WO2001006690A1 - On-board receiver - Google Patents

On-board receiver Download PDF

Info

Publication number
WO2001006690A1
WO2001006690A1 PCT/JP2000/004123 JP0004123W WO0106690A1 WO 2001006690 A1 WO2001006690 A1 WO 2001006690A1 JP 0004123 W JP0004123 W JP 0004123W WO 0106690 A1 WO0106690 A1 WO 0106690A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
frequency
receiving
road
reception
Prior art date
Application number
PCT/JP2000/004123
Other languages
French (fr)
Japanese (ja)
Inventor
Takashi Maehata
Keiji Tanaka
Original Assignee
Sumitomo Electric Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries, Ltd. filed Critical Sumitomo Electric Industries, Ltd.
Publication of WO2001006690A1 publication Critical patent/WO2001006690A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/1851Systems using a satellite or space-based relay
    • H04B7/18515Transmission equipment in satellites or space-based relays
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/01Reducing phase shift
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0802Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using antenna selection
    • H04B7/0817Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using antenna selection with multiple receivers and antenna path selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/0014Carrier regulation
    • H04L2027/0024Carrier regulation at the receiver end
    • H04L2027/0026Correction of carrier offset
    • H04L2027/0028Correction of carrier offset at passband only
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/0014Carrier regulation
    • H04L2027/0044Control loops for carrier regulation
    • H04L2027/0053Closed loops
    • H04L2027/0055Closed loops single phase

Definitions

  • the present invention relates to an on-vehicle receiving device used in a road-vehicle communication system that enables mobile communication between a road and a mobile station by forming a cell on the road by arranging a plurality of road antennas along the road. It is. Background art
  • a communication area (cell ) Must be provided.
  • the on-road antennas are installed at predetermined intervals at various places on the road for communication, a relatively wide cell can be secured by one on-road antenna.
  • the on-street antennas are respectively connected to control stations on the road manager side via optical fibers or the like.
  • Fig. 7 (a) shows the arrangement of three on-road antennas a, b, and c of a multi-station communication system and a vehicle traveling under the antenna.
  • the vehicle consists of a front-directional receiving antenna 61 and a rear-facing antenna. It is equipped with a directional receiving antenna 62.
  • the receiving antenna 6 1 and the receiving antenna 6 2 are respectively connected to a receiving unit.
  • FIG. 7B is a graph showing a change in the reception frequency received by the reception antenna 61 and a change in the reception frequency received by the reception antenna 62.
  • the transition of the reception frequency deviation received by the receiving antenna 61 from the road antenna b is represented by b1
  • the transition of the reception frequency received by the receiving antenna 61 from the road antenna c is represented by c1
  • the reception antenna 62 is transmitted by the road antenna a.
  • the transition of the received frequency shift received is indicated by a 2
  • the shift of the received frequency received by the receiving antenna 62 from the on-road antenna b is indicated by b 2.
  • the automatic frequency control (AFC) may be stopped.
  • Automatic frequency control is necessary because there is a problem in that it cannot withstand temporal fluctuations in frequency (for example, chronological fluctuations or sudden fluctuations) due to causes other than the Doppler effect of radio waves.
  • the present invention provides a road-to-vehicle communication system for performing communication between a plurality of road communication stations arranged in a cell and an on-vehicle mobile station in the cell, while having an automatic frequency control (AFC) function. No matter where the vehicle passes in the cell, communication based on the Doppler effect is not interrupted and stable communication can be performed. It is intended to realize an in-vehicle receiving device. Disclosure of the invention
  • the on-vehicle receiving device for achieving the object includes a plurality of receiving antennas having different directivities, an equal number of receiving units connected to these receiving antennas, and a frequency control unit,
  • the frequency control unit calculates a mean of the frequency shift detected by the first detection unit and the first detection unit that respectively detects a time shift of the reception frequency of each reception unit, and calculates an average of the shift.
  • Frequency control means for performing frequency control common to each of the receiving units based on the frequency.
  • the average of the deviation of the receiving frequency for each receiving antenna having different directivity is averaged, and the common frequency control of each receiving unit is performed based on the average of the deviation. Therefore, continuous frequency control can be performed no matter where the vehicle passes through the cell.
  • the in-vehicle communication device of the present invention continuous frequency control is performed, so that if the reception frequency changes suddenly based on the Doppler effect, it cannot follow the change. As a result, the quality of the signal received by the receiver and demodulated and decoded is slightly degraded.However, since the change in the reception frequency that fluctuates due to the Doppler effect is not so large, such deterioration in the quality is within an acceptable range. is there.
  • the on-vehicle receiving device of the present invention further includes a second detecting unit that detects a received power or a received electric field strength of each receiving unit, and the frequency control unit detects each of the detected powers by the second detecting unit. It is desirable to take the average of the frequency shift detected by the first detection means according to the received power or the weight of each received electric field strength (claim 2).
  • the average of the frequency shift is calculated according to the reception power of each reception antenna having different directivity or the weight of each reception field strength. Therefore, it follows the shift of the frequency of the radio wave with the larger received power or received electric field strength more quickly.
  • the on-vehicle receiving device receives a radio wave having a large received power or a large received electric field strength from the on-road communication station when the vehicle is passing immediately near the on-road communication station.
  • the angle at which the on-road communication station is looked up becomes large, so that the frequency shift based on the Doppler effect is relatively small.
  • the in-vehicle receiving apparatus has an advantage that the frequency can be controlled in a range where the frequency shift is relatively small, and the control is facilitated.
  • the receiving section may receive an OFDM-modulated radio wave (claim 3).
  • multi-station communication multiple radio waves are radiated at the same transmission power in the same cell, so multipath fading occurs, and inter-carrier interference and inter-symbol interference appear strongly. Necessary for system construction.
  • a mobile communication system using a single carrier is susceptible to intersymbol interference due to multipath delay waves.
  • FIG. 1 is a conceptual diagram showing the configuration of a road-vehicle communication system.
  • FIG. 2 is a block diagram showing an internal configuration of the transmitting device 2b and the receiving device 2a of the transmitting / receiving station 2.
  • FIG. 3 is a graph illustrating a state of symbol transmission by OFDM on a frequency axis f and a time axis t.
  • FIG. 4 is a conceptual diagram showing the internal configuration of the transmitting device 4b of the vehicle-mounted mobile station 4.
  • FIG. 5 is a conceptual diagram showing the configuration of the receiving device 4a of the vehicle-mounted mobile station 4.
  • FIG. 6 (a) is a diagram showing an arrangement of three on-road antennas a, b, and c of the multi-station communication system, and a vehicle 4 traveling thereunder.
  • (B) is a graph showing the transition of the average frequency deviation ⁇ f> received by the on-vehicle receiver.
  • Figure 7) is a diagram showing the arrangement of three on-road antennas a, b, and c of a multi-station communication system and a vehicle traveling under it.
  • (B) is a graph showing the transition of the reception frequency shift. It is. Explanation of reference numerals
  • 1 is a central base station
  • 2 is a transmitting / receiving station
  • 2a is a receiving device
  • 2b is a transmitting device
  • 4 is an on-vehicle mobile station
  • 4a is a receiving device
  • 2 2 is a downcomer
  • 2 3 is a quadrature demodulation circuit
  • 24 is a Fourier transform circuit
  • 26 is? 5 conversion circuit
  • 27 is a detection unit
  • 31 is an SZP conversion circuit
  • 33 is an inverse Fourier conversion circuit
  • 34 is a quadrature modulation circuit
  • 35 is an upconverter
  • 41 is a first reception unit
  • 42 is 2nd receiver
  • 4 7 is 5?
  • Conversion circuit 49 is an inverse Fourier transform circuit
  • 50 is a quadrature modulation circuit
  • 51 is an upcomer
  • 61 is a receive antenna
  • 62 is a receive antenna
  • 63 is a quadrature demodulator circuit
  • 64 is Fourier transform.
  • Circuit, 6 5? No. 5 conversion circuit, 66 is a down converter, 67 is a down converter, 68 is a quadrature demodulation circuit, 69 is a Fourier transform circuit
  • 70 is a PZS conversion circuit
  • 71 is a sign switching circuit
  • 72 is frequency control Department
  • FIG. 1 is a conceptual diagram showing the configuration of the road-vehicle communication system of the present invention.
  • This road-to-vehicle communication system is a system for transmitting and receiving road traffic information between a road communication station and a mobile station mounted on a vehicle.
  • Cells are formed along the road. Each cell has its own finger A plurality of directional transceiver stations 2 are installed at intervals. From the antenna of each transmitting and receiving station 2, a radio wave having the same content and the same frequency (for example, 6 (GHz) band) is radiated into the cell. Therefore, at each point in the cell, an electric wave of the same frequency arrives in the longitudinal direction of the road from the front and rear or from above.
  • a radio wave having the same content and the same frequency for example, 6 (GHz) band
  • the transmission / reception station 2 obtains transmission data from the central base station 1 via a wired transmission line 9 such as an optical fiber or a coaxial cable (a wireless transmission line may be used.
  • a wired transmission line 9 such as an optical fiber or a coaxial cable (a wireless transmission line may be used.
  • the “wired transmission line 9” is assumed).
  • OFDM modulation is performed using a plurality of orthogonal carriers (subcarriers) and transmitted as radio radio waves within the cell.
  • the transmitting / receiving station 2 receives the OFDM-modulated radio wave from the on-vehicle mobile station 4 in the cell, demodulates it, and transmits the received data to the central base station 1 via the wired transmission line 9 to the central base station.
  • the function of the transmitting / receiving station 2 and the function of the central base station 1 are collectively referred to as “road communication station”.
  • the frequency of the (down) radio wave transmitted from the transmitting / receiving station 2 into the cell and the frequency of the (up) radio wave transmitted from the vehicle-mounted mobile station 4 to the transmitting / receiving station 2 are different from each other.
  • the uplink and downlink frequencies may be the same.
  • FIG. 2 is a block diagram showing an internal configuration of the transmitting device 2b and the receiving device 2a of the transmitting / receiving station 2.
  • the transmission device 2b includes an SZP (serial-parallel) conversion circuit 31, an inverse Fourier conversion circuit 33, a quadrature modulation circuit 34, an up-converter 35, and the like.
  • SZP serial-parallel
  • the receiving device 2a includes a downcomer 22, a quadrature demodulation circuit 23, a Fourier transform circuit 24, a P / S (parallel serial) transform circuit 26, a detection unit 27, and the like.
  • the inverse Fourier transform circuit 33 of the transmitting device 2b performs an inverse Fourier transform on the transmission data supplied from the SZP transform circuit 31 to the parallel, and performs an inverse Fourier transform.
  • This is a circuit that realizes various functions such as converting the converted data to serial data, time-compressing the serialized symbol sequence, and setting the guard time by bringing the subsequent symbol to the front.
  • FIG. 3 is a graph illustrating a state of symbol transmission by OFDM on a frequency axis f and a time axis t.
  • the effective symbol length is represented by TS
  • the guard time is represented by ⁇ t.
  • the time compression ratio is represented by (TS + At) ZTS.
  • TS 2 n / m (/ sec) in the case of QPSK.
  • the guard time ⁇ t of the ⁇ FDM modulation needs to be longer than the delay time due to multipath.
  • the transmitting / receiving station 2 and the on-vehicle mobile station 4 can accurately recover the received signal by avoiding interference between symbols without being adversely affected by the propagation delay caused by multiple radio wave propagation paths (multipath). can do.
  • quadrature modulation circuit 34 performs D / A conversion on the in-phase component and the quadrature component output from inverse Fourier transform circuit 33, respectively, and generates a sin wave (sinwt) and a cos wave (COS Ot).
  • This is a circuit that performs quadrature modulation by multiplying and adding.
  • QPSK modulation is performed.
  • other modulation schemes such as QAM, BPSK, and 8PSK may be adopted.
  • the following description is based on the assumption that QPSK modulation will be performed unless otherwise specified.
  • the up-converter 35 is a circuit that converts the frequency into a radio frequency.
  • the output signal of the up-converter 35 is radiated as radio waves from the on-road antenna 36 through a coaxial cable during a short period of time.
  • the down converter 22 of the receiving device 2a is a circuit that converts a radio frequency to an intermediate frequency.
  • the quadrature demodulation circuit 23 is a circuit that performs quadrature demodulation in the opposite manner to the quadrature modulation circuit 34, and applies a sine wave to one of the two divided signals and a cos wave to the other, and performs AZD conversion, respectively. Circuit.
  • the frequency difference ⁇ f detection unit 27 calculates the reception frequency based on the in-phase component I (signal after applying a cos wave) and the quadrature component Q (signal after applying a sine wave) of the quadrature demodulation circuit 23. This circuit detects the deviation ⁇ f.
  • the deviation of the reception frequency is calculated by calculating the argument of the complex number I ZQ at each sample time interval, and the argument of the current I ZQ (I / Q), and the argument of the immediately preceding sample (I ZQ). Can be calculated based on the difference between
  • the ⁇ f detection unit 27 performs a function of correcting the reception frequency deviation ⁇ f by feeding back the reception frequency deviation ⁇ f to the down converter 22.
  • the Fourier transform circuit 24 is a circuit that performs a process reverse to that of the inverse Fourier transform circuit 33 on the transmission side, and performs a Fourier transform on the demodulated signal with the window length of the effective symbol length TS to convert the decoded signal. It is a circuit to get.
  • the PZS conversion circuit 26 is a circuit that converts the parallel signal after the Fourier transform into a serial signal.
  • the data converted into the serial signal is transmitted to the central base station 1.
  • the configuration of the on-vehicle mobile station mounted on the vehicle will be described.
  • FIG. 4 is a conceptual diagram showing a configuration of the transmitting device 4b of the vehicle-mounted mobile station 4.
  • the transmission device 4b includes a 57? Conversion circuit 47, an inverse Fourier transform circuit 49, a quadrature modulation circuit 50, an up converter 51, and the like.
  • the configuration of the transmitting device 4b is the same as the configuration of the transmitting device 2b on the road shown in FIG.
  • FIG. 5 is a conceptual diagram showing the configuration of the receiving device 4a of the vehicle-mounted mobile station 4.
  • the receiving device 4 a includes two receiving antennas 6 1 and 6 2 facing the front and rear direction of the vehicle, a first receiving unit 4 1 connected to the receiving antenna 6 1, and a second receiving unit connected to the receiving antenna 6 2 42, a frequency control unit 72 including an automatic frequency control (AFC) function, and a code switching circuit 71.
  • AFC automatic frequency control
  • the first receiver 41 is a down-converter that converts a radio frequency to an intermediate frequency.
  • E 6 Quadrature demodulation circuit 63, Fourier transform circuit 64,?
  • the second receiving unit 42 includes a down converter 67, a quadrature demodulation circuit 68, a Fourier transform circuit 69, a PZS transform circuit 70, and the like.
  • the configuration of the first receiving unit 41 and the second receiving unit 42 is the same as the configuration of the receiving device 2a described with reference to FIG.
  • the function of detecting the reception frequency deviation ⁇ f 2 can be described in the same manner as the function of the ⁇ f detection unit 27 described with reference to FIG. That is, based on the in-phase component I, (the signal after applying the cos wave) and the quadrature component Q, (the signal after applying the sine wave) of the quadrature demodulation circuit 63, the complex number I, / Calculates the declination of Q, based on the difference between the declination of the current I, ZQ, ( ⁇ , ⁇ ,), and the declination of ( ⁇ , ⁇ ,),, Detect the reception frequency deviation ⁇ f ,.
  • the reception frequency deviation ⁇ f Detect 2 based on the in-phase component I 2 of the quadrature demodulation circuit 68 (the signal after applying the cos wave) and the quadrature component Q 2 (the signal after applying the sine wave), the reception frequency deviation ⁇ f Detect 2
  • ⁇ f ; (INO Q 2 ),-(INO Q 2 )
  • the received power P 2 of the reception power P detects each at the output of the down comparator Isseki 6 6 6 7.
  • the detection may be performed between the receiving antennas 61 and 62 and the down-converters 66 and 67.
  • the power detection method a known method such as detection with a diode can be used.
  • Frequency control unit 7 2 the shift ⁇ f ,, ⁇ ⁇ 2 of the detected reception frequency, the reception power [rho,, based on the [rho 2, Ru obtains a weighted average tool delta f> of the frequency shift.
  • ⁇ f> ( ⁇ , ⁇ f, + ⁇ 2 ⁇ f 2 ) ⁇ ( ⁇ , + ⁇ 2 )
  • the average frequency deviation ⁇ f> is fed back to the oscillator of the down converter 22 to perform a function of correcting the reception frequency deviation ⁇ f.
  • f. fg is the frequency to be oscillated when ⁇ f > is zero.
  • FIG. 6 is a graph showing the average frequency deviation ⁇ f> thus obtained.
  • Fig. 6 (a) shows the arrangement of three on-road antennas a, b, and c of the multi-station communication system, and the vehicle 4 traveling under it.
  • the vehicle 4 is equipped with the forward directional receiving antenna 61, the backward directional receiving antenna 62, and the on-vehicle mobile station 4.
  • FIG. 6B is a graph showing the transition of the average frequency deviation ⁇ ⁇ >. Comparing the graph of FIG. 6 (b) with the graph of FIG. 7 (b), ⁇ f> is a value between the deviations of the receiving frequencies received from the receiving antennas 6 1 and 6 2.
  • the angle ⁇ ⁇ > is the deviation b 1 of the reception frequency received from the antenna b on the road and the deviation a of the reception frequency received from the antenna a on the road a Take an intermediate value of 2. This is because the received power of the radio wave received by the vehicle from the on-road antenna a is substantially equal to the received power of the radio wave received from the on-road antenna.
  • a f> takes a value close to the deviation b1 of the reception frequency received from the antenna on the road b. This is because the received power of the radio wave received by the vehicle from the road antenna b is higher than the received power of the radio wave received from the other road antennas. From the graph in Fig. 6 (b), it can be seen that even when the vehicle is running, Af> changes smoothly and no frequency jump occurs. For this reason, when performing automatic frequency control (AFC), it is possible to follow the frequency control sufficiently, and there is no interruption in communication.
  • AFC automatic frequency control
  • the fluctuation of ⁇ > falls within a small range centered on 0 compared to the fluctuation of the receiving frequency shift b1 received from the roadside antenna b. I have. This is considered to be because the received powers P,, P, are weighted to obtain ⁇ A f>.
  • the on-vehicle receiving device receives radio waves with high received power or each received electric field strength from the on-road communication station when the vehicle is passing very close to the on-road communication station. This is because when passing close to a station, the angle at which the station on the road looks up becomes large, and the frequency shift based on the Doppler effect is relatively small.
  • the on-vehicle receiving device 4 only has to control the frequency within a range where the frequency deviation is relatively small, so that the performance requirement for the frequency control unit 72 can be eased.
  • the code switching circuit 71 compares the received power of the radio waves received by the first receiver 41 and the received power of the radio waves received by the second receiver 42, respectively. It is a circuit that switches to the output of the unit. A circuit that synthesizes instead of switching may be used. By such switching or combining, even if the multi-station vehicle is running near a large vehicle such as a truck, the propagation path of the radio wave radiated from the transmitting station can be selected. Can be avoided.
  • the switching position is? It is not limited to the output points of the 73 conversion circuits 65 and 70, and may be switched at any position after the output sections of the down converters 66 and 67.
  • the output positions of the quadrature demodulation circuits 63 and 68 may be used.
  • the present invention is not limited to the above-described embodiment.
  • the above-described in-vehicle receiver 4a uses the reception powers P 1 and P 2 as the weights to obtain the weighted average ⁇ f> of the frequency shift, but may use the reception electric field strength.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Traffic Control Systems (AREA)

Abstract

An on-board receiver which provides no-interruption stable communication even if the reception frequency varies because of the Doppler effect in a vehicle-to-roadside communication system for communication between roadside communication stations installed in a cell and an on-board mobile station in the cell. A frequency control unit (72) measures the temporal shifts of the reception frequencies of the radio waves received by two receiving antennas (61, 62) having different directivities, calculates an average of the shifts, and performs common frequency control of down converters (66, 67) of receiving units according to the average.

Description

明細書  Specification
技術分野 Technical field
本発明は、 複数の路上アンテナを道路に沿って配置し、 道路にセルを形 成することにより路上と移動局との移動通信を可能にする路車間通信シス テムに用いられる車載受信装置に関するものである。 背景技術  The present invention relates to an on-vehicle receiving device used in a road-vehicle communication system that enables mobile communication between a road and a mobile station by forming a cell on the road by arranging a plurality of road antennas along the road. It is. Background art
道路管理者と車両との間の通信需要は、 今後ますます増加する方向にあ る。 特に高速道路において、 車両の運転者に負担をかけずに、 かつ、 互い に事故を起こさないような道路走行を実現しょうとすれば、 道路側の情報 と車両側の情報とを頻繁にやり取りする必要がある。 このようなシステム を発展させていくと、 道路と車両との両方に各種センサやカメラを網羅し, 道路側と車両側とで緊密に連絡しあって車両が走行する自動運転システム につながっていく (例えば、 特開平 8— 2 4 1 4 9 5号公報参照) 。  The demand for communication between road managers and vehicles is likely to increase in the future. Especially on expressways, if roads are to be run without burdening the driver of the vehicle and avoiding accidents with each other, information on the road and information on the vehicle are frequently exchanged. There is a need. By developing such a system, various sensors and cameras will be covered on both the road and the vehicle, and the road and the vehicle will be in close contact with each other, leading to an automatic driving system in which the vehicle runs. (See, for example, Japanese Patent Application Laid-Open No. Hei 8-242495).
自動運転システムへの将来的拡張を考慮し、 車両との間の通信を利用し た運転支援システム (以下 「路車間通信システム」 という) を構築するに あたっては、 道路上に通信エリア (セル) を設ける必要がある。  In consideration of the future expansion to autonomous driving systems, when building a driving support system using communication with vehicles (hereinafter referred to as “road-vehicle communication system”), a communication area (cell ) Must be provided.
そこで、 道路に沿って漏洩同軸ケーブルを敷設することが考えられるが、 敷設工事が大掛かりになる上、 漏洩同軸ケーブルを地面から比較的低い位 置に設置する必要があるので、 車線横断方向に電波の届く距離が短いとい う欠点がある。  Therefore, it is conceivable to lay a leaky coaxial cable along the road.However, the laying work becomes large and it is necessary to install the leaky coaxial cable relatively low from the ground. The shortcoming is that it has a short reach.
これに対して、 路上アンテナを所定間隔で道路の各所に設置して通信を 行うようにすれば、 1つの路上アンテナで比較的広いセルを確保すること ができる。 この場合、 路上アンテナは、 光ファイバなどを介して道路管理 者側の制御局にそれぞれ結合されている。  On the other hand, if the on-road antennas are installed at predetermined intervals at various places on the road for communication, a relatively wide cell can be secured by one on-road antenna. In this case, the on-street antennas are respectively connected to control stations on the road manager side via optical fibers or the like.
路上アンテナを設置した場合、 大型車が小型車に接近すると、 小型車か ら路上アンテナを見通せなくなることがある。 特に、 周波数の高いマイク 口波やミリ波は回折角が小さく、 遮蔽されやすい。 このため、 路車間にお いて通信が途絶えてしまって通信ができなくなる。 If a large car approaches a small car when a roadside antenna is installed, May not be able to see the antenna on the road. In particular, high-frequency microphone mouth and millimeter waves have small diffraction angles and are easily shielded. For this reason, communication is interrupted between roads and vehicles, and communication becomes impossible.
そこで、 路上と車両との連続的な通信を可能にするため、 固有の指向性 を有する路上アンテナを、 道路に沿って複数配置し、 各路上アンテナから 同一周波数、 同一内容の電波を同一セル内に放射する、 複局通信の提案が 行なわれている。  Therefore, in order to enable continuous communication between the road and the vehicle, multiple road antennas with unique directivity are arranged along the road, and radio waves of the same frequency and the same content are transmitted from each road antenna in the same cell. Proposal of multi-station communication has been made.
複局通信システムの場合、 放射される電波の伝搬経路が複数あるので、 車両が卜ラックのような大型車の近傍を走行していても、 電波の遮蔽を回 避でき、 移動局と路上通信局との連続的な通信を良好に行えるという利点 がある。  In the case of a multi-station communication system, there are multiple propagation paths for radiated radio waves, so even if the vehicle is running near a large vehicle such as a truck, shielding of radio waves can be avoided and communication with mobile stations on the road can be achieved. There is an advantage that continuous communication with the station can be performed well.
ところで、 複局通信方式では、 車両が走行すると、 走行に伴う ドッブラ 一現象が生じ、 前方向指向性と後ろ方向指向性の受信アンテナは、 それぞ れドップラー偏移に基づき異なった周波数の電波を受ける。  By the way, in a multi-station communication system, when a vehicle travels, a Doppler phenomenon occurs as the vehicle travels, and the receiving antennas with forward directivity and backward directivity respectively transmit radio waves of different frequencies based on the Doppler shift. receive.
図 7 (a)は、 複局通信方式の 3つの路上アンテナ a, b, cの配置及びそ の下を走行する車両を示し、 車両は、 前方向指向性の受信アンテナ 6 1 と、 後ろ方向指向性の受信アンテナ 6 2とを搭載している。 受信アンテナ 6 1 と受信アンテナ 6 2とは、 それぞれ受信部につながつている。  Fig. 7 (a) shows the arrangement of three on-road antennas a, b, and c of a multi-station communication system and a vehicle traveling under the antenna. The vehicle consists of a front-directional receiving antenna 61 and a rear-facing antenna. It is equipped with a directional receiving antenna 62. The receiving antenna 6 1 and the receiving antenna 6 2 are respectively connected to a receiving unit.
図 7 (b)は、 受信アンテナ 6 1の受ける受信周波数のずれと、 受信アンテ ナ 6 2の受ける受信周波数のずれの推移を示すグラフである。 受信アンテ ナ 6 1が路上アンテナ bから受ける受信周波数のずれの推移を b 1、 受信 アンテナ 6 1が路上アンテナ cから受ける受信周波数のずれの推移を c 1、 受信アンテナ 6 2が路上アンテナ aから受ける受信周波数のずれの推移を a 2、 受信アンテナ 6 2が路上アンテナ bから受ける受信周波数のずれの 推移を b 2で示している。  FIG. 7B is a graph showing a change in the reception frequency received by the reception antenna 61 and a change in the reception frequency received by the reception antenna 62. The transition of the reception frequency deviation received by the receiving antenna 61 from the road antenna b is represented by b1, the transition of the reception frequency received by the receiving antenna 61 from the road antenna c is represented by c1, and the reception antenna 62 is transmitted by the road antenna a. The transition of the received frequency shift received is indicated by a 2, and the shift of the received frequency received by the receiving antenna 62 from the on-road antenna b is indicated by b 2.
路上アンテナ aから受ける受信周波数のずれの数値例を挙げる。 送信周 波数を f 0, 車速 Vとすると、 ドップラー偏移 Δ f は、 Δ f = f 0 v /c ( c は光速) となる。 車両が路上を走行し、 路上アンテナの地上からの高さを H、 車両からの路上アンテナまでの水平距離を Lとしたときの、 ドッブラ —偏移 Δ f は、 A numerical example of the deviation of the reception frequency received from the road antenna a will be described. If the transmission frequency is f0 and the vehicle speed is V, the Doppler shift Δf is Δf = f0v / c (c is the speed of light). The vehicle travels on the road, and the height of the road antenna from the ground H, and the horizontal distance from the vehicle to the antenna on the road is L,
Δ f = f 0 ( v/c) L (L2 +H2) -, /2 Δ f = f 0 (v / c) L (L 2 + H 2 )- , / 2
となる。 f 0= 5. 8 GH z, v = 1 0 Okin/h, H = 1 0 (m)の数値を仮定 すると、 ドップラー偏移 Δ f は、  Becomes Assuming f 0 = 5.8 GH z, v = 10 Okin / h, H = 10 (m), the Doppler shift Δ f is
Δ f = 53 7 · L (L2 +H2) ", /2 (H z ) Δ f = 53 7L (L 2 + H 2 ) " , / 2 (H z)
となる。 路上アンテナの間隔を 50 (m)としたとき、 Lは、 0 (m)から最大 50 (m)までとるので、 ドップラー偏移 Δ ίは、 0から 52 7 (H z ) まで の範囲をとる。 中間の L = 2 5 (in)の位置では、 ドップラー偏移 A f は、 4 99 (H z ) となる。  Becomes Assuming that the distance between road antennas is 50 (m), L ranges from 0 (m) to a maximum of 50 (m), so the Doppler shift Δ を ranges from 0 to 527 (Hz). . At the middle L = 25 (in) position, the Doppler shift A f becomes 4 99 (H z).
図 7 (a)のような配置では、 図 7 (b)に示すように、 車両の走行にともな レ 車両が路上アンテナの直下を通過するたびに、 2つの受信周波数に、 同時に飛びが生じる。  In the arrangement shown in Fig. 7 (a), as shown in Fig. 7 (b), each time the vehicle passes directly below the on-road antenna, the two reception frequencies jump at the same time. .
この飛びのため、 自動周波数制御 (AF C) を行う場合、 いずれの受信 部においても周波数制御の追従が困難になり、 その間、 通信がとぎれると いう事態が生じていた。  Because of this jump, when performing automatic frequency control (AFC), it became difficult for any receiver to follow the frequency control, and during that time, the communication was interrupted.
これは、 2つの受信部において、 それぞれ独立して、 受信周波数に追従 するような周波数制御を行っていたからであると考えられる。  It is considered that this is because the two receivers independently performed frequency control so as to follow the reception frequency.
そこで、 ドップラー偏移△ f の数値例が、 上に示したようにさほど大き くないという観点から、 自動周波数制御 (AF C) をやめてしまうという ことも考えられるが、 こうすると、 路上通信局からの電波のドップラー効 果以外の原因に基づく周波数の時間的変動 (例えば経時的経年的な変動や 突発的な変動) に耐えられないという問題が生ずるので、 自動周波数制御 は必要である。  Therefore, from the viewpoint that the numerical example of the Doppler shift △ f is not so large as shown above, it is conceivable that the automatic frequency control (AFC) may be stopped. Automatic frequency control is necessary because there is a problem in that it cannot withstand temporal fluctuations in frequency (for example, chronological fluctuations or sudden fluctuations) due to causes other than the Doppler effect of radio waves.
そこで、 本発明は、 セルに複数配置された路上通信局とセル内の車載移 動局との間で通信を行う路車間通信システムにおいて、 自動周波数制御 (AF C) の機能を持ちながらも、 車両がセル内のどの位置を通過していて もドップラ一効果に基づく通信のとぎれが生ぜず、 安定した通信が行える 車載受信装置を実現することを目的とする。 発明の開示 Thus, the present invention provides a road-to-vehicle communication system for performing communication between a plurality of road communication stations arranged in a cell and an on-vehicle mobile station in the cell, while having an automatic frequency control (AFC) function. No matter where the vehicle passes in the cell, communication based on the Doppler effect is not interrupted and stable communication can be performed. It is intended to realize an in-vehicle receiving device. Disclosure of the invention
( 1 )前記目的を達成するための請求項 1記載の車載受信装置は、 指向性の 異なる複数の受信アンテナと、 これらの受信アンテナにつながれた同数の 受信部と、 周波数制御部とを備え、 前記周波数制御部は、 各受信部の受信 周波数の時間的なずれをそれぞれ検出する第 1の検出手段と、 第 1の検出 手段で検出された周波数のずれの平均をとり、 このずれの平均に基づいて 各受信部共通の周波数制御を行う周波数制御手段とを備えるものである。 本発明では、 指向性の異なる各受信アンテナ別の受信周波数のずれの平 均をとり、 このずれの平均に基づいて各受信部共通の周波数制御を行う。 したがって、 車両がセル内のどの地点を通過していても、 連続的な周波数 制御を行える。  (1) The on-vehicle receiving device according to claim 1 for achieving the object includes a plurality of receiving antennas having different directivities, an equal number of receiving units connected to these receiving antennas, and a frequency control unit, The frequency control unit calculates a mean of the frequency shift detected by the first detection unit and the first detection unit that respectively detects a time shift of the reception frequency of each reception unit, and calculates an average of the shift. Frequency control means for performing frequency control common to each of the receiving units based on the frequency. In the present invention, the average of the deviation of the receiving frequency for each receiving antenna having different directivity is averaged, and the common frequency control of each receiving unit is performed based on the average of the deviation. Therefore, continuous frequency control can be performed no matter where the vehicle passes through the cell.
このように、 本発明の車載 ^信装置によれば、 連続的な周波数制御を行 うので、 ドップラー効果に基づき受信周波数が急変する場合には、 その変 化に追従できなくなる。 このため、 受信部が受信し復調復号する信号の品 質は多少劣化するが、 ドッブラー効果に基づき変動する受信周波数の変化 は、 あまり大きくないことから、 このような品質劣化は、 許容できる範囲 にある。  As described above, according to the in-vehicle communication device of the present invention, continuous frequency control is performed, so that if the reception frequency changes suddenly based on the Doppler effect, it cannot follow the change. As a result, the quality of the signal received by the receiver and demodulated and decoded is slightly degraded.However, since the change in the reception frequency that fluctuates due to the Doppler effect is not so large, such deterioration in the quality is within an acceptable range. is there.
それよりも、 連続的な周波数制御を行って通信の瞬断を防止し、 常に安 定した通信を行うことができる効果が大きい。  Rather, it has a greater effect that continuous frequency control is performed to prevent instantaneous interruptions in communication and that communication can always be performed stably.
(2) 本発明の車載受信装置は、 各受信部の受信電力又は受信電界強度を それぞれ検出する第 2の検出手段をさらに備え、 前記周波数制御手段は、 第 2の検出手段により検出された各受信電力又は各受信電界強度の重みに 応じて第 1の検出手段で検出された周波数のずれの平均をとるものである ことが望ましい (請求項 2 ) 。  (2) The on-vehicle receiving device of the present invention further includes a second detecting unit that detects a received power or a received electric field strength of each receiving unit, and the frequency control unit detects each of the detected powers by the second detecting unit. It is desirable to take the average of the frequency shift detected by the first detection means according to the received power or the weight of each received electric field strength (claim 2).
本発明では、 指向性の異なる各受信アンテナ別の受信電力又は各受信電 界強度の重みに応じて周波数のずれの平均をとる。 したがって、 受信電力又は受信電界強度の大きなほうの電波の周波数の ずれに、 よりょく追従することになる。 In the present invention, the average of the frequency shift is calculated according to the reception power of each reception antenna having different directivity or the weight of each reception field strength. Therefore, it follows the shift of the frequency of the radio wave with the larger received power or received electric field strength more quickly.
通常、 車載受信装置は、 車両が路上通信局の直ぐ近くを通っているとき に、 当該路上通信局から、 受信電力又は各受信電界強度の大きな電波を受 ける。 車両が路上通信局の直ぐ近くを通るときは、 その路上通信局を見上 げる角度が大きくなるので、 ドッブラー効果に基づく周波数のずれは比較 的小さくなる。  Normally, the on-vehicle receiving device receives a radio wave having a large received power or a large received electric field strength from the on-road communication station when the vehicle is passing immediately near the on-road communication station. When a vehicle passes very close to the on-road communication station, the angle at which the on-road communication station is looked up becomes large, so that the frequency shift based on the Doppler effect is relatively small.
したがって、 本発明の構成により、 車載受信装置は、 周波数のずれが比 較的小さな範囲で周波数の制御を行うことができ、 制御が容易になるとい う利点がある。  Therefore, with the configuration of the present invention, the in-vehicle receiving apparatus has an advantage that the frequency can be controlled in a range where the frequency shift is relatively small, and the control is facilitated.
(3)前記受信部は、 O F D M変調された電波を受信するものであってもよ レ ^ (請求項 3 ) 。  (3) The receiving section may receive an OFDM-modulated radio wave (claim 3).
複局通信の場合、 同一セル内に同じような送信電力で複数の電波が放射 されるので、 マルチパスによるフェージングが生じ、 搬送波間干渉や符号 間干渉が強く現れ、 その影響を取り除く ことは、 システム構築の上で必須 となる。  In multi-station communication, multiple radio waves are radiated at the same transmission power in the same cell, so multipath fading occurs, and inter-carrier interference and inter-symbol interference appear strongly. Necessary for system construction.
一般に、 シングルキヤリァ(単一搬送波)を用いた移動体通信方式では、 マルチパス遅延波による符号間干渉の影響を受けやすい。  Generally, a mobile communication system using a single carrier (single carrier) is susceptible to intersymbol interference due to multipath delay waves.
そこで、 キヤリアを複数のサブキヤリアに分割して送信することができ る O F D M変調方式を採用することが提案されている。 この O F D M変調 方式は、 ガード時間の設定により遅延波の影響を排除することができる。 図面の簡単な説明  Therefore, it has been proposed to employ an OFDM modulation scheme that can divide a carrier into a plurality of subcarriers and transmit the divided subcarriers. This OFDM modulation method can eliminate the effects of delayed waves by setting the guard time. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 路車間通信システムの構成を示す概念図である。  FIG. 1 is a conceptual diagram showing the configuration of a road-vehicle communication system.
図 2は、 送受信局 2の送信装置 2 bと受信装置 2 aの内部構成を示すブ ロック図である。  FIG. 2 is a block diagram showing an internal configuration of the transmitting device 2b and the receiving device 2a of the transmitting / receiving station 2.
図 3は、 O F D Mによるシンボル伝送の様子を周波数軸 f 、 時間軸 t上 に図示したグラフである。 図 4は、 車載移動局 4の送信装置 4 bの内部構成を示す概念図である。 図 5は、 車載移動局 4の受信装置 4 aの構成を示す概念図である。 FIG. 3 is a graph illustrating a state of symbol transmission by OFDM on a frequency axis f and a time axis t. FIG. 4 is a conceptual diagram showing the internal configuration of the transmitting device 4b of the vehicle-mounted mobile station 4. FIG. 5 is a conceptual diagram showing the configuration of the receiving device 4a of the vehicle-mounted mobile station 4.
図 6 (a)は、 複局通信方式の 3つの路上アンテナ a, b, cの配置及びそ の下を走行する車両 4を示す図である。 (b)は、 車載受信装置の受ける平均 的な周波数のずれ < Δ f 〉の推移を示すグラフである。  FIG. 6 (a) is a diagram showing an arrangement of three on-road antennas a, b, and c of the multi-station communication system, and a vehicle 4 traveling thereunder. (B) is a graph showing the transition of the average frequency deviation <Δf> received by the on-vehicle receiver.
図 7 )は、 複局通信方式の 3つの路上アンテナ a , b , cの配置及びそ の下を走行する車両を示す図であり、 (b)は、 受信周波数のずれの推移を示 すグラフである。 符号の説明  Figure 7) is a diagram showing the arrangement of three on-road antennas a, b, and c of a multi-station communication system and a vehicle traveling under it. (B) is a graph showing the transition of the reception frequency shift. It is. Explanation of reference numerals
1は中央基地局、 2は送受信局、 2 aは受信装置、 2 bは送信装置、 4は 車載移動局、 4 aは受信装置、 2 2はダウンコンパ一夕、 2 3は直交復調 回路、 2 4はフーリエ変換回路、 2 6は? 5変換回路、 2 7は 検出 部、 3 1は S Z P変換回路、 3 3は逆フーリエ^換回路、 3 4は直交変調 回路、 3 5はアップコンバータ、 4 1は第 1受信部、 4 2は第 2受信部、 4 7は5 ?変換回路、 4 9は逆フーリエ変換回路、 5 0は直交変調回路 、 5 1はアップコンパ一夕、 6 1は受信アンテナ、 6 2は受信アンテナ、 6 3は直交復調回路、 6 4はフーリエ変換回路、 6 5は?ノ5変換回路、 6 6はダウンコンバータ、 6 7はダウンコンバータ、 6 8は直交復調回路 、 6 9はフーリエ変換回路、 7 0は P Z S変換回路、 7 1は符号切り替え 回路、 7 2は周波数制御部  1 is a central base station, 2 is a transmitting / receiving station, 2a is a receiving device, 2b is a transmitting device, 4 is an on-vehicle mobile station, 4a is a receiving device, 2 2 is a downcomer, 2 3 is a quadrature demodulation circuit, 24 is a Fourier transform circuit, 26 is? 5 conversion circuit, 27 is a detection unit, 31 is an SZP conversion circuit, 33 is an inverse Fourier conversion circuit, 34 is a quadrature modulation circuit, 35 is an upconverter, 41 is a first reception unit, and 42 is 2nd receiver, 4 7 is 5? Conversion circuit, 49 is an inverse Fourier transform circuit, 50 is a quadrature modulation circuit, 51 is an upcomer, 61 is a receive antenna, 62 is a receive antenna, 63 is a quadrature demodulator circuit, and 64 is Fourier transform. Circuit, 6 5? No. 5 conversion circuit, 66 is a down converter, 67 is a down converter, 68 is a quadrature demodulation circuit, 69 is a Fourier transform circuit, 70 is a PZS conversion circuit, 71 is a sign switching circuit, and 72 is frequency control Department
(実施の形態 1 ) (Embodiment 1)
以下では、 本発明の実施の形態を、 添付図面を参照して詳細に説明する。 図 1は、 本発明の路車間通信システムの構成を示す概念図である。 この 路車間通信システムは、 路上通信局と車両に搭載されている移動局との間 で道路交通情報を送受信するシステムである。  Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. FIG. 1 is a conceptual diagram showing the configuration of the road-vehicle communication system of the present invention. This road-to-vehicle communication system is a system for transmitting and receiving road traffic information between a road communication station and a mobile station mounted on a vehicle.
道路に沿ってセルが形成されている。 セルの中には、 それぞれ固有の指 向性を有する複数の送受信局 2が、 間隔を置いて設置されている。 各送受 信局 2のアンテナからは、 同一内容、 同一周波数 (例えば 6 (GHz)帯) の電 波がセル内に放射されるようになっている。 したがって、 セル内の各点で は、 道路の長手方向に関して前後方向あるいは上方向から同一周波数の電 波が到来することになる。 Cells are formed along the road. Each cell has its own finger A plurality of directional transceiver stations 2 are installed at intervals. From the antenna of each transmitting and receiving station 2, a radio wave having the same content and the same frequency (for example, 6 (GHz) band) is radiated into the cell. Therefore, at each point in the cell, an electric wave of the same frequency arrives in the longitudinal direction of the road from the front and rear or from above.
送受信局 2は、 中央基地局 1から光ファイバや同軸ケーブル等の有線伝 送回線 9 (無線伝送回線でもよい。 以下 「有線伝送回線 9」 を想定する) を介して送信データを取得し、 互いに直交する複数の搬送波 (サブキヤリ ァ) を使って O F D M変調を施して、 無線電波としてセル内に送信するも のである。 また、 送受信局 2は、 セル内の車載移動局 4から O F D M変調 が施された無線電波を受信し、 復調して、 中央基地局 1に有線伝 送回線 9を介して受信データを中央基地局 1に送信するものである。  The transmission / reception station 2 obtains transmission data from the central base station 1 via a wired transmission line 9 such as an optical fiber or a coaxial cable (a wireless transmission line may be used. Hereinafter, the “wired transmission line 9” is assumed). OFDM modulation is performed using a plurality of orthogonal carriers (subcarriers) and transmitted as radio radio waves within the cell. Further, the transmitting / receiving station 2 receives the OFDM-modulated radio wave from the on-vehicle mobile station 4 in the cell, demodulates it, and transmits the received data to the central base station 1 via the wired transmission line 9 to the central base station. One to send.
前記送受信局 2の機能と、 中央基地局 1の機能とを合わせて、 「路上通 信局」 ということとする。  The function of the transmitting / receiving station 2 and the function of the central base station 1 are collectively referred to as “road communication station”.
なお、 送受信局 2からセル内に送信される (下り) 無線電波の周波数と、 車載移動局 4から送受信局 2に送信される (上り) 無線電波の周波数とは、 互いに異なっているとする。 ただし、 通信するタイムスロッ トを別に設け る方式をとるのであれば、 上り下りの周波数を同一にしてもよい。  It is assumed that the frequency of the (down) radio wave transmitted from the transmitting / receiving station 2 into the cell and the frequency of the (up) radio wave transmitted from the vehicle-mounted mobile station 4 to the transmitting / receiving station 2 are different from each other. However, if a method is provided in which a separate time slot for communication is provided, the uplink and downlink frequencies may be the same.
図 2は、 送受信局 2の送信装置 2 bと受信装置 2 aの内部構成を示すブ ロック図である。  FIG. 2 is a block diagram showing an internal configuration of the transmitting device 2b and the receiving device 2a of the transmitting / receiving station 2.
送信装置 2 bは、 S Z P (シリアルパラレル) 変換回路 3 1、 逆フーリ ェ変換回路 3 3、 直交変調回路 3 4、 アップコンバータ 3 5等を有してい る。  The transmission device 2b includes an SZP (serial-parallel) conversion circuit 31, an inverse Fourier conversion circuit 33, a quadrature modulation circuit 34, an up-converter 35, and the like.
受信装置 2 aは、 ダウンコンパ一夕 2 2、 直交復調回路 2 3、 フーリエ 変換回路 2 4 、 P / S (パラレルシリアル) 変換回路 2 6、 検出部 2 7等を有している。  The receiving device 2a includes a downcomer 22, a quadrature demodulation circuit 23, a Fourier transform circuit 24, a P / S (parallel serial) transform circuit 26, a detection unit 27, and the like.
送信装置 2 bの逆フーリエ変換回路 3 3は、 S Z P変換回路 3 1からパ ラレルに供給される送信データに対して逆フーリェ変換を施し、 逆フーリ ェ変換したものを変換してシリアルに戻し、 シリアルに戻されたシンボル 列を時間圧縮して、 後ろのシンボルを前にもってくることでガード時間を 設定するという諸機能を実現する回路である。 The inverse Fourier transform circuit 33 of the transmitting device 2b performs an inverse Fourier transform on the transmission data supplied from the SZP transform circuit 31 to the parallel, and performs an inverse Fourier transform. This is a circuit that realizes various functions such as converting the converted data to serial data, time-compressing the serialized symbol sequence, and setting the guard time by bringing the subsequent symbol to the front.
図 3は、 OFDMによるシンボル伝送の様子を周波数軸 f 、 時間軸 t上 に図示したグラフである。 有効シンボル長は TSで表され、 ガード時間は Δ tで表されている。 時間圧縮比は、 (TS+A t ) ZTSで示される。 サブ キャリア数を n、 伝送レ一卜を m(Mbps)とすると、 TSは、 QP S Kの場合 TS= 2 n/m(/ sec)で表される。  FIG. 3 is a graph illustrating a state of symbol transmission by OFDM on a frequency axis f and a time axis t. The effective symbol length is represented by TS, and the guard time is represented by Δt. The time compression ratio is represented by (TS + At) ZTS. Assuming that the number of subcarriers is n and the transmission rate is m (Mbps), TS is expressed as TS = 2 n / m (/ sec) in the case of QPSK.
前記〇 F DM変調のガード時間 Δ tは、 マルチパスによる遅延時間より も長くとる必要がある。 これにより、 送受信局 2や車載移動局 4は、 電波 伝搬の経路が複数あること (マルチパス) による伝搬遅延の悪影響を受け ることなく、 シンボル間の干渉を回避して受信信号を正確に復元すること ができる。  The guard time Δt of the 〇FDM modulation needs to be longer than the delay time due to multipath. As a result, the transmitting / receiving station 2 and the on-vehicle mobile station 4 can accurately recover the received signal by avoiding interference between symbols without being adversely affected by the propagation delay caused by multiple radio wave propagation paths (multipath). can do.
図 2を参照して、 直交変調回路 34は、 逆フーリエ変換回路 3 3から出 力される同相成分及び直交成分をそれぞれ D/A変換し、 sin波(sinwt)、 cos波(COS O t)をかけて加算することにより、 直交変調する回路である。 なお、 この実施形態では、 Q P S K変調することとしているが、 これ以 外に他の変調方式、 例えば QAM, B P S K, 8 P S K等を採用してもよ いことはもちろんである。 しかし以下では、 特に断らない限り Q P S K変 調を行うことを前提として、 説明を進める。  Referring to FIG. 2, quadrature modulation circuit 34 performs D / A conversion on the in-phase component and the quadrature component output from inverse Fourier transform circuit 33, respectively, and generates a sin wave (sinwt) and a cos wave (COS Ot). This is a circuit that performs quadrature modulation by multiplying and adding. In this embodiment, QPSK modulation is performed. However, it goes without saying that other modulation schemes such as QAM, BPSK, and 8PSK may be adopted. However, the following description is based on the assumption that QPSK modulation will be performed unless otherwise specified.
アップコンバータ 3 5は、 無線周波数に周波数変換する回路である。 ァ ップコンバータ 3 5の出力信号は、 サ一キユレ一夕、 同軸ケーブルを通つ て路上アンテナ 3 6から電波として放射される。  The up-converter 35 is a circuit that converts the frequency into a radio frequency. The output signal of the up-converter 35 is radiated as radio waves from the on-road antenna 36 through a coaxial cable during a short period of time.
受信装置 2 aのダウンコンバータ 2 2は、 無線周波数を中間周波数に変 換する回路である。  The down converter 22 of the receiving device 2a is a circuit that converts a radio frequency to an intermediate frequency.
直交復調回路 2 3は、 直交変調回路 34とは逆に直交復調する回路であ つて、 2分配された信号の一方に sin波をかけ、 他方に cos波をかけてそ れぞれ A ZD変換する回路である。 周波数差 Δ f 検出部 2 7は、 直交復調回路 2 3の同相成分 I (cos波をか けた後の信号) 、 直交成分 Q (sin波をかけた後の信号) に基づいて受信周 波数のずれ△ f を検出する回路である。 受信周波数のずれ は、 サンプ ル時間間隔ごとに複素数 I ZQの偏角を計算し、 現在の I ZQの偏角 ( I /Q) , と、 1つ前にサンプルした ( I ZQ) の偏角との差に基づいて 求めることができる。 The quadrature demodulation circuit 23 is a circuit that performs quadrature demodulation in the opposite manner to the quadrature modulation circuit 34, and applies a sine wave to one of the two divided signals and a cos wave to the other, and performs AZD conversion, respectively. Circuit. The frequency difference Δf detection unit 27 calculates the reception frequency based on the in-phase component I (signal after applying a cos wave) and the quadrature component Q (signal after applying a sine wave) of the quadrature demodulation circuit 23. This circuit detects the deviation △ f. The deviation of the reception frequency is calculated by calculating the argument of the complex number I ZQ at each sample time interval, and the argument of the current I ZQ (I / Q), and the argument of the immediately preceding sample (I ZQ). Can be calculated based on the difference between
Δ f = ( I /Q) , - ( I /Q) , _ ,  Δ f = (I / Q),-(I / Q), _,
Δ f 検出部 2 7は、 この受信周波数のずれ Δ f をダウンコンバータ 2 2 にフィードバックすることにより、 受信周波数のずれ△ f を補正する機能 を果たす。  The Δf detection unit 27 performs a function of correcting the reception frequency deviation Δf by feeding back the reception frequency deviation Δf to the down converter 22.
フーリエ変換回路 2 4は、 送信側の逆フーリエ変換回路 3 3と逆の処理 をする回路で、 復調された信号を、 有効シンボル長 TSのウィンドウ長でフ 一リエ変換することにより、 復号信号を得る回路である。  The Fourier transform circuit 24 is a circuit that performs a process reverse to that of the inverse Fourier transform circuit 33 on the transmission side, and performs a Fourier transform on the demodulated signal with the window length of the effective symbol length TS to convert the decoded signal. It is a circuit to get.
PZS変換回路 2 6はフーリエ変換後のパラレル信号を、 シリアル信号' に変換する回路である。  The PZS conversion circuit 26 is a circuit that converts the parallel signal after the Fourier transform into a serial signal.
このシリアル信号に変換されたデータは、 中央基地局 1に送信される。 次に、 車両に搭載される車載移動局の構成を説明する。  The data converted into the serial signal is transmitted to the central base station 1. Next, the configuration of the on-vehicle mobile station mounted on the vehicle will be described.
図 4は、 車載移動局 4の送信装置 4 bの構成を示す概念図である。  FIG. 4 is a conceptual diagram showing a configuration of the transmitting device 4b of the vehicle-mounted mobile station 4.
この送信装置 4 bは、 57?変換回路4 7、 逆フーリエ変換回路 4 9、 直交変調回路 5 0、 アップコンバータ 5 1等を有している。  The transmission device 4b includes a 57? Conversion circuit 47, an inverse Fourier transform circuit 49, a quadrature modulation circuit 50, an up converter 51, and the like.
この送信装置 4 bの構成は、 図 2に示した路上の送信装置 2 bの構成と 同じなので動作説明を省略する。  The configuration of the transmitting device 4b is the same as the configuration of the transmitting device 2b on the road shown in FIG.
図 5は、 車載移動局 4の受信装置 4 aの構成を示す概念図である。  FIG. 5 is a conceptual diagram showing the configuration of the receiving device 4a of the vehicle-mounted mobile station 4.
受信装置 4 aは、 車両の前後方向を向いた 2つの受信アンテナ 6 1, 6 2と、 受信アンテナ 6 1につながれた第 1受信部 4 1 と、 受信アンテナ 6 2につながれた第 2受信部 4 2と、 自動周波数制御 (A F C) 機能を含む 周波数制御部 7 2と、 符号切り替え回路 7 1 とを備えている。  The receiving device 4 a includes two receiving antennas 6 1 and 6 2 facing the front and rear direction of the vehicle, a first receiving unit 4 1 connected to the receiving antenna 6 1, and a second receiving unit connected to the receiving antenna 6 2 42, a frequency control unit 72 including an automatic frequency control (AFC) function, and a code switching circuit 71.
第 1受信部 4 1は、 無線周波数を中間周波数に変換するダウンコンパ一 夕 6 6、 直交復調回路 6 3、 フーリエ変換回路 6 4、 ?ダ5変換回路6 5 等を有し、 第 2受信部 4 2は、 ダウンコンバータ 6 7、 直交復調回路 6 8、 フーリエ変換回路 6 9、 PZS変換回路 7 0等を有している。 第 1受信部 4 1、 第 2受信部 4 2の構成は、 図 2を用いて説明した受信装置 2 aの構 成と同様なので、 説明は省略する。 The first receiver 41 is a down-converter that converts a radio frequency to an intermediate frequency. E 6 6, Quadrature demodulation circuit 63, Fourier transform circuit 64,? The second receiving unit 42 includes a down converter 67, a quadrature demodulation circuit 68, a Fourier transform circuit 69, a PZS transform circuit 70, and the like. The configuration of the first receiving unit 41 and the second receiving unit 42 is the same as the configuration of the receiving device 2a described with reference to FIG.
前記周波数制御部 7 2は、 第 1受信部 4 1、 第 2受信部 4 2の受信周波 数のずれ Δ ί ,, Δ f 2 をそれぞれ検出する機能を持つとともに、 第 1受信 部 4 1、 第 2受信部 4 2の受信電力 P,, P2 をそれぞれ検出する機能と、 検出された受信電力 P P2 の重みに応じて周波数のずれの平均く Δ f > をとり、 このずれの平均ぐ Δ f >に基づいて第 1受信部 4 1、 第 2受信部 4 2共通の周波数制御を行う機能とを備えている。 The frequency control unit 7 2, first receiver 4 1, together with the function of the second receiving portion 4 2 of the number of received frequency deviation Δ ί ,, Δ f 2 to detect each first receiver 4 1, a function of detecting the second receiving portion 4 2 of the reception power P ,, P 2, respectively, averages Ku delta f> of the frequency shift depending on the weight of the detected received power PP 2, the average device of this deviation A function of performing frequency control common to the first receiving unit 41 and the second receiving unit 42 based on Δf>.
受信周波数のずれ Δ f 2 を検出する機能については、 図 2を用い て説明した Δ f 検出部 2 7の機能と同様の説明ができる。 すなわち、 直交 復調回路 6 3の同相成分 I , (cos波をかけた後の信号) 、 直交成分 Q, (sin波をかけた後の信号) に基づいて、 サンプル時間間隔ごとに複素数 I , /Q, の偏角を計算し、 現在の I , ZQ, の偏角 ( Ι , ΖΟ,) , と、 1つ前に サンプルした ( Ι ,ΖΟ,) , , の偏角との差に基づいて受信周波数のずれ Δ f , を検出する。 The function of detecting the reception frequency deviation Δf 2 can be described in the same manner as the function of the Δf detection unit 27 described with reference to FIG. That is, based on the in-phase component I, (the signal after applying the cos wave) and the quadrature component Q, (the signal after applying the sine wave) of the quadrature demodulation circuit 63, the complex number I, / Calculates the declination of Q, based on the difference between the declination of the current I, ZQ, (Ι, ΖΟ,), and the declination of (前, ΖΟ,),, Detect the reception frequency deviation Δf ,.
Δ f , = ( Iノ Q!) , - ( Iノ Q, ) ,„,  Δ f, = (Ino Q!),-(Ino Q,), „,
直交復調回路 6 8の同相成分 I 2 (cos波をかけた後の信号) 、 直交成分 Q2 (sin波をかけた後の信号) に基づいても、 同様にして、 受信周波数の ずれ Δ f 2 を検出する。 Similarly, based on the in-phase component I 2 of the quadrature demodulation circuit 68 (the signal after applying the cos wave) and the quadrature component Q 2 (the signal after applying the sine wave), the reception frequency deviation Δ f Detect 2
Δ f ; = ( Iノ Q2) , - ( Iノ Q2) Δ f ; = (INO Q 2 ),-(INO Q 2 )
一方、 第 1受信部 4 1の受信電力 P,、 第 2受信部 4 2の受信電力 P2 は、 ダウンコンパ一夕 6 6 , 6 7の出力部においてそれぞれ検出する。 なお、 ダウンコンバータ 6 6 , 6 7の出力部以外に、 受信アンテナ 6 1 , 6 2力 らダウンコンバータ 6 6, 6 7に至る間で検出してもよい。 電力検出方式 は、 例えばダイオードで検波するなど、 周知の方式を採ることができる。 周波数制御部 7 2は、 検出した受信周波数のずれ Δ f ,, Δ ί2 と、 受信 電力 Ρ, , Ρ2 とに基づいて、 周波数のずれの重み付け平均ぐ Δ f 〉を求め る。 On the other hand, the received power P 2 of the reception power P ,, the second reception section 4 2 of the first receiver 4 1 detects each at the output of the down comparator Isseki 6 6 6 7. In addition, in addition to the output sections of the down-converters 66 and 67, the detection may be performed between the receiving antennas 61 and 62 and the down-converters 66 and 67. As the power detection method, a known method such as detection with a diode can be used. Frequency control unit 7 2, the shift Δ f ,, Δ ί 2 of the detected reception frequency, the reception power [rho,, based on the [rho 2, Ru obtains a weighted average tool delta f> of the frequency shift.
<Δ f >= (Ρ, Δ f , + Ρ2 Δ f 2) Ζ (Ρ, + Ρ2) <Δ f> = (Ρ, Δ f, + Ρ 2 Δ f 2 ) Ζ (Ρ, + Ρ 2 )
そしてこの平均的な周波数のずれ <Δ f 〉を、 ダウンコンバータ 2 2の 発振器にフィードバックすることにより、 受信周波数のずれ Δ f を補正す る機能を果たす。  Then, the average frequency deviation <Δf> is fed back to the oscillator of the down converter 22 to perform a function of correcting the reception frequency deviation Δf.
f = f „I8 -ぐ Δ f > f = f „ I8- Δ Δ f>
この式で、 f 。f g は、 く Δ f 〉が 0のときに発振すべき周波数である。 このようにして得られた平均的な周波数のずれぐ Δ f >をグラフ化して 示した図が、 図 6である。 In this formula, f. fg is the frequency to be oscillated when Δf > is zero. FIG. 6 is a graph showing the average frequency deviation Δf> thus obtained.
図 6 (a)は、 複局通信方式の 3つの路上アンテナ a, b, cの配置及びそ の下を走行する車両 4を示す。 車両 4は、 前述したように、 前方向指向性 の受信アンテナ 6 1と、 後ろ方向指向性の受信アンテナ 62と、 車載移動 局 4とを搭載している。  Fig. 6 (a) shows the arrangement of three on-road antennas a, b, and c of the multi-station communication system, and the vehicle 4 traveling under it. As described above, the vehicle 4 is equipped with the forward directional receiving antenna 61, the backward directional receiving antenna 62, and the on-vehicle mobile station 4.
図 6 (b)は、 平均的な周波数のずれ <Δ ί〉の推移を示すグラフである。 この図 6 (b)のグラフと図 7 (b)のグラフとを比較すると、 <△ f 〉は、 受信アンテナ 6 1 , 6 2から受ける受信周波数のずれの間の値となってい る。  FIG. 6B is a graph showing the transition of the average frequency deviation <Δ <>. Comparing the graph of FIG. 6 (b) with the graph of FIG. 7 (b), <△ f> is a value between the deviations of the receiving frequencies received from the receiving antennas 6 1 and 6 2.
例えば、 車両が路上アンテナ aと路上アンテナ bとの中間の位置にいる ときは、 ぐ Δ ί >は、 路上アンテナ bから受ける受信周波数のずれ b 1と、 路上アンテナ aから受ける受信周波数のずれ a 2の中間の値をとる。 これ は、 車両が路上アンテナ aから受ける電波の受信電力と路上アンテナ か ら受ける電波の受信電力とがほぼ等しいからである。  For example, when the vehicle is at an intermediate position between the antennas on the road a and the antenna b on the road, the angle Δ ぐ> is the deviation b 1 of the reception frequency received from the antenna b on the road and the deviation a of the reception frequency received from the antenna a on the road a Take an intermediate value of 2. This is because the received power of the radio wave received by the vehicle from the on-road antenna a is substantially equal to the received power of the radio wave received from the on-road antenna.
車両が路上アンテナ bの直下の位置にいるときは、 く A f 〉は、 路上ァ ンテナ bから受ける受信周波数のずれ b 1に近い値をとる。 これは、 車両 が路上アンテナ bから受ける電波の受信電力が、 他の路上アンテナから受 ける電波の受信電力よりも大きいからである。 この図 6 (b)のグラフから、 車両が走行しても、 く A f 〉は、 なめらかに 変化し、 周波数の飛びが生じていないことがわかる。 このため、 自動周波 数制御 (A F C ) を行う場合、 周波数制御の追従は十分可能であり、 通信 のとぎれは生じない。 When the vehicle is directly below the antenna on the road b, A f> takes a value close to the deviation b1 of the reception frequency received from the antenna on the road b. This is because the received power of the radio wave received by the vehicle from the road antenna b is higher than the received power of the radio wave received from the other road antennas. From the graph in Fig. 6 (b), it can be seen that even when the vehicle is running, Af> changes smoothly and no frequency jump occurs. For this reason, when performing automatic frequency control (AFC), it is possible to follow the frequency control sufficiently, and there is no interruption in communication.
また、 図 6 (b)のグラフを見ると、 < Δ ί〉の変動は、 路上アンテナ bか ら受ける受信周波数のずれ b 1等の変動に比べて、 0を中心とした小さな 範囲に収まっている。 これは、 < A f >を求めるのに、 受信電力 P ,, P , の重み付けを行っているからであると考えられる。 すなわち、 車載受信装 置は、 車両が路上通信局の直ぐ近くを通っているときに、 当該路上通信局 から、 受信電力又は各受信電界強度の大きな電波を受けるものであり、 車 両が路上通信局の直ぐ近くを通るときは、 その路上通信局を見上げる角度 が大きくなるので、 ドッブラー効果に基づく周波数のずれは比較的小さく なるからである。  Looking at the graph in Fig. 6 (b), the fluctuation of <Δί> falls within a small range centered on 0 compared to the fluctuation of the receiving frequency shift b1 received from the roadside antenna b. I have. This is considered to be because the received powers P,, P, are weighted to obtain <A f>. In other words, the on-vehicle receiving device receives radio waves with high received power or each received electric field strength from the on-road communication station when the vehicle is passing very close to the on-road communication station. This is because when passing close to a station, the angle at which the station on the road looks up becomes large, and the frequency shift based on the Doppler effect is relatively small.
したがって、 車載受信装置 4は、 周波数のずれが比較的小さな範囲で、 周波数の制御を行えばよいので、 周波数制御部 7 2に対する性能の要求を 緩和することができる。  Therefore, the on-vehicle receiving device 4 only has to control the frequency within a range where the frequency deviation is relatively small, so that the performance requirement for the frequency control unit 72 can be eased.
図 5において、 符号切り替え回路 7 1は、 第 1受信部 4 1、 第 2受信部 4 2でそれぞれ受信された電波の受信電力を比較して、 大きい方の受信電 力が得られるほうの受信部の出力に切り替える回路である。 切り替えに代 えて合成する回路としてもよい。 このような切り替え又は合成により、 複 局車両がトラックのような大型車の近傍を走行していても、 送信局から放 射される電波の伝搬経路を選択することができるので、 電波の遮蔽を回避 できる。  In FIG. 5, the code switching circuit 71 compares the received power of the radio waves received by the first receiver 41 and the received power of the radio waves received by the second receiver 42, respectively. It is a circuit that switches to the output of the unit. A circuit that synthesizes instead of switching may be used. By such switching or combining, even if the multi-station vehicle is running near a large vehicle such as a truck, the propagation path of the radio wave radiated from the transmitting station can be selected. Can be avoided.
なお、 切り替え位置は、 ?7 3変換回路6 5 , 7 0の出力点に限られる ものではなく、 ダウンコンバータ 6 6, 6 7の出力部以後であれば、 どの 位置で切り替えてもよい。 例えば、 直交復調回路 6 3, 6 8の出力位置で もよい。  The switching position is? It is not limited to the output points of the 73 conversion circuits 65 and 70, and may be switched at any position after the output sections of the down converters 66 and 67. For example, the output positions of the quadrature demodulation circuits 63 and 68 may be used.
また、 符号切り替え回路 7 1 に代えて、 切り替えるのでなく、 両方の平 均をとるような回路とすることも可能である。 、 Also, instead of the sign switching circuit 71, instead of switching, both flat It is also possible to make a circuit that averages. ,
本発明の実施の形態の説明は以上のとおりであるが、 本発明は前述の実 施形態に限定されるものではない。 例えば、 以上の車載受信装置 4 aは、 周波数のずれの重み付け平均ぐ Δ f 〉を求めるのに、 重みとして受信電力 P ,, P 2 を用いていたが、 受信電界強度を用いてもよい。 Although the embodiment of the present invention has been described above, the present invention is not limited to the above-described embodiment. For example, the above-described in-vehicle receiver 4a uses the reception powers P 1 and P 2 as the weights to obtain the weighted average Δf> of the frequency shift, but may use the reception electric field strength.
その他、 本発明の範囲内で種々の設計変更を施すことが可能である。  In addition, various design changes can be made within the scope of the present invention.

Claims

請求の範囲 The scope of the claims
1. セルに複数配置された路上通信局とセル内の車載移動局との間で通信 を行う路車間通信システムに用いられる車載受信装置であって、 1. An in-vehicle receiver used in a road-vehicle communication system for performing communication between a plurality of on-road communication stations arranged in a cell and on-vehicle mobile stations in the cell,
指向性の異なる複数の受信アンテナと、 これらの受信アンテナにつなが れた同数の受信部と、 周波数制御部とを備え、  A plurality of receiving antennas having different directivities, the same number of receiving sections connected to these receiving antennas, and a frequency control section;
前記周波数制御部は、  The frequency control unit,
各受信部の受信周波数の時間的なずれをそれぞれ検出する第 1の検出手 段と、 第 1の検出手段で検出された周波数のずれの平均をとり、 このず れの平均に基づいて各受信部共通の周波数制御を行う周波数制御手段とを 備えることを特徴とする車載受信装置。  A first detection means for detecting a time shift of the reception frequency of each receiving unit, and an average of the frequency shift detected by the first detection means, and each reception is determined based on the average of the shifts. An on-vehicle receiving apparatus, comprising: frequency control means for performing frequency control common to all units.
2. 各受信部の受信電力又は受信電界強度をそれぞれ検出する第 2の検出 手段をさらに備え、  2. It further comprises a second detection means for respectively detecting the reception power or the reception electric field strength of each reception section,
前記周波数制御手段は、 第 2の検出手段により検出された各受信電力又 は各受信電界強度の重みに応じて第 1の検出手段で検出された周波数のず れの重みつき平均をとるものであることを特徴とする請求項 1記載の車載 受信装置。  The frequency control means calculates a weighted average of deviation of the frequency detected by the first detection means according to the weight of each received power or each received electric field strength detected by the second detection means. 2. The in-vehicle receiving device according to claim 1, wherein:
3. 前記受信部は、 直交周波数分割多重 (〇 F DM ; Orthogonal  3. The receiving unit performs orthogonal frequency division multiplexing (〇FDM; Orthogonal
Frequency Division Mu 11 i pi ex)変調された電波を受信するものである請求 項 1記載の車載受信装置。 The in-vehicle receiving device according to claim 1, wherein the on-vehicle receiving device receives a radio wave modulated by Frequency Division Mu 11 i pi ex).
捕正書の請求の範囲 Claims in the certificate
[2000年 1 1月 1 7日 (1 7. 1 1. 00) 国際事務局受理:出願当初の 請求の範囲 1は補正された;他の請求の範囲は変更なし。 ( 1頁)] [January 17, 2000 (17.11.00) Accepted by the International Bureau: Claim 1 as originally filed was amended; other claims remained unchanged. (1 page)]
1. (補正後) セル内の道路に沿って複数配置された路上アンテナを用いて 路上通信局とセル内の車載移動局との間で通信を行う路車間通信システム に用いられる車載受信装置であって、  1. (After correction) An in-vehicle receiver used in a road-to-vehicle communication system that performs communication between on-road communication stations and on-vehicle mobile stations in a cell by using a plurality of on-road antennas arranged along the road in the cell So,
前方向指向性を有する受信アンテナと、 後ろ方向指向性を有する受信ァ ンテナと、 これらの受信アンテナにつながれた同数の受信部と、 周波数制 御部とを備え、  A receiving antenna having forward directivity, a receiving antenna having backward directivity, the same number of receiving sections connected to these receiving antennas, and a frequency control section;
前記周波数制御部は、  The frequency control unit,
各受信部の受信周波数の時間的なドップラー偏移に基づくずれをそれぞ れ検出する第 1の検出手段と、  First detection means for respectively detecting a shift based on a temporal Doppler shift of a reception frequency of each reception unit,
第 1の検出手段で検出された周波数のずれの平均をとり、 このずれの平 均に基づいて各受信部共通の周波数制御を行う周波数制御手段とを備える ことを特徴とする車載受信装置。  An in-vehicle receiving apparatus, comprising: frequency control means for averaging frequency deviations detected by the first detection means, and performing frequency control common to the receiving units based on the average of the deviations.
2. 各受信部の受信電力又は受信電界強度をそれぞれ検出する第 2の検出 手段をさらに備え、 2. It further comprises a second detection means for respectively detecting the reception power or the reception electric field strength of each reception section,
前記周波数制御手段は、 第 2の検出手段により検出された各受信電力又 は各受信電界強度の重みに応じて第 1の検出手段で検出された周波数のず れの重みつき平均をとるものであることを特徴とする請求項 1記載の車載 受信装置。  The frequency control means calculates a weighted average of deviation of the frequency detected by the first detection means according to the weight of each received power or each received electric field strength detected by the second detection means. 2. The in-vehicle receiving device according to claim 1, wherein:
3. 前記受信部は、 直交周波数分割多重 (OFDM; Orthogonal  3. The receiving unit performs orthogonal frequency division multiplexing (OFDM; Orthogonal
Frequency Division Multiplex)変調された電波を受信するものである請求 項 1記載の車載受信装置。 The in-vehicle receiving device according to claim 1, wherein the in-vehicle receiving device receives a radio wave modulated by Frequency Division Multiplex).
據正された用紙 (条約第 19条) 条約第 1 9条 (1 ) に基づく説明書 補正によって、 路上アンテナは道路に沿うものであり、 受信アンテナは前方向指向性 と後ろ方向指向性を有することを明らかにした。 かかる構成ではドップラー偏移は他の 構成に比べてより大きく、 しかも、 路上アンテナを通過する毎にドップラー偏移が大き く変動する (図 7 ( b ) )。 かかる問題点とその解決策は引用文献に開示も示唆もない。 Reliable paper (Article 19 of the Convention) The amendment to the description based on Article 19 (1) of the Convention clarified that the on-street antennas are along the road, and the receiving antennas have forward directivity and backward directivity. In such a configuration, the Doppler shift is larger than in other configurations, and the Doppler shift fluctuates greatly each time the antenna passes on the road (Fig. 7 (b)). Such problems and their solutions are not disclosed or suggested in the cited references.
PCT/JP2000/004123 1999-07-14 2000-06-22 On-board receiver WO2001006690A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP11/200824 1999-07-14
JP11200824A JP2001028576A (en) 1999-07-14 1999-07-14 On-vehicle receiver

Publications (1)

Publication Number Publication Date
WO2001006690A1 true WO2001006690A1 (en) 2001-01-25

Family

ID=16430824

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/004123 WO2001006690A1 (en) 1999-07-14 2000-06-22 On-board receiver

Country Status (2)

Country Link
JP (1) JP2001028576A (en)
WO (1) WO2001006690A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3749513B2 (en) * 2002-06-25 2006-03-01 東芝テック株式会社 Wireless communication system
US7366089B2 (en) * 2003-10-08 2008-04-29 Atheros Communications, Inc. Apparatus and method of multiple antenna receiver combining of high data rate wideband packetized wireless communication signals
JP4234667B2 (en) 2004-11-30 2009-03-04 株式会社東芝 OFDM receiver for mobile
JP5233251B2 (en) * 2007-11-13 2013-07-10 住友電気工業株式会社 Communication device, transmission timing adjustment method, and transmission frequency adjustment method
US8619672B2 (en) 2008-06-11 2013-12-31 Qualcomm Incorporated Apparatus and method for multi-sector velocity mobile velocity and doppler estimate for synchronous communication systems
JPWO2021010116A1 (en) 2019-07-16 2021-01-21

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0738478A (en) * 1993-07-26 1995-02-07 Nippon Telegr & Teleph Corp <Ntt> Diversity reception circuit after detection
JPH09284251A (en) * 1996-04-10 1997-10-31 Jisedai Digital Television Hoso Syst Kenkyusho:Kk Receiver
JPH09312600A (en) * 1996-05-21 1997-12-02 Oki Electric Ind Co Ltd Automatic frequency controller
WO1999039944A1 (en) * 1998-02-05 1999-08-12 Trw Occupant Restraint Systems Gmbh & Co. Kg Module composed of a belt retractor and a belt pretensioning device
JP2000134667A (en) * 1998-10-29 2000-05-12 Mitsubishi Electric Corp Mobile communication system
JP3045167B1 (en) * 1999-02-26 2000-05-29 住友電気工業株式会社 Road-to-vehicle communication system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0738478A (en) * 1993-07-26 1995-02-07 Nippon Telegr & Teleph Corp <Ntt> Diversity reception circuit after detection
JPH09284251A (en) * 1996-04-10 1997-10-31 Jisedai Digital Television Hoso Syst Kenkyusho:Kk Receiver
JPH09312600A (en) * 1996-05-21 1997-12-02 Oki Electric Ind Co Ltd Automatic frequency controller
WO1999039944A1 (en) * 1998-02-05 1999-08-12 Trw Occupant Restraint Systems Gmbh & Co. Kg Module composed of a belt retractor and a belt pretensioning device
JP2000134667A (en) * 1998-10-29 2000-05-12 Mitsubishi Electric Corp Mobile communication system
JP3045167B1 (en) * 1999-02-26 2000-05-29 住友電気工業株式会社 Road-to-vehicle communication system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Fukukyoku soushin wo kouryo shita bawai no OFDM rensou houshiki no kentou", TECHNICAL RESEARCH REPORT OF THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS, vol. 98, no. 537, 21 January 1999 (1999-01-21), (JAPAN), pages 9 - 14, XP002936576 *

Also Published As

Publication number Publication date
JP2001028576A (en) 2001-01-30

Similar Documents

Publication Publication Date Title
JP3127918B1 (en) Road-to-vehicle communication system, roadside communication station and on-vehicle mobile station
JP3367476B2 (en) Roadside transmission device
WO2000039944A1 (en) Communication system between road and vehicle
JP4761845B2 (en) Mobile radio transmission method, radio transmission apparatus and radio transmission system
WO2001006690A1 (en) On-board receiver
JP3045167B1 (en) Road-to-vehicle communication system
JP3067751B2 (en) Road-to-vehicle communication system
JP3008946B2 (en) Road-to-vehicle communication system
JP2000134667A (en) Mobile communication system
JP4134410B2 (en) Road-to-vehicle communication system
JP3362726B2 (en) Road-to-vehicle communication system
JP3628248B2 (en) Road-to-vehicle wireless communication system and mobile station wireless device used in road-to-vehicle wireless communication
JP2001016157A (en) 0n-road transmission system and on-road reception system
JP3289717B2 (en) Vehicle position detection system
EP2782266B1 (en) Satellite communication system using hierarchical modulation to transmit a plurality of modulated signals of high and low priority.
JPH09167990A (en) Mobile communication system and mobile object communicating method in mobile object communication system
JP5106892B2 (en) Mobile relay transmission system
JP3026364B2 (en) Road-to-vehicle communication system
JP2004235844A (en) Radio signal transmission system

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): IL KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase