WO2001059941A1 - Urgent signal transmitting small-sized transmitter and early distress locating system - Google Patents

Urgent signal transmitting small-sized transmitter and early distress locating system Download PDF

Info

Publication number
WO2001059941A1
WO2001059941A1 PCT/JP2000/006256 JP0006256W WO0159941A1 WO 2001059941 A1 WO2001059941 A1 WO 2001059941A1 JP 0006256 W JP0006256 W JP 0006256W WO 0159941 A1 WO0159941 A1 WO 0159941A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmitter
distress
signal
unit
information
Prior art date
Application number
PCT/JP2000/006256
Other languages
French (fr)
Japanese (ja)
Inventor
Shinichi Sawada
Original Assignee
Universal Resource, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2000071277A external-priority patent/JP2004347315A/en
Priority claimed from JP2000104071A external-priority patent/JP2004344176A/en
Application filed by Universal Resource, Inc. filed Critical Universal Resource, Inc.
Priority to AU2000273117A priority Critical patent/AU2000273117A1/en
Publication of WO2001059941A1 publication Critical patent/WO2001059941A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/35Constructional details or hardware or software details of the signal processing chain
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/14Receivers specially adapted for specific applications
    • G01S19/17Emergency applications
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/0009Transmission of position information to remote stations
    • G01S5/0018Transmission from mobile station to base station
    • G01S5/0027Transmission from mobile station to base station of actual mobile position, i.e. position determined on mobile
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S2205/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S2205/001Transmission of position information to remote stations
    • G01S2205/006Transmission of position information to remote stations for emergency situations

Definitions

  • the present invention relates to a small transmitter for transmitting an emergency signal, which is convenient to carry, and an early distress detection system for detecting a victim by relaying a signal transmitted by the small transmitter using an artificial satellite.
  • Morse code has been known as a means of communication in case of a marine accident.
  • GMDS Global Maritime Distress Snd Safety System
  • FIG. 1 is a diagram to explain the concept of GMDSS.
  • GMDSS polar orbiting satellites (Cospas satellite satellites) and geosynchronous orbiting satellites (Inmarsat ⁇ Hayajoshi) are referred to
  • Signals from emergency signal transmitters 3 such as EPIR ⁇ (Emergency position-indicating radio beacon) are transmitted to ground stations 1 and 2 using EIR. Therefore, it has the advantage that it can power the entire earth.
  • the communication equipment used for GMDSS has the problem that the equipment is large and expensive for personal use, and the installation of such transmission equipment is limited to ships and marine equipment. Therefore, when a marine accident occurs and an occupant is thrown into the sea, the search and rescue of the occupant is carried out by a ship or an aircraft, etc. Extremely difficult in stormy weather You. Furthermore, in the case of a maritime accident related to marine leisure, the location of the victim is often not clear, and it takes a lot of money and time to find the victim, and in many cases, the victim cannot be found.
  • GMDSS uses an existing ELT (Emergency locator transmitter) or marine EPIRB together with a combination of VHF and medium wave (MF), a measurement error of about 20 km occurs due to frequency stability.
  • Distress signal information is transmitted to the ground stations 1 and 2 via satellites, and the position of the transmitter 3 is determined by the ground stations 1 and 2. As a result, it took a long time to determine the position.
  • the transmitter used for GMDSS is configured to transmit a signal when the installed transmitter is moved. For this reason, many people who do not understand the concept of starting the transmitter, such as moving the transmitter at the time of repair of the ship, etc. It is thought that it is happening because there is no recognition that the event has occurred. Disclosure of the invention
  • An object of the present invention is to provide a small transmitter for transmitting an emergency signal which is convenient for carrying and, by using the transmitter and the GMDSS, to locate a victim carrying the transmitter.
  • the aim is to provide a rescue and rescue system that can quickly identify and grasp the situation, and to speed up and improve the efficiency of the emergency rescue and rescue operations of the victims and improve the survival rate.
  • the position calculation unit calculates the transmitter position based on the position information signal of the satellite for the satellite positioning system received by the reception unit, and the manual operation unit When is operated, the distress signal including the predetermined distress information and the current position information calculated by the position calculation unit is transmitted from the distress signal transmission unit. Since the emergency signal transmitting transmitter includes the current position information in the distress signal, it is possible to accurately recognize the position of the victim.
  • the emergency signal transmitter is connected to the receiver, position calculator and distress signal transmitter. It consists of a main unit including a remote controller and a remote controller, and transmits a distress signal by operating the manual operation unit of the remote controller. Therefore, for example, a relatively large body is installed on a ship, and the crew only needs to carry the remote control unit, which is excellent in portability. Even if there are a large number of occupants, it is economical because only the remote control unit needs to be prepared for the number of occupants.
  • a substrate on which an electronic member including a receiving unit, a position calculating unit, a transmitting unit, and a battery is mounted, and a ground wire are included in the foamed member.
  • the case can reduce the size and weight of the transmitter.
  • the transmitter can be carried as a PLB (Personal locator beacon).
  • the victim can be easily recognized, and the person concerned of the victim can be recognized. Contact can be made quickly.
  • the distress signal transmitted from the transmitter is based on the Global Maritime Distress snd Safety System (GMDSS) distress signal rules, so that the GMDSS rescue system can be used to rescue the victims. It can be carried out.
  • GMDSS Global Maritime Distress snd Safety System
  • the distress signal transmitted from the transmitter includes location information and ID information unique to the transmitter. Distress information can be reported to the organization to which the victim belongs based on the ID information, and quick rescue operations can be performed.
  • the distress signal is relayed using an artificial satellite, it is possible to realize a quick rescue operation covering the whole earth.
  • Figure 1 is a conceptual diagram of GMD S S.
  • Figure 2 is a conceptual diagram of the Argos system.
  • FIG. 3 is a diagram illustrating a schematic configuration of a transmitter and an early distress detection system according to the present invention.
  • FIG. 4 is a diagram showing a specific example of the transmitter 20.
  • FIG. 5 is a diagram illustrating a distress early detection system using ID information.
  • FIG. 6 is a diagram illustrating transmission of distress signals and prohibition of transmission based on the position of the transmitter.
  • FIG. 7 is a diagram showing a first embodiment of a small transmitter for transmitting an emergency signal.
  • FIG. 8A is a diagram showing a mounting example of the transmitter 20 shown in FIG.
  • FIG. 8B is a diagram showing another mounting example of the transmitter 20 shown in FIG.
  • FIG. 9 is a diagram illustrating a second embodiment of the transmitter.
  • FIG. 1OA is a diagram showing a third embodiment of the transmitter, and is a diagram showing a case where the transmitter is mounted on a life jacket.
  • FIG. 10B is a diagram showing a third embodiment of the transmitter, and shows a case where the transmitter is mounted on a buoyancy adjuster for scuba diving.
  • FIG. 11 is a diagram illustrating a fourth embodiment of the transmitter.
  • FIG. 12 is a diagram showing a fifth embodiment of the transmitter.
  • FIG. 13 is a diagram showing a modification of the transmitter of FIG.
  • FIG. 14 is a diagram showing a modification of the transmitter of FIG. BEST MODE FOR CARRYING OUT THE INVENTION
  • the distress early detection system provides a small-sized brassier that has not been able to benefit from the GMD SS by providing a portable ultra-small transmitter while using the above-mentioned GMD SS rescue system. In this way, users, small fishing boats, anglers and surfers can send distress signals to the GMD SS in an emergency.
  • Argos System Argos System
  • Figure 2 is a conceptual diagram of the Argos system.
  • the Argos system is a position calculation and data collection system for environmental surveys and environmental protection, and is used to calculate the position and collect data for tide measurement buoys 4, wild birds 5, marine animals 6, and polar explorers 7. This is done using satellite 9.
  • the satellite 9 uses two N 0 AA satellites orbiting in polar orbit, and the NOAA satellite 9 is equipped with Argos processing equipment.
  • a transmitter 8 for the Argos system is mounted on each of the mobile bodies 4 to 7, and the radio wave emitted from the transmitter 8 is received by the artificial satellite 9 and transferred to the receiving station 10 on the ground.
  • the information received by the receiving station 10 is sent to the information processing center 11, where the position of the transmitter 8 is calculated and the sensor data is processed, and then delivered to the user 12.
  • the transmitter 8 used in this Argos system is small and lightweight, and most of them are 1 kg or less.
  • the weight of the transmitter must be reduced to about 4 to 5% of the weight of the wild bird 5, and thus the weight has been reduced.
  • No. 10-32 499 discloses a micro transmitter of about 15 g.
  • the GMDSS can be used by an individual by using the micro transmitter used in the Argos system.
  • FIG. 3 is a diagram for explaining a schematic configuration of a transmitter 20 and a distress early detection system according to the present invention.
  • the transmitter 20 has a distress signal transmission function and a GPS function.
  • Reference numeral 21 denotes a GPS receiver for receiving signals from a GPS (Global Positioning System) satellite 22.
  • the position calculator 23 detects a transmitter 20 based on the GPS signal received by the GPS receiver 21. Is calculated. This position calculation is performed at a predetermined cycle, and the calculated position information is output to the transmission unit 24.
  • the transmitter 24 uses the above-mentioned ultra-small transmitter for the Argos system.As a result, the overall size and weight of the transmitter 20 can be reduced in size and weight, and can be carried as a PLB. can do.
  • the Cospas-Sasat system international satellite search and rescue system
  • GMDSS Global System for Mobile Communications
  • the transmitter 24 has a frequency of 400 MHz based on the specification for COSPAS-SARSAT 406 MHz distress beacons, C / S T.OOl issue 3-revision2 October 1998.
  • 121.5 MHz distress signal transmission The signal at frequency 406 MHz is the distress signal received by satellite 27, while the signal at frequency 121.5 MHz is used to facilitate the location of the ship or person in distress.
  • the transmitter 20 also functions as a radar transbonder.
  • Reference numeral 26 denotes a power source such as a small battery
  • reference numeral 25 denotes an operation switch for transmitting an distress signal. Since the transmitter 20 is used on the ocean, it is manufactured with consideration given to waterproofness, pressure resistance, corrosion resistance, and the like.
  • FIG. 4 is a diagram showing a specific example of the transmitter 20.
  • the electronic components 201, 202, 203 constituting the GPS receiving section 21, the position calculating section 23, the transmitting section 24, and the battery 204, which is the power supply 26, are provided on the circuit board 200.
  • the antenna 205 is fixed, and one end of a ground wire 206 is connected.
  • These electronic components 201 to 203, the battery 204 and the ground wire 206 are included in the foam member 207.
  • the foam member 207 is made of urethane or styrene. .
  • a metal conductive layer 208 for shielding electromagnetic waves is provided around the foamed member 207, and an insulating layer 209 is provided so as to surround the metal conductive layer 208.
  • the operation switch 25 is provided outside the insulating layer 209.
  • An aluminum sheet or the like is used for the metal conductive layer 208, and a resin applied around the metal conductive layer 208 is used as the insulating layer 209.
  • the tip of the ground wire 206 is taken out of the foam member 207 and connected to the metal conductive layer 208.
  • the foam member 207, the metal conductive layer 208 and the insulating layer 209 have a function as a case of the transmitter 20.
  • Most of the foam member 207 is a foam member 207.
  • the weight of the transmitter 20 can be reduced.
  • the waterproofness is excellent.
  • ID information of the transmitter 20 may be included.
  • the ID information is a data (for example, a number) given to the transmitter 20 when the transmitter 20 is purchased, and the ID information and the purchaser's name and the contact information are transmitted to the distress system. It is registered with the controlling organization (for example, Coast Guard 29, described later).
  • the distress signal transmitted from the transmitter 20 is received by the Cospa's Sursat satellite 27 orbiting the earth.
  • the received distress signal information is stored in the memory module of the communication processor (for frequency 406 MHz) mounted on the artificial satellite 27, and the artificial satellite 27 transmits the LUT (Local user terminal) 28 on the ground.
  • satellite 27 sends a distress signal to the ground.
  • this LUT 28 is handled by the Japan Coast Guard distress signal ground receiving station, and distress information is sent from the receiving station 28 to the Japan Coast Guard 29 coastal department via the department in charge of the Japan Coast Guard 29. Sent to. Receiving the distress information, the Coast Guard Coast Guard 30 issues a rescue order to the rescue aircraft 31 and the rescue boat 32 to rescue the distress who is the owner of the transmitter 20. At this time, a cooperative system including general ships will be established. For example, when the distress signal includes position information, the rescue aircraft 31 and the rescue ship 32 can go straight to the distress position based on the position information. In addition, even if the position of the victim changes due to the current, the location information changes according to the change in the position of the victim, so that the victim is not lost. This can contribute to an increase in the survival rate and a significant reduction in the cost of rescue.
  • the distressed person can be identified from the ID information, so that the distressed person can be quickly notified of the distress information.
  • the ID number of the crew of a ship belonging to shipping company 33 is 100s
  • the ID number of the crew of a ship belonging to shipping company 34 is 200s.
  • the Security Service 29 sends the distress information to the shipping company 33 when the ID is 100s, and sends the distress information to the shipping company 3 when the ID is 200s. Send to 4. If the distress signal of ID 101 is transmitted from the victim A, the distress information is transmitted to the shipping company 33 via the ground receiving station 28 and the Japan Coast Guard 29, and transmitted from the victim B.
  • the distress information of ID 201 is transmitted to shipping company 34.
  • a medium-wave or short-wave signal may be transmitted instead of the 121.5 MHz distress signal.
  • the distress signal at 406 MHz is transmitted to the Coast Guard 30 at the route shown in Figure 3, while the distress signal at 121.5 MHz, medium and short waves is directly transmitted. It will be received by the Japan Coast Guard Coast Office 30 or by a cruise ship staying near the victim, so that rescue operations in various areas can be performed more quickly. Alternatively, only the distress signal of 406 MHz may be transmitted.
  • a separate switch from the operation switch 25 is provided, and the operation signal of the operation switch 25 causes the distress signal of 406 MHz, and the operation of the other switch causes the operation of the switch 1 2 1.
  • a distress signal of 5 MHz, medium wave, or short wave may be transmitted.
  • a signal of 406 MHz including position information and ID information is constantly transmitted, and only when the operation switch 25 is operated in an emergency, the predetermined distress information is included in addition to the position information and ID information.
  • the transmitter 20 may be set to transmit a distress signal.
  • the location information and ID information are transmitted to the shipping companies 33, 34 via the Japan Coast Guard 29, the shipping companies 33, 3 4
  • the position can always be grasped. For example, if the fishing boat does not return after the expected return time, it is possible to take a quick response such as conducting a search based on the position information, thereby preventing a serious accident from occurring.
  • the distress signal transmission function of the transmitter 20 is set as follows. In other words, the transmitter 20. ? When 5 based position is a region C, the operation sweep rate pitch 2 5 located cormorants good force 5 transmitter 2 0 B where I Ri distress signal to the operation (see FIG. 3) is transmitted In the case of outside the area C, the setting is made so that even if the operation switch 25 is operated, the distress signal is not transmitted. In this case, if only the location information and the ID information are set to be constantly transmitted as described above, even if the transmission of the distress signal is prohibited outside the area C, the transmitter 20 is determined from the location information and the ID information. You can check the position of B.
  • FIG. 7 is a diagram showing the first embodiment, in which a transmitter 20 is attached to a telescopic band 40. in this case.
  • the transmitter 20 may be worn on the wrist as shown in FIG. 8A, or may be worn on the arm as shown in FIG. 8B.
  • transmission of the distress signal is started by pressing the operation switch 25 provided on the transmitter 20.
  • FIG. 9 is a view showing a second embodiment of the transmitter according to the present invention, and has a transmitter function and a clock function. .
  • the above-mentioned transmitter 20 is built in the wristwatch 41, and transmission of the distress signal starts when the operation switch 25 is pressed in an emergency.
  • a wristwatch type can be worn on a daily basis, which is convenient for marine workers and those who enjoy marine leisure, and prevents forgetting to carry a transmitter. Can be.
  • the transmitter 20 may be mounted on the life jacket 42 or the buoyancy adjuster 43 itself for scuba diving. In this case, the transmitter 20 itself enters the water, so attach the telescopic external antenna 44 and extend the antenna 44 so that part of the antenna 44 comes out of the water.
  • the above-described transmitter 20 is built in the mobile phone terminal 45.
  • the operation switches provided on the mobile phone terminals 45 Transmission of the distress signal is started by operating switches 25.
  • the mobile phone terminal 45 it is possible to use the mobile phone function to make contact in an emergency, but if the distress location is outside the coverage area of the mobile phone relay station, the mobile phone function can be used Can not.
  • distress can be dealt with by operating the operation switch 25 to transmit the distress signal.
  • a setting is made so that an distress signal is transmitted when the operation switch 25 is pressed twice or more within a predetermined time interval. In this case, in the first operation, the distress signal transmission operation is displayed on the display device 46 to call attention. Then, if there is a second operation, a distress signal is transmitted.
  • the transmitter 50 is connected to the transmitter main body 50 a and the transmitter main body 50 a. It may be configured with a remote control unit 5Ob that can turn on the power supply of 50a. Although only one remote control section 50b is shown in FIG. 12, a plurality of remote control sections 50b are provided according to the number of occupants.
  • this transmitter 50 is used, for example, on a ship, the transmitter main body 50a is installed on the ship, and each occupant carries a remote controller 50b.
  • a start signal is transmitted from the transmitter 52 to the transmitter body 50a.
  • this activation signal is received by the receiving section 53 provided in the transmitter main body 50a, the power supply 26 of the transmitter main body 50a is activated.
  • the receiving section 53 may be built in the transmitter main body 50a in advance, or may be configured to be attached later by an attachment type, and the transmitter main body 50a and the remote control section 50a may be attached later.
  • the activation signal can be received even if b is several kilometers away.
  • Reference numeral 54 denotes a power source such as a battery.
  • the transmitter body 50a is provided with a GPS receiver 21 and a position calculator 23 similar to the transmitter 20 in Fig. 3, and when the power supply 26 is activated, the GPS satellite 22 The position of the transmitter 50 is calculated based on the signal, and the transmitting unit 24 transmits the distress signal of the frequency 406 MHz.
  • the distress signal contains the ID information and the position information of the transmitter 50, and the rescue aircraft and the rescue ship perform rescue activities based on the position information.
  • the remote control unit 50b transmits the above-mentioned distress signal of 121.5 MHz separately from the start signal. Since this 121.5 MHz distress signal can be received at a distance of about 30 Km, rescue aircraft 31 and rescue boat 3 heading for rescue toward a vessel equipped with transmitter 50a 2 will be caught.
  • the transmitter 50 since the transmitter 50 is separated into a ship-mounted transmitter body 50a and a portable remote controller 50b, it is easy to increase the capacity of the power supply 26, and Signal transmission can be continued for a longer time. Note that the transmitter 50a may also be provided with an activation switch.
  • FIG. 13 is a modified example of the transmitter 50 shown in FIG. 12.
  • Each of the remote controllers 50b is also provided with a GPS receiver 21 and a position calculator 23.
  • the transmitter 52 transmits the position information and the ID information of the remote controller 50b to the transmitter 50a at predetermined time intervals.
  • the transmitter 50a Upon receiving the position information and ID information from the remote controller 50b, the transmitter 50a receives the position information and ID of the remote controller 50b together with the position information and ID information of the transmitter 50a.
  • a distress signal (406 MHz) containing information is transmitted to the satellite 27 of the Cospass.
  • the position calculation is performed at predetermined time intervals in order to suppress the consumption of the battery 54. For example, the position calculation is performed at hourly intervals.
  • the position calculation section 23 is provided in each remote control section 50 b, and the position calculation of each remote control section 50 b based on the GPS signal is performed in each remote control section 50 b.
  • the remote controller 50b may be configured as shown in FIG. That is, in each remote control unit 50 b, a crystal clock 55 using a crystal oscillator is provided instead of the position calculation unit 23, and the GPS information received from the remote control unit 50 and the reception time by the crystal clock 55 are provided. Transmitted to the transmitter body 50a. The position of each remote controller 50b is calculated by the position calculator 23 of the transmitter body 50a based on the GPS information and the time transmitted from the remote controller 50b. .
  • the above-mentioned remote control unit can also be installed in the emergency position indicating radio beacon (EPIRB) for ships and the emergency locator transmitter (ELT) for aircraft.
  • EPIRB emergency position indicating radio beacon
  • EHT emergency locator transmitter
  • the emergency signal transmission / reception transmitter 20 and the early distress detection system of the present invention are not limited to salvage rescue, but also rescue on land, for example, It can also be applied to rescue and rescue at the time, water accidents in rivers such as anglers, and traffic accidents in remote areas where it is difficult to transmit accident information.
  • the distress signal may be relayed to the ground station by other artificial satellites instead of the satellite of the Cospas-Sasat system. You may use satellites for satellite positioning systems that are operated by.

Abstract

A position computation unit (23) computes a current position based on a signal received by a GPS receiving unit (21) from a GPS (Global Positioning System) satellite (22), and a transmission unit (24) transmits a distress signal including preset distress information and the current position information computed by the position computation unit (23). This urgent signal transmitting transmitter (20), using an algorithm transmitter, can be reduced in size and weight and is convenient to carry. Since the transmitter (24) transmits a distress signal based on a GMDSS distress signal regulation, a GMDSS rescue system can be used in rescuing victims to enable quick rescuing activities covering the entire globe.

Description

明細書  Specification
緊急信号発信用小型送信機および遭難早期発見システム 本出願は日本国特許出願 2 0 0 0年第 7 1 2 7 7号および日本国特許出願 2 0 0 0年第 1 0 4 0 7 1号を基礎と し、 その内容は引用文と してここに含まれ る。 技術分野 Emergency signal transmission small transmitter and distress early detection systemThis application is based on Japanese Patent Application No. 2000 No. 7 1 2 7 7 and Japanese Patent Application No. 2000 1 0 4 0 7 1 As a basis, its content is included here as a quote. Technical field
本発明は、 携行に便利な緊急信号発信用小型送信機、 およびその小型送信機 が発信する信号を人工衛星によ り中継して遭難者を発見する遭難早期発見シス テムに関する。 背景技術  The present invention relates to a small transmitter for transmitting an emergency signal, which is convenient to carry, and an early distress detection system for detecting a victim by relaying a signal transmitted by the small transmitter using an artificial satellite. Background art
従来、 海難事故における連絡手段と してはモールス信号によるものが知られ ている力 最近では、 人工衛星を利用した G M D S S ( Global Maritime Distress snd Safety System) が利用 さ れて レ、 る 。 こ れは、 1 9 7 9 年の I M 0 ( International Maritime Organization ) 第 1 1 回総会において、 全世界的な海上遭難 安全システムと して実施が決まったものであり、 このシステムは 1 9 9 9年 2 月よ り本格稼働している。  Conventionally, Morse code has been known as a means of communication in case of a marine accident. Recently, the Global Maritime Distress Snd Safety System (GMDS) using satellites has been used. This was decided at the 1st General Assembly of IM0 (International Maritime Organization) in 1979 as a global maritime distress safety system. It has been in full operation since February.
図 1 は G M D S Sの概念を説明するための図であり、 G M D S Sでは、 極軌 道衛星 (コスパス . サ一サッ ト システム用衛星) や静止軌道衛星 (イ ンマルサ ッ ト ί早 j星) を禾 IJ用して E P I R β ( Emergency position-indicating radio beacon ) など の非常信号発信機 3からの信号を地上局 1, 2に伝達している。 そのため、 全 地球を力バーすることができるという利点を有している。  Figure 1 is a diagram to explain the concept of GMDSS. In GMDSS, polar orbiting satellites (Cospas satellite satellites) and geosynchronous orbiting satellites (Inmarsat ίHayajoshi) are referred to Signals from emergency signal transmitters 3 such as EPIR β (Emergency position-indicating radio beacon) are transmitted to ground stations 1 and 2 using EIR. Therefore, it has the advantage that it can power the entire earth.
しかし、 G M D S Sに用いられる通信設備は個人で使用するには装置が大き く高価であるという課題があり、 このような送信装置の設置は船舶や海上設備 に限られてしまう。 そのため、 海難事故が発生し乗員が海中に投げ出されたよ うな場合、 乗員の捜索 · 救助は船舶や航空機等によ り行われる力 その位置確 認は肉眼に頼らざるを得ず捜索が難しく、 特に荒天時などには困難を極めてい る。 さらに、 海洋レジャー関係における海難事故の場合には、 遭難者の所在が 明らかでないケースが多く、 遭難者の発見までに膨大な費用と時間がかかる上 に、 発見できない場合が多い。 However, the communication equipment used for GMDSS has the problem that the equipment is large and expensive for personal use, and the installation of such transmission equipment is limited to ships and marine equipment. Therefore, when a marine accident occurs and an occupant is thrown into the sea, the search and rescue of the occupant is carried out by a ship or an aircraft, etc. Extremely difficult in stormy weather You. Furthermore, in the case of a maritime accident related to marine leisure, the location of the victim is often not clear, and it takes a lot of money and time to find the victim, and in many cases, the victim cannot be found.
また、 G M D S Sは、 V H F、 中波 (M F ) のコンビネーシ ョ ンと共に既存 の E L T ( Emergency locator transmitter) または船舶用 E P I R Bを使用するので 、 周波数安定度の関係で 2 0 k m程度の測定誤差が生じる。 地上局 1 , 2 には 衛星を経由して遭難信号情報が送信され、 送信機 3の位置の割り出しは地上局 1, 2 にて行われる。 そのため、 位置の割り出しに時間がかかるという欠点が めった。  In addition, since GMDSS uses an existing ELT (Emergency locator transmitter) or marine EPIRB together with a combination of VHF and medium wave (MF), a measurement error of about 20 km occurs due to frequency stability. Distress signal information is transmitted to the ground stations 1 and 2 via satellites, and the position of the transmitter 3 is determined by the ground stations 1 and 2. As a result, it took a long time to determine the position.
さらに、 G M D S Sの問題と して送信機の誤作動が指摘されている。 G M D S Sに用いられる送信機では、 設置されている送信機を移動したりすると信号 を送信するよ う な構成となっている。 そのため、 船舶の修理時等の際に送信機 を移動する等して誤作動を起こしてしま う という よう に、 送信機の始動概念を 理解していない人によるものが多く、 始動した本人が始動したとの認識がない ために起こっていると考えられる。 発明の開示  In addition, malfunction of the transmitter has been pointed out as a problem of GMDSS. The transmitter used for GMDSS is configured to transmit a signal when the installed transmitter is moved. For this reason, many people who do not understand the concept of starting the transmitter, such as moving the transmitter at the time of repair of the ship, etc. It is thought that it is happening because there is no recognition that the event has occurred. Disclosure of the invention
本発明の目的は、 携行に便利な緊急信号発信用小型送信機を提供すると と も に、 その送信機と G M D S Sを利用することによ り、 送信機を携行している遭 難者の所在を素早く特定し、 その状況を把握できるような遭難救助システムを 提供し、 遭難者の救急救命活動の迅速化 · 効率化および救命率の向上を図るこ とにある。  An object of the present invention is to provide a small transmitter for transmitting an emergency signal which is convenient for carrying and, by using the transmitter and the GMDSS, to locate a victim carrying the transmitter. The aim is to provide a rescue and rescue system that can quickly identify and grasp the situation, and to speed up and improve the efficiency of the emergency rescue and rescue operations of the victims and improve the survival rate.
上記目的を達成するため、 本発明による緊急信号発信用送信機では、 受信部 で受信された衛星測位システム用衛星の位置情報信号に基づいて位置演算部で 送信機位置が算出され、 手動操作部を操作すると、 所定の遭難情報と位置演算 部で算出された現在位置情報とを含む遭難信号が遭難信号送信部から送信され る。 この緊急信号発信用送信機は遭難信号に現在位置情報が含まれているので 、 遭難者の位置を精度良く認識することができる。  In order to achieve the above object, in the transmitter for transmitting an emergency signal according to the present invention, the position calculation unit calculates the transmitter position based on the position information signal of the satellite for the satellite positioning system received by the reception unit, and the manual operation unit When is operated, the distress signal including the predetermined distress information and the current position information calculated by the position calculation unit is transmitted from the distress signal transmission unit. Since the emergency signal transmitting transmitter includes the current position information in the distress signal, it is possible to accurately recognize the position of the victim.
さらに、 緊急信号発信用送信機を受信部、 位置演算部および遭難信号送信部 を含む本体部とリモコン部とで構成し、 リモコン部の手動操作部の操作によ り 遭難信号を送信させるよう にした。 そのため、 例えば、 比較的大きな本体は船 舶に設置し、 乗員はリモコン部のみを携帯すれば良く 、 携帯性に優れる。 乗員 が多数であっても リモコン部のみを乗員数だけ用意すればいいので経済的であ る。 In addition, the emergency signal transmitter is connected to the receiver, position calculator and distress signal transmitter. It consists of a main unit including a remote controller and a remote controller, and transmits a distress signal by operating the manual operation unit of the remote controller. Therefore, for example, a relatively large body is installed on a ship, and the crew only needs to carry the remote control unit, which is excellent in portability. Even if there are a large number of occupants, it is economical because only the remote control unit needs to be prepared for the number of occupants.
また、 受信部、 位置演算部、 送信部および電池からなる電子部材を搭載した 基板とアース線とを発泡部材内に内包させ、 発泡部材を金属導電層および絶縁 層で順に覆いこれらを送信機のケースとすることによ り、 送信機の小型 · 軽量 ィ匕を図ることができる。 その結果、 送信機を P L B ( Personal locator beacon) と して携行することができる。  In addition, a substrate on which an electronic member including a receiving unit, a position calculating unit, a transmitting unit, and a battery is mounted, and a ground wire are included in the foamed member. The case can reduce the size and weight of the transmitter. As a result, the transmitter can be carried as a PLB (Personal locator beacon).
このよ うな緊急信号発信用送信機を身につけておけば、 遭難等の緊急時に遭 難信号を容易に発信することができ、 この遭難信号を受信するこ と によ り救急 活動を迅速に行うことができる。 さらに、 手動操作部を操作しない限り遭難信 号が送信されないので、 誤送信を防止するこ とができる。 また、 遭難信号送信 禁止領域では、 手動操作部を操作しても遭難信号を送信しないよ う構成されて いる。  By wearing such an emergency signal transmission transmitter, it is possible to easily transmit distress signals in the event of an emergency such as distress, and by receiving this distress signal, quick rescue operations can be performed. be able to. Further, since the distress signal is not transmitted unless the manual operation unit is operated, erroneous transmission can be prevented. Also, in the distress signal transmission prohibited area, it is configured not to transmit the distress signal even if the manual operation unit is operated.
また、 遭難信号に遭難情報および送信機位置情報に加えて、 送信機固有の I D情報を含ませることによ り、 遭難者を容易に認識することができると と もに 、 遭難者の関係者への連絡を迅速に行う ことができる。  Also, by including the transmitter-specific ID information in addition to the distress information and the transmitter location information in the distress signal, the victim can be easily recognized, and the person concerned of the victim can be recognized. Contact can be made quickly.
さ らにまた、 送信部から送信する遭難信号を G M D S S ( Global Maritime Distress snd Safety System) の遭難信号規則に基づいたものとすること によ り、 G M D S Sの救助システムを活用して遭難者の救助を行う ことができる。 このよ う な遭難早期発見システムでは、 送信機から送信された遭難信号には位置情報 と送信機固有の I D情報とが含まれているので、 位置情報から遭難者の位置を 特定できるだけでなく、 I D情報に基づいて遭難情報を遭難者の所属する組織 に通報することができ、 迅速な救助活動を行える。 また、 人工衛星を利用して 遭難信号を中継しているので、 全地球をカバ一する迅速な救助活動を実現する ことが可能となる。 図面の簡単な説明 In addition, the distress signal transmitted from the transmitter is based on the Global Maritime Distress snd Safety System (GMDSS) distress signal rules, so that the GMDSS rescue system can be used to rescue the victims. It can be carried out. In such a distress early detection system, the distress signal transmitted from the transmitter includes location information and ID information unique to the transmitter. Distress information can be reported to the organization to which the victim belongs based on the ID information, and quick rescue operations can be performed. In addition, since the distress signal is relayed using an artificial satellite, it is possible to realize a quick rescue operation covering the whole earth. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 GMD S Sの概念図である。  Figure 1 is a conceptual diagram of GMD S S.
図 2は、 アルゴスシステムの概念図である。  Figure 2 is a conceptual diagram of the Argos system.
図 3は、 本発明による送信機の概略構成および遭難早期発見システムを説明 する図である。  FIG. 3 is a diagram illustrating a schematic configuration of a transmitter and an early distress detection system according to the present invention.
図 4は、 送信機 2 0の具体例を示す図である。  FIG. 4 is a diagram showing a specific example of the transmitter 20.
図 5は、 I D情報を利用した遭難早期発見システムを説明する図である。 図 6は、 送信機の位置による遭難信号の発信および発信禁止を説明する図で ある。  FIG. 5 is a diagram illustrating a distress early detection system using ID information. FIG. 6 is a diagram illustrating transmission of distress signals and prohibition of transmission based on the position of the transmitter.
図 7は、 緊急信号発信用小型送信機の第 1の実施例を示す図である。  FIG. 7 is a diagram showing a first embodiment of a small transmitter for transmitting an emergency signal.
図 8 Aは、 図 6に示す送信機 2 0の装着例を示す図である。  FIG. 8A is a diagram showing a mounting example of the transmitter 20 shown in FIG.
図 8 Bは、 図 6に示す送信機 2 0の他の装着例を示す図である。  FIG. 8B is a diagram showing another mounting example of the transmitter 20 shown in FIG.
図 9は、 送信機の第 2の実施例を示す図である。  FIG. 9 is a diagram illustrating a second embodiment of the transmitter.
図 1 O Aは、 送信機の第 3の実施例を示す図であり、 送信機を救命胴衣に装 着した場合を示す図である。  FIG. 1OA is a diagram showing a third embodiment of the transmitter, and is a diagram showing a case where the transmitter is mounted on a life jacket.
図 1 0 Bは、 送信機の第 3の実施例を示す図であり、 送信機をスキューバダ ィビング用浮力調整具に装着した場合を示す。  FIG. 10B is a diagram showing a third embodiment of the transmitter, and shows a case where the transmitter is mounted on a buoyancy adjuster for scuba diving.
図 1 1は、 送信機の第 4の実施例を示す図である。  FIG. 11 is a diagram illustrating a fourth embodiment of the transmitter.
図 1 2は、 送信機の第 5の実施例を示す図である。  FIG. 12 is a diagram showing a fifth embodiment of the transmitter.
図 1 3は、 図 1 2の送信機の変形例を示す図である。  FIG. 13 is a diagram showing a modification of the transmitter of FIG.
図 1 4は、 図 1 3の送信機の変形例を示す図である。 発明を実施するための最良の形態  FIG. 14 is a diagram showing a modification of the transmitter of FIG. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明の実施形態について、 P L B (personal locator beacon) を例に説 明する。 本発明による遭難早期発見システムは、 上述した GMD S Sの救助シ ステムを利用すると ともに携帯に便利な超小型発信機を提供することによって 、 これまで GMD S Sの恩恵にあずかることのできなかった小型ブレジャボー ト利用者や小型漁船、 釣り人、 サーファーなどが緊急時に遭難信号を GMD S Sに送信できるようにしたものである。 ところで、 上述した G M D S S とは別に、 人工衛星を利用した位置算出 · デ —夕収集システムであるアルゴスシステム (Argos System) と呼ばれるものがあ る。 図 2はアルゴスシステムの概念図である。 アルゴスシステムは環境調査や 環境保護を目的と した位置算出 · データ収集システムであり、 潮流測定用浮標 4、 野鳥 5、 海洋動物 6や極地方の探検家 7等の位置算出やデータの収集を人 ェ衛星 9 を利用して行っている。 この人工衛星 9 には、 極軌道を周回する 2基 の N 0 A A衛星が利用されており、 N O A A衛星 9 にはアルゴスの処理装置が 搭載されている。 Hereinafter, embodiments of the present invention will be described using a PLB (personal locator beacon) as an example. The distress early detection system according to the present invention provides a small-sized brassier that has not been able to benefit from the GMD SS by providing a portable ultra-small transmitter while using the above-mentioned GMD SS rescue system. In this way, users, small fishing boats, anglers and surfers can send distress signals to the GMD SS in an emergency. By the way, apart from the above-mentioned GMDSS, there is a so-called Argos System (Argos System), which is a satellite-based position calculation and data collection system. Figure 2 is a conceptual diagram of the Argos system. The Argos system is a position calculation and data collection system for environmental surveys and environmental protection, and is used to calculate the position and collect data for tide measurement buoys 4, wild birds 5, marine animals 6, and polar explorers 7. This is done using satellite 9. The satellite 9 uses two N 0 AA satellites orbiting in polar orbit, and the NOAA satellite 9 is equipped with Argos processing equipment.
移動体 4 〜 7 にはアルゴスシステム用送信機 8が装着され、 送信機 8から発 射された電波は人工衛星 9 によ り受信され地上の受信局 1 0に転送される。 受 信局 1 0で受信された情報は情報処理センター 1 1 に送られ、 そこで送信機 8 の位置計算やセンサーデータの処理が行われた後に、 ユーザー 1 2 に配信され る。  A transmitter 8 for the Argos system is mounted on each of the mobile bodies 4 to 7, and the radio wave emitted from the transmitter 8 is received by the artificial satellite 9 and transferred to the receiving station 10 on the ground. The information received by the receiving station 10 is sent to the information processing center 11, where the position of the transmitter 8 is calculated and the sensor data is processed, and then delivered to the user 12.
このアルゴスシステムに用いられる送信機 8は小型 · 軽量であって、 1 k g 以下のものがほとんどである。 特に、 野鳥 5に装着する送信機の場合には、 装 置重量を野鳥 5の体重の 4 〜 5 %程度に抑える必要があるため、 軽量化が進ん でおり、 日本国公開特許公報の特開平 1 0— 3 2 4 9 9号には約 1 5 gの超小 型送信装置が開示されている。 本発明による遭難早期発見システムでは、 この アルゴスシステムで利用されている超小型送信機を利用するこ と によ り、 個人 でも G M D S Sを利用できるようにした。  The transmitter 8 used in this Argos system is small and lightweight, and most of them are 1 kg or less. In particular, in the case of a transmitter to be mounted on the wild bird 5, the weight of the transmitter must be reduced to about 4 to 5% of the weight of the wild bird 5, and thus the weight has been reduced. No. 10-32 499 discloses a micro transmitter of about 15 g. In the distress early detection system according to the present invention, the GMDSS can be used by an individual by using the micro transmitter used in the Argos system.
図 3は本発明よる送信機 2 0の概略構成および遭難早期発見システムを説明 する図であり、 送信機 2 0は遭難信号発信機能と G P S機能とを有している。 2 1 は G P S ( Global Positioning System) 衛星 2 2からの信号を受信する G P S 受信部であり、 位置演算部 2 3では、 G P S受信部 2 1で受信された G P S信 号に基づいて送信機 2 0の位置が算出される。 この位置演算は所定周期で行わ れ、 算出された位置情報は送信部 2 4へ出力される。 送信部 2 4 には上述した アルゴスシステム用の超小型送信機を用いており、 その結果、 送信機 2 0全体 の大きさおよび重量の小型 · 軽量化を図ることができ、 P L Bと して携行する ことができる。 本発明の遭難早期発見システムでは G M D S Sに利用されているコスパス - サ一サッ ト システム (国際衛星探索救助システム) が用いられ、 遭難信号を中 継する人工衛星 2 7 にはコスパス ' サーサッ ト システムの低軌道人工衛星が利 用される。 そのため、 送信部 2 4 はコスパス ' サーサッ ト システムの遭難信号 規貝 IJ ( Specification for COSPAS-SARSAT 406MHz distress beacons ,C/S T.OOl issue 3-revision2 October 1998) に基づいた周波数 4 0 6 M H zおよび 1 2 1 . 5 M H zの遭難信号を送信するよう に改良されている。 周波数 4 0 6 M H zの信号は 人工衛星 2 7によ り受信される遭難信号であり、 一方、 周波数 1 2 1 . 5 M H zの信号は遭難した船や人の位置発見を容易にするための位置表示信号であり 、 送信機 2 0はレーダー ト ラ ンスボンダと しても機能する。 2 6は小型電池な どの電源であり、 2 5は遭難信号を発信させるための操作スィ ッチである。 送 信機 2 0は海洋上で使用されるので、 防水性、 耐圧性、 耐食性等を考慮して製 作される。 FIG. 3 is a diagram for explaining a schematic configuration of a transmitter 20 and a distress early detection system according to the present invention. The transmitter 20 has a distress signal transmission function and a GPS function. Reference numeral 21 denotes a GPS receiver for receiving signals from a GPS (Global Positioning System) satellite 22. The position calculator 23 detects a transmitter 20 based on the GPS signal received by the GPS receiver 21. Is calculated. This position calculation is performed at a predetermined cycle, and the calculated position information is output to the transmission unit 24. The transmitter 24 uses the above-mentioned ultra-small transmitter for the Argos system.As a result, the overall size and weight of the transmitter 20 can be reduced in size and weight, and can be carried as a PLB. can do. In the early distress detection system of the present invention, the Cospas-Sasat system (international satellite search and rescue system) used for GMDSS is used. Low orbit satellites are used. For this reason, the transmitter 24 has a frequency of 400 MHz based on the specification for COSPAS-SARSAT 406 MHz distress beacons, C / S T.OOl issue 3-revision2 October 1998. And 121.5 MHz distress signal transmission. The signal at frequency 406 MHz is the distress signal received by satellite 27, while the signal at frequency 121.5 MHz is used to facilitate the location of the ship or person in distress. The transmitter 20 also functions as a radar transbonder. Reference numeral 26 denotes a power source such as a small battery, and reference numeral 25 denotes an operation switch for transmitting an distress signal. Since the transmitter 20 is used on the ocean, it is manufactured with consideration given to waterproofness, pressure resistance, corrosion resistance, and the like.
図 4 は送信機 2 0の具体例を示す図である。 基板 2 0 0上には G P S受信部 2 1、 位置演算部 2 3、 送信部 2 4 を構成する電子部品 2 0 1 , 2 0 2, 2 0 3および電源 2 6である電池 2 0 4が搭載され、 アンテナ 2 0 5が固定される と と も にアース線 2 0 6の一端が接続されている。 これらの電子部品 2 0 1 〜 2 0 3、 電池 2 0 4およびアース線 2 0 6は発泡部材 2 0 7に内包されている o 発泡部材 2 0 7にはウ レタ ンやスチレンなどが用いられる。 発泡部材 2 0 7 の周囲には電磁波遮蔽用の金属導電層 2 0 8が設けられ、 さらに金属導電層 2 0 8の周囲を包むよう に絶縁層 2 0 9が設けられる。 操作スィ ッチ 2 5は絶縁 層 2 0 9の外側に設けられる。  FIG. 4 is a diagram showing a specific example of the transmitter 20. On the circuit board 200, the electronic components 201, 202, 203 constituting the GPS receiving section 21, the position calculating section 23, the transmitting section 24, and the battery 204, which is the power supply 26, are provided. The antenna 205 is fixed, and one end of a ground wire 206 is connected. These electronic components 201 to 203, the battery 204 and the ground wire 206 are included in the foam member 207.The foam member 207 is made of urethane or styrene. . A metal conductive layer 208 for shielding electromagnetic waves is provided around the foamed member 207, and an insulating layer 209 is provided so as to surround the metal conductive layer 208. The operation switch 25 is provided outside the insulating layer 209.
金属導電層 2 0 8 にはアルミ シー ト等が用いられ、 また、 樹脂を金属導電層 2 0 8の周囲に塗布したものが絶縁層 2 0 9 と して用いられる。 アース線 2 0 6の先端は発泡部材 2 0 7の外部に取り出され、 金属導電層 2 0 8に接続され る。 発泡部材 2 0 7, 金属導電層 2 0 8および絶縁層 2 0 9は送信機 2 0のケ ースと しての機能を有しており、 そのほとんどが発泡部材 2 0 7であるため、 送信機 2 0の軽量化を図ることができる。 また、 電子部品 2 0 1 〜 2 0 3ゃ電 池 2 0 4は発泡部材 2 0 7内に内包されているため、 防水性に優れている。 図 3 に戻って、 送信部 2 4から送信される遭難信号に含ませる情報と しては 、 従来のコスパス ' サ一サッ トシステムで採用されている遭難情報のみでも良 いし、 位置演算部 2 3で算出された位置情報のみでも良いし、 それら両方を含 むよう にしても良い。 さらに、 送信機 2 0の I D情報を含むよ う にしても良い 。 I D情報とは、 送信機 2 0 を購入した際に送信機 2 0 に付与されるデ一夕 ( 例えば、 番号) であり、 その I D情報と購入者名やその連絡先などが遭難シス テムを統括する組織 (例えば、 後述する海上保安庁 2 9 ) に登録される。 An aluminum sheet or the like is used for the metal conductive layer 208, and a resin applied around the metal conductive layer 208 is used as the insulating layer 209. The tip of the ground wire 206 is taken out of the foam member 207 and connected to the metal conductive layer 208. The foam member 207, the metal conductive layer 208 and the insulating layer 209 have a function as a case of the transmitter 20. Most of the foam member 207 is a foam member 207. The weight of the transmitter 20 can be reduced. In addition, since the electronic components 201 to 203 battery 204 is included in the foam member 207, the waterproofness is excellent. Returning to FIG. 3, as the information to be included in the distress signal transmitted from the transmitting unit 24, only the distress information used in the conventional Cospas® satellite system may be used. Only the position information calculated in 3 may be used, or both may be included. Further, ID information of the transmitter 20 may be included. The ID information is a data (for example, a number) given to the transmitter 20 when the transmitter 20 is purchased, and the ID information and the purchaser's name and the contact information are transmitted to the distress system. It is registered with the controlling organization (for example, Coast Guard 29, described later).
送信機 2 0から発信された遭難信号は、 地球を周回しているコスパス ' サー サッ ト衛星 2 7 によ り受信される。 受信した遭難信号情報は、 人工衛星 2 7に 搭載された通信用プロセッサ (周波数 4 0 6 M H z用) のメモリモジュールに 保持され、 人工衛星 2 7が地上の L U T (Local user terminal) 2 8 を望むことが できる位置となったと きに、 人工衛星 2 7から地上に向けて遭難信号が送信さ れる。  The distress signal transmitted from the transmitter 20 is received by the Cospa's Sursat satellite 27 orbiting the earth. The received distress signal information is stored in the memory module of the communication processor (for frequency 406 MHz) mounted on the artificial satellite 27, and the artificial satellite 27 transmits the LUT (Local user terminal) 28 on the ground. When the desired position is reached, satellite 27 sends a distress signal to the ground.
日本の場合、 この L U T 2 8は海上保安庁遭難信号地上受信局が担当してお り、 遭難情報は受信局 2 8から海上保安庁 2 9の担当部門を介して海上保安庁 海岸局 3 0へと送られる。 遭難情報を受けた海上保安庁海岸局 3 0は救助航空 機 3 1や救助船 3 2 に救助命令を出して、 送信機 2 0の保有者である遭難者の 救助に向かわせる。 このと き、 一般船舶も含めた協力体制が敷かれる。 例えば 、 遭難信号に位置情報が含まれている場合には、 救助航空機 3 1 や救助船 3 2 はこの位置情報に基づいて遭難位置に直行することができる。 また、 海流に流 されて遭難者の位置が変化するような場合でも、 遭難者の位置変化に応じて位 置情報も変化するので、 遭難者を見失う ようなことがない。 そのため、 救命率 の向上および救助に要するコス トの大幅な削減に寄与できる。  In Japan, this LUT 28 is handled by the Japan Coast Guard distress signal ground receiving station, and distress information is sent from the receiving station 28 to the Japan Coast Guard 29 coastal department via the department in charge of the Japan Coast Guard 29. Sent to. Receiving the distress information, the Coast Guard Coast Guard 30 issues a rescue order to the rescue aircraft 31 and the rescue boat 32 to rescue the distress who is the owner of the transmitter 20. At this time, a cooperative system including general ships will be established. For example, when the distress signal includes position information, the rescue aircraft 31 and the rescue ship 32 can go straight to the distress position based on the position information. In addition, even if the position of the victim changes due to the current, the location information changes according to the change in the position of the victim, so that the victim is not lost. This can contribute to an increase in the survival rate and a significant reduction in the cost of rescue.
また、 遭難信号に上述した I D情報が含まれている場合には、 I D情報から 遭難者を特定することができるので、 遭難者の関係者に遭難情報を素早く知ら せることができる。 例えば、 図 5に示すよう に、 船会社 3 3 に所属する船舶の 乗員の I D番号を 1 0 0番台、 船会社 3 4 に所属する船舶の乗員の I D番号を 2 0 0番台と し、 海上保安庁 2 9は I Dが 1 0 0番台のと きにはその遭難情報 を船会社 3 3 に送信し、 I Dが 2 0 0番台のときにはその遭難情報を船会社 3 4に送信する。 遭難者 Aから I D 1 0 1の遭難信号が発信されたならば、 その 遭難情報は地上受信局 2 8および海上保安庁 2 9を経て船会社 3 3に伝達され 、 一方、 遭難者 Bから発信された I D 2 0 1の遭難情報は船会社 3 4へ伝達さ れる。 Also, when the above-mentioned ID information is included in the distress signal, the distressed person can be identified from the ID information, so that the distressed person can be quickly notified of the distress information. For example, as shown in Figure 5, the ID number of the crew of a ship belonging to shipping company 33 is 100s, and the ID number of the crew of a ship belonging to shipping company 34 is 200s. The Security Service 29 sends the distress information to the shipping company 33 when the ID is 100s, and sends the distress information to the shipping company 3 when the ID is 200s. Send to 4. If the distress signal of ID 101 is transmitted from the victim A, the distress information is transmitted to the shipping company 33 via the ground receiving station 28 and the Japan Coast Guard 29, and transmitted from the victim B. The distress information of ID 201 is transmitted to shipping company 34.
上述した例では、 操作スィ ッチ 2 5の操作によ り送信部 2 4から 2種類の遭 難信号 (4 0 6MH z、 1 2 1. 5 MH z ) を発信するよう にした力 5、 1 2 1 . 5MH zの遭難信号に代えて中波や短波の信号を発信するよ うにしても良い 。 4 0 6 MH zの遭難信号は図 3に示したル— トで海上保安庁海岸局 3 0に伝 達され、 一方、 1 2 1. 5 MH zや中波, 短波の遭難信号は直接に海上保安庁 海岸局 3 0で受信されたり、 遭難者の近く を通過する巡航船泊によ り受信され ることになり、 よ り素早く多方面の救助活動を行う ことができる。 また、 4 0 6 MH zの遭難信号のみを発信するよう にしても良い。 In the above-described example, the force of transmitting the two types of distress signals (406 MHz, 121.5 MHz) from the transmission unit 24 by operating the operation switch 25 5 , A medium-wave or short-wave signal may be transmitted instead of the 121.5 MHz distress signal. The distress signal at 406 MHz is transmitted to the Coast Guard 30 at the route shown in Figure 3, while the distress signal at 121.5 MHz, medium and short waves is directly transmitted. It will be received by the Japan Coast Guard Coast Office 30 or by a cruise ship staying near the victim, so that rescue operations in various areas can be performed more quickly. Alternatively, only the distress signal of 406 MHz may be transmitted.
さらに、 操作スイ ッチ 2 5 とは別のスィ ッチを設けて、 操作スイ ッチ 2 5の 操作で 4 0 6 MH zの遭難信号を、 別のスィ ッチの操作で 1 2 1. 5 MH zや 中波、 短波の遭難信号を送信するよう にしても良い。 と ころで、 遭難情報を含 んだと きには遭難信号送信に要する消費電力が含まない場合に比べて大きいの で、 操作スイ ッチ 2 5のオン操作時のみに遭難情報を含む遭難信号を発信する よう にすれば、 消費電力を抑制することができ電池寿命の向上を図ることがで きる。  In addition, a separate switch from the operation switch 25 is provided, and the operation signal of the operation switch 25 causes the distress signal of 406 MHz, and the operation of the other switch causes the operation of the switch 1 2 1. A distress signal of 5 MHz, medium wave, or short wave may be transmitted. At this point, when the distress information is included, the power consumption required to transmit the distress signal is larger than when it is not included, so the distress signal including the distress information only when the operation switch 25 is turned on. By transmitting, the power consumption can be suppressed and the battery life can be improved.
また、 位置情報および I D情報を含む 4 0 6 M H zの信号を常時送信し、 緊 急時に操作スイ ッチ 2 5が操作されたと きのみに位置情報および I D情報に加 えて所定の遭難情報を含む遭難信号を発信するよう に送信機 2 0を設定しても 良い。 常時、 位置情報および I D情報は海上保安庁 2 9を介して船会社 3 3 , 3 4に伝達されるよ う にすれば、 この情報によ り船会社 3 3 , 3 4は保有する 船舶の位置を常時把握するこ とができる。 例えば、 釣り船が帰着予定時間を過 ぎても戻らない場合には、 位置情報に基づいて捜索を行う等の素早い対応をす ることができ、 重大な事故を未然に防止することができる。  Also, a signal of 406 MHz including position information and ID information is constantly transmitted, and only when the operation switch 25 is operated in an emergency, the predetermined distress information is included in addition to the position information and ID information. The transmitter 20 may be set to transmit a distress signal. At all times, if the location information and ID information are transmitted to the shipping companies 33, 34 via the Japan Coast Guard 29, the shipping companies 33, 3 4 The position can always be grasped. For example, if the fishing boat does not return after the expected return time, it is possible to take a quick response such as conducting a search based on the position information, thereby preventing a serious accident from occurring.
ところで、 個人用の送信機 2 0に関しては、 例えば海上保安庁 2 9が管轄す る送信機 2 0については、 図 6に示すよう なロー力ル地域 C内でのみ遭難信号 を発信するよ う に定められている。 そこで、 送信機 2 0の遭難信号送信機能を 次のよう に設定する。 すなわち、 送信機 2 0八のょ ぅ に。? 5に基づく位置が 領域 Cであった場合には、 操作スィ ッチ 2 5 (図 3参照) の操作によ り遭難信 号が発信される力 5 送信機 2 0 Bのよ う に位置が領域 Cの外側の場合には、 操 作スィ ッチ 2 5 を操作しても遭難信号が発信されないよう に設定する。 この場 合、 上述したよ う に位置情報と I D情報のみを常時発信するよ う に設定すれば 、 領域 C外で遭難信号の発信が禁止されても位置情報と I D情報とから送信機 2 0 Bの位置を確認することができる。 By the way, as for the personal transmitter 20, for example, for the transmitter 20 under the jurisdiction of the Japan Coast Guard 29, the distress signal is only in the local area C as shown in Fig. 6. Is set to be sent. Therefore, the distress signal transmission function of the transmitter 20 is set as follows. In other words, the transmitter 20. ? When 5 based position is a region C, the operation sweep rate pitch 2 5 located cormorants good force 5 transmitter 2 0 B where I Ri distress signal to the operation (see FIG. 3) is transmitted In the case of outside the area C, the setting is made so that even if the operation switch 25 is operated, the distress signal is not transmitted. In this case, if only the location information and the ID information are set to be constantly transmitted as described above, even if the transmission of the distress signal is prohibited outside the area C, the transmitter 20 is determined from the location information and the ID information. You can check the position of B.
上述したよ うに、 送信機 2 0はアルゴスシステムの送信機を利用しているの で小型 · 軽量化が図れて携行性が良く 、 以下の実施例に示すよ う に様々な形態 で実施するこ とができる。 図 7は第 1 の実施例を示す図であり、 伸縮自在なバ ン ド 4 0に送信機 2 0が取り付けられている。 この場合。 図 8 Aのよう に送信 機 2 0 を手首に装着しても良いし、 図 8 Bのよ う に腕に装着しても良い。 緊急 時に、 送信機 2 0に設けられた操作スイ ッチ 2 5 を押すことによ り遭難信号の 発信が開始される。 なお、 送信用のアンテナは送信機 2 0内に内蔵されている 図 9は本発明による送信機の第 2の実施例を示す図であり、 送信機機能と時 計機能とを有するタイプである。 具体的には、 腕時計 4 1 に上述した送信機 2 0 を内蔵したものであり、 緊急時に操作スィ ツチ 2 5 を押すと遭難信号の発信 が開始される。 このよ うな腕時計タィプの場合には日常的に身につけることが できるので、 海洋作業従事者や海洋レジャーを楽しむ人々の利用に便利である と と もに、 送信機の携行忘れを防止することができる。 また、 図 1 0 A, 1 0 Bの第 3の実施例に示すよう に救命胴衣 4 2やスキューバダイ ビング用の浮力 調整具 4 3 自体に送信機 2 0 を装着するよう にしても良い。 この場合には送信 機 2 0 自体が水中に入ってしまうので、 伸縮自在な外付けアンテナ 4 4 を装着 し、 アンテナ 4 4の一部が水上に出るよう にアンテナ 4 4 を伸ばして使用する 図 1 1 に示す第 4の実施例は、 携帯電話端末 4 5 に上述した送信機 2 0 を内 蔵させたものである。 緊急時には、 携帯電話端末 4 5 に設けられた操作スイ ツ チ 2 5 を操作することによ り、 遭難信号の発信が開始される。 携帯電話端末 4 5の場合には緊急時に携帯電話機能を利用して連絡を取ることができるが、 遭 難場所が携帯電話中継所のカバー範囲外であったときには携帯電話機能を利用 することができない。 そのよう なときは、 操作スィ ッチ 2 5を操作して遭難信 号を発信することによ り遭難に対応することができる。 なお、 操作スイ ッチ 2 5の誤操作を防止する方法と して、 操作スィ ッチ 2 5 を所定時間間隔以内に 2 回以上押したときに遭難信号を発信するよう に設定する。 その場合、 1 回目の 操作では、 遭難信号発信操作であることを表示装置 4 6 に表示して注意を促す 。 そして、 2回目の操作動作が有ったならば遭難信号を発信する。 As described above, since the transmitter 20 uses the transmitter of the Argos system, the transmitter and receiver can be reduced in size and weight, and can be easily carried, and can be implemented in various forms as shown in the following embodiments. Can be. FIG. 7 is a diagram showing the first embodiment, in which a transmitter 20 is attached to a telescopic band 40. in this case. The transmitter 20 may be worn on the wrist as shown in FIG. 8A, or may be worn on the arm as shown in FIG. 8B. In an emergency, transmission of the distress signal is started by pressing the operation switch 25 provided on the transmitter 20. FIG. 9 is a view showing a second embodiment of the transmitter according to the present invention, and has a transmitter function and a clock function. . Specifically, the above-mentioned transmitter 20 is built in the wristwatch 41, and transmission of the distress signal starts when the operation switch 25 is pressed in an emergency. Such a wristwatch type can be worn on a daily basis, which is convenient for marine workers and those who enjoy marine leisure, and prevents forgetting to carry a transmitter. Can be. Further, as shown in the third embodiment of FIGS. 10A and 10B, the transmitter 20 may be mounted on the life jacket 42 or the buoyancy adjuster 43 itself for scuba diving. In this case, the transmitter 20 itself enters the water, so attach the telescopic external antenna 44 and extend the antenna 44 so that part of the antenna 44 comes out of the water. In the fourth embodiment shown in FIG. 11, the above-described transmitter 20 is built in the mobile phone terminal 45. In an emergency, the operation switches provided on the mobile phone terminals 45 Transmission of the distress signal is started by operating switches 25. In the case of the mobile phone terminal 45, it is possible to use the mobile phone function to make contact in an emergency, but if the distress location is outside the coverage area of the mobile phone relay station, the mobile phone function can be used Can not. In such a case, distress can be dealt with by operating the operation switch 25 to transmit the distress signal. As a method for preventing erroneous operation of the operation switch 25, a setting is made so that an distress signal is transmitted when the operation switch 25 is pressed twice or more within a predetermined time interval. In this case, in the first operation, the distress signal transmission operation is displayed on the display device 46 to call attention. Then, if there is a second operation, a distress signal is transmitted.
上述した実施例では、 P L Bである送信機 2 0 を各個人が装着する場合につ いて説明したが、 図 1 2 に示すよう に、 送信機 5 0を送信機本体 5 0 a と送信 機本体 5 0 aの電源をォン操作するこ とのできるリモコ ン部 5 O b とで構成す るよう にしても良い。 図 1 2ではリモコ ン部 5 0 bは一つしか示していないが 、 乗員の数に合わせて複数設けられる。 この送信機 5 0 を、 例えば、 船舶で使 用する際には、 船舶に送信機本体 5 0 a を設置し、 各乗員にリモコン部 5 0 b を携帯させるようにする。  In the above-described embodiment, the case where each individual wears the transmitter 20 which is a PLB has been described. However, as shown in FIG. 12, the transmitter 50 is connected to the transmitter main body 50 a and the transmitter main body 50 a. It may be configured with a remote control unit 5Ob that can turn on the power supply of 50a. Although only one remote control section 50b is shown in FIG. 12, a plurality of remote control sections 50b are provided according to the number of occupants. When this transmitter 50 is used, for example, on a ship, the transmitter main body 50a is installed on the ship, and each occupant carries a remote controller 50b.
遭難時にリモコン部 5 0 bのスィ ッチ 5 1 を操作すると、 送信部 5 2から送 信機本体 5 0 a に起動信号が送信される。 この起動信号が送信機本体 5 0 a に 設けられた受信部 5 3 によ り受信されると、 送信機本体 5 0 aの電源 2 6が起 動される。 なお、 受信部 5 3は予め送信機本体 5 0 a に内蔵されていても、 後 からアタ ッチメ ン ト式に取り付けるよ うな構成と しても良く、 送信機本体 5 0 a とリモコン部 5 0 b とが数 K m離れていても起動信号を受信することができ る。 なお、 5 4は電池等の電源である。  When the switch 51 of the remote controller 50b is operated in the event of a distress, a start signal is transmitted from the transmitter 52 to the transmitter body 50a. When this activation signal is received by the receiving section 53 provided in the transmitter main body 50a, the power supply 26 of the transmitter main body 50a is activated. The receiving section 53 may be built in the transmitter main body 50a in advance, or may be configured to be attached later by an attachment type, and the transmitter main body 50a and the remote control section 50a may be attached later. The activation signal can be received even if b is several kilometers away. Reference numeral 54 denotes a power source such as a battery.
送信機本体 5 0 a には図 3の送信機 2 0 と同様の G P S受信部 2 1 , 位置演 算部 2 3が設けられており、 電源 2 6が起動されると G P S衛星 2 2からの信 号に基づく送信機 5 0の位置が算出され、 送信部 2 4から周波数 4 0 6 M H z の遭難信号が送信される。 この遭難信号には送信機 5 0の I D情報および位置 情報が含まれており、 救助航空機や救助船舶はこの位置情報に基づいて救助活 動を行う。 一方、 リモコン部 5 0 bからは、 起動信号とは別に前述した 1 2 1 . 5 M H zの遭難信号が発信される。 この 1 2 1 . 5 M H zの遭難信号は 3 0 K m程度 離れた位置でも受信可能なので、 送信機本体 5 0 aが設けられた船舶に向けて 救助に向かう救助航空機 3 1 や救助船 3 2 によ りキャ ッチされることになる。 そのため、 リモコ ン部 5 0 b を携帯している遭難者が海流に流されて船舶から 遠く離れてしまっても、 容易に発見することができる。 また、 送信機 5 0 を船 舶搭載用の送信機本体 5 0 a と携帯用のリモコン部 5 0 b とに分離したので、 電源 2 6の容量を大き くすることが容易に可能となり、 遭難信号の送信をよ り 長時間継続して行う ことができる。 なお、 送信機 5 0 a にも起動スィ ッチを設 けても良い。 The transmitter body 50a is provided with a GPS receiver 21 and a position calculator 23 similar to the transmitter 20 in Fig. 3, and when the power supply 26 is activated, the GPS satellite 22 The position of the transmitter 50 is calculated based on the signal, and the transmitting unit 24 transmits the distress signal of the frequency 406 MHz. The distress signal contains the ID information and the position information of the transmitter 50, and the rescue aircraft and the rescue ship perform rescue activities based on the position information. On the other hand, the remote control unit 50b transmits the above-mentioned distress signal of 121.5 MHz separately from the start signal. Since this 121.5 MHz distress signal can be received at a distance of about 30 Km, rescue aircraft 31 and rescue boat 3 heading for rescue toward a vessel equipped with transmitter 50a 2 will be caught. Therefore, even if the victim carrying the remote control unit 50b is swept away by the ocean current and is far away from the ship, it can be easily found. In addition, since the transmitter 50 is separated into a ship-mounted transmitter body 50a and a portable remote controller 50b, it is easy to increase the capacity of the power supply 26, and Signal transmission can be continued for a longer time. Note that the transmitter 50a may also be provided with an activation switch.
図 1 3は、 図 1 2 に示した送信機 5 0の変形例であり、 各リモコン部 5 0 b の各々にも G P S受信部 2 1 および位置演算部 2 3が設けられている。 リモコ ン部 5 0のスィ ッチ 5 1 をォン操作すると、 上述した起動信号が発信されると ともに、 所定時間間隔で G P S信号に基づく位置演算が行われる。 送信部 5 2 からは、 所定時間間隔でリモコン部 5 0 bの位置情報と I D情報とが送信機本 体 5 0 aに向けて発信される。 送信機本体 5 0 aは、 リモコン部 5 0 bから位 置情報および I D情報を受信すると、 送信機本体 5 0 aの位置情報および I D 情報と と もにリモコン部 5 0 bの位置情報および I D情報を含む遭難信号 ( 4 0 6 M H z ) をコスパス . サ一サッ トシステムの人工衛星 2 7 に向けて送信す る。 なお、 位置演算を所定時間間隔で行うのは電池 5 4の消耗を抑えるためで あり、 例えば、 1時間間隔で位置演算を行われる。  FIG. 13 is a modified example of the transmitter 50 shown in FIG. 12. Each of the remote controllers 50b is also provided with a GPS receiver 21 and a position calculator 23. When the switch 51 of the remote control unit 50 is turned on, the above-described start signal is transmitted, and the position calculation based on the GPS signal is performed at predetermined time intervals. The transmitter 52 transmits the position information and the ID information of the remote controller 50b to the transmitter 50a at predetermined time intervals. Upon receiving the position information and ID information from the remote controller 50b, the transmitter 50a receives the position information and ID of the remote controller 50b together with the position information and ID information of the transmitter 50a. A distress signal (406 MHz) containing information is transmitted to the satellite 27 of the Cospass. The position calculation is performed at predetermined time intervals in order to suppress the consumption of the battery 54. For example, the position calculation is performed at hourly intervals.
ところで、 図 1 3 に示す例では、 各リモコン部 5 0 bに位置演算部 2 3 を設 けて、 G P S信号に基づく各リモコン部 5 0 bの位置演算を各リモコン部 5 0 bで行う よう にした力?、 リモコン部 5 0 bを図 1 4のよ うな構成と しても良い 。 すなわち、 各リモコン部 5 0 bにおいては、 位置演算部 2 3の代わり に水晶 発振器による水晶時計 5 5 を設けて、 リモコン部 5 0 からは受信した G P S 情報と水晶時計 5 5 による受信時刻とが送信機本体 5 0 aに送信される。 そし て、 各リモコン部 5 0 bの位置は、 リモコン部 5 0 bから送信された G P S情 報および時刻に基づいて送信機本体 5 0 aの位置演算部 2 3 によ り演算される 。 その結果、 リモコ ン部 5 0 bの小型化がよ り図れ、 携行性がよ り向上する。 なお、 船舶用の E P I R B ( emergency position indicating radio beacon) や航空機用 の E L T ( emergency locator transmitter) にも上述したようなリモコン部を設ける ことが可能である。 By the way, in the example shown in FIG. 13, the position calculation section 23 is provided in each remote control section 50 b, and the position calculation of each remote control section 50 b based on the GPS signal is performed in each remote control section 50 b. The power you made? Alternatively, the remote controller 50b may be configured as shown in FIG. That is, in each remote control unit 50 b, a crystal clock 55 using a crystal oscillator is provided instead of the position calculation unit 23, and the GPS information received from the remote control unit 50 and the reception time by the crystal clock 55 are provided. Transmitted to the transmitter body 50a. The position of each remote controller 50b is calculated by the position calculator 23 of the transmitter body 50a based on the GPS information and the time transmitted from the remote controller 50b. . As a result, the size of the remote control section 50b can be further reduced, and the portability can be further improved. The above-mentioned remote control unit can also be installed in the emergency position indicating radio beacon (EPIRB) for ships and the emergency locator transmitter (ELT) for aircraft.
上述した実施の形態では、 海難救助を例に説明したが、 本発明の緊急信号発 信用送信機 2 0や遭難早期発見システムは、 海難救助に限らず陸上における救 助、 例えば、 登山者やハイキング時の遭難救助、 釣り人等の川での水難事故、 事故情報の伝達が難しい僻地における交通事故等にも適用することができる。 また、 コスパス · サーサッ ト システムの衛星に代えて、 他の人工衛星によ り遭 難信号を地上局に中継するよ うにしてもよ く、 位置情報演算に際しても、 N A V S T A R / G P S衛星以外の民間が運営する衛星測位システム用衛星を利用 しても良い。  In the above-described embodiment, the case of salvage rescue has been described as an example. However, the emergency signal transmission / reception transmitter 20 and the early distress detection system of the present invention are not limited to salvage rescue, but also rescue on land, for example, It can also be applied to rescue and rescue at the time, water accidents in rivers such as anglers, and traffic accidents in remote areas where it is difficult to transmit accident information. In addition, the distress signal may be relayed to the ground station by other artificial satellites instead of the satellite of the Cospas-Sasat system. You may use satellites for satellite positioning systems that are operated by.

Claims

請求の範囲 The scope of the claims
1 .  1.
緊急信号発信用送信機は、  The emergency signal transmitter is
衛星測位システム用衛星からの位置情報信号を受信する受信部と、 前記受信部で受信された位置情報信号に基づいて送信機位置を算出する位置 演算部と、  A receiving unit that receives a position information signal from a satellite for a satellite positioning system; a position calculating unit that calculates a transmitter position based on the position information signal received by the receiving unit;
所定の遭難情報と前記位置演算部で算出された送信機位置情報とを含む遭難 信号を送信する遭難信号送信部と、  An distress signal transmission unit that transmits an distress signal including predetermined distress information and transmitter position information calculated by the position calculation unit;
前記遭難信号の送信を指示するための手動操作部とを備える。  A manual operation unit for instructing transmission of the distress signal.
2 .  2.
緊急信号発信用送信機は、  The emergency signal transmitter is
衛星測位システム用衛星からの位置情報信号を受信する受信部, 前記受信部 で受信された信号に基づいて送信機位置を算出する位置演算部、 および所定の 遭難情報と前記位置演算部で算出された送信機位置情報とを含む遭難信号を送 信する遭難信号送信部を具備する本体部と、  A receiving unit that receives a position information signal from a satellite for a satellite positioning system, a position calculating unit that calculates a transmitter position based on the signal received by the receiving unit, and a predetermined distress information that is calculated by the position calculating unit A distress signal transmitting unit for transmitting an distress signal including the transmitter position information;
前記本体部とは別体に設けられ、 前記遭難信号の送信を指示するための手動 操作部を有するリモコン部とからなる。  A remote control unit provided separately from the main unit and having a manual operation unit for instructing transmission of the distress signal.
3 .  3.
請求項 1 に記載の緊急信号発信用送信機において、  The transmitter for transmitting an emergency signal according to claim 1,
前記受信部、 前記位置演算部、 前記送信部および電池からなる電子部材を基 板上に搭載し、  An electronic member including the receiving unit, the position calculating unit, the transmitting unit, and a battery is mounted on a substrate,
一端が前記基板に接続されたアース線と、  An earth wire having one end connected to the substrate,
前記基板と前記アース線とを内部に封入する発泡部材と、  A foam member enclosing the substrate and the ground wire therein,
前記発泡部材の周囲を覆う と と もに前記アース線の他端が接続される金属導 電層と、  A metal conductive layer that covers the periphery of the foam member and is connected to the other end of the ground wire;
前記金属導電層を覆う絶縁層とを備える。  An insulating layer covering the metal conductive layer.
4 .  Four .
請求項 1 〜請求項 3のいずれかに記載の緊急信号発信用送信機において、 前記遭難信号は、 前記遭難情報および前記送信機位置情報に加えて、 送信機 固有の I D情報を含む。 The transmitter for transmitting an emergency signal according to any one of claims 1 to 3, wherein the distress signal includes a transmitter, in addition to the distress information and the transmitter position information. Contains unique ID information.
5 .  Five .
請求項 1 〜請求項 4のいずれかに記載の緊急信号発信用送信機において、 前記送信部は、 前記位置演算部で算出された送信機位置が遭難信号送信許可 領域である場合には前記手動操作部の操作によ り遭難信号を送信し、 前記送信 機位置が遭難信号送信禁止領域である場合には前記手動操作部が操作されても 前記遭難信号の送信を行わない。  The transmitter for transmitting an emergency signal according to any one of claims 1 to 4, wherein the transmitting unit is configured to perform the manual operation when the transmitter position calculated by the position calculation unit is a distress signal transmission permission area. The distress signal is transmitted by the operation of the operation unit, and when the transmitter position is in the distress signal transmission prohibition area, the distress signal is not transmitted even if the manual operation unit is operated.
6 .  6.
請求項 1 〜請求項 5のいずれかに記載の緊急信号発信用送信機において、 前記遭難信号は、 G M D S S ( Global Maritime Distress snd Safety System ) の遭 難信号規則に基づく。  The transmitter for transmitting an emergency signal according to any one of claims 1 to 5, wherein the distress signal is based on a distress signal rule of a Global Maritime Distress Safety System (GMDSS).
7 .  7.
請求項 1 〜請求項 6のいずれかに記載の緊急信号発信用送信機を利用した遭 難早期発見システムであって、  An early distress detection system using the transmitter for transmitting an emergency signal according to any one of claims 1 to 6,
前記送信機から送信された前記遭難信号を人工衛星を利用して地上で受信し 、 前記受信された遭難信号に基づいて前記緊急信号発信用送信機の位置とそれ を携行する遭難者を特定し、 遭難情報を遭難者が所属する組織へ通報する早期 遭難早期発見システム。  The distress signal transmitted from the transmitter is received on the ground using an artificial satellite, and based on the received distress signal, the position of the emergency signal transmission transmitter and the distress who carries it are specified. An early distress early detection system that reports distress information to the organization to which the distress belongs.
PCT/JP2000/006256 2000-02-09 2000-09-13 Urgent signal transmitting small-sized transmitter and early distress locating system WO2001059941A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2000273117A AU2000273117A1 (en) 2000-02-09 2000-09-13 Urgent signal transmitting small-sized transmitter and early distress locating system

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2000-71277 2000-02-09
JP2000071277A JP2004347315A (en) 2000-02-09 2000-02-09 Accident early detection system
JP2000104071A JP2004344176A (en) 2000-02-17 2000-02-17 Design of equipment and system for mounting and carrying transmitter for position search by distress signal of victim on human body and using instrument such as system for finding victim in early stage
JP2000-104071 2000-02-17

Publications (1)

Publication Number Publication Date
WO2001059941A1 true WO2001059941A1 (en) 2001-08-16

Family

ID=26587492

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/006256 WO2001059941A1 (en) 2000-02-09 2000-09-13 Urgent signal transmitting small-sized transmitter and early distress locating system

Country Status (2)

Country Link
AU (1) AU2000273117A1 (en)
WO (1) WO2001059941A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102109595A (en) * 2009-12-28 2011-06-29 Gmtc株式会社 Search and rescue system and search and rescue method using personal positioning terminal
CN102340736A (en) * 2010-07-17 2012-02-01 吴李海 Automatic identification system (AIS) emergency position indicating radio beacon
JP2016094181A (en) * 2014-11-11 2016-05-26 ▲ギョク▼翔 黄 Life-saving bracelet
WO2018000748A1 (en) * 2016-06-28 2018-01-04 深圳大学 Maritime navigation rescue system based on beidou satellite
WO2022134389A1 (en) * 2020-12-25 2022-06-30 迟丽艳 Marine vessel emergency navigation position indicating search and rescue and environment monitoring anti-pollution integrated smart platform

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05203720A (en) * 1991-03-08 1993-08-10 Mitsubishi Electric Corp Distress rescue system
JPH07306256A (en) * 1994-05-13 1995-11-21 Nec Corp Radio beacon for designating emergency position using satellite
JPH0886854A (en) * 1994-09-20 1996-04-02 Matsushita Electric Ind Co Ltd Transmitter equipped with gps receiver
JPH0935190A (en) * 1995-07-25 1997-02-07 Denso Corp Terminal equipment loaded on vehicle
JPH1032499A (en) * 1996-07-16 1998-02-03 Nippon Telegr & Teleph Corp <Ntt> Micro light-weight electronic unit
JPH10218095A (en) * 1997-02-06 1998-08-18 Enii:Kk Ship operation control device
JPH10253736A (en) * 1997-03-06 1998-09-25 Toshiba Corp Mobile position detecting system and mobile position detector
US5852401A (en) * 1996-06-27 1998-12-22 Casio Computer Co., Ltd. Distress message signal sending device
US5914675A (en) * 1996-05-23 1999-06-22 Sun Microsystems, Inc. Emergency locator device transmitting location data by wireless telephone communications
JPH11263292A (en) * 1998-03-17 1999-09-28 Towa Denki Seisakusho:Kk Distress rescue support system

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05203720A (en) * 1991-03-08 1993-08-10 Mitsubishi Electric Corp Distress rescue system
JPH07306256A (en) * 1994-05-13 1995-11-21 Nec Corp Radio beacon for designating emergency position using satellite
JPH0886854A (en) * 1994-09-20 1996-04-02 Matsushita Electric Ind Co Ltd Transmitter equipped with gps receiver
JPH0935190A (en) * 1995-07-25 1997-02-07 Denso Corp Terminal equipment loaded on vehicle
US5914675A (en) * 1996-05-23 1999-06-22 Sun Microsystems, Inc. Emergency locator device transmitting location data by wireless telephone communications
US5852401A (en) * 1996-06-27 1998-12-22 Casio Computer Co., Ltd. Distress message signal sending device
JPH1032499A (en) * 1996-07-16 1998-02-03 Nippon Telegr & Teleph Corp <Ntt> Micro light-weight electronic unit
JPH10218095A (en) * 1997-02-06 1998-08-18 Enii:Kk Ship operation control device
JPH10253736A (en) * 1997-03-06 1998-09-25 Toshiba Corp Mobile position detecting system and mobile position detector
JPH11263292A (en) * 1998-03-17 1999-09-28 Towa Denki Seisakusho:Kk Distress rescue support system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102109595A (en) * 2009-12-28 2011-06-29 Gmtc株式会社 Search and rescue system and search and rescue method using personal positioning terminal
CN102340736A (en) * 2010-07-17 2012-02-01 吴李海 Automatic identification system (AIS) emergency position indicating radio beacon
JP2016094181A (en) * 2014-11-11 2016-05-26 ▲ギョク▼翔 黄 Life-saving bracelet
WO2018000748A1 (en) * 2016-06-28 2018-01-04 深圳大学 Maritime navigation rescue system based on beidou satellite
WO2022134389A1 (en) * 2020-12-25 2022-06-30 迟丽艳 Marine vessel emergency navigation position indicating search and rescue and environment monitoring anti-pollution integrated smart platform

Also Published As

Publication number Publication date
AU2000273117A1 (en) 2001-08-20

Similar Documents

Publication Publication Date Title
EP0816862B1 (en) Distress message signal sending device
US6222484B1 (en) Personal emergency location system
CN106056976B (en) Ship positioning navigation and safe early warning alarm system
US7642919B2 (en) Signalling and localization device for an individual in the sea and method of use thereof
US7053822B2 (en) Wearable satellite tracker
US6545606B2 (en) Device and method for alerting to the need to recover something, identifying it, and determining its location for purposes of recovery
US7855654B2 (en) Location recording system
US8674853B2 (en) System and method for automatic distress at sea
US6439941B2 (en) Automated fail-safe sea rescue flotation system
US7176832B2 (en) Safety system at sea for accurately locating a shipwrecked navigator
US20090121931A1 (en) Wrist Worn Communication Device coupled with Antenna Extendable by the Arm
WO2010023639A1 (en) Dual mode personal locator beacon
CN102971211A (en) Passive safety system and personal equipment on vessels for man-overboard situations
CN102109595A (en) Search and rescue system and search and rescue method using personal positioning terminal
CN101723064A (en) GPS maritime life-saving system
CN101723067A (en) Personal GPS sea lifesaving equipment
CN204556833U (en) A kind of man overboard based on the Big Dipper/GPS shows a terminal
US20040121782A1 (en) Personal flotation device transceiver tracking system
CN102956089A (en) Search and rescue terminal and overwater search and rescue method based on search and rescue terminal
RU112445U1 (en) EMERGENCY RADIO BEACON
WO2001059941A1 (en) Urgent signal transmitting small-sized transmitter and early distress locating system
KR100375442B1 (en) Lifesaving Low Power Radio Alarm System and Method
JPH11263292A (en) Distress rescue support system
WO2005064559A1 (en) Tracking apparatus
US20020158795A1 (en) Electronic distress call and position finding system for rescueing distressed people

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP