WO2001009613A1 - Method for screening molecules for the treatment of huntington disease - Google Patents

Method for screening molecules for the treatment of huntington disease Download PDF

Info

Publication number
WO2001009613A1
WO2001009613A1 PCT/FR2000/002036 FR0002036W WO0109613A1 WO 2001009613 A1 WO2001009613 A1 WO 2001009613A1 FR 0002036 W FR0002036 W FR 0002036W WO 0109613 A1 WO0109613 A1 WO 0109613A1
Authority
WO
WIPO (PCT)
Prior art keywords
htt
normal
disease
interaction
huntington
Prior art date
Application number
PCT/FR2000/002036
Other languages
French (fr)
Inventor
Christian Neri
Original Assignee
Fondation Jean Dausset-Ceph
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fondation Jean Dausset-Ceph filed Critical Fondation Jean Dausset-Ceph
Priority to EP00953231A priority Critical patent/EP1200834A1/en
Priority to CA002380519A priority patent/CA2380519A1/en
Publication of WO2001009613A1 publication Critical patent/WO2001009613A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/28Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6893Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids related to diseases not provided for elsewhere
    • G01N33/6896Neurological disorders, e.g. Alzheimer's disease
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/136Screening for pharmacological compounds
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/156Polymorphic or mutational markers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/158Expression markers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/28Neurological disorders
    • G01N2800/2835Movement disorders, e.g. Parkinson, Huntington, Tourette

Definitions

  • the subject of the present invention is a method for screening molecules intended for the treatment of Huntington's disease as well as the use of molecules thus demonstrated for the preparation of a medicament intended for the curative or preventive treatment of this disease. It also relates to a method of identifying therapeutic targets for Huntington's disease and the use of nucleotide sequences corresponding to genes involved in the development of this disease in order to treat it.
  • Huntington's Disease is an autosomal dominant neurodegenerative disease with polyglutamine expansion (polyQ) whose gene codes for huntingtin (htt), an unknown function protein expressed in the brain and several other tissues.
  • polyQ polyglutamine expansion
  • the expansion of polyQ (following a dynamic mutation-or expansion-CAG in the htt gene) is located in the N-terminal part of the htt, a region that is conserved and functionally important for the appearance of HD.
  • the normal htt contains a normal number of glutamine repeats (Gins) (typically: 15 to 20 Gins, mainly: less than 39 Gins).
  • the mutated htt contains an abnormally high number of glutamine repeats (typically the pathological threshold is around 39 Gins, the expansion of polyglns can for example reach up to 180 Gins in certain cases) which is associated with the appearance of disease (Koshy and Zoghbi, 1997).
  • Htt is an important protein for the genesis and survival of the neuron (Zeitlin et al., 1995; White et al., 1997). In the normal state, this protein is mainly located in the cytoplasm of neurons where it is for example associated with microtubules (DiFiglia et al., 1997). Normal htt has also been detected in the nucleus, in mouse neuroblastoma cells (de Rooij, 1996), and in the post-mortem human brain (Hoogeven et al., 1993).
  • HD is characterized in the first place by a progressive and selective apoptosis of the striatal neurons; at later stages, HD affects other regions of the brain such as the cortex (Koshy & Zoghbi, 1997). The molecular bases of this selectivity are not known.
  • the cause of HD is to be sought in biochemical disturbances in the signaling pathways involved in the genesis, functioning, and survival of the neurons affected in HD.
  • the nucleus could therefore be the privileged place of the pathophysiological mechanisms of HD, in particular in terms of dysregulation of transcription and inadequate expression of certain genes and proteins.
  • the first 50 to 200 amino acids are sufficient to induce cellular or behavioral phenotypes similar to those observed in HD in transgenic models of mice (Mangianiri et al., 1996; Bâtes et al., 1998), of Drosophila (Jackson and al., 1998), and nematode C. elegans (Faber et al., 1999; Néri et al., 1998).
  • the expansion of polyQ would also modify the accessibility of huntingtin partner proteins (PPH) to their binding sites in the htt (apart from polyQ domain), resulting in a decrease or an increase in the binding of mutated htt with PPH belonging to intracellular signaling pathways essential for the functioning and survival of the neuron.
  • PPH huntingtin partner proteins
  • the potential role of abnormal protein-protein interactions in HD has been illustrated by the identification in double-hybrid screening (Fields and Song, 1989) of several PPHs which bind to the N-terminal region of htt (amino acids 1 to 500). The majority of these PPHs seem to bind to htt outside of the polygln domain.
  • HAP1 proteins of unknown function associated with the cytoskeleton whose binding sites seem to lie between amino acids 171 and 500.
  • HAP1 interacts with several proteins, in particular the pl50 G '" erf subunit of dynactin (Engelender et al., 1997), which confirms the role of HAP1 in the formation and activity of the cytoskeleton and the trafficking of intracellular vesicles.
  • - HYPA and HYPB proteins with WW domain of unknown function, binding at the level of the two polyprolines immediately at the C-terminal of the polyQ domain.
  • SH3GL3 protein of unknown function with SH3 domain belonging to the Grb2 family, the members of this family being associated with synaptosomes, binding at the level of the two polyprolines immediately C- terminale à la polyglns. Promoter role of SH3GL3 in the formation of aggregates.
  • HAP1, SH3GL3, HYP series Several PPHs which exhibit an increase in binding to the mutated htt (HAP1, SH3GL3, HYP series) are associated with the formation of nuclear aggregates such as SH3GL3 which has a promoter role on their formation (Sittler et al., 1998), or HIP2 which is directly associated with the kinetics of degradation or accumulation of intracellular proteins.
  • aggregates are not a sine qua non cause of apoptosis (Saudou et al., 1998; Sisodia, 1998), the search for a blockage of an abnormally increased and "neurotoxic" link between the mutated htt and a PPH by an active compound (as described by C.
  • HIPl is the only PPH which has so far shown a loss of connection with the mutated htt.
  • HIP1 interacts approximately 10 times less well with mutated htt comprising 125 Gins than with normal htt comprising 25 Gins (Kalchman et al., 1997 and WO 97/18825).
  • This protein is specifically expressed in the brain, more specifically in the cortex. Its function is unknown: the homology of 20-40% with Sla2p suggests a role in cytoskeleton formation, and the presence of a “Leucine zipper” motif suggests involvement in several protein-protein interactions.
  • HIP1 The role of HIP1 in the formation of the cytoskeleton is supported by the fact that this protein is associated with cell membranes (cell debris, nucleus, synaptosomes, mitochondria, microsomes and plasma membranes), a common characteristic of all cytoskeleton proteins such as Tartine. Since HIPl is not linked to the formation of aggregates, it is an interesting therapeutic target. However, the fact that it is a cytoskeleton protein does not fall within the framework of the latest data in the scientific literature which indicates that the nuclear localization of the mutated htt is necessary for the establishment of the pathophysiological mechanisms of HD (Saudou et al. 1998; Sisodia, 1998). 3) The influence of the length of the N-terminal fragment (in particular those likely to pass into the nucleus) on the binding of htt to PPH has not been described previously.
  • the inventors provide the following new elements: identification of a new WW domain PPH whose human counterpart is a nuclear transcription factor containing a polymorphic domain (repetition of QA or Glu-Ala dipeptides), and identification of biochemical conditions (size of the fragments of the htt) which go hand in hand with notable differences in the binding of this PPH with the mutated htt and the normal htt in the nucleus.
  • the therapeutic targets and the strong differences identified by the inventors are compatible with the concept of therapeutic interventions which aim to act on the pathological effects of certain forms of the mutated htt, without side effects on the normal physiological functions of certain forms of the htt normal.
  • Double-hybrid screening for htt partners is a particularly interesting entry point into the biology of affected neurons in HD.
  • the ultimate proof that PPH is actually involved in neuronal impairments comes from additional in vitro and in vivo experiments. For example, it is possible to prove in vivo in a whole organism 1) that the candidate target is actually involved in the disease phenotype (loss of function or apoptosis) reproduced in the model organism used, 2) that it is possible to modulate its biological activity, and 3) that this modulation can restore normal functioning of neurons rendered deficient by the mutated htt.
  • C. elegans In terms of prospective therapeutics in neurobiology, C. elegans has the following advantages: well-characterized nervous system, good functional homology with humans in terms of neuronal physiology, many normal neurological phenotypes and mutants available for analysis. Compared to other simple model organisms such as Drosophila (Jackson et al., 1998), C. elegans also has the following advantages: completely sequenced genome, faster mutagenesis, transparent organism allowing visualization of all neurons and a analysis of protein expression in living animals, short reproduction cycle (a few days), knowledge of complete cell phylogeny, ease of use (culture on solid or liquid agar, resistance of larvae to freezing, and possibility high throughput screening (e.g. 96-well microplates).
  • C. elegans Sequencing consortium 1998
  • the study of human disease mechanisms in C. elegans is recognized as a powerful study tool for the identification and validation (at the cellular level, and before anatomo-functional pharmacological study in more complex models like the mouse or primate) of therapeutic targets. More particularly, the inventors set out to study the interactions between a human disease protein, htt, and all of the proteins listed in C.
  • the data obtained by the inventors therefore relate to the identification of phenomena of variation in interaction between a protein of C. elegans which turns out to be a protein with a WW domain of 946 amino acids and certain fragments of normal or mutated htt (loss of 'interaction).
  • ZKl 127.9 is unknown in the nematode, this protein has characteristics which strongly suggest that the activity of regulating the transcription of the genes of the human homolog of ZKl 127.9 (CA150) is modulated by N- fragments.
  • htt terminals whose molecular weight is compatible with a passage in the nucleus of neuronal cells through nuclear pores.
  • the N-terminal fragments of the htt used by the inventors have the capacity, due to their molecular weights (approximately 10-70 kDa), to penetrate into the nucleus of neurons by nuclear pores, no doubt passively (Hackam et al., 1998).
  • ZKl 127.9 187-758 has a loss of interaction of 92
  • ZK1127.9 187-758 for htt546Ql28 in comparison to htt546Q15 is 56%.
  • the phenomenon of loss of interaction between ZK1127.9 187-758 and htt is all the more marked as the size of the N-terminal fragments of the mutated htt is reduced. This loss of interaction is likely to be complete for any fragment of the htt containing less than 546 amino acids and more than 90 amino acids.
  • ZKl 127.9_187-758 is not able to interact with htt90Q15, which indicates the region 90-546 of the htt contains the binding sites for ZKl 127.9.
  • ZK1127.9_187-758 and htt is practically complete for httl52Q128.
  • the demonstration of a loss of interaction between mutated htt and WW domain proteins, and the fact that this loss is dependent on the length of the N-terminal fragment of the htt are new facts, which signal a potentially new mechanism important of neuronal apoptosis or neuronal dysfunction in HD, and underline the great potential value of the couple htt-CA150 as a therapeutic target.
  • ZKl 127.9 has significant sequence homology with the human nuclear transcription factor CA150, a factor whose gene appears to be expressed in the human brain.
  • CA150 is a nuclear protein
  • the size of the fragments of the htt tested by the inventors is compatible with a passage in the nucleus, and that the htt is moreover detected in the nucleus of neuronal cells, indicates that CA150 and htt most likely co-locate in the nucleus of brain neurons.
  • Coli vector pGEX, and vector pGEX- epitopeHA such as modified by the inventors
  • fixing of the htt on sepharose beads GST affinity resin, Stratagene
  • incubation with ZKl 127.9 :: HA the retention of ZKl 127.9 :: HA by normal and mutated htt was tested by western blot using an anti-HA antibody.
  • htt-CA150 interactions in vitro after expression and purification of GST fusion proteins:: htt and of CA150 (fragment or whole protein) in E. coli (vector pGEX and vector pGEX- HA epitope as modified by the Inventors), fixing of the htt on sepharose beads (GST affinity resin, Stratagene), and incubation with CA150:: HA, the retention of CA150 by the normal htt was tested by western blot using anti- HA or anti-CA150 antibodies.
  • CA150 source of the complete cDNA: IMAGE network
  • Coli coupling of CA150 on sepharose beads and incubation with protein extracts from normal lymphoblastoid lines or from patients suffering from HD, and from post-mortem brains (healthy or sick individuals), the retention of htt by CA150 can be tested by western blot using anti-htt antibodies whose epitopes are located at the level of the first 600 amino acids of htt .
  • the co-localization of CA150 with htt in these human tissues can be verified by conventional subcellular fractionation and western blot techniques as previously described (Sittler et al., 1998).
  • human-CA150 htt interactions can be tested directly in a double-hybrid in yeast.
  • CA150 As regards the biochemical properties of CA150, during the CA150 production experiments:: HA in E. coli and the control of production by western blot using an anti-HA antibody or an antiCA150 antibody, the inventors have demonstrated a non-aggregated form of CA150 migrating on gel substantially at the expected size (approximately 92 kDA), and aggregated forms of CA150 migrating largely above the expected size.
  • the aggregation properties of CA150 are most certainly to be attributed to the N-terminal repeat region (QA) 38, which, as in the case of polyglutamines or polyalanines in other human proteins, prove capable of promoting the aggregation of the carrier protein with itself, or even with other proteins.
  • QA N-terminal repeat region
  • the aggregation properties of CA150 demonstrated by the inventors are capable of participating in the mechanisms of Huntington's disease.
  • the data described make it possible to study the role of ZKl 127.9 in C. elegans using standard transgenesis and mutagenesis techniques in C. elegans: profile of expression of ZKl 127.9 in C. elegans after expression in transgenesis of fusion proteins
  • the binding sites between CA150 and Normal htt can be identified (for example by deletion mapping) in order to develop in vitro and in vivo tests which allow the identification of active compounds (peptides or organic compounds) capable of reconstituting the normal activity of the couple htt- CA150.
  • active compounds peptides or organic compounds
  • the in vivo efficacy of such compounds can be directly tested in HD animal models which allow pharmacology studies in terms of toxicity, pharmacokinetics, effective doses (for example in primates, cf. Palfi et al., 1998).
  • CA150 is a modulator factor of nuclear transcription which interacts with RNA polymerase type II (Shune et al., 1997), and carries a repeating zone (rich in Alanine and Glutamine) which is present in several other modulating factors of the transcription as GAL11 or SSN6 in yeast, or Zeste in Drosophila.
  • the inventors Using nucleotide primers at the boundaries of the nucleotide region corresponding to the domain (QA) 60 and after conventional analysis of the PCR products on polyacrylamide gel and autoradiography, the inventors have demonstrated that the domain (QA) 60 of CA150 is polymorphic (4 alleles between 57 and 62 QA, 30% heterozygosity) in the normal population after testing 20 healthy individuals (10 father-mother couples; CEPH reference families of American origin number 102, 1332, 1331, 1340, 1347, 1362, 1413, 1416, 1423, 884).
  • CA150 The interest of CA150 is supported by the fact that other PPHs such as HYPM or HYPE (Faber et al., 1998) do not do not seem to be expressed in the human brain due to the absence of ESTs in the human brain corresponding to their genes (Unigene database).
  • the interest of CA150 is also supported by the fact that the htt presents a high proportion of EST in the brain, which reflects an expression of the htt in all the cells of the brain including those which are not reached in HD, while that CA150 has a low proportion of brain EST which is likely to reflect selective expression of CA150 in certain neurons in the brain, possibly those affected in HD.
  • the inventors therefore set out to highlight molecules capable of mimicking the activity of normal htt or CA150 so as to then use them as a palliative for one or the other of these compounds in order to restore functionality. of the normal htt / CA150 pair.
  • the molecules in question can be any type of compound (natural molecules, synthetic peptides, organic compounds, combinatorial products) capable of mimicking either the activity of normal htt or any N-terminal fragment of normal htt having an activity similar to that of normal htt not only in its interaction with CA150 but also in the consequences of this interaction, in particular with regard to the expressions or repressions of genes induced by the normal functioning of this couple.
  • the N-terminal fragment in question will have at most 546 amino acids.
  • these molecules also include molecules capable of mimicking the activity of a functional fragment of CA150, that is to say of a fragment capable of fulfilling a function similar to that of CA150 not only in its interaction with normal htt but also in the consequences of this interaction, in particular with regard to the expressions or repressions of genes induced by the normal functioning of this couple.
  • a functional fragment of CA150 for example a fragment devoid of the region (QA) 38, is capable of allowing the normal functioning of this couple to be restored.
  • the subject of the present invention is a method for screening molecules capable of modifying the normal htt / CA 150 interaction comprising: a) pre-incubation of the normal htt or of one of its N-terminal fragments with a molecule to be tested, b) the elimination of the molecules to be tested which remained free in the pre-incubation medium, c) the addition to the resulting medium of b) of CA 150 or of a functional fragment of CA150, d) elimination of CA 150 or functional fragment of CA 150 after incubation of the medium c), e) the measurement of the affinity constant of the normal htt couple or N-terminal fragment thereof / CA 150 or functional fragment of CA 150 derived from d), f) the comparison of the affinity constant measured in e) with a standard affinity constant of the normal htt / CA 150 couple.
  • the compound fixed in step a) of the above process is fixed on solid phase which can be chosen from beads, a tube, a plate, etc.
  • the process according to the invention as written above makes it possible to demonstrate a competition occurring between the molecule to be tested and normal htt or an N-terminal fragment of normal htt or else CA150 or a fragment of CA150, depending on the order of the reagents used. Indeed, if the comparison of the affinity constant measured in e) (of the above process) with a finding of standard affinity of the normal htt / CA150 couple reveals an interaction for said couple weaker than that known under standard conditions, then it will be necessary to be interested in the molecule tested which will probably be at the origin of this “loss of interaction” as a palliative with one or the other of the elements of the couple in question.
  • the method according to the invention may further comprise a step g) in which the affinity constant of the pair tested molecule / normal htt or N-terminal fragment thereof is measured. , or of the couple tested molecule / CA 150 or functional fragment of CA150, and optionally a step h) in which the affinity constant obtained in g) is compared with the standard affinity constant htt normal / CA 150.
  • step i) in which the tested molecule is identified for which the affinity constant measured in step g) is significant of an interaction with normal htt or an N-terminal fragment thereof or with CA150 or a functional fragment of CA150.
  • This molecule is in fact of particular interest and the present invention also relates to its use for the preparation of a medicament intended for the curative or preventive treatment of Huntington's disease. Indeed, this molecule is capable of restoring in whole or in part a normal functionality of the normal htt / CA150 couple.
  • the present invention also relates to a method of identifying therapeutic targets for Huntington's disease by the comparative analysis of the expression profiles of mRNAs from healthy cells with expression profiles of mRNAs from cells in which Losses of normal htt / CA150 interactions are suspected.
  • mRNA is meant not only total mRNA but also certain mRNA (by Northern blot, by sequencing of EST from cDNA libraries, by cDNA display, by subtrartive hybridization of mRNA or cDNA, using DNA membranes or microarrays, or any combination of these methods).
  • these mRNAs can be not only derived from cells but also from whole tissues or organisms (human or non-human).
  • Such a method makes it possible to demonstrate under-expression or over-expression of genes in cells suspected of having a loss of normal htt / CA150 interaction with respect to the expression of the same genes in healthy cells, and the nucleotide sequences corresponding to all or part of these genes can be used in the context of the present invention for the preparation of a medicament intended for the curative or preventive treatment of Huntington's disease.
  • nucleotide sequence corresponding to a part of the gene is meant any sequence corresponding to a functional fragment of the gene in question and the expression of which is capable of giving rise to a polypeptide having an activity similar to that of said gene at least as regards its action on the functionality of the normal htt / CA150 pair.
  • under- or over-expression is meant any expression of a gene which is lower or greater than normal respectively, which can be detected by standard techniques well known to those skilled in the art.
  • the above use will consist in introducing the nucleotide sequence corresponding to all or part of this gene in the cells concerned in a construction containing all the elements necessary for the expression of a gene, so as to re-express this gene in situ and thus restore the functionality of the normal htt / CA150 pair.
  • Such an approach can for example be carried out by gene therapy.
  • the above use will consist in blocking the expression in situ of this gene for example by means of an antisense strategy.
  • the present invention also relates to the use of a nucleotide sequence corresponding to the CA150 gene or of a functional fragment of CA150 in order to overexpress it by means of a construction comprising all the elements necessary for this overexpression, level of cells suspected of having normal htt / CA150 interaction losses, as part of a curative or preventive treatment for Huntington's disease.
  • a nucleotide sequence corresponding to the CA150 gene or of a functional fragment of CA150 in order to overexpress it by means of a construction comprising all the elements necessary for this overexpression, level of cells suspected of having normal htt / CA150 interaction losses, as part of a curative or preventive treatment for Huntington's disease.
  • the present invention also relates to an anti-mutated htt antibody capable of discriminating between normal htt and mutated htt. It also relates to the use of such an antibody for the preparation of a medicament intended for the curative or preventive treatment of Huntington's disease.
  • Such a process of “neutralization” of the mutated huntingtin could moreover be entirely accompanied by a local over-expression of CA150 or a functional fragment of CA150 and / or of normal htt or of an N-terminal fragment. from normal htt so as to reintroduce the partners necessary for restoring the functionality of the normal htt / CA150 pair. As an example, this could be achieved through gene therapy.
  • FIG. 1 Quantitative test (ONPG test in liquid phase) for the interactions between N-terminal fragments of the htt and the protein ZK1127.9 187-758.
  • Htt90 corresponds to the product of exon 1 of the htt gene.
  • Htt 152 is a fragment that is more likely to enter the neuron nucleus than htt546.
  • the values represented correspond to the means over 45 in vivo measurements (9 independent cultures; 5 measurements / point / culture). The intervals represent the limits of the values obtained.
  • percentage of link difference between the 15 Gins allele and the 128 Gins allele.
  • the distributions of ONPG values were compared by ANOVA analysis using Macintosh Statview software.
  • Figure 2 Comparison of the proteins ZK.1127.9 and CA150. The annotated sizes are in number of amino acids. Black squares: WW domains. Hatched area: polymorphic domain (QA) 60 in the normal population, 4 alleles, at least 15% - 30% heterozygosity, depending on the normal population tested.
  • Figure 3 In vitro interaction of normal htt 152 (fixed on sepharose beads in the form of GST fusion protein) and ZK1127.09_187- 758:: HA. The interaction is demonstrated using an anti-HA antibody.
  • -httl52Q18 no normal htt on the sepharose beads (negative control); + httl52Q18: with normal htt on the sepharose beads, in this case the arrow indicates the protein ZKl 127.9 eluted after retention by the htt fixed on the beads.
  • FIG. 5 Delay in migration on CA150 gel (fragment 133-910 amino acids) after expression and purification in E. coli.
  • CA150 is detected using an anti-HA antibody or a polyclonal anti-CA150 antibody.
  • A detection with an anti-HA antibody (commercial origin).
  • B detection with a polyclonal anti-CA150 antibody (Sune et al., 1997).
  • Ag aggregated form; N.Ag: non-aggregated form.
  • CA150 has the following expression profiles: A: Human cortex, normal individual: diffuse expression, mainly nuclear. B: Human cortex, patient with Huntington's disease: expression in the form of aggregates in the nucleus and in the cytoplasm of positive neurons. This expression profile is strongly similar to that observed with an anti-huntingtin antibody (as widely described in the literature), which suggests that CA150 and huntingtin co-localize in cellular aggregates in patients.
  • C human striatum, normal individual: same observation as for A.
  • D human striatum, patient suffering from Huntington: same observation as for B.
  • the constructs intended for double-hybrid screening and encoding the htt were created in the vector pGBT9 (Genbank accession number UO7646, Clontech) in the form of fusion proteins with the binding domain of the GAL4 protein (GAL4BD) for the specific DNA sequences that have been introduced into the genome of host yeasts.
  • the cDNA fragments coding for htt are from the laboratory of Michael Hayden, University of British Columbia, Vancouver, Canada. All the constructions were sequenced in order to verify the reading phase of the cDNAs of the htt, the number of CAG repeats, and the absence of point mutations or deletions. The C.
  • elegans cDNA library (cDNAs generated using an oligo-dT primer) was subcloned into the vector pACT2 (Genbank accession number U29899, Clontech) in the form of fusion proteins with the GAL4 transcription activation domain (GAL4AD).
  • GAL4AD GAL4 transcription activation domain
  • the double-hybrid screening was carried out using a protocol based on the fusion of mat-a and mat-alpha yeasts (Bendixen et al., 1994), the mat-a yeasts (strain CGI 945, Clontech) expressing in this case the fusion proteins [GAL4BD :: htt], and the mat-alpha yeasts (strain Y187, Clontech) expressing the fusions [protein fragments of
  • the construct used by the inventors for screening was htt546Q15 ( Figure 1). After screening 3.8 10 8 clones (fusion efficiency greater than 33%), 56 positive clones were detected. After elimination of false positives (based on a double-hybrid interaction with the fusion protein GAL4BD :: lamine) and verification of the redundancy of the true positives by analysis of the restriction profiles (enzymatic digestion of the cDNAs selected using the restriction enzymes EcoRI and BamHI), the inventors sequenced the 5 'and 3' ends of the unique cDNA clones results (i.e. 2 clones).
  • the sequence of the protein ZKl 127.9 was predicted from the analysis of the genomic sequence of C. elegans (The C. elegans Sequencing consortium, 1998) and contains 946 amino acids. Comparison of the 3 'and 5' end sequences of the cDNA clone corresponding to ZKl 127.9 with the C. elegans library of the Sanger Center using the BLASTN and BLASTX programs made it possible to establish that the cDNA clone corresponding to the gene for the protein ZKl 127.9 codes for amino acids 187 to 758 of this protein.
  • the binding sites of htt546Q15 on ZKl 127.9 are therefore located between amino acids 187 to 758 of ZKl 127.9 (ZKl 127.9_187-758).
  • the interaction profile of ZKl 127.9 187-758 with different forms of htt was analyzed by the inventors using double-hybrid tests (Bendixen et al., 1996) , initially qualitatively after selection of positive clones on agar and transfer to nylon filters, and then quantitatively after selection of positive clones in liquid phase, protein extraction, and ONPG test in liquid phase (Kalchman et al., 1996 ).
  • - ZKl 127.9 187-758 contains 3 WW domains (Pirozzi et al., 1997) at positions 200-225, 262-292, and 378-407 amino acids (0.00019 ⁇ Evaluated ⁇ 0.011).
  • the WW domains are 35-40 amino acid motifs characterized by the presence of 4 conserved aromatic residues, two of which are tryptophans, mediate protein-protein interactions, and conventionally interact with polyproline domains (Pirozzi et al, 1997 ).
  • ZKl 127.9_187-758 interacts with the proline-rich region of the htt (htt: Genbank accession number L 12392) which is located immediately at the C-terminal of the polyQ domain (between amino acids 40 and 100) and which contains 2 polyprolines of 11 and 10 consecutive prolines. It is also very likely that the binding of htt to CA150 involves the polyprolines and the immediately C-terminal region (on at least 30 amino acids) to the polyproline domains in the htt and the WW domains at positions 133-162, 431-460 ( corresponding to the domain WW 262-292 of ZKl 127.9), and 532-559 aminocides (lO ⁇ EvaluesO.0016) of CA150.
  • HAP1 -huntingtin interactions do not contribute to the molecular pathology in the Huntington's disease transgenic mice. FEBS letter 17, 229-232, 1998.
  • HIPl a human homologue of S. cerevisae Sla2p, interacts with membrane-associated huntingtin in the brain. Nat Genêt 16, 44-52, 1997.
  • the C. elegans sequencing consortium Genome sequence of the nematode C. elegans: A platform for investigating biology. Science 282, 2012-2018, 1998.
  • HIP-I a huntingtin interacting protein isolated by the yeast two-hybrid System. Hum Mol Genêt 6, 487-495, 1997. White JK, Auerbach W, Duyao MP, Vonsattel JP, Gusella JF, Joyner AL, and MacDonald M. Huntingtin is required for neurogenesis and is not impaired by the Huntington's disease CAG expansion. Nature Genêt 17, 404-410, 1997.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Organic Chemistry (AREA)
  • Neurology (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Neurosurgery (AREA)
  • Immunology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Hematology (AREA)
  • Zoology (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Medicinal Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Genetics & Genomics (AREA)
  • Urology & Nephrology (AREA)
  • Food Science & Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biophysics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Hospice & Palliative Care (AREA)
  • Psychiatry (AREA)
  • Cell Biology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Peptides Or Proteins (AREA)

Abstract

The invention concerns a method for screening molecules for the treatment of Huntington disease and a method for identifying therapeutic targets for said disease. The methods are based on the indentification of molecules which are capable of modifying the interaction normal htt/ CA 150.

Description

PROCEDE DE CRIBLAGE DE MOLECULES DESTINEES AU TRAITEMENT DE LA MALADD2 DE HUNTINGTON METHOD FOR SCREENING MOLECULES FOR THE TREATMENT OF HUNTINGTON MALADD2
La présente invention a pour objet un procédé de criblage de molécules destiné au traitement de la maladie de Huntington ainsi que l'utilisation de molécules ainsi mises en évidence pour la préparation d'un médicament destiné au traitement curatif ou préventif de cette maladie. Elle concerne également un procédé d'identification de cibles thérapeutiques pour la maladie de Huntington et l'utilisation de séquences nucléotidiques correspondant à des gènes impliqués dans le développement de cette maladie afin de la traiter.The subject of the present invention is a method for screening molecules intended for the treatment of Huntington's disease as well as the use of molecules thus demonstrated for the preparation of a medicament intended for the curative or preventive treatment of this disease. It also relates to a method of identifying therapeutic targets for Huntington's disease and the use of nucleotide sequences corresponding to genes involved in the development of this disease in order to treat it.
La maladie de Huntington (Huntington Disease ou HD) est une maladie neurodégénérative dominante autosomale à expansion de polyglutamines (polyQ) dont le gène code pour la huntingtine (htt), une protéine de fonction inconnue exprimée dans le cerveau et plusieurs autres tissus. L'expansion de polyQ (suite à une mutation dynamique-ou expansion-CAG dans le gène de la htt) se situe dans la partie N-terminale de la htt, une région conservée et fonctionnellement importante pour l'apparition de HD. La htt normale contient un nombre normal de répétitions glutamines (Gins) (typiquement : 15 à 20 Gins, principalement : moins de 39 Gins). La htt mutée contient un nombre anormalement élevé de répétitions glutamines (typiquement le seuil pathologique est d'environ 39 Gins, l'expansion de polyglns pouvant par exemple atteindre jusqu'à 180 Gins dans certains cas) qui est associé à l'apparition de la maladie (Koshy et Zoghbi, 1997). La htt serait une protéine importante pour la genèse et la survie du neurone (Zeitlin et al., 1995 ; White et al., 1997). A l'état normal, cette protéine est localisée essentiellement dans le cytoplasme des neurones où elle est par exemple associée aux microtubules (DiFiglia et al., 1997). La htt normale a aussi été détectée dans le noyau, dans des cellules de neuroblastome de souris (de Rooij, 1996), et dans le cerveau humain post- mortem (Hoogeven et al., 1993).Huntington's Disease (Huntington Disease or HD) is an autosomal dominant neurodegenerative disease with polyglutamine expansion (polyQ) whose gene codes for huntingtin (htt), an unknown function protein expressed in the brain and several other tissues. The expansion of polyQ (following a dynamic mutation-or expansion-CAG in the htt gene) is located in the N-terminal part of the htt, a region that is conserved and functionally important for the appearance of HD. The normal htt contains a normal number of glutamine repeats (Gins) (typically: 15 to 20 Gins, mainly: less than 39 Gins). The mutated htt contains an abnormally high number of glutamine repeats (typically the pathological threshold is around 39 Gins, the expansion of polyglns can for example reach up to 180 Gins in certain cases) which is associated with the appearance of disease (Koshy and Zoghbi, 1997). Htt is an important protein for the genesis and survival of the neuron (Zeitlin et al., 1995; White et al., 1997). In the normal state, this protein is mainly located in the cytoplasm of neurons where it is for example associated with microtubules (DiFiglia et al., 1997). Normal htt has also been detected in the nucleus, in mouse neuroblastoma cells (de Rooij, 1996), and in the post-mortem human brain (Hoogeven et al., 1993).
Sur le plan tissulaire, HD se caractérise en premier lieu par une apoptose progressive et sélective des neurones striataux ; à des stades plus avancées, HD affecte d'autres régions du cerveau comme le cortex (Koshy et Zoghbi, 1997). Les bases moléculaires de cette sélectivité ne sont pas connues.On the tissue level, HD is characterized in the first place by a progressive and selective apoptosis of the striatal neurons; at later stages, HD affects other regions of the brain such as the cortex (Koshy & Zoghbi, 1997). The molecular bases of this selectivity are not known.
Les formes normales et mutées de la htt étant exprimées à des niveaux similaires, la cause de HD est à rechercher dans des perturbations biochimiques des voies de signalisation impliquées dans la genèse, le fonctionnement, et la survie des neurones atteints dans HD.As normal and mutated forms of htt are expressed at similar levels, the cause of HD is to be sought in biochemical disturbances in the signaling pathways involved in the genesis, functioning, and survival of the neurons affected in HD.
Par ailleurs, il existe une corrélation inverse entre l'âge d'apparition et la sévérité de HD et/ou le nombre de répétitions glutamines dans la htt (Koshy et Zoghbi, 1997), ce qui indique que la gravité de la perturbation de ces fonctions biochimiques est modulée par la longueur du domaine polyglns.Furthermore, there is an inverse correlation between the age of onset and the severity of HD and / or the number of glutamine repeats in the htt (Koshy and Zoghbi, 1997), which indicates that the severity of the disturbance of these biochemical functions is modulated by the length of the polygln domain.
Il n'existe pas de traitement pour cette maladie gravement invalidante (6000 personnes en France, prévalence apparente voisine de 1/10.000). L'identification des facteurs biochimiques impliquées dans HD est nécessaire afin d'identifier des cibles thérapeutiques pour cette maladie, et de procéder à la recherche de méthodes thérapeutiques et de composés actifs permettant de restaurer un fonctionnement normal des voies de signalisation intracellulaires importantes pour la survie et le bon fonctionnement des neurones atteints dans HD. Chez les malades, des agrégats nucléaires (parfois périnucléaires) composés de fragments N-terminaux de la htt et d'ubiquitine ont été mis en évidence (DiFiglia et al, 1997). Le fait que les agrégats soient détectés avant l'apparition de l'apoptose dans des modèles cellulaires in vitro et dans des modèles de souris transgéniques a initialement conduit à l'hypothèse que les agrégats nucléaires pouvaient être à l'origine de la maladie (Mangiarini et al., 1996 ; Davies et al., 1997 ; Ross, 1997). Cependant, les résultats les plus récents favorisent fortement l'hypothèse d'un effet des formes libres de la htt mutée comme mécanisme physiopathologique fondamental de HD (Sisodia, 1998). Plusieurs études (sur cerveaux post- mortem, cultures primaires de neurones striataux de rat, d'autres modèles cellulaires in vitro, et de modèles chez la souris) indiquent en effet qu'il n'existe pas une bonne corrélation entre la formation d'agrégats et l'apoptose des neurones cibles (Bâtes et al., 1998 ; Lunkes et Mandel, 1998 ; Saudou et al., 1998 ; Sisodia, 1998 ; Hackam et al., 1999 ; Schilling et al., 1999). Ces agrégats sont de plus susceptibles de protéger fortuitement le neurone contre un excès d'apoptose provoqué par la htt mutée non-agrégée (Saudou et al., 1998). Par contre, la localisation nucléaire de fragments N- terminaux « libres » de la htt mutée est nécessaire à l'induction de l'apoptose neuronale (Saudou et al., 1998).There is no treatment for this seriously disabling disease (6000 people in France, apparent prevalence close to 1 / 10,000). The identification of the biochemical factors involved in HD is necessary in order to identify therapeutic targets for this disease, and to proceed to the search for therapeutic methods and active compounds making it possible to restore normal functioning of the intracellular signaling pathways important for survival. and the proper functioning of the affected neurons in HD. In patients, nuclear aggregates (sometimes perinuclear) composed of N-terminal fragments of htt and ubiquitin have been demonstrated (DiFiglia et al, 1997). The fact that aggregates were detected before the appearance of apoptosis in in vitro cell models and in transgenic mouse models initially led to the hypothesis that nuclear aggregates could be at the origin of the disease (Mangiarini et al., 1996; Davies et al., 1997; Ross, 1997). However, the most recent results strongly support the hypothesis of an effect of the free forms of mutated htt as a fundamental pathophysiological mechanism of HD (Sisodia, 1998). Several studies (on post-mortem brains, primary cultures of rat striatal neurons, other cellular models in vitro, and models in mice) indeed indicate that there does not exist a good correlation between the formation of aggregates and apoptosis of target neurons (Bâtes et al., 1998; Lunkes and Mandel, 1998; Saudou et al., 1998; Sisodia, 1998; Hackam et al., 1999; Schilling et al., 1999). These aggregates are moreover likely to fortuitously protect the neuron against an excess of apoptosis caused by the non-aggregated mutated htt (Saudou et al., 1998). On the other hand, the nuclear localization of “free” N-terminal fragments of the mutated htt is necessary for the induction of neuronal apoptosis (Saudou et al., 1998).
Le noyau pourrait donc être le lieu privilégié des mécanismes physiopathologiques de HD, notamment en terme de dysrégulation de la transcription et d'expression inadéquate de certains gènes et protéines.The nucleus could therefore be the privileged place of the pathophysiological mechanisms of HD, in particular in terms of dysregulation of transcription and inadequate expression of certain genes and proteins.
Un autre aspect important de la physiopathologie de HD réside dans le fait que le dysfonctionnement neuronal avant apoptose est fortement susceptible d'être à l'origine, en tout ou en partie, de cette maladie. Dans les modèles transgéniques de HD chez la souris, il a en effet été observé que les symptômes comportementaux chez les souris transgéniques (expression d'un fragment N-terminal de la htt mutée correspondant à l'exon 1 du gène de cette protéine) apparaissent avant la détection d'une apoptose des neurones (Bâtes et al., 1998).Another important aspect of the pathophysiology of HD lies in the fact that neuronal dysfunction before apoptosis is highly likely to be at the origin, in whole or in part, of this disease. In transgenic models of HD in mice, it has indeed been observed that behavioral symptoms in transgenic mice (expression of an N-terminal fragment of the mutated htt corresponding to exon 1 of the gene for this protein) appear before detecting apoptosis of neurons (Bâtes et al., 1998).
Par ailleurs, l'expansion de polyglns induit probablement un changement de conformation des fragments N-terminaux de la htt, dont les conséquences pathologiques iraient de pair avec la dégradation protéolytique progressive de la htt (initialement par les caspases comme la caspase-3, puis par d'autres protéases non identifiées) et la genèse de fragments N-terminaux de plus en plus courts et comprenant par exemple les aminoacides 1-500, 1-300, puis 1-150, et 1-100 (Goldberg et al., 1996 ; Lunkes et Mandel, 1998 ; Martindale et al., 1998 ; Sharp et al., 1998 ; Schilling et al., 1999), et leur diffusion passive dans le noyau au travers des pores nucléaires (Hackam et al., 1999). En effet, les 50 à 200 premiers aminoacides suffisent à induire des phénotypes cellulaires voire comportementaux similaires à ceux observés dans HD dans des modèles transgéniques de souris (Mangianiri et al., 1996 ; Bâtes et al., 1998), de drosophile (Jackson et al., 1998), et de nématode C. elegans (Faber et al., 1999 ; Néri et al., 1998).Furthermore, the expansion of polyglns probably induces a change in conformation of the N-terminal fragments of htt, the pathological consequences of which would go hand in hand with the progressive proteolytic degradation of htt (initially by caspases like caspase-3, then by other unidentified proteases) and the genesis of shorter and shorter N-terminal fragments comprising for example amino acids 1-500, 1-300, then 1-150, and 1-100 (Goldberg et al., 1996; Lunkes and Mandel, 1998; Martindale et al., 1998; Sharp et al., 1998; Schilling et al., 1999), and their passive diffusion into the nucleus through nuclear pores (Hackam et al., 1999) . Indeed, the first 50 to 200 amino acids are sufficient to induce cellular or behavioral phenotypes similar to those observed in HD in transgenic models of mice (Mangianiri et al., 1996; Bâtes et al., 1998), of Drosophila (Jackson and al., 1998), and nematode C. elegans (Faber et al., 1999; Néri et al., 1998).
L'expansion de polyQ (au travers du changement de conformation mentionné ci-dessus) modifierait aussi l'accessibilité des protéines partenaires de la huntingtine (PPH) à leurs sites de liaison dans la htt (hors du domaine polyQ), avec pour conséquence une diminution ou une augmentation de la liaison de la htt mutée avec les PPH appartenant à des voies de signalisation intracellulaires essentielles pour le fonctionnement et la survie du neurone. Le rôle potentiel d'interactions protéine-protéine anormales dans HD a été illustré par l'identification en criblage double- hybride (Fields et Song, 1989) de plusieurs PPH qui se lient à la région N- terminale de la htt (amino-acides 1 à 500). La majorité de ces PPH semblent se lier à la htt en dehors du domaine polyglns. Dans le cas où ces PPH ont été identifiées par criblage de banques d'ADNc non humains (par exemple, ADNc de rat ou de souris), il a été montré que les homologues humains de ces PPH se lient effectivement à la htt in vitro, et qu'ils co-localisent avec la htt dans des extraits de cerveau humain. D'une façon générale, il n'existe pas de corrélation systématique entre le profil d'expression des PPH identifiées à ce jour et les sites de perte neuronale observés dans HD. Il s'agit essentiellement des PPH suivantes :The expansion of polyQ (through the change in conformation mentioned above) would also modify the accessibility of huntingtin partner proteins (PPH) to their binding sites in the htt (apart from polyQ domain), resulting in a decrease or an increase in the binding of mutated htt with PPH belonging to intracellular signaling pathways essential for the functioning and survival of the neuron. The potential role of abnormal protein-protein interactions in HD has been illustrated by the identification in double-hybrid screening (Fields and Song, 1989) of several PPHs which bind to the N-terminal region of htt (amino acids 1 to 500). The majority of these PPHs seem to bind to htt outside of the polygln domain. In the case where these PPHs have been identified by screening of non-human cDNA libraries (for example, rat or mouse cDNAs), it has been shown that the human counterparts of these PPHs do indeed bind to htt in vitro, and that they co-localize with htt in extracts from the human brain. In general, there is no systematic correlation between the expression profile of PPH identified to date and the sites of neuronal loss observed in HD. These are essentially the following PPHs:
- GAPDH (Burke et al., 1996 ; liaison invariante accrue avec la htt mutée) : enzyme impliquée dans la glycolyse et le métabolisme énergétique.- GAPDH (Burke et al., 1996; increased invariant link with mutated htt): enzyme involved in glycolysis and energy metabolism.
- HTP2 (Kalchman et al., 1996 ; liaison invariante avec la htt mutée) : Enzyme de conjugaison à l'ubiquitine. - Cystathionine β-synthase ou CBS (Boutell et al., 1998 ; liaison invariante avec la htt mutée) : enzyme-clé de la synthèse de cystéine à partir de la méthionine. L'absence de CBS est associée à l'accumulation du substrat de la CBS qui est excitotoxique (l'homocystéine), et à une maladie métabolique humaine rare (homocystinurie). Le rôle d'un mécanisme similaire dans HD n'est pas établi.- HTP2 (Kalchman et al., 1996; invariant link with the mutated htt): Conjugation enzyme with ubiquitin. - Cystathionine β-synthase or CBS (Boutell et al., 1998; invariant link with mutated htt): key enzyme for the synthesis of cysteine from methionine. The absence of CBS is associated with the accumulation of the CBS substrate which is excitotoxic (homocysteine), and with a rare human metabolic disease (homocystinuria). The role of a similar mechanism in HD has not been established.
- HAP1 (Li et al., 1995 et W0 97/17443 ; liaison accrue avec la htt mutée) et HDPl (Kalchman et al, 1997; Wanker et al. 1997 ; diminution de liaison avec la htt mutée) : protéines de fonction inconnue associées au cytosquelette dont les sites de liaison semblent compris entre les amino- acides 171 et 500. HAP1 interagit avec plusieurs protéines, notamment la sous-unité pl50G'"erf de la dynactine (Engelender et al., 1997), ce qui confirme le rôle de HAP1 dans la formation et l'activité du cytosquelette et le trafic des vésicules intracellulaires. - HYPA et HYPB (Faber et al., 1998 ; augmentation de liaison avec la htt mutée) : protéines à domaine WW de fonction inconnue, liaison au niveau des deux polyprolines immédiatement en C-terminal du domaine polyQ.- HAP1 (Li et al., 1995 and W0 97/17443; increased binding with mutated htt) and HDPl (Kalchman et al, 1997; Wanker et al. 1997; decreased binding with mutated htt): proteins of unknown function associated with the cytoskeleton whose binding sites seem to lie between amino acids 171 and 500. HAP1 interacts with several proteins, in particular the pl50 G '" erf subunit of dynactin (Engelender et al., 1997), which confirms the role of HAP1 in the formation and activity of the cytoskeleton and the trafficking of intracellular vesicles. - HYPA and HYPB (Faber et al., 1998; increased binding with mutated htt): proteins with WW domain of unknown function, binding at the level of the two polyprolines immediately at the C-terminal of the polyQ domain.
- SH3GL3 (Sittler et al., 1998 : liaison accrue avec la htt mutée) : protéine de fonction inconnue à domaine SH3 appartenant à la famille Grb2, les membres de cette famille étant associés aux synaptosomes, liaison au niveau des deux polyprolines immédiatement C-terminale à la polyglns. Rôle promoteur de SH3GL3 dans la formation d'agrégats.- SH3GL3 (Sittler et al., 1998: increased binding with mutated htt): protein of unknown function with SH3 domain belonging to the Grb2 family, the members of this family being associated with synaptosomes, binding at the level of the two polyprolines immediately C- terminale à la polyglns. Promoter role of SH3GL3 in the formation of aggregates.
II est important de noter trois points :It is important to note three points:
1) Plusieurs PPH qui présentent un accroissement de liaison envers la htt mutée (HAP1, SH3GL3, série HYP) sont associées à la formation des agrégats nucléaires comme SH3GL3 qui présente un rôle promoteur sur leur formation (Sittler et al., 1998), ou HIP2 qui est directement associée à la cinétique de dégradation ou d'accumulation des protéines intracellulaires. Les agrégats n'étant pas une cause sine qua non de l'apoptose (Saudou et al., 1998 ; Sisodia, 1998), la recherche d'un blocage d'une liaison anormalement accrue et « neurotoxique » entre la htt mutée et une PPH par un composé actif (tel que décrit par C. A Ross et al., Ηuntingtin-associated protein', WO97/17443) est en fait susceptible de ne pas constituer une bonne option thérapeutique. De plus, ces PPH présentent a priori des variations modérées d'interaction (en général d'un facteur 2 à 5) pour la htt mutée (40-60 Gins) en comparaison de la htt normale (20 Gins). En vertu de l'état de l'art dans le domaine des petites molécules, il est difficile d'envisager le blocage spécifique « bénéfique » d'une liaison modérément accrue entre la htt mutée et une PPH, en absence d'un effet secondaire « inapproprié » de blocage de la liaison entre la htt normale et cette même PPH.1) Several PPHs which exhibit an increase in binding to the mutated htt (HAP1, SH3GL3, HYP series) are associated with the formation of nuclear aggregates such as SH3GL3 which has a promoter role on their formation (Sittler et al., 1998), or HIP2 which is directly associated with the kinetics of degradation or accumulation of intracellular proteins. As aggregates are not a sine qua non cause of apoptosis (Saudou et al., 1998; Sisodia, 1998), the search for a blockage of an abnormally increased and "neurotoxic" link between the mutated htt and a PPH by an active compound (as described by C. A Ross et al., Ingtuntingtin-associated protein ', WO97 / 17443) is in fact likely not to constitute a good therapeutic option. In addition, these PPHs a priori show moderate variations in interaction (generally by a factor of 2 to 5) for mutated htt (40-60 Gins) compared to normal htt (20 Gins). By virtue of the state of the art in the field of small molecules, it is difficult to envisage the specific “beneficial” blocking of a moderately increased link between the mutated htt and a PPH, in the absence of a side effect "Inappropriate" blocking of the link between normal htt and this same PPH.
2) HIPl est la seule PPH qui montrait à ce jour une perte de liaison avec la htt mutée. HIPl interagit environ 10 fois moins bien avec la htt mutée comprenant 125 Gins qu'avec la htt normale comprenant 25 Gins (Kalchman et al., 1997 et WO 97/18825). Cette protéine est spécifiquement exprimée dans le cerveau, plus particulièrement dans le cortex. Sa fonction est inconnue : l'homologie de 20-40% avec Sla2p suggère un rôle dans la formation du cytosquelette, et la présence d'un motif de type « Leucine zipper » suggère une implication dans plusieurs interactions protéine-protéine. Le rôle de HIPl dans la formation du cytosquelette est appuyé par le fait que cette protéine est associée aux membranes cellulaires (débris cellulaires, noyau, synaptosomes, mitochondries, microsomes et membranes plasmatiques), une caractéristique commune de toutes les protéines du cytosquelette comme Tartine. HIPl n'étant pas lié à la formation des agrégats, il s'agit d'une cible thérapeutique intéressante. Cependant, le fait qu'il s'agisse d'une protéine du cytosquelette ne rentre pas dans le cadre des dernières données de la littérature scientifique qui indiquent que la localisation nucléaire de la htt mutée est nécessaire pour la mise en place des mécanismes physiopathologiques de HD (Saudou et al. 1998 ; Sisodia, 1998). 3) L'influence de la longueur du fragments N-terminal (notamment ceux susceptibles de passer dans le noyau) sur la liaison de la htt aux PPH n'a pas été décrite auparavant.2) HIPl is the only PPH which has so far shown a loss of connection with the mutated htt. HIP1 interacts approximately 10 times less well with mutated htt comprising 125 Gins than with normal htt comprising 25 Gins (Kalchman et al., 1997 and WO 97/18825). This protein is specifically expressed in the brain, more specifically in the cortex. Its function is unknown: the homology of 20-40% with Sla2p suggests a role in cytoskeleton formation, and the presence of a “Leucine zipper” motif suggests involvement in several protein-protein interactions. The role of HIP1 in the formation of the cytoskeleton is supported by the fact that this protein is associated with cell membranes (cell debris, nucleus, synaptosomes, mitochondria, microsomes and plasma membranes), a common characteristic of all cytoskeleton proteins such as Tartine. Since HIPl is not linked to the formation of aggregates, it is an interesting therapeutic target. However, the fact that it is a cytoskeleton protein does not fall within the framework of the latest data in the scientific literature which indicates that the nuclear localization of the mutated htt is necessary for the establishment of the pathophysiological mechanisms of HD (Saudou et al. 1998; Sisodia, 1998). 3) The influence of the length of the N-terminal fragment (in particular those likely to pass into the nucleus) on the binding of htt to PPH has not been described previously.
Dans ce cadre, les inventeurs apportent les nouveaux éléments suivants : identification d'une nouvelle PPH à domaine WW dont l'homologue humain est un facteur de transcription nucléaire contenant un domaine polymorphique (répétition de dipeptides QA ou Glu-Ala), et identification des conditions biochimiques (taille des fragments de la htt) qui vont de pair avec des différences notables de liaison de cette PPH avec la htt mutée et la htt normale dans le noyau. Les cibles thérapeutiques et les fortes différences identifiées par les inventeurs sont compatibles avec la notion d'interventions thérapeutiques qui visent à agir sur les effets pathologiques de certaines formes de la htt mutée, sans effets secondaires sur les fonctions physiologiques normales de certaines formes de la htt normale. Le criblage en double-hybride pour des partenaires de la htt constitue un point d'entrée particulièrement intéressant vers la biologie des neurones affectés dans HD. La preuve ultime qu'une PPH est effectivement impliquée dans des déficiences neuronales provient d'expériences supplémentaires in vitro et in vivo. Par exemple, il est possible de prouver in vivo dans un organisme entier 1) que la cible candidate est effectivement impliquée dans le phénotype de maladie (perte de fonction ou apoptose) reproduit dans l'organisme modèle utilisé, 2) qu'il est possible de moduler son activité biologique, et 3) que cette modulation peut permettre de restaurer un fonctionnement normal des neurones rendus déficients par la htt mutée. Cette validation dite « cellulaire » (établissement d'un lien direct entre un phénotype biochimique et un phénotype cellulaire) peut s'effectuer dans un organisme entier et dans un temps relativement court grâce à l'utilisation du nématode Caenorhabditis elegans. Ainsi, il est possible d'identifier les « voies génétiques » impliquées dans un phénotype de déficience neuronale grâce à la recherche de mutants suppresseurs. C. elegans permet aussi d'étudier les PPH ou les « voies physiques » (interactions protéine-protéine) d'intérêt et de fonction inconnue qui ont été initialement identifiées par criblage double-hybride dans la levure, en permettant d'étudier les profils d'expression et les phénotypes mutants pour les homologues de ces PPH dans C. elegans.In this context, the inventors provide the following new elements: identification of a new WW domain PPH whose human counterpart is a nuclear transcription factor containing a polymorphic domain (repetition of QA or Glu-Ala dipeptides), and identification of biochemical conditions (size of the fragments of the htt) which go hand in hand with notable differences in the binding of this PPH with the mutated htt and the normal htt in the nucleus. The therapeutic targets and the strong differences identified by the inventors are compatible with the concept of therapeutic interventions which aim to act on the pathological effects of certain forms of the mutated htt, without side effects on the normal physiological functions of certain forms of the htt normal. Double-hybrid screening for htt partners is a particularly interesting entry point into the biology of affected neurons in HD. The ultimate proof that PPH is actually involved in neuronal impairments comes from additional in vitro and in vivo experiments. For example, it is possible to prove in vivo in a whole organism 1) that the candidate target is actually involved in the disease phenotype (loss of function or apoptosis) reproduced in the model organism used, 2) that it is possible to modulate its biological activity, and 3) that this modulation can restore normal functioning of neurons rendered deficient by the mutated htt. This so-called “cellular” validation (establishment of a direct link between a biochemical phenotype and a cellular phenotype) can be carried out in an entire organism and in a relatively short time thanks to the use of the nematode Caenorhabditis elegans. Thus, it is possible to identify the "genetic pathways" involved in a neuronal deficiency phenotype through the search for suppressor mutants. C. elegans also makes it possible to study PPH or “physical pathways” (protein-protein interactions) of interest and of unknown function which were initially identified by double-hybrid screening in yeast, by making it possible to study the profiles of expression and the mutant phenotypes for the homologs of these PPHs in C. elegans.
Sur un plan de thérapeutique prospective en neurobiologie, C. elegans présente en effet les avantages suivants : système nerveux bien caractérisé, bonne homologie fonctionnelle avec l'humain en terme de physiologie neuronale, nombreux phénotypes neurologiques normaux et mutants disponibles à l'analyse. Par rapport à d'autres organismes modèles simples comme la drosophile (Jackson et al., 1998), C. elegans a de plus les avantages suivants : génome complètement séquence, mutagenèse plus rapide, organisme transparent permettant une visualisation de tous les neurones et une analyse de l'expression des protéines chez l'animal vivant, court cycle de reproduction (quelques jours), connaissance de la phylogénie cellulaire complète, facilité d'utilisation (culture sur agar solide ou liquide, résistance des larves à la congélation, et possibilité de criblage à haut débit, par exemple en microplaques à 96 puits). Du fait de la forte conservation de plusieurs voies de signalisation intracellulaires entre le nématode et d'autres espèces incluant l'humain, notamment en terme de physiologie neuronale (Bargman, 1998 ; Ruvkun et Hobert, 1998 ; The C. elegans Sequencing consortium, 1998), l'étude des mécanismes de maladies humaines dans C. elegans est reconnue comme un outil d'étude puissant pour l'identification et la validation (au niveau cellulaire, et avant étude pharmacologique anatomo-fonctionnelle dans des modèles plus complexes comme la souris ou le primate) de cibles thérapeutiques. Plus particulièrement, les inventeurs se sont attachés à étudier les interactions entre une protéine de maladie humaine, la htt, et l'ensemble des protéines répertoriées chez C. elegans, ce à l'aide de la technique du criblage en double-hybride (Fields and Song, 1987) de façon à reconstruire, en partie au moins, le schéma des voies de signalisation qui sont impliquées dans le fonctionnement normal de la htt avant expansion de polyQ, et dans le fonctionnement pathologique de la htt après expansion de polyQ. Suite au criblage double-hybride, l'analyse des homologies entre le gène d'intérêt identifié dans C. elegans et ses homologues chez l'homme permet de prédire efficacement la nature des mécanismes pathologiques en jeu dans HD et de définir les premières bases d'une intervention thérapeutique, ce à quoi se sont aussi attachés les inventeurs.In terms of prospective therapeutics in neurobiology, C. elegans has the following advantages: well-characterized nervous system, good functional homology with humans in terms of neuronal physiology, many normal neurological phenotypes and mutants available for analysis. Compared to other simple model organisms such as Drosophila (Jackson et al., 1998), C. elegans also has the following advantages: completely sequenced genome, faster mutagenesis, transparent organism allowing visualization of all neurons and a analysis of protein expression in living animals, short reproduction cycle (a few days), knowledge of complete cell phylogeny, ease of use (culture on solid or liquid agar, resistance of larvae to freezing, and possibility high throughput screening (e.g. 96-well microplates). Due to the strong conservation of several intracellular signaling pathways between the nematode and other species including humans, especially in terms of neuronal physiology (Bargman, 1998; Ruvkun and Hobert, 1998; The C. elegans Sequencing consortium, 1998 ), the study of human disease mechanisms in C. elegans is recognized as a powerful study tool for the identification and validation (at the cellular level, and before anatomo-functional pharmacological study in more complex models like the mouse or primate) of therapeutic targets. More particularly, the inventors set out to study the interactions between a human disease protein, htt, and all of the proteins listed in C. elegans, using the double-hybrid screening technique (Fields and Song, 1987) so as to reconstruct, at least in part, the diagram of the signaling pathways which are involved in the normal functioning of htt before polyQ expansion, and in the pathological functioning of htt after polyQ expansion. Following the double-hybrid screening, the analysis of homologies between the gene of interest identified in C. elegans and its human counterparts makes it possible to effectively predict the nature of the pathological mechanisms at play in HD and to define the first bases of 'a therapeutic intervention, to which the inventors have also focused.
Les données obtenues par les inventeurs concernent donc l'identification de phénomènes de variation d'interaction entre une protéine de C. elegans qui s'avère être une protéine à domaine WW de 946 aminoacides et certains fragments de la htt normale ou mutée (perte d'interaction). Bien que la fonction de ZKl 127.9 soit inconnue dans le nématode, cette protéine présente des caractéristiques qui suggèrent fortement que l'activité de régulation de la transcription des gènes de l'homologue humain de ZKl 127.9 (CA150) est modulée par des fragments N-terminaux de la htt dont le poids moléculaire est compatible avec un passage dans le noyau des cellules neuronales au travers des pores nucléaires.The data obtained by the inventors therefore relate to the identification of phenomena of variation in interaction between a protein of C. elegans which turns out to be a protein with a WW domain of 946 amino acids and certain fragments of normal or mutated htt (loss of 'interaction). Although the function of ZKl 127.9 is unknown in the nematode, this protein has characteristics which strongly suggest that the activity of regulating the transcription of the genes of the human homolog of ZKl 127.9 (CA150) is modulated by N- fragments. htt terminals whose molecular weight is compatible with a passage in the nucleus of neuronal cells through nuclear pores.
En effet, les fragments N-terminaux de la htt utilisés par les inventeurs, notamment httl52, ont la capacité, de part leurs poids moléculaires (environ 10-70 kDa), de pénétrer dans le noyau des neurones par les pores nucléaires, sans doute de façon passive (Hackam et al., 1998).Indeed, the N-terminal fragments of the htt used by the inventors, in particular httl52, have the capacity, due to their molecular weights (approximately 10-70 kDa), to penetrate into the nucleus of neurons by nuclear pores, no doubt passively (Hackam et al., 1998).
De plus, ZKl 127.9 187-758 présente une perte d'interaction de 92In addition, ZKl 127.9 187-758 has a loss of interaction of 92
% avec la forme mutée httl52Q128 en comparaison de httl52Q15. Lorsque la taille de la htt est de 546 amino-acides, la perte d'interaction moyenne de% with the mutated form httl52Q128 compared to httl52Q15. When the htt size is 546 amino acids, the average interaction loss of
ZK1127.9 187-758 pour htt546Ql28 en comparaison de htt546Q15 est de 56%. Le phénomène de perte d'interaction entre ZK1127.9 187-758 et htt est d'autant plus marqué que la taille des fragments N-terminaux de la htt mutée est réduite. Cette perte d'interaction est susceptible d'être complète pour tout fragment de la htt contenant moins de 546 amino-acides et plus de 90 aminoacides. En effet, ZKl 127.9_187-758 n'est pas capable d'interagir avec htt90Q15, ce qui indique la région 90-546 de la htt contient les sites de liaison pour ZKl 127.9. La perte d'interaction entre ZK1127.9_187-758 et htt est pratiquement complète pour httl52Q128. La mise en évidence d'une perte d'interaction entre htt mutée et protéines à domaine WW, et le fait que cette perte soit dépendante de la longueur du fragment N-terminal de la htt sont des faits nouveaux, qui signalent un nouveau mécanisme potentiellement important de l'apoptose neuronale ou du dysfonctionnement neuronal dans HD, et soulignent la grande valeur potentielle du couple htt- CA150 comme cible thérapeutique. Par ailleurs, ZKl 127.9 présente une homologie significative de séquence avec le facteur de transcription nucléaire humain CA150, facteur dont le gène s'avère être exprimé dans le cerveau humain. Ceci suggère fortement que certaines formes de la htt mutée sont incapables de se lier correctement à CA150 dans le cerveau des malades. Ceci suggère aussi que plusieurs gènes humains ne sont pas correctement exprimés dans HD du fait d'un déficit dans les mécanismes de régulation de la transcription sous contrôle du couple htt-CA150.ZK1127.9 187-758 for htt546Ql28 in comparison to htt546Q15 is 56%. The phenomenon of loss of interaction between ZK1127.9 187-758 and htt is all the more marked as the size of the N-terminal fragments of the mutated htt is reduced. This loss of interaction is likely to be complete for any fragment of the htt containing less than 546 amino acids and more than 90 amino acids. Indeed, ZKl 127.9_187-758 is not able to interact with htt90Q15, which indicates the region 90-546 of the htt contains the binding sites for ZKl 127.9. The loss of interaction between ZK1127.9_187-758 and htt is practically complete for httl52Q128. The demonstration of a loss of interaction between mutated htt and WW domain proteins, and the fact that this loss is dependent on the length of the N-terminal fragment of the htt are new facts, which signal a potentially new mechanism important of neuronal apoptosis or neuronal dysfunction in HD, and underline the great potential value of the couple htt-CA150 as a therapeutic target. Furthermore, ZKl 127.9 has significant sequence homology with the human nuclear transcription factor CA150, a factor whose gene appears to be expressed in the human brain. This strongly suggests that certain forms of the mutated htt are unable to bind CA150 properly in the brains of patients. This also suggests that several human genes are not correctly expressed in HD due to a deficiency in the mechanisms of transcription regulation under the control of the htt-CA150 couple.
Les profils d'expression des EST humains correspondant à la htt et à CA150 indiquent que ces deux protéines sont exprimées dans le cerveau. Par ailleurs, le fait que CA150 soit une protéine nucléaire, que la taille des fragments de la htt testés par les inventeurs soit compatible avec un passage dans le noyau, et que la htt soit par ailleurs détectée dans le noyau des cellules neuronales, indiquent que CA150 et la htt co-localisent très probablement dans le noyau des neurones du cerveau. En ce qui concerne les interactions 'htt- ZKl 127.9' in vitro : Après expression et purification de protéines de fusion GST::htt et de ZK1127.9::épitopeHA dans E. Coli (vecteur pGEX, et vecteur pGEX- épitopeHA tel que modifié par les inventeurs), fixation de la htt sur billes sepharose (GST affinity resin, Stratagène), et incubation avec ZKl 127.9::HA, la rétention de ZKl 127.9::HA par la htt normale et mutée a été testée par western blot à l'aide d'un anticorps anti-HA.The expression profiles of human ESTs corresponding to the htt and to CA150 indicate that these two proteins are expressed in the brain. Furthermore, the fact that CA150 is a nuclear protein, that the size of the fragments of the htt tested by the inventors is compatible with a passage in the nucleus, and that the htt is moreover detected in the nucleus of neuronal cells, indicates that CA150 and htt most likely co-locate in the nucleus of brain neurons. With regard to the interactions 'htt- ZKl 127.9' in vitro: After expression and purification of GST :: htt fusion proteins and of ZK1127.9 :: epitopeHA in E. Coli (vector pGEX, and vector pGEX- epitopeHA such as modified by the inventors), fixing of the htt on sepharose beads (GST affinity resin, Stratagene), and incubation with ZKl 127.9 :: HA, the retention of ZKl 127.9 :: HA by normal and mutated htt was tested by western blot using an anti-HA antibody.
En ce qui concerne les interactions htt-CA150 in vitro : après expression et purification de protéines de fusion GST : :htt et de CA150 (fragment ou protéine entière) dans E. coli (vecteur pGEX et vecteur pGEX- épitope HA tel que modifié par les Inventeurs), fixation de la htt sur billes sepharose (GST affinity resin, Stratagène), et incubation avec CA150 : :HA, la rétention de CA150 par la htt normale a été testée par western blot à l'aide d'anticorps anti-HA ou d'anticorps anti-CA150. Mais également, après expression et purification de CA150 (source de l'ADNc complet: réseau IMAGE) dans E. Coli, couplage de CA150 sur billes sepharose et incubation avec des extraits protéiques de lignées lymphoblastoides normales ou de patients atteints de HD, et de cerveaux post-mortem (individus sains ou malades), la rétention de la htt par CA150 pourra être testée par western blot à l'aide d'anticorps anti-htt dont les épitopes sont localisés au niveau des 600 premiers amino-acides de la htt. La co-localisation de CA150 avec la htt dans ces tissus humains pourra être vérifiée par les techniques classiques de fractionnement subcellulaire et de western blot tel que précédemment décrit (Sittler et al., 1998). En complément, les interactions htt d'origine humaine-CA150 peuvent être testées directement en double-hybride dans la levure.As regards the htt-CA150 interactions in vitro: after expression and purification of GST fusion proteins:: htt and of CA150 (fragment or whole protein) in E. coli (vector pGEX and vector pGEX- HA epitope as modified by the Inventors), fixing of the htt on sepharose beads (GST affinity resin, Stratagene), and incubation with CA150:: HA, the retention of CA150 by the normal htt was tested by western blot using anti- HA or anti-CA150 antibodies. But also, after expression and purification of CA150 (source of the complete cDNA: IMAGE network) in E. Coli, coupling of CA150 on sepharose beads and incubation with protein extracts from normal lymphoblastoid lines or from patients suffering from HD, and from post-mortem brains (healthy or sick individuals), the retention of htt by CA150 can be tested by western blot using anti-htt antibodies whose epitopes are located at the level of the first 600 amino acids of htt . The co-localization of CA150 with htt in these human tissues can be verified by conventional subcellular fractionation and western blot techniques as previously described (Sittler et al., 1998). In addition, human-CA150 htt interactions can be tested directly in a double-hybrid in yeast.
En ce qui concerne les propriétés biochimiques de CA150, lors des expériences de production de CA150 : :HA dans E. coli et du contrôle de production par western blot à l'aide d'un anticorps anti-HA ou d'un anticorps antiCA150, les Inventeurs ont mis en évidence une forme non agrégée de CA150 migrant sur gel sensiblement à la taille attendue (environ 92 kDA), et des formes agrégées de CA150 migrant largement au-dessus de la taille attendue. Les propriétés d'agrégation de CA150 sont très certainement à attribuer à la région répétée (QA)38 coté N-terminal, qui comme dans le cas des polyglutamines ou des polyalanines dans d'autres protéines humaines, s'avèrent capables de favoriser l'agrégation de la protéine porteuse avec elle-même, voire avec d'autres protéines. Les propriétés d'agrégation de CA150 mises en évidence par les Inventeurs sont susceptibles de participer aux mécanismes de la maladie de Huntington. En ce qui concerne la fonction de ZKl 127.9 dans C. elegans : les données décrites permettent d'étudier le rôle de ZKl 127.9 dans C. elegans à l'aide des techniques classiques de transgenèse et de mutagenèse dans C. elegans : profil d'expression de ZKl 127.9 dans C. elegans après expression en transgenèse de protéines de fusion ZKl 127.9: :GFP (typiquement 1-2 kb de séquence en amont de l'exon 1 plus le premier intron suffisent à l'expression d'une protéine chez C. elegans), et analyse du phénotype de mutants non-léthaux pour le gène de ZKl 127.9 (sélection des mutants par criblage PCR de pools d'ADN correspondants à une banque de mutants induits par exposition au TMP et aux UV ; la mutagenèse TMP/UV générant une majorité de délétions de petite taille, elle est particulièrement adaptée au criblage PCR).As regards the biochemical properties of CA150, during the CA150 production experiments:: HA in E. coli and the control of production by western blot using an anti-HA antibody or an antiCA150 antibody, the inventors have demonstrated a non-aggregated form of CA150 migrating on gel substantially at the expected size (approximately 92 kDA), and aggregated forms of CA150 migrating largely above the expected size. The aggregation properties of CA150 are most certainly to be attributed to the N-terminal repeat region (QA) 38, which, as in the case of polyglutamines or polyalanines in other human proteins, prove capable of promoting the aggregation of the carrier protein with itself, or even with other proteins. The aggregation properties of CA150 demonstrated by the inventors are capable of participating in the mechanisms of Huntington's disease. Regarding the function of ZKl 127.9 in C. elegans: the data described make it possible to study the role of ZKl 127.9 in C. elegans using standard transgenesis and mutagenesis techniques in C. elegans: profile of expression of ZKl 127.9 in C. elegans after expression in transgenesis of fusion proteins ZKl 127.9:: GFP (typically 1-2 kb of sequence upstream from exon 1 plus the first intron are sufficient for the expression of a protein in C. elegans), and analysis of the phenotype of non-lethal mutants for the gene of ZKl 127.9 (selection of the mutants by PCR screening of DNA pools corresponding to a library of mutants induced by exposure to TMP and UV; TMP mutagenesis / UV generating a majority of small deletions, it is particularly suitable for PCR screening).
En ce qui concerne la validation cellulaire de cibles thérapeutiques dans un animal vivant : avec la confirmation de perte d'interaction entre htt mutée et CA150 et sur la base des informations recueillies sur la fonction de ZKl 127.9, les sites de liaison entre CA150 et la htt normale peuvent être identifiés (par exemple par cartographie de délétion) afin de mettre au point des tests in vitro et in vivo qui permettent l'identification de composés actifs (peptides ou composés organiques) capables de reconstituer l'activité normale du couple htt-CA150. L'efficacité in vivo de tels composés pourra être directement testée dans les modèles animaux de HD qui permettent des études de pharmacologie en terme de toxicité, pharmacocinétique, doses efficaces (par exemple chez le primate, cf. Palfi et al., 1998).Regarding cell validation of therapeutic targets in a living animal: with confirmation of loss of interaction between mutated htt and CA150 and on the basis of information collected on the function of ZKl 127.9, the binding sites between CA150 and Normal htt can be identified (for example by deletion mapping) in order to develop in vitro and in vivo tests which allow the identification of active compounds (peptides or organic compounds) capable of reconstituting the normal activity of the couple htt- CA150. The in vivo efficacy of such compounds can be directly tested in HD animal models which allow pharmacology studies in terms of toxicity, pharmacokinetics, effective doses (for example in primates, cf. Palfi et al., 1998).
CA150 est un facteur modulateur de la transcription nucléaire qui interagit avec la RNA polymérase de type II (Shune et al., 1997), et porte une zone répétée (riche en Alanine et en Glutamine) qui est présente dans plusieurs autres facteurs modulateurs de la transcription comme GAL11 ou SSN6 dans la levure, ou encore Zeste dans la drosophile. A l'aide d'amorces nucléotidiques aux bornes de la région nucléotidique correspondant au domaine (QA)60 et après analyse classique des produits PCR sur gel de polyacrylamide et autoradiographie, les inventeurs ont mis en évidence que le domaine (QA)60 de CA150 est polymorphique (4 allèles entre 57 et 62 QA, 30% d'hétérozygotie) dans la population normale après avoir testé 20 individus sains (10 couples père- mère ; familles de référence du CEPH d'origine américaine numéro 102, 1332, 1331, 1340, 1347, 1362, 1413, 1416, 1423, 884). Du fait du polymorphisme et de la position du domaine polyQA (entre 2 domaines WW), ces données suggèrent que le polymorphisme des répétitions QA dans CA150 pourrait être impliqué dans l'apparition et la progression de HD chez les malades, et pourrait moduler l'activité physiologique de CA150, notamment sa liaison avec la htt, ce d'autant plus que les répétitions QA dans CA150 sont aussi impliqués dans des phénomènes d'agrégation de CA150 tel qu'observé par les Inventeurs. L'analyse des homologies de CA150 avec les EST humains disponibles dans Genbank et dans dbEST a permis d'établir que le gène de CA150 est exprimé dans plusieurs tissus humains dont le cerveau (utérus, amygdales, sein, muscle, rein, poumon, parathyroïde, testicule, cœur, embryon entier, colon, oreille, sang). 80 EST humains (représentant 71 clones d'ADNc) correspondent au gène de CA150 (localisation chromosomique chromosome 5) d'après l'analyse UnigeneCA150 is a modulator factor of nuclear transcription which interacts with RNA polymerase type II (Shune et al., 1997), and carries a repeating zone (rich in Alanine and Glutamine) which is present in several other modulating factors of the transcription as GAL11 or SSN6 in yeast, or Zeste in Drosophila. Using nucleotide primers at the boundaries of the nucleotide region corresponding to the domain (QA) 60 and after conventional analysis of the PCR products on polyacrylamide gel and autoradiography, the inventors have demonstrated that the domain (QA) 60 of CA150 is polymorphic (4 alleles between 57 and 62 QA, 30% heterozygosity) in the normal population after testing 20 healthy individuals (10 father-mother couples; CEPH reference families of American origin number 102, 1332, 1331, 1340, 1347, 1362, 1413, 1416, 1423, 884). Due to the polymorphism and the position of the polyQA domain (between 2 WW domains), these data suggest that the polymorphism of QA repeats in CA150 may be involved in the onset and progression of HD in patients, and may modulate the CA150 physiological activity, in particular its link with htt, all the more so since the QA repetitions in CA150 are also involved in CA150 aggregation phenomena as observed by the Inventors. Analysis of the homologies of CA150 with the human TSEs available in Genbank and in dbEST has made it possible to establish that the CA150 gene is expressed in several human tissues including the brain (uterus, tonsils, breast, muscle, kidney, lung, parathyroid , testicle, heart, whole embryo, colon, ear, blood). 80 human ESTs (representing 71 cDNA clones) correspond to the CA150 gene (chromosome location chromosome 5) according to Unigene analysis
(http://www.ncbi.nlm.nih.gov/cgi-bin/Unigene), dont 4 EST correspondant à 4 clones d'ADNc de cerveau (clone IMAGE 38349, et clones GEN- 158H06, GEN-121H03, et HFBCA63). Quatre autres clones d'ADNc de cerveau humain correspondant à CA150 (numéros d'accession Genbank M78358, R87450, AI216964, et HUM121HO3A) ont pu être détectés par les inventeurs dans les banques de données.(http://www.ncbi.nlm.nih.gov/cgi-bin/Unigene), of which 4 ESTs correspond to 4 brain cDNA clones (clone IMAGE 38349, and clones GEN-158H06, GEN-121H03, and HFBCA63). Four other human brain cDNA clones corresponding to CA150 (Genbank accession numbers M78358, R87450, AI216964, and HUM121HO3A) could be detected by the inventors in the databases.
Ces EST provenant de séquences obtenues dans plusieurs laboratoires différents, il est difficile de prédire avec précision le niveau d'expression du gène de CA150 dans chacun de ces tissus humains à partir du nombre d'EST. Cependant, le fait que les clones d'ADNc de cerveau humain représentent au total approximativement 11% (8/71 clones) des clones d'ADNc humain correspondant à CA150 suggère que CA150 n'est pas une facteur de transcription ubiquitaire exprimé à haut niveau dans tous les tissus (comme par exemple la TATA-binding protein), et suggère que CA150 pourrait présenter une activité préférentielle dans certaines sous- populations neuronales du cerveau. L'intérêt de CA150 est appuyé par le fait que d'autres PPH comme HYPM ou HYPE (Faber et al., 1998) ne semblent pas exprimées dans le cerveau humain du fait de l'absence d'EST de cerveau humain correspondant à leurs gènes (base de données Unigène). L'intérêt de CA150 est aussi appuyé par le fait que la htt présente une forte proportion d'EST dans le cerveau, ce qui reflète une expression de la htt dans toutes les cellules du cerveau y compris celles qui ne sont atteintes dans HD, tandis que CA150 présente une faible proportion d'EST de cerveau qui est susceptible de refléter une expression sélective de CA150 dans certains neurones du cerveau, éventuellement ceux atteints dans HD.These ESTs coming from sequences obtained in several different laboratories, it is difficult to predict with precision the level of expression of the CA150 gene in each of these human tissues from the number of ESTs. However, the fact that human brain cDNA clones make up approximately 11% (8/71 clones) of the human cDNA clones corresponding to CA150 suggests that CA150 is not a high level ubiquitous transcription factor. in all tissues (such as TATA-binding protein, for example), and suggests that CA150 may exhibit preferential activity in certain neuronal subpopulations of the brain. The interest of CA150 is supported by the fact that other PPHs such as HYPM or HYPE (Faber et al., 1998) do not do not seem to be expressed in the human brain due to the absence of ESTs in the human brain corresponding to their genes (Unigene database). The interest of CA150 is also supported by the fact that the htt presents a high proportion of EST in the brain, which reflects an expression of the htt in all the cells of the brain including those which are not reached in HD, while that CA150 has a low proportion of brain EST which is likely to reflect selective expression of CA150 in certain neurons in the brain, possibly those affected in HD.
Les Inventeurs se sont donc attachés à mettre en évidence des molécules susceptibles de mimer l'activité de la htt normale ou CA150 de façon à les utiliser ensuite en tant que palliatif de l'un ou l'autre de ces composés afin de restaurer la fonctionnalité du couple htt normale / CA150. Les molécules en question peuvent être tous types de composé (molécules naturelles, peptides synthétiques, composés organiques, produits combinatoires) susceptibles de mimer soit l'activité de la htt normale soit de tout fragment N-terminal de la htt normale présentant une activité similaire à celle de la htt normale non seulement dans son interaction avec CA150 mais également dans les conséquences de cette interaction, notamment en ce qui concerne les expressions ou répressions de gènes induites par le fonctionnement normal de ce couple. De préférence, le fragment N-terminal en question aura au plus 546 acides aminés.The inventors therefore set out to highlight molecules capable of mimicking the activity of normal htt or CA150 so as to then use them as a palliative for one or the other of these compounds in order to restore functionality. of the normal htt / CA150 pair. The molecules in question can be any type of compound (natural molecules, synthetic peptides, organic compounds, combinatorial products) capable of mimicking either the activity of normal htt or any N-terminal fragment of normal htt having an activity similar to that of normal htt not only in its interaction with CA150 but also in the consequences of this interaction, in particular with regard to the expressions or repressions of genes induced by the normal functioning of this couple. Preferably, the N-terminal fragment in question will have at most 546 amino acids.
En ce qui concerne les molécules susceptibles de mimer l'activité de CA150, dans le cadre de la présente invention, ces molécules comprennent également les molécules capables de mimer l'activité d'un fragment fonctionnel de CA150, c'est-à-dire d'un fragment susceptible de remplir une fonction similaire à celle de CA150 non seulement dans son interaction avec la htt normale mais également dans les conséquences de cette interaction, notamment en ce qui concerne les expressions ou répressions de gènes induites par le fonctionnement normal de ce couple. En effet, la simple surexpression d'un fragment fonctionnel de CA150, par exemple un fragment dépourvu de la région (QA)38, est susceptible de permettre un rétablissement du fonctionnement normal de ce couple. Ainsi, la présente invention a pour objet un procédé de criblage de molécules capables de modifier l'interaction htt normale / CA 150 comprenant : a) une pré-incubation de la htt normale ou d'un de ses fragments N- terminaux avec une molécule à tester, b) l'élimination des molécules à tester restées libres dans le milieu de pré-incubation, c) l'ajout au milieu résultant de b) de la CA 150 ou d'un fragment fonctionnel de CA150, d) l'élimination de CA 150 ou fragment fonctionnel de CA 150 après incubation du milieu c), e) la mesure de la constante d'affinité du couple htt normale ou fragment N-terminal de celle-ci / CA 150 ou fragment fonctionnel de CA 150 issu de d), f) la comparaison de la constante d'affinité mesurée en e) avec une constante d'affinité standard du couple htt normale / CA 150.As regards the molecules capable of mimicking the activity of CA150, in the context of the present invention, these molecules also include molecules capable of mimicking the activity of a functional fragment of CA150, that is to say of a fragment capable of fulfilling a function similar to that of CA150 not only in its interaction with normal htt but also in the consequences of this interaction, in particular with regard to the expressions or repressions of genes induced by the normal functioning of this couple. Indeed, the simple overexpression of a functional fragment of CA150, for example a fragment devoid of the region (QA) 38, is capable of allowing the normal functioning of this couple to be restored. Thus, the subject of the present invention is a method for screening molecules capable of modifying the normal htt / CA 150 interaction comprising: a) pre-incubation of the normal htt or of one of its N-terminal fragments with a molecule to be tested, b) the elimination of the molecules to be tested which remained free in the pre-incubation medium, c) the addition to the resulting medium of b) of CA 150 or of a functional fragment of CA150, d) elimination of CA 150 or functional fragment of CA 150 after incubation of the medium c), e) the measurement of the affinity constant of the normal htt couple or N-terminal fragment thereof / CA 150 or functional fragment of CA 150 derived from d), f) the comparison of the affinity constant measured in e) with a standard affinity constant of the normal htt / CA 150 couple.
De façon à compléter ce procédé ou selon que la molécule à tester est soupçonnée de mimer la htt normale ou un fragment N-terminal de celle- ci ou bien CA150 ou un fragment fonctionnel de CA150, il peut être intéressant « d'inverser » les réactifs mis en œuvre dans ce procédé en effectuant la préincubation en a) avec CA150 ou un fragment fonctionnel de CA150 et en ajoutant en c) la htt normale ou un fragment N-terminal de celle-ci. Bien évidemment, dans ce cas, c'est la htt normale ou le fragment N-terminal de celle-ci resté libre dans le milieu de c) qui sera ensuite éliminé au niveau de l'étape d). Dans un mode de réalisation avantageux du procédé conforme à l'invention, le composé fixé à l'étape a) du susdit procédé est fixé sur phase solide qui peut être choisie parmi des billes, un tube, une plaque, etc.In order to complete this process or depending on whether the molecule to be tested is suspected of mimicking the normal htt or an N-terminal fragment thereof or CA150 or a functional fragment of CA150, it may be advantageous to "reverse" the reagents used in this process by carrying out the preincubation in a) with CA150 or a functional fragment of CA150 and by adding in c) the normal htt or an N-terminal fragment thereof. Obviously, in this case, it is the normal htt or the N-terminal fragment thereof which remains free in the medium of c) which will then be eliminated in step d). In an advantageous embodiment of the process according to the invention, the compound fixed in step a) of the above process is fixed on solid phase which can be chosen from beads, a tube, a plate, etc.
En fait, le procédé conforme à l'invention tel que ci-dessus écrit permet de mettre en évidence une compétition intervenant entre la molécule à tester et htt normale ou un fragment N-terminal de htt normale ou bien CA150 ou un fragment de CA150, en fonction de l'ordre des réactifs utilisés. En effet, si la comparaison de la constante d'affinité mesurée en e) (du susdit procédé) avec une constatante d'affinité standard du couple htt normale / CA150 révèle une interaction pour ledit couple plus faible que celle connue dans des conditions standard, alors il conviendra de s'intéresser à la molécule testée qui sera vraisemblablement à l'origine de cette « perte d'interaction » en tant que palliatif à l'un ou l'autre des éléments du couple en question. Ainsi, afin d'approfondir une telle donnée, le procédé conforme à l'invention peut comprendre de plus une étape g) dans laquelle on mesure la constante d'affinité du couple molécule testée / htt normale ou fragment N- terminal de celle-ci, ou bien du couple molécule testée / CA 150 ou fragment fonctionnel de CA150, et facultativement une étape h) dans laquelle on compare la constante d'affinité obtenue en g) avec la constante d'affinité standard htt normale / CA 150. Une telle démarche permettra en effet de préciser la force de l'interaction de la molécule à tester avec htt ou CA150 (ou l'un de leur fragment).In fact, the process according to the invention as written above makes it possible to demonstrate a competition occurring between the molecule to be tested and normal htt or an N-terminal fragment of normal htt or else CA150 or a fragment of CA150, depending on the order of the reagents used. Indeed, if the comparison of the affinity constant measured in e) (of the above process) with a finding of standard affinity of the normal htt / CA150 couple reveals an interaction for said couple weaker than that known under standard conditions, then it will be necessary to be interested in the molecule tested which will probably be at the origin of this “loss of interaction” as a palliative with one or the other of the elements of the couple in question. Thus, in order to deepen such data, the method according to the invention may further comprise a step g) in which the affinity constant of the pair tested molecule / normal htt or N-terminal fragment thereof is measured. , or of the couple tested molecule / CA 150 or functional fragment of CA150, and optionally a step h) in which the affinity constant obtained in g) is compared with the standard affinity constant htt normal / CA 150. Such a This approach will indeed make it possible to specify the strength of the interaction of the molecule to be tested with htt or CA150 (or one of their fragment).
Dans le cas où les deux susdites étapes confirmeraient la potentialité d'une molécule testée à interagir au niveau du couple htt normal / CA150, il convient d'ajouter au procédé conforme à l'invention une étape i) dans laquelle on identifie la molécule testée pour laquelle la constante d'affinité mesurée à l'étape g) est significative d'une interaction avec htt normale ou un fragment N-terminal de celle-ci ou bien avec CA150 ou un fragment fonctionnel de CA150. Cette molécule revêt en fait un intérêt particulier et la présente invention a également pour objet son utilisation pour la préparation d'un médicament destiné au traitement curatif ou préventif de la maladie de Huntington. En effet, cette molécule est susceptible de rétablir en tout ou partie une fonctionnalité normale du couple htt normale / CA150 et ainsi d'empêcher l'apoptose neuronale ou le dysfonctionnement neuronal induit par la htt mutée dans les cellules concernées. Il n'est pas exclu qu'une telle molécule présente avec htt normale ou un fragment N-terminal de celle-ci ou bien avec CA150 ou un fragment fonctionnel de CA150, une constante d'affinité supérieure à la constante d'affinité standard connue pour le couple htt normale / CA150. Dans ce cas, il conviendra d'utiliser à dessein ce type de molécule.In the event that the two above-mentioned steps confirm the potential of a tested molecule to interact at the level of the normal htt / CA150 pair, it is necessary to add to the process according to the invention a step i) in which the tested molecule is identified for which the affinity constant measured in step g) is significant of an interaction with normal htt or an N-terminal fragment thereof or with CA150 or a functional fragment of CA150. This molecule is in fact of particular interest and the present invention also relates to its use for the preparation of a medicament intended for the curative or preventive treatment of Huntington's disease. Indeed, this molecule is capable of restoring in whole or in part a normal functionality of the normal htt / CA150 couple. and thus prevent neuronal apoptosis or neuronal dysfunction induced by mutated htt in the cells concerned. It is not excluded that such a molecule present with normal htt or an N-terminal fragment thereof or with CA150 or a functional fragment of CA150, an affinity constant greater than the known standard affinity constant for the normal htt / CA150 pair. In this case, this type of molecule should be used on purpose.
La présente invention a également pour objet un procédé d'identification de cibles thérapeutiques pour la maladie de Huntington par l'analyse comparative des profils d'expression des ARNm issus de cellules saines avec des profils d'expression des ARNm issus de cellules dans lesquelles des pertes d'interactions htt normale / CA150 sont suspectées. Par ARNm ont entend non seulement les ARNm totaux mais également certains ARNm (par Northern blot, par séquençage d'EST à partir de banques d'ADNc, par cDNA display, par hybridation soustrartive d'ARNm ou d'ADNc, à l'aide de membranes ou de puces à ADN, ou toute combinaison de ces méthodes). Dans le cadre de la présente invention, ces ARNm peuvent être non seulement issus de cellules mais également de tissus ou d'organismes entiers (humains ou non humains). Lorsque ces cellules, tissus ou organismes sont dits « sains », il faut entendre : « à l'état normal », c'est- à-dire ne présentant pas d'expression de la htt mutée. Lorsqu'il est question de cellules, tissus ou organismes dans lesquels des pertes d'interaction htt normale / CA150 sont suspectées, il faut entendre qu'il s'agit là d'un état pathologique avec expression de la htt mutée. Un tel procédé permet de mettre en évidence une sous-expression ou une sur-expression de gènes dans les cellules suspectées de présenter une perte d'interaction htt normale / CA150 par rapport à l'expression des mêmes gènes dans des cellules saines, et les séquences nucléotidiques correspondant à tout ou partie de ces gènes peuvent être utilisées dans le cadre de la présente invention pour la préparation d'un médicament destiné au traitement curatif ou préventif de la maladie de Huntington.The present invention also relates to a method of identifying therapeutic targets for Huntington's disease by the comparative analysis of the expression profiles of mRNAs from healthy cells with expression profiles of mRNAs from cells in which Losses of normal htt / CA150 interactions are suspected. By mRNA is meant not only total mRNA but also certain mRNA (by Northern blot, by sequencing of EST from cDNA libraries, by cDNA display, by subtrartive hybridization of mRNA or cDNA, using DNA membranes or microarrays, or any combination of these methods). In the context of the present invention, these mRNAs can be not only derived from cells but also from whole tissues or organisms (human or non-human). When these cells, tissues or organisms are said to be “healthy”, it should be understood: “in the normal state”, that is to say showing no expression of the mutated htt. When it comes to cells, tissues or organisms in which losses of normal htt / CA150 interaction are suspected, it should be understood that this is a pathological condition with expression of the mutated htt. Such a method makes it possible to demonstrate under-expression or over-expression of genes in cells suspected of having a loss of normal htt / CA150 interaction with respect to the expression of the same genes in healthy cells, and the nucleotide sequences corresponding to all or part of these genes can be used in the context of the present invention for the preparation of a medicament intended for the curative or preventive treatment of Huntington's disease.
Par « séquence nucléotidique correspondant à une partie du gène », on entend toute séquence correspondant à un fragment fonctionnel du gène en question et dont l'expression est susceptible de donner lieu à un polypeptide présentant une activité similaire à celle dudit gène au moins pour ce qui concerne son action sur la fonctionnalité du couple htt normale / CA150.By “nucleotide sequence corresponding to a part of the gene” is meant any sequence corresponding to a functional fragment of the gene in question and the expression of which is capable of giving rise to a polypeptide having an activity similar to that of said gene at least as regards its action on the functionality of the normal htt / CA150 pair.
Par « sous- » ou « sur-expression », on entend toute expression de gène inférieure ou supérieure à la normale respectivement, détertable par les techniques courantes bien connues de l'homme du métier.By “under-” or “over-expression” is meant any expression of a gene which is lower or greater than normal respectively, which can be detected by standard techniques well known to those skilled in the art.
Dans le cas où le susdit procédé révèle qu'un gène est sous-exprimé dans les maladies suspectées de présenter des pertes d'interaction htt normale / CA150, la susdite utilisation consistera à introduire la séquence nucléotidique correspondant à tout ou partie de ce gène dans les cellules concernées dans une construction contenant tous les éléments nécessaires à l'expression d'un gène, de façon à faire réexprimer ce gène in situ et ainsi restaurer la fonctionnalité du couple htt normale / CA150. Une telle démarche peut par exemple être réalisée par thérapie génique. Dans le cas où le procédé ci-dessus décrit permet de mettre en évidence une sur-expression d'un gène dans des cellules suspectées de présenter des pertes d'interaction htt normale / CA150, la susdite utilisation consistera à bloquer in situ l'expression de ce gène par exemple au moyen d'une stratégie antisens. La présente invention concerne également l'utilisation d'une séquence nucléotidique correspondant au gène de CA150 ou d'un fragment fonctionnel de CA150 afin de la sur-exprimer au moyen d'une construction comprenant tous les éléments nécessaires à cette sur-expression, au niveau de cellules suspectées de présenter des pertes d'interaction htt normale / CA150, ceci dans le cadre d'un traitement curatif ou préventif de la maladie de Huntington. En effet, dans le cas où CA150 normal serait déficient ou dans le cas où des cellules pathologiques contiendraient à la fois la htt mutée et la htt normale, une telle démarche consistant à sur-exprimer localement CA150 aurait pour effet de déplacer l'équilibre des interactions par saturation de la htt mutée et rendrait donc disponible le C Al 50 en surplus pour la htt normale présente dans lesdites cellules.In the case where the above process reveals that a gene is under-expressed in diseases suspected of having losses of normal htt / CA150 interaction, the above use will consist in introducing the nucleotide sequence corresponding to all or part of this gene in the cells concerned in a construction containing all the elements necessary for the expression of a gene, so as to re-express this gene in situ and thus restore the functionality of the normal htt / CA150 pair. Such an approach can for example be carried out by gene therapy. In the case where the method described above makes it possible to demonstrate an overexpression of a gene in cells suspected of having losses of normal htt / CA150 interaction, the above use will consist in blocking the expression in situ of this gene for example by means of an antisense strategy. The present invention also relates to the use of a nucleotide sequence corresponding to the CA150 gene or of a functional fragment of CA150 in order to overexpress it by means of a construction comprising all the elements necessary for this overexpression, level of cells suspected of having normal htt / CA150 interaction losses, as part of a curative or preventive treatment for Huntington's disease. Indeed, in the case where normal CA150 is deficient or in the case where pathological cells contain both mutated htt and normal htt, such an approach consisting in locally over-expressing CA150 would have the effect of shifting the balance of interactions by saturation of the mutated htt and would therefore make available the C Al 50 in excess for the normal htt present in said cells.
Ceci pourrait également être le cas avec des analogues hyperactifs de CA150 susceptibles de restaurer une fonctionnalité au moins équivalente à la fonctionnalité standard du couple htt normale / CA150. La présente invention a également pour objet un anticorps anti-htt mutée susceptible de faire la discrimination entre htt normale et htt mutée. Elle concerne également l'utilisation d'un tel anticorps pour la préparation d'un médicament destiné au traitement curatif ou préventif de la maladie de Huntington. Une telle démarche de « neutralisation » de la huntingtine mutée pourrait d'ailleurs tout à fait s'accompagner d'une sur-expression locale de CA150 ou un fragment fonctionnel de CA150 et/ou de htt normale ou d'un fragment N-terminal de htt normale de façon à réintroduire les partenaires nécessaires au rétablissement de la fonctionnalité du couple htt normale / CA150. A titre d'exemple, ceci pourrait être réalisé par le biais de la thérapie génique.This could also be the case with hyperactive analogs of CA150 capable of restoring functionality at least equivalent to the standard functionality of the normal htt / CA150 pair. The present invention also relates to an anti-mutated htt antibody capable of discriminating between normal htt and mutated htt. It also relates to the use of such an antibody for the preparation of a medicament intended for the curative or preventive treatment of Huntington's disease. Such a process of “neutralization” of the mutated huntingtin could moreover be entirely accompanied by a local over-expression of CA150 or a functional fragment of CA150 and / or of normal htt or of an N-terminal fragment. from normal htt so as to reintroduce the partners necessary for restoring the functionality of the normal htt / CA150 pair. As an example, this could be achieved through gene therapy.
La présente invention ne se limite pas à la susdite description. Elle sera mieux comprise à la lumière des expérimentations exposées ci-après.The present invention is not limited to the above description. It will be better understood in the light of the experiments set out below.
PRESENTATION DES FIGURESPRESENTATION OF THE FIGURES
Figure 1. Test quantitatif (test ONPG en phase liquide) pour les interactions entre fragments N-terminaux de la htt et la protéine ZK1127.9 187-758. Htt90 correspond au produit de l'exon 1 du gène de la htt. Htt 152 est un fragment qui est plus fortement susceptible de pénétrer dans le noyau des neurones que htt546. Les valeurs représentées correspondent aux moyennes sur 45 mesures in vivo (9 cultures indépendantes ; 5 mesures/point/culture). Les intervalles représentent les bornes des valeurs obtenues. Δ : pourcentage de différence de liaison entre allèle 15 Gins et allèle à 128 Gins. Les distributions des valeurs ONPG ont été comparées par analyse ANOVA à l'aide du logiciel Macintosh Statview.Figure 1. Quantitative test (ONPG test in liquid phase) for the interactions between N-terminal fragments of the htt and the protein ZK1127.9 187-758. Htt90 corresponds to the product of exon 1 of the htt gene. Htt 152 is a fragment that is more likely to enter the neuron nucleus than htt546. The values represented correspond to the means over 45 in vivo measurements (9 independent cultures; 5 measurements / point / culture). The intervals represent the limits of the values obtained. Δ: percentage of link difference between the 15 Gins allele and the 128 Gins allele. The distributions of ONPG values were compared by ANOVA analysis using Macintosh Statview software.
Figure 2. Comparaison des protéines ZK.1127.9 et CA150. Les tailles anotées sont en nombre d'aminoacides. Carrés noirs : domaines WW. Zone hachurée : domaine (QA)60 polymorphique dans la population normale, 4 allèles, au minimum 15 % - 30 % d'hétérozygotie, en fonction de la population normale testée. Figure 3. Interaction in vitro de la htt 152 normale (fixée sur billes de sepharose sous forme de protéine de fusion GST) et de ZK1127.09_187- 758: :HA. L'interaction est mise en évidence à l'aide d'un anticorps anti- HA. -httl52Q18 : pas de htt normale sur les billes de sepharose (contrôle négatif) ; +httl52Q18 : avec htt normale sur les billes de sepharose, dans ce cas la flèche indique la protéine ZKl 127.9 éluée après rétention par la htt fixée sur les billes.Figure 2. Comparison of the proteins ZK.1127.9 and CA150. The annotated sizes are in number of amino acids. Black squares: WW domains. Hatched area: polymorphic domain (QA) 60 in the normal population, 4 alleles, at least 15% - 30% heterozygosity, depending on the normal population tested. Figure 3. In vitro interaction of normal htt 152 (fixed on sepharose beads in the form of GST fusion protein) and ZK1127.09_187- 758:: HA. The interaction is demonstrated using an anti-HA antibody. -httl52Q18: no normal htt on the sepharose beads (negative control); + httl52Q18: with normal htt on the sepharose beads, in this case the arrow indicates the protein ZKl 127.9 eluted after retention by the htt fixed on the beads.
Figure 4. Interaction in vitro de la GST : :httl52 normale (fixée sur billes de sepharose sous forme de protéine de fusion GST) et de CA150 (fragment 133-910 aminoacides) : :HA. L'interaction est mise en évidence à l'aide d'un anticorps anti-HA.Figure 4. In vitro interaction of GST:: normal htt152 (fixed on sepharose beads in the form of GST fusion protein) and CA150 (fragment 133-910 amino acids):: HA. The interaction is demonstrated using an anti-HA antibody.
Figure 5. Retard de migration sur gel de CA150 (fragment 133-910 aminoacides) après expression et purification dans E. coli. CA150 est détectée à l'aide d'un anticorps anti-HA ou d'un anticorps polyclonal anti- CA150. A : détection avec un anticorps anti-HA (origine commerciale). B : détection avec un anticorps polyclonal anti-CA150 (Sune et al., 1997). Ag : forme agrégée ; N.Ag : forme non agrégée.Figure 5. Delay in migration on CA150 gel (fragment 133-910 amino acids) after expression and purification in E. coli. CA150 is detected using an anti-HA antibody or a polyclonal anti-CA150 antibody. A: detection with an anti-HA antibody (commercial origin). B: detection with a polyclonal anti-CA150 antibody (Sune et al., 1997). Ag: aggregated form; N.Ag: non-aggregated form.
Figure 6. Profil d'expression de la protéine CA150 sur coupes de cerveaux post-mortem d'individus normaux et de patients atteints de la maladie de Huntington. L'expression de CA150 a été testée à l'aide d'un anticorps polyclonal anti-CA150 (Sune et al., 1997). Les tests ont été réalisés dans le laboratoire de Robert Ferrante (Bedford VA médical Center, Bedford, USA). CA150 présente les profils d'expression suivants : A : Cortex humain, individu normal : expression diffuse, principalement nucléaire. B : Cortex humain, patient atteint de la maladie de Huntington : expression sous forme d'agrégats dans le noyau et dans le cytoplasme des neurones positifs. Ce profil d'expression est fortement similaire à celui observé avec un anticorps anti-huntingtine (tel que largement décrit dans la litérature), ce qui suggère que CA150 et huntingtine co-localisent dans les agrégats cellulaires chez les malades. C : striatum humain, individu normal : même observation que pour A. D : Striatum humain, patient atteint de la maladie de Huntington : même observation que pour B. Lorsque l'anticorps polyclonal anti-CA150 est pré-incubé sur la nuit avec la protéine CA150 purifiée (test de préabsorption), aucun signal n'est visible, ce qui démontre la spécificité des marquages observés en A, B, C et D.Figure 6. Expression profile of the CA150 protein on post-mortem brain sections of normal individuals and patients with Huntington's disease. The expression of CA150 was tested using a polyclonal anti-CA150 antibody (Sune et al., 1997). The tests were carried out in Robert Ferrante's laboratory (Bedford VA medical Center, Bedford, USA). CA150 has the following expression profiles: A: Human cortex, normal individual: diffuse expression, mainly nuclear. B: Human cortex, patient with Huntington's disease: expression in the form of aggregates in the nucleus and in the cytoplasm of positive neurons. This expression profile is strongly similar to that observed with an anti-huntingtin antibody (as widely described in the literature), which suggests that CA150 and huntingtin co-localize in cellular aggregates in patients. C: human striatum, normal individual: same observation as for A. D: human striatum, patient suffering from Huntington: same observation as for B. When the polyclonal anti-CA150 antibody is pre-incubated overnight with the purified CA150 protein (preabsorption test), no signal is visible, which demonstrates the specificity of the markings observed in A, B, C and D.
METHODES ET DONNEESMETHODS AND DATA
Les constructions destinées au criblage double-hybride et codant pour la htt ont été créées dans le vecteur pGBT9 (numéro d'accession Genbank UO7646, Clontech) sous forme de protéines de fusion avec le domaine de liaison de la protéine GAL4 (GAL4BD) pour les séquences d'ADN spécifiques qui ont été introduites dans le génome des levures hôtes. Les fragments d'ADNc codant pour la htt proviennent du laboratoire de Michael Hayden, University of British Columbia, Vancouver, Canada. Toutes les constructions ont été séquençées afin de vérifier la mise en phase de lecture des ADNc de la htt, le nombre de répétitions CAG, et l'absence de mutations ponctuelles ou de délétions. La banque d'ADNc de C. elegans (ADNc générés à l'aide d'une amorce oligo-dT) a été sous-clonée dans le vecteur pACT2 (numéro d'accession Genbank U29899, Clontech) sous forme de protéines de fusion avec le domaine d'activation de la transcription de GAL4 (GAL4AD). Cette banque d'ADNc est en accès libre et provient du laboratoire de R. Barstead (Oklahoma Médical Research Foundation, OK, USA). Le criblage en double-hybride a été effectué par utilisation d'un protocole basé sur la fusion de levures mat-a et mat-alpha (Bendixen et al., 1994), les levures mat-a (souche CGI 945, Clontech) exprimant en l'occurrence les protéines de fusion [GAL4BD::htt], et les levures mat-alpha (souche Y187, Clontech) exprimant les fusions [fragments de protéines de
Figure imgf000022_0001
The constructs intended for double-hybrid screening and encoding the htt were created in the vector pGBT9 (Genbank accession number UO7646, Clontech) in the form of fusion proteins with the binding domain of the GAL4 protein (GAL4BD) for the specific DNA sequences that have been introduced into the genome of host yeasts. The cDNA fragments coding for htt are from the laboratory of Michael Hayden, University of British Columbia, Vancouver, Canada. All the constructions were sequenced in order to verify the reading phase of the cDNAs of the htt, the number of CAG repeats, and the absence of point mutations or deletions. The C. elegans cDNA library (cDNAs generated using an oligo-dT primer) was subcloned into the vector pACT2 (Genbank accession number U29899, Clontech) in the form of fusion proteins with the GAL4 transcription activation domain (GAL4AD). This cDNA bank is freely accessible and comes from the laboratory of R. Barstead (Oklahoma Medical Research Foundation, OK, USA). The double-hybrid screening was carried out using a protocol based on the fusion of mat-a and mat-alpha yeasts (Bendixen et al., 1994), the mat-a yeasts (strain CGI 945, Clontech) expressing in this case the fusion proteins [GAL4BD :: htt], and the mat-alpha yeasts (strain Y187, Clontech) expressing the fusions [protein fragments of
Figure imgf000022_0001
La construction utilisée par les inventeurs pour le criblage (protéine de fusion avec GAL4BD) était htt546Q15 (Figure 1). Après criblage de 3,8 108 clones (efficacité de fusion supérieure à 33%), 56 clones positifs ont été détectés. Après élimination des faux positifs (sur la base d'une interaction en double-hybride avec la protéine de fusion GAL4BD:: lamine) et vérification de la redondance des vrais positifs par analyse des profils de restriction (digestion enzymatique des ADNc sélectionnés à l'aide des enzymes de restriction EcoRI et BamHI), les inventeurs ont séquence les extrémités 5' et 3' des clones d'ADNc uniques résultants (soit 2 clones). La recherche d'homologie de séquence entre les EST (Expressed Sequenced Tag) 3' et 5' obtenus pour ces clones et les protéines de C. elegans sur le serveur « BLAST C. elegans » au Sanger Centre, Cambridge, UK (http://www.sanger.ac.uk/Projects/C_elegans/blast_server.shtml) à l'aide des programmes BLAST (Altschul et al., 1997) a permis aux inventeurs d'identifier la protéine ZKl 127.9 comme partenaire de htt546Q15. Comme indiqué dans la banque publique de données Acedb, le gène de ZKl 127.9 se trouve sur le chromosome II (cosmide ZKl 127) de C. elegans. La séquence de la protéine ZKl 127.9 a été prédite à partir de l'analyse de la séquence génomique de C. elegans (The C. elegans Sequencing consortium, 1998) et contient 946 aminoacides. La comparaison des séquences d'extrémité 3' et 5' du clone d'ADNc correspondant à ZKl 127.9 avec la banque C. elegans du Sanger Centre à l'aide des programmes BLASTN et BLASTX a permis d'établir que le clone d'ADNc correspondant au gène de la protéine ZKl 127.9 code pour les aminoacides 187 à 758 de cette protéine. Les sites de liaison de htt546Q15 sur ZKl 127.9 sont donc localisés entre les aminoacides 187 à 758 de ZKl 127.9 (ZKl 127.9_187-758). Le profil d'interaction de ZKl 127.9 187-758 avec différentes formes de la htt (htt546Q15, htt546Q128, httl52Q15, httl52Q128) a été analysé par les inventeurs à l'aide des tests en double-hybride (Bendixen et al., 1996), initialement de façon qualitative après sélection des clones positifs sur gélose et transfert sur filtres de nylon, et ensuite de façon quantitative après sélection des clones positifs en phase liquide, extraction des protéines, et test ONPG en phase liquide (Kalchman et al., 1996). Les tests ONPG ont été effectués 45 fois, c'est à dire à partir de 9 cultures indépendantes de levure, et de 5 mesures/cas/culture (Figure 1). L'analyse statistique des données a été effectuée à l'aide du logiciel Statview (Macintosh) et de l'analyse des variances sur la distribution des valeurs obtenues pour chaque cas (Figure 1). Des homologies de séquence de ZKl 127.9 et de ZKl 127.9_187-758 avec d'autres gènes ont été recherchées par les inventeurs dans plusieurs banques de données publiques dont :The construct used by the inventors for screening (fusion protein with GAL4BD) was htt546Q15 (Figure 1). After screening 3.8 10 8 clones (fusion efficiency greater than 33%), 56 positive clones were detected. After elimination of false positives (based on a double-hybrid interaction with the fusion protein GAL4BD :: lamine) and verification of the redundancy of the true positives by analysis of the restriction profiles (enzymatic digestion of the cDNAs selected using the restriction enzymes EcoRI and BamHI), the inventors sequenced the 5 'and 3' ends of the unique cDNA clones results (i.e. 2 clones). Search for sequence homology between the 3 'and 5' ESTs (Expressed Sequenced Tag) obtained for these clones and the proteins of C. elegans on the "BLAST C. elegans" server at the Sanger Center, Cambridge, UK (http: //www.sanger.ac.uk/Projects/C_elegans/blast_server.shtml) using BLAST programs (Altschul et al., 1997) enabled the inventors to identify the protein ZKl 127.9 as a partner of htt546Q15. As indicated in the Acedb public database, the gene for ZKl 127.9 is found on chromosome II (cosmid ZKl 127) of C. elegans. The sequence of the protein ZKl 127.9 was predicted from the analysis of the genomic sequence of C. elegans (The C. elegans Sequencing consortium, 1998) and contains 946 amino acids. Comparison of the 3 'and 5' end sequences of the cDNA clone corresponding to ZKl 127.9 with the C. elegans library of the Sanger Center using the BLASTN and BLASTX programs made it possible to establish that the cDNA clone corresponding to the gene for the protein ZKl 127.9 codes for amino acids 187 to 758 of this protein. The binding sites of htt546Q15 on ZKl 127.9 are therefore located between amino acids 187 to 758 of ZKl 127.9 (ZKl 127.9_187-758). The interaction profile of ZKl 127.9 187-758 with different forms of htt (htt546Q15, htt546Q128, httl52Q15, httl52Q128) was analyzed by the inventors using double-hybrid tests (Bendixen et al., 1996) , initially qualitatively after selection of positive clones on agar and transfer to nylon filters, and then quantitatively after selection of positive clones in liquid phase, protein extraction, and ONPG test in liquid phase (Kalchman et al., 1996 ). The ONPG tests were carried out 45 times, ie from 9 independent yeast cultures, and from 5 measurements / case / culture (Figure 1). Statistical analysis of the data was performed using Statview software (Macintosh) and analysis of variances on the distribution of values obtained for each case (Figure 1). Sequences of ZKl 127.9 and ZKl 127.9_187-758 with other genes have been sought by the inventors in several public databases, including:
- Genbank au NUL MD (http://www.ncbi.nlm.nih.gov) - le serveur WWW « BLAST C. elegans » du Sanger Centre, Cambridge, UK (http://www.sanger.ac.uk/Projects/C_elegans/blast_server.shtml) le serveur WWW de l'EBI, Cambridge, UK (http://www2.ebi.ac.uk/servicestmp)- Genbank at NUL MD (http://www.ncbi.nlm.nih.gov) - WWW server "BLAST C. elegans" from the Sanger Center, Cambridge, UK (http://www.sanger.ac.uk/ Projects / C_elegans / blast_server.shtml) the EBI WWW server, Cambridge, UK (http://www2.ebi.ac.uk/servicestmp)
Ces recherches ont été effectuées à l'aide des programmes BLAST (Altschul et al, 1997) ou à l'aide de programmes basés sur l'algorithme de Smith et Waterman (Smith et Waterman, 1981) comme le programme bic2 (EBI). Par ailleurs, des domaines conservés ont été recherchés dans ZKl 127.9, ZKl 127.9 87-758, et CA150 à l'aide du programme Pfam (http://www.sanger.ac.uk/Softwares/Pfam search.shtml). Ces analyses ont permis de mettre en évidence les faits suivants (Figure 2) :This research was carried out using BLAST programs (Altschul et al, 1997) or using programs based on the Smith and Waterman algorithm (Smith and Waterman, 1981) such as the bic2 program (EBI). In addition, conserved domains were searched in ZKl 127.9, ZKl 127.9 87-758, and CA150 using the Pfam program (http://www.sanger.ac.uk/Softwares/Pfam search.shtml). These analyzes made it possible to highlight the following facts (Figure 2):
- ZKl 127.9 187-758 contient 3 domaines WW (Pirozzi et al., 1997) aux positions 200-225, 262-292, et 378-407 amino-acides (0.00019<Evalues<0.011). Les domaines WW sont des motifs de 35-40 amino-acides caractérisés par la présence de 4 résidus aromatiques conservés dont deux sont des tryptophanes, sont des médiateurs des interactions protéine-protéine, et interagissent classiquement avec des domaines polyprolines (Pirozzi et al, 1997). Il est donc très probable que ZKl 127.9_187-758 interagit avec la région riche en prolines de la htt (htt : numéro d'accession Genbank L 12392) qui est localisée immédiatement en C-terminal du domaine polyQ (entre les amino-acides 40 et 100) et qui contient 2 polyprolines de 11 et 10 prolines consécutives. Il est aussi très probable que la liaison de la htt à CA150 implique les polyprolines et la région immédiatement C-terminale (sur au moins 30 aminoacides) aux domaines polyprolines dans la htt et les domaines WW aux positions 133- 162, 431-460 (correspondant au domaine WW 262-292 de ZKl 127.9), et 532-559 aminocides (lO^EvaluesO.0016) de CA150. Le rôle médiateur de la région riche en polyprolines de la htt pour l'interaction avec des protéines à domaine WW a été illustrée par ailleurs (Faber et al, 1998). - la région de ZKl 127.9 allant des aminoacides 267 à 944 présente une homologie importante (amino-acides identiques : environ 38% ; aminoacides similaires : environ 69% ; p=1213 en analyse Smith et Waterman, et p(N)=10"137 en analyse BLAST) avec la région 435 à 1095 aminoacides de la protéine humaine CA150 (numéro d'accession Genbank AFO 17789). Il existe aussi d'autres homologies plus faibles et non significatives pour des segments courts de ZKl 127.9, comme par exemple des homologies avec des domaines WW présents dans d'autres protéines comme HYPA ou HYPB (Faber et al, 1998). - ZKl 127.9 187-758 contains 3 WW domains (Pirozzi et al., 1997) at positions 200-225, 262-292, and 378-407 amino acids (0.00019 <Evaluated <0.011). The WW domains are 35-40 amino acid motifs characterized by the presence of 4 conserved aromatic residues, two of which are tryptophans, mediate protein-protein interactions, and conventionally interact with polyproline domains (Pirozzi et al, 1997 ). It is therefore very likely that ZKl 127.9_187-758 interacts with the proline-rich region of the htt (htt: Genbank accession number L 12392) which is located immediately at the C-terminal of the polyQ domain (between amino acids 40 and 100) and which contains 2 polyprolines of 11 and 10 consecutive prolines. It is also very likely that the binding of htt to CA150 involves the polyprolines and the immediately C-terminal region (on at least 30 amino acids) to the polyproline domains in the htt and the WW domains at positions 133-162, 431-460 ( corresponding to the domain WW 262-292 of ZKl 127.9), and 532-559 aminocides (lO ^ EvaluesO.0016) of CA150. The mediating role of the polyproline-rich region of htt for interaction with WW domain proteins has been illustrated elsewhere (Faber et al, 1998). - the region of ZKl 127.9 going from amino acids 267 to 944 has a significant homology (identical amino acids: approximately 38%; similar amino acids: approximately 69%; p = 1213 in Smith and Waterman analysis, and p (N) = 10 " 137 in BLAST analysis) with the region 435 to 1095 amino acids of the human protein CA150 (Genbank accession number AFO 17789). There are also other weaker and non-significant homologies for short segments of ZKl 127.9, such as for example homologies with WW domains present in other proteins such as HYPA or HYPB (Faber et al, 1998).
REFERENCESREFERENCES
Altschul SF, Thomas LM, Schaffer AA, Zhang J, Zhang Z, Miller W, and Lipman DJ. Gapped BLAST and PSI-BLAST: a new génération of protein database search programs. Nucleic Acids Res 25, 3389-3402, 1997.Altschul SF, Thomas LM, Schaffer AA, Zhang J, Zhang Z, Miller W, and Lipman DJ. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25, 3389-3402, 1997.
Bâtes GP, Mangiarini L, Davies SW. Transgenic mice in the study of polyglutamine repeat expansion diseases. Brain Pathol 8, 699-714, 1998.Bâtes GP, Mangiarini L, Davies SW. Transgenic mice in the study of polyglutamine repeat expansion diseases. Brain Pathol 8, 699-714, 1998.
Bargman CI. Neurobiology of the C. elegans génome. Science 282, 2028- 2033, 1998.Bargman CI. Neurobiology of the C. elegans genome. Science 282, 2028-2033, 1998.
Bendixen C, Gangloff S, and Rothstein R. A yeast mating-selection scheme for détection of protein-protein interactions. Nucleic Acids Res 22, 1778- 1779, 1994.Bendixen C, Gangloff S, and Rothstein R. A yeast mating-selection scheme for detection of protein-protein interactions. Nucleic Acids Res 22, 1778-1779, 1994.
Bertaux F, Sharp AH, Ross CA, Lehrach H, Bâtes GP, and Wanker E. HAP1 -huntingtin interactions do not contribute to the molecular pathology in the Huntington's disease transgenic mice. FEBS letter 17, 229-232, 1998.Bertaux F, Sharp AH, Ross CA, Lehrach H, Bâtes GP, and Wanker E. HAP1 -huntingtin interactions do not contribute to the molecular pathology in the Huntington's disease transgenic mice. FEBS letter 17, 229-232, 1998.
Boutell JM, Wood J, Harper PS, and Jones L. Huntingtin interacts with cystathionine β-synthase. Hum Mol Genêt 7, 371-378, 1998.Boutell JM, Wood J, Harper PS, and Jones L. Huntingtin interacts with cystathionine β-synthase. Hum Mol Genêt 7, 371-378, 1998.
Burke JR, Enghild JJ, Martin ME, Jou YS, Myers RM, Roses AD, Vance JM, and Strittmater WJ. Huntingtin and DRPLA proteins selectively interact with the enzyme GAPDH. Nature Medicine 2, 347-350, 1996.Burke JR, Enghild JJ, Martin ME, Jou YS, Myers RM, Roses AD, Vance JM, and Strittmater WJ. Huntingtin and DRPLA proteins selectively interact with the enzyme GAPDH. Nature Medicine 2, 347-350, 1996.
Davies SW, Turmaine M, Cozens B, DiFiglia M, Sharp AH, Ross CR, Scherzinger E, Wanker EE, Mangiarini L, and Bâtes G. Formation of neuronal intranuclear inclusions underlies the neurological dysfùnction in mice transgenic for the HD mutation. Cell 90, 537-548, 1997.Davies SW, Turmaine M, Cozens B, DiFiglia M, Sharp AH, Ross CR, Scherzinger E, Wanker EE, Mangiarini L, and Bâtes G. Formation of neuronal intranuclear inclusions underlies the neurological dysfùnction in mice transgenic for the HD mutation. Cell 90, 537-548, 1997.
De Rooij KE, Dorsman JC, Smoor MA, Den Dunnen JT, and Van Ommen GJB. Subcellular localization of the Huntington's disease gène product in cell lines by immunofluorescence and biochemical subcellular fractionnation. Human Molecular Genêt 5, 1093-1099, 1996.De Rooij KE, Dorsman JC, Smoor MA, Den Dunnen JT, and Van Ommen GJB. Subcellular localization of the Huntington's disease gene product in cell lines by immunofluorescence and biochemical subcellular fractionation. Human Molecular Genêt 5, 1093-1099, 1996.
DiFiglia M, Sapp E, Chase KO, Davies SW, Bâtes GP, Vonsattel JP, & Aronin N. Aggregation of huntingtin in neuronal intranuclear inclusions and dystrophic neurites in brain. Science 277, 1990-1993, 1997.DiFiglia M, Sapp E, Chase KO, Davies SW, Bâtes GP, Vonsattel JP, & Aronin N. Aggregation of huntingtin in neuronal intranuclear inclusions and dystrophic neurites in brain. Science 277, 1990-1993, 1997.
Engelender et al 1997Engelender et al 1997
Faber PW, Barnes GT, Srinidhi J, Chen J, Gusella JF, and MacDonald ME. Huntingtin interacts with a family of WW domain proteins. Hum Mol Genêt 7, 1463-1474, 1998.Faber PW, Barnes GT, Srinidhi J, Chen J, Gusella JF, and MacDonald ME. Huntingtin interacts with a family of WW domain proteins. Hum Mol Genêt 7, 1463-1474, 1998.
Faber PW, Alter JR, MacDonald ME, and Hart A. Polyglutamine-mediated dysfùnction and apoptotic death of a C. elegans sensory neuron. Proc Natl Acad Sci USA 96, 170-184, 1999.Faber PW, Alter JR, MacDonald ME, and Hart A. Polyglutamine-mediated dysfunction and apoptotic death of a C. elegans sensory neuron. Proc Natl Acad Sci USA 96, 170-184, 1999.
Fields S and Song OK. A novel genetic System to detert protein-protein interactions. Nature 340, 245-246, 1989.Fields S and Song OK. A novel genetic System to detert protein-protein interactions. Nature 340, 245-246, 1989.
Goldberg YP, Nicholson DW, Rasper DM, Kalchman MA, Koide HB, Graham RK, Bromm M, Kazemi-Esfarjani P, Thornberry NA, Vaillancourt JP, and Hayden MR. Cleavage of huntingtin by apopain, a proapoptotic cysteine protease, is modulated by the polyglutamine tract. Nature Genêt 13, 442-449, 1996.Goldberg YP, Nicholson DW, Rasper DM, Kalchman MA, Koide HB, Graham RK, Bromm M, Kazemi-Esfarjani P, Thornberry NA, Vaillancourt JP, and Hayden MR. Cleavage of huntingtin by apopain, a proapoptotic cysteine protease, is modulated by the polyglutamine tract. Nature Genêt 13, 442-449, 1996.
Hackam AS, Singaraja R, Zhang T, Gan L, and Hayden MR. In vitro évidence for both the nucleus and cytoplasmas subcellular sites of pathogenesis in Huntington's disease. Hum Mol Genêt 8, 25-33, 1999.Hackam AS, Singaraja R, Zhang T, Gan L, and Hayden MR. In vitro evidence for both the nucleus and cytoplasmas subcellular sites of pathogenesis in Huntington's disease. Hum Mol Genêt 8, 25-33, 1999.
Hoogeveen AT, Willemsen R, Meyer N, De Rooij KE, Roos RAC, and Van Ommen GJB, and Galjaard H. Characterization and localization of the Huntington disease gène product. Hum Mol Genêt 2, 2069-2073, 1993. Jackson GR, Salecker I, Dong X, Yao X, Arhheim N, Faber PW, MacDonald ME, and Zipursky SL. Polyglutamine-expanded human huntingtin transgenes induce degeneration of Drosophila photoreceptors neurons. Neuron 21, 633-642, 1998.Hoogeveen AT, Willemsen R, Meyer N, De Rooij KE, Roos RAC, and Van Ommen GJB, and Galjaard H. Characterization and localization of the Huntington disease gene product. Hum Mol Genêt 2, 2069-2073, 1993. Jackson GR, Salecker I, Dong X, Yao X, Arhheim N, Faber PW, MacDonald ME, and Zipursky SL. Polyglutamine-expanded human huntingtin transgenes induce degeneration of Drosophila photoreceptors neurons. Neuron 21, 633-642, 1998.
Kalchman MA, Graham RK, Xia G, Koide HB, Hodgson JG, Graham KC, Goldberg YP, Gietz RD, Pickart CM, and Hayden MR. Huntingtin is ubiquitinated and interacts with a spécifie ubiquitin-conjugating enzyme. J Biol Chem 271, 19385-19394, 1996.Kalchman MA, Graham RK, Xia G, Koide HB, Hodgson JG, Graham KC, Goldberg YP, Gietz RD, Pickart CM, and Hayden MR. Huntingtin is ubiquitinated and interacts with a specifies ubiquitin-conjugating enzyme. J Biol Chem 271, 19385-19394, 1996.
Kalchman MA, Koide HB, McCutcheon K, Graham RK, Nichol K, Nishiyama K, Kazemi-Esfarjani P, Lynn FC, Wellington C, Metzler M, Goldberg YP, Kanazawa I, Gietz RD, and Hayden MR. HIPl, a human homologue of S. cerevisae Sla2p, interacts with membrane-associated huntingtin in the brain. Nat Genêt 16, 44-52, 1997.Kalchman MA, Koide HB, McCutcheon K, Graham RK, Nichol K, Nishiyama K, Kazemi-Esfarjani P, Lynn FC, Wellington C, Metzler M, Goldberg YP, Kanazawa I, Gietz RD, and Hayden MR. HIPl, a human homologue of S. cerevisae Sla2p, interacts with membrane-associated huntingtin in the brain. Nat Genêt 16, 44-52, 1997.
Koshy BT and Zoghbi HY. The CAG/polyglutamine tract diseases: gène products and molecular pathogenesis. Brain Pathol 7, 927-942, 1997.Koshy BT and Zoghbi HY. The CAG / polyglutamine tract diseases: gene products and molecular pathogenesis. Brain Pathol 7, 927-942, 1997.
Li X-J, Li S-H, Shaφ AH, Nucifora Jr FC, Schilling G, Lanahan A, Woriey P, Snyder SH, Ross CA. A Hungtintin-associated protein enriched in brain with implications for pathology. Nature 378, 398-402, 1995.Li X-J, Li S-H, Shaφ AH, Nucifora Jr FC, Schilling G, Lanahan A, Woriey P, Snyder SH, Ross CA. A Hungtintin-associated protein enriched in brain with implications for pathology. Nature 378, 398-402, 1995.
Lunkes A and Mandel JL. A cellular model that récapitulâtes major pathogenic steps of Huntington's disease. Hum Mol Genêt 7, 1355-1361, 1998.Lunkes A and Mandel JL. A cellular model that summarizes major pathogenic steps of Huntington's disease. Hum Mol Genêt 7, 1355-1361, 1998.
Mangiarini L, Sathasivam K, Seller M, Cozens B, Harper A, Hetherington C, Lawton M, Trottier Y, Lehrach H, Davies SW, and Bâtes G. Exon 1 of the HD gène with an expanded CAG repeat is sufficient to cause a progressive neurological phénotype in transgenic mice. Cell 87, 493-506, 1996. Martindale D, Hackam A, Wieczoreck A, Ellerby L, Wellington C, McCutcheon K, Singaraja R, Kazemi-Esfarjani P, Devon R, Kim SU, Bredesen DE, Tufaro F, and Hayden MR. Length of huntingtin and its polyglutamine tract influences localization and frequency of intracellular aggregates. Nature Genêt 18, 150-154, 1998.Mangiarini L, Sathasivam K, Seller M, Cozens B, Harper A, Hetherington C, Lawton M, Trottier Y, Lehrach H, Davies SW, and Bâtes G. Exon 1 of the HD gene with an expanded CAG repeat is sufficient to cause a progressive neurological phenotype in transgenic mice. Cell 87, 493-506, 1996. Martindale D, Hackam A, Wieczoreck A, Ellerby L, Wellington C, McCutcheon K, Singaraja R, Kazemi-Esfarjani P, Devon R, Kim SU, Bredesen DE, Tufaro F, and Hayden MR. Length of huntingtin and its polyglutamine tract influences localization and frequency of intracellular aggregates. Nature Broom 18, 150-154, 1998.
Néri C, Du Hongping, Morinière S, and Chalfie C. A C. elegans model of neuron dysfùnction in polyglutamine expansion diseases: Suggestive évidence for polyglutamine-dependent intracellular aggregation and touch receptor neuron dysfùnction. European Worm Meeting, August 1998, Hinxton, UK, p. 43.Néri C, Du Hongping, Morinière S, and Chalfie C. A C. elegans model of neuron dysfùnction in polyglutamine expansion diseases: Suggestive evidence for polyglutamine-dependent intracellular aggregation and touch receptor neuron dysfùnction. European Worm Meeting, August 1998, Hinxton, UK, p. 43.
Palfi S, Conde F, Riche D, Brouillet E, Dautry C, Mittoux V, Chibois A, Peschanski M, and Hantraye P. Fetal striatal allografts reverse cognitive déficits in a primate model of Huntington disease. Nat Med 4, 963-966, 1998.Palfi S, Conde F, Riche D, Brouillet E, Dautry C, Mittoux V, Chibois A, Peschanski M, and Hantraye P. Fetal striatal allografts reverse cognitive deficits in a primate model of Huntington disease. Nat Med 4, 963-966, 1998.
Pirozzi G, McConnell SJ, Uveges AJ, Carter JM, Sparks AB, Kay BK, Fowlkes DM. Identification of novel human WW domain-containing proteins by cloning of ligand targets. J Biol Chem 272, 14611-14616, 1997.Pirozzi G, McConnell SJ, Uveges AJ, Carter JM, Sparks AB, Kay BK, Fowlkes DM. Identification of novel human WW domain-containing proteins by cloning of ligand targets. J Biol Chem 272, 14611-14616, 1997.
Ross CA. Intranuclear neuronal inclusions: a common pathogenic mechanism for glutamine-repeat neurodegenerative diseases? Neuron 19, 1147-1150, 1997.Ross CA. Intranuclear neuronal inclusions: a common pathogenic mechanism for glutamine-repeat neurodegenerative diseases? Neuron 19, 1147-1150, 1997.
Ruvkun G and Hobert O. The taxonomy of developmental control in C. elegans. Science 282, 2033-2041, 1998.Ruvkun G and Hobert O. The taxonomy of developmental control in C. elegans. Science 282, 2033-2041, 1998.
Saudou F, Finkbeiner S, Devys D, and Greenberg M. Huntingtin acts in the nucleus to induce apoptosis but death does not correlate with the formation of intranuclear inclusions. Cell 95, 55-66, 1998.Saudou F, Finkbeiner S, Devys D, and Greenberg M. Huntingtin acts in the nucleus to induce apoptosis but death does not correlate with the formation of intranuclear inclusions. Cell 95, 55-66, 1998.
Schilling G, Bêcher MW, Sharp AH, Jinnah HA, Duan K, Kotzuk JA, Slunt HH, Ratovitski T, Cooper JK, Jenkins NA, Copeland NG, Price DL, Ross CA, and Borchelt DR. Intranuclear inclusions and neuritic aggregates in transgenic mice expressing a mutant N-terminal fragment of huntingtin. Hum Mol Genêt 8, 397-407, 1999.Schilling G, Bêche MW, Sharp AH, Jinnah HA, Duan K, Kotzuk JA, Slunt HH, Ratovitski T, Cooper JK, Jenkins NA, Copeland NG, Price DL, Ross CA, and Borchelt DR. Intranuclear inclusions and neuritic aggregates in transgenic mice expressing a mutant N-terminal fragment of huntingtin. Hum Mol Genêt 8, 397-407, 1999.
Sisodia SS. Nuclear inclusions in glutamine repeat disorders: are they pernicious, coincidental, or bénéficiai? Cell 95, 1-4, 1998.Sisodia SS. Nuclear inclusions in glutamine repeat disorders: are they pernicious, coincidental, or beneficiiai? Cell 95, 1-4, 1998.
Sittler A, Walter S, Wedemeyer N, Hasenbank R, Scherzinger E, Eickhoff H, Bâtes GP, Lehrach H, and Wanker E. SH3GL3 associâtes with the huntingtin Exon 1 protein and promotes the formation of polygln-containing aggregates. Molecular Cell 2, 427-436, 1998.Sittler A, Walter S, Wedemeyer N, Hasenbank R, Scherzinger E, Eickhoff H, Bâtes GP, Lehrach H, and Wanker E. SH3GL3 associâtes with the huntingtin Exon 1 protein and promotes the formation of polygln-containing aggregates. Molecular Cell 2, 427-436, 1998.
Sharp AH, Zhang C, Cannon M, Bêcher MW, Cooper JK, Schilling G, Borchel DR, Ross CR. Possible cleavage products of huntingtin in HD nuclear inclusions and huntingtin transgenic mice. Abstract in: Huntington's Disease: new progress. Proceedings of the Hereditary Disease Foundation meeting, New Seabury, MA; August 9-10, 1998.Sharp AH, Zhang C, Cannon M, Bêche MW, Cooper JK, Schilling G, Borchel DR, Ross CR. Possible cleavage products of huntingtin in HD nuclear inclusions and huntingtin transgenic mice. Abstract in: Huntington's Disease: new progress. Proceedings of the Hereditary Disease Foundation meeting, New Seabury, MA; August 9-10, 1998.
Sune C, Hayashi T, Liu Y, Lane WS, Young RA, Garcia-Blanco MA. CA150, a nuclear protein associated with the RNA polymerase II holoenzyme, is involved in Tat-activated immunodeficiency virus type 1 transcription. Mol Cell Biol 17, 6029-6039, 1997.Sune C, Hayashi T, Liu Y, Lane WS, Young RA, Garcia-Blanco MA. CA150, a nuclear protein associated with the RNA polymerase II holoenzyme, is involved in Tat-activated immunodeficiency virus type 1 transcription. Mol Cell Biol 17, 6029-6039, 1997.
Smith and Waterman. Identification of common molecular subsequences. J Mol Biol 147, 195-197, 1981.Smith and Waterman. Identification of common molecular subsequences. J Mol Biol 147, 195-197, 1981.
The C. elegans sequencing consortium. Génome séquence of the nématode C. elegans: A platform for investigating biology. Science 282, 2012-2018, 1998.The C. elegans sequencing consortium. Genome sequence of the nematode C. elegans: A platform for investigating biology. Science 282, 2012-2018, 1998.
Wanker EE, Rovira C, Scherzinger E, Hasenbank R, Walter S, Trait D, Colicelli J, and Lehrach H. HIP-I: a huntingtin interacting protein isolated by the yeast two-hybrid System. Hum Mol Genêt 6, 487-495, 1997. White JK, Auerbach W, Duyao MP, Vonsattel JP, Gusella JF, Joyner AL, and MacDonald M. Huntingtin is required for neurogenesis and is not impaired by the Huntington's disease CAG expansion. Nature Genêt 17, 404-410, 1997.Wanker EE, Rovira C, Scherzinger E, Hasenbank R, Walter S, Trait D, Colicelli J, and Lehrach H. HIP-I: a huntingtin interacting protein isolated by the yeast two-hybrid System. Hum Mol Genêt 6, 487-495, 1997. White JK, Auerbach W, Duyao MP, Vonsattel JP, Gusella JF, Joyner AL, and MacDonald M. Huntingtin is required for neurogenesis and is not impaired by the Huntington's disease CAG expansion. Nature Genêt 17, 404-410, 1997.
Zeitlin S, Liu J-P, Chapman DL, Papaioannou VE, Efstratiadis A. Increased apoptosis and early embryonic lethality in mice nullizygous for the Huntington's disease gène homologue. Nature Genêt 11, 155-163, 1995. Zeitlin S, Liu J-P, Chapman DL, Papaioannou VE, Efstratiadis A. Increased apoptosis and early embryonic lethality in mice nullizygous for the Huntington's disease homologous gene. Nature Genêt 11, 155-163, 1995.

Claims

REVENDICATIONS
1. Procédé de criblage de molécules capables de modifier l'interaction htt normale / CA150 comprenant : a) une pré-incubation de la htt normale ou d'un de ses fragments N- terminaux avec une molécule à tester, b) l'élimination des molécules à tester restées libres dans le milieu de pré-incubation, c) l'ajout au milieu résultant de b) de CA150 ou d'un fragment fonctionnel de CA150, d) l'élimination de CA150 ou fragment fonctionnel de CA150 après incubation du milieu c), e) la mesure de la constante d'affinité du couple htt normale ou fragment N-terminal de celle-ci / CA150 ou fragment fonctionnel de CA150 issu de d), f) la comparaison de la constante d'affinité mesurée en e) avec une constante d'affinité standard du couple htt normale / CA150.1. A method for screening molecules capable of modifying the normal htt / CA150 interaction comprising: a) pre-incubation of the normal htt or one of its N-terminal fragments with a molecule to be tested, b) elimination molecules to be tested remained free in the pre-incubation medium, c) the addition to the resulting medium of b) of CA150 or of a functional fragment of CA150, d) elimination of CA150 or functional fragment of CA150 after incubation from the middle c), e) the measurement of the affinity constant of the normal htt couple or N-terminal fragment thereof / CA150 or functional fragment of CA150 from d), f) comparison of the affinity constant measured in e) with a standard affinity constant of the normal htt / CA150 couple.
2. Procédé selon la revendication 1 dans lequel : - la pré-incubation en a) est effectuée avec C Al 50 ou un fragment fonctionnel de CA150, en c) la htt normale ou fragment N-terminal de celle-ci est ajouté, et en d) la htt normale ou fragment N-terminal de celle-ci resté libre dans le milieu de c) est éliminé.2. Method according to claim 1 in which: the pre-incubation in a) is carried out with C Al 50 or a functional fragment of CA150, in c) the normal htt or N-terminal fragment thereof is added, and in d) the normal htt or N-terminal fragment thereof which remains free in the medium of c) is eliminated.
3. Procédé selon la revendication 1 ou 2 dans lequel l'étape a) est réalisée par une fixation de la htt normale, d'un fragment N-terminal de celle-ci, de la CA150 ou d'un fragment fonctionnel de CA150, sur phase solide 3. Method according to claim 1 or 2 in which step a) is carried out by fixing the normal htt, an N-terminal fragment thereof, CA150 or a functional fragment of CA150, on solid phase
4. Procédé selon l'une des revendications 1 à 3, comprenant de plus une étape g) dans laquelle on mesure la constante d'affinité du couple molécule testée / htt normale ou fragment N-terminal de celle-ci ou CA150 ou fragment fonctionnel de CA150, et facultativement une étape h) dans laquelle on compare la constante d'affinité obtenue en g) avec la constante d'affinité standard htt normale / CA150.4. Method according to one of claims 1 to 3, further comprising a step g) in which the affinity constant of the pair tested molecule / normal htt or N-terminal fragment thereof or CA150 or functional fragment is measured of CA150, and optionally a step h) in which the affinity constant obtained in g) is compared with the standard affinity constant htt normal / CA150.
5. Procédé selon la revendication 4 comprenant de plus une étape i) dans laquelle on identifie la molécule testée pour laquelle la constante d'affinité mesurée à l'étape g) est significative d'une interaction avec htt normale ou fragment N-terminal de celle-ci ou CA150 ou fragment fonctionnel de CA150.5. Method according to claim 4 further comprising a step i) in which the tested molecule is identified for which the affinity constant measured in step g) is significant of an interaction with normal htt or N-terminal fragment of this or CA150 or functional fragment of CA150.
6. Utilisation de la molécule identifiée selon la revendication 5 pour la préparation d'un médicament destiné au traitement curatif ou préventif de la maladie de Huntington. 6. Use of the molecule identified according to claim 5 for the preparation of a medicament intended for the curative or preventive treatment of Huntington's disease.
7. Procédé d'identification de cibles thérapeutiques pour la maladie de Huntington par l'analyse comparative des profils d'expression des ARNm issus de cellules saines avec des profils d'expression des ARNm issus de cellules dans lesquelles des pertes d'interaction htt normale / CA150 sont suspectées. 7. Method for identifying therapeutic targets for Huntington's disease by comparative analysis of expression profiles of mRNAs from healthy cells with expression profiles of mRNAs from cells in which normal htt interaction losses / CA150 are suspected.
8. Utilisation d'une séquence nucléotidique correspondant en tout ou partie à un gène sous-exprimé dans des cellules suspectées de présenter des pertes d'interaction htt normale / CA150 par rapport à des cellules saines conformément au procédé selon la revendication 7, pour la préparation d'un médicament destiné au traitement curatif ou préventif de la maladie de Huntington.8. Use of a nucleotide sequence corresponding in whole or in part to a gene under-expressed in cells suspected of having losses of normal htt / CA150 interaction with respect to healthy cells in accordance with the method according to claim 7, for the preparation of a medicament intended for the curative or preventive treatment of Huntington's disease.
9. Utilisation d'une séquence nucléotidique correspondant en tout ou partie à un gène sur-exprimé dans des cellules suspectées de présenter des pertes d'interaction htt normale / CA150 par rapport à des cellules saines conformément au procédé selon la revendication 7, pour la préparation d'un médicament destiné au traitement curatif ou préventif de la maladie de Huntington.9. Use of a nucleotide sequence corresponding in whole or in part to a gene overexpressed in cells suspected of having losses of normal htt / CA150 interaction with respect to healthy cells according to the method according to claim 7, for the preparation of a medicine intended for the curative or preventive treatment of Huntington's disease.
10. Utilisation d'une séquence nucléotidique correspondant au gène de CA150 ou d'un fragment fonctionnel de CA150 pour la préparation d'un médicament destiné au traitement curatif ou préventif de la maladie de Huntington par sur-expression de ladite séquence dans des cellules suspectées de présenter des pertes d'interaction htt normale / CA 150.10. Use of a nucleotide sequence corresponding to the CA150 gene or of a functional fragment of CA150 for the preparation of a medicament intended for the curative or preventive treatment of Huntington's disease by overexpression of said sequence in suspected cells to show normal htt / CA 150 interaction losses.
11. Anticoφs anti-htt mutée.11. Anticoφs anti-htt mutated.
12. Utilisation d'un anticoφs selon la revendication 11 pour la préparation d'un médicament destiné au traitement curatif ou préventif de la maladie de Huntington. 12. Use of an anticoφs according to claim 11 for the preparation of a medicament intended for the curative or preventive treatment of Huntington's disease.
PCT/FR2000/002036 1999-07-29 2000-07-13 Method for screening molecules for the treatment of huntington disease WO2001009613A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP00953231A EP1200834A1 (en) 1999-07-29 2000-07-13 Method for screening molecules for the treatment of huntington disease
CA002380519A CA2380519A1 (en) 1999-07-29 2000-07-13 Method for screening molecules for the treatment of huntington disease

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR99/09855 1999-07-29
FR9909855A FR2797055B1 (en) 1999-07-29 1999-07-29 METHOD FOR SCREENING MOLECULES FOR THE TREATMENT OF HUNTINGTON'S DISEASE

Publications (1)

Publication Number Publication Date
WO2001009613A1 true WO2001009613A1 (en) 2001-02-08

Family

ID=9548663

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2000/002036 WO2001009613A1 (en) 1999-07-29 2000-07-13 Method for screening molecules for the treatment of huntington disease

Country Status (4)

Country Link
EP (1) EP1200834A1 (en)
CA (1) CA2380519A1 (en)
FR (1) FR2797055B1 (en)
WO (1) WO2001009613A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001079283A1 (en) * 2000-04-13 2001-10-25 University Of British Columbia Modulating cell survival by modulating huntingtin function

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0614977A2 (en) * 1993-03-05 1994-09-14 The General Hospital Corporation Huntingtin DNA, protein and uses thereof
WO1997017443A1 (en) * 1995-11-09 1997-05-15 The Johns Hopkins University Huntingtin-associated protein
WO1997018825A1 (en) * 1995-11-17 1997-05-29 The University Of British Columbia PROTEIN WHICH INTERACTS WITH THE HUNTINGTON'S DISEASE GENE PRODUCT, cDNA CODING THEREFOR, AND ANTIBODIES THERETO

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0614977A2 (en) * 1993-03-05 1994-09-14 The General Hospital Corporation Huntingtin DNA, protein and uses thereof
WO1997017443A1 (en) * 1995-11-09 1997-05-15 The Johns Hopkins University Huntingtin-associated protein
WO1997018825A1 (en) * 1995-11-17 1997-05-29 The University Of British Columbia PROTEIN WHICH INTERACTS WITH THE HUNTINGTON'S DISEASE GENE PRODUCT, cDNA CODING THEREFOR, AND ANTIBODIES THERETO

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
FABER PETER W ET AL: "Huntingtin interacts with a family of WW domain proteins.", HUMAN MOLECULAR GENETICS, vol. 7, no. 9, 1998, pages 1463 - 1474, XP000971475, ISSN: 0964-6906 *
HEISER VOLKER ET AL: "Inhibition of huntingtin fibrillogenesis by specific antibodies and small molecules: Implications for Huntington's disease therapy.", PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES, vol. 97, no. 12, 6 June 2000 (2000-06-06), June 6, 2000, pages 6739 - 6744, XP002155981, ISSN: 0027-8424 *
SUNE CARLOS ET AL: "CA150, a nuclear protein associated with the RNA polymerase II holoenzyme, is involved in Tat-activated human immunodeficiency virus type 1 transcription.", MOLECULAR AND CELLULAR BIOLOGY, vol. 17, no. 10, 1997, pages 6029 - 6039, XP000971477, ISSN: 0270-7306 *
TROTTIER YVON ET AL: "Polyglutamine expansion as a pathological epitope in Huntington's disease and four dominant cerebellar ataxias.", NATURE (LONDON), vol. 378, no. 6555, 1995, pages 403 - 406, XP002155980, ISSN: 0028-0836 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001079283A1 (en) * 2000-04-13 2001-10-25 University Of British Columbia Modulating cell survival by modulating huntingtin function

Also Published As

Publication number Publication date
CA2380519A1 (en) 2001-02-08
FR2797055A1 (en) 2001-02-02
FR2797055B1 (en) 2003-10-03
EP1200834A1 (en) 2002-05-02

Similar Documents

Publication Publication Date Title
Depienne et al. 30 years of repeat expansion disorders: What have we learned and what are the remaining challenges?
Depienne et al. Genetic and phenotypic dissection of 1q43q44 microdeletion syndrome and neurodevelopmental phenotypes associated with mutations in ZBTB18 and HNRNPU
Neuner et al. Genetic architecture of Alzheimer's disease
Bates et al. Huntington disease
Parfitt et al. The ataxia protein sacsin is a functional co-chaperone that protects against polyglutamine-expanded ataxin-1
Nguyen et al. Correction of cognitive deficits in mouse models of Down syndrome by a pharmacological inhibitor of DYRK1A
DK2751284T3 (en) PROCEDURE FOR DIAGNOSTICING A NEURODEGENERATIVE DISEASE
Nicholson et al. What we know about TMEM106B in neurodegeneration
Guilmatre et al. The emerging role of SHANK genes in neuropsychiatric disorders
Vilariño-Güell et al. DNAJC13 mutations in Parkinson disease
Rutherford et al. Novel mutations in TARDBP (TDP-43) in patients with familial amyotrophic lateral sclerosis
Benitez et al. Exome-sequencing confirms DNAJC5 mutations as cause of adult neuronal ceroid-lipofuscinosis
EP2895621B1 (en) Methods and compositions for diagnosing, prognosing, and treating neurological conditions
Vandeweyer et al. The transcriptional regulator ADNP links the BAF (SWI/SNF) complexes with autism
Cadieux‐Dion et al. Recurrent mutations in DNAJC5 cause autosomal dominant Kufs disease
May et al. ZC4H2, an XLID gene, is required for the generation of a specific subset of CNS interneurons
Borsotto et al. PP2A-Bγ subunit and KCNQ2 K+ channels in bipolar disorder
Nechiporuk et al. The mouse SCA2 gene: cDNA sequence, alternative splicing and protein expression
Liao et al. SPG35 contributes to the second common subtype of AR‐HSP in China: frequency analysis and functional characterization of FA2H gene mutations
Hortobágyi et al. Amyotrophic lateral sclerosis and non-tau frontotemporal lobar degeneration
Hsiao et al. Clinical and molecular characterization of BSCL2 mutations in a Taiwanese cohort with hereditary neuropathy
González-Pérez et al. Association of UBQLN1 mutation with Brown–Vialetto–Van Laere syndrome but not typical ALS
Fevga et al. PTPA variants and impaired PP2A activity in early-onset parkinsonism with intellectual disability
Sironi et al. DJ1 analysis in a large cohort of Italian early onset Parkinson Disease patients
Torrado et al. A novel heterozygous Intronic mutation in the FBN1 gene contributes to FBN1 RNA Missplicing events in the Marfan syndrome

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2000953231

Country of ref document: EP

Ref document number: 2380519

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 10048285

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2000953231

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 2000953231

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: JP