which provide location stability for the front and rear pads (e.g., the
front and rear pads do not slip due to the thermoplastic material). However, if a bacteria
static material is applied to the entire inner surface of the front and rear pressure pads, for
example, the pads may be more likely to slip. Therefore, it may be preferable to apply the
bacteria static material only to the inner or outer regions of the pressure pads (i.e., to
effectively utilize the location stability of the thermoplastic material as well as the benefits of
the bacteria static material) .
In addition, the present inventor has determined the amount of pressure to be applied
to the shoulder joint to avoid the shoulder from popping out of its joint is in the range of
about 1 to 40 pounds. This can be accomplished by measuring (via a pressure gauge
including a spring loaded mechanism,), a minimum amount of pressure required to prevent an
individual from dislocating his shoulder. In fact, many patients are refeπed to as "voluntary
sublexers," which means they can voluntarily dislocate their shoulder. Based on preliminary
investigations, it is believed the minimum pressure is about 1 pound (the pressure required to
prevent a voluntary sublexerfrom discloting his shoulder) . Further, it is believed a maximum amount of pressure is about 40 pounds.
Obviously, numerous modifications and variations of the present invention are
possible in light of the above teachings. It is therefore to be understood that within the scope
of the appended claims, the invention may be practiced otherwise than as specifically
described herein.

Claims

WHAT IS CLAIMED AS NEW AND DESIRED TO BE SECURED BY LETTERSPATENT OF THE UNITED STATES IS:
1. A shoulder brace comprising:
front and rear pressure pads to be respectively positioned on front and rear portions of
an individual ' s shoulder j oint;
a support member to be positioned at a mid-section of the individual;
a front frame member connected to the support member and the front pressure pad;
a rear frame member connected to the support member and the rear pressure pad;
an arm cuff to be positioned on the arm of the individual; and
a compression mechanism configured to compress the front and rear frame members
in accordance with a movement of the individual's arm such that the front and rear pressure
pads press against the individual's shoulder joint.
2. The shoulder brace according to claim 1, wherein the compression mechanism
comprises:
a gear box connected to the support member;
a cord which is routed from an anchor point on the arm cuff, through the gear box,
onto a surface of the rear frame member, over the individual's shoulder, and to an anchor
point on the front frame member.
3. The shoulder brace according to claim 1, wherein the compression mechanism
comprises:
a gear box connected to the support member;
a cord which is routed from an anchor point on the arm cuff, through the gear box,
onto a pulley included on the rear frame member, under the individual's shoulder, to a pulley included on the front frame member, and back under the individual's shoulder to an anchor
point on the rear frame member.
4. The shoulder brace according to claim 1, wherein the compression mechanism
comprises:
a gear box connected to the support member;
a cord which is routed from an anchor point on the arm cuff, through the gear box,
onto a surface of the rear frame member, under the individual's shoulder, to a pulley included
on the front frame member, and back under the individual's shoulder to an anchor point on
the rear frame member.
5. The shoulder brace according to claims 2, 3, or 4, further comprising:
a plurality of pulleys positioned along the route of the cord so as to facilitate the
movement of the cord.
6. The shoulder brace according to claims 2, 3, or 4, wherein the gear box includes a
first wheel and a second wheel attached to the first wheel, said second wheel having a larger
diameter than a diameter of the first wheel, and
wherein the cord is wound around the first and second wheels at least once.
7. The shoulder brace according to claims 2 or 4, wherein the rear frame member
comprises a groove configured to receive and route the cord along the surface of the rear
frame member.
8. The shoulder brace according to claims 2, 3, or 4, wherein the cord comprises a
braided cord having sufficient strength to compress the front and rear frame members in
accordance with the movement of the individual's arm.
9. The shoulder brace according to claim 1, wherein the front pressure pad is movably connected to the front frame member and the rear pressure pad is fixed to the rear
frame member.
10. The shoulder brace according to claim 1, wherein both the front and rear pressure
pads are respectively movably connected to the front and rear frame members.
11. The shoulder brace according to claim 1 , wherein the support member is made
from a semi-rigid material, the front and rear frame members are made from a rigid-material,
and the front and rear pads and the arm cuff are made from a semi-rigid material having a
thermoplastic padding to provide comfort and to provide location stability of the front and
rear pads.
12. The shoulder brace according to claim 1, wherein the rear frame member and the
support member comprises slots at an interconnection region thereof such that the positioning
of the rear pressure pad on the individual's shoulder joint may be adjusted.
13. The shoulder brace according to claim 1, wherein the front frame member is
pivotally connected to the support frame member at an end thereof, and is fixed in place via
an anchor provided on the support frame member.
14. The shoulder brace according to claim 1, further comprising:
an anchoring mechanism configured to secure the support frame member on the mid-
section of the individual.
15. The shoulder brace according to claim 1, wherein the arm cuff comprises a velcro
portion to be easily positioned and secured to the arm of the individual.
16. The shoulder brace according to claim 1, wherein a bacteria static material is
provided on skin-touching portions of the shoulder brace.
17. The shoulder brace according to claim 1, wherein the shoulder brace conforms closely to the contour of the individual's body.
18. A shoulder brace comprising:
front and rear pressure pads to be respectively positioned on front and rear portions of
an individual's shoulder joint;
a support member to be positioned at a mid-section of the individual;
a front frame member connected to the support member and the front pressure pad;
a rear frame member connected to the support member and the rear pressure pad;
an arm cuff to be positioned on the arm of the individual; and
compression means for compressing the front and rear frame members in accordance
with a movement of the individual's arm such that the front and rear pressure pads press
against the individual's shoulder joint.
19. The shoulder brace according to claim 18, further comprising:
means for facilitating the movement of a cord included in the compression means.
20. The shoulder brace according to claim 19, wherein the rear frame member
comprises means for receiving and routing the cord along the surface of the rear frame
member.
21. The shoulder brace according to claim 18, wherein the front pressure pad is
movably connected to the front frame member and the rear pressure pad is fixed to the rear
frame member.
22. The shoulder brace according to claim 18, wherein both the front and rear
pressure pads are respectively movably connected to the front and rear frame members.
23. The shoulder brace according to claim 18, further comprising:
adjustment means for adjusting the position of the rear pressure pad on the individual ' s shoulder j oint .
24. The shoulder brace according to claim 18, further comprising:
adjustment means for adjusting the position of the front pressure pad on the
individual's shoulder joint.
25. The shoulder brace according to claim 18, further comprising:
anchoring means for securing the support frame member on the mid-section of the
individual.
26. The shoulder brace according to claim 18, wherein the arm cuff comprises
adjustment means for positioning and securing the arm cuff to the arm of the individual.
27. The shoulder brace according to claim 18, wherein a bacteria static material is
provided on skin-touching portions of the shoulder brace.
28. The shoulder brace according to claim 18, wherein the shoulder brace conforms
closely to the contour of the individual's body.
29. A method of treating a shoulder injury via a shoulder brace including front and
rear pressure pads; a support member; a front frame member connected to the support
member and the front pressure pad; a rear frame member connected to the support member
and the rear pressure pad; an arm cuff; and a compression mechanism, and said method
comprising:
positioning the front and rear pressure pads on front and rear portions of the
individual's shoulder joint;
positioning the support member at a mid-section of the individual; and
positioning the arm cuff on the arm of the individual,
wherein the compression mechanism compresses the front and rear frame members in accordance with a movement of the individual's arm such that the front and rear pressure
pads press against the individual's shoulder joint.
30. The method according to claim 29, further comprising:
adjusting the position of the rear pressure pad on the individual's shoulder joint.
31. The method according to claim 29, further comprising:
adjusting the position of the front pressure pad on the individual's shoulder joint.
32. The method according to claim 29, further comprising:
securing the support frame member on the mid-section of the individual.
33. The method according to claim 29, further comprising:
positioning and securing the arm cuff to the arm of the individual
34. The method according to claim 29, further comprising:
setting the amount of pressure the compression mechanism will press the front and
rear pressure pads against the individual's shoulder joint.
35. The method according to claim 29, further comprising:
determining, prior to positioning the shoulder brace on the individual, the amount of
pressure the compression mechanism will press the front and rear pressure pads against the
individual's shoulder joint.
36. The method according to claim 29, wherein a bacteria static material is provided
on skin-touching portions of the shoulder brace.
37. The method according to claim 29, wherein the shoulder brace conforms closely
to the contour of the individual's body.
38. A shoulder brace comprising:
a shoulder frame member mountable to an individual's shoulder; and an upper arm frame member mountable to the individual's upper arm, and including
at least one actuator configured to apply pressure to a shoulder joint of the individual in
accordance with a movement of the individual's arm.
39. The shoulder brace according to claim 38, wherein the at least one actuator
comprises a threaded portion threadably engaging with the shoulder frame member such that
the at least one actuator is rotated inwards toward the individual's shoulder joint in
accordance with the movement of the individual's arm.
40. The shoulder brace according to claim 38, further comprising:
a pressure pad associated with the at least one actuator and configured to provide a
comfortable pressure against the individual's shoulder joint.
41. The shoulder brace according to claim 40, wherein the pressure pad is slidably
moveable with the at least actuator so the pressure pad does not rotate when the at least
actuator rotates.
42. The shoulder brace according to claim 38, wherein the at least one actuator
includes a first actuator positioned on a front portion of the individual's shoulder joint and a
second actuator positioned on a rear portion of the individual's shoulder joint.
43. The shoulder brace according to claim 42, wherein the first and second actuators
rotate inwards at a same rotational speed in accordance with the movement of the individual's
arm so as to apply an equal pressure to the front and rear portions of the individual's
shoulder.
44. The shoulder brace according to claim 42, wherein the first and second actuators
rotate inwards at a same rotational speed in accordance with the movement of the individual's
arm so as to apply an equal pressure to the front and rear portions of the individual's shoulder.
45. The shoulder brace according to claim 38, further comprising:
an alignment strap mountable to an upper torso region of the individual and
configured to align the shoulder frame member, said alignment strap including first and
second ends pivotally connected to said shoulder frame member; and
an anchor strap mountable to a mid-section of the individual and configured to anchor
the shoulder frame member, said anchor strap including a first and second ends pivotally
connected to the shoulder frame member.
46. The shoulder brace according to claim 38, wherein a bacteria static material is
provided on skin- touching portions of the shoulder brace.
47. The shoulder brace according to claim 38, wherein the shoulder brace conforms
closely to the contour of the individual's body.
48. A shoulder brace comprising:
actuating means for compressing an individual's shoulder joint in accordance with a
movement of the individual' s arm.
49. The shoulder brace according to claim 48, further comprising:
means for mounting the shoulder brace to the individual's shoulder and upper arm.
50. The shoulder brace according to claim 48, further comprising:
means for providing a comfortable pressure against the individual's shoulder joint
when the actuating means compresses the individual's shoulder joint.
51. The shoulder brace according to claim 48, further comprising:
alignment means for aligning the shoulder brace; and
anchoring means for anchoring the shoulder brace to a mid-section of the individual
52. A method of treating a shoulder injury, comprising:
mounting a shoulder frame member on the individual's shoulder; and
mounting an upper arm frame member on the individual's upper arm, said upper arm
frame member including at least one actuator configured to apply pressure to the individual's
shoulder joint in accordance with a movement of the individual's arm.
53. The method according to claim 52, wherein the at least one actuator comprises a
threaded portion threadably engaging with the shoulder frame member such that the at least
one actuator is rotated inwards toward the individual's shoulder joint in accordance with the
movement of the individual's arm.
54. The method according to claim 52, wherein a pressure pad is associated with the
at least one actuator so as to provide a comfortable pressure against the individual's shoulder
joint.
55. The method according to claim 54, wherein the pressure pad is slidably moveable
with the at least actuator so the pressure pad does not rotate as the at least actuator rotates.
56. The method according to claim 52, wherein the at least one actuator includes a
first actuator positioned on a front portion of the individual's shoulder joint and a second
actuator positioned on a rear portion of the individual's shoulder joint.
57. The method according to claim 56, wherein the first and second actuators rotate
inwards at a same rotational speed in accordance with the movement of the individual's arm
so as to apply an equal pressure to the front and rear portions of the individual's shoulder.
58. The method according to claim 56, wherein the first and second actuators rotate
inwards at a same rotational speed in accordance with the movement of the individual's arm
so as to apply an equal pressure to the front and rear portions of the individual's shoulder.
59. The method according to claim 52, further comprising:
an alignment strap mountable to an upper torso region of the patient and configured to
align the shoulder frame member, said alignment strap including first and second ends
pivotally connected to said shoulder frame member; and
an anchor strap mountable to a mid-section of the patient and configured to anchor the
shoulder frame member, said anchor strap including a first and second ends pivotally
connected to the shoulder frame member.
60. The method according to claim 52, wherein a bacteria static material is provided
on skin-touching portions of the shoulder brace.
61. The method according to claim 52, wherein the shoulder brace conforms closely
to the contour of the individual's body.
62. A shoulder brace comprising:
a shoulder member mountable to a shoulder of an individual's arm; and
a positioning device configured to increase a pressure on the shoulder of the
individual's arm in accordance with a movement of the individual's arm.
63. A shoulder brace according to claim 62, wherein said shoulder member comprises
an open portion forming substantially rigid first and second arms, and wherein said
positioning device is configured to vary a spacing between said first and second arms of said
shoulder member according to a position of the individual's arm.
64. A shoulder brace according to claim 63, wherein said positioning device
comprises:
a first tension triggering strap having a first and second end;
an anchor mountable to a predetermined position on a individual's body; and a positioning unit communicating with said first and second arms of said shoulder
member;
said first end of said first tensioning strap communicating with said positioning unit;
said second end attached to said anchor strap such that a tension is generated in said
first tension triggering strap according to movement of the arm, and said first tension
triggering strap communicating with said positioning unit according to the tension generated
in said first tension triggering strap.
65. A shoulder brace according to claim 64, wherein the positioning device further
comprises:
at least a second tension triggering strap having a first and second end and
communicating with the positioning unit;
said first end of the second tension triggering strap being attached to an arm band
placed on an upper arm of the patient;
said second end of the second tension triggering strap looping through a ring provided
in the anchor strap and being attached to a portion of the second tension triggering strap;
said second tension triggering strap communicating with the positioning unit
according to a tension generated in said second tension triggering strap according to the
movement of the arm.
66. The shoulder brace according to claim 62, wherein a bacteria static material is
provided on skin-touching portions of the shoulder brace.
67. The shoulder brace according to claim 62, wherein the shoulder brace conforms
closely to the contour of the individual's body.
68. A shoulder brace comprising:
a shoulder member mountable to a shoulder of a individual's arm; and
compression means for increasing a pressure on said shoulder member in accordance
with a movement of the individual's arm.
69. A shoulder brace according to claim 68, wherein said compression means
comprises means for constricting said shoulder member in accordance with a movement of
the individual's arm.
70. A shoulder brace according to claim 68, wherein said compression means
comprises a tension strap configured to be anchored at a first end to a predetermined portion
of a individual's body beneath the shoulder and connected at a second end to said shoulder
member such that said shoulder member is constricted in accordance with a movement of the
arm away from the individual's body.
71. A shoulder brace according to claim 68, wherein the compression means
comprises:
a positioning device configured to increase a pressure on the shoulder of the
individual's arm in accordance with a movement of the individual's arm;
at least a second tension triggering strap having a first and second end and
communicating with the positioning unit;
said first end of the second tension triggering strap being attached to an arm band
placed on an upper arm of the patient;
said second end of the second tension triggering strap looping through a ring provided
in the anchor strap and being attached to a portion of the second tension triggering strap; and
said second tension triggering strap communicating with the positioning unit according to a tension generated in said second tension triggering strap according to the
movement of the arm.
72. The shoulder brace according to claim 68, wherein a bacteria static material is
provided on skin-touching portions of the shoulder brace.
73. The shoulder brace according to claim 68, wherein the shoulder brace conforms
closely to the contour of the individual's body.
PCT/US2001/005300 2000-02-17 2001-02-20 Shoulder brace WO2001060291A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US10/204,077 US7135005B2 (en) 2001-02-20 2001-02-20 Shoulder brace
AU2001241571A AU2001241571A1 (en) 2000-02-17 2001-02-20 Shoulder brace

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US50601200A 2000-02-17 2000-02-17
US09/506,012 2000-02-17

Publications (1)

Publication Number Publication Date
WO2001060291A1 true WO2001060291A1 (en) 2001-08-23

Family

ID=24012795

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2001/005300 WO2001060291A1 (en) 2000-02-17 2001-02-20 Shoulder brace

Country Status (2)

Country Link
AU (1) AU2001241571A1 (en)
WO (1) WO2001060291A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4188944A (en) * 1977-03-07 1980-02-19 Augustyniak Marian Z Acromio-clavicular restoration brace
US4862878A (en) * 1988-01-07 1989-09-05 Richards Medical Company Orthopedic prosthesis to aid and support the shoulder muscles in movement of the human arm
US5020521A (en) * 1982-11-10 1991-06-04 Salort Guy J External apparatus for motor handicaps of at least one upper limb
US5203763A (en) * 1992-02-04 1993-04-20 Lajiness O Neill Renee Dynamic sling

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4188944A (en) * 1977-03-07 1980-02-19 Augustyniak Marian Z Acromio-clavicular restoration brace
US5020521A (en) * 1982-11-10 1991-06-04 Salort Guy J External apparatus for motor handicaps of at least one upper limb
US4862878A (en) * 1988-01-07 1989-09-05 Richards Medical Company Orthopedic prosthesis to aid and support the shoulder muscles in movement of the human arm
US5203763A (en) * 1992-02-04 1993-04-20 Lajiness O Neill Renee Dynamic sling

Also Published As

Publication number Publication date
AU2001241571A1 (en) 2001-08-27

Similar Documents

Publication Publication Date Title
US7135005B2 (en) Shoulder brace
US6733467B2 (en) Shoulder brace
US7081101B1 (en) Shoulder brace with body to arm attachment straps
US7857776B2 (en) Dynamically adjustable joint extension and flexion device
EP1928370B1 (en) Joint brace
US6306111B1 (en) Rehabilitative shoulder support
US20210386577A1 (en) Dynamic adjustable shoulder orthosis with rehabilitation by adduction
EP1703871B1 (en) Orthopedic brace suspension system
US20060293623A1 (en) Orthopedic restraint and method for shoulder remediation
US20010031937A1 (en) Portable adjustable traction appliance to treat carpal tunnel syndrome and other problems of the wrist
WO2001060291A1 (en) Shoulder brace
US11701288B2 (en) Pivoting lower limb therapy device
CN216934598U (en) Adjustable wearing formula back muscle exercise appurtenance
CN218870611U (en) Lower limb correction harness
CA2491509C (en) Shoulder brace with body to arm attachment straps
RU2045251C1 (en) Fastening of two shin prostheses
WO2006002324A2 (en) Orthopedic restraint and method for shoulder remediation

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 10204077

Country of ref document: US

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP