WO2001005907A1 - Fluorescent composition, ink composition, and printed matter - Google Patents

Fluorescent composition, ink composition, and printed matter Download PDF

Info

Publication number
WO2001005907A1
WO2001005907A1 PCT/JP2000/004790 JP0004790W WO0105907A1 WO 2001005907 A1 WO2001005907 A1 WO 2001005907A1 JP 0004790 W JP0004790 W JP 0004790W WO 0105907 A1 WO0105907 A1 WO 0105907A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluorescent dye
organic fluorescent
ink composition
ink
document
Prior art date
Application number
PCT/JP2000/004790
Other languages
French (fr)
Japanese (ja)
Inventor
Noriaki Fukushima
Yoshinori Yamamoto
Hiroyuki Mitsuhashi
Yukinori Yamada
Tomohisa Nishimoto
Original Assignee
Hitachi Maxell, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell, Ltd. filed Critical Hitachi Maxell, Ltd.
Priority to AU58539/00A priority Critical patent/AU5853900A/en
Publication of WO2001005907A1 publication Critical patent/WO2001005907A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/50Sympathetic, colour changing or similar inks
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials

Definitions

  • the present invention relates to an organic fluorescent dye that emits light having an emission center in the visible light region when excited by ultraviolet light, and in particular, a fluorescent composition containing an organic fluorescent dye that is substantially invisible or difficult to recognize in the visible light region,
  • An ultraviolet-excited ink composition that contains an organic fluorescent dye and is used for printing with a marker pen, dot-impact pudding, stamp-type pudding, ink-jet pudding, etc., and printed matter created using the ink composition And about.
  • Bar code printing includes contact printing and non-contact printing.
  • the contact printing method includes a method using a marker pen and a bar code writer
  • the non-contact printing method includes an ink jet printing method.
  • the ink jet printing method is a method in which an ink composition is injected onto a surface to be printed through a nozzle to perform printing.Since a non-contact printing method is used, a non-uniform shape surface, such as a plastic sheet. Suitable for printing on cardboard surfaces.
  • the ink compositions used in the ink jet printing method include (1) stable without long-term storage without phase separation or sedimentation, (2) passing without clogging nozzles, and (3) ink composition. Good adhesion to the printing surface; (4) the ink composition dries quickly on the printing surface; and (5) the printed matter after drying has excellent adhesion to the printing surface, and (6) weather resistance Sex and durability must be high. Also, Inkjets (7) The ink composition for ink jet printing needs to be charge-controlled so that printing can be controlled by the ink jet printer, which is a characteristic characteristic of the ink composition for ink jetting, which is not required for other ink compositions. Must have.
  • bar code printing including such an ink jet printing method includes (a) a method of printing a bar code such as black on a white background, and (b) a method of being excited by ultraviolet rays of 300 to 400 nm.
  • a method of printing an ink composition containing an organic fluorescent dye that emits blue, green or red visible light has been used or proposed.
  • the information is read using the difference in reflectance between the bar code and the base.
  • the appearance of the article is inevitably deteriorated because the reflectance in the visible light region is used.
  • character information may be printed in blue, black, or the like, which inevitably impairs the appearance of the article.
  • the organic fluorescent dye to be used is inherently easily decomposed, and has poor light resistance and poor weather resistance. There was a problem that it declined. That is, the above-mentioned conventional ink tends to remarkably decrease in luminous intensity when stored at high temperature and high humidity even if it shows high luminous intensity at the beginning of preparation. Therefore, in order to solve such a problem, various additives are added to the ink, or the above-mentioned organic fluorescent dye dissolved on the surface of inorganic particles such as silica or organic fine particles such as acryl is adsorbed. It has been proposed to improve weather resistance.
  • the method of using additives and particles as described above requires storage in the ink state. It was found that, although effective in improving the printability, when the printed material was printed using this ink on a substrate, the luminescence intensity was reduced only by leaving the printed material at room temperature. In other words, even if the printed matter shows a high luminous intensity immediately after printing, after long-term storage, luminescence cannot be confirmed even if irradiated with excitation light, or the luminous intensity is insufficient, making it impossible to read by a machine. It has been found. For this reason, the method using the above-mentioned organic fluorescent dye has a problem that the conditions of use are extremely limited.
  • an organic fluorescent dye is usually dissolved in a ketone-based organic solvent such as methyl ethyl ketone / methyl isobutyl ketone.
  • a ketone-based organic solvent such as methyl ethyl ketone / methyl isobutyl ketone.
  • An object of the present invention is to print on a product without impairing the appearance of the product, and to detect the printed product with high sensitivity over a long period of time, and furthermore, without affecting the ink occlusion material, UV-excitable ink composition that is safe and does not impose any restrictions on the use environment, a fluorescent composition used for such an ink composition, and a dot-like, thin-film, or thick
  • An object of the present invention is to provide a printed matter or a fluorescent composition printed in a film form.
  • a fluorescent composition comprising a base material and an organic fluorescent dye which emits light in the visible light region when excited by ultraviolet light, wherein the organic fluorescent dye is granular;
  • an ink composition comprising a resin, an organic fluorescent dye which is excited by ultraviolet light and emits light in a visible light region, and a solvent
  • the organic fluorescent dye is in the form of particles having a particle size of 10 to 200 nm.
  • the organic fluorescent dye used in the present invention is a dye that emits light having an emission center in a visible light region (wavelength 400 to 700 nm) when excited by ultraviolet light (wavelength less than 400 nm). It is a dye that is substantially invisible or difficult to recognize.
  • the emission color is not limited, those emitting red (wavelength: around 60 O nm, more preferably 6 15 ⁇ 20 nm) visible light are particularly preferable because of their excellent detectability. Used.
  • the organic fluorescent dye used in the present invention has no absorption in the visible light region, and therefore is invisible in the visible light region in a non-excited state, and is excited by ultraviolet light to have a long wavelength region near 600 nm.
  • a red-emitting organic fluorescent dye having an emission center wavelength is preferably used.
  • a typical example is a ligand having a rare-earth element such as europium or samarium as an emission center and having a large number of 7 ⁇ electrons.
  • a europium compound having a large light emission amount is most preferable.
  • a europium compound having a large light emission amount is most preferable.
  • Examples of the metal complex include ligands, and among them, a europium compound having a ligand of tenoline trifluoroacetone, naphthoyl trifluoroacetone, or methylbenzoyl trifluoroacetone having a large emission amount is preferable.
  • organic fluorescent dyes are disclosed in Melby et al., J. Am. Chem. Soc., Vol. 186, Vol. 5, pp. 117, 1964. It can be synthesized by the method described in the gazette.
  • Commercially available products of such organic fluorescent dyes include “Rumilux CD331”, “Rumilux CD332”, “Rumilux CD335", manufactured by Riedel Dehan, and Mitsui Chemicals, Inc. "ER-120” and "ER-122".
  • organic fluorescent dyes are inferior in storage stability, such as light resistance and weather resistance, as described above, and are in an ink state, in a printed state or in a state of a printed fluorescent composition (hereinafter, simply referred to as “printed state”).
  • the light emission intensity of the printed matter tends to decrease with time, and the storage stability of the printed matter is particularly poor. That is, in the ink state, the ink solvent intervenes between the dye and the outside air, thereby preventing direct contact between the dye and the outside air.However, in the printed state, there is no intervening substance such as the ink solvent, and the dye does not exist. The decomposability directly affects the stability of the printed matter.
  • This phenomenon is the same when the dye is adsorbed on the surface of inorganic or organic particles.
  • the dye is present on the surface of the particles in a molecular state as well as in a dissolved state in the ink solvent. Even in the case of printed matter using ink, deterioration due to decomposition cannot be suppressed because the dye comes into direct contact with the outside air.
  • a certain printing material has various functional groups on the surface, and the functional groups decompose the printed organic fluorescent dye. The light emission output tends to be remarkably reduced even when left at room temperature.
  • the present inventors have developed a method for reducing the influence of the organic fluorescent dye from the outside air and, when a printed material is obtained, reducing the effect of the functional group of the printed material to suppress the decomposability of the organic fluorescent dye.
  • Various studies were made. As a result, by putting the organic fluorescent dye in the bulk state (granular state), not only the ink state but also the printed matter However, it has been found that the long-term storage stability is improved and a high luminous output can be maintained.
  • the above-mentioned organic fluorescent dye when used, it is combined with a base material, and preferably has a particle size of 10 to 2 , 00 O nm granular. By using such a granular material, excellent storage stability can be obtained not only in an ink state using a solvent but also in a printed matter or a luminescent composition.
  • the reason that such storage stability can be obtained by the present invention is considered as follows.
  • the organic fluorescent dye is formed into bulk particles having a particle size of 10 to 200 nm
  • the printed dye or fluorescent composition is prepared using the dye, and the dye comes into contact with the outside air or the functional group of the substrate.
  • the active dye is still present inside, so that the decrease in the luminescence output is suppressed even after long-term storage.
  • the particle size in the above range is good is that a particle size of less than 1 O nm does not sufficiently improve the light stability of the print material and the effect of preservability such as weather resistance, and the dye easily penetrates into the print material. That's why.
  • the dyes fall off from the printed matter, and depending on the viewing angle, the organic fluorescent dyes may be visible, which causes problems.
  • a base material that carries a dye there are an inorganic base material prepared by a sol-gel method or the like, and a resin base material. From the viewpoints of flexibility and adhesion to a printed material, a resin base material is preferable.
  • ketone solvents and the like have been used as solvents capable of dissolving the organic fluorescent dye.
  • ketone-based solvents cannot convert organic fluorescent dyes into particulate matter in bulk, and the dyes dissolve and come into contact with the outside air in molecular form.
  • storage stability that is, light resistance ⁇ weather resistance deteriorates remarkably.
  • a solvent invades an ink occluding material that absorbs ink, that is, a cloth ribbon made of a polyamide resin in a dot impact pudding, and a foamed urethane in a stamp pudding, and significantly reduces the durability. .
  • this solvent generates vapors harmful to the human body, and is restricted for use in offices and the like. Therefore, in one preferred embodiment of the present invention, a solvent containing 94% by weight or more of water or / and ethanol is used. However, from the viewpoint of environmental friendliness, 95% or more of water or / and ethanol is contained. Solvents are more preferably used. More preferably, it is water or / and ethanol only, most preferably water only.
  • the other solvent is preferably one in which the organic fluorescent dye is insoluble, but even if it is slightly soluble, it is mixed with water or / and ethanol. Any combination of these can be used without any particular limitation as long as the organic fluorescent dye can be present as particulate matter in a bulk state.
  • the base material is preferably a resin having low reactivity with an organic fluorescent dye and improving printability and durability of a printed layer, and is usually a resin soluble in the above solvent.
  • a type of emulsifying and dispersing may be used in some cases.
  • Specific examples of such resins include polyvinyl alcohol, phenolic resins, polyester resins, acrylic resins, cellulosic resins, polyamides, and maleic resins. Among them, polyvinyl alcohol which is dissolved in the above-mentioned solvent of the present invention and which has an excellent effect of dispersing the organic fluorescent dye is preferably used.
  • the amount of the base resin used depends on the type thereof, but is usually 50 to 1000 parts by weight, preferably 100 to 100 parts by weight, based on 100 parts by weight of the organic fluorescent dye. 0 parts by weight, more preferably 200 to 300 parts by weight, particularly 500 to 2000 parts by weight.
  • Oxygen permeability coefficient 1 X 10- 19 The (m 2 - - S "1 Pa” 1)
  • the following resin for example other, polyvinyl alcohol resins, polyvinyl alcohol resins (Biniruaru call one vinyl acetate copolymer, etc.) , A polyvinyl resin, a cellulose resin, a polyester resin, a polyester resin, a polyimide resin, a polyamide resin, and the like, and these are used alone or as a mixture of two or more. Considering the solubility in a solvent, the stability of the ink, the dispersibility of the organic fluorescent dye, and the like, a polyvinyl alcohol resin or a polyvinyl alcohol resin is most preferable.
  • the oxygen permeability coefficient depends on the degree of saponification of the polyvinyl alcohol-based resin, a resin having a desired oxygen permeability coefficient can be easily obtained by adjusting the degree of saponification.
  • the saponification degree of 0.2 or more polyvinyl alcohol resin, and at the same time the oxygen permeability coefficient is IX 10- 19 (m 2 ⁇ S- 1 ⁇ Pa- 1) below, soluble in an aqueous solvent is very well It is desirable when applied to inkjet ink.
  • polyvinyl resins such as polyvinyl butyral, polyvinyl pyrrolidone, and vinyl pyrrolidone monovinyl acetate copolymer may be used in combination.
  • urethane resins containing a large amount of hydroxyl groups in the molecular chain and soluble in water and / or ethanol, and urethane resins such as acryl-urethane graft copolymers are also effective in improving the adhesion to pet films. Therefore, it is preferably used.
  • the amount of oxygen permeability coefficient 1 X 10- 19 (m 2 ⁇ S- 1 ⁇ Pa -1) or less of the resin, based on the total weight of the ink composition from 0.05 to 30 wt% Is preferably 0.5 to 20% by weight, more preferably 1 to 15% by weight. This range is preferred when less than 05% by weight reduces the oxygen permeation inhibitory effect, and when it exceeds 30% by weight, the viscosity of the ink becomes too high and nozzles are easily clogged. It is because it becomes.
  • the oxygen permeability coefficient of the resin is determined according to ASTM-D1434-75. (Measurement method of gas permeability coefficient in plastic films and sheets) can be measured and evaluated.
  • a medium having a boiling point of 200 ° C. or higher and a medium in which the organic fluorescent dye is insoluble or has low solubility is used as the solvent for the ink composition. This makes it possible to make the above pigment into bulk particulate matter with a particle size of 10 to 2, OO Onm, and there is no fear of generating harmful vapors to the human body, and it is used in offices and the like. This also makes it possible to prepare an ink composition that is not subject to any restrictions on the use environment.
  • hardly volatile solvents having a boiling point of 200 ° C or more used in another preferred embodiment of the present invention those having a boiling point of 250 ° C or more, which is more difficult to volatilize, are more preferable from the viewpoint of environmental friendliness.
  • examples of such media include higher fatty acids that are liquid at room temperature, such as oleic acid, linoleic acid, and linolenic acid, castor oil, liquid paraffin, machine oil, polyoxyethylene (POE), polyoxypropylene (POP), and alkyl ethers.
  • POP alkyl ether POP alkyl ether, POE alkyl ether, polyethylene glycol, polypropylene glycol, glycerin, sorbic acid ester, benzyl alcohol and the like.
  • the organic fluorescent dye is insoluble, but even if the organic fluorescent dye is slightly soluble, the organic fluorescent dye is used in a bulk state in a combined system with a non-volatile medium having a boiling point of 200 ° C or higher. As long as it can be present as a granular material, it can be used without any particular limitation.
  • a resin having low reactivity with an organic fluorescent dye and improving printability and durability of a printed layer is preferable, and is usually soluble in the above-mentioned solvent.
  • a type of emulsifying and dispersing in some cases may be used.
  • Specific examples include a rosin resin, a phenol resin, a shellac resin, a ketone resin, an alkyd resin, a maleic resin, and a rosin-modified maleic resin.
  • a rosin resin, a rosin-modified maleic resin, and the like which dissolve in the above-mentioned solvent of the present invention and have an excellent effect of dispersing an organic fluorescent dye, are preferably used.
  • the amount of the base resin used depends on the type, but is usually 50 to: 100,000 parts by weight of L, preferably 100 to 100,000 parts by weight, per 100 parts by weight of the organic fluorescent dye. Preferably it is 200 to 3000 parts by weight, especially 500 to 2000 parts by weight.
  • the reason why this range is preferable is that if it is less than the above lower limit, the adhesion strength of the printed layer is weak, and if it exceeds the above upper limit, the luminous intensity of the printed matter or the fluorescent composition becomes weak.
  • the organic fluorescent dye is added to the solvent together with the base resin, and the resulting mixture is well dispersed and mixed by a dispersing machine such as a ball mill or a sand mill. A uniform ink composition is obtained.
  • the amount of the organic fluorescent dye to be used is generally 0.01 to 30 parts by weight, preferably 0.1 to 10 parts by weight, based on 100 parts by weight of the solvent. This range is preferable because if the amount is less than 0.01 part by weight, the light emission intensity is low, and if the amount exceeds 30 parts by weight, the light emission intensity cannot be increased due to concentration quenching.
  • the particle size of the organic fluorescent dye before dispersion is usually 10 to 50 zm. However, the organic fluorescent dye is pulverized at the same time as the dispersion so as to have a particle size of 10 to 2, O O Onm after dispersion.
  • the lower limit of the particle size after dispersion is particularly preferably 50 nm or more, and more preferably 100 nm or more.
  • the upper limit of the particle size after dispersion is preferably 80 Onm or less, more preferably 60 Onm or less, and even more preferably 500 nm or less.
  • the upper limit of the particle size of the dye that can stably maintain the dispersed state in the ink composition is mainly determined by the viscosity of the solvent, and 800 nm when a low-viscosity solvent such as water and / or ethanol is used. The following is preferred.
  • the organic fluorescent dye composed of such particulate matter may have a particle diameter after dispersion within the range of 10 to 2,000 nm, and all of the particulate matter has a uniform particle diameter. You don't need to be.
  • the particle diameter of the organic fluorescent dye refers to a sample prepared by diluting the ink composition about 1,000 times with a solvent having the same composition as the solvent contained in the ink composition, and preparing a cell having a diameter of 12 mm. The values were measured by dynamic light scattering at room temperature, using a 5mW He-Ne laser, at a measurement angle of 90 degrees and a total of 100 integrations.
  • the ink composition of the present invention may contain a surfactant together with the base resin.
  • an appropriate amount of a phosphorus-based organic compound or the like can be used as an additive.
  • an appropriate amount of a charge adjusting agent, a pH adjusting agent, and the like can be contained.
  • L i salts such as L in0 3
  • K salts such as KS CN
  • Hosuhoniumu salts represented by the following formula (1) and the like
  • Anmoniumu salt as a charge control agent.
  • phosphonium salts and ammonium salts are more preferable because of high dispersion stability of the ink composition.
  • the addition amount of these charge control agents is preferably from 0.05 to 5% by weight, more preferably from 0.1 to 5% by weight, based on the total weight of the ink composition. . This addition amount is preferred because the charge control effect becomes insufficient when the content is less than 0.05% by weight, and the effect is saturated when the content exceeds 5% by weight.
  • A is a nitrogen atom or a phosphorus atom
  • R to R 4 are the same or different and are each a hydrogen atom or a linear or cyclic hydrocarbon group having 1 to 14 carbon atoms. 1 ⁇ to 11 4 at least two of but it may also be bonded to each other to form a ring.
  • a fluorinated surfactant When printing on plastic sheets, bags, bottles, etc., it is desirable to add 0.05 to 0.5% by weight of a fluorinated surfactant.
  • the fluorine-based surfactant when added, the dot diameter is reduced to about 40% as compared with the case where no fluorine-based surfactant is added.
  • the above-mentioned addition amount range is preferable because the effect of reducing the dot diameter is small when the content is less than 0.05% by weight, and the ink composition tends to foam when the content is more than 0.5% by weight.
  • the ink composition can be used for dot-impact printing, stamp printing, ink-jet printing, stamping, and other forms of mail such as forms and postcards.
  • Printed on the surface of various goods Then, a printing layer made of a desired mark such as a bar code is formed to obtain a printed material.
  • the ink composition contains the above-mentioned solvent, it is safe for the human body, is not restricted in the use environment, and can be safely operated even in an office with insufficient ventilation.
  • the organic fluorescent dye in the printed layer does not have a light-emitting and light-absorbing component in the visible light region, and therefore has no risk of impairing the appearance of the article as a printed layer that is invisible or difficult to recognize.
  • the dye in the print layer is excited and emits light in the visible light region, which can be visually recognized, and a reading reader such as a silicone photodiode as a photoelectric conversion element.
  • Desired mark information can be read with high sensitivity.
  • the most significant feature of the present invention is that the above-mentioned organic fluorescent dye exists as fine particles in an ink state and a printed layer state, and has excellent storage stability, that is, excellent light resistance and weather resistance. Therefore, the mark information can be detected with high sensitivity over a long period of time.
  • parts means “parts by weight”.
  • Example 1 In the same manner as in Example 1 except that the dispersion treatment time by a planetary ball mill was set to 8 hours, an ultraviolet-excited ink composition containing a pigment as particulate matter having a particle size of 120 to 23 O nm was prepared. did. Comparative Example 1
  • Example 2 In 90 parts of methyl ethyl ketone, 0.5 part of the same dye as used in Example 1 was dissolved, and an acrylic resin ("Dianal BR-1" manufactured by Mitsubishi Rayon Co., Ltd.) was further used as a base resin. 0 6 ”) 9.5 parts were added, mixed well with stirring, and dissolved to prepare an ultraviolet-excited ink composition.
  • Example 2 0.5 parts of the same dye used in Example 1 was dissolved in 3 parts of methyl ethyl ketone. Next, this dye solution was mixed with 77 parts of water, 10 parts of silica particles having an average particle diameter of 10 O nm as inorganic particles, and 9.5 parts of polyvinyl alcohol (Kuraray PVA) as a base material resin. The resulting slurry was blended and mixed well with stirring to prepare an ultraviolet-excited ink composition.
  • Kuraray PVA polyvinyl alcohol
  • the fluorescence emission intensity of the ink composition at the initial stage and after storage at high temperature was measured using a fluorescence spectrophotometer (“FP750” manufactured by JASCO Corporation). However, the values are shown as relative values with the initial light emission intensity of Example 1 being 100%.
  • the ink composition was filled in a marker pen and used to form a print layer on white paper.
  • FP750 fluorescence spectrophotometer
  • both ink compositions of Examples 1 and 2 have the initial fluorescent emission intensity increased because the organic fluorescent dye is present as particulate matter in a bulk state.
  • the decrease in strength after high-temperature storage is suppressed, and the printed matter printed using this is also less reduced in strength after long-term storage. It can be seen that the storage stability is remarkably excellent even in the state where it was used.
  • the ink composition of Comparative Example 1 had a low initial fluorescence emission intensity because the organic fluorescent dye was completely dissolved in the solvent, and the intensity deteriorated after high-temperature storage. In the state of a printed material, the strength is further reduced, and the deterioration after long-term storage is remarkable.
  • the ink composition of Comparative Example 2 had a certain effect of improving the fluorescence emission intensity as compared with Comparative Example 1 by adsorbing the organic fluorescent dye on the surface of the inorganic particles. Compared with those of the printed matter, the printed matter is remarkably inferior, and particularly the printed matter has remarkably poor long-term storage characteristics.
  • Oxygen permeability coefficient "instead of 20 (m 2 ⁇ S- 1 ⁇ Pa- polyvinyl alcohol (manufactured by Kuraray Co., Ltd. PVA) 5 parts, the oxygen permeability coefficient is 3 X 10- 23 (m 2 - S" 5 X 10 1 ⁇ Pa "1 polyvinyl alcohol) (except using Kuraray Co., Ltd. PVA) 5 parts, the same procedure as in example 3, ultraviolet excitation organic fluorescent dye is included as granules having a particle size of two hundred and ten to four hundred and ten nm A mold ink composition was prepared.
  • An ultraviolet-excited ink composition containing an organic fluorescent dye as a particulate having a particle size of 150 to 25 Onm was prepared in the same manner as in Example 3 except that the dispersion treatment time by a planetary ball mill was changed to 8 hours.
  • An ultraviolet-excited ink composition containing an organic fluorescent dye as granules having a particle size of 80 to 19 Onm was prepared in the same manner as in Example 3 except that the dispersion treatment time by a planetary ball mill was changed to 16 hours.
  • An ultraviolet-excited ink composition was prepared in the same manner as in Example 3, except that 0.1 part of "Fluorad FC430" manufactured by Sliem was added as a fluorinated surfactant.
  • 0.1 part of "Fluorad FC430" manufactured by Sliem was added as a fluorinated surfactant.
  • Example 3 In the same manner as in Example 3 except that the dispersion treatment time by a planetary ball mill was set to 1 hour, an ultraviolet-excited ink composition containing an organic fluorescent dye as particles having a particle size of 900 to 1,40 Onm was prepared. did.
  • Example 3 0.5 parts of the same organic fluorescent dye as in Example 3 was dissolved in 3 parts of methyl ethyl ketone.
  • the dye solution the average particle diameter 100 nm of silica force grain child 10 parts as inorganic particles 77 parts of water and oxygen permeability coefficient of 5 X 10- 2 ° of (m 2 ⁇ S- 1 ⁇ P a "1) Polyvinyl alcohol (PVA manufactured by Kuraray Co., Ltd.) was mixed in a slurry obtained by mixing 9.5 parts and mixed well by stirring to prepare an ultraviolet-excitation ink composition.
  • PVA Polyvinyl alcohol
  • each of the ink compositions of Examples 3 to 9 and Reference Examples 1 and 2 was characterized in that the organic fluorescent dye having a particle size of 10 to 80 nm was a particulate material in a bulk state.
  • the initial fluorescence emission intensity is high, and the decrease in the intensity after storage at high temperatures is small.
  • the printed matter printed using this has a fluorescence emission intensity after storage at room temperature at a practical level (30% or more), and can be read by a barcode reader.
  • the ink composition of Comparative Example 3 has a low initial fluorescence emission intensity because the organic fluorescent dye is completely dissolved in the solvent, and the intensity is further deteriorated after high-temperature storage. In the state of a printed material, the strength is further reduced, and the deterioration after long-term storage is remarkable.
  • the ink composition of Comparative Example 4 had a certain effect of improving the fluorescence emission intensity compared to Comparative Example 3 by adsorbing the organic fluorescent dye on the surface of the inorganic particles. Compared with those of the printed matter, the printed matter is remarkably inferior, and particularly the printed matter has remarkably poor long-term storage characteristics.
  • the fluorescence emission intensity of the printed matter after heat treatment was initially measured after storage for 6 months indoors and after storage for 3 months outdoors using a fluorescence spectrophotometer (“FP750” manufactured by JASCO Corporation). It is shown as a relative value with the initial light emission intensity of Example 5 being 100%.
  • Example 5 the printed matter of Example 5 in which the crystallinity of the resin was 0.1 or more by the heat treatment was stored under severe storage conditions of 6 months at room temperature and 3 months at outdoor storage.
  • the decrease in the emission intensity was considerably suppressed, and it was found that the light resistance and weather resistance were further increased.
  • a dye that is substantially invisible or difficult to recognize in the visible light region and emits light when excited by ultraviolet rays (trade name “CD335” manufactured by Rieder de Haan, Inc., excitation wavelength: 365 nm, emission wavelength: 615 nm), and the mixture was dispersed for 4 hours using a planetary ball mill to prepare an ultraviolet-excited ink composition containing the above-mentioned dye as particles having a particle size of 210 to 410 nm.
  • An ultraviolet-excited ink composition containing a pigment as particulate matter having a particle size of 120 to 23 Onm was prepared in the same manner as in Example 10 except that the dispersion treatment time by a planetary ball mill was changed to 8 hours.
  • An ultraviolet-excited ink composition containing a pigment as particulate matter having a particle diameter of 1000 to 160 Onm was prepared in the same manner as in Example 10 except that the dispersion treatment time by a planetary ball mill was changed to 1 hour.
  • Example 10 In 90 parts of methyl ethyl ketone (boiling point 80 ° C), 1.0 part of the same pigment used in Example 10 was dissolved, and an acrylic resin (trade name “Dyana” manufactured by Mitsubishi Rayon) was further used as a binder. One part BR-106 ”) was added, and the mixture was dissolved with good stirring and mixing to prepare an ultraviolet-excitation ink composition.
  • an acrylic resin trade name “Dyana” manufactured by Mitsubishi Rayon
  • An ultraviolet-excited ink composition was prepared in the same manner as in Example 10, except that the dispersion treatment time by a planetary ball mill was 0.5 hour. Measured by dynamic light scattering method The particle size of the dye thus obtained was 2,200 to 2,900 nm.
  • the ink compositions of Examples 10 to 12 and Comparative Examples 5 to 7 were: No sedimentation of the organic fluorescent dye was observed, but sedimentation of the organic fluorescent dye was clearly observed in the ink composition of Comparative Example 6. Further, the ink compositions of Examples 10 to 12 and Comparative Examples 5 to 7 were filled in urethane sponges having continuous pores and used as a stamp ink. The ink of Comparative Example 6 was urea of the ink occluding body. Invaded the sponge in the evening, making printing impossible. In addition, in the ink of Comparative Example 6, a lot of print blurring was observed, which is considered to be caused by sedimentation of the pigment.
  • the fluorescence emission intensity in the ink state was measured by the same method as described above, and the fluorescence emission intensity when a printed material was obtained. was measured by the following method. In each case, the fluorescence emission intensity was shown as a relative value with the initial emission intensity of Example 10 being 100%.
  • Each ink composition was used as a stamping ink and used to form a print layer on white paper.
  • the fluorescence intensity of this printed matter initially and after storage in a room for three months was measured with a fluorescence spectrophotometer (“FP750” manufactured by JASCO Corporation), and the initial light emission intensity of Example 10 was measured. The relative values are shown as 100%.
  • Table 5 The fluorescence intensity of this printed matter initially and after storage in a room for three months was measured with a fluorescence spectrophotometer (“FP750” manufactured by JASCO Corporation), and the initial light emission intensity of Example 10 was measured. The relative values are shown as 100%. Table 5
  • the ink composition of Comparative Example 6 has a low initial fluorescence emission intensity because the organic fluorescent dye is completely dissolved in the solvent, and the intensity is more deteriorated after storage at a high temperature. Remarkable. Furthermore, although the ink composition of Comparative Example 8 caused the organic fluorescent dye to be adsorbed on the surface of the inorganic particles, the ink composition of Comparative Example 6 exhibited a certain effect of improving the fluorescence emission intensity as compared with Comparative Example 6, but the present invention Compared with those of the printed matter, the printed matter is remarkably inferior, and the printed matter has remarkably poor long-term storage characteristics.
  • an organic fluorescent dye that is substantially invisible or difficult to recognize in the visible light region and emits light in the visible light region when excited by ultraviolet light is used as bulk particles.
  • the presence of the mark allows the desired mark to be printed on the article without damaging its appearance, and allows the printed mark to be detected with high sensitivity over a long period of time, and is safe for the human body. It is possible to provide an ultraviolet-excitation type fluorescent composition, an ink composition, and a printed material thereof, which are not subject to any restrictions on the use environment.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Inks, Pencil-Leads, Or Crayons (AREA)
  • Ink Jet (AREA)

Abstract

A fluorescent composition with excellent light resistance comprising a base material and a particulate organic fluorescent dye which has a particle diameter of 10 to 2,000 nm and is excited by ultraviolet to emit a light in the visible region; and an ink composition comprising this fluorescent composition and a solvent. With this ink composition, a desired mark can be printed on an article without impairing its appearance. The printed mark can be detected with high sensitivity over long. Furthermore, this ink composition is safe for the human body, and there are no particular limitations on the environment in which the composition is used.

Description

明 細 書  Specification
蛍光組成物、 インク組成物および印刷物 技術分野  Fluorescent composition, ink composition and printed matter
本発明は、 紫外線により励起されて可視光領域に発光中心を有する光を発する 有機蛍光色素、 特に可視光領域で実質的に不可視または認識困難である有機蛍光 色素を含む蛍光組成物、 そのような有機蛍光色素を含み、 マーカーペンや、 ドッ トインパクト型プリン夕、 スタンプ型プリン夕、 インクジェットプリン夕などに よる印刷に用いられる紫外線励起型インク組成物と、 そのインキ組成物を用いて 作成した印刷物とに関する。  The present invention relates to an organic fluorescent dye that emits light having an emission center in the visible light region when excited by ultraviolet light, and in particular, a fluorescent composition containing an organic fluorescent dye that is substantially invisible or difficult to recognize in the visible light region, An ultraviolet-excited ink composition that contains an organic fluorescent dye and is used for printing with a marker pen, dot-impact pudding, stamp-type pudding, ink-jet pudding, etc., and printed matter created using the ink composition And about.
背景技術  Background art
近年、 物品に関する製造業者、 商品名などの情報を、 バーコードや一定の文字 や数値などで表示し、 バーコ一ドリーダゃ 0. C R等の光学的検出法で読み取るこ とによって、 商品の売り上げ集計や、 流通の分析などに広く利用されている。 最近では、 このようなバーコードや O C Rシステムは、 商品に利用されるだけ ではなく、 このシステムはファイル管理などにも応用され、 たとえば、 コード管 理による区分けにより物品を分配するシステムが郵便物などの配送に応用されて いる。 さらに、 銀行等においては、 帳票類に文字や数値の情報を印字し、 この情 報を利用して仕分け ·管理するシステムも導入されている。  In recent years, information such as the manufacturer and product name of goods has been displayed as barcodes and certain characters and numerical values, etc., and read by optical detection methods such as barcode readers. It is widely used for distribution analysis. Recently, such barcodes and OCR systems are used not only for products, but also for file management. For example, systems that distribute items by code management, such as mail items, are used. It has been applied to the delivery of goods. In addition, banks and others have introduced a system that prints character and numerical information on forms and uses this information to sort and manage the information.
バーコード印刷法には、 接触印刷法と非接触印刷法がある。 このうち、 接触印 刷法にはマーカーペンやバーコードライタを使用する方法があり、 また非接触印 刷法にはインクジェット印刷法がある。 中でも、 インクジェット印刷法は、 ノズ ルを介してィンク組成物を印刷対象面に射出して印字を行うものであり、 非接触 印刷法なので不均一な形状面、 たとえば、 プラスチックシート .袋 -瓶やダンボ —ル面などに印刷するのに適している。  Bar code printing includes contact printing and non-contact printing. Among them, the contact printing method includes a method using a marker pen and a bar code writer, and the non-contact printing method includes an ink jet printing method. In particular, the ink jet printing method is a method in which an ink composition is injected onto a surface to be printed through a nozzle to perform printing.Since a non-contact printing method is used, a non-uniform shape surface, such as a plastic sheet. Suitable for printing on cardboard surfaces.
インクジェット印刷法に用いるインク組成物としては、 (1 ) 長期間貯蔵して も相分離や沈殿が起こらず安定で、 (2 ) ノズルを目詰まりさせることなく通過 し、 (3 ) インク組成物と印刷面との付着性が良好で、 (4 ) インク組成物は印 刷面で、 すばやく乾燥し、 しかも (5 ) 乾燥後の印刷物は印刷面との密着性にす ぐれ、 かつ (6 ) 耐候性、 耐久性が高くなければならない。 また、 インクジエツ ト用インク組成物は、 (7 ) インクジェット用プリン夕による印字制御ができる ように、 電荷制御されている必要があるという、 他のインク組成物では要求され ないィンクジエツト用ィンク組成物特有の性質を有していなければならない。 ところで、 このようなインクジェット印刷法を含め、 バーコードの印刷には、 ( a ) 白地に黒色等のバーコードを印刷する方法、 (b ) 3 0 0〜4 0 0 nmの 紫外線で励起されて青色、 緑色または赤色の可視光を発光する有機蛍光色素を含 むィンク組成物を印刷する方法などが、 利用または提案されている。 The ink compositions used in the ink jet printing method include (1) stable without long-term storage without phase separation or sedimentation, (2) passing without clogging nozzles, and (3) ink composition. Good adhesion to the printing surface; (4) the ink composition dries quickly on the printing surface; and (5) the printed matter after drying has excellent adhesion to the printing surface, and (6) weather resistance Sex and durability must be high. Also, Inkjets (7) The ink composition for ink jet printing needs to be charge-controlled so that printing can be controlled by the ink jet printer, which is a characteristic characteristic of the ink composition for ink jetting, which is not required for other ink compositions. Must have. By the way, bar code printing including such an ink jet printing method includes (a) a method of printing a bar code such as black on a white background, and (b) a method of being excited by ultraviolet rays of 300 to 400 nm. A method of printing an ink composition containing an organic fluorescent dye that emits blue, green or red visible light has been used or proposed.
白地に黒色等のバーコードを印刷する方法 (a ) は、 バ一コードと下地との反 射率の違いを利用して情報を読み取るため、 物品などに汚れが生じた場合、 読み 取りが極端に困難になるという欠点があり、 また可視光領域の反射率を利用する ため、 必然的に物品の外観を損ねてしまう欠点がある。 また O C Rを使用しての 読み取りシステムにおいても青色や黒色等で文字情報を印刷することがあるため、 必然的に物品の外観を損ねることとなる。  In the method of printing a bar code such as black on a white background (a), the information is read using the difference in reflectance between the bar code and the base. However, there is a disadvantage that the appearance of the article is inevitably deteriorated because the reflectance in the visible light region is used. Further, even in a reading system using an OCR, character information may be printed in blue, black, or the like, which inevitably impairs the appearance of the article.
このような白黒等のバーコードの改良として、 紫外線で励起されて可視光を発 光する有機蛍光色素を用いたインクを、 バーコードに利用する方法 (b ) が提案 されている。 このような有機蛍光色素を用いたインクによる印刷物は、 可視光領 域において実質的に不可視または認識困難であるため、 物品の外観を損ねること なく印刷できる利点があり、 また機械による読み取りが可能であると同時に、 紫 外線照射時の発光領域が可視光領域のため、 印字型などの存在を目視により認識 できる利点もあり、 白黒バーコードに代わるものとして、 注目されている。 しかしながら、 上記従来のインク組成物を利用する方式では、 用いる有機蛍光 色素が本質的に分解しやすい性質があって、 耐光性ゃ耐候性に劣り、 インク状態 や印刷物の状態での発光強度が経時的に低下する問題があった。 すなわち、 上記 従来のインクは、 調製した当初には高い発光強度を示すものであっても、 高温 - 高湿における保存下では、 発光強度が著しく低下する傾向があった。 そこで、 こ のような問題を解決するため、 インク中に種々の添加剤を加えたり、 シリカなど の無機質粒子やアクリルなどの有機微粒子の表面に溶解した上記の有機蛍光色素 を吸着させることにより、 耐候性を改善することが提案されている。  As a method for improving such barcodes such as black and white, a method (b) in which an ink using an organic fluorescent dye which emits visible light when excited by ultraviolet rays is used for a barcode has been proposed. Printed matter using such an organic fluorescent dye-based ink is practically invisible or difficult to recognize in the visible light region, and thus has the advantage of being able to print without impairing the appearance of the article, and is readable by a machine. At the same time, it has the advantage of being able to visually recognize the presence of print-types, etc., because the light-emitting area when irradiating ultraviolet light is in the visible light area, and is attracting attention as an alternative to black-and-white barcodes. However, in the method using the above-mentioned conventional ink composition, the organic fluorescent dye to be used is inherently easily decomposed, and has poor light resistance and poor weather resistance. There was a problem that it declined. That is, the above-mentioned conventional ink tends to remarkably decrease in luminous intensity when stored at high temperature and high humidity even if it shows high luminous intensity at the beginning of preparation. Therefore, in order to solve such a problem, various additives are added to the ink, or the above-mentioned organic fluorescent dye dissolved on the surface of inorganic particles such as silica or organic fine particles such as acryl is adsorbed. It has been proposed to improve weather resistance.
ところが、 上記のような添加剤や粒子を利用する方法は、 インク状態での保存 性の改善には効果があつても、 このインクを用いて基材に印刷して印刷物とした 場合に、 この印刷物を室温中に放置するだけで発光強度が低下することがわかつ た。 つまり、 印字直後には高い発光強度を示す印刷物でも、 長期間の保存後には 励起光を照射しても発光が確認できなくなったり、 発光強度が不足し、 機械によ る読み取りが不可能となることが判明した。 このため、 上記の有機蛍光色素を利 用する方式は、 使用条件が著しく限定される問題があった。 However, the method of using additives and particles as described above requires storage in the ink state. It was found that, although effective in improving the printability, when the printed material was printed using this ink on a substrate, the luminescence intensity was reduced only by leaving the printed material at room temperature. In other words, even if the printed matter shows a high luminous intensity immediately after printing, after long-term storage, luminescence cannot be confirmed even if irradiated with excitation light, or the luminous intensity is insufficient, making it impossible to read by a machine. It has been found. For this reason, the method using the above-mentioned organic fluorescent dye has a problem that the conditions of use are extremely limited.
また、 上記のインクを調製する際には、 通常、 メチルェチルケトンゃメチルイ ソブチルケトンなどのケトン系有機溶媒中に有機蛍光色素を溶解させるが、 ドッ トインパクト型プリン夕ゃスタンプ型プリン夕でこの様なィンクを使用する場合、 この様な溶剤は、 インクを吸蔵するインク吸蔵体のウレタンやポリアミド樹脂を 侵し、 インク吸蔵体の耐久性が著しく低下する問題があった。 さらに、 インクジ エツ卜プリン夕などのプリン夕で印刷する場合、 上記溶媒の蒸気は人体に対して 有害であるので、 オフィス内での使用が困難となるなど、 使用環境によってその 使用は著しく制限を受けるという問題もあった。  In preparing the above ink, an organic fluorescent dye is usually dissolved in a ketone-based organic solvent such as methyl ethyl ketone / methyl isobutyl ketone. When such an ink is used, there is a problem that such a solvent invades the urethane or polyamide resin of the ink occluding body for occluding the ink, and significantly reduces the durability of the ink occluding body. In addition, when printing with a printer such as an ink jet printer, the use of the solvent is extremely harmful to the human body, making it extremely difficult to use it in offices. There was also a problem of receiving.
発明の開示  Disclosure of the invention
本発明の目的は、 物品上に印刷しても物品の外観を損ねることがなく、 しかも 印刷された印刷物を長期間にわたり高感度で検出でき、 そのうえィンク吸蔵体を 侵すことなく、 さらに人体に対して安全であって使用環境になんら制限を受ける ことのない紫外線励起型インク組成物、 そのようなィンク組成物に用いる蛍光組 成物、 およびそのようなインク組成物により ドット状、 薄膜状または厚膜状に印 刷された印刷物または蛍光組成物を提供することである。  An object of the present invention is to print on a product without impairing the appearance of the product, and to detect the printed product with high sensitivity over a long period of time, and furthermore, without affecting the ink occlusion material, UV-excitable ink composition that is safe and does not impose any restrictions on the use environment, a fluorescent composition used for such an ink composition, and a dot-like, thin-film, or thick An object of the present invention is to provide a printed matter or a fluorescent composition printed in a film form.
本発明は、 上記目的を達成するために、  The present invention, in order to achieve the above object,
母材と、 紫外線で励起されて可視光領域で発光する有機蛍光色素とを含有して なる蛍光組成物において、 該有機蛍光色素が粒状である蛍光組成物、  A fluorescent composition comprising a base material and an organic fluorescent dye which emits light in the visible light region when excited by ultraviolet light, wherein the organic fluorescent dye is granular;
樹脂と、 紫外線で励起されて可視光領域で発光する有機蛍光色素と、 溶媒とを 含んでなるインク組成物において、 該有機蛍光色素が、 粒径 1 0〜2 , 0 0 O n mの粒状であることを特徴とするィンク組成物、  In an ink composition comprising a resin, an organic fluorescent dye which is excited by ultraviolet light and emits light in a visible light region, and a solvent, the organic fluorescent dye is in the form of particles having a particle size of 10 to 200 nm. An ink composition,
および  and
物品上に、 紫外線で励起されて可視光領域で発光する有機蛍光色素を含有する 印刷層を有する印刷物において、 該有機蛍光色素が粒径 1 0〜2, 0 0 0 nmの 粒状であることを特徴とする印刷物 Contains an organic fluorescent dye that emits in the visible region when excited by ultraviolet light A printed material having a printed layer, wherein the organic fluorescent dye is in the form of particles having a particle size of 10 to 2,000 nm.
を提供する。 I will provide a.
発明を実施するための形態  BEST MODE FOR CARRYING OUT THE INVENTION
本発明で用いる有機蛍光色素は、 紫外線 (波長 4 0 0 nm未満) により励起さ れて可視光領域 (波長 4 0 0〜7 0 0 nm) に発光中心を有する光を発する色素 であり、 特に実質的に不可視または認識困難な色素である。 その発光色は限定さ れないが、 赤色 (波長; 6 0 O nm付近、 より好ましくは 6 1 5 ± 2 0 nm) の可視光を発光するものが、 検出性にすぐれているため、 とくに好ましく用いら れる。  The organic fluorescent dye used in the present invention is a dye that emits light having an emission center in a visible light region (wavelength 400 to 700 nm) when excited by ultraviolet light (wavelength less than 400 nm). It is a dye that is substantially invisible or difficult to recognize. Although the emission color is not limited, those emitting red (wavelength: around 60 O nm, more preferably 6 15 ± 20 nm) visible light are particularly preferable because of their excellent detectability. Used.
これは、 発光する可視光の検出に際し、 光電変換素子として安価で入手が容易 なシリコーンフォトダイオードを使用すると、 可視光の受光感度が短波長側より 長波長側で高くなるため、 赤色の可視光を発光する色素によると十分な検出感度 が得られやすいからである。 また、 一般に使用される白紙には蛍光増白剤が添加 されており、 紫外線を照射すると青く発光する場合がある。 この蛍光増白剤が添 加された白紙上に印刷した場合、 赤色で発光する有機蛍光色素を使用したものは、 白紙に添加されている蛍光増白剤が発光してもその波長が有機蛍光色素の発光波 長と離れているため、 上記色素の発光を容易に検出できる。  This is because the use of inexpensive and readily available silicone photodiodes as photoelectric conversion elements for detecting visible visible light increases the visible light reception sensitivity at longer wavelengths than at shorter wavelengths. This is because sufficient detection sensitivity can be easily obtained with a dye that emits light. In addition, fluorescent whitening agents are added to commonly used white paper, and it may emit blue light when irradiated with ultraviolet light. When printed on white paper to which this fluorescent whitening agent has been added, organic fluorescent dyes that emit red light will not emit organic fluorescent light even if the fluorescent whitening agent added to the white paper emits light. Since it is far from the emission wavelength of the dye, the emission of the dye can be easily detected.
このように、 本発明で用いる有機蛍光色素には、 可視光領域に吸収を持たず、 従って非励起状態では可視光領域で不可視であり、 紫外線により励起されて 6 0 0 nm付近の長波長域に発光中心波長を有する赤色発光の有機蛍光色素が好まし く用いられるが、 その代表的なものとしては、 ユーロピウムやサマリウムなどの 希土類元素を発光中心とし、 これに 7Γ電子を多数有する配位子を対イオンとした 金属錯体が挙げられる。  As described above, the organic fluorescent dye used in the present invention has no absorption in the visible light region, and therefore is invisible in the visible light region in a non-excited state, and is excited by ultraviolet light to have a long wavelength region near 600 nm. A red-emitting organic fluorescent dye having an emission center wavelength is preferably used. A typical example is a ligand having a rare-earth element such as europium or samarium as an emission center and having a large number of 7Γ electrons. And a metal complex in which is a counter ion.
このうち、 発光量の大きなユーロピウム化合物が最も好ましい。 具体的には、 Among them, a europium compound having a large light emission amount is most preferable. In particular,
4 0 0〜7 0 0 nmの可視光領域に吸収を持たず、 したがって可視光領域で実質 的に不可視であって、 かつ紫外線により励起されて 6 1 5 ± 2 0 n mに発光中 心波長を有するユーロピウムを含み、 これにテノィルトリフルォロアセトン、 ナ フトイルトリフルォロアセトン、 ベンゾィルトリフルォロアセトン、 メチルベン ゾィルトリフルォロアセトン、 フロイルトリフルォロアセトン、 ビバロイルトリ フルォロアセトン、 へキサフルォロアセチルアセトン、 トリフルォロアセチルァ セトン、 フルォロアセチルアセトン、 ヘプ夕フルォロブ夕ノィルビバロイルメ夕 ンなどを配位子とする金属錯体が挙げられ、 その中でも、 発光量の大きなテノィ ノレトリフルォロアセトン、 ナフトイルトリフルォロアセトン、 メチルベンゾィル トリフルォロアセトンを配位子としたユーロピウム化合物が好ましい。 It has no absorption in the visible light region of 400-700 nm, and is therefore substantially invisible in the visible light region, and has an emission center wavelength of 61.5 ± 20 nm when excited by ultraviolet light. Containing europium, which includes tenyl trifluoroacetone, naphthoyl trifluoroacetone, benzoyl trifluoroacetone, methylben Distribution of zyltrifluoroacetone, floyltrifluoroacetone, bivaloyltrifluoroacetone, hexafluoroacetylacetone, trifluoroacetylacetone, fluoroacetylacetone, heparofluorovyl, and nonylvivaroylm, etc. Examples of the metal complex include ligands, and among them, a europium compound having a ligand of tenoline trifluoroacetone, naphthoyl trifluoroacetone, or methylbenzoyl trifluoroacetone having a large emission amount is preferable.
このような有機蛍光色素は、 メルビーら J . Am. C h e m. S o c . 第 1 8 6卷、 第 5 1 1 7頁、 1 9 6 4年ゃ特公平 6— 1 5 2 6 9号公報に記載の方法で 合成できる。 また、 このような有機蛍光色素の市販品としては、 リーデルデハ一 ン社製 「ルミルックス C D 3 3 1」 、 「ルミルックス C D 3 3 2」 、 「ルミルツ クス C D 3 3 5」 、 三井化学社製 「E R— 1 2 0」 、 「E R— 1 2 2」 などが挙 げられる。  Such organic fluorescent dyes are disclosed in Melby et al., J. Am. Chem. Soc., Vol. 186, Vol. 5, pp. 117, 1964. It can be synthesized by the method described in the gazette. Commercially available products of such organic fluorescent dyes include "Rumilux CD331", "Rumilux CD332", "Rumilux CD335", manufactured by Riedel Dehan, and Mitsui Chemicals, Inc. "ER-120" and "ER-122".
しかしながら、 このような有機蛍光色素は、 既述のとおり、 耐光性ゃ耐候性な どの保存性に劣り、 インク状態、 印刷物や印刷された蛍光組成物 (以下、 単に 「印刷物」 と呼ぶ) の状態での発光強度が経時的に低下しやすく、 とくに印刷物 の状態での保存性が著しく悪い。 すなわち、 インク状態では、 色素と外気との間 にインク溶媒が介在し、 色素と外気との直接の接触が防がれるが、 印刷物の状態 では、 インク溶媒などの介在物が存在せず、 色素の分解性が印刷物の安定性に直 接影響する。 この現象は、 無機質や有機質の粒子表面に色素を吸着させたときで も同じであり、 上記粒子表面では色素がインク溶媒中での溶解状態と同様に分子 状態で存在しており、 このようなインクを用いて印刷物としても、 色素が外気と 直接接触するから、 分解による劣化を抑制できない。 また、 上記のインクを被印 刷物である紙、 布などに印刷する場合、 ある種の被印刷物は表面に種々の官能基 を持っており、 この官能基が印刷された有機蛍光色素の分解を促進して、 室温で 放置した場合でも発光出力の顕著な低下をもたらしやすい。  However, such organic fluorescent dyes are inferior in storage stability, such as light resistance and weather resistance, as described above, and are in an ink state, in a printed state or in a state of a printed fluorescent composition (hereinafter, simply referred to as “printed state”). The light emission intensity of the printed matter tends to decrease with time, and the storage stability of the printed matter is particularly poor. That is, in the ink state, the ink solvent intervenes between the dye and the outside air, thereby preventing direct contact between the dye and the outside air.However, in the printed state, there is no intervening substance such as the ink solvent, and the dye does not exist. The decomposability directly affects the stability of the printed matter. This phenomenon is the same when the dye is adsorbed on the surface of inorganic or organic particles.The dye is present on the surface of the particles in a molecular state as well as in a dissolved state in the ink solvent. Even in the case of printed matter using ink, deterioration due to decomposition cannot be suppressed because the dye comes into direct contact with the outside air. When the above ink is printed on paper, cloth, or the like, which is a printing material, a certain printing material has various functional groups on the surface, and the functional groups decompose the printed organic fluorescent dye. The light emission output tends to be remarkably reduced even when left at room temperature.
そこで、 本発明者らは、 有機蛍光色素の外気からの影響を低減するとともに、 印刷物とした場合に、 被印刷物の官能基による作用を低減して、 有機蛍光色素の 分解性を抑制する方法を、 種々検討した。 その結果、 有機蛍光色素をバルク状態 (粒状物状態) とすることで、 インク状態のみならず、 これを印刷物とした場合 でも、 長期保存安定性が改善され、 高い発光出力を維持できることを見い出した すなわち、 本発明では、 上記の有機蛍光色素を使用するにあたり、 母材と組み合 わせ、 好ましくは粒径 1 0〜2, 0 0 O nmの粒状物とする。 このような粒状物 とすることにより、 溶媒を用いたインク状態のみならず、 印刷物や発光組成物と した場合でも、 すぐれた保存安定性が得られる。 Accordingly, the present inventors have developed a method for reducing the influence of the organic fluorescent dye from the outside air and, when a printed material is obtained, reducing the effect of the functional group of the printed material to suppress the decomposability of the organic fluorescent dye. Various studies were made. As a result, by putting the organic fluorescent dye in the bulk state (granular state), not only the ink state but also the printed matter However, it has been found that the long-term storage stability is improved and a high luminous output can be maintained.In other words, in the present invention, when the above-mentioned organic fluorescent dye is used, it is combined with a base material, and preferably has a particle size of 10 to 2 , 00 O nm granular. By using such a granular material, excellent storage stability can be obtained not only in an ink state using a solvent but also in a printed matter or a luminescent composition.
本発明によりこのような保存安定性が得られる理由は、 以下のように考えられ る。 有機蛍光色素を粒径 1 0〜 2 , 0 0 O nmのバルク状態の粒状物とすると、 これを用いて印刷物や蛍光組成物を作成し、 上記色素が外気または被印刷物の官 能基と接触しても、 粒状物の表面のみが劣化するに止まり、 内部にはなお活性な 色素が存在し、 これにより長期保存後でも発光出力の低下が抑制されるものと思 われる。 また、 上記粒状物の形状とすることで、 従来のように溶解した有機蛍光 色素を用いる場合と比較し、 インクを吸収しやすい紙、 布などの被印刷物に印字 した場合でも、 被印刷物の内部にインクが浸透せず、 被印刷物の表面を隠蔽する 形態で存在する結果、 初期においてもすぐれた発光出力が得られるものと思われ る。  The reason that such storage stability can be obtained by the present invention is considered as follows. When the organic fluorescent dye is formed into bulk particles having a particle size of 10 to 200 nm, the printed dye or fluorescent composition is prepared using the dye, and the dye comes into contact with the outside air or the functional group of the substrate. However, it is considered that only the surface of the particulate matter is deteriorated, and the active dye is still present inside, so that the decrease in the luminescence output is suppressed even after long-term storage. In addition, by adopting the shape of the above-mentioned granular material, compared to the case where a dissolved organic fluorescent dye is used as in the past, even when printing is performed on a printing material such as paper or cloth which easily absorbs ink, the inside of the printing material is As a result, the ink does not penetrate into the surface of the printing material, and the surface of the printing material is concealed.
上記範囲の粒径がよいのは、 1 O nm未満の粒径では、 被印刷物の耐光性ゃ耐 候性などの保存性の向上効果が不十分かつ、 色素が被印刷物の内部に浸透し易い ためである。 また、 2, 0 0 O nmを越えると色素が印刷物から脱落したり、 見 る角度によっては有機蛍光色素が、 視認できる場合があるなどの問題を生じるた めである。  The reason why the particle size in the above range is good is that a particle size of less than 1 O nm does not sufficiently improve the light stability of the print material and the effect of preservability such as weather resistance, and the dye easily penetrates into the print material. That's why. In addition, when it exceeds 2,000 nm, the dyes fall off from the printed matter, and depending on the viewing angle, the organic fluorescent dyes may be visible, which causes problems.
なお、 色素を担持する母材としては、 ゾルゲル法などで調製した無機母材や、 樹脂母材があるが、 柔軟性や被印刷物との密着性の観点から、 樹脂母材が好まし い。  In addition, as a base material that carries a dye, there are an inorganic base material prepared by a sol-gel method or the like, and a resin base material. From the viewpoints of flexibility and adhesion to a printed material, a resin base material is preferable.
ドットインパクト式プリン夕やスタンプ式プリン夕用インクでは、 鮮明な印字 を得るため、 またインクジェットプリン夕で印字する場合にノズルなどの目詰ま りを防止するため、 インク組成物を均一な溶液とすることが望まれ、 そのため、 従来技術では、 有機蛍光色素を溶解しうる溶媒としてケトン系溶剤などが用いら れてきた。 しかし、 ケトン系溶媒では、 有機蛍光色素をバルク状態の粒状物にで きず、 上記色素が溶解し分子状態で外気と接触するため、 インク状態、 さらに印 刷物や蛍光組成物の状態で、 保存安定性、 即ち、 耐光性ゃ耐候性が著しく悪化す る。 また、 この様な溶媒はインクを吸蔵するインク吸蔵体、 つまり ドットインパ クト式プリン夕におけるポリアミ ド樹脂製布リボンや、 スタンプ式プリン夕にお ける発泡ウレタンを侵し、 その耐久性を著しく低下させる。 しかも、 この溶媒は、 人体に対して有害な蒸気を発生し、 オフィス内などでの使用に制限を受ける。 そこで、 本発明の 1つの好ましい態様においては、 水または/およびエタノー ルを 9 4重量%以上含有する溶媒が用いられるが、 環境性の点より、 水または/ およびエタノールを 9 5重量%以上含有する溶媒がより好ましく用いられる。 さ らに好ましくは、 水または/およびエタノールのみ、 最も好ましくは水のみであ る。 なお、 他の溶媒を 6重量%以下の割合で併用する場合、 他の溶媒としては有 機蛍光色素が不溶性であるものが好ましいが、 多少溶解するものであっても、 水 または/およびエタノールとの併用系で有機蛍光色素をバルク状態の粒状物とし て存在させうるものであれば、 とくに制限されることなく使用できる。 Dot-impact and stamp-type inks use a uniform solution of the ink composition in order to obtain clear printing and to prevent clogging of nozzles when printing with inkjet printing. Therefore, in the prior art, ketone solvents and the like have been used as solvents capable of dissolving the organic fluorescent dye. However, ketone-based solvents cannot convert organic fluorescent dyes into particulate matter in bulk, and the dyes dissolve and come into contact with the outside air in molecular form. In the state of printed matter or fluorescent composition, storage stability, that is, light resistance ゃ weather resistance deteriorates remarkably. In addition, such a solvent invades an ink occluding material that absorbs ink, that is, a cloth ribbon made of a polyamide resin in a dot impact pudding, and a foamed urethane in a stamp pudding, and significantly reduces the durability. . In addition, this solvent generates vapors harmful to the human body, and is restricted for use in offices and the like. Therefore, in one preferred embodiment of the present invention, a solvent containing 94% by weight or more of water or / and ethanol is used. However, from the viewpoint of environmental friendliness, 95% or more of water or / and ethanol is contained. Solvents are more preferably used. More preferably, it is water or / and ethanol only, most preferably water only. When another solvent is used in a proportion of 6% by weight or less, the other solvent is preferably one in which the organic fluorescent dye is insoluble, but even if it is slightly soluble, it is mixed with water or / and ethanol. Any combination of these can be used without any particular limitation as long as the organic fluorescent dye can be present as particulate matter in a bulk state.
水および/またはエタノールを溶媒として用いる場合、 母材としては、 有機蛍 光色素との反応性が低く、 印字性や印刷層の耐久性を向上させる樹脂が好ましく、 通常は上記溶媒に溶解する樹脂が用いられるが、 場合により乳化分散するタイプ のものを用いてもよい。 そのような樹脂の具体例には、 ポリビニルアルコール、 フエノール系樹脂、 ポリエステル系樹脂、 アクリル系樹脂、 セルロース系樹脂、 ポリアミ ド、 マレイン樹脂などが含まれる。 これらの中でも、 上記本発明の溶媒 に溶解し、 かつ有機蛍光色素の分散効果にすぐれるポリビニルアルコールが好ま しく用いられる。 母材樹脂の使用量は、 その種類にもよるが、 有機蛍光色素 1 0 0重量部に対し、 通常 5 0〜1 0 0 0 0 0重量部、 好ましくは 1 0 0〜1 0 0 0 0 0重量部、 より好ましくは 2 0 0〜 3 0 0 0重量部、 特に 5 0 0〜 2 0 0 0重 量部である。  When water and / or ethanol is used as a solvent, the base material is preferably a resin having low reactivity with an organic fluorescent dye and improving printability and durability of a printed layer, and is usually a resin soluble in the above solvent. However, a type of emulsifying and dispersing may be used in some cases. Specific examples of such resins include polyvinyl alcohol, phenolic resins, polyester resins, acrylic resins, cellulosic resins, polyamides, and maleic resins. Among them, polyvinyl alcohol which is dissolved in the above-mentioned solvent of the present invention and which has an excellent effect of dispersing the organic fluorescent dye is preferably used. The amount of the base resin used depends on the type thereof, but is usually 50 to 1000 parts by weight, preferably 100 to 100 parts by weight, based on 100 parts by weight of the organic fluorescent dye. 0 parts by weight, more preferably 200 to 300 parts by weight, particularly 500 to 2000 parts by weight.
また、 水および/またはエタノールを溶媒として用いる場合、 母材としての樹 脂は、 酸素透過係数が 1 X 1 0— 1 9 (m2 · S— 1 · P a 1 ) 以下の樹脂を少なく とも 1種含有するのがとりわけ好ましい。 。 このような低酸素透過性の樹脂を用 いると、 この樹脂で前記の有機蛍光色素が覆われることになり、 印刷層中で色素 が空気中の酸素によって酸化劣化されるのを効果的に防止できる。 酸化防止剤に は通常キノン類が使用されるが、 印刷物のように絶えず空気に晒されるものでは、 キノン類よりも上記の低酸素透過性の樹脂を使用した方が、 有機蛍光色素の酸ィ匕 防止により有効である。 In the case of using water and / or ethanol as solvent, tree fat as base material, even the oxygen permeability coefficient of 1 X 1 0- 1 9 (m 2 · S- 1 · P a 1) less the following resin It is particularly preferred to contain one kind. . When such a low oxygen permeable resin is used, the organic fluorescent dye is covered with the resin, and the dye is effectively prevented from being oxidized and degraded by oxygen in the air in the print layer. it can. For antioxidants Usually, quinones are used.However, in the case of printed matter that is constantly exposed to the air, it is more effective to use the above-mentioned low oxygen permeable resin than the quinones to prevent the organic fluorescent dye from oxidizing. It is.
酸素透過係数が 1 X 10-19 (m2 - S"1 - Pa"1) 以下の樹脂としては、 た とえば、 ポリビニルアルコール樹脂、 ポリビニルアルコール系樹脂 (ビニルアル コール一酢酸ビニル共重合体など) 、 ポリビニル系樹脂、 セルロース系樹脂、 ポ リエ一テル系樹脂、 ポリエステル系樹脂、 ポリイミ ド系樹脂、 ポリアミ ド系樹脂 などがあり、 これらは単独で、 または 2種以上の混合物として用いられる。 溶媒への溶解性、 インクの安定性、 有機蛍光色素の分散性などを考慮すると、 ポリビニルアルコール樹脂またはポリビニルアルコール系樹^ [が最も好ましい。 酸素透過係数は、 ポリビニルアルコール系樹脂のけん化度に依存するため、 けん 化度を調整することで、 目的の酸素透過係数の樹脂を容易に得ることができる。 一般に、 けん化度が 0. 2以上のポリビニルアルコール系樹脂は、 酸素透過係数 が I X 10— 19 (m2 · S— 1 · Pa— 1) 以下となると同時に、 水系溶媒への溶解 性が極めてよく、 インクジェットインクに適用する場合、 望ましい。 Oxygen permeability coefficient 1 X 10- 19 The (m 2 - - S "1 Pa" 1) The following resin, For example other, polyvinyl alcohol resins, polyvinyl alcohol resins (Biniruaru call one vinyl acetate copolymer, etc.) , A polyvinyl resin, a cellulose resin, a polyester resin, a polyester resin, a polyimide resin, a polyamide resin, and the like, and these are used alone or as a mixture of two or more. Considering the solubility in a solvent, the stability of the ink, the dispersibility of the organic fluorescent dye, and the like, a polyvinyl alcohol resin or a polyvinyl alcohol resin is most preferable. Since the oxygen permeability coefficient depends on the degree of saponification of the polyvinyl alcohol-based resin, a resin having a desired oxygen permeability coefficient can be easily obtained by adjusting the degree of saponification. Generally, the saponification degree of 0.2 or more polyvinyl alcohol resin, and at the same time the oxygen permeability coefficient is IX 10- 19 (m 2 · S- 1 · Pa- 1) below, soluble in an aqueous solvent is very well It is desirable when applied to inkjet ink.
なお、 酸素透過係数が 1 X 10_19 (m2 · S— 1 · Pa"1) 以下の樹脂ととも に、 酸素透過係数が 1 X 10— 19 (m2 · S— 1 · Pa"1) を超える、 たとえば、 ポリビニルブチラール、 ポリビニルピロリ ドン、 ビニルピロリ ドン一酢酸ビニル 共重合体などのポリビニル系樹脂を併用しても差し支えない。 また、 分子鎖中に 水酸基を多く含み、 水および/またはエタノールに可溶なウレタン樹脂、 ァクリ ル -ウレ夕ングラフト共重合体などのウレタン系樹脂は、 ぺットフイルムなどと の接着力向上にも効果があるため、 好ましく用いられる。 The oxygen permeability coefficient "in together with (1 following resins, the oxygen permeability coefficient of 1 X 10- 19 (m 2 · S- 1 · Pa 1 X 10_ 19 m 2 · S- 1 · Pa)" 1) For example, polyvinyl resins such as polyvinyl butyral, polyvinyl pyrrolidone, and vinyl pyrrolidone monovinyl acetate copolymer may be used in combination. In addition, urethane resins containing a large amount of hydroxyl groups in the molecular chain and soluble in water and / or ethanol, and urethane resins such as acryl-urethane graft copolymers are also effective in improving the adhesion to pet films. Therefore, it is preferably used.
本発明において、 酸素透過係数が 1 X 10— 19 (m2 · S— 1 · Pa-1) 以下の 樹脂の量は、 インク組成物の全重量を基準にして、 0. 05〜30重量%が好ま しく、 0. 5〜20重量%がより好ましく、 1~15重量%がさらに好ましい。 この範囲が好ましいのは、 ◦. 05重量%未満では酸素透過阻害作用が小さくな り、 30重量%を超えるとインクの粘度が高くなりすぎて、 ノズルが詰まりやす くなるなど、 取り扱いが困難になるためである。 In the present invention, the amount of oxygen permeability coefficient 1 X 10- 19 (m 2 · S- 1 · Pa -1) or less of the resin, based on the total weight of the ink composition, from 0.05 to 30 wt% Is preferably 0.5 to 20% by weight, more preferably 1 to 15% by weight. This range is preferred when less than 05% by weight reduces the oxygen permeation inhibitory effect, and when it exceeds 30% by weight, the viscosity of the ink becomes too high and nozzles are easily clogged. It is because it becomes.
なお、 本発明において、 樹脂の酸素透過係数は、 ASTM— D 1434-75 (プラスチックフィルムおよびシ一トにおけるガス透過係数の測定方法) にした がって、 測定評価することができる。 In the present invention, the oxygen permeability coefficient of the resin is determined according to ASTM-D1434-75. (Measurement method of gas permeability coefficient in plastic films and sheets) can be measured and evaluated.
本発明の別の好ましい態様において、 インク組成物の溶媒として、 沸点 20 0 °c以上の難揮発性媒体で、 有機蛍光色素が不溶性であるかまたはその溶解性が 低い媒体を用いる。 これにより上記色素を粒径 10〜2, O O Onmのバルク状 態の粒状物とすることが可能であり、 しかも人体に対して有害な蒸気を生じさせ る心配がなく、 オフィス内などでの使用においても使用環境になんら制限を受け ることのないインク組成物の調製を可能とするものである。  In another preferred embodiment of the present invention, as the solvent for the ink composition, a medium having a boiling point of 200 ° C. or higher and a medium in which the organic fluorescent dye is insoluble or has low solubility is used. This makes it possible to make the above pigment into bulk particulate matter with a particle size of 10 to 2, OO Onm, and there is no fear of generating harmful vapors to the human body, and it is used in offices and the like. This also makes it possible to prepare an ink composition that is not subject to any restrictions on the use environment.
本発明の別の好ましい態様において用いられる沸点 200°C以上の難揮発性溶 媒の中では、 環境性の観点から、 より揮発し難い沸点 250°C以上のものがより 好ましい。 そのような媒体の例を挙げると、 ォレイン酸、 リノール酸、 リノレン 酸等の常温で液状の高級脂肪酸、 ひまし油、 流動パラフィン、 マシン油、 ポリオ キシエチレン(POE)、 ポリオキシプロピレン(POP )、 アルキルエーテル、 P OPアルキルエーテル、 POEアルキルエーテル、 ポリエチレングリコール、 ポ リプロピレングリコール、 グリセリン、 ソルビ夕ン酸エステル、 ベンジルアルコ ール等である。 その他の媒体としては有機蛍光色素が不溶性であるものが好まし いが、 多少溶解するものであっても、 沸点 200°C以上の難揮発性媒体との併用 系で有機蛍光色素をバルク状態の粒状物として存在させうるものであれば、 とく に制限されることなく使用できる。  Among the hardly volatile solvents having a boiling point of 200 ° C or more used in another preferred embodiment of the present invention, those having a boiling point of 250 ° C or more, which is more difficult to volatilize, are more preferable from the viewpoint of environmental friendliness. Examples of such media include higher fatty acids that are liquid at room temperature, such as oleic acid, linoleic acid, and linolenic acid, castor oil, liquid paraffin, machine oil, polyoxyethylene (POE), polyoxypropylene (POP), and alkyl ethers. POP alkyl ether, POE alkyl ether, polyethylene glycol, polypropylene glycol, glycerin, sorbic acid ester, benzyl alcohol and the like. As the other medium, those in which the organic fluorescent dye is insoluble are preferable, but even if the organic fluorescent dye is slightly soluble, the organic fluorescent dye is used in a bulk state in a combined system with a non-volatile medium having a boiling point of 200 ° C or higher. As long as it can be present as a granular material, it can be used without any particular limitation.
この本発明の別の好ましい態様においては、 母材樹脂としては、 有機蛍光色素 との反応性が低く、 印字性や印刷層の耐久性を向上させるものが好ましく、 通常 は上記溶媒に溶解するものが用いられるが、 場合により乳化分散するタイプのも のを用いてもよい。 具体的には、 ロジン樹脂、 フエノール樹脂、 セラック樹脂、 ケトン樹脂、 アルキッド樹脂、 マレイン酸樹脂、 ロジン変性マレイン酸樹脂等が 挙げられる。 これらの中でも、 上記本発明の溶媒に溶解し、 かつ有機蛍光色素の 分散効果にすぐれるロジン樹脂、 ロジン変性マレイン酸樹脂等が好ましく用いら れる。  In another preferred embodiment of the present invention, as the base material resin, a resin having low reactivity with an organic fluorescent dye and improving printability and durability of a printed layer is preferable, and is usually soluble in the above-mentioned solvent. However, a type of emulsifying and dispersing in some cases may be used. Specific examples include a rosin resin, a phenol resin, a shellac resin, a ketone resin, an alkyd resin, a maleic resin, and a rosin-modified maleic resin. Among these, a rosin resin, a rosin-modified maleic resin, and the like, which dissolve in the above-mentioned solvent of the present invention and have an excellent effect of dispersing an organic fluorescent dye, are preferably used.
母材樹脂の使用量は、 その種類にもよるが、 有機蛍光色素 100重量部に対し、 通常 50〜: L 00000重量部、 好ましくは 100~100000重量部、 より 好ましくは 200〜3000重量部、 特に 500〜2000重量部である。 この 範囲が好ましいのは、 上記下限未満では、 印刷層の付着強度が弱く、 上記上限を 越えると印刷物や蛍光組成物の発光強度が弱くなるためである。 The amount of the base resin used depends on the type, but is usually 50 to: 100,000 parts by weight of L, preferably 100 to 100,000 parts by weight, per 100 parts by weight of the organic fluorescent dye. Preferably it is 200 to 3000 parts by weight, especially 500 to 2000 parts by weight. The reason why this range is preferable is that if it is less than the above lower limit, the adhesion strength of the printed layer is weak, and if it exceeds the above upper limit, the luminous intensity of the printed matter or the fluorescent composition becomes weak.
本発明においては、 上記溶媒に、 母材樹脂とともに、 有機蛍光色素を加えて、 ボールミル、 サンドミルなどの分散機により、 よく分散混合することにより、 上 記色素の粒状物の沈降がみられない、 均一なインク組成物とする。  In the present invention, the organic fluorescent dye is added to the solvent together with the base resin, and the resulting mixture is well dispersed and mixed by a dispersing machine such as a ball mill or a sand mill. A uniform ink composition is obtained.
有機蛍光色素の使用量は、 上記溶媒 100重量部に対して、 通常 0. 01〜3 0重量部、 好ましくは 0. 1〜10重量部である。 この範囲が好ましいのは、 0. 01重量部未満では発光強度が弱く、 30重量部を越えると濃度消光によって発 光強度が上がらなくなるためである。 また、 この有機蛍光色素の分散前の粒径は、 通常 10〜50 zmであるが、 分散後に粒径 10〜2, O O Onmの粒状物とな るように、 分散と同時に粉砕する。 分散後の粒径が 1 Onm未満では、 色素が溶 解状態に近くなり、 経時的に劣化が進行して発光出力を長期間維持させにくく、 2, 00 Onmを超えると、 粒状物の分散性や分散安定性が悪化し、 沈降が生じ たり、 均一に印字することが難しい。 このため、 分散後の粒径の下限としては、 とくに 50 nm以上が好ましく、 100 nm以上がより好ましい。 また、 分散後 の粒径の上限としては、 80 Onm以下が好ましく、 60 Onm以下がより好ま しく、 500 nm以下が更に好ましい。  The amount of the organic fluorescent dye to be used is generally 0.01 to 30 parts by weight, preferably 0.1 to 10 parts by weight, based on 100 parts by weight of the solvent. This range is preferable because if the amount is less than 0.01 part by weight, the light emission intensity is low, and if the amount exceeds 30 parts by weight, the light emission intensity cannot be increased due to concentration quenching. The particle size of the organic fluorescent dye before dispersion is usually 10 to 50 zm. However, the organic fluorescent dye is pulverized at the same time as the dispersion so as to have a particle size of 10 to 2, O O Onm after dispersion. If the particle size after dispersion is less than 1 Onm, the dye will be close to the dissolved state, and deterioration will progress over time, making it difficult to maintain the luminescence output for a long time.If it exceeds 2,000 Onm, the dispersibility of the particulate matter Or dispersion stability deteriorates, sedimentation occurs, and it is difficult to print uniformly. For this reason, the lower limit of the particle size after dispersion is particularly preferably 50 nm or more, and more preferably 100 nm or more. The upper limit of the particle size after dispersion is preferably 80 Onm or less, more preferably 60 Onm or less, and even more preferably 500 nm or less.
ィンク組成物中で分散状態を安定に維持できる色素の粒径の上限は、 主に溶媒 の粘度によって決まり、 水および/またはエタノールのように低粘度の溶媒を使 用する場合には、 800 nm以下が好ましい。  The upper limit of the particle size of the dye that can stably maintain the dispersed state in the ink composition is mainly determined by the viscosity of the solvent, and 800 nm when a low-viscosity solvent such as water and / or ethanol is used. The following is preferred.
なお、 本発明において、 このような粒状物からなる有機蛍光色素は、 分散後の 粒径が 10〜 2 , 000 nmの範囲にあればよく、 粒状物のすべてが均一な粒径 を有している必要はない。  In the present invention, the organic fluorescent dye composed of such particulate matter may have a particle diameter after dispersion within the range of 10 to 2,000 nm, and all of the particulate matter has a uniform particle diameter. You don't need to be.
本明細書において、 有機蛍光色素の粒径とは、 インク組成物を、 インク組成物 に含まれる溶媒と同じ組成の溶媒で約 1, 000倍に希釈し調製したサンプルを、 直径 12 mmのセルに入れ、 動的光散乱法によって、 室温中、 5mWの He— Ne レーザを使用し、 測定角度 90度、 積算回数 100回の条件で、 測定したときの 値である。 本発明のインク組成物には、 有機蛍光色素の分散性を向上するため、 上記の母 材樹脂とともに、 界面活性剤を含ませることもできる。 また、 有機蛍光色素の劣 化をさらに抑制するために、 添加剤として、 リン系有機ィ匕合物などを適量使用す ることもできる。 さらに、 インクジェットプリン夕用のインクとして使用する場 合には、 電荷調整剤や pH調整剤などを適量含ませることもできる。 In the present specification, the particle diameter of the organic fluorescent dye refers to a sample prepared by diluting the ink composition about 1,000 times with a solvent having the same composition as the solvent contained in the ink composition, and preparing a cell having a diameter of 12 mm. The values were measured by dynamic light scattering at room temperature, using a 5mW He-Ne laser, at a measurement angle of 90 degrees and a total of 100 integrations. In order to improve the dispersibility of the organic fluorescent dye, the ink composition of the present invention may contain a surfactant together with the base resin. In order to further suppress the deterioration of the organic fluorescent dye, an appropriate amount of a phosphorus-based organic compound or the like can be used as an additive. Further, when used as an ink for ink-jet printing, an appropriate amount of a charge adjusting agent, a pH adjusting agent, and the like can be contained.
例えば、 電荷調整剤として L iN03 などの L i塩、 KS CNなどの K塩、 下記の式 ( 1) で表されるホスホニゥム塩類、 アンモニゥム塩類などを添加する ことができる。 このうち、 ホスホニゥム塩類、 アンモニゥム塩類は、 インク組成 物の分散安定性が高いので、 より好ましい。 これらの電荷調節剤の添加量として は、 インク組成物の全重量を基準にして、 0. 05〜5重量%とするのが好まし く、 0. 1〜5重量%とするのがより好ましい。 この添加量範囲が好ましいのは、 0. 05重量%未満では電荷調節効果が不十分となり、 5重量%を超えると効果 が飽和するためである。 For example, it is possible to add L i salts such as L in0 3, K salts such as KS CN, Hosuhoniumu salts represented by the following formula (1), and the like Anmoniumu salt as a charge control agent. Of these, phosphonium salts and ammonium salts are more preferable because of high dispersion stability of the ink composition. The addition amount of these charge control agents is preferably from 0.05 to 5% by weight, more preferably from 0.1 to 5% by weight, based on the total weight of the ink composition. . This addition amount is preferred because the charge control effect becomes insufficient when the content is less than 0.05% by weight, and the effect is saturated when the content exceeds 5% by weight.
「 Ri 「 十  "Ri" ten
R 2— A— R 3 X" (1) I R 2 — A— R 3 X "(1) I
(式中、 Aは窒素原子または燐原子であり、 R 〜R4は、 同一または異なつ て、 それそれ水素原子または炭素数 1〜14の直鎖もしくは環状の炭化水素基で ある。 ただし、 1^〜114の少なくとも 2つは互いに結合して環を形成してもよ い。 ) Wherein A is a nitrogen atom or a phosphorus atom, and R to R 4 are the same or different and are each a hydrogen atom or a linear or cyclic hydrocarbon group having 1 to 14 carbon atoms. 1 ^ to 11 4 at least two of but it may also be bonded to each other to form a ring.)
また、 プラスチックシート ·袋'瓶などへ印字する場合は、 0. 05〜0. 5 重量%のフッ素系界面活性剤を添加するのが望ましい。 このようにフッ素系界面 活性剤を添加すると、 ドヅト径が、 添加しない場合に比べて約 40%程度に小さ くなる。 上記の添加量範囲が好ましいのは、 0. 05重量%未満ではドット径の 縮小効果が小さく、 0. 5重量%を超えるとインク組成物が泡立ちやすくなるた めである。  When printing on plastic sheets, bags, bottles, etc., it is desirable to add 0.05 to 0.5% by weight of a fluorinated surfactant. As described above, when the fluorine-based surfactant is added, the dot diameter is reduced to about 40% as compared with the case where no fluorine-based surfactant is added. The above-mentioned addition amount range is preferable because the effect of reducing the dot diameter is small when the content is less than 0.05% by weight, and the ink composition tends to foam when the content is more than 0.5% by weight.
本発明においては、 このようなインク組成物を使用して、 これをドットインパ クト式プリン夕、 スタンプ式プリン夕やインクジェットプリン夕、 またはスタン プ等によって帳票類、 葉書などの郵便物をはじめとする各種物品の表面に印刷し て、 バーコードなどの所望のマークからなる印刷層を形成し、 印刷物とする。 そ の際、 上記インク組成物は、 上記のような溶媒を含んでいるので、 人体に対し安 全であり、 使用環境になんら制限を受けず、 換気が十分でないオフィスなどでも 安全に作業できる。 In the present invention, using such an ink composition, the ink composition can be used for dot-impact printing, stamp printing, ink-jet printing, stamping, and other forms of mail such as forms and postcards. Printed on the surface of various goods Then, a printing layer made of a desired mark such as a bar code is formed to obtain a printed material. At that time, since the ink composition contains the above-mentioned solvent, it is safe for the human body, is not restricted in the use environment, and can be safely operated even in an office with insufficient ventilation.
このように作製される印刷物は、 印刷層中の有機蛍光色素が可視光領域で発光 および吸光成分を持たないため、 不可視または認識困難な印刷層として、 物品の 外観を損なうおそれが全くない。 しかも、 この印刷物に紫外線を照射すると、 印 刷層中の上記色素が励起されて可視光領域で発光するため、 これを目視にて認識 できるし、 光電変換素子としてシリコーンフォトダイオードなどの読み取りリー ダで検出すれば、 所望のマーク情報を高感度で読み取ることができる。 さらに、 本発明の最も大きな特徴点として、 上記の有機蛍光色素がィンク状態および印刷 層の状態で微細な粒状物として存在して、 その保存安定性、 即ち、 耐光性ゃ耐候 性にすぐれているため、 上記マーク情報を長期間にわたり高感度で検出すること ができる。  In the printed matter thus produced, the organic fluorescent dye in the printed layer does not have a light-emitting and light-absorbing component in the visible light region, and therefore has no risk of impairing the appearance of the article as a printed layer that is invisible or difficult to recognize. In addition, when the printed matter is irradiated with ultraviolet light, the dye in the print layer is excited and emits light in the visible light region, which can be visually recognized, and a reading reader such as a silicone photodiode as a photoelectric conversion element. , Desired mark information can be read with high sensitivity. Further, the most significant feature of the present invention is that the above-mentioned organic fluorescent dye exists as fine particles in an ink state and a printed layer state, and has excellent storage stability, that is, excellent light resistance and weather resistance. Therefore, the mark information can be detected with high sensitivity over a long period of time.
実施例  Example
つぎに、 実施例を記載して、 本発明をより具体的に説明する。 ただし、 本発明 は以下の実施例にのみ限定されるものではない。 なお、 以下、 「部」 とあるのは 「重量部」 を意味するものとする。  Next, the present invention will be described more specifically with reference to examples. However, the present invention is not limited only to the following examples. Hereinafter, “parts” means “parts by weight”.
実施例 1  Example 1
水 9 0部に、 母材樹脂としてポリビニルアルコール (クラレ社製 P VA) 5部 を溶解し、 これに、 可視光領域で実質的に不可視または認識困難であって、 かつ 紫外線によって励起されて発光する色素 (リーデルデハーン社製商品名 「C D 3 3 5」 、 励起波長: 3 6 5 nm、 発光波長: 6 1 5 nm) 0 . 5部を加え、 遊星 ボールミルにより 4時間分散処理して、 上記色素が粒径 2 1 0 - 4 1 0 nmの粒 状物として含まれる紫外線励起型インク組成物を調製した。  In 90 parts of water, 5 parts of polyvinyl alcohol (PVA made by Kuraray Co., Ltd.) is dissolved as a base resin, and it is practically invisible or difficult to recognize in the visible light range, and emits light when excited by ultraviolet rays. 0.5 parts of a dye to be dyed (trade name: “CD335” manufactured by Riedel de Haan, excitation wavelength: 365 nm, emission wavelength: 615 nm), dispersed by a planetary ball mill for 4 hours, An ultraviolet-excited ink composition containing the dye as a particulate having a particle size of 210 to 410 nm was prepared.
実施例 2  Example 2
遊星ボールミルによる分散処理時間を 8時間とした以外は、 実施例 1と同様に して、 色素が粒径 1 2 0〜2 3 O nmの粒状物として含まれる紫外線励起型イン ク組成物を調製した。 比較例 1 In the same manner as in Example 1 except that the dispersion treatment time by a planetary ball mill was set to 8 hours, an ultraviolet-excited ink composition containing a pigment as particulate matter having a particle size of 120 to 23 O nm was prepared. did. Comparative Example 1
メチルェチルケトン 9 0部に、 実施例 1で用いたので用いたのと同じ色素 0 . 5部を溶解し、 これにさらに母材樹脂としてアクリル系樹脂 (三菱レーヨン製 「ダイヤナール B R— 1 0 6」 ) 9 . 5部を加えて、 よく撹拌混合して溶解し、 紫外線励起型ィンク組成物を調製した。  In 90 parts of methyl ethyl ketone, 0.5 part of the same dye as used in Example 1 was dissolved, and an acrylic resin ("Dianal BR-1" manufactured by Mitsubishi Rayon Co., Ltd.) was further used as a base resin. 0 6 ”) 9.5 parts were added, mixed well with stirring, and dissolved to prepare an ultraviolet-excited ink composition.
比較例 2  Comparative Example 2
メチルェチルケトン 3部に実施例 1で用いたのと同じ色素 0 . 5部を溶解した。 つぎに、 この色素溶解液を、 水 7 7部に無機質粒子として平均粒径 1 0 O nmの シリカ粒子 1 0部、 母材樹脂としてポリビニルアルコール (クラレ社製 P VA) 9 . 5部を混合してなるスラリー中に、 配合し、 これをよく撹拌混合して、 紫外 線励起型ィンク組成物を調製した。  0.5 parts of the same dye used in Example 1 was dissolved in 3 parts of methyl ethyl ketone. Next, this dye solution was mixed with 77 parts of water, 10 parts of silica particles having an average particle diameter of 10 O nm as inorganic particles, and 9.5 parts of polyvinyl alcohol (Kuraray PVA) as a base material resin. The resulting slurry was blended and mixed well with stirring to prepare an ultraviolet-excited ink composition.
上記の実施例 1, 2および比較例 1、 2の各インク組成物を、 一昼夜静置した ところ、 実施例 1, 2および比較例 1, 2の各インク組成物はいずれも、 有機蛍 光色素の沈降が認められなかった。 この結果から、 実施例 1, 2および比較例 1, 2の各インク組成物は、 マーカ一ペンやインクジェット用インクとして使用可能 である。  When the ink compositions of Examples 1 and 2 and Comparative Examples 1 and 2 were allowed to stand for 24 hours, the ink compositions of Examples 1 and 2 and Comparative Examples 1 and 2 were all organic fluorescent dyes. No sedimentation was observed. From these results, each of the ink compositions of Examples 1 and 2 and Comparative Examples 1 and 2 can be used as a marker pen and ink for inkjet.
つぎに、 上記で使用可能である実施例 1, 2および比較例 1 , 2の各インク組 成物について、 下記の方法により、 インク状態および印刷物としたときの蛍光発 光強度を測定した。 これらの結果は、 表 1に示されるとおりであった。  Next, with respect to each of the ink compositions of Examples 1 and 2 and Comparative Examples 1 and 2 which can be used as described above, the ink state and the fluorescence emission intensity when the printed matter was obtained were measured by the following methods. These results were as shown in Table 1.
<ィンク状態での蛍光発光強度〉  <Fluorescence intensity in the ink state>
ィンク組成物の初期および高温保存後 ( 6 0 °Cの高温槽に 4 0 0日保存後) の 蛍光発光強度を、 蛍光分光光度計 (日本分光社製「F P 7 5 0」 ) により、 測定 し、 実施例 1の初期発光強度を 1 0 0 %とした相対値で示した。  The fluorescence emission intensity of the ink composition at the initial stage and after storage at high temperature (after storage in a high-temperature bath at 60 ° C for 400 days) was measured using a fluorescence spectrophotometer (“FP750” manufactured by JASCO Corporation). However, the values are shown as relative values with the initial light emission intensity of Example 1 being 100%.
ぐ印刷物の蛍光発光強度 >  Fluorescence intensity of printed matter>
インク組成物をマーカーペンにつめ、 これを用いて白色の紙上に印刷層を形成 した。 この印刷物について、 初期および室内に 3ヶ月保存後の蛍光発光強度を、 蛍光分光光度計 (日本分光社製「F P 7 5 0」 ) により、 測定し、 実施例 1の初 期発光強度を 1 0 0 %とした相対値で示した。 P T JP00 The ink composition was filled in a marker pen and used to form a print layer on white paper. The fluorescence intensity of this printed matter, initially and after storage in a room for three months, was measured with a fluorescence spectrophotometer (“FP750” manufactured by JASCO Corporation). The relative values are shown as 0%. PT JP00
14 表 1  14 Table 1
Figure imgf000016_0001
上記の表 1の結果から明らかなように、 実施例 1 , 2の両インク組成物は、 有 機蛍光色素をバルク状態の粒状物として存在させているため、 初期の蛍光発光強 度が高くなつているとともに、 高温保存後の上記強度の低下が抑えられており、 しかもこれを用いて印刷した印刷物についても、 長期保存後の上記強度の低下が 少なくなつており、 インク状態のみならず印刷物とした状態でも、 保存安定性に 格段にすぐれていることがわかる。
Figure imgf000016_0001
As is evident from the results in Table 1 above, both ink compositions of Examples 1 and 2 have the initial fluorescent emission intensity increased because the organic fluorescent dye is present as particulate matter in a bulk state. In addition, the decrease in strength after high-temperature storage is suppressed, and the printed matter printed using this is also less reduced in strength after long-term storage. It can be seen that the storage stability is remarkably excellent even in the state where it was used.
これに対し、 比較例 1のインク組成物は、 有機蛍光色素が溶媒に完全に溶解し ている状態で存在するため、 初期の蛍光発光強度が低く、 高温保存後には上記強 度がより劣化し、 また印刷物の状態とすると上記強度がさらに低くなるうえに、 長期保存後の劣化も著しい。 また、 比較例 2のインク組成物は、 無機質粒子表面 に有機蛍光色素を吸着させるようにしたことにより、 比較例 1に比べて、 蛍光発 光強度のある程度の改善効果はみられものの、 本発明のものに比べると、 格段に 劣っており、 とくに印刷物の長期保存特性に著しく劣っている。  In contrast, the ink composition of Comparative Example 1 had a low initial fluorescence emission intensity because the organic fluorescent dye was completely dissolved in the solvent, and the intensity deteriorated after high-temperature storage. In the state of a printed material, the strength is further reduced, and the deterioration after long-term storage is remarkable. In addition, the ink composition of Comparative Example 2 had a certain effect of improving the fluorescence emission intensity as compared with Comparative Example 1 by adsorbing the organic fluorescent dye on the surface of the inorganic particles. Compared with those of the printed matter, the printed matter is remarkably inferior, and particularly the printed matter has remarkably poor long-term storage characteristics.
実施例 3  Example 3
水 9 0部に、 酸素透過係数が 5 X 1 0 2 ° ( m 2 . S— 1 . P a 1 ) のポリビニ ルアルコール (クラレ社製 P VA) 5部を溶解し、 これに、 有機蛍光色素として リーデルデハーン社製商品名 「C D 3 3 5」 (励起波長: 3 6 5 nm、 発光波 長: 6 1 5 nm、 配位子:テノィルトリフルォロアセトン) 0 . 5部を加え、 遊 星ボールミルにより 4時間分散処理して、 上記色素が粒径 2 1 0〜4 1 O nmの 粒状物として含まれる紫外線励起型インク組成物を調製した。 なお、 このインク 組成物中、 上記有機蛍光色素は 0 . 5 2重量%、 上記樹脂 (ポリビニルアルコー ル) は 5 . 2 4重量%、 溶媒 (水のみ) は 9 4 . 2 4重量%であった。 実施例 4 Water 9 0 parts, oxygen permeability coefficient was dissolved polyvinyl alcohol (manufactured by Kuraray Co., Ltd. P VA) 5 parts of 5 X 1 0 2 ° (m 2. S- 1. P a 1), in which an organic fluorescent As a dye, Riederdehan product name "CD335" (excitation wavelength: 365 nm, emission wavelength: 615 nm, ligand: tenyl trifluoroacetone) 0.5 part was added. A dispersion treatment was performed for 4 hours using a planetary ball mill to prepare an ultraviolet-excited ink composition containing the above-described pigment as particulate matter having a particle size of 210 to 41 O nm. In the ink composition, the organic fluorescent dye was 0.52% by weight, the resin (polyvinyl alcohol) was 5.24% by weight, and the solvent (water only) was 94.24% by weight. Was. Example 4
酸素透過係数が 5 X 10— 2° (m2 · S-1 · P a— のポリビニルアルコール (クラレ社製 PVA) 5部に代えて、 酸素透過係数が 7 X 10— 22 (m2. S— 1 · Pa"1) のポリビニルアルコール (クラレ社製 PVA) 5部を使用した以外 は、 実施例 3と同様にして、 有機堂光色素が粒径 210〜 410 nmの粒状物と して含まれる紫外線励起型ィンク組成物を調製した。 Oxygen permeability coefficient in place of the 5 X 10- 2 ° (m 2 · S -1 · P a- polyvinyl alcohol (manufactured by Kuraray Co., Ltd. PVA) 5 parts, the oxygen permeability coefficient is 7 X 10- 22 (m 2. S — Except for using 5 parts of polyvinyl alcohol (Kuraray PVA) of 1 · Pa " 1 ), the organic dye was included as a granular material having a particle size of 210 to 410 nm in the same manner as in Example 3. An ultraviolet-excited ink composition was prepared.
実施例 5  Example 5
酸素透過係数が 5 X 10"20 (m2 · S— 1 · Pa— のポリビニルアルコール (クラレ社製 PVA) 5部に代えて、 酸素透過係数が 3 X 10— 23 (m2 - S" 1 · Pa"1) のポリビニルアルコール (クラレ社製 PVA) 5部を使用した以外 は、 実施例 3と同様にして、 有機蛍光色素が粒径 210〜410 nmの粒状物と して含まれる紫外線励起型インク組成物を調製した。 Oxygen permeability coefficient "instead of 20 (m 2 · S- 1 · Pa- polyvinyl alcohol (manufactured by Kuraray Co., Ltd. PVA) 5 parts, the oxygen permeability coefficient is 3 X 10- 23 (m 2 - S" 5 X 10 1 · Pa "1 polyvinyl alcohol) (except using Kuraray Co., Ltd. PVA) 5 parts, the same procedure as in example 3, ultraviolet excitation organic fluorescent dye is included as granules having a particle size of two hundred and ten to four hundred and ten nm A mold ink composition was prepared.
実施例 6  Example 6
遊星ボールミルによる分散処理時間を 8時間とした以外は、 実施例 3と同様に して、 有機蛍光色素が粒径 150〜25 Onmの粒状物として含まれる紫外線励 起型ィンク組成物を調製した。  An ultraviolet-excited ink composition containing an organic fluorescent dye as a particulate having a particle size of 150 to 25 Onm was prepared in the same manner as in Example 3 except that the dispersion treatment time by a planetary ball mill was changed to 8 hours.
実施例 Ί  Example Ί
遊星ボールミルによる分散処理時間を 16時間とした以外は、 実施例 3と同様 にして、 有機蛍光色素が粒径 80〜19 Onmの粒状物として含まれる紫外線励 起型ィンク組成物を調製した。  An ultraviolet-excited ink composition containing an organic fluorescent dye as granules having a particle size of 80 to 19 Onm was prepared in the same manner as in Example 3 except that the dispersion treatment time by a planetary ball mill was changed to 16 hours.
実施例 8  Example 8
酸素透過係数が 5 X 10— 2° (m2 · S— 1 · Pa— 1) のポリビニルアルコール (クラレ社製 PVA) 5部に代えて、 酸素透過係数が 4 X 10— 20 (m2. S一 1 - Pa'1) のポリオキシエチレン 5部を使用した以外は、 実施例 3と同様にし て、 有機蛍光色素が粒径 210-41 Onmの粒状物として含まれる紫外線励起 型インク組成物を調製した。 Instead of the polyvinyl alcohol (manufactured by Kuraray Co., Ltd. PVA) 5 parts of oxygen permeability coefficient 5 X 10- 2 ° (m 2 · S- 1 · Pa- 1), the oxygen permeability coefficient 4 X 10- 20 (m 2. S one 1 - Pa '1) except for using polyoxyethylene 5 parts, the same procedure as in example 3, ultraviolet excitation ink composition organic fluorescent dye is included as a particulate with a particle size 210-41 onm Was prepared.
実施例 9  Example 9
フッ素系界面活性剤としてスリ一ェム社製 「フロラ一ド FC430」 0. 1部 を添加した以外は、 実施例 3と同様にして、 紫外線励起型インク組成物を調製し た。 An ultraviolet-excited ink composition was prepared in the same manner as in Example 3, except that 0.1 part of "Fluorad FC430" manufactured by Sliem was added as a fluorinated surfactant. Was.
参考例 1  Reference example 1
酸素透過係数が 5 X 10_2° (m2 · S— 1 · P a- 1) のポリビニルアルコール (クラレ社製 PVA) 5部に代えて、 酸素透過係数が 3 X 10— 19 (m2 · S一 1 · Pa-1) のポリ酢酸ビニル (UCC社製) 5部を使用し、 かつエタノール 9 0部を使用した以外は、 実施例 3と同様にして、 有機蛍光色素が粒径 210〜4 10 nmの粒状物として含まれる紫外線励起型ィンク組成物を調製した。 Oxygen permeability coefficient of 5 X 10_ 2 ° (m 2 · S- 1 · P a - 1) of the polyvinyl alcohol in place of (Kuraray Co., Ltd. PVA) 5 parts, the oxygen permeability coefficient is 3 X 10- 19 (m 2 · except using polyvinyl acetate (UCC Co.) 5 parts of S one 1 · Pa -1), and ethanol was used 9 0 parts, the same procedure as in example 3, the organic fluorescent dye particle size 210 to An ultraviolet-excited ink composition contained as 410 nm granules was prepared.
参考例 2  Reference example 2
酸素透過係数が 5 x l O— 2° (m2 ' S— i ' Pa-1) のポリビニルアルコール (クラレ社製 PVA) 5部に代えて、 アクリル 'ウレ夕ングラフト共重合体 〔大 成化工社製 「3DR— 057」 、 固形分 35重量%、 酸素透過係数が 3 x 10— 18 (m2 · S— 1 · Pa"1) 〕 15部を使用した以外は、 実施例 3と同様にして、 有機蛍光色素が粒径 90〜: L 80 nmの粒状物として含まれる紫外線励起型ィン ク組成物を調製した。 Instead of 5 parts of polyvinyl alcohol (PVA manufactured by Kuraray Co., Ltd.) having an oxygen permeability coefficient of 5 xl O— 2 ° (m 2 'S—i'Pa -1 ), an acrylic urethane graft copolymer [Taiseika Kogyo Co., Ltd. Ltd. "3DR- 057", solid content 35 wt%, the oxygen permeability coefficient 3 x 10- 18 (m 2 · S- 1 · Pa "1) was repeated except for using 15 parts, the same procedure as in example 3 An ultraviolet-excited ink composition containing an organic fluorescent dye as particles having a particle size of 90 to 80 L was prepared.
参考例 3  Reference example 3
遊星ボールミルによる分散処理時間を 1時間とした以外は、 実施例 3と同様に して、 有機蛍光色素が粒径 900〜1, 40 Onmの粒状物として含まれる紫外 線励起型ィンク組成物を調製した。  In the same manner as in Example 3 except that the dispersion treatment time by a planetary ball mill was set to 1 hour, an ultraviolet-excited ink composition containing an organic fluorescent dye as particles having a particle size of 900 to 1,40 Onm was prepared. did.
比較例 3  Comparative Example 3
メチルェチルケトン 90部に、 実施例 3と同じ有機蛍光色素 0. 5部を溶解し、 これにァクリル系樹月旨 〔三菱レーヨン製「ダイヤナール BR— 106」 、 酸素透 過係数が 9 X 10"19 (m2 · S— 1 · Pa— 1) 〕 9. 5部を加え、 よく撹拌混合 して溶解し、 紫外線励起型インク組成物を調製した。 In 90 parts of methyl ethyl ketone, 0.5 part of the same organic fluorescent dye as in Example 3 was dissolved, and this was mixed with an acryl-based resin (“Dyanal BR-106” manufactured by Mitsubishi Rayon, with an oxygen transmission coefficient of 9X). 10 " 19 (m 2 · S- 1 · Pa- 1 )] 9.5 parts were added, mixed well by stirring and dissolved to prepare an ultraviolet-excitation ink composition.
比較例 4  Comparative Example 4
メチルェチルケトン 3部に実施例 3と同じ有機蛍光色素 0. 5部を溶解した。 この色素溶解液を、 水 77部に無機質粒子として平均粒径 100 nmのシリ力粒 子 10部と酸素透過係数が 5 X 10— 2° (m2 · S— 1 · P a"1) のポリビニルァ ルコール (クラレ社製 PVA) 9. 5部を混合してなるスラリー中に配合し、 よ く撹拌混合して、 紫外線励起型インク組成物を調製した。 上記の実施例 3〜 9、 参考例 1〜 3および比較例 3、 4の各インク組成物を、 1昼夜静置したところ、 実施例 3〜 9、 参考例 1 , 2および比較例 3, 4の各ィ ンク組成物では、 有機蛍光色素の沈降が認められなかったが、 参考例 3のインク 組成物では、 有機蛍光色素の沈降が明らかに認められた。 この結果から、 実施例 3〜9、 参考例 1, 2および比較例 3 , 4の各インク組成物は、 マーカーペンと して使用可能であるが、 参考例 3のインク組成物は、 上記用途への使用が不可能 であることがわかる。 但し、 この評価はマ一カーペンのような低粘度のインクを 必要とする用途についてのもので、 参考例 3の粒径のものでも、 実施例 1 0〜1 2のように高粘度で使用する用途では色素が沈降しないので、 実施例 1 0〜1 2 のような用途では使用可能である。 0.5 parts of the same organic fluorescent dye as in Example 3 was dissolved in 3 parts of methyl ethyl ketone. The dye solution, the average particle diameter 100 nm of silica force grain child 10 parts as inorganic particles 77 parts of water and oxygen permeability coefficient of 5 X 10- 2 ° of (m 2 · S- 1 · P a "1) Polyvinyl alcohol (PVA manufactured by Kuraray Co., Ltd.) was mixed in a slurry obtained by mixing 9.5 parts and mixed well by stirring to prepare an ultraviolet-excitation ink composition. When the ink compositions of Examples 3 to 9, Reference Examples 1 to 3 and Comparative Examples 3 and 4 were allowed to stand for one day and night, Examples 3 to 9, Reference Examples 1 and 2, and Comparative Examples 3 and 4 No sedimentation of the organic fluorescent dye was observed in each of the ink compositions described above, but sedimentation of the organic fluorescent dye was clearly observed in the ink composition of Reference Example 3. From these results, each of the ink compositions of Examples 3 to 9, Reference Examples 1 and 2, and Comparative Examples 3 and 4 can be used as a marker pen. It cannot be used for However, this evaluation is for applications requiring low-viscosity ink, such as a carpenter, and even with the particle size of Reference Example 3, use it at a high viscosity as in Examples 10 to 12. Since the pigment does not settle in the application, it can be used in applications such as Examples 10 to 12.
つぎに、 上記使用可能であった実施例 3〜 9、 参考例 1, 2および比較例 3 , 4の各インク組成物について、 上記と同様の方法により、 インク状態および印刷 物としたときの蛍光発光強度を測定した。 ただし、 印刷物の蛍光発光強度は、 初 期、 室内に 3ヶ月保存後および屋外に 1ヶ月保存後に測定し、 実施例 3の初期発 光強度を 1 0 0 %とした相対値で示した。 屋外 1ヶ月保存後の印刷物の蛍光発光 強度が 3 0 %以上であれば、 バーコードリーダにより読取ることができる。 これらの結果を、 表 2に示す。 Next, for each of the ink compositions of Examples 3 to 9, Reference Examples 1 and 2 and Comparative Examples 3 and 4 which could be used as described above, the state of ink and the fluorescence when the printed matter was obtained were obtained in the same manner as described above. The emission intensity was measured. However, the fluorescence emission intensity of the printed matter was measured initially, after storage for 3 months indoors, and after storage for 1 month outdoors, and expressed as a relative value with the initial emission intensity of Example 3 being 100%. If the fluorescence emission intensity of the printed matter after storage outdoors for one month is 30% or more, it can be read with a barcode reader. Table 2 shows the results.
表 2 Table 2
Figure imgf000020_0001
上記の表 2の結果から明らかなように、 実施例 3〜 9および参考例 1 , 2の各 インク組成物は、 粒径 1 0〜 8 0 O nmの有機蛍光色素がバルク状態の粒状物と して存在しているため、 初期の蛍光発光強度が高く、 かつ高温保存後の上記強度 の低下が小さい。 また、 これを用いて印刷した印刷物は、 室温保存後の蛍光発光 強度が実用レベル (3 0 %以上) にあり、 バーコードリーダによる読み取りが可 能である。 さらに、 酸素透過係数が 1 X 1 0— 1 9 (m2 · S— 1 · P a 以下の 樹脂を少なくとも 1種含有している実施例 3 〜 9の各ィンク組成物を使用した印 刷物は、 屋外保存後の発光強度も高く維持されている。 この結果からも、 本発明 のインク組成物はィンク状態のみならず印刷物とした状態でも、 屋外環境という 過酷な条件下でも耐光性および耐候性が高いことがわかる。
Figure imgf000020_0001
As is clear from the results in Table 2 above, each of the ink compositions of Examples 3 to 9 and Reference Examples 1 and 2 was characterized in that the organic fluorescent dye having a particle size of 10 to 80 nm was a particulate material in a bulk state. As a result, the initial fluorescence emission intensity is high, and the decrease in the intensity after storage at high temperatures is small. In addition, the printed matter printed using this has a fluorescence emission intensity after storage at room temperature at a practical level (30% or more), and can be read by a barcode reader. Furthermore, indicia oxygen permeability coefficient was used each Inku composition 1 X 1 0- 1 9 (m 2 · S- 1 · P example a containing at least one of the following resins 3-9 Surimono The results show that the ink composition of the present invention maintains light emission and weather resistance not only in an ink state but also in a printed state, and under the harsh conditions of an outdoor environment. It turns out that the property is high.
これに対し、 比較例 3のインク組成物は、 有機蛍光色素が溶媒に完全に溶解し ている状態で存在するため、 初期の蛍光発光強度が低く、 高温保存後には上記強 度がより劣化し、 また印刷物の状態とすると上記強度がさらに低くなるうえに、 長期保存後の劣化も著しい。 また、 比較例 4のインク組成物は、 無機質粒子表面 に有機蛍光色素を吸着させるようにしたことにより、 比較例 3に比べて、 蛍光発 光強度のある程度の改善効果はみられものの、 本発明のものに比べると、 格段に 劣っており、 とくに印刷物の長期保存特性に著しく劣っている。  In contrast, the ink composition of Comparative Example 3 has a low initial fluorescence emission intensity because the organic fluorescent dye is completely dissolved in the solvent, and the intensity is further deteriorated after high-temperature storage. In the state of a printed material, the strength is further reduced, and the deterioration after long-term storage is remarkable. In addition, the ink composition of Comparative Example 4 had a certain effect of improving the fluorescence emission intensity compared to Comparative Example 3 by adsorbing the organic fluorescent dye on the surface of the inorganic particles. Compared with those of the printed matter, the printed matter is remarkably inferior, and particularly the printed matter has remarkably poor long-term storage characteristics.
つぎに、 上記の実施例 5および参考例 1のインク組成物について、 これを用い て印刷した印刷物を熱処理したのちの屋内外での保存性を評価するため、 以下の ような熱処理試験を行った。 すなわち、 上記の両インク組成物をガラス板上に塗 布し、 乾燥したのち、 6 0 °Cで 5分間 (熱処理 A)、 1 0 0 °Cで 5分間 (熱処理 B ) または 1 5 0 °Cで 5分間 (熱処理 C ) の熱処理を行い、 下記の方法により、 熱処理後の印刷物の蛍光発光強度を測定した。 これらの結果を、 各熱処理後の印 刷層中の樹脂の結晶化度とともに、 表 3に示す。 Next, using the ink compositions of Example 5 and Reference Example 1 above, The following heat treatment test was performed to evaluate the preservability indoors and outdoors after heat treatment of the printed matter printed by the above method. That is, both ink compositions are applied on a glass plate and dried, and then dried at 60 ° C for 5 minutes (heat treatment A), at 100 ° C for 5 minutes (heat treatment B) or at 150 ° C. Heat treatment was performed for 5 minutes at C (heat treatment C), and the fluorescence emission intensity of the printed matter after the heat treatment was measured by the following method. Table 3 shows these results together with the crystallinity of the resin in the print layer after each heat treatment.
ぐ印刷物の蛍光発光強度 >  Fluorescence intensity of printed matter>
熱処理後の印刷物について、 初期、 室内に 6ヶ月保存後およひ屋外に 3ヶ月保 存後の蛍光発光強度を、 蛍光分光光度系 (日本分光社製 「F P 7 5 0」 ) により 測定し、 実施例 5の初期発光強度を 1 0 0 %とした相対値で示した。  The fluorescence emission intensity of the printed matter after heat treatment was initially measured after storage for 6 months indoors and after storage for 3 months outdoors using a fluorescence spectrophotometer (“FP750” manufactured by JASCO Corporation). It is shown as a relative value with the initial light emission intensity of Example 5 being 100%.
表 3  Table 3
Figure imgf000021_0001
上記表 3の結果から明らかなように、 熱処理により樹脂の結晶化度を 0 . 1以 上とした実施例 5の印刷物は、 室温保存 6ヶ月、 屋外保存 3ヶ月という過酷な保 存条件下でも、 熱処理後の結晶化度が 0 . 1未満である参考例 1の印刷物に比べ て、 発光強度の低下がかなり抑制されており、 耐光性および耐候性がさらに高く なっていることがわかる。
Figure imgf000021_0001
As is evident from the results in Table 3 above, the printed matter of Example 5 in which the crystallinity of the resin was 0.1 or more by the heat treatment was stored under severe storage conditions of 6 months at room temperature and 3 months at outdoor storage. However, compared with the printed matter of Reference Example 1 in which the crystallinity after the heat treatment was less than 0.1, the decrease in the emission intensity was considerably suppressed, and it was found that the light resistance and weather resistance were further increased.
つぎに、 上記の実施例 3 , 9の各インク組成物について、 白色ペットフィルム 上に、 インク液滴を滴下し、 ドット径と密着性を評価した。 結果を表 4に示す。 なお、 ドット径については、 実施例 3のインク組成物のドット径を 1 0 0とした 場合のドット径を相対値で示した。 表 4の結果から明らかなように、 フッ素系界 面活性剤を含有させた実施例 9では、 フッ素系界面活性剤を含有させない実施例 Next, for each of the ink compositions of Examples 3 and 9, ink droplets were dropped on a white pet film, and the dot diameter and adhesion were evaluated. Table 4 shows the results. As for the dot diameter, when the dot diameter of the ink composition of Example 3 was 100, the dot diameter was indicated by a relative value. As is evident from the results in Table 4, in Example 9 in which the fluorinated surfactant was contained, Examples in which the fluorinated surfactant was not contained were used.
3に比べて、 ドット径が小さくなつていることがわかる。 表 4
Figure imgf000022_0001
実施例 10
It can be seen that the dot diameter is smaller than that of 3. Table 4
Figure imgf000022_0001
Example 10
ひまし油 50部およびソルビ夕ン酸アルキルエステル (日本油脂社製 0P— 8 0) 40部 (共に沸点 200°C以上) に、 バインダとしてロジンエステル樹脂 (荒川化学製エステルガム AAL) 10部を添カ卩し、 加熱溶解してビヒクルを作 製した。 これに、 可視光領域で実質的に不可視または認識困難であって、 かつ紫 外線によって励起されて発光する色素 (リーデルデハーン社製商品名 「CD33 5」 、 励起波長: 365 nm、 発光波長: 615 nm) 1. 0部を加え、 遊星ボ ールミルにより 4時間分散処理して、 上記色素が粒径 210〜 410 nmの粒状 物として含まれる紫外線励起型インク組成物を調製した。  To 50 parts of castor oil and 40 parts of sorbic acid alkyl ester (Nippon Oil & Fats Co., Ltd. 0P-80) (both boiling point: 200 ° C or more), 10 parts of rosin ester resin (Arakawa Chemical Ester Gum AAL) as a binder The mixture was then heated and dissolved to produce a vehicle. In addition, a dye that is substantially invisible or difficult to recognize in the visible light region and emits light when excited by ultraviolet rays (trade name “CD335” manufactured by Rieder de Haan, Inc., excitation wavelength: 365 nm, emission wavelength: 615 nm), and the mixture was dispersed for 4 hours using a planetary ball mill to prepare an ultraviolet-excited ink composition containing the above-mentioned dye as particles having a particle size of 210 to 410 nm.
実施例 1 1  Example 1 1
遊星ボールミルによる分散処理時間を 8時間とした以外は、 実施例 10と同様 にして、 色素が粒径 120〜23 Onmの粒状物として含まれる紫外線励起型ィ ンク組成物を調製した。  An ultraviolet-excited ink composition containing a pigment as particulate matter having a particle size of 120 to 23 Onm was prepared in the same manner as in Example 10 except that the dispersion treatment time by a planetary ball mill was changed to 8 hours.
実施例 12  Example 12
遊星ボールミルによる分散処理時間を 1時間とした以外は、 実施例 10と同様 にして、 色素が粒径 1000〜160 Onmの粒状物として含まれる紫外線励起 型インク組成物を調製した。  An ultraviolet-excited ink composition containing a pigment as particulate matter having a particle diameter of 1000 to 160 Onm was prepared in the same manner as in Example 10 except that the dispersion treatment time by a planetary ball mill was changed to 1 hour.
比較例 5  Comparative Example 5
メチルェチルケトン (沸点 80°C) 90部に、 実施例 10で用いたのと同じ色 素 1. 0部を溶解し、 これにさらにバインダとしてアクリル系樹脂 (三菱レーョ ン製商品名 「ダイヤナ一ル BR— 106」 ) 9部を加えて、 よく撹拌混合して溶 解し、 紫外線励起型インク組成物を調製した。  In 90 parts of methyl ethyl ketone (boiling point 80 ° C), 1.0 part of the same pigment used in Example 10 was dissolved, and an acrylic resin (trade name “Dyana” manufactured by Mitsubishi Rayon) was further used as a binder. One part BR-106 ”) was added, and the mixture was dissolved with good stirring and mixing to prepare an ultraviolet-excitation ink composition.
比較例 6  Comparative Example 6
遊星ボールミルによる分散処理時間を 0. 5時間とした以外は、 実施例 10と 同様にして、 紫外線励起型インク組成物を調製した。 動的光錯乱法によって測定 した色素の粒径は 2, 2 0 0〜2, 9 0 0 n mであった。 An ultraviolet-excited ink composition was prepared in the same manner as in Example 10, except that the dispersion treatment time by a planetary ball mill was 0.5 hour. Measured by dynamic light scattering method The particle size of the dye thus obtained was 2,200 to 2,900 nm.
比較例 9  Comparative Example 9
メチルェチルケトン 5部に実施例 1 0で用いたのと同じ色素 1 . 0部を溶解し た。 つぎに、 ひまし油 (沸点 2 0 0 °C以上) 7 7部にバインダとしてロジンエス テル樹脂 (荒川化学製エステルガム A A L ) 9 . 5部を加熱溶解した樹脂液中に、 無機質粒子として平均粒径 1 0 O nmのシリカ粒子 1 0部を加え混合することに よって、 シリカ分散スラリーを得た。 このスラリーに先に作製した色素溶液を配 合し、 これをよく撹拌混合して、 紫外線励起型インク組成物を調製した。  In 5 parts of methyl ethyl ketone, 1.0 part of the same dye as used in Example 10 was dissolved. Next, castor oil (boiling point: 200 ° C or higher) 77 Rosin ester resin (ester gum AAL manufactured by Arakawa Chemical Co., Ltd.) was used as a binder in 7.7 parts. By adding and mixing 10 parts of 0 O nm silica particles, a silica dispersion slurry was obtained. The previously prepared dye solution was mixed with the slurry, and the mixture was stirred and mixed well to prepare an ultraviolet-excitation ink composition.
上記の実施例 1 0〜1 2および比較例 5〜7の各インク組成物を、 一ヶ月間静 置したところ、 実施例 1 0〜1 2および比較例 5 , 7の各インク組成物では、 有 機蛍光色素の沈降が認められなかったが、 比較例 6のインク組成物では、 有機蛍 光色素の沈降が明らかに認められた。 また、 実施例 1 0〜1 2および比較例 5〜 7の各インク組成物を、 連続気孔を有するウレタンスポンジに充填し、 スタンプ ィンクとして使用したところ、 比較例 6のィンクはィンク吸蔵体のウレ夕ンスポ ンジを侵し、 印刷不可能であった。 また比較例 6のインクでは色素の沈降が原因 と考えられる、 印刷物のヌケ ·カスレが多く見られた。  When the respective ink compositions of Examples 10 to 12 and Comparative Examples 5 to 7 were allowed to stand for one month, the ink compositions of Examples 10 to 12 and Comparative Examples 5 and 7 were: No sedimentation of the organic fluorescent dye was observed, but sedimentation of the organic fluorescent dye was clearly observed in the ink composition of Comparative Example 6. Further, the ink compositions of Examples 10 to 12 and Comparative Examples 5 to 7 were filled in urethane sponges having continuous pores and used as a stamp ink. The ink of Comparative Example 6 was urea of the ink occluding body. Invaded the sponge in the evening, making printing impossible. In addition, in the ink of Comparative Example 6, a lot of print blurring was observed, which is considered to be caused by sedimentation of the pigment.
つぎに、 実施例 1 0〜1 2および比較例 5 ~ 7の各インク組成物について、 上 記と同様の方法によりインク状態での蛍光発光強度を測定し、 さらに印刷物とし たときの蛍光発光強度を下記の方法で測定した。 いずれの場合も、 蛍光発光強度 は、 実施例 1 0の初期発光強度を 1 0 0 %とした相対値で示した。  Next, for each of the ink compositions of Examples 10 to 12 and Comparative Examples 5 to 7, the fluorescence emission intensity in the ink state was measured by the same method as described above, and the fluorescence emission intensity when a printed material was obtained. Was measured by the following method. In each case, the fluorescence emission intensity was shown as a relative value with the initial emission intensity of Example 10 being 100%.
これらの結果を表 5に示す。  Table 5 shows the results.
<印刷物の蛍光発光強度 >  <Fluorescence intensity of printed matter>
各ィンク組成物をスタンプィンクとして使用し、 これを用いて白色の紙上に印 刷層を形成した。 この印刷物について、 初期および室内に 3ヶ月保存後の蛍光発 光強度を、 蛍光分光光度計 (日本分光社製「F P 7 5 0」 ) により、 測定し、 実 施例 1 0の初期発光強度を 1 0 0 %とした相対値で示した。 表 5 Each ink composition was used as a stamping ink and used to form a print layer on white paper. The fluorescence intensity of this printed matter initially and after storage in a room for three months was measured with a fluorescence spectrophotometer (“FP750” manufactured by JASCO Corporation), and the initial light emission intensity of Example 10 was measured. The relative values are shown as 100%. Table 5
Figure imgf000024_0001
Figure imgf000024_0001
注: 1 ) インク吸蔵体のウレタンを侵し、 印刷不能であった。  Notes: 1) Prints were not possible due to the penetration of urethane in the ink storage.
2 ) 印刷物のヌケ ·カスレが多く、 測定不能であった。 上記の表 5の結果から明らかなように、 実施例 1 0 ~ 1 2のィンク組成物は、 有機蛍光色素をバルク状態の粒状物として存在させているため、 初期の蛍光発光 強度が高くなつているとともに、 高温保存後の上記強度の低下が抑えられており、 しかもこれを用いて印刷した印刷物についても、 長期保存後の上記強度の低下が 少なくなつており、 インク状態のみならず印刷物とした状態でも、 保存安定性に 格段にすぐれていることがわかる。  2) There were many missing and blurred prints, and measurement was impossible. As is evident from the results in Table 5 above, the ink compositions of Examples 10 to 12 had the initial fluorescent emission intensity increased because the organic fluorescent dye was present as particulate matter in a bulk state. In addition, the decrease in the strength after high-temperature storage is suppressed, and the printed matter printed using the same is less reduced in the strength after long-term storage. It shows that the storage stability is remarkably excellent even in the state.
これに対し、 比較例 6のインク組成物は、 有機蛍光色素が溶媒に完全に溶解し ている状態で存在するため、 初期の蛍光発光強度が低く、 高温保存後には上記強 度がより劣化が著しい。 さらに、 比較例 8のインク組成物は、 無機質粒子表面に 有機蛍光色素を吸着させるようにしたことにより、 比較例 6に比べて、 蛍光発光 強度のある程度の改善効果はみられものの、 本発明のものに比べると、 格段に劣 つており、 とくに印刷物の長期保存特性に著しく劣っている。  On the other hand, the ink composition of Comparative Example 6 has a low initial fluorescence emission intensity because the organic fluorescent dye is completely dissolved in the solvent, and the intensity is more deteriorated after storage at a high temperature. Remarkable. Furthermore, although the ink composition of Comparative Example 8 caused the organic fluorescent dye to be adsorbed on the surface of the inorganic particles, the ink composition of Comparative Example 6 exhibited a certain effect of improving the fluorescence emission intensity as compared with Comparative Example 6, but the present invention Compared with those of the printed matter, the printed matter is remarkably inferior, and the printed matter has remarkably poor long-term storage characteristics.
以上のように、 本発明においては、 可視光領域で実質的に不可視または認識困 難であって、 かつ紫外線で励起されて可視光領域で発光する有機蛍光色素を、 バ ルク状態の粒状物として存在させるようにしたことにより、 物品上にその外観を 損ねることなく所望のマークを印刷でき、 しかも印刷されたマークを長期間にわ たって高感度で検出でき、 そのうえ人体に対して安全であって使用環境になんら 制限を受けることのない、 紫外線励起型蛍光組成物、 インク組成物とその印刷物 を提供することができる。  As described above, in the present invention, an organic fluorescent dye that is substantially invisible or difficult to recognize in the visible light region and emits light in the visible light region when excited by ultraviolet light is used as bulk particles. The presence of the mark allows the desired mark to be printed on the article without damaging its appearance, and allows the printed mark to be detected with high sensitivity over a long period of time, and is safe for the human body. It is possible to provide an ultraviolet-excitation type fluorescent composition, an ink composition, and a printed material thereof, which are not subject to any restrictions on the use environment.

Claims

請 求 の 範 囲 The scope of the claims
1. 母材と、 紫外線で励起されて可視光領域で発光する有機蛍光色素とを含有 してなる蛍光組成物において、 該有機蛍光色素が粒状である蛍光組成物。  1. A fluorescent composition comprising a base material and an organic fluorescent dye that emits light in the visible light region when excited by ultraviolet light, wherein the organic fluorescent dye is granular.
2. 該母材が、 樹脂からなる請求項 1に記載の蛍光組成物。  2. The phosphor composition according to claim 1, wherein the base material comprises a resin.
3. 該有機蛍光色素が、 可視光領域で実質的に不可視である請求項 1または 2 に記載の蛍光組成物。  3. The fluorescent composition according to claim 1, wherein the organic fluorescent dye is substantially invisible in a visible light region.
4. 該有機蛍光色素の粒状物の粒径が、 10〜2, O O Onmである請求項 1 〜 3に記載の蛍光組成物。  4. The fluorescent composition according to any one of claims 1 to 3, wherein the particle size of the particulate organic fluorescent dye is 10 to 2, O O Onm.
5. 該有機蛍光色素が、 ユーロピウムを発光中心とするユーロピウム化合物か らなる請求項 1〜4のいずれかに記載の蛍光組成物。  5. The fluorescent composition according to claim 1, wherein the organic fluorescent dye is a europium compound having europium as a luminescent center.
6. 該樹脂母材が、 1 X 10— 19(m2 · S—1 · Pa 以下の酸素透過係数を 有する樹脂を少なくとも一種含有する請求項 1〜 5のいずれかに記載の蛍光組成 物。 6. The resin matrix is, 1 X 10- 19 (m 2 · S- 1 · fluorescent composition according to any one of claims 1 to 5 contains at least one resin having Pa or less oxygen permeability coefficient.
7. 該有機蛍光色素の含有率が、 全組成物重量に対して 0. 1重量%〜50重 量%である請求項 1〜 6のいずれかに記載の蛍光組成物。  7. The fluorescent composition according to claim 1, wherein the content of the organic fluorescent dye is 0.1% by weight to 50% by weight based on the total weight of the composition.
8. 樹脂と、 紫外線で励起されて可視光領域で発光する有機蛍光色素と、 溶媒 とを含んでなるインク組成物において、 該有機蛍光色素が、 粒径 10〜2, 00 0 nmの粒状であることを特徴とするィンク組成物。  8. In an ink composition comprising a resin, an organic fluorescent dye that emits light in the visible light region when excited by ultraviolet light, and a solvent, the organic fluorescent dye is in the form of particles having a particle size of 10 to 2,000 nm. An ink composition, comprising:
9. 該有機蛍光色素の粒径が、 10 ~ 800 nmの粒状である請求項 8に記載 のインク組成物。  9. The ink composition according to claim 8, wherein the particle size of the organic fluorescent dye is 10 to 800 nm.
10. 該有機蛍光色素が、 可視光領域で実質的に不可視である請求項 8または 9に記載のインク組成物。  10. The ink composition according to claim 8, wherein the organic fluorescent dye is substantially invisible in a visible light region.
1 1. 該有機蛍光色素が、 ユーロピウムを発光中心とするユーロピウム化合物 からなる請求項 8〜 10のいずれかに記載のィンク組成物。  1 1. The ink composition according to any one of claims 8 to 10, wherein the organic fluorescent dye comprises a europium compound having europium as a luminescent center.
12. 該有機蛍光色素が、 該溶媒に本質的に溶解されていない請求項 8〜11 のいずれかに記載のィンク組成物。  12. The ink composition according to any one of claims 8 to 11, wherein the organic fluorescent dye is not substantially dissolved in the solvent.
13. 該溶媒が水およびまたはエタノールである請求項 9〜12のいずれかに 記載のインク組成物。  13. The ink composition according to any one of claims 9 to 12, wherein the solvent is water and / or ethanol.
14. 該溶媒が、 沸点 200°C以上の溶媒である請求項 8〜12のいずれかに 記載のインク組成物。 14. The solvent according to any one of claims 8 to 12, wherein the solvent is a solvent having a boiling point of 200 ° C or more. The ink composition as described in the above.
15. 物品上に、 紫外線で励起されて可視光領域で発光する有機蛍光色素を含 有する印刷層を有する印刷物において、 該有機蛍光色素が粒径 10〜 2, 000 n mの粒状であることを特徴とする印刷物。  15. A printed matter having a printing layer containing an organic fluorescent dye that emits in the visible light region when excited by ultraviolet light on an article, characterized in that the organic fluorescent dye is in the form of particles having a particle size of 10 to 2,000 nm. Printed matter.
16. 該有機蛍光色素が、 可視光領域で実質的に不可視である請求項 15に記 載の印刷物。  16. The printed matter according to claim 15, wherein the organic fluorescent dye is substantially invisible in a visible light region.
17. 該有機蛍光色素が、 ユーロピウムを発光中心とするユーロピウム化合物 からなる請求項 15または 16に記載の印刷物。  17. The printed matter according to claim 15, wherein the organic fluorescent dye is a europium compound having europium as a luminescent center.
18. 印刷物が、 1 X 10— 19(m2 · S— 1 · Pa 以下の酸素透過係数を有 する樹脂を少なくとも一種含有する請求項 15〜17のいずれかに記載の印刷物 c 18. printed matter, 1 X 10- 19 (printed material c according to one of m 2 · S- 1 · Pa claims 15 to 17 contains at least one resin to have the following oxygen permeation coefficient
19. 該有機蛍光色素の含有率が、 0. 1重量%〜50重量%である請求項 1 5〜18のいずれかに記載の印刷物。 19. The printed matter according to any one of claims 15 to 18, wherein the content of the organic fluorescent dye is 0.1% by weight to 50% by weight.
INTERNATIONAL SEARCH REPORT International application No. INTERNATIONAL SEARCH REPORT International application No.
PCT/JP00/04790 PCT / JP00 / 04790
A. CLASSIFICATION OF SUBJECT MATTER A. CLASSIFICATION OF SUBJECT MATTER
Int. CI7 C09K11/06, C09D11/02 Int. CI 7 C09K11 / 06, C09D11 / 02
According to International Patent Classification (IPC) or to both national classification and IPC According to International Patent Classification (IPC) or to both national classification and IPC
B. FIELDS SEARCHED  B. FIELDS SEARCHED
Minimum documentation searched (classification system followed by classification symbols)  Minimum documentation searched (classification system followed by classification symbols)
Int .CI7 C09 11/06, C09D11/02 Int .CI 7 C09 11/06, C09D11 / 02
Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
C. DOCUMENTS CONSIDERED TO BE RELEVANT C. DOCUMENTS CONSIDERED TO BE RELEVANT
Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.  Category * Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
X WO97/l0307,Al (VIDEOJET SYSTEMS INTERNATIONAL INC.) .-19  X WO97 / l0307, Al (VIDEOJET SYSTEMS INTERNATIONAL INC.) .-19
20 March, 1997 (20.03.97)  20 March, 1997 (20.03.97)
Sc EP, 850281, Al & US, 5837042, A  Sc EP, 850281, Al & US, 5837042, A
& JP, 11-510213  & JP, 11-510213
JP, 8-239610, A (Mikuni Shikiso K.K. ) , .-19 17 September, 1996 (17.09.96) ,  JP, 8-239610, A (Mikuni Shikiso K.K.), .-19 17 September, 1996 (17.09.96),
Claims; Par. No. [0010] , Par. No. [0014] (Family: none)  Claims; Par. No. [0010], Par. No. [0014] (Family: none)
Y JP, 10-17571, A (Toyo Ink Manufacturing Co. Ltd. ) , ■19  Y JP, 10-17571, A (Toyo Ink Manufacturing Co. Ltd.), 19
20 January, 1998 (20.01.98) ,  20 January, 1998 (20.01.98),
Claims (Family: none)  Claims (Family: none)
I 1 Further documents are listed in the continuation of Box C. [ I See patent family annex. I 1 Further documents are listed in the continuation of Box C. [I See patent family annex.
* Special categories oi cited documents: "V later document published after the international filing date or * Special categories oi cited documents: "V later document published after the international filing date or
"A" document defining the general state of the art which is not priority date and not in conflict with the application but cited to considered to be of particular relevance understand the principle or theory underlying the invention "E" earlier document but published on or after the international filing "X" document of particular relevance; the claimed invention cannot be date considered novel or cannot be considered to involve an inventive"A" document defining the general state of the art which is not priority date and not in conflict with the application but cited to considered to be of particular relevance understand the principle or theory underlying the invention "E" earlier document but published on or after the international filing "X" document of particular relevance; the claimed invention cannot be date considered novel or cannot be considered to involve an inventive
"L" document which may throw doubts on priority claim(s) or which i: step when the document is taken alone "L" document which may throw doubts on priority claim (s) or which i: step when the document is taken alone
cited to establish the publication date of another citation or other "Y" document of particular relevance; the claimed invention cannot be special reason (as specified) considered to involve an inventive step when the document is cited to establish the publication date of another citation or other "Y" document of particular relevance; the claimed invention cannot be special reason (as specified) considered to involve an inventive step when the document is
"O" document referring to an oral disclosure, use, exhibition or other combined with one or more other such documents, such "O" document referring to an oral disclosure, use, exhibition or other combined with one or more other such documents, such
means combination being obvious to a person skilled in the art means combination being obvious to a person skilled in the art
"P" document published prior to the international filing date but later "&,' document member of the same patent family "P" document published prior to the international filing date but later "&, 'document member of the same patent family
than the priority date claimed  than the priority date claimed
Date of the actual completion of the international search Date of mailing of the international search report  Date of the actual completion of the international search Date of mailing of the international search report
13 October, 2000 (13.10.00) 24 October, 2000 (24.10.00)  13 October, 2000 (13.10.00) 24 October, 2000 (24.10.00)
Name and mailing address of the ISA/ Authorized officer Name and mailing address of the ISA / Authorized officer
Japanese Patent Office  Japanese Patent Office
Facsimile No. Telephone No.  Facsimile No. Telephone No.
Form PCT/ISA/210 (second sheet) (July 1992)  Form PCT / ISA / 210 (second sheet) (July 1992)
PCT/JP2000/004790 1999-07-19 2000-07-17 Fluorescent composition, ink composition, and printed matter WO2001005907A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU58539/00A AU5853900A (en) 1999-07-19 2000-07-17 Fluorescent composition, ink composition, and printed matter

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP20532799 1999-07-19
JP11/205327 1999-07-19
JP2000/70976 2000-03-09
JP2000070976 2000-03-09
JP2000/71622 2000-03-15
JP2000071622 2000-03-15

Publications (1)

Publication Number Publication Date
WO2001005907A1 true WO2001005907A1 (en) 2001-01-25

Family

ID=27328482

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/004790 WO2001005907A1 (en) 1999-07-19 2000-07-17 Fluorescent composition, ink composition, and printed matter

Country Status (2)

Country Link
AU (1) AU5853900A (en)
WO (1) WO2001005907A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109517508A (en) * 2018-10-31 2019-03-26 湖南航天三丰科工有限公司 A kind of aqueous optic camouflage coating material and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08239610A (en) * 1995-03-07 1996-09-17 Mikuni Shikiso Kk Water-base pigment ink composition for ink jet
WO1997010307A1 (en) * 1995-09-15 1997-03-20 Videojet Systems International, Inc. A jet ink composition
JPH1017571A (en) * 1996-07-01 1998-01-20 Toyo Ink Mfg Co Ltd Red color fluorescent material and composition containing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08239610A (en) * 1995-03-07 1996-09-17 Mikuni Shikiso Kk Water-base pigment ink composition for ink jet
WO1997010307A1 (en) * 1995-09-15 1997-03-20 Videojet Systems International, Inc. A jet ink composition
JPH1017571A (en) * 1996-07-01 1998-01-20 Toyo Ink Mfg Co Ltd Red color fluorescent material and composition containing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109517508A (en) * 2018-10-31 2019-03-26 湖南航天三丰科工有限公司 A kind of aqueous optic camouflage coating material and preparation method thereof
CN109517508B (en) * 2018-10-31 2021-01-26 湖南航天三丰科工有限公司 Aqueous optical stealth coating material

Also Published As

Publication number Publication date
AU5853900A (en) 2001-02-05

Similar Documents

Publication Publication Date Title
JP3272368B2 (en) Jet ink composition
US5837042A (en) Invisible fluorescent jet ink
EP1736514B1 (en) Fluorescent ink
EP0719654B1 (en) Ink composition, printed matter, and thermal transfer recording medium
CN1969021B (en) Signature protected photosensitive optically variable ink compositions and process
JP5363331B2 (en) Fluorescent liquid ink composition for inkjet printing
EP1435379A1 (en) Invisible ink jet inks
WO1992004192A1 (en) Providing intelligible markings
EP0779348A2 (en) Fluorescent red and magenta waterfast ink jet inks
JP2005513171A (en) Photosensitive optically variable ink heterogeneous composition for inkjet printing
CN1989220A (en) Ir absorbing photosensitive optically variable ink compositions and process
JPH08310108A (en) Printed matter, ink composition and thermal transfer recording medium
EP1533350B1 (en) Ink composition for continuous directional ink-jet printing in particular on letters and postal objects
CA2376109C (en) Machine readable water based red fluorescent ink compositions
EP2042567A1 (en) Postal-compliant fluorescent inkjet papers, inks for preparing them and individualized postage stamps printed thereon
WO2001005907A1 (en) Fluorescent composition, ink composition, and printed matter
JP3625547B2 (en) Fluorescent ink composition and fluorescent mark formed with the fluorescent ink composition
JP2001329258A (en) Fluorescent composition, ink composition, and printed matter
JP2000248219A (en) Stealth type ink composition and recording using the same
JP2007514802A (en) Inkjet ink composition with low gloss
JP3448577B2 (en) Aqueous fluorescent ink composition
JP2002088292A (en) Ink composition and printed matter
JP2000160083A (en) Ink composition for jet printing
JP3805687B2 (en) Ink composition for jet printing
US20020092441A1 (en) Phosphorescent ink composition

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase