WO2001055672A1 - Fiber optic cable and method of measuring distortion - Google Patents

Fiber optic cable and method of measuring distortion Download PDF

Info

Publication number
WO2001055672A1
WO2001055672A1 PCT/JP2001/000464 JP0100464W WO0155672A1 WO 2001055672 A1 WO2001055672 A1 WO 2001055672A1 JP 0100464 W JP0100464 W JP 0100464W WO 0155672 A1 WO0155672 A1 WO 0155672A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical fiber
wavelength
fiber
light
grating
Prior art date
Application number
PCT/JP2001/000464
Other languages
French (fr)
Japanese (ja)
Inventor
Takeshi Genji
Kazuo Imamura
Original Assignee
Mitsubishi Cable Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Cable Industries, Ltd. filed Critical Mitsubishi Cable Industries, Ltd.
Publication of WO2001055672A1 publication Critical patent/WO2001055672A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/24Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet
    • G01L1/242Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet the material being an optical fibre
    • G01L1/246Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet the material being an optical fibre using integrated gratings, e.g. Bragg gratings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
    • G01D5/35383Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using multiple sensor devices using multiplexing techniques

Definitions

  • the present invention relates to an optical fiber cable and a strain measurement method.
  • the present invention relates to an optical fiber cable suitable for high-resolution strain measurement and a strain measuring method using the optical fiber cable.
  • strain can be measured with high accuracy, but when the strain is unevenly distributed along the longitudinal direction of the optical fiber, the value of the strain averaged along the longitudinal direction is detected. I could only do it. Since the strength degradation of an optical fiber is determined by the maximum strain, even if the average value of the strain is small, if a large maximum strain occurs locally, the degradation of the optical fiber progresses greatly at that part Will be. For this reason, if only the strain value averaged in the longitudinal direction is measured, the reliability of the optical fiber cannot be sufficiently guaranteed.
  • This method combines a technique for analyzing nonlinear interactions between light waves with sound waves and frequency conversion and a time-domain measurement technique similar to OTDR (optical time domain reflectometry).
  • the distance resolution (time resolution) is limited to about several meters depending on the light pulse width.
  • the distance resolution is limited to about several meters depending on the light pulse width.
  • optical fiber cores housed in optical fiber cables are usually helically twisted at a pitch of about 10 cm. For this reason, the above-mentioned conventional measurement method cannot measure the maximum strain occurring in the optical fiber with high accuracy.
  • the above method has problems that the strain measurement resolution is low (about 0.015% or more) and the measurement time is relatively long (5 minutes or more). Further, the above method has a problem that a special and expensive dedicated measuring instrument is required.
  • the present invention has been made in view of the above circumstances, and a main object of the present invention is to provide an optical fiber cable capable of measuring strain with high distance resolution and a strain measuring method.
  • An optical fiber cable is an optical fiber cable including a plurality of optical fiber cores, wherein at least one of the plurality of optical fiber cores has a plurality of types having different reflection characteristics or transmission characteristics.
  • the plurality of types of fiber gratings reflect at least a first fiber grating that reflects or transmits the first wavelength light, and reflects a second wavelength light that is different from the first wavelength.
  • the optical fiber core having the plurality of types of fiber gratings, the measurement light including at least the first wavelength light and the second wavelength light, It propagates with communication light that can communicate without being affected by the measurement light.
  • At least two of the plurality of optical fiber cores are the optical fiber cores having the plurality of types of fiber bug ratings, and each of the optical fiber cores having the plurality of types of fiber gratings is The first fiber group containing The rating and the second fiber grating are preferably arranged symmetrically with respect to a center axis of the optical fiber cable having the plurality of optical fiber cores.
  • a distortion measuring method includes: a step of injecting light of a light source including the light of the first wavelength and the light of the second wavelength into the optical fiber cable; Detecting a second wavelength shift from the first wavelength shift and the second fiber grating, thereby detecting a first amount of distortion at the first fiber grating location and the second fiber shift; Obtaining a second distortion amount at the position of the grating.
  • Another distortion measuring method includes: a step of injecting light of a light source including the light of the first wavelength and the light of the second wavelength into the optical fiber cable; and Determining the amount of distortion at the position of the pair of fiber gratings by taking the difference between the wavelength shifts of the pair of fiber gratings symmetrically arranged with respect to the axis.
  • the optical fiber cable of the present invention has a plurality of types of fiber gratings, and each of the plurality of types of fiber gratings can be arranged at a short distance, so that a strain measurement having a higher distance resolution than the conventional technology can be performed. Possible fiber optic cables and strain measurement methods can be provided.
  • all the optical fibers mounted on the optical fiber can be used for communication.
  • the reflection wavelength of the grating is set outside the communication wavelength band, so that the measurement light and the communication light are transmitted to the same optical fiber without affecting the communication light. May be transmitted. In this way, the measurement can be performed while the communication using the communication light is in a live state, and all the optical fiber cores mounted on the optical fiber can be used for communication.
  • the fiber gratings compare the light reflected or transmitted, and the It is possible to detect the shift amount due to the bending of the light with high sensitivity.
  • FIG. 1A is a cross-sectional view schematically illustrating an embodiment of an optical fiber cable according to the present invention
  • FIG. 1B is a cross-sectional view schematically illustrating a tape core housed in the optical fiber cable.
  • FIG. 2 is a diagram schematically showing the measurement core 20 on which the fiber grating 21 is formed.
  • FIG. 3 is a diagram for explaining a method of manufacturing the measurement core 20.
  • FIG. 4 is a view for explaining a method of manufacturing the measurement core 20.
  • FIG. 5 is a diagram for explaining a method of manufacturing the measurement core 20.
  • Figure 6 (a) shows the measurement core 2 with multiple fiber gratings 21 formed.
  • FIG. 6 (b) is a graph schematically showing the reflection characteristics of the measuring core 20.
  • FIG. 7 is a graph showing the reflection beak wavelength (reflection characteristics) of each grating 21 at the time of making the grating 21 and after releasing the tension.
  • FIG. 8 is a graph showing the relationship between the reflection wavelength at irradiation and the reflection wavelength after tension release.
  • FIG. 9 is a configuration diagram for explaining an embodiment of the distortion amount measuring method according to the present invention.
  • FIG. 10 is a configuration diagram in which the optical fiber cable 100 is connected to the optical measurement system 40.
  • FIG. 11 is a graph showing the relationship between the reflected wavelength shift amount [nm] and the distortion amount [%] for each position [mm] of the optical fiber cable 100.
  • FIG. 12 (a) is a cross-sectional view schematically showing an SZ type optical fiber cable 110
  • FIG. 12 (b) is a schematic view showing a tape core 50 stored in the optical fiber cable 110
  • FIG. 12 (c) is a diagram for explaining a bent state of the optical fiber cable 110.
  • FIG. 13 is a graph showing the relationship between the reflection wavelength shift amount [nm] and the distortion amount [%] for each position [mm] of the optical fiber cable 110.
  • Fig. 14 illustrates the configuration in which the measurement core 20 is used as a communication optical fiber core.
  • FIG. 15 (a) is a cross-sectional view schematically showing an optical fiber cable 120 equipped with a pair of measurement cores in which fiber gratings 21 having the same reflection characteristics are arranged point-symmetrically.
  • FIG. 15 (b) is a diagram schematically showing a pair of measurement core wires 20a-20a '.
  • FIG. 16 is a cross-sectional view schematically showing an optical fiber cable 130 on which two pairs of measurement core wires are mounted.
  • FIG. 17 (a) is a schematic diagram showing an example in which the optical fiber cable 70 is embedded in a road
  • FIG. 17 (b) is a diagram showing an example of embedding when performing two-dimensional measurement.
  • FIG. 1A schematically shows a cross section of an optical fiber cable 100 according to the present embodiment
  • FIG. 1B shows a tape-shaped optical fiber core included in the optical fiber cable 100.
  • (Tape cord) A cross section of 50 is schematically shown.
  • the optical fiber cable 100 is an optical fiber cable of a tape slot type, and includes a slot rod 60 having a slot (groove) 55 on its outer periphery and a tape housed in the slot 55 in a superimposed manner. It has a core wire 50 and a sheath (for example, a PE sheath) 64 covering the slot rod 60. At the center of the slot rod 60, a tension member (tensile strength member) 62 for securing the strength of the optical fiber cable is disposed.
  • an optical fiber cable of a tape slot type is used, but an optical fiber cable of a strand structure or a tube structure may be used.
  • the tape core 50 accommodated in the optical fiber cable 100 has a plurality of optical fiber cores.
  • a 4-core tape core is used as the tape core 50.
  • the tape core 50 is an optical fiber core for strain measurement (hereinafter referred to as “measurement core”). Line ". ) And an optical fiber core 30, and these optical fiber cores are covered with a tape coating 52.
  • a plurality of types of fiber gratings having different reflection characteristics (or transmission characteristics) are formed on the measurement core 20.
  • FIG. 2 schematically shows an optical fiber portion of the measuring core 20.
  • the optical fiber portion is composed of a core 22 on which a fiber grating 21 is written and a periphery of the core 22. And a clad 23 formed in the center.
  • the grating 21 written (formed) on the core 22 of the measuring core 20 changes the refractive index of the core 2 along the axial direction with a period ⁇ (for example, 0.3 to 0.6 zm). Having a short-period refractive index modulation structure.
  • Light having a Bragg wavelength defined by the period ⁇ and the average refractive index of the core 21 is selectively reflected by the grating 21.
  • the Bragg wavelength may be referred to as “reflection peak wavelength”.
  • the period ⁇ in the portion where the distortion occurs is in an unstrained state. Will change (shift) from the value of.
  • the magnitude of this change (shift amount) can be optically observed as the shift amount at the Bragg wavelength (reflection peak wavelength).
  • a plurality of types of fiber gratings 21 having different reflection characteristics are formed at positions separated from each other along the axial direction. Therefore, by observing the shift amount in each fiber grating 21, it is possible to monitor the amount of distortion at the position of each fiber grating 21. In other words, by detecting the shift amount of the reflection peak wavelength generated due to the change in the physical state of each fiber grating, it becomes possible to sense the stress, etc., occurring at multiple locations on a long fiber. .
  • the measurement core wire 20 covers the core 22 on which the grating 21 is written, the cladding 23 formed around the core 22, and the outer surface of the cladding 23. And a coating layer 24.
  • the core 22 used is doped with Ge having a concentration similar to that of Ge contained in the core of the normal specification optical fiber.
  • the normal specification optical fiber is an optical fiber core connected to the measuring core 20 (for example, a general optical communication core accommodated in an optical fiber cable for communication use). That is.
  • the core of such an optical fiber core is usually doped with Ge so that the relative refractive index difference becomes about 0.9%.
  • the core 22 of the measurement core wire 20 shown in the figure includes, in addition to Ge, Sn, Sn and Al, or Sn, A in addition to Ge in order to constantly increase the photoinduced refractive index change. It is preferable that the dopants 1 and B are doped in the core 22.
  • the concentration is not less than 1 ⁇ 0,000 ppm, preferably the concentration. It is only necessary to co-dope Sn with a concentration of 1000 to 150 ppm, or Sn with such a concentration and A1 with a concentration of 1000 ppm or less.
  • Such de one-flop may be performed by various known methods, for example, when carried out by immersion, the compounds of the G e and S n (the case of S n, e.g., S n C l 2 '2 H2O ) Can be mixed with methyl alcohol and immersed in the solution.
  • the coating layer 24 is formed by a single coating method following the drawing process of the optical fiber consisting of the core 22 and the cladding 23 so as to have a film thickness of at least about 30 zm, for example. It is.
  • the material (covering agent) for forming the coating layer 24 and the thickness of the coating layer 12 may be appropriately determined according to the required conditions. For example, the elastic modulus of the optical fiber (Young's modulus E), the coefficient of thermal expansion (linear thermal expansion coefficient a), the temperature coefficient of the refractive index (thermo-optic coefficient), and the modulus of elasticity of the material of the coating layer (Yang's modulus) It is preferable to determine based on the thermal expansion coefficient (linear thermal expansion coefficient) and the like. Table 1 below shows the parameters of the measurement core wire 20 used in the present embodiment.
  • both the property of curing with ultraviolet light of a certain wavelength band (first ultraviolet ray) and the property of transmitting ultraviolet light of another wavelength band (second ultraviolet ray) are used. Is used. In the specification of the present application, such a resin is sometimes referred to as an “ultraviolet transmitting type ultraviolet curable resin”.
  • the ultraviolet-transmissive ultraviolet-curing resin transmits at least ultraviolet rays in a specific wavelength band (for example, a wavelength band of 240 nm to 270 nm) to be applied to the core for writing the grating 21 (preferably, On the other hand, this ultraviolet ray is transmitted with little absorption. On the other hand, the ultraviolet ray having a wavelength shorter or longer than the specific wavelength band is absorbed to cause a curing reaction.
  • a resin that is UV-transmissive in a specific wavelength band but is UV-curable in a shorter or longer wavelength range than the above-mentioned specific wavelength band. Will be used to form the coating layer 24.
  • the curing reaction is started and accelerated by receiving ultraviolet rays in a wavelength range shorter than 240 nm or a wavelength range longer than 270 nm, for example, for urethane acrylate or epoxy acrylate.
  • a resin containing a suitable photoinitiator (photoinitiator) is used as the “ultraviolet-transmitting ultraviolet-curing resin”.
  • the coating layer is irradiated with first ultraviolet rays to cure the coating layer 24.
  • the grating 21 is written to the core 22 by irradiating the second ultraviolet ray from outside the optical fiber core wire, that is, outside the coating layer 24.
  • the writing of the grating 21 may be performed by using various well-known methods. For example, when the writing is performed by the phase mask method, a grid-like shape is placed immediately before the optical fiber core wire to be the measurement core wire 20. A phase mask 25 is disposed, and a coherent ultraviolet laser beam having a wavelength of 2 66 nm, which is a quadruple wavelength (4 ⁇ ) from an Nd-YAG laser source, is applied to the phase mask 25 by a cylindrical lens. Irradiation may be performed in a state where light is collected by the system 26.
  • the ultraviolet laser light passes through the phase mask 25 and the coating layer 24, and the refractive index of the grating pitch portion corresponding to the lattice pitch of the phase mask 25 with respect to the core 22 is increased, so that the Bragg grating is increased. 2 1 will be written.
  • the wavelength of the second ultraviolet ray is, for example, 150 to 400 nm, and the irradiation energy is 0.1 to: L 0 kJ / cm 2 .
  • a plurality of fiber gratings 21 having the structure shown in FIG. 2 or FIG. 3 are formed in one core 22 at intervals along the axial direction.
  • 20 or more short-period fiber gratings with a length of 5 to 20 mm are formed at 50 mm intervals.
  • the reflectance of each fiber grating is set to about 4 to 5% or more, and the center wavelength of the reflected light is shifted slightly (for example, at 0.5 nm intervals).
  • the tension applied to one fiber core is gradually increased. The writing of the gradation may be performed while changing. Due to the difference in the tension at the time of writing the grating, the grating interval of each grating changes when the tension is released even if the grating interval at the time of writing is constant.
  • a sweep 21 is applied through the phase mask 25 to perform the grating 21 was written. Sweep irradiation was performed by moving the reflection mirror 27.
  • a high-strength optical fiber core wire (measurement core wire 20) whose mechanical strength is not reduced is manufactured. can do.
  • the broadband light source 31 and the spectroscope 32 are connected to the optical fiber core (irradiated fiber) 20 on which the grating 21 is to be written via the force bra 33, and the reflected light waveform is observed while observing the reflected light waveform.
  • Grating 21 1 was written.
  • a superluminescence diode light source (SLD light source) was used.
  • An optical isolator 34 was arranged between the light source 31 and the power bra 33.
  • the spectroscope 32 for example, a spectroscope in the infrared wavelength region having a resolution of 0.1 nm or less can be used.
  • the tension of the irradiated fiber 20 is applied by using a fixed drum 35 and a rotating drum (tension applying drum) 36, and the amount of applied tension is determined by the rotation angle of the rotating drum 36.
  • Set by controlling More specifically, the fiber 20 to be irradiated is wound around and fixed to those of the fixed drum 35 and the rotating drum 36, and then a stepping motor (not shown) connected to the rotating drum 36 is driven. Then, the rotating drum 36 was rotated, and the set tension was applied to the irradiated fiber 20.
  • the tension is set in 20 steps, and gratings 21 having different reflection wavelengths are continuously formed on the same irradiated fiber 20 with the same mask at intervals of 50 mm.
  • FIG. 6 (a) schematically shows the fabricated measurement core 20 and FIG. 6 (b) shows the reflection characteristics of the measurement core 20.
  • FIG. Twenty gratings 21 having different reflection wavelengths are formed on the measurement core 20 at intervals of about 0.82 nm.
  • a plurality of types of gratings are arranged in one irradiated fiber 20 at a close distance interval of 50 mm between the gratings 21.
  • the reflection characteristics of each grating 21 are well controlled.
  • Figure 7 shows the reflection peak wavelength (reflection characteristics) of each grating 21 at the time of making the grating 21 and after releasing the tension. From Fig. 7, it can be seen that the reflection peak wavelength after releasing the tension can be linearly controlled by the amount of rotation of the rotating drum (tension applying drum) 36. That is, depending on the amount of elongation of the irradiated fiber 20, —The reflection wavelength of Ting 2 1 can be controlled linearly. Also, from the change in the reflection wavelength at the time of the preparation of the grating 21, it can be confirmed that the refractive index of the core portion is lowered due to the high elasticity effect accompanying the application of the tension. In the present embodiment, it was possible to shorten the wavelength by about 1 nm by giving the irradiated fiber a maximum of about 1.4%.
  • FIG. 8 shows the relationship between the reflection wavelength at the time of irradiation and the reflection wavelength after the tension is released, which is an index of the amount of tension applied to the fiber 20 to be irradiated.
  • the wavelength can be set with high accuracy by controlling the amount of tension applied to the irradiation target fiber 20.
  • the measuring core wire 20 included in the optical fiber cable 10 ° has n (n is an integer of 2 or more) fiber gratings FBG 1 to FBGn.
  • the measuring core 20 is coupled to the broadband light source 31 and the spectroscope 32 via the force bra 33.
  • the broadband light source 31, the spectroscope 32, and the power blur 33 constitute an optical measurement system 40.
  • a super luminescence diode light source can be used as the broadband light source 31 as described above, and the spectroscope 32 has, for example, an infrared light having a resolution of 0.1 nm or less.
  • a spectrometer in the wavelength region can be used.
  • the light source is not limited to the broadband light source, and may be any light source including at least the wavelength of the measurement light.
  • the broadband light (measurement light) emitted from the broadband light source 31 enters the measurement core 20 via the force bra 33.
  • This broadband light first enters the fiber grating FBG1.
  • light having a reflection peak wavelength ⁇ 1 determined by the period ⁇ 1 of the fiber grating FBG 1 is selectively reflected to the left.
  • the reflected light having the wavelength of 1 enters the spectroscope 32 via the force bra 33.
  • Above the optical fiber core 1 a transmitted light spectrum is schematically shown, and below a measurement core 20, a reflected light spectrum is schematically shown.
  • the band component not reflected by the fiber grating FBG 1 is incident on the next fiber grating FBG 2.
  • the second fiber grating FBG 2 The light of the reflection peak wavelength 2 determined by the period ⁇ 2 is selectively reflected to the left, and the reflected light of the wavelength 2 enters the spectroscope 32 via the force bra 3 3.
  • the fiber gratings FBG1 to FBGn have fiber reflection gratings such that the reflection peak wavelengths 1 to n increase as the distance from the entrance end of the measurement core 20 increases. 1 to FBG n have been produced. ⁇ That is, the relationship of 1 1 2 1 ”“ n (1) ⁇ n has been established.
  • the fiber grating FBG 3 having a reflection peak wavelength ⁇ 3
  • the stress causes a strain in the fiber
  • the reflection peak wavelength of the FBG 3 increases from ⁇ 3.
  • the amount of strain at the position of FBG 3 can be monitored, and the stress applied to the position of FBG 3 can be measured.
  • ⁇ About FBG 3 As described above, the distortion and stress at each position can be measured for FBG1 to FBG ⁇ in the same manner. Therefore, to increase the distance resolution, it is sufficient to reduce the distance d between the fiber gratings.
  • the number of fiber gratings 21 (the number of set wavelengths) formed on the measurement core wire 20 is increased. do it. Note that the relationship between the wavelength shift amount and the strain (or stress) may be measured and recorded in advance.
  • FIG. 10 schematically shows a configuration in which the measurement core wire 20 of the optical fiber cable 100 shown in FIG. 1 is connected to the optical measurement system 40, and the optical fiber cable 100 is bent. It is bent at radius R.
  • the outer diameter of the optical fiber cable 100 used in the present embodiment is 13 mm, and the slot cycle is 500 mm.
  • the four-core cable 50 including the measuring core 20 is housed in the slot 55 so that it is the outermost layer in the slot 55 of the optical fiber cable 100. are doing.
  • optical fiber core 30 for the core 30 For the optical fiber except the measurement core 20 inside the tape core 50, use the commonly used communication optical fiber core 30 for the core 30, and use the four lower layers of the tape core 50 Similarly, the optical fiber core 30 for communication which is usually used is also used for the optical fiber core included in the tape core 51.
  • the optical fiber cable 100 used was a Z type.
  • Fig. 11 shows the reflection wavelength shift amount [nm] and distortion (amount) [%] for each position [mm] of the optical fiber cable 100 in the configuration shown in Fig. 10.
  • You. Measurements were performed for cable bending radii R of 38 cm, 25 cm, and 17 cm. Based on the results of an experiment conducted separately, a coefficient of 1.34 [nm / N] (1.83 [nm /%]) between the tension applied to the fiber grating and the amount of change in the reflected wavelength was determined. The coefficient was used to convert the reflected wavelength shift amount into distortion (amount).
  • the repetition of the strain in the tensile direction and the strain in the compressive direction was observed at the slot period, and the uneven distribution of the strain generated according to the storage shape of the optical fiber could be observed.
  • the amount of distortion in both directions could be detected at multiple points (distance resolution: 50 mm) with a measurement accuracy of about 0.002%.
  • FIG. 12 (a) schematically shows a cross section of the SZ type optical fiber cable 110
  • FIG. 12 (b) shows a tape core 50 stored in the optical fiber cable 110.
  • the tape core 50 is the same as the four-core tape shown in FIG. 1 and includes a measurement core 20.
  • the slot diameter of the slot rod 61 of the optical fiber cable 110 is 10 mm
  • the SZ pitch is 320 mm.
  • the tape core 50 is accommodated in one of the five-groove slots having a groove angle amplitude 6> 270 degrees so that the tape core 50 is located on the outermost layer.
  • a tension member 62 is disposed at the center of the slot rod 61.
  • the optical fiber cable 110 was bent at a cable bending radius R17.5 cm, and the reflection waveform was measured.
  • the bending was performed in three directions, inward bending, outward bending, and intermediate bending, based on the line 61c.
  • Figure 13 shows the measurement results of the reflected light waveform.
  • the axial distortion is measured from the shift amount of the reflected light peak wavelength.
  • the amount of bending of the core wire can also be obtained from the shift amount of the full width at half maximum of the reflected light. (However, in this case, it is necessary to form a fiber grating with high reflectivity. If the relationship between the reflection peak of the measurement core wire 20 and the temperature is measured and recorded, the temperature can be corrected.
  • the core is irradiated with ultraviolet rays so as to pass through the resin layer without peeling the resin layer, thereby writing the grating.
  • the optical fiber core can exhibit high mechanical strength even after writing the grating.
  • a large strain can be applied to the optical fiber at the time of fabrication, and a large strain applied to the optical fiber can be measured.
  • the applied stress at the time of fabricating the fiber grating can be set widely, it is possible to widen the wavelength setting range.
  • the fiber grating having the secured mechanical strength it is possible to easily realize multi-core tape or optical cable in a conventional automatic manufacturing apparatus for optical communication cables. If the method of writing the grating with the resin layer removed is adopted, the mechanical strength of the optical fiber core will be significantly reduced, and the fiber core may be broken by about 1% axial strain. . On the other hand, according to the optical fiber core manufactured by the method of the present embodiment, since the mechanical strength is 5 to 6 times that of the optical fiber, stable measurement can be performed up to 5% strain. is there.
  • the optical fiber cable according to the present embodiment has a measurement core wire 20 having a plurality of types of fiber gratings 21 having different reflection characteristics. Since a plurality of types of fiber gratings 21 can be arranged at short distance intervals, it is possible to provide an optical fiber cable capable of measuring strain with high distance resolution. Therefore, it is possible to measure the local maximum strain of the optical fiber, which cannot be measured by the conventional technique. In addition, compared with the conventional technology, there is an advantage that the distortion amount can be measured with high accuracy (for example, about 0.002%). C Furthermore, the distortion amount at each position (or Stress) can be measured in real time by wavelength multiplexing, which is more suitable than the conventional technology that required a relatively long measurement time (5 minutes or more).
  • the optical fiber cable of the present embodiment is special or expensive.
  • distortion measurement can be performed easily without using a dedicated measuring instrument.
  • the communication light is propagated through the measuring core 20 and the measuring core 20 is used.
  • a power bra eg, a WDM power bra
  • communication by the communication light is performed.
  • the strain distribution of the optical fiber can be measured in the live state without affecting the optical fiber.
  • the measurement core wire 20 that propagates the measurement light and the communication light in this manner, all the optical fiber cores mounted on the optical fiber cable 100 can be mounted without installing the optical fiber core dedicated to strain measurement.
  • the wires can be used for communication.
  • the measurement light wavelength is 1.55 ⁇ m for the communication wavelength of 1.31 ⁇ m band.
  • the fiber grating 21 may be formed so as to be in a band or a measurement light wavelength in a 1.65 ⁇ m band for a communication wavelength of 1.55 ⁇ m.
  • a pair of fiber bag gratings 21 having the same reflection characteristic is point-symmetrical (that is, symmetric with respect to the central axis of the optical fiber cable).
  • the measurement core 20a-20a '(or 20b-20b') can be arranged.
  • the reflection peak of the measurement core 20a and the measurement core 20a' By using the optical fiber cable 120 containing the pair of measurement cores 20a-20a 'in this way, the reflection peak of the measurement core 20a and the measurement core 20a' By comparing with the reflection peak (for example, by taking the difference between the two peaks), the cable bending (or the stress due to the cable bending) can be detected with high sensitivity. That is, as shown in Fig. 15 (b), for example, when tensile stress is applied to the 2nd position of the measuring core 20a, compressive stress is applied at the 2nd position of the measuring core 20a '
  • the measurement cores 20 a and 20 a ′ that are located point-symmetrically in the cable have opposite stress distributions caused by the cable bending, and are thus observed.
  • the peak wavelength change also has the opposite value.
  • the shift is doubled compared to the measurement with a single core (one measuring core wire 20). Because the amount can be detected, the measurement sensitivity can be doubled. Also, for measurement By comparing the obtained tensile stress and compressive stress, it is also possible to detect in which direction the optical fiber cable is bent. Furthermore, in addition to the measurement cores 20a-20a, another pair of measurement cores 20b-20b is mounted, so that the four pairs of measurement cores are orthogonal to each other. If the guard wire is provided, it is possible to detect bending in all directions in the optical fiber cable 120 other than the portion having the spiral housing structure, and it is also possible to detect the direction. By using a pair of measurement cords 20a-20a ', for example, it is possible to cancel the effect of temperature and observe only the effect of stress.
  • an optical fiber cable 130 equipped with two pairs of measurement cores 20a-20a 'and 2Ob-20b' may be used.
  • the optical fiber cable 130 having such a configuration, similarly to the optical fiber cable 120, the distribution of stress and bending can be detected with high sensitivity. If the outer sheath is provided with markings that indicate the surface direction without spiraling the internal structure, or if the cable is laid out in a non-circular shape, the cable can be bent in such a way that the core wire arrangement position can be identified. And its direction can be observed by reflected light measurement.
  • the same optical fiber cable 70 as in the above embodiment is embedded in the road 72.
  • One end of the optical fiber cable 70 is connected to the monitoring device 71.
  • the monitoring device 71 includes a configuration similar to that of the optical measurement system 40 in FIG. 9 inside.
  • the optical fiber cable 70 has a large number of built-in fiber gratings, and the reflection peak wavelength of each fiber grating is slightly different.
  • the monitoring device 71 can detect the axial stress distribution on the optical fiber cable 70.
  • the optical fiber cable 70 can be buried meandering in a monitoring area having a two-dimensional spread, and the monitoring area shown in FIG. 17 (b) can be buried. It is possible to detect which part of the region and how much stress is generated. Although the description has been given of the road 72, stress in a tunnel or a bridge can be similarly detected. In addition, even when stress or bending occurs in the optical fiber cable due to landslide, etc., it is possible to observe the state of the optical fiber cable remotely without going to the place where the landslide occurred.
  • the optical fiber cable 70 is configured as shown in FIG. 14, all optical fiber cores mounted on the optical fiber cable 70 can be used for communication. Furthermore, by writing a grating on the communication optical fiber, it is possible to give the communication optical fiber a function of monitoring its own tension.
  • the coating agent described in the first embodiment satisfies the characteristics required for a communication optical fiber, and the grating manufacturing method described in the first embodiment is also applicable to a communication optical fiber.
  • the shift amount due to the bending of the optical fiber cable 70 can be detected with high sensitivity. It is possible to detect the amount of bending and the direction of bending.
  • the present invention since at least one of the plurality of optical fiber cores included in the optical fiber cable has a plurality of types of fiber gratings, strain measurement with a higher distance resolution than the conventional technology can be performed.
  • An optical fiber cable can be provided.
  • the optical fiber cable of the present invention is spatially arranged, a two-dimensional or three-dimensional stress distribution can be detected with high accuracy.
  • the same type of fiber grating is arranged symmetrically with respect to the center axis of the optical fiber cable, the shift amount due to the bending of the optical fiber cable can be detected with high sensitivity, and the bending amount and the direction of the bending can be detected. it can.

Abstract

A fiber optic cable (100) comprises at least one metering fiber (20) including a plurality of kinds of fiber gratings (21) different in the reflection or transmission characteristic. The metering fiber (20) includes a first fiber grating which reflects or transmits light of a first wavelength, and a second fiber grating which reflects or transmits light of a second wavelength different from the first wavelength. The second fiber grating is distant lengthwise from the first fiber grating. Distortion is monitored in the respective positions of the first and second fiber gratings using the wavelength shift of the first and second fiber gratings.

Description

明 細 書 光ファイバケーブルおよび歪み測定方法 技術分野  Description Optical fiber cable and strain measurement method
本発明は、 光ファイバケーブルおよび歪み測定方法に関する。 特に、 高分解能 歪測定に適した光ファイバケーブル、 ならびに、 この光ファイバケーブルを用い た歪み測定方法に関する。 背景技術  The present invention relates to an optical fiber cable and a strain measurement method. In particular, the present invention relates to an optical fiber cable suitable for high-resolution strain measurement and a strain measuring method using the optical fiber cable. Background art
光ファイバに張力が印加され伸び歪が生じていると、 光ファイバは劣化してゆ くため、 光通信線路の長期信頼性を確保するには、 光ケーブルの製造時、 敷設時、 および適用環境使用時の各段階において光ファイバの歪を正確に測定することが 必要になる。 従来、 このような歪を測定する方法としては、 歪の発生に伴う光信 号遅延時間の変化を直接に時間軸上で測定する光パルス法や、 正弦波変調信号の 位相変化から歪を測定する位相法が用いられていた。  If tension is applied to the optical fiber and elongation strain occurs, the optical fiber will deteriorate.To ensure long-term reliability of the optical communication line, it is necessary to manufacture the optical cable, lay it, and use it in the application environment. It is necessary to accurately measure the strain of the optical fiber at each stage. Conventional methods for measuring such distortion include the optical pulse method, in which the change in optical signal delay time due to the occurrence of distortion is directly measured on the time axis, and the method of measuring distortion from the phase change of a sine wave modulation signal. The phase method was used.
上記の歪測定方法によれば、 歪を高い精度で測定できるが、 光ファイバの長手 方向に沿って歪が不均一に分布する場合は、 長手方向に沿って平均化した歪の値 を検知することしかできなかった。 光ファイバの強度劣化は最大歪によって決定 されるため、 歪の平均値が小さい場合であっても、 局所的に大きな最大歪が発生 していると、 その部分で光ファイバの劣化が大きく進行することになる。 このた め、 長手方向に平均した歪値だけを測定していたのでは、 光ファイバの信頼性を 充分に保証することはできなくなる。  According to the above strain measurement method, strain can be measured with high accuracy, but when the strain is unevenly distributed along the longitudinal direction of the optical fiber, the value of the strain averaged along the longitudinal direction is detected. I could only do it. Since the strength degradation of an optical fiber is determined by the maximum strain, even if the average value of the strain is small, if a large maximum strain occurs locally, the degradation of the optical fiber progresses greatly at that part Will be. For this reason, if only the strain value averaged in the longitudinal direction is measured, the reliability of the optical fiber cannot be sufficiently guaranteed.
そこで、 歪分布を光ファイバの長手方向に沿って測定する方法が提案されてい る。 この方法は、 音波および周波数変換を伴う光波の非線形相互作用を分析する 技術と、 O T D R ( Optical Time Domain Ref lectometry) に類似した時間領域測 定技術とを融合させた方法である。  Therefore, a method of measuring the strain distribution along the longitudinal direction of the optical fiber has been proposed. This method combines a technique for analyzing nonlinear interactions between light waves with sound waves and frequency conversion and a time-domain measurement technique similar to OTDR (optical time domain reflectometry).
しかしながら、 この方法では光パルス幅によって距離分解能 (時間分解能) が 数メートル程度に限定されてしまうため、 従来、 数 1 0 c m程度以下の高分解能 を達成することはできなかった。 他方、 光ファイバケーブル内に収納された光フ アイバ心線は、 通常、 数 1 0 c m程度のピッチで螺旋状に撚られている。 このた め、 上記従来の測定方法によっては、 光ファイバに生じている最大歪を高い精度 で測定することができなかった。 However, in this method, the distance resolution (time resolution) is limited to about several meters depending on the light pulse width. Could not be achieved. On the other hand, optical fiber cores housed in optical fiber cables are usually helically twisted at a pitch of about 10 cm. For this reason, the above-mentioned conventional measurement method cannot measure the maximum strain occurring in the optical fiber with high accuracy.
また、 上記方法では、 歪み計測分解能が低く (約 0 . 0 1 5 %以上) 、 測定時 間が比較的長い ( 5分以上) という問題点もあった。 さらに、 上記方法には、 特 殊かつ高価な専用計測器が必要であるという問題点もあった。  In addition, the above method has problems that the strain measurement resolution is low (about 0.015% or more) and the measurement time is relatively long (5 minutes or more). Further, the above method has a problem that a special and expensive dedicated measuring instrument is required.
本発明は上記事情に鑑みてなされたものであり、 その主な目的は、 高い距離分 解能を持つ歪み測定が可能な光ファイバケーブルおよび歪み測定方法を提供でき ることにある。 発明の閧示  The present invention has been made in view of the above circumstances, and a main object of the present invention is to provide an optical fiber cable capable of measuring strain with high distance resolution and a strain measuring method. Invention
本発明による光ファイバケーブルは、 複数の光ファイバ心線を備えた光フアイ バケーブルであって、 前記複数の光ファイバ心線のうちの少なくとも一つは、 反 射特性または透過特性の異なる複数種類のファイバグレーティングを有し、 前記 複数種類のファイバグレーティングは、 少なく とも、 第 1波長の光を反射または 透過する第 1ファイバグレーティ ングと、 前記第 1波長とは異なる第 2波長の光 を反射または透過する第 2ファイバグレーティングとを含んでおり、 前記第 2フ アイバグレーティングは、 前記第 1ファイバグレーティングが形成されている位 置から軸方向に沿って離れた位置に形成されており、 前記第 1ファイバグレーテ ィングおよび前記第 2ファイバグレーティ ングのそれそれからの波長シフ トによ つて、 前記第 1ファイバグレーティングおよび前記第 2ファイバグレーティング のそれそれの位置の歪み量がモニターされる。 これにより、 上記目的を達成する ある実施形態では、 前記複数種類のファイバグレーティングを有する光フアイ バ心線は、 少なく とも前記第 1波長の光と前記第 2波長の光とを含む測定光と、 前記測定光によって影響を受けずに通信可能な通信光とを伝播する。  An optical fiber cable according to the present invention is an optical fiber cable including a plurality of optical fiber cores, wherein at least one of the plurality of optical fiber cores has a plurality of types having different reflection characteristics or transmission characteristics. Wherein the plurality of types of fiber gratings reflect at least a first fiber grating that reflects or transmits the first wavelength light, and reflects a second wavelength light that is different from the first wavelength. Or a transmitting second fiber grating, wherein the second fiber grating is formed at a position along the axial direction from a position where the first fiber grating is formed, and According to the wavelength shifting of each of the first fiber grating and the second fiber grating, 1 strain of that of an position of the fiber grating and the second fiber grating is monitored. Thereby, to achieve the above object, in one embodiment, the optical fiber core having the plurality of types of fiber gratings, the measurement light including at least the first wavelength light and the second wavelength light, It propagates with communication light that can communicate without being affected by the measurement light.
前記複数の光ファイバ心線のうちの少なく とも 2つは、 前記複数種類のフアイ バグレーティングを有する光ファイバ心線であり、 前記複数種類のファイバグレ —ティングを有する光ファイバ心線のそれそれが含んでいる前記第 1ファイバグ レ一ティングおよび前記第 2ファイバグレーティングは、 前記複数の光ファイバ 心線を備えた光ファイバケーブルの中心軸を基準にして対称に配置されているこ とが好ましい。 At least two of the plurality of optical fiber cores are the optical fiber cores having the plurality of types of fiber bug ratings, and each of the optical fiber cores having the plurality of types of fiber gratings is The first fiber group containing The rating and the second fiber grating are preferably arranged symmetrically with respect to a center axis of the optical fiber cable having the plurality of optical fiber cores.
本発明による歪み測定方法は、 上記光ファイバケーブルに対して、 前記第 1波 長の光および前記第 2波長の光を含む光源の光を入射する工程と、 前記第 1ファ ィバグレーティングからの第 1波長シフ トおよび前記第 2ファイバグレーティ ン グからの第 2波長シフ トをそれそれ検出し、 それによつて前記第 1ファイバグレ 一ティングの位置における第 1歪み量、 および前記第 2ファイバグレーティング の位置における第 2歪み量を求める工程とを包含する。  A distortion measuring method according to the present invention includes: a step of injecting light of a light source including the light of the first wavelength and the light of the second wavelength into the optical fiber cable; Detecting a second wavelength shift from the first wavelength shift and the second fiber grating, thereby detecting a first amount of distortion at the first fiber grating location and the second fiber shift; Obtaining a second distortion amount at the position of the grating.
本発明による他の歪み測定方法は、 上記光ファイバケーブルに対して、 前記第 1波長の光および前記第 2波長の光を含む光源の光を入射する工程と、 前記光フ アイバケーブルの前記中心軸を基準にして対称に配置された一対のファイバグレ 一ティングの波長シフ 卜の差をとることによって、 前記一対のファイバグレーテ ィングの位置における歪み量を求める工程とを包含する。  Another distortion measuring method according to the present invention includes: a step of injecting light of a light source including the light of the first wavelength and the light of the second wavelength into the optical fiber cable; and Determining the amount of distortion at the position of the pair of fiber gratings by taking the difference between the wavelength shifts of the pair of fiber gratings symmetrically arranged with respect to the axis.
本発明の光ファイバケーブルは、 複数種類のファイバグレーティングを有し、 これらの複数種類のファイバグレーティングのそれそれは近距離間隔で配置する ことができるため、 従来技術よりも高い距離分解能を持つ歪み測定が可能な光フ アイバケーブルおよび歪み測定方法を提供することができる。  The optical fiber cable of the present invention has a plurality of types of fiber gratings, and each of the plurality of types of fiber gratings can be arranged at a short distance, so that a strain measurement having a higher distance resolution than the conventional technology can be performed. Possible fiber optic cables and strain measurement methods can be provided.
また、 測定光と通信光とを光ファイバ心線に伝播させる場合には、 光フ ケーブルに搭載する全ての光ファイバ心線を通信用に使用することができる。 測 定光と通信光とを光ファイバ心線に伝播させる場合、 グレーティングの反射波長 を通信波長帯外にすることによって、 通信光に影響を与えることなく測定光を通 信光と共に同一の光ファイバ心線に伝播させるようにすればよい。 このようにす れば、 通信光による通信が活線状態のままで計測を行うことができ、 光ファ ケ一ブルに搭載する全ての光ファイバ心線を通信用に使用することができる。 さ らに、 光ファイバケーブルの中心軸を基準にして同種類のファイバグレーティン グを対称に配置すると、 それそれのファイバグレーティ ングが反射または透過す る光を比較することによって、 光ファイバケーブルの屈曲によるシフ 卜量を感度 良く検知することが可能となる。 図面の簡単な説明 When the measuring light and the communication light are propagated to the optical fiber, all the optical fibers mounted on the optical fiber can be used for communication. When the measurement light and the communication light propagate through the optical fiber, the reflection wavelength of the grating is set outside the communication wavelength band, so that the measurement light and the communication light are transmitted to the same optical fiber without affecting the communication light. May be transmitted. In this way, the measurement can be performed while the communication using the communication light is in a live state, and all the optical fiber cores mounted on the optical fiber can be used for communication. Furthermore, if the same type of fiber grating is symmetrically arranged with respect to the central axis of the optical fiber cable, the fiber gratings compare the light reflected or transmitted, and the It is possible to detect the shift amount due to the bending of the light with high sensitivity. BRIEF DESCRIPTION OF THE FIGURES
図 1 (a) は、 本発明による光ファイバケーブルの実施形態を模式的に示す断 面図であり、 図 1 (b) は、 光ファイバケーブルに収納されたテープ心線を模式 的に示す断面図である。  FIG. 1A is a cross-sectional view schematically illustrating an embodiment of an optical fiber cable according to the present invention, and FIG. 1B is a cross-sectional view schematically illustrating a tape core housed in the optical fiber cable. FIG.
図 2は、 ファイバグレーティング 2 1が形成された計測用心線 20を模式的に 示す図である。  FIG. 2 is a diagram schematically showing the measurement core 20 on which the fiber grating 21 is formed.
図 3は、 計測用心線 20の作製方法を説明するための図である。  FIG. 3 is a diagram for explaining a method of manufacturing the measurement core 20.
図 4は、 計測用心線 20の作製方法を説明するための図である。  FIG. 4 is a view for explaining a method of manufacturing the measurement core 20.
図 5は、 計測用心線 20の作製方法を説明するための図である。  FIG. 5 is a diagram for explaining a method of manufacturing the measurement core 20.
図 6 (a) は、 複数のファイバグレーティング 21が形成された計測用心線 2 Figure 6 (a) shows the measurement core 2 with multiple fiber gratings 21 formed.
0を模式的に示す図であり、 図 6 (b) は、 計測用心線 20の反射特性を示すグ ラフである。 FIG. 6 (b) is a graph schematically showing the reflection characteristics of the measuring core 20. FIG.
図 7は、 グレーティング 2 1作製時および張力解放後における各グレーティン グ 2 1の反射ビーク波長 (反射特性) を示すグラフである。  FIG. 7 is a graph showing the reflection beak wavelength (reflection characteristics) of each grating 21 at the time of making the grating 21 and after releasing the tension.
図 8は、 照射時反射波長と張力解放後反射波長との関係を示すグラフである。 図 9は、 本発明による歪み量測定方法の実施形態を説明するための構成図であ る。  FIG. 8 is a graph showing the relationship between the reflection wavelength at irradiation and the reflection wavelength after tension release. FIG. 9 is a configuration diagram for explaining an embodiment of the distortion amount measuring method according to the present invention.
図 10は、 光ファイバケーブル 100を光学測定系 40に接続した構成図であ る。  FIG. 10 is a configuration diagram in which the optical fiber cable 100 is connected to the optical measurement system 40.
図 1 1は、 光ファイバケーブル 100の各位置 [mm] に対する反射波長シフ ト量 [nm] および歪み量 [%] の関係を示すグラフである。  FIG. 11 is a graph showing the relationship between the reflected wavelength shift amount [nm] and the distortion amount [%] for each position [mm] of the optical fiber cable 100.
図 12 (a) は、 SZ型の光ファイバケーブル 1 10を模式的に示す断面図で あり、 図 12 (b) は、 光ファイバケ一ブル 1 10に収納されたテープ心線 50 を模式的に示す断面であり、 そして図 12 ( c ) は、 光ファイバケーブル 1 10 の屈曲状態を説明するための図である。  FIG. 12 (a) is a cross-sectional view schematically showing an SZ type optical fiber cable 110, and FIG. 12 (b) is a schematic view showing a tape core 50 stored in the optical fiber cable 110. FIG. 12 (c) is a diagram for explaining a bent state of the optical fiber cable 110.
図 13は、 光ファイバケーブル 1 10の各位置 [mm] に対する反射波長シフ ト量 [nm] および歪み量 [%] の関係を示すグラフである。  FIG. 13 is a graph showing the relationship between the reflection wavelength shift amount [nm] and the distortion amount [%] for each position [mm] of the optical fiber cable 110.
図 14は、 計測用心線 20を通信用光ファイバ心線として使用する構成を説明 するための図である。 Fig. 14 illustrates the configuration in which the measurement core 20 is used as a communication optical fiber core. FIG.
図 1 5 (a) は、 同一反射特性を有するファイバグレーティ ング 2 1が点対称 に配置された一対の計測用心線を搭載した光ファイバケーブル 1 2 0を模式的に 示す断面図であり、 図 1 5 (b) は、 一対の計測用心線 2 0 a- 2 0 a' を模式 的に示す図である。  FIG. 15 (a) is a cross-sectional view schematically showing an optical fiber cable 120 equipped with a pair of measurement cores in which fiber gratings 21 having the same reflection characteristics are arranged point-symmetrically. FIG. 15 (b) is a diagram schematically showing a pair of measurement core wires 20a-20a '.
図 1 6は、 2対の計測用心線を搭載した光ファイバケーブル 1 3 0を模式的に 示す断面図である。  FIG. 16 is a cross-sectional view schematically showing an optical fiber cable 130 on which two pairs of measurement core wires are mounted.
図 1 7 (a) は、 光ファイバケーブル 70を道路内に埋設した例を示す模式図 であり、 図 1 7 (b) は、 2次元的な計測を行う場合の埋設例を示す図である。 発明を実施するための最良の形態  FIG. 17 (a) is a schematic diagram showing an example in which the optical fiber cable 70 is embedded in a road, and FIG. 17 (b) is a diagram showing an example of embedding when performing two-dimensional measurement. . BEST MODE FOR CARRYING OUT THE INVENTION
以下、 図面を参照しながら、 本発明の実施形態を説明する。  Hereinafter, embodiments of the present invention will be described with reference to the drawings.
(実施形態 1 )  (Embodiment 1)
図 1から図 1 6を参照しながら、 本発明による実施形態 1を説明する。 まず、 図 1 (a) および (b) を参照する。 図 1 (a) は、 本実施形態にかかる光ファ ィバケーブル 1 00の断面を模式的に示しており、 図 1 (b) は、 光ファイバケ 一ブル 1 00に含まれるテープ状の光ファイバ心線 (テープ心線) 50の断面を 模式的に示している。  Embodiment 1 of the present invention will be described with reference to FIGS. First, refer to FIGS. 1 (a) and 1 (b). FIG. 1A schematically shows a cross section of an optical fiber cable 100 according to the present embodiment, and FIG. 1B shows a tape-shaped optical fiber core included in the optical fiber cable 100. (Tape cord) A cross section of 50 is schematically shown.
光フアイバケーブル 1 00は、 テープス口ッ ト型の光フアイバケーブルであり、 外周にスロヅ ト (溝) 5 5を有するスロッ トロッ ド 6 0と、 スロッ ト 5 5内に重 ねて収容されたテープ心線 5 0と、 スロッ トロッ ド 6 0を覆うシース (例えば、 P Eシース) 64とを有している。 スロッ トロッ ド 6 0の中心には、 光ファイ ノ ケーブルの強度を確保するためのテンションメンバ (抗張力体) 6 2が配置され ている。 なお、 本実施形態では、 テープスロッ ト型の光ファイバケーブルを用い ているが、 ス トランド構造またはチューブ構造の光ファイバケーブルを用いるこ ともできる。  The optical fiber cable 100 is an optical fiber cable of a tape slot type, and includes a slot rod 60 having a slot (groove) 55 on its outer periphery and a tape housed in the slot 55 in a superimposed manner. It has a core wire 50 and a sheath (for example, a PE sheath) 64 covering the slot rod 60. At the center of the slot rod 60, a tension member (tensile strength member) 62 for securing the strength of the optical fiber cable is disposed. In this embodiment, an optical fiber cable of a tape slot type is used, but an optical fiber cable of a strand structure or a tube structure may be used.
光ファイバケーブル 1 00に収容されたテープ心線 50は、 複数の光ファイバ 心線を有している。 本実施形態では、 テープ心線 50として、 4心テープ心線を 用いている。 テープ心線 50は、 歪み計測用光ファイバ心線 (以下、 「計測用心 線」 と称する。 ) 2 0と光ファイノ 心線 3 0とを有しており、 これらの光フアイ バ心線は、 テープ被覆 5 2によって覆われている。 本実施形態では、 計測用心線 2 0には、 反射特性 (または透過特性) の異なる複数種類のファイバグレーティ ングが形成されている。 The tape core 50 accommodated in the optical fiber cable 100 has a plurality of optical fiber cores. In the present embodiment, a 4-core tape core is used as the tape core 50. The tape core 50 is an optical fiber core for strain measurement (hereinafter referred to as “measurement core”). Line ". ) And an optical fiber core 30, and these optical fiber cores are covered with a tape coating 52. In this embodiment, a plurality of types of fiber gratings having different reflection characteristics (or transmission characteristics) are formed on the measurement core 20.
次に、 図 2を参照しながら、 計測用心線 2 0の詳細な説明をする。 図 2は、 計 測用心線 2 0の光ファイバ素線部分を模式的に示しており、 この光ファイバ素線 部分は、 ファイバグレーティング 2 1が書き込まれたコア 2 2と、 コア 2 2の周 りに形成されたクラッ ド 2 3とから構成されている。  Next, the measuring core 20 will be described in detail with reference to FIG. FIG. 2 schematically shows an optical fiber portion of the measuring core 20. The optical fiber portion is composed of a core 22 on which a fiber grating 21 is written and a periphery of the core 22. And a clad 23 formed in the center.
計測用心線 2 0のコア 2 2に書き込まれた (形成された) グレーティング 2 1 は、 軸方向に沿ってコア 2の屈折率が周期 Λ (例えば 0 . 3〜 0 . 6 z m ) で変 化した短周期の屈折率変調構造を有している。 この周期 Λとコア 2 1の平均屈折 率とによって規定されるブラッグ (Bragg) 波長を持つ光がグレーティング 2 1に よって選択的に反射されることになる。 なお、 本願明細書において、 ブラッグ波 長を 「反射ピーク波長」 と呼ぶことがある。  The grating 21 written (formed) on the core 22 of the measuring core 20 changes the refractive index of the core 2 along the axial direction with a period Λ (for example, 0.3 to 0.6 zm). Having a short-period refractive index modulation structure. Light having a Bragg wavelength defined by the period Λ and the average refractive index of the core 21 is selectively reflected by the grating 21. In the present specification, the Bragg wavelength may be referred to as “reflection peak wavelength”.
上述のようにブラッグ波長は周期 Λに依存して変化するため、 熱または外力な どによって計測用心線 2 0に歪みが発生すると、 その歪みが発生している部分に おける周期 Λが無歪状態の値から変化 (シフト) することになる。 この変化の大 きさ (シフ ト量) は、 ブラッグ波長 (反射ピーク波長) のシフ ト量として光学的 に観測できる。 計測用心線 2 0には、 反射特性の異なる複数種類のファイバグレ 一ティング 2 1のそれそれが軸方向に沿って離れた位置に形成されている。 従つ て、 各ファイバグレ—ティング 2 1におけるシフ ト量を観測することによって、 各ファイバグレーティング 2 1の位置における歪み量をモニタ一することができ る。 すなわち、 各ファイバグレーティングの物理的状態の変化に起因して発生し た反射ピーク波長のシフ ト量を検出することによって、 長いファイバ上に生じた 複数箇所における応力等をセンシングすることが可能となる。  Since the Bragg wavelength changes depending on the period に as described above, if distortion occurs in the measuring core wire 20 due to heat or external force, the period 部分 in the portion where the distortion occurs is in an unstrained state. Will change (shift) from the value of. The magnitude of this change (shift amount) can be optically observed as the shift amount at the Bragg wavelength (reflection peak wavelength). In the measurement core 20, a plurality of types of fiber gratings 21 having different reflection characteristics are formed at positions separated from each other along the axial direction. Therefore, by observing the shift amount in each fiber grating 21, it is possible to monitor the amount of distortion at the position of each fiber grating 21. In other words, by detecting the shift amount of the reflection peak wavelength generated due to the change in the physical state of each fiber grating, it becomes possible to sense the stress, etc., occurring at multiple locations on a long fiber. .
次に、 図 3を参照しながら、 計測用心線 2 0の構成とグレーティング 2 1の作 製方法とを説明する。 図 3に示すように、 計測用心線 2 0は、 グレーティング 2 1が書き込まれるコア 2 2と、 コア 2 2の周りに形成されたクラッ ド 2 3と、 ク ラッ ド 2 3の外表面を被覆する被覆層 2 4とから構成されている。 本実施形態で 用いるコア 2 2には、 通常仕様の光ファイバのコアに含まれている G eと同程度 の濃度を有する G eがドープされている。 ここで、 通常仕様の光ファイバとは、 計測用心線 2 0に接続される光ファイバ心線 (例えば、 通信用途で光ファイバケ 一ブル内に収容される一般的な光通信用光ファイバ心線) のことである。 このよ うな光ファイバ心線のコアには、 通常、 比屈折率差が 0. 9 %程度になる量の G eがドープされている。 Next, the configuration of the measuring core 20 and the method of manufacturing the grating 21 will be described with reference to FIG. As shown in Fig. 3, the measurement core wire 20 covers the core 22 on which the grating 21 is written, the cladding 23 formed around the core 22, and the outer surface of the cladding 23. And a coating layer 24. In this embodiment The core 22 used is doped with Ge having a concentration similar to that of Ge contained in the core of the normal specification optical fiber. Here, the normal specification optical fiber is an optical fiber core connected to the measuring core 20 (for example, a general optical communication core accommodated in an optical fiber cable for communication use). That is. The core of such an optical fiber core is usually doped with Ge so that the relative refractive index difference becomes about 0.9%.
図示されている計測用心線 2 0のコア 2 2には、 光誘起屈折率変化を定常的に 高めるためには、 G eに加えて、 S n、 S n 及び Al 、 または、 S n, A 1及び Bのドーパン トをコア 2 2にドープしておくことが好ましい。 例えば、 上記の通 常仕様の光ファイバのコアと同量 (比屈折率差が 0. 9 %となる程度の量) の G eに加え、 濃度 1 ◦ 0 0 0 p pm以上、 好ましくは濃度 1 0 0 0 0 ~ 1 5 0 0 0 p pmの S n、 或いは、 このような濃度の S n及び濃度 1 0 0 0 p pm以下の A 1等を共ドープすればよい。 このようなド一プは、 種々の公知方法によって行えば よく、 例えば液浸により行う場合には、 上記 G eや S nの化合物 ( S nの場合、 例えば S n C l 2 ' 2 H2O) をメチルアルコールと混合し、 その溶液の中に浸漬 すればよい。 The core 22 of the measurement core wire 20 shown in the figure includes, in addition to Ge, Sn, Sn and Al, or Sn, A in addition to Ge in order to constantly increase the photoinduced refractive index change. It is preferable that the dopants 1 and B are doped in the core 22. For example, in addition to the same amount of Ge as that of the core of the optical fiber of the above-mentioned normal specification (an amount such that the relative refractive index difference is 0.9%), the concentration is not less than 1 ◦ 0,000 ppm, preferably the concentration. It is only necessary to co-dope Sn with a concentration of 1000 to 150 ppm, or Sn with such a concentration and A1 with a concentration of 1000 ppm or less. Such de one-flop may be performed by various known methods, for example, when carried out by immersion, the compounds of the G e and S n (the case of S n, e.g., S n C l 2 '2 H2O ) Can be mixed with methyl alcohol and immersed in the solution.
被覆層 2 4は、 コア 2 2及びクラヅ ド 2 3からなる光ファイバ素線の線引きェ 程に引き続いてシングルコート法によって、 例えば、 少なくとも 3 0 zm程度の 膜厚になるように形成されたものである。 なお、 被覆層 2 4を形成する材料 (被 覆剤) および被覆層 1 2の厚さは、 要求される条件に応じて適宜決定すればよい。 例えば、 光ファイバ素線の弾性率 (ヤング率 E ) 、 熱膨張係数 (線熱膨張係数 a) 、 屈折率の温度係数 (熱光学係数 ) 、 および被覆層の材料の弾性率 (ヤン グ率) 、 熱膨張係数 (線熱膨張係数) などに基づいて決定することが好ましい。 本実施形態で用いた計測用心線 2 0のパラメ一夕を下記表 1に示す。  The coating layer 24 is formed by a single coating method following the drawing process of the optical fiber consisting of the core 22 and the cladding 23 so as to have a film thickness of at least about 30 zm, for example. It is. The material (covering agent) for forming the coating layer 24 and the thickness of the coating layer 12 may be appropriately determined according to the required conditions. For example, the elastic modulus of the optical fiber (Young's modulus E), the coefficient of thermal expansion (linear thermal expansion coefficient a), the temperature coefficient of the refractive index (thermo-optic coefficient), and the modulus of elasticity of the material of the coating layer (Yang's modulus) It is preferable to determine based on the thermal expansion coefficient (linear thermal expansion coefficient) and the like. Table 1 below shows the parameters of the measurement core wire 20 used in the present embodiment.
(以下余白) (表 1 ) (Hereinafter the margin) (table 1 )
Figure imgf000010_0001
本実施形態では、 被覆層 2 4の材料として、 ある波長帯域の紫外線 (第 1の紫 外線) で硬化する特性と、 他の波長帯域の紫外線 (第 2の紫外線) を透過する特 性の両方を備えた樹脂を用いる。 このような樹脂を本願明細書では 「紫外線透過 型紫外線硬化樹脂」 と称することがある。
Figure imgf000010_0001
In the present embodiment, as the material of the coating layer 24, both the property of curing with ultraviolet light of a certain wavelength band (first ultraviolet ray) and the property of transmitting ultraviolet light of another wavelength band (second ultraviolet ray) are used. Is used. In the specification of the present application, such a resin is sometimes referred to as an “ultraviolet transmitting type ultraviolet curable resin”.
この紫外線透過型紫外線硬化樹脂は、 グレーティング 2 1の書き込みのために コアに照射する特定波長帯 (例えば 2 4 0 n m〜 2 7 0 n mの波長帯) の紫外線 を少なく とも透過させる (好ましくは、 この紫外線を殆ど吸収せずに透過させ る) 一方で、 上記特定波長帯よりも短い波長または長い波長の紫外線を吸収して 硬化反応を生じさせる。 つまり、 同じ樹脂ではあるが、 波長によって紫外線吸収 特性が異なり、 特定波長帯では紫外線透過型である一方、 上記特定波長帯よりも 短い波長域または長い波長域では紫外線硬化型であるような樹脂を用いて被覆層 2 4を形成することになる。  The ultraviolet-transmissive ultraviolet-curing resin transmits at least ultraviolet rays in a specific wavelength band (for example, a wavelength band of 240 nm to 270 nm) to be applied to the core for writing the grating 21 (preferably, On the other hand, this ultraviolet ray is transmitted with little absorption. On the other hand, the ultraviolet ray having a wavelength shorter or longer than the specific wavelength band is absorbed to cause a curing reaction. In other words, although the same resin has different UV absorption characteristics depending on the wavelength, a resin that is UV-transmissive in a specific wavelength band, but is UV-curable in a shorter or longer wavelength range than the above-mentioned specific wavelength band. Will be used to form the coating layer 24.
本実施形態では、 ウレタン系ァクリレートもしくはエポキシ系ァクリレ一トに 対し、 例えば 2 4 0 n mよりも短い波長域または 2 7 0 n mよりも長い波長域の 紫外線を受けて硬化反応を開始 ·促進させるような光開始剤 (フォ トイニシエー 夕) を配合した樹脂を 「紫外線透過型紫外線硬化樹脂」 として用いる。  In the present embodiment, the curing reaction is started and accelerated by receiving ultraviolet rays in a wavelength range shorter than 240 nm or a wavelength range longer than 270 nm, for example, for urethane acrylate or epoxy acrylate. A resin containing a suitable photoinitiator (photoinitiator) is used as the “ultraviolet-transmitting ultraviolet-curing resin”.
このような樹脂の層で光ファイバの外周面を被覆した後、 まず、 その被覆層に 対して第 1の紫外線を照射し、 被覆層 2 4を硬化する。  After coating the outer peripheral surface of the optical fiber with such a resin layer, first, the coating layer is irradiated with first ultraviolet rays to cure the coating layer 24.
硬化した被覆層 2 4によって被覆された状態の光ファイバ心線に対して第 2の 紫外線を照射する前に、 コア 2 2に対して水素充填を行うことが光誘起屈折率変 化を高める上で好ましい。 従って、 本実施形態では、 この高圧水素充填を行う。 具体的には、 光ファイバ心線 1を水素が充填された密閉容器内に入れ、 室温状態 でほぼ 2 O M P aの圧力下で約 2週間放置すればよい。 For the optical fiber core covered with the cured coating layer 24, the second It is preferable to fill the core 22 with hydrogen before irradiating the ultraviolet rays from the viewpoint of increasing the photoinduced refractive index change. Therefore, in this embodiment, this high-pressure hydrogen filling is performed. Specifically, the optical fiber core wire 1 is placed in a sealed container filled with hydrogen and left at room temperature under a pressure of about 2 OMPa for about 2 weeks.
次に、 光ファイバ心線の外側、 つまり、 被覆層 2 4の外側から第 2の紫外線を 照射することによりコア 2 2に対しグレーティング 2 1の書き込みを行う。 グレ —ティング 2 1の書き込みは、 周知の種々の方法を採用して行えばよく、 例えば 位相マスク法により行う場合には、 計測用心線 2 0となる光ファイバ心線の側方 直前に格子状の位相マスク 2 5を配設し、 この位相マスク 2 5に対し例えば N d - Y A Gレーザ源から 4倍波長 (4 ω ) である 2 6 6 n mのコヒ一レント紫外レ —ザ光をシリンドリカルレンズ系 2 6により集光した状態で照射すればよい。 こ れにより、 上記紫外レーザ光が位相マスク 2 5及び被覆層 2 4を透過し、 コア 2 2に対し位相マスク 2 5の格子ピッチに対応したグレーティングピッチの部分の 屈折率が増大されてブラッググレーティング 2 1が書き込まれることになる。 第 2の紫外線の波長は、 例えば 1 5 0〜 4 0 0 n mであり、 照射エネルギーは 0 . 1〜: L 0 k J / c m 2である。 Next, the grating 21 is written to the core 22 by irradiating the second ultraviolet ray from outside the optical fiber core wire, that is, outside the coating layer 24. The writing of the grating 21 may be performed by using various well-known methods. For example, when the writing is performed by the phase mask method, a grid-like shape is placed immediately before the optical fiber core wire to be the measurement core wire 20. A phase mask 25 is disposed, and a coherent ultraviolet laser beam having a wavelength of 2 66 nm, which is a quadruple wavelength (4 ω) from an Nd-YAG laser source, is applied to the phase mask 25 by a cylindrical lens. Irradiation may be performed in a state where light is collected by the system 26. As a result, the ultraviolet laser light passes through the phase mask 25 and the coating layer 24, and the refractive index of the grating pitch portion corresponding to the lattice pitch of the phase mask 25 with respect to the core 22 is increased, so that the Bragg grating is increased. 2 1 will be written. The wavelength of the second ultraviolet ray is, for example, 150 to 400 nm, and the irradiation energy is 0.1 to: L 0 kJ / cm 2 .
本実施形態では、 図 2または図 3に示す構造のファイバグレーティング 2 1を ひとつのコア 2 2内に、 軸方向に沿って間隔を置きながら、 複数個形成する。 例 えば、 長さ 5〜2 0 mmの短周期ファイバグレーティ ングを 5 0 m m間隔で 2 0 個以上形成する。 このとき、 各ファイバグレーティングの反射率を 4 ~ 5 %程度 あるいはそれ以上とし、 また、 反射される光の中心波長を僅かずつ (例えば 0 . 5 n m間隔で) シフ トさせる。 このようなファイバグレーティ ングを一本のファ ィバ心線に書き込むには、 例えば、 一種類の位相マスク 2 5および紫外線を用い ながら、 一本のファイバ心線に印加する張力を段階的に変化させながらグレーテ ィ ングの書き込みを行えばよい。 グレーティング書き込み時の張力が異なること によって、 たとえ書き込み時の格子間隔が一定でも張力開放時における各グレー ティ ングの格子間隔が相互に変化することになる。  In the present embodiment, a plurality of fiber gratings 21 having the structure shown in FIG. 2 or FIG. 3 are formed in one core 22 at intervals along the axial direction. For example, 20 or more short-period fiber gratings with a length of 5 to 20 mm are formed at 50 mm intervals. At this time, the reflectance of each fiber grating is set to about 4 to 5% or more, and the center wavelength of the reflected light is shifted slightly (for example, at 0.5 nm intervals). In order to write such a fiber grating on one fiber core, for example, while using one type of phase mask 25 and ultraviolet light, the tension applied to one fiber core is gradually increased. The writing of the gradation may be performed while changing. Due to the difference in the tension at the time of writing the grating, the grating interval of each grating changes when the tension is released even if the grating interval at the time of writing is constant.
図 4に示すように、 計測用心線 2 0となる光ファイノ 心線に張力を印加した状 態で、 位相マスク 2 5を介して掃引照射をすることによってグレーティ ング 2 1 の書き込みを行った。 掃引照射は反射ミラー 2 7を移動させることによって行つ た。 本実施形態では、 被覆層 2 4を除去することなくグレーティング 2 1の書き 込みを行っているので、 機械的強度が低下していない高強度の光ファイバ心線 (計測用心線 2 0 ) を作製することができる。 グレーティング 2 1が書き込まれ る光ファイバ心線 (被照射ファイバ) 2 0には、 力ブラ 3 3を介して広帯域光源 3 1および分光器 3 2を結合し、 反射光波形を観察するしながら、 グレーティン グ 2 1の書き込みを行った。 広帯域光源 3 1として、 スーパ一ルミネッセンスダ ィオード光源 ( S L D光源) を用いた。 光源 3 1と力ブラ 3 3との間には光アイ ソレー夕 3 4を配置した。 分光器 3 2 として、 例えば分解能が 0 . 1 n m以下の 赤外波長領域の分光器を用いることができる。 As shown in Fig. 4, while applying tension to the optical fiber core that becomes the measurement core 20, a sweep 21 is applied through the phase mask 25 to perform the grating 21 Was written. Sweep irradiation was performed by moving the reflection mirror 27. In this embodiment, since the grating 21 is written without removing the coating layer 24, a high-strength optical fiber core wire (measurement core wire 20) whose mechanical strength is not reduced is manufactured. can do. The broadband light source 31 and the spectroscope 32 are connected to the optical fiber core (irradiated fiber) 20 on which the grating 21 is to be written via the force bra 33, and the reflected light waveform is observed while observing the reflected light waveform. Grating 21 1 was written. As a broadband light source 31, a superluminescence diode light source (SLD light source) was used. An optical isolator 34 was arranged between the light source 31 and the power bra 33. As the spectroscope 32, for example, a spectroscope in the infrared wavelength region having a resolution of 0.1 nm or less can be used.
被照射ファイバ 2 0の張力は、 図 5に示すように、 固定ドラム 3 5および回転 ドラム (張力付与ドラム) 3 6を用いて印加し、 印加する張力量は、 回転ドラム 3 6の回転角度を制御することによって設定した。 具体的には、 被照射ファイバ 2 0を固定ドラム 3 5および回転ドラム 3 6のそれそれに巻き付けて固定した後、 回転ドラム 3 6に接続されたステッピングモー夕 (不図示) を駆動することによ つて回転ドラム 3 6を回転させ、 設定した張力を被照射ファイバ 2 0に印加した。 本実施形態では、 2 0段階の張力設定を行い、 同一の被照射ファイバ 2 0に反射 波長の異なるグレ一ティ ング 2 1を同一マスクで 5 0 m m間隔にて連続して作製 した。  As shown in FIG. 5, the tension of the irradiated fiber 20 is applied by using a fixed drum 35 and a rotating drum (tension applying drum) 36, and the amount of applied tension is determined by the rotation angle of the rotating drum 36. Set by controlling. More specifically, the fiber 20 to be irradiated is wound around and fixed to those of the fixed drum 35 and the rotating drum 36, and then a stepping motor (not shown) connected to the rotating drum 36 is driven. Then, the rotating drum 36 was rotated, and the set tension was applied to the irradiated fiber 20. In this embodiment, the tension is set in 20 steps, and gratings 21 having different reflection wavelengths are continuously formed on the same irradiated fiber 20 with the same mask at intervals of 50 mm.
図 6 ( a ) に、 作製した計測用心線 2 0を模式的に示し、 図 6 ( b ) に、 計測 用心線 2 0の反射特性を示す。 計測用心線 2 0には、 約 0 . 8 2 n m間隔で反射 波長の異なるグレ一ティ ング 2 1が 2 0個形成されている。 グレーティング 2 1 同士の間隔 が 5 0 mmという近接した距離間隔で複数種類のグレーティングが 一本の被照射ファイバ 2 0に配置されている。 図 6 ( b ) からわかるように、 各 グレーティング 2 1の反射特性は、 良好に制御されている。  FIG. 6 (a) schematically shows the fabricated measurement core 20 and FIG. 6 (b) shows the reflection characteristics of the measurement core 20. FIG. Twenty gratings 21 having different reflection wavelengths are formed on the measurement core 20 at intervals of about 0.82 nm. A plurality of types of gratings are arranged in one irradiated fiber 20 at a close distance interval of 50 mm between the gratings 21. As can be seen from FIG. 6 (b), the reflection characteristics of each grating 21 are well controlled.
図 7は、 グレーティ ング 2 1作製時および張力解放後における各グレーティ ン グ 2 1の反射ピーク波長 (反射特性) を示している。 図 7から、 回転ドラム (張 力付与ドラム) 3 6の回転量によって、 張力解放後の反射ピーク波長を線形に制 御できることがわかる。 すなわち、 被照射ファイバ 2 0の伸び量によって、 グレ —ティング 2 1の反射波長を線形に制御することができる。 また、 グレーティ ン グ 2 1作製時の反射波長変化から、 張力印加に伴う高弾性効果によるコア部の低 屈折率化を確認できる。 本実施形態では、 最大約 1 . 4 %の伸びを被照射フアイ バに与えることによって、 約 1 Ί n mの短波長化を行うことができた。 Figure 7 shows the reflection peak wavelength (reflection characteristics) of each grating 21 at the time of making the grating 21 and after releasing the tension. From Fig. 7, it can be seen that the reflection peak wavelength after releasing the tension can be linearly controlled by the amount of rotation of the rotating drum (tension applying drum) 36. That is, depending on the amount of elongation of the irradiated fiber 20, —The reflection wavelength of Ting 2 1 can be controlled linearly. Also, from the change in the reflection wavelength at the time of the preparation of the grating 21, it can be confirmed that the refractive index of the core portion is lowered due to the high elasticity effect accompanying the application of the tension. In the present embodiment, it was possible to shorten the wavelength by about 1 nm by giving the irradiated fiber a maximum of about 1.4%.
図 8に、 被照射ファイバ 2 0に印加された張力量の指標となる照射時反射波長 と張力解放後反射波長との関係を示す。 図 8からわかるように、 極めて良好な線 形性が確認できる。 従って、 被照射ファイバ 2 0に印可する張力量を制御するこ とによって高精度な波長設定が可能であることが理解できる。  FIG. 8 shows the relationship between the reflection wavelength at the time of irradiation and the reflection wavelength after the tension is released, which is an index of the amount of tension applied to the fiber 20 to be irradiated. As can be seen from FIG. 8, extremely good linearity can be confirmed. Therefore, it can be understood that the wavelength can be set with high accuracy by controlling the amount of tension applied to the irradiation target fiber 20.
次に、 図 9を参照しながら、 計測用心線 2 0を含む光ファイバケーブル 1 0 0 用いて歪み分布 (または応力分布) が測定できることの基本的原理を説明する。 光ファイバケーブル 1 0◦に含まれる計測用心線 2 0は、 n個 (nは 2以上の 整数) のファイバグレーティング F B G 1 ~ F B G nを有している。 この例では、 計測用心線 2 0は、 力ブラ 3 3を介して広帯域光源 3 1および分光器 3 2が結合 されている。 広帯域光源 3 1、 分光器 3 2および力ブラ 3 3は、 光学測定系 4 0 を構成している。 本実施形態では、 上述したように広帯域光源 3 1として、 例え ばスーパールミネッセンスダイオード光源 (S L D光源) を用いることができ、 また、 分光器 3 2として、 例えば分解能が 0 . 1 n m以下の赤外波長領域の分光 器を用いることができる。 なお、 広帯域光源に限らず、 少なく とも測定光の波長 を含む光源であればよい。  Next, with reference to FIG. 9, the basic principle of measuring the strain distribution (or stress distribution) using the optical fiber cable 100 including the measuring core 20 will be described. The measuring core wire 20 included in the optical fiber cable 10 ° has n (n is an integer of 2 or more) fiber gratings FBG 1 to FBGn. In this example, the measuring core 20 is coupled to the broadband light source 31 and the spectroscope 32 via the force bra 33. The broadband light source 31, the spectroscope 32, and the power blur 33 constitute an optical measurement system 40. In the present embodiment, for example, a super luminescence diode light source (SLD light source) can be used as the broadband light source 31 as described above, and the spectroscope 32 has, for example, an infrared light having a resolution of 0.1 nm or less. A spectrometer in the wavelength region can be used. The light source is not limited to the broadband light source, and may be any light source including at least the wavelength of the measurement light.
まず、 広帯域光源 3 1から出た広帯域光 (測定光) は、 力ブラ 3 3を経て計測 用心線 2 0に入射する。 この広帯域光は、 まず、 ファイバグレーティング F B G 1に入射する。 入射した広帯域光のうち、 ファイバグレーティ ング F B G 1の周 期 Λ 1で決まる反射ピーク波長 λ 1の光が選択的に左方へ反射される。 波長入 1 の反射光は力ブラ 3 3を介して分光器 3 2に入射する。 光ファイバ心線 1の上方 には透過光スぺク トルが模式的に示され、 計測用心線 2 0の下方には反射光スぺ ク トルが模式的に示されている。  First, the broadband light (measurement light) emitted from the broadband light source 31 enters the measurement core 20 via the force bra 33. This broadband light first enters the fiber grating FBG1. Of the incident broadband light, light having a reflection peak wavelength λ 1 determined by the period Λ 1 of the fiber grating FBG 1 is selectively reflected to the left. The reflected light having the wavelength of 1 enters the spectroscope 32 via the force bra 33. Above the optical fiber core 1, a transmitted light spectrum is schematically shown, and below a measurement core 20, a reflected light spectrum is schematically shown.
第 1ファイバグレ一ティング F B G 1に入射した広帯域光のうち、 ファイバグ レ一ティング F B G 1で反射されなかった帯域成分は、 次のファイバグレーティ ング F B G 2に入射する。 ここで同様に、 第 2ファイバグレーティング F B G 2 の周期 Λ 2で決まる反射ピーク波長え 2の光が選択的に左方へ反射され、 波長え 2の反射光は力ブラ 3 3を介して分光器 3 2に入射することになる。 Of the broadband light incident on the first fiber grating FBG 1, the band component not reflected by the fiber grating FBG 1 is incident on the next fiber grating FBG 2. Here, similarly, the second fiber grating FBG 2 The light of the reflection peak wavelength 2 determined by the period Λ 2 is selectively reflected to the left, and the reflected light of the wavelength 2 enters the spectroscope 32 via the force bra 3 3.
なお、 図 9に示す構成例では、 ファイバグレーティング: F B G l〜F B G nの 反射ピーク波長え 1〜え nが、 計測用心線 2 0の入射端側から遠ざかるにつれて 大きくなるようにファイバグレーティ ング F B G 1〜F B G nが作製されている < すなわち、 え 1くえ 2く ' "入 ( n - 1 ) く入 nの関係が成立している。  In the configuration example shown in Fig. 9, the fiber gratings FBG1 to FBGn have fiber reflection gratings such that the reflection peak wavelengths 1 to n increase as the distance from the entrance end of the measurement core 20 increases. 1 to FBG n have been produced. <That is, the relationship of 1 1 2 1 ”“ n (1) 入 n has been established.
この例において、 例えば、 反射ピーク波長 λ 3のファイバグレーティ ング F B G 3に応力が付与された場合、 この応力によってファイバに歪みが生じ、 その結 果、 F B G 3の反射ピーク波長は、 λ 3から (入 3 + Δ人) に変化する。 この波 長シフ ト量 Δ人を計測することによって、 F B G 3の位置での歪み量をモニター することができ、 F B G 3の位置に付与された応力を測定することが可能となる < F B G 3について説明したが、 F B G 1〜 F B G ηについても同様に各位置の歪 みや応力を測定することができる。 従って、 距離分解能を上げるには、 ファイバ グレーティングの間隔 dを小さくすればよく、 測定点数を多くするには、 計測用 心線 2 0に形成するファイバグレーティング 2 1の数 (設定波長数) を多くすれ ばよい。 なお、 波長シフ ト量と歪み (または応力) との関係は、 事前に、 その対 応関係を測定し、 記録しておけばよい。  In this example, for example, if a stress is applied to the fiber grating FBG 3 having a reflection peak wavelength λ3, the stress causes a strain in the fiber, and as a result, the reflection peak wavelength of the FBG 3 increases from λ3. (Into 3 + Δ people). By measuring this wavelength shift amount Δ person, the amount of strain at the position of FBG 3 can be monitored, and the stress applied to the position of FBG 3 can be measured. <About FBG 3 As described above, the distortion and stress at each position can be measured for FBG1 to FBGη in the same manner. Therefore, to increase the distance resolution, it is sufficient to reduce the distance d between the fiber gratings. To increase the number of measurement points, the number of fiber gratings 21 (the number of set wavelengths) formed on the measurement core wire 20 is increased. do it. Note that the relationship between the wavelength shift amount and the strain (or stress) may be measured and recorded in advance.
図 1 0は、 図 1に示した光ファイバケーブル 1 0 0の計測用心線 2 0を光学測 定系 4 0に接続した構成を模式的に示しており、 光ファイバケーブル 1 0 0は、 曲げ半径 Rで屈曲されている。 本実施形態で用いた光ファイバケーブル 1 0 0の 外径は 1 3 mmであり、 スロッ ト周期は 5 0 0 mmである。 図 1に示すように光 ファイバケーブル 1 0 0のスロッ ト 5 5内の最外層となるように、 計測用心線 2 0を含む 4心テ一ブ心線 5 0をスロッ ト 5 5内に収納している。 テープ心線 5 0 内における計測用心線 2 0以外の光ファイノ、'心線 3 0には、 通常使用される通信 用光ファイバ心線 3 0を用い、 テープ心線 5 0の下層 4枚のテープ心線 5 1に含 まれる光ファイバ心線にも同様に通常使用される通信用光フアイバ心線 3 0を用 いている。 なお、 光ファイバケーブル 1 0 0は Z型のものを用いた。  FIG. 10 schematically shows a configuration in which the measurement core wire 20 of the optical fiber cable 100 shown in FIG. 1 is connected to the optical measurement system 40, and the optical fiber cable 100 is bent. It is bent at radius R. The outer diameter of the optical fiber cable 100 used in the present embodiment is 13 mm, and the slot cycle is 500 mm. As shown in Fig. 1, the four-core cable 50 including the measuring core 20 is housed in the slot 55 so that it is the outermost layer in the slot 55 of the optical fiber cable 100. are doing. For the optical fiber except the measurement core 20 inside the tape core 50, use the commonly used communication optical fiber core 30 for the core 30, and use the four lower layers of the tape core 50 Similarly, the optical fiber core 30 for communication which is usually used is also used for the optical fiber core included in the tape core 51. The optical fiber cable 100 used was a Z type.
図 1 1は、 図 1 0に示した構成における光ファイバケーブル 1 0 0の各位置 「m m] に対する反射波長シフ ト量 [ n m ] および歪み (量) [ % ] を示してい る。 ケーブル曲げ半径 Rが 38 c m、 2 5 cm、 および 1 7 c mの場合について 計測を行った。 別途行った実験結果から、 ファイバグレーティ ング部に印加され た張力と反射波長変化量との対応係数 1. 34 [nm/N] ( 1 1. 83 [nm /%] ) を求め、 この対応係数を用いて反射波長シフ ト量から歪み (量) への換 算を行った。 Fig. 11 shows the reflection wavelength shift amount [nm] and distortion (amount) [%] for each position [mm] of the optical fiber cable 100 in the configuration shown in Fig. 10. You. Measurements were performed for cable bending radii R of 38 cm, 25 cm, and 17 cm. Based on the results of an experiment conducted separately, a coefficient of 1.34 [nm / N] (1.83 [nm /%]) between the tension applied to the fiber grating and the amount of change in the reflected wavelength was determined. The coefficient was used to convert the reflected wavelength shift amount into distortion (amount).
図 1 1からわかるように、 引張り方向歪みと圧縮方向歪みとの繰り返しがスロ ッ ト周期で観測され、 光ファイバの収納形状に応じて発生した歪み偏在を観察す ることができた。 この計測によって、 約 0. 002 %の計測精度で両方向の歪み 量を多点 (距離分解能: 50 mm) で検出することができた。  As can be seen from Fig. 11, the repetition of the strain in the tensile direction and the strain in the compressive direction was observed at the slot period, and the uneven distribution of the strain generated according to the storage shape of the optical fiber could be observed. By this measurement, the amount of distortion in both directions could be detected at multiple points (distance resolution: 50 mm) with a measurement accuracy of about 0.002%.
次に、 図 1 2に示す S Z型の光ファイバケーブルに対しても同様の計測を行つ た。 図 1 2 (a) は、 S Z型の光ファイバケーブル 1 1 0の断面を模式的に示し ており、 図 1 2 (b) は、 光ファイバケーブル 1 1 0に収納されたテープ心線 5 0の断面を模式的に示している。 テープ心線 5 0は、 図 1に示した 4心テープ心 線と同様であり、 計測用心線 20を含んでいる。 光ファイバケーブル 1 1 0のス ロッ トロッ ド 6 1のスロッ ト径は 1 0 mmであり、 S Zピッチは 320 mmであ る。 溝角度振幅 6>が 2 7 0度の 5溝スロッ ト内の 1つのスロッ 卜にテープ心線 5 0が最外層に位置するように収納されている。 なお、 スロッ トロッ ド 6 1の中心 にはテンションメンバ 6 2が配置されている。  Next, the same measurement was performed for the SZ type optical fiber cable shown in Fig. 12. FIG. 12 (a) schematically shows a cross section of the SZ type optical fiber cable 110, and FIG. 12 (b) shows a tape core 50 stored in the optical fiber cable 110. Is schematically shown. The tape core 50 is the same as the four-core tape shown in FIG. 1 and includes a measurement core 20. The slot diameter of the slot rod 61 of the optical fiber cable 110 is 10 mm, and the SZ pitch is 320 mm. The tape core 50 is accommodated in one of the five-groove slots having a groove angle amplitude 6> 270 degrees so that the tape core 50 is located on the outermost layer. At the center of the slot rod 61, a tension member 62 is disposed.
図 1 2 ( c ) に示すように、 ケーブル曲げ半径 R 1 7. 5 cmで光ファイバケ 一ブル 1 1 0を屈曲させ、 反射波形の計測を行った。 屈曲は、 線 6 1 cを基準に して、 内向き曲げ、 外向き曲げ、 および中間曲げの 3方向について行った。 図 1 3に、 反射光波形の計測結果を示す。  As shown in Fig. 12 (c), the optical fiber cable 110 was bent at a cable bending radius R17.5 cm, and the reflection waveform was measured. The bending was performed in three directions, inward bending, outward bending, and intermediate bending, based on the line 61c. Figure 13 shows the measurement results of the reflected light waveform.
図 1 3からわかるように、 外向き曲げ (線 6 1 cが外弧となる屈曲形態) では 計測用心線全体に引張り歪みが印可され、 内向き曲げ (線 6 1 cが内弧となる屈 曲形態) では、 外向き曲げと逆に圧縮歪みが印加されることが観察された。 中間 曲げ (線 6 1 cについての外弧/内弧が均等に光ファイバケーブル軌跡に存在す る屈曲形態) では、 引張りと圧縮とがスロッ トピッチで周期的に分布することが 確認された。  As can be seen from Fig. 13, in the outward bending (bending configuration in which the wire 61c is an outer arc), tensile strain is applied to the entire measurement core wire, and the inward bending (bending in which the wire 61c is an inner arc). In the (curved form), it was observed that a compressive strain was applied in a direction opposite to the outward bending. In the intermediate bending (bending mode in which the outer and inner arcs of the line 61c are uniformly present in the optical fiber cable trajectory), it was confirmed that the tension and the compression were periodically distributed at the slot pitch.
なお、 上記実施形態では、 反射光ピーク波長のシフ ト量から軸方向歪を測定し ているが、 反射光の半値全幅のシフ ト量から心線の屈曲量を求めることもできる ( ただし、 その場合は、 反射率の高いファイバグレーティングを形成しておく必要 がある。 また、 事前に、 計測用心線 2 0の反射ピークと温度との関係を測定し、 記録しておけば、 温度補正が可能となる。 In the above embodiment, the axial distortion is measured from the shift amount of the reflected light peak wavelength. However, the amount of bending of the core wire can also be obtained from the shift amount of the full width at half maximum of the reflected light. (However, in this case, it is necessary to form a fiber grating with high reflectivity. If the relationship between the reflection peak of the measurement core wire 20 and the temperature is measured and recorded, the temperature can be corrected.
また、 本実施形態では、 紫外線透過型紫外線硬化樹脂でクラッ ド層を被覆した 後、 この樹脂層を剥がすことなく、 樹脂層を透過するように紫外線をコアに照射 し、 それによつてグレーティングを書き込んでいる。 このような製造方法によれ ば、 グレーティング書き込み後も光ファイバ心線は高い機械的強度を発揮するこ とができる。 その結果、 作製時に光ファイバ心線へ大きな歪みを印加することが でき、 かつ光ファイバへ印加された大きな歪みを測定することが可能となる。 そ して、 ファイバグレーティング作製時の印加応力を幅広く設定できることにより、 波長設定範囲を大きくとることが可能になる。 さらに、 機械的強度が確保された 当該ファイバグレーティングを用いることによって、 多心テープ心線化や光ケー ブル化を、 従来の光通信ケーブルの自動作製装置において容易に実現することが できる。 もし、 樹脂層を除去した状態でグレーティングを書き込む方法を採用し た場合、 光ファイバ心線の機械的強度が著しく低下するため、 1 %程度の軸方向 歪みでファイバ心線が破断するおそれがある。 これに対して本実施形態の方法で 製造した光ファイバ心線によれば、 その 5〜 6倍の機械的強度が確保されるため、 5 %の歪まで安定した測定を実施することが可能である。  In the present embodiment, after the cladding layer is covered with an ultraviolet-transmissive ultraviolet-curing resin, the core is irradiated with ultraviolet rays so as to pass through the resin layer without peeling the resin layer, thereby writing the grating. In. According to such a manufacturing method, the optical fiber core can exhibit high mechanical strength even after writing the grating. As a result, a large strain can be applied to the optical fiber at the time of fabrication, and a large strain applied to the optical fiber can be measured. In addition, since the applied stress at the time of fabricating the fiber grating can be set widely, it is possible to widen the wavelength setting range. Further, by using the fiber grating having the secured mechanical strength, it is possible to easily realize multi-core tape or optical cable in a conventional automatic manufacturing apparatus for optical communication cables. If the method of writing the grating with the resin layer removed is adopted, the mechanical strength of the optical fiber core will be significantly reduced, and the fiber core may be broken by about 1% axial strain. . On the other hand, according to the optical fiber core manufactured by the method of the present embodiment, since the mechanical strength is 5 to 6 times that of the optical fiber, stable measurement can be performed up to 5% strain. is there.
本実施形態にかかる光ファイバケーブルは、 反射特性の異なる複数種類のファ ィバグレーティング 2 1を有する計測用心線 2 0を有している。 複数種類のファ ィバグレーティング 2 1のそれそれは近距離間隔で配置することができるため、 高い距離分解能を持つ歪み測定が可能な光ファイバケーブルを提供することがで きる。 従って、 従来の技術では計測できなかった光ファイバ心線の局所的な最大 歪を測定することができる。 また、 従来の技術と比較して、 高精度の測定精度 (例えば、 約 0 . 0 0 2 % ) で歪み量を測定することができるという利点もある c さらに、 各位置での歪み量 (または応力) を波長多重でリアルタイムにて測定す ることができるため、 比較的長い測定時間 ( 5分以上) を要していた従来の技術 よりも好適である。 また、 本実施形態の光ファイバケーブルでは、 特殊か 高価 な専用計測器を用いずに、 簡便に歪み測定をすることができるという利点もある なお、 図 1 4に示すように、 計測用心線 2 0に通信光を伝播させて、 計測用心 線 2 0を通信用光ファイバ心線として使用することも可能である。 この場合、 通 信光と、 通信光の通信波長帯とは異なる波長帯の計測光とを力ブラ (例えば W D M力ブラ) 3 3にて計測用心線 2 0に合波すれば、 通信光による通信に影響を与 えることなく活線状態で光ファィバの歪み分布を計測することができる。 The optical fiber cable according to the present embodiment has a measurement core wire 20 having a plurality of types of fiber gratings 21 having different reflection characteristics. Since a plurality of types of fiber gratings 21 can be arranged at short distance intervals, it is possible to provide an optical fiber cable capable of measuring strain with high distance resolution. Therefore, it is possible to measure the local maximum strain of the optical fiber, which cannot be measured by the conventional technique. In addition, compared with the conventional technology, there is an advantage that the distortion amount can be measured with high accuracy (for example, about 0.002%). C Furthermore, the distortion amount at each position (or Stress) can be measured in real time by wavelength multiplexing, which is more suitable than the conventional technology that required a relatively long measurement time (5 minutes or more). In addition, the optical fiber cable of the present embodiment is special or expensive. There is also an advantage that distortion measurement can be performed easily without using a dedicated measuring instrument.As shown in Fig. 14, the communication light is propagated through the measuring core 20 and the measuring core 20 is used. Can be used as a communication optical fiber. In this case, if the communication light and the measurement light in a wavelength band different from the communication wavelength band of the communication light are combined into a measurement core 20 by a power bra (eg, a WDM power bra) 33, communication by the communication light is performed. The strain distribution of the optical fiber can be measured in the live state without affecting the optical fiber.
このように測定光と通信光とを伝播する計測用心線 2 0を用いると、 歪み測定 専用の光ファイノ 心線を搭載することなく、 光ファイバケーブル 1 0 0に搭載す る全ての光ファイバ心線を通信用に使用することができる。 計測用心線 2 0にお いて測定光によって影響を受けずに通信可能な通信光を伝播させる場合、 例えば、 通信波長 1 . 3 1〃m帯に対して計測光波長が 1 . 5 5〃m帯になるように、 ま たは通信波長 1 . 5 5〃m帯に対して計測光波長が 1 . 6 5〃m帯になるように 設計したファイバグレーティ ング 2 1を形成すればよい。  By using the measurement core wire 20 that propagates the measurement light and the communication light in this manner, all the optical fiber cores mounted on the optical fiber cable 100 can be mounted without installing the optical fiber core dedicated to strain measurement. The wires can be used for communication. When propagating communication light that can be communicated without being affected by the measurement light in the measurement core wire 20, for example, the measurement light wavelength is 1.55〃m for the communication wavelength of 1.31〃m band. The fiber grating 21 may be formed so as to be in a band or a measurement light wavelength in a 1.65〃m band for a communication wavelength of 1.55〃m.
また、 図 1 5 ( a ) および (b ) に示すように、 同一反射特性を有するフアイ バグレーティング 2 1が点対称 (すなわち、 光ファイバケーブルの中心軸を基準 にして対称) になるように一対の計測用心線 2 0 a - 2 0 a ' (または 2 0 b— 2 0 b ' ) を配置することもできる。  As shown in Figs. 15 (a) and 15 (b), a pair of fiber bag gratings 21 having the same reflection characteristic is point-symmetrical (that is, symmetric with respect to the central axis of the optical fiber cable). The measurement core 20a-20a '(or 20b-20b') can be arranged.
このようにして一対の計測用心線 2 0 a - 2 0 a ' を収納した光ファイバケー ブル 1 2 0を用いると、 計測用心線 2 0 aの反射ピークと、 計測用心線 2 0 a ' の反射ピークとを比較すること (例えば、 両者のピークの差を取ること) によつ て、 ケーブル屈曲 (またはケーブル屈曲による応力) を感度良く検知することが できる。 すなわち、 図 1 5 ( b ) に示すように、 例えば、 計測用心線 2 0 aの入 2位置に引張り応力が印加される場合、 計測用心線 2 0 a ' のえ 2位置では圧縮 応力が印加されることになるため、 ケ一ブル内で点対称に位置する計測用心線 2 0 aおよび 2 0 a ' は、 ケーブル屈曲に起因して生じる応力分布が正反対となり、 これによつて観察されるピーク波長変化も反対の値になる。 その結果、 ケーブル 屈曲をさせていない状態で一致する両者のピーク波長のずれ間隔を測定すること によって、 単芯 ( 1本の計測用心線 2 0 ) での測定と比較して 2倍のシフ ト量を 検出することができるため、 測定感度が 2倍にすることができる。 また、 測定に より求められた引張り応力と圧縮応力とを比較することによって、 光ファイバケ —ブルがどの方向に屈曲しているかも検出することができる。 さらに、 計測用心 線 2 0 a— 2 0 a, に加えて、 もう一対の計測用心線 20 b— 20 b, を搭載さ せて、 2対の計測用心線が直交するように 4本の計測用心線を設ければ、 螺旋収 納構造を取っている箇所以外の光ファイバケーブル 1 20における全ての方向の 屈曲を検知することができ、 その方向も検出することが可能となる。 なお、 一対 の計測用心線 20 a— 2 0 a' を用いることによって、 例えば温度の影響をキヤ ンセルさせて応力による影響だけを観測することも可能である。 By using the optical fiber cable 120 containing the pair of measurement cores 20a-20a 'in this way, the reflection peak of the measurement core 20a and the measurement core 20a' By comparing with the reflection peak (for example, by taking the difference between the two peaks), the cable bending (or the stress due to the cable bending) can be detected with high sensitivity. That is, as shown in Fig. 15 (b), for example, when tensile stress is applied to the 2nd position of the measuring core 20a, compressive stress is applied at the 2nd position of the measuring core 20a ' The measurement cores 20 a and 20 a ′ that are located point-symmetrically in the cable have opposite stress distributions caused by the cable bending, and are thus observed. The peak wavelength change also has the opposite value. As a result, by measuring the gap between the peak wavelengths that match each other in a state where the cable is not bent, the shift is doubled compared to the measurement with a single core (one measuring core wire 20). Because the amount can be detected, the measurement sensitivity can be doubled. Also, for measurement By comparing the obtained tensile stress and compressive stress, it is also possible to detect in which direction the optical fiber cable is bent. Furthermore, in addition to the measurement cores 20a-20a, another pair of measurement cores 20b-20b is mounted, so that the four pairs of measurement cores are orthogonal to each other. If the guard wire is provided, it is possible to detect bending in all directions in the optical fiber cable 120 other than the portion having the spiral housing structure, and it is also possible to detect the direction. By using a pair of measurement cords 20a-20a ', for example, it is possible to cancel the effect of temperature and observe only the effect of stress.
また、 図 1 6に示すように、 2対の計測用心線 20 a— 20 a' および 2 O b - 2 0 b' を搭載した光ファイバケーブル 1 30の構成にすることもできる。 こ のような構成にした光ファイバケーブル 1 30でも、 光ファイバケーブル 1 2 0 と同様に、 応力や曲げの分布を高感度で検知することができる。 内部構造を螺旋 化せずに外部シースに面方向を示すマ一キングを付したり、 ケーブル形状を非円 にするなどして心線配置位置が同定できる状態で布設すれば、 ケーブルの屈曲量 とその方向を反射光測定で観測することができる。  Further, as shown in FIG. 16, an optical fiber cable 130 equipped with two pairs of measurement cores 20a-20a 'and 2Ob-20b' may be used. With the optical fiber cable 130 having such a configuration, similarly to the optical fiber cable 120, the distribution of stress and bending can be detected with high sensitivity. If the outer sheath is provided with markings that indicate the surface direction without spiraling the internal structure, or if the cable is laid out in a non-circular shape, the cable can be bent in such a way that the core wire arrangement position can be identified. And its direction can be observed by reflected light measurement.
(実施形態 2 )  (Embodiment 2)
次に、 図 1 7 (a) および (b) を参照しながら、 本発明による光ファイバケ 一ブルを用いて応力分布を検知する方法を説明する。  Next, a method for detecting a stress distribution using the optical fiber cable according to the present invention will be described with reference to FIGS. 17 (a) and (b).
この例では、 上記実施形態と同様の光ファイバケーブル 70が道路 7 2の中に 埋設されている。 光ファイバケ一ブル 70の一方の端部は監視装置 7 1に接続さ れている。 監視装置 7 1は、 内部に図 9の光学測定系 40と同様の構成を含んで いる。 光ファイバケーブル 70は多数のファイバグレ一ティングを内蔵しており、 各ファイバグレ一ティングの反射ピーク波長は少しずつ異なっている。  In this example, the same optical fiber cable 70 as in the above embodiment is embedded in the road 72. One end of the optical fiber cable 70 is connected to the monitoring device 71. The monitoring device 71 includes a configuration similar to that of the optical measurement system 40 in FIG. 9 inside. The optical fiber cable 70 has a large number of built-in fiber gratings, and the reflection peak wavelength of each fiber grating is slightly different.
図 1 7 (a) に示すように、 自動車 73および 74等が道路 72上に存在する と、 その影響で光ファイバケーブル 70の対応部分に応力が発生する。 前述した 原理に基づいて、 監視装置 7 1は光ファイバケーブル 70上の軸方向応力分布を 検知することができる。  As shown in FIG. 17 (a), when automobiles 73 and 74 exist on the road 72, a stress is generated in a corresponding portion of the optical fiber cable 70 due to the influence. Based on the principle described above, the monitoring device 71 can detect the axial stress distribution on the optical fiber cable 70.
また、 図 1 7 (b) に示すように、 光ファイバケーブル 70を二次元的な広が りを持つ監視区域内に蛇行して埋設することもでき、 図 1 7 (b) に示す監視区 域のどの部分にどの程度の応力が発生しているかを検出することが可能になる。 なお、 道路 7 2についての説明をしたが、 トンネルや橋における応力について も同様に検出することができる。 また、 土砂崩れ等によって光ファイバケーブル に応力や曲げが発生した場合でも、 土砂崩れが発生した箇所に行かなくとも遠隔 から光ファイバケ一ブルの状態を観測することも可能である。 Further, as shown in FIG. 17 (b), the optical fiber cable 70 can be buried meandering in a monitoring area having a two-dimensional spread, and the monitoring area shown in FIG. 17 (b) can be buried. It is possible to detect which part of the region and how much stress is generated. Although the description has been given of the road 72, stress in a tunnel or a bridge can be similarly detected. In addition, even when stress or bending occurs in the optical fiber cable due to landslide, etc., it is possible to observe the state of the optical fiber cable remotely without going to the place where the landslide occurred.
この例によれば、 ファイバグレーティングを用いているため高い精度で応力 · 歪が測定でき、 しかも、 一本のファイバを用いて多点計測が実現する。 また、 フ アイバグレーティングは数十 mm間隔で形成することが可能であるため、 位置に ついての高い分解能が得られる。 光ファイバケ一ブル 7 0を図 1 4に示す構成に すれば、 光ファイバケーブル 7 0に搭載する全ての光ファイバ心線を通信用に使 用することができる。 さらに、 通信用光ファイバにグレーティ ングを書き込みこ とによって、 通信用光ファイバに自己の張力を監視する機能を与えることも可能 である。 実施形態 1で説明した被覆剤は通信用光ファイバに求められる特性を満 足し、 実施形態 1で説明したグレーティング作製方法は、 通信用光ファイバにも 適用可能である。  According to this example, since a fiber grating is used, stress and strain can be measured with high accuracy, and multipoint measurement can be realized using one fiber. In addition, since fine bag ratings can be formed at intervals of several tens of mm, a high position resolution can be obtained. If the optical fiber cable 70 is configured as shown in FIG. 14, all optical fiber cores mounted on the optical fiber cable 70 can be used for communication. Furthermore, by writing a grating on the communication optical fiber, it is possible to give the communication optical fiber a function of monitoring its own tension. The coating agent described in the first embodiment satisfies the characteristics required for a communication optical fiber, and the grating manufacturing method described in the first embodiment is also applicable to a communication optical fiber.
また、 光ファイバケーブル 7 0を図 1 5または図 1 6に示す構成にした場合に は、 光ファイバケーブル 7 0の屈曲によるシフ ト量を感度良く検知することがで き、 光ファイバケーブル 7 0の屈曲量および屈曲の方向を検出することが可能と なる。 産業上の利用可能性  When the optical fiber cable 70 is configured as shown in FIG. 15 or FIG. 16, the shift amount due to the bending of the optical fiber cable 70 can be detected with high sensitivity. It is possible to detect the amount of bending and the direction of bending. Industrial applicability
本発明によれば、 光ファイバケーブルが備える複数の光ファイバ心線のうちの 少なくとも一つが複数種類のファイバグレーティングを有しているので、 従来の 技術よりも高い距離分解能を持つ歪み測定が可能な光ファイバケーブルを提供す ることができる。 また、 本発明の光ファイバケーブルを空間的に配置すれば、 二 次元的または三次元的な応力分布を精度良く検知することができる。 さらに、 光 フアイバケ一ブルの中心軸を基準にして同種類のファイバグレーティングを対称 に配置すると、 光ファイバケーブルの屈曲によるシフ ト量を感度良く検知でき、 屈曲量や屈曲の方向を検出することができる。  According to the present invention, since at least one of the plurality of optical fiber cores included in the optical fiber cable has a plurality of types of fiber gratings, strain measurement with a higher distance resolution than the conventional technology can be performed. An optical fiber cable can be provided. In addition, if the optical fiber cable of the present invention is spatially arranged, a two-dimensional or three-dimensional stress distribution can be detected with high accuracy. Furthermore, if the same type of fiber grating is arranged symmetrically with respect to the center axis of the optical fiber cable, the shift amount due to the bending of the optical fiber cable can be detected with high sensitivity, and the bending amount and the direction of the bending can be detected. it can.

Claims

請 求 の 範 囲 The scope of the claims
1 . 複数の光ファイバ心線を備えた光ファイバケーブルであって、 前記複数の 光ファイバ心線のうちの少なくとも一つは、 反射特性または透過特性の異なる複 数種類のファイバグレーティ ングを有し、 1. An optical fiber cable including a plurality of optical fiber cores, wherein at least one of the plurality of optical fiber cores has a plurality of types of fiber gratings having different reflection characteristics or transmission characteristics. ,
前記複数種類のファイバグレーティングは、 少なく とも、 第 1波長の光を反射 または透過する第 1ファイバグレーティングと、 前記第 1波長とは異なる第 2波 長の光を反射または透過する第 2ファイバグレーティ ングとを含んでおり、 前記第 2ファイバグレーティングは、 前記第 1ファイバグレーティングが形成 されている位置から軸方向に沿って離れた位置に形成されており、 前記第 1ファ ィバグレーティングおよび前記第 2ファイバグレーティングのそれそれからの波 長シフ トによって、 前記第 1ファイバグレーティングおよび前記第 2ファイバグ レーティングのそれそれの位置の歪み量がモニターされる、 光ファイバケーブル  The plurality of types of fiber gratings include at least a first fiber grating that reflects or transmits light of a first wavelength, and a second fiber grating that reflects or transmits light of a second wavelength different from the first wavelength. The second fiber grating is formed at a position along the axial direction from the position where the first fiber grating is formed, and the first fiber grating and the second fiber grating The optical fiber cable monitors the amount of distortion at each position of the first fiber grating and the second fiber grating by the wavelength shift from each of the two fiber gratings.
2 . 前記複数種類のファイバグレーティ ングを有する光ファイバ心線は、 少な くとも前記第 1波長の光と前記第 2波長の光とを含む測定光と、 前記測定光によ つて影響を受けずに通信可能な通信光とを伝播する、 請求項 1に記載の光フアイ バケ一ブル。 2. The optical fiber core having the plurality of types of fiber gratings is affected by the measurement light including at least the first wavelength light and the second wavelength light, and the measurement light. 2. The optical fiber cable according to claim 1, wherein the optical fiber cable propagates with communication light that can communicate without communication.
3 . 前記複数の光ファイバ心線のうちの少なくとも 2つは、 前記複数種類のフ アイバグレーティングを有する光ファイバ心線であり、 3. At least two of the plurality of optical fiber cores are the optical fiber cores having the plurality of types of fiber gratings,
前記複数種類のファイバグレーティングを有する光ファイバ心線のそれそれが 含んでいる前記第 1ファイバグレーティングおよび前記第 2ファイバグレーティ ングは、 前記複数の光ファイバ心線を備えた光ファイバケ一ブルの中心軸を基準 にして対称に配置されている、 請求項 1または 2に記載の光ファイバケーブル。  The first fiber grating and the second fiber grating included in each of the optical fiber cores having the plurality of types of fiber gratings are the center of the optical fiber cable having the plurality of optical fiber cores. 3. The optical fiber cable according to claim 1, wherein the optical fiber cable is symmetrically arranged with respect to the axis.
4 . 請求項 1から 3の何れかひとつに記載の光ファイバケ一ブルに対して、 前 記第 1波長の光および前記第 2波長の光を含む光源の光を入射する工程と、 前記第 1ファイバグレーティングからの第 1波長シフ トおよび前記第 2フアイ バグレーティングからの第 2波長シフ トをそれそれ検出し、 それによつて前記第 1ファイバグレーティングの位置における第 1歪み量、 および前記第 2ファイバ グレーティングの位置における第 2歪み量を求める工程と 4. A step of injecting light of a light source including the light of the first wavelength and the light of the second wavelength into the optical fiber cable according to any one of claims 1 to 3, The first wavelength shift from the fiber grating and the second wavelength shift Detecting a second wavelength shift from the bag grating, thereby obtaining a first strain amount at the position of the first fiber grating and a second strain amount at the position of the second fiber grating.
を包含する、 歪み測定方法。  A strain measurement method.
5 . 請求項 3に記載の光ファイバケーブルに対して、 前記第 1波長の光および 前記第 2波長の光を含む光源の光を入射する工程と、 5. The optical fiber cable according to claim 3, wherein the light of the light source including the light of the first wavelength and the light of the second wavelength,
前記光ファイバケ一ブルの前記中心軸を基準にして対称に配置された一対のフ アイバグレ一ティングの波長シフ 卜の差をとることによって、 前記一対のフアイ バグレ一ティ ングの位置における歪み量を求める工程と  The difference between the wavelength shift of a pair of fiber bag gratings symmetrically arranged with respect to the center axis of the optical fiber cable is obtained to determine the amount of distortion at the position of the pair of fiber bagging. Process and
を包含する、 歪み測定方法。  A strain measurement method.
PCT/JP2001/000464 2000-01-28 2001-01-24 Fiber optic cable and method of measuring distortion WO2001055672A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000019479A JP2001208915A (en) 2000-01-28 2000-01-28 Optical fiber cable and method of measuring distortion
JP2000-019479 2000-01-28

Publications (1)

Publication Number Publication Date
WO2001055672A1 true WO2001055672A1 (en) 2001-08-02

Family

ID=18546168

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/000464 WO2001055672A1 (en) 2000-01-28 2001-01-24 Fiber optic cable and method of measuring distortion

Country Status (2)

Country Link
JP (1) JP2001208915A (en)
WO (1) WO2001055672A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106840012A (en) * 2015-12-07 2017-06-13 上海新力动力设备研究所 A kind of strengthen the hair powder charge II interface strain measuring methods based on grating sensing technique
CN110940292A (en) * 2019-12-31 2020-03-31 大连博瑞鑫科技有限公司 Fiber bragg grating buckling monitoring sensor and preparation method thereof

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4748981B2 (en) * 2004-12-20 2011-08-17 株式会社クレヴァシステムズ Intrusion detection sensor and intrusion detection system
JP4799394B2 (en) * 2006-12-21 2011-10-26 株式会社フジクラ Optical fiber sensor
KR102258907B1 (en) * 2014-09-24 2021-06-01 엘에스전선 주식회사 Monitoring system for optical fiber and power line aggregated cable and monitoring method therefor
JP6700096B2 (en) * 2016-04-27 2020-05-27 株式会社フジクラ Method for manufacturing optical fiber grating
JPWO2020027223A1 (en) * 2018-07-31 2021-09-24 古河電気工業株式会社 Cable, cable shape sensing system, sensing system, cable shape sensing method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0191063B1 (en) * 1984-08-13 1992-05-13 United Technologies Corporation Method for impressing grating within fiber optics
JPH0491323U (en) * 1990-12-21 1992-08-10
EP0681681B1 (en) * 1993-01-29 1998-05-27 United Technologies Corporation Active multipoint fiber laser sensor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0191063B1 (en) * 1984-08-13 1992-05-13 United Technologies Corporation Method for impressing grating within fiber optics
JPH0491323U (en) * 1990-12-21 1992-08-10
EP0681681B1 (en) * 1993-01-29 1998-05-27 United Technologies Corporation Active multipoint fiber laser sensor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106840012A (en) * 2015-12-07 2017-06-13 上海新力动力设备研究所 A kind of strengthen the hair powder charge II interface strain measuring methods based on grating sensing technique
CN110940292A (en) * 2019-12-31 2020-03-31 大连博瑞鑫科技有限公司 Fiber bragg grating buckling monitoring sensor and preparation method thereof

Also Published As

Publication number Publication date
JP2001208915A (en) 2001-08-03

Similar Documents

Publication Publication Date Title
Westbrook et al. Continuous multicore optical fiber grating arrays for distributed sensing applications
US5848204A (en) Fiber devices and sensors based on multimode fiber Bragg gratings
JP5588451B2 (en) Small diameter optical fiber
RU2622479C2 (en) Optical measurement system for determining position and/or form of associated object
US5182779A (en) Device, system and process for detecting tensile loads on a rope having an optical fiber incorporated therein
Du et al. Fundamentals and applications of optical fiber Bragg grating sensors to textile structural composites
Westbrook et al. Kilometer length, low loss enhanced back scattering fiber for distributed sensing
US6925230B2 (en) Long period chiral fiber grating apparatus
Min et al. Moiré phase-shifted fiber Bragg gratings in polymer optical fibers
US20040258373A1 (en) Monitoring cable
WO2012023219A1 (en) Polarization maintaining fiber and optical fiber sensor using same
Echevarria et al. Uniform fiber Bragg grating first-and second-order diffraction wavelength experimental characterization for strain-temperature discrimination
JP2000258190A (en) Sensor employing fiber grating and physical quantity measuring method
JP2014035312A (en) Moisture sensor using optical fiber
WO2001055672A1 (en) Fiber optic cable and method of measuring distortion
Tokarev et al. UV-transparent fluoropolymer fiber coating for the inscription of chirped Bragg gratings arrays
Saber et al. Plasmonic photonic crystal fiber sensor for optical partial discharge detection
Westbrook et al. Distributed sensing over meter lengths using twisted multicore optical fiber with continuous Bragg gratings
Bai et al. Sensing applications of fiber Bragg gratings in single mode fibers with as-drawn 25 μm diameter cladding
Ribeiro et al. Fiber optic bending loss sensor for application on monitoring of embankment dams
WO2023172459A1 (en) Systems, methods and assemblies for single input shape sensing
Kopp et al. Chiral fiber gratings: perspectives and challenges for sensing applications
Westbrook et al. Performance characteristics of continuously grated multicore sensor fiber
Tanaka et al. Highly sensitive operation of LPG vibration sensor using bending-induced spectral change
Wade et al. Changes in spectral properties of fibre Bragg gratings owing to bending

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase