WO2000057240A1 - Liquid crystal display - Google Patents

Liquid crystal display Download PDF

Info

Publication number
WO2000057240A1
WO2000057240A1 PCT/JP1999/001403 JP9901403W WO0057240A1 WO 2000057240 A1 WO2000057240 A1 WO 2000057240A1 JP 9901403 W JP9901403 W JP 9901403W WO 0057240 A1 WO0057240 A1 WO 0057240A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
crystal display
substrate
layer
light
Prior art date
Application number
PCT/JP1999/001403
Other languages
French (fr)
Japanese (ja)
Inventor
Yoshiaki Nakamura
Masayoshi Fujieda
Koji Ishii
Original Assignee
Hitachi, Ltd.
Hitachi Device Engineering, Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi, Ltd., Hitachi Device Engineering, Co., Ltd. filed Critical Hitachi, Ltd.
Priority to PCT/JP1999/001403 priority Critical patent/WO2000057240A1/en
Publication of WO2000057240A1 publication Critical patent/WO2000057240A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/0236Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place within the volume of the element
    • G02B5/0242Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place within the volume of the element by means of dispersed particles
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0273Diffusing elements; Afocal elements characterized by the use
    • G02B5/0278Diffusing elements; Afocal elements characterized by the use used in transmission
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133504Diffusing, scattering, diffracting elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133616Front illuminating devices

Definitions

  • the present invention relates to a liquid crystal display device (that is, a liquid crystal display module), and more particularly to a reflection type liquid crystal display device that reflects an external light to display an image.
  • the portable information processing device 47 is required to be small and lightweight, to be thin, and to be capable of being driven by a battery for a long time. Therefore, the display device 46 of the portable information processing device 47 can be made a small, lightweight and thin display device, and when there is external light such as sunlight, auxiliary lighting is not required and power consumption can be reduced. For this reason, the reflection type liquid crystal display device 46 is optimal.
  • An object of the present invention is to provide a thin liquid crystal display device.
  • Another object of the present invention is to provide a lightweight liquid crystal display device.
  • Another object of the present invention is to provide a small liquid crystal display device.
  • Another object of the present invention is to provide a liquid crystal display device having a simple structure and good display characteristics.
  • Another object of the present invention is to provide a high contrast display with a simple structure.
  • the object of the present invention is to provide a liquid crystal display device which can obtain the following.
  • Another object of the present invention is to provide a reflection type liquid crystal display device which can obtain a high reflectance with respect to external light with a simple structure.
  • Another object of the present invention is to provide a reflective liquid crystal display device having a simple structure and capable of recognizing a display even in a dim place.
  • Another object of the present invention is to provide a liquid crystal display device having a simple structure and low power consumption.
  • Another object of the present invention is to provide a liquid crystal display device that can be manufactured with a small number of members.
  • Another object of the present invention is to provide a liquid crystal display device which is easy to manufacture.
  • Still another object of the present invention is to reduce the cost of a liquid crystal display device.
  • Another object of the present invention is to provide a reflective liquid crystal display device having a high display contrast.
  • Another object of the present invention is to provide a reflective liquid crystal display device having a high reflectivity and good light use efficiency.
  • a well-known example of a reflection type liquid crystal display device provided with an auxiliary lighting device is disclosed in Japanese Patent Application Laid-Open No. Hei 10-32615.
  • the configuration of the light diffusion layer, the relationship between the optical axes of various optical films, and the optimal numerical values of the retardation ( ⁇ ⁇ d) were not described.
  • FIG. 2 is a sectional view showing a reflection type liquid crystal display device using a light diffusion film. Since the same reference numerals are used as those in FIG. 1 described later, detailed description of the reference numerals is omitted.
  • the external light L1 traveling to the liquid crystal display device 46 passes through the specific pixel electrode 4a, is reflected by the reflective layer 2 and becomes the reflected light L2, passes through the light diffusion film 12a, and is reflected by the liquid crystal display device 46. Go outside.
  • the reflected light L2 that has passed through the light diffusion film 12a generates diffused light L3 that diffuses in various directions.
  • an observer observing the liquid crystal display device from any direction can recognize the display by looking at the diffused light L3.
  • the reflected light L2 is emitted only in a specific direction.
  • the reflective liquid crystal display device if there is no member that scatters light in various directions, such as the light diffusion film 12a, the observation of the liquid crystal display device 46 from a place other than the path of the reflected light L2 is performed. Cannot recognize the display.
  • a member that scatters light such as the light diffusion film 12a, is indispensable to make the display easier to see.
  • the present invention provides a light diffusion layer 11a provided on a display portion of a liquid crystal display device with an adhesive 17 as shown in FIG. 1a and FIG. 1b. 17 and a light diffusing material 16 having a different refractive index.
  • a light diffusing material 16 having a different refractive index.
  • the liquid crystal display panel and the retardation of each retardation plate (the value of the refractive index anisotropy ⁇ n and the Product of thickness d. Sometimes called ⁇ ⁇ d.
  • the optical axes (stretching axis, polarizing axis) 38 of the polarizing plate 12b and the optical axes of the first retardation plate 12c are shown in FIG.
  • the optical axis 40 of the second retardation plate 12 d the incident light-side alignment axis of the liquid crystal display panel (the alignment axis of the liquid crystal layer 9 on the side in contact with the second substrate 5, or the second
  • the relationship between the alignment axis 37 and the emission light side alignment axis (the alignment axis of the liquid crystal layer 9 in contact with the first substrate 1 or the first alignment axis of the liquid crystal layer) 36 is expressed by the second substrate 5
  • the angle between the optical axis 40 of the second retardation plate 12 d that contacts the liquid crystal layer 9 and the alignment axis 36 of the liquid crystal layer 9 on the output light side is in the range of 30 ° to 80 °, and contacts the polarizing plate 12 b side.
  • the angle between the optical axis 39 of the first retardation plate 1 2c and the orientation axis 36 of the liquid crystal layer 9 on the output light side is in the range of 60 ° to 130 °, and the optical axis of the polarizing plate 12b is The angle between the axis 3 8 and the alignment axis 3 6 of the liquid crystal layer 9 on the exit light side is 7
  • the angle between the alignment axis 36 of the liquid crystal layer 9 on the exit light side and the alignment axis 37 of the liquid crystal on the incident light side is set to 240 ° or more, and the retardation of the liquid crystal layer 9 is set within the range of 0 ° to 150 °.
  • An'd is 0.7 0m to 0.95 ⁇ m
  • the retardation ⁇ d of the second retardation plate 12 d is 13 nm to 250 nm
  • the first The retardation ⁇ ⁇ d of the phase difference plate 12 c was optimized to be between 380 nm and 500 nm.
  • the light diffusion layer 1 la provided in the display section of the liquid crystal display device is constituted by the adhesive 17 and the light diffusion material 16 having a different refractive index from the adhesive 17. This eliminates the need for a light-diffusing film, making it possible to reduce the thickness, size, and weight of the liquid crystal display device.
  • the transmission spectral characteristic 35a of the light diffusion layer 11a is flattened like the reflection spectral characteristic 34 of the light reflection layer 2 of the liquid crystal display panel.
  • the reflectance characteristics of the liquid crystal display device can be improved. Therefore, it is possible to provide a liquid crystal display device having good light use efficiency.
  • by optimizing the retardation ⁇ ⁇ d of the liquid crystal display panel and each of the retardation plates a liquid crystal having a high contrast characteristic can be provided.
  • a display device can be provided.
  • the optical axis 38 of the polarizing plate 12b, the optical axis 39 of the first retardation plate 12c, and the optical axis 4 of the second retardation plate 12d shown in FIG. 0 by optimizing the relationship between the incident-light-side alignment axis 37 and the outgoing-light-side alignment axis 36 of the liquid crystal display panel, the first retardation plate 12 c and the second retardation plate 12 d It is possible to provide a liquid crystal display device having high contrast characteristics even if the retardation varies.
  • FIG. 1a is a sectional view of a liquid crystal display device according to an embodiment of the present invention
  • FIG. 1b is an enlarged view of a portion I in FIG. 1a.
  • FIG. 2 is a cross-sectional view of a reflective liquid crystal display device using a light diffusion film.
  • FIG. 3 is a cross-sectional view of a reflective liquid crystal display device without a light diffusion filter
  • FIGS. 4a to 4e are views showing the appearance of a liquid crystal display device according to an embodiment of the present invention.
  • Fig. 5a is a sectional view taken along the line A-A in Fig. 4a
  • Fig. 5b is a sectional view of Fig. 4a
  • Fig. 5c is a cross-sectional view taken along a line C-C in Fig. 4a
  • Fig. 5d is a cross-sectional view taken along a line D-D in Fig. 4a.
  • FIG. 6 is a diagram showing the spectral characteristics of the reflective layer and the adhesive containing the diffusing material.
  • FIG. 7 is a diagram for explaining an angle relationship among an absorption axis of a polarizing plate, a stretching axis of a first retardation plate, and a stretching axis of a second retardation plate in one embodiment of the present invention. is there.
  • FIG. 8 is a diagram showing a change in the contrast ratio of the display of the liquid crystal display device with respect to the fluctuation of the retardation ( ⁇ ⁇ d) of the phase difference plate.
  • FIG. 9 is a diagram showing a change in the reflectance of external light of the liquid crystal display device with respect to a change in retardation of the phase difference plate.
  • FIG. 10 is a sectional view of a liquid crystal display device according to a second embodiment of the present invention. .
  • FIG. 11 is a sectional view 0 "of a liquid crystal display device according to a third embodiment of the present invention.
  • FIG. 12 is a sectional view of a liquid crystal display device according to a fourth embodiment of the present invention.
  • FIG. 13 is a sectional view of a liquid crystal display device according to a fifth embodiment of the present invention.
  • FIG. 14 is a sectional view of a liquid crystal display device according to a sixth embodiment of the present invention.
  • FIG. 15 is a sectional view of a liquid crystal display device according to a seventh embodiment of the present invention.
  • FIG. 16 is a perspective view showing the appearance of an information processing device using the liquid crystal display device of the present invention.
  • FIG. 1a is a sectional view of a liquid crystal display device according to an embodiment of the present invention
  • FIG. 1b is an enlarged view of a portion I in FIG. 1a.
  • an illumination device including a light guide 13 and a linear light source 14 such as a fluorescent lamp or an LED and an input device 15 such as a sunset panel are installed on a reflective liquid crystal display panel.
  • the lower electrode (signal electrode) 4 is formed.
  • a color filter 6 of three colors (R, G, B) obtained by adding a dye or a pigment to an organic resin film, and impurities from the color filter 6 to the liquid crystal layer 9 are formed on the inner surface of the second substrate 5 which is the upper glass substrate.
  • a protective film 7 made of an organic material and a top electrode (scanning electrode) 8 made of a transparent conductive film such as ITO are formed to prevent contamination of the second substrate 5 and planarize the inner surface of the second substrate 5.
  • a light-shielding film (black matrix) in the form of a lattice or stripe is formed between the colors R, G, and B of the color filter 6 as necessary, and the protective film 7 is formed thereon.
  • a liquid crystal layer 9 made of a liquid crystal composition is injected between the first and second substrates 1 and 5, and sealed with a sealing material 10 such as an epoxy resin to form a liquid crystal display panel.
  • a polarizing plate 12b, a first retardation plate 12c, and a second retardation plate 12d are provided on the outside (upper side) of the second substrate 5, which is the substrate on the observer side of the liquid crystal display panel. It is laminated. Second substrate 5, Polarizer 1 2b, First retarder 1 An adhesive layer (eg, an epoxy-based adhesive) or an adhesive layer 11 such as an adhesive is provided between 2c and the second retardation plate 12d, and each member is fixed.
  • the adhesive means an adhesive capable of attaching the optical films 12 again, even if the various optical films 12 are once adhered and then peeled off.
  • the reflective layer 2 preferably has a specular reflectivity in terms of reflectance.
  • an aluminum film is formed by an evaporation method.
  • a multilayer film for improving the reflectance may be formed on the surface of the reflective layer 2, and a protective film 3 is formed thereon for the purpose of protecting the reflective layer 2 against corrosion and flattening the surface.
  • the reflective layer 2 is not limited to aluminum, and may be a metal film such as silver or silver as long as it is a film having specular reflectivity, or a non-metal film.
  • the protective film 3 is not limited to the SiO 2 film, but may be any insulating film that protects the reflective layer 2, such as an inorganic film such as a silicon nitride film, an organic metal film such as an organic titanium film, or a polyimide. ⁇
  • An organic film such as epoxy may be used.
  • an organic film such as polyimide or epoxy is excellent in flatness, and the lower electrode 4 formed on the protective film 3 can be easily formed.
  • the lower electrode 4 can be formed at a high temperature, and the wiring resistance of the lower electrode 4 can be reduced.
  • a light guide 13 and a light source 14 are provided as an illumination device used when there is little external light.
  • the light guide 13 is made of a transparent resin such as acrylic resin, and the surface (top surface) on the observer side is subjected to a printing pattern or irregularities for emitting the light L 4 of the light source 14 to the liquid crystal display panel side.
  • an input device 15 such as a sunset panel is provided above the lighting device. The input device 15 detects the position of the pressed portion by pressing the surface of the input device 15 with a pointed stick or a finger like a pen, and detects the position of the pressed portion. It outputs a data signal to send to 0.
  • the second substrate 5, the light guide 13 and the input device of the liquid crystal display panel are fixed with a double-sided adhesive tape (for example, a nonwoven fabric impregnated with an adhesive) or the like.
  • a double-sided adhesive tape for example, a nonwoven fabric impregnated with an adhesive
  • it can be peeled off after being pasted once, so that it can reproduce even if the liquid crystal display panel, lighting device and input device are fixed by mistake.
  • the lighting device and the input device 15 may not be provided, and the lighting device and the input device 15 may be added to the liquid crystal display panel as needed.
  • the adhesive layer 11a provided between the first retardation plate 12c and the second retardation plate 12d has a light diffusion function. Specifically, as shown in FIG. 1b, a light diffusing material 16 having a different refractive index from the adhesive 17 is mixed into the adhesive 17. Light is scattered in the adhesive layer 11a because the adhesive 17 and the diffusing material 16 have different refractive indexes. Adhesive 17 and diffusing material 16 need only have different refractive indices. If epoxy-acrylic adhesive is used for adhesive 17, transparent material such as polyethylene, polystyrene, divinylbenzene, etc. is used for diffusing material 16. Organic particles and transparent inorganic particles such as silicide can be used.
  • the adhesive described above may be used.
  • the first retardation plate 12 c is erroneously used and the second adhesive is used. Even if it is pasted on the phase difference plate 1 2 c, it can be reproduced.
  • transparent inorganic or organic particles for the diffusion material 16 the absorption in the visible light region is small, so that the reflectance and spectral characteristics of the liquid crystal display device can be improved.
  • the adhesive 17 is an organic substance, the difference in coefficient of thermal expansion can be reduced by using organic particles for the diffusing material 16, so that cracks are generated in the adhesive layer 11a. Not even.
  • the diffusing material 16 When the diffusing material 16 is mixed into the adhesive 17, cracks may be easily generated in the adhesive layer 11 a as compared with the case where only the adhesive 17 is used. Since the adhesive layer 11 a containing the light diffusing material is provided between the first retarder 12 c and the second retarder 12 d having substantially the same ratio, the adhesive 11 1 a There is no problem of cracking.
  • the light reaches the reflective layer 2 through the layer 11, the second substrate 5, the color filter 6, the upper electrode 8, the liquid crystal layer 9, and a specific pixel electrode (or specific signal line) 4 a.
  • the external light L1 that has reached the reflective layer 2 is reflected and becomes reflected light L2, and has a specific pixel electrode 4a, a liquid crystal layer 9, an upper electrode 8, and a color filter 6 in a path opposite to that of the incident light L1.
  • the functional adhesive layer reaches 1a.
  • the reflected light L2 entering the adhesive layer 11a is scattered in various directions to generate scattered light L3.
  • the direct reflection light L2 and the scattered light L3 emitted from the adhesive layer 11a compensate for the phase difference generated when light passes through the liquid crystal layer 9 using the birefringence effect.
  • the light is emitted to the outside of the liquid crystal display device through the first retardation plate 12 c, the adhesive layer 11, the polarizing plate 12 b, the light guide 13, and the input device 15.
  • the observer can recognize the display controlled by the specific pixel 4a by looking at the directly reflected light L2 and the scattered light L3 emitted outside the liquid crystal display device.
  • the adhesive layer 11a for fixing the first retardation plate 12c to the second retardation plate 12d has a light diffusion function, the path of the directly reflected light L2 An observer in a place other than the above can recognize the display by the scattered light L3, so that the viewing angle characteristics of the liquid crystal display device are good.
  • the liquid crystal display device can be made thinner, smaller, and lighter. Further, since the light diffusion film 12a is not required, the structure of the liquid crystal display device is simplified, and the productivity is improved.
  • the adhesive layer 11a having a light diffusion function preferably has a haze value of 60% to 90%.
  • the haze value H is given by Equation 1 where Tt is the total light transmittance and Td is the diffuse transmittance.
  • the haze value H of the adhesive layer 11a is smaller than 60%, the amount of diffused light L3 decreases and the viewing angle characteristics deteriorate. If the haze value H of the adhesive layer 11a is larger than 90%, the light transmittance of the adhesive layer 11a becomes poor, and the reflectance of the liquid crystal display device decreases.
  • the difference in the refractive index between the adhesive 17 and the diffusion material 16, the dispersion density of the diffusion material 16, and the particle size of the diffusion material 16 By adjusting d, the haze value H can be easily set to an optimum value.
  • the sphere diameter d of the diffusing material 16 is 3 ⁇ n! ⁇ 10 1 m
  • a high contrast of 6 or more can be obtained.
  • the transmission spectral characteristics of the adhesive layer 11a having the light diffusion function are matched with the reflection spectral characteristics of the reflective layer 2, the reflectance of the liquid crystal display device is improved.
  • Figure 6 shows the reflection spectral characteristics 34 of the reflective layer 2, the transmission spectral characteristics 35a of the flat type light diffusing adhesive layer, and the transmission spectral characteristics 35b of the non-flat type light diffusing adhesive layer. It is.
  • the reflection spectral characteristic 34 of the reflective layer 2 in the visible light region shows a substantially constant flat characteristic regardless of the wavelength of light.
  • the transmission spectral characteristic 35a of the flat type light diffusing adhesive layer is also adjusted to a substantially constant flat characteristic in the visible light region.
  • the transmission spectral characteristics 35b of the non-flat type light diffusing adhesive layer show characteristics in which the transmittance increases as the wavelength becomes longer because the spectroscopic characteristics are not particularly adjusted.
  • the transmittance of a general adhesive greatly changes depending on the wavelength. The longer the wavelength, the higher the transmittance.
  • Table 1 shows the contrast and ON of the liquid crystal display device, with the light diffusion adhesive layer of the flat type 35a and the light diffusion adhesive layer of the non-flat type 35b. of time This is data comparing reflectance and reflectance at OFF.
  • the data in Table 1 used the flat type 35a and the non-flat evening 35b with the same haze value H of the light diffusing adhesive layer of 78% to explain the difference in spectral characteristics. .
  • the contrast of the liquid crystal display device and the reflectance at the time of ON are improved with the light diffusing adhesive layer of the flat type 35a which is close to the spectral characteristics of the reflective layer 2.
  • the flat type 35a is slightly lower than the non-flat type 35b, but the reflectance at 0FF is low, and the black display is deeper, so the contrast is higher. Will be higher.
  • the visible light region is set to a wavelength region of 400 to 760 nm
  • the transmittance or reflectance of the flat type is set to within 10% of soil within the visible light region.
  • Contrast C is defined by Equation 2 where V on is the luminance at the maximum gradation display of the liquid crystal display device and V off is the luminance at the lowest gradation display.
  • the adhesive layer 11a having a light diffusion function is used for the light diffusion layer, the materials of the adhesive 17 and the diffusion material 16, the dispersion density of the diffusion material 16 and the diffusion material Adjusting the particle size d of 16 makes it easy to match the transmission spectral characteristics of the light-diffusing adhesive layer 1 1a with the reflection spectral characteristics of the reflective layer 2, and provides a liquid crystal display with high reflectivity and high contrast Equipment can be provided.
  • the refractive index of the light diffusing material 16 and the adhesive 17 decreases, and as the diameter d of the light diffusing material 16 decreases, the light diffusing adhesive layer 11 The result is that the spectral characteristics of a become flat.
  • both the first retardation plate 1 2 c and the second retardation plate 1 2 d can be composed of films of organic resins such as Bonate, Polyacrylate and Polysulfone.
  • the light diffusing adhesive layer 11 a is provided between the first retardation plate 12 c and the second retardation plate 12 d having a small difference in the coefficient of thermal expansion. Even if a heat shock is applied to the liquid crystal display device, the light diffusing adhesive layer 11a has no cracking force, and the second retardation plate 12d force and the first retardation plate 12c Does not peel.
  • the first retardation plate 12 c is also referred to as a retardation compensator, and is provided by the liquid crystal layer 9 to prevent the display from being given a specific color and to enable white display. Things.
  • the second retardation plate 1 2 d is also referred to as a 1 Z 4 wavelength plate, and converts the elliptically polarized light L 2 reflected by the reflective layer 2 into linearly polarized light to produce a reflected light L 2 ⁇ divergent light L 3.
  • a 1 Z 4 wavelength plate converts the elliptically polarized light L 2 reflected by the reflective layer 2 into linearly polarized light to produce a reflected light L 2 ⁇ divergent light L 3.
  • the display control by the specific pixel 4a is performed in the twisted nematic (TN) mode or the super twisted nematic (STN) mode.
  • TN twisted nematic
  • STN super twisted nematic
  • the TN mode and STN mode liquid crystal display devices can observe the change in the optical characteristics of the liquid crystal layer 9 to determine whether the light is transmitted (ON) or not.
  • the display can be controlled as the state (0 FF).
  • the first substrate 1 has a plurality of signal electrodes ( A lower electrode 4 is provided extending in a first direction, and a scanning electrode (upper electrode) 8 is provided on a second substrate 5 in a second direction (for example, a first direction) different from the first direction.
  • the signal electrodes 4 and the scanning electrodes 8 intersect in a matrix when viewed in a plan view. A portion where the signal electrode 4 and the scanning electrode 8 intersect corresponds to one pixel, and a specific pixel electrode is applied by applying a selection voltage to the signal electrode 4 and the scanning electrode 8 corresponding to the specific pixel electrode 4a. 4 You can select a.
  • a gradation voltage corresponding to ON / OFF may be applied to the signal electrode 4 together with the selection voltage.
  • the angle between the extension axis (optical axis) of the second retardation plate 12 d in contact with the second substrate 5 and the alignment axis of the liquid crystal on the emission light side is in the range of 30 ° to 80 °.
  • the angle between the stretching axis (optical axis) of the first retardation plate 12c in contact with the polarizing plate 12b side and the alignment axis of the liquid crystal layer 9 on the emission light side is in the range of 60 ° to 130 °.
  • the angle between the absorption axis b (optical axis, polarization axis or stretching axis) and the alignment axis of the liquid crystal layer 9 on the outgoing light side is in the range of 70 ° to 150 °.
  • the angle of the alignment axis of the liquid crystal on the light side is set to 240 ° or more, the retardation ⁇ d of the liquid crystal layer 9 is set to 0.7 0m to 0.95 ⁇ m, and the retardation of the second retardation plate 12 d High contrast display can be obtained by setting the difference ⁇ ⁇ d to 130 nm to 250 nm and setting the retardation ⁇ n • d of the first retardation plate 12 c to 380 nm to 500 nm.
  • FIG. 7 is a diagram specifically illustrating the angle relationship between the absorption axis of the polarizing plate, the stretching axis of the first retardation plate, and the stretching axis of the second retardation plate in the present embodiment. is there.
  • FIG. 7 illustrates an STN mode liquid crystal as an example.
  • e-e is a reference line, specifically, the second substrate of the liquid crystal display panel. 5 A line parallel to the long side, f 1 f is a line perpendicular to the e- e line.
  • 36 is the alignment axis on the outgoing light side of the liquid crystal layer 9
  • 37 is the alignment axis on the incident light side of the liquid crystal layer 9
  • 38 is the absorption axis of the polarizing plate 12b (optical axis of the polarizing plate)
  • 39 is the first axis.
  • the extension axis of the phase difference plate 12c optical axis of the first phase difference plate
  • 40 is the extension axis of the second phase difference plate 12d (the optical axis of the second phase difference plate). is there.
  • 4 1 is the angle between the absorption axis of the polarizing plate and the e-e line, specifically 1 25 ⁇ 10 °
  • 42 is the angle between the stretching axis 39 of the first retardation plate and the e-e line
  • 43 is the angle between the elongation axis 40 of the second retardation plate and the e-e line
  • 44 is The angle (the twist angle of the liquid crystal display panel) formed between the outgoing light-side alignment axis 36 and the incoming light-side alignment axis 37 is 240 ° or more for STN mode liquid crystals
  • 45 is the outgoing light-side alignment axis 36 and e.
  • the twist angle 44 should be set to 90 ⁇ 10 °.
  • the STN mode liquid crystal is used in this embodiment, a sufficient contrast can be obtained even when the number of the scanning lines 8 is increased, so that a display with high definition can be obtained.
  • FIGS. 8 and 9 show the display characteristics of the liquid crystal display device when the relationship between the optical axes is set to the relationship described above in the present embodiment.
  • FIG. 8 shows the relationship between the retardation ⁇ ⁇ d combining the first retardation plate 12 c and the second retardation plate 12 d and the contrast ratio.
  • a high contrast ratio and a high contrast ratio can be obtained even if the characteristics (for example, retardation ⁇ ⁇ d) of the various optical films fluctuate. Since the reflectance can be maintained, a liquid crystal display device having a high production yield can be provided.
  • a spectroscopic method was used to measure the retardation ⁇ ⁇ d of the first retardation plate 12 c and the second retardation plate 12 d.
  • the phase difference plate to be measured is sandwiched between the first and second polarizing films whose polarization axes are perpendicular to each other, and the optical axis to be measured is 45 ° with the polarization axes of the first and second polarizing films.
  • the optical axis to be measured is 45 ° with the polarization axes of the first and second polarizing films.
  • the specific wavelength at this time Since the spectral characteristics of the above-mentioned measurement object and the first and second polarizing films show a minimum value (Bary value) at a specific wavelength ⁇ , the specific wavelength at this time; It is possible to obtain the retardation ⁇ ⁇ ⁇ d of Note that the first retardation plate 12c was measured using one first retardation plate 12c, but the second retardation plate 12d was difficult to measure with one sheet. The wavelength spectrum 2 corresponding to the valley value of the three second phase difference plates 12d was measured, and the average value obtained by setting the wavelength spectrum 2 to 1Z3 was used.
  • FIGS. 4a, 4b, and 4c show more specific examples of this embodiment. , Figure 4d, Figure 4e, Figure 5a, Figure 5b, Figure 5c and Figure 5d
  • Fig. 4a is a front view from the display side after assembly of the liquid crystal display device 46 is completed
  • Fig. 4b is a front side view
  • Fig. 4c is a rear side view
  • Fig. 4d is a left side view
  • Fig. 4e is a right side view.
  • 18 is an upper case (shield case) made of a metal plate of stainless steel, iron, aluminum, or the like, and 20 is a display window provided in the upper case 18. 1 opening.
  • Reference numeral 19 denotes a lower case made of a metal plate such as stainless steel, iron, or aluminum, or a plastic such as polycarbonate or ABS resin.
  • 2 1 is the claw provided on the upper case 18
  • 2 2 is the hook provided on the upper case 18
  • the upper case 18 holds the lower case 1 9 with the claw 21 and the hook 22 and the lower case Combine with 1 9
  • Reference numeral 14 denotes a light source such as a fluorescent lamp or an LED (Light Emitting Diode).
  • Reference numeral 13 denotes a light guide made of a transparent material such as acryl resin or glass for irradiating the light of the light source 14 to the liquid crystal display panel.
  • the light source 14 and the light guide 13 constitute a lighting device (front light) for supplying light to the liquid crystal display device 46 when external light is small.
  • Reference numeral 15 denotes an input device (touch panel) for inputting data to be sent to a host (information processing unit) connected to the liquid crystal display device 46.
  • Reference numeral 12 denotes a light diffusion layer 11 a, a polarizing plate 12 b, a first retardation plate 12 c, a second retardation plate 12 d, etc., provided on a display portion of the liquid crystal display device 46. It is an optical film.
  • the optical film 12 is provided so as to fit within the area of the first opening of the upper case in order to reduce the thickness of the liquid crystal display device 46.
  • FIG. 5a is a cross-sectional view taken along the line A--A in FIG. 4a
  • FIG. 4A is a cross-sectional view taken along line BB of FIG. A
  • FIG. 5C is a cross-sectional view taken along line C-C of FIG. 4A
  • FIG. 5D is a cross-sectional view taken along line DD of FIG. 4A. It is.
  • the liquid crystal display panel (liquid crystal cell) is formed by bonding a first substrate 1 and a second substrate 5 together.
  • a sealing material 31 for sealing the injection hole after injecting the liquid crystal layer 9 into the liquid crystal cell is provided on the side walls of the first substrate 1 and the second substrate 5.
  • a second opening 23 is provided in a portion of the upper case 18 corresponding to the sealing material 31 so that the external dimensions of the liquid crystal display device are reduced even if the sealing material 31 protrudes.
  • the various optical films 12 described above are fixed.
  • a driving circuit for a liquid crystal display panel which is composed of a signal line driving IC chip 32 and a signal line driving printed circuit board (signal line driving PCB) 33, is provided.
  • a signal line driving circuit is configured by the signal line driving IC chip 32, the TCP 29, and the signal line driving PCB 33, and the signal line driving circuit is connected to the signal line 4 of the first substrate 1.
  • a scanning line driving circuit is constituted by the scanning line driving PCB 30, the scanning line driving IC chip 28 and the TCP 29, and in the case of a matrix type liquid crystal display device using a voltage averaging method, the scanning line driving circuit is Connected to scanning signal line 8 of second substrate 5.
  • the scanning lines are provided on the same first substrate 1 as the signal lines, so that the scanning line driving circuit is connected to the first substrate 1.
  • Reference numeral 24 denotes an interface connector for electrically connecting the liquid crystal display device 46 to a host 50 which is an external circuit.
  • the interface connector 24 may be provided on the signal line driving PCB 33 provided on the scanning line driving PCB 30. Good.
  • the scanning line driving PCB 30 and the signal line driving PCB 33 are electrically connected by connecting means.
  • Reference numeral 26 denotes a spacer for fixing the scanning line driving PCB 30.
  • Reference numeral 27 denotes a spacer for pressing a connection portion between the scanning line driving circuit and the signal line driving circuit and the liquid crystal display panel, and is made of an insulating elastic material such as rubber.
  • 25 is a double-sided adhesive tape, for example, a nonwoven fabric impregnated with an epoxy adhesive can be used.
  • the liquid crystal display panel is fixed to upper case 18 with double-sided adhesive tape 25.
  • the double-sided adhesive tape 25 is also used to fix the light guide 13 and the input device 15 to the upper case 18.
  • the assembly of the liquid crystal display device is simplified, and the reproduction can be performed even if each member is fixed by mistake.
  • the manufacturing yield of the device is improved.
  • the lower case 19 is provided with irregularities for holding down the liquid crystal display panel.
  • FIG. 16 is a perspective view showing the appearance of an information processing device 47 using the liquid crystal display device 46 of the present invention.
  • 48 is a display part of the information processing device 47
  • 49 is a keyboard part of the information processing device 47
  • 50 is a host that performs information processing of the information processing device 47
  • 51 is a micro processor
  • 5 2 Is a battery
  • 53 is an interface cable that connects the liquid crystal display device 46 to the host 50
  • 54 is an inverter power supply for the lighting device
  • 55 is an inverter power supply 54
  • the light source 14 of the lighting device is connected.
  • 5 is a pen for inputting information using the input device
  • 57 is a pen holder for storing the pen 56
  • 60 is a mobile phone
  • 61 is a mobile phone and an information processing device This is the cable that connects 4 7.
  • the liquid crystal display device 46 is provided on the display unit 48 of the information processing device 47.
  • the input device 15 Is superimposed on the display, so pressing a predetermined part with a pen 56 or a finger allows you to enter characters 58 or select the icon 59 to execute the soft-to-air function. I can do it.
  • the liquid crystal display device 46 of the present embodiment is of a reflective type, when there is external light such as sunlight, the power consumption can be suppressed by switching off the inverter power supply 54 to reduce the consumption of the battery 52. Can be reduced.
  • the liquid crystal display device 46 can be made thin, small, and light, so that the information processing device 47 can also be thin, small, and light.
  • FIG. 10 is a sectional view of a liquid crystal display device according to a second embodiment of the present invention.
  • Each reference numeral is the same as the reference numeral in FIG. 1A described in the first embodiment.
  • the second embodiment is characterized in that an adhesive layer 11a having a light diffusion function is used as an adhesive layer for fixing the second retardation plate 12d to the second substrate 5.
  • Other configurations are basically the same as those of the first embodiment described above.
  • the adhesive layer (light diffusion layer) 11 a having the light diffusion function is located closest to the reflection layer 2 than the other optical films 12 and the adhesion layer 11, the outline of the image Clear display with little blurring.
  • a reflection type liquid crystal display device display is performed using light incident from various directions. For example, as shown in FIG. 10, the incident light L1 and the second incident light L1b incident at an angle different from that of the incident light L1 are reflected by the reflective layer 2, and are reflected by the reflected light L2 and the incident light L2, respectively. A reflected light L 2 b of 2 is generated. Since the emission angles of the reflected light L2 and the second reflected light L2b are different, there is a difference d2 between the positions where the reflected light L2 and the second reflected light L2 pass through the light diffusion layer 11a. . Observer is light diffusion layer Since the image is recognized by looking at the light diffused by 11a, the difference d2 between the positions where the reflected light 2 and L2b pass through the light diffusion layer 11a is ⁇ as the blur of the outline of the image.
  • the blur of the outline of is reduced, and a clearer display is obtained.
  • the second retardation plate 12d and the second substrate 5 have a light diffusion function due to a difference in the coefficient of thermal expansion between the glass substrates. Cracks are easily formed in the adhesive layer 11a, but it can be improved by selecting the adhesive 17 and the light diffusing material 16 of the adhesive layer 11a.
  • FIG. 11 is a sectional view of a liquid crystal display device according to a third embodiment of the present invention.
  • Each reference numeral is the same as the reference numeral in FIG. 1A described in the first embodiment.
  • the third embodiment is characterized in that an adhesive layer 11a having a light diffusion function is used as an adhesive layer for fixing the polarizing plate 12b to the first retardation plate 12c.
  • Other configurations are basically the same as those of the first embodiment described above.
  • the polarizing plate 12b is generally composed of an organic resin film such as triacetyl cellulose (TAC). Since the first retardation plate 12c can also be formed of an organic resin film such as polycarbonate, polyacrylate, or polysulfone, the difference in the coefficient of thermal expansion between the first retardation plate 12c and the polarizing plate 12b can be reduced.
  • TAC triacetyl cellulose
  • an adhesive layer 11a having a light diffusion function is provided between the polarizing plate 12b and the first retardation plate 12c, which can reduce the difference in the coefficient of thermal expansion. Therefore, there is no problem of cracks in the adhesive layer 11a, and the reliability of the liquid crystal display device is improved.
  • the light diffusion layer 11a is farther than the reflection layer 2 as compared with the above-described second embodiment, and the above-described reflected lights L2 and L2b are light.
  • the difference d3 between the positions passing through the diffusion layer 11a is increased, and the outline of the displayed image is easily blurred.
  • blurring of the outline of the displayed image can be improved.
  • FIG. 12 is a sectional view of a liquid crystal display device according to a fourth embodiment of the present invention.
  • Each reference numeral is the same as the reference numeral in FIG. 1A described in the first embodiment.
  • the fourth embodiment is characterized in that the reflective layer 2 is provided on the outer surface of the liquid crystal display panel, that is, on the surface of the first substrate not facing the liquid crystal layer 9.
  • Other configurations are basically the same as those of the first embodiment described above.
  • the first substrate 1 and the second substrate are attached to each other to form a liquid crystal display panel, and then the reflective layer 2 is provided to complete a reflective liquid crystal display device.
  • the liquid crystal display device can also be used as a liquid crystal display device, so that a liquid crystal display panel can be mass-produced, and a reflective liquid crystal display device with good productivity can be provided.
  • a thin metal plate having good light reflectivity such as stainless steel, chromium, aluminum, silver, or the like is used for the reflective layer 2, and the reflective layer 2 is fixed to the first substrate 1 by the adhesive layer 11. I have.
  • the metal plate for the reflective layer 2 it is easy to perform mirror finishing on the reflective layer 2, so that the reflectance can be improved.
  • the reflection layer 2 is made of a metal such as chromium, aluminum, silver, etc. on the first substrate. 1, it may be formed by vapor deposition such as spattering. When the reflective layer 2 is formed by vapor deposition of a metal, the adhesive layer 11 becomes unnecessary.
  • FIG. 13 is a sectional view of a liquid crystal display device according to a fifth embodiment of the present invention.
  • Each reference numeral is the same as the reference numeral in FIG. 1A described in the first embodiment.
  • the reflective layer 2 is provided on the outer surface of the liquid crystal display panel, that is, on the surface of the first substrate not facing the liquid crystal layer 9, and between the reflective layer 2 and the first substrate 1.
  • An adhesive layer 11a having a light diffusion function is provided.
  • Other configurations are basically the same as those of the first and fourth embodiments described above.
  • the light diffusion layer 11a is located closest to the reflection layer 2, the reflected light L2, L2b generated by the difference between the incident angles of the external lights Ll, L2b The difference between the positions passing through the light diffusion layer 11a is minimized, and a clear display image with a clear outline is obtained.
  • the effect that the same thing as the transmissive liquid crystal display device can be used for the liquid crystal display panel and the metallization in which the reflective layer 2 is subjected to the mirror reflection processing are used.
  • the effect is that the board can be used.
  • FIG. 14 is a sectional view of a liquid crystal display device according to a sixth embodiment of the present invention.
  • Each reference numeral is the same as the reference numeral in FIG. 1A described in the first embodiment.
  • the sixth embodiment is characterized in that the reflection layer is also used as the signal electrode 4 and the pixel electrode 4a, that is, the signal electrode 4 and the pixel electrode 4a are formed of a reflective conductive film such as a metal film. I have. Other configurations are basically explained earlier. This is the same as the first embodiment.
  • the present embodiment since a metal film having lower electric resistance than the transparent conductive film can be used for the signal electrode 4 and the pixel electrode 4a, the power supply to the signal electrode 4 and the pixel electrode 4a is improved, and A high-resolution liquid crystal display device having a large number of pixel electrodes 4a and a large-screen liquid crystal display device having a long signal electrode 4 can be provided.
  • a metal film such as aluminum, gold, silver, copper, or molybdenum is preferable in terms of low resistivity, and a metal film such as chromium, anolymium, or silver is preferable in terms of light reflectivity.
  • the metal film used for the signal electrode 4 can be formed by an evaporation method such as sputtering.
  • the light diffusing layer 11a is provided between the pixel electrode 4a and the liquid crystal layer 9 in the same manner as in the fifth embodiment. A clear display image with a clear outline can be obtained.
  • FIG. 15 is a sectional view of a liquid crystal display device according to a seventh embodiment of the present invention.
  • Each reference numeral is the same as the reference numeral in FIG. 1A described in the first embodiment.
  • the seventh embodiment is characterized in that an active matrix liquid crystal display panel using a switching element such as TFT is used for the liquid crystal display panel.
  • the configuration of the active matrix liquid crystal display panel will be described below, but the configuration not particularly described is basically the same as that of the first embodiment described above.
  • a plurality of pixels each having a thin film transistor TFT 1 and a pixel electrode 4a are formed on a surface inside a first substrate 1 (liquid crystal side). Each pixel is adjacent Are arranged in the intersection area between two scanning signal lines and two adjacent video signal lines.
  • the thin film transistor TFT 1 includes a gate electrode GT provided on the first substrate 1, a gate insulating film GI provided thereon, a first semiconductor layer (channel layer) AS provided thereon, and a gate electrode GT provided thereon.
  • the second semiconductor layer (semiconductor layer containing impurities) r0 has a source electrode SD1 and a drain electrode SD2 provided thereon.
  • the source electrode SD1 and the drain electrode SD2 are formed of a multilayer conductive film of r1 and r2, but may be a single-layer conductive film of only rl.
  • the relationship between the electrodes is reversed depending on how the voltage is applied, and SD2 becomes the source electrode and SD1 becomes the drain electrode.
  • SD1 will be described as the source electrode and SD2 will be described as the drain electrode for convenience.
  • PSV1 is a protective film made of an insulating film for protecting the thin film transistor TFT1
  • 4a is a pixel electrode
  • 0RI1 is the direction of the liquid crystal layer 9 on the first substrate 1 side
  • 1st alignment film denotes a liquid crystal layer 9
  • 1st alignment film denotes a liquid crystal layer 9
  • ORI Reference numeral 2 denotes a liquid crystal layer 9
  • a second alignment film for aligning the second substrate 5 side
  • 8 an upper electrode (common electrode).
  • BM is a light shielding film that shields the thin film transistor TFT1 from light.
  • the BM is also called a black matrix, and also functions to improve the display contrast by blocking light between the pixel electrode 4a and the adjacent pixel electrode.
  • SIL is a conductive film that electrically connects the upper electrode 8 to the terminals (g1, g2, rl, r2, and r3) provided on the first substrate 1. is there.
  • the thin-film transistor TFT 1 When a selection voltage is applied to the gate electrode GT, the thin-film transistor TFT 1 becomes electrically conductive between the source electrode SD 1 and the drain electrode SD 2 and functions as a switch, similarly to the insulated gate field-effect transistor.
  • the pixel electrode 4a is electrically connected to the source electrode SD1, the video signal line is electrically connected to the drain electrode SD2, and the scanning signal line is electrically connected to the gate electrode.
  • C st is a capacitor electrode and functions to hold the gradation voltage supplied to the pixel electrode 4a until the next selection period.
  • Active matrix liquid crystal display devices have switching elements such as thin film transistors for each pixel, so there is no problem of crosstalk between different pixels, and crosstalk is eliminated by special driving such as voltage averaging. There is no need to perform, and it is easy to realize multi-gradation display, and the contrast does not decrease even if the number of scanning lines is increased.
  • the pixel electrode 4a is made of a reflective metal film of aluminum, chromium, titanium, tantalum, molybdenum, silver, or the like. Further, in the present embodiment, since the protective film PSVI is provided between the pixel electrode 4a and the thin film transistor TFT1, no malfunction occurs even when the pixel electrode 4a is enlarged and overlaps with the thin film transistor TFT1. It is possible to realize a liquid crystal display device having a high reflectance.
  • the first embodiment has been described in that the first retarder 12 c is not provided, and the third retarder 12 e for improving the viewing angle characteristics is provided. Different from form. Other configurations of the optical film 12 are the same as those of the first embodiment.
  • the third retardation film 12 e is also called a viewing angle widening film, and is provided for the purpose of improving the angle dependence of the display characteristics of the liquid crystal display device using birefringence characteristics.
  • the third retardation plate 12 e can also be formed of an organic resin film such as polycarbonate, polyacrylate, or polysulfone, the third retardation plate 12 d has the third retardation
  • the light diffusion bonding layer 11a as the bonding layer for fixing the plate 12e, it is possible to prevent cracks from being generated in the light diffusion bonding layer 11a.
  • the present invention is applied to a reflection type liquid crystal display device which performs display using external light such as sunlight when there is external light, and is particularly suitable for a pen input type computer. It can be mounted on the display of such a portable information processing device to reduce the power consumption of the information processing device and reduce the size, thickness, and weight of the information processing device. It is.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Liquid Crystal (AREA)

Abstract

A liquid crystal display of which the size, thickness, and weight are small. The display has a light diffusing layer which is provided in the display part and made of adhesive (17) and a light diffusing material (16) having a different refractive index from that of the adhesive (17).

Description

[技術分野]  [Technical field]
本発明は、 液晶表示装置 (すなわち液晶表示モジュール) に関し、 特に外部光を反射して画像を表示する、 反射型液晶表示装置に関する。  The present invention relates to a liquid crystal display device (that is, a liquid crystal display module), and more particularly to a reflection type liquid crystal display device that reflects an external light to display an image.
[背景技術]  [Background technology]
現在のような高度情報化社会においては、 何時でも、 何処でも必要 な情報を入手したいという要求が高く、 第 1 6図に示すような、 携帯型 情報処理装置 4 7の需要が高くなつている。  In today's highly information-oriented society, there is a high demand for obtaining necessary information anytime and anywhere, and the demand for portable information processing devices 47 as shown in Fig. 16 is increasing. .
そして携帯型情報処理装置 4 7には、 小型で軽量であること、 厚さ が薄いこと、 バッテリーで駆動出来る時間が長いことが要求される。 従って携帯型情報処理装置 4 7の表示装置 4 6には、 小型軽量で薄 型の表示装置が作れること、 太陽光などの外部光がある場合は補助照明 が不要で消費電力が少なくて済む等の理由により、 反射型液晶表示装置 4 6が最適である。  The portable information processing device 47 is required to be small and lightweight, to be thin, and to be capable of being driven by a battery for a long time. Therefore, the display device 46 of the portable information processing device 47 can be made a small, lightweight and thin display device, and when there is external light such as sunlight, auxiliary lighting is not required and power consumption can be reduced. For this reason, the reflection type liquid crystal display device 46 is optimal.
しかし現在でも、 携帯型情報処理装置 4 7の小型化、 薄型化、 軽量 化に対する要求は強く、 それに伴い反射型液晶表示装置 4 6の小型化、 薄型化、 軽量化に対する要求も強くなつている。  However, even today, there is a strong demand for smaller, thinner, and lighter portable information processing devices 47, and accordingly, there is a growing need for smaller, thinner, and lighter reflective liquid crystal display devices 46. .
本発明の目的は、 薄型の液晶表示装置を提供することにある。  An object of the present invention is to provide a thin liquid crystal display device.
また本発明の他の目的は、 軽量の液晶表示装置を提供することにあ 。  Another object of the present invention is to provide a lightweight liquid crystal display device.
また本発明の他の目的は、 小型の液晶表示装置を提供することにあ o  Another object of the present invention is to provide a small liquid crystal display device.
また本発明の他の目的は、 簡単な構造で、 表示特性の良い液晶表示 装置を提供することにある。  Another object of the present invention is to provide a liquid crystal display device having a simple structure and good display characteristics.
また本発明の他の目的は、 簡単な構造で、 高いコントラストの表示 が得られる液晶表示装置を提供することにある。 Another object of the present invention is to provide a high contrast display with a simple structure. The object of the present invention is to provide a liquid crystal display device which can obtain the following.
また本発明の他の目的は、 簡単な構造で、 外部光に対し高い反射率 が得られる反射型液晶表示装置を提供することにある。  Another object of the present invention is to provide a reflection type liquid crystal display device which can obtain a high reflectance with respect to external light with a simple structure.
また本発明の他の目的は、 簡単な構造で、 薄暗い場所でも表示が認 識出来る反射型液晶表示装置を提供することにある。  Another object of the present invention is to provide a reflective liquid crystal display device having a simple structure and capable of recognizing a display even in a dim place.
また本発明の他の目的は、 簡単な構造で、 消費電力が少ない液晶表 示装置を提供することにある。  Another object of the present invention is to provide a liquid crystal display device having a simple structure and low power consumption.
また本発明の他の目的は、 少ない数の部材で製作出来る液晶表示装 置を提供することにある。  Another object of the present invention is to provide a liquid crystal display device that can be manufactured with a small number of members.
また本発明の他の目的は、 製造の容易な液晶表示装置を提供するこ とにある。  Another object of the present invention is to provide a liquid crystal display device which is easy to manufacture.
また本発明のさらに他の目的は、 液晶表示装置のコストを低減する ことにある。  Still another object of the present invention is to reduce the cost of a liquid crystal display device.
また、 反射型液晶表示装置の表示の画質は、 透過型液晶表示装置と 比べると、 未だ改善する余地がある。  Further, there is still room for improvement in the display image quality of the reflection type liquid crystal display device as compared with the transmission type liquid crystal display device.
そこで本発明の他の目的は、 表示のコントラス卜が高い反射型液晶 表示装置を提供することにある。  Therefore, another object of the present invention is to provide a reflective liquid crystal display device having a high display contrast.
また本発明の他の目的は、 反射率が高く光の利用効率が良い反射型 の液晶表示装置を提供することにある。  Another object of the present invention is to provide a reflective liquid crystal display device having a high reflectivity and good light use efficiency.
なお補助照明装置を設けた反射型液晶表示装置の公知例には日本国 公開特許公報特開平 1 0 - 3 2 6 5 1 5号公報がある。 しかし、 上記公 知例では、 光拡散層の構成や、 各種光学フィルムの光学軸の関係やリタ デ一シヨン (Δ η · d ) の最適な数値までは記載されていなかった。  A well-known example of a reflection type liquid crystal display device provided with an auxiliary lighting device is disclosed in Japanese Patent Application Laid-Open No. Hei 10-32615. However, in the above-mentioned known examples, the configuration of the light diffusion layer, the relationship between the optical axes of various optical films, and the optimal numerical values of the retardation (Δη · d) were not described.
[発明の開示]  [Disclosure of the Invention]
反射型液晶表示装置では、 表示の視角特性を改善するために光拡散 フィルムを用いる。 第 2図は光拡散フィルムを用いた反射型液晶表示装置の断面図を示 す図である。 各符号は、 後に説明する第 1図と同じ符号を用いているの で、 符号の詳細な説明は省略する。 In a reflection type liquid crystal display device, a light diffusing film is used to improve the viewing angle characteristics of display. FIG. 2 is a sectional view showing a reflection type liquid crystal display device using a light diffusion film. Since the same reference numerals are used as those in FIG. 1 described later, detailed description of the reference numerals is omitted.
液晶表示装置 4 6に向かう外部光 L 1は、 特定の画素電極 4 aを通 つて、 反射層 2で反射され反射光 L 2となり、 光拡散フィルム 1 2 aを 通って液晶表示装置 4 6の外へ出て行く。  The external light L1 traveling to the liquid crystal display device 46 passes through the specific pixel electrode 4a, is reflected by the reflective layer 2 and becomes the reflected light L2, passes through the light diffusion film 12a, and is reflected by the liquid crystal display device 46. Go outside.
光拡散フィルム 1 2 aを通過した反射光 L 2は、 様々な方向に拡散 する拡散光 L 3を生じる。  The reflected light L2 that has passed through the light diffusion film 12a generates diffused light L3 that diffuses in various directions.
従って任意の方向から液晶表示装置を観測する観測者は、 拡散光 L 3を見ることにより、 表示を認識することが出来る。  Therefore, an observer observing the liquid crystal display device from any direction can recognize the display by looking at the diffused light L3.
それに対し、 第 3図に示すように、 光拡散フィルムの無い反射型液 晶表示装置の場合は、 反射光 L 2は特定の方向のみに出射する。  On the other hand, as shown in FIG. 3, in the case of a reflective liquid crystal display device without a light diffusion film, the reflected light L2 is emitted only in a specific direction.
従って反射型液晶表示装置においては、 光拡散フィルム 1 2 aのよ うな光を様々な方向に散乱する部材が無いと、 反射光 L 2の通り道以外 の個所から液晶表示装置 4 6を観測する観測者には表示を認識すること が出来ない。  Therefore, in the reflective liquid crystal display device, if there is no member that scatters light in various directions, such as the light diffusion film 12a, the observation of the liquid crystal display device 46 from a place other than the path of the reflected light L2 is performed. Cannot recognize the display.
このように、 反射型液晶表示装置においては、 光拡散フィルム 1 2 aのような光を散乱する部材は、 表示を見易くするために無くてはなら ないものとなっている。  As described above, in the reflection type liquid crystal display device, a member that scatters light, such as the light diffusion film 12a, is indispensable to make the display easier to see.
しかし、 光を散乱する部材に、 厚さの厚い光拡散フィルムを使用す ると、 液晶表示装置の小型化、 薄型化、 軽量化が困難になる。  However, if a thick light-diffusing film is used for the light-scattering member, it becomes difficult to reduce the size, thickness, and weight of the liquid crystal display device.
また反射型液晶表示装置の、 コントラストゃ反射率化等の表示特性 についても、 最近、 更なる改善の要求が高くなつてきている。  In addition, demands for further improvement in the display characteristics of a reflection type liquid crystal display device such as a contrast / reflectance ratio have recently been increasing.
上記の課題を解決するために本発明は、 第 1図 a及び第 1図 bに示 すように、 液晶表示装置の表示部に設ける光拡散層 1 1 aを接着剤 1 7 と、 接着剤 1 7と屈折率が異なる光拡散材 1 6とで構成した。 また反射型液晶表示装置の表示画質を向上するために、 第 6図に示 すように、 液晶表示パネルの光反射層 2の反射分光特性 34と光拡散層 1 1 aの透過分光特性 35 aを最適化した。 In order to solve the above-mentioned problems, the present invention provides a light diffusion layer 11a provided on a display portion of a liquid crystal display device with an adhesive 17 as shown in FIG. 1a and FIG. 1b. 17 and a light diffusing material 16 having a different refractive index. In order to improve the display image quality of the reflection type liquid crystal display device, as shown in FIG. 6, the reflection spectral characteristics 34 of the light reflection layer 2 and the transmission spectral characteristics 35 of the light diffusion layer 11 a of the liquid crystal display panel 35 a Optimized.
また反射型液晶表示装置の表示画質を向上するために、 液晶表示パ ネル及び夫々の位相差板のリ夕デーション (屈折率異方性の値 Δ nと屈 折率異方性を有する層の厚さ dの積。 Δη · dと呼ぶこともある。 ) を 最適化した。  In order to improve the display image quality of the reflective liquid crystal display device, the liquid crystal display panel and the retardation of each retardation plate (the value of the refractive index anisotropy Δn and the Product of thickness d. Sometimes called Δη · d.
さらに反射型液晶表示装置の表示画質を向上するために、 第 7図に 示す、 偏光板 1 2 bの光学軸 (延伸軸、 偏光軸) 3 8、 第 1位相差板 1 2 cの光学軸 3 9、 第 2位相差板 1 2 dの光学軸 4 0、 液晶表示パネル の入射光側配向軸 (第 2の基板 5と接する側の液晶層 9の配向軸、 また は液晶層の第 2の配向軸) 3 7及び出射光側配向軸(第 1の基板 1と接 する側の液晶層 9の配向軸、 または液晶層の第 1の配向軸) 36の関係 を、 第 2の基板 5に接する第 2の位相差板 1 2 dの光学軸 40と出射光 側の液晶層 9の配向軸 36のなす角度は 3 0° 〜8 0° の範囲とし、 偏 光板 1 2 b側に接する第 1の位相差板 1 2 cの光学軸 3 9と出射光側の 液晶層 9の配向軸 3 6のなす角度は 6 0° 〜 1 3 0° の範囲とし、 偏光 板 1 2 bの光学軸 3 8と出射光側の液晶層 9の配向軸 3 6のなす角度は 7 0° 〜 1 5 0° の範囲とし、 出射光側の液晶層 9の配向軸 3 6と入射 光側の液晶の配向軸 3 7の角度を 24 0度以上とし、 液晶層 9のリタデ —シヨン An ' dを 0. 7〃m〜0. 9 5〃 mとし、 第 2の位相差板 1 2 dのリタデ一シヨン Δ η · dは 1 3 0 nm〜2 5 0 nmとし、 第 1の 位相差板 1 2 cのリタデーション Δ η · dは 3 8 0 nm〜5 00 nmと し、 最適化した。  In order to further improve the display image quality of the reflective liquid crystal display device, the optical axes (stretching axis, polarizing axis) 38 of the polarizing plate 12b and the optical axes of the first retardation plate 12c are shown in FIG. 39, the optical axis 40 of the second retardation plate 12 d, the incident light-side alignment axis of the liquid crystal display panel (the alignment axis of the liquid crystal layer 9 on the side in contact with the second substrate 5, or the second The relationship between the alignment axis 37 and the emission light side alignment axis (the alignment axis of the liquid crystal layer 9 in contact with the first substrate 1 or the first alignment axis of the liquid crystal layer) 36 is expressed by the second substrate 5 The angle between the optical axis 40 of the second retardation plate 12 d that contacts the liquid crystal layer 9 and the alignment axis 36 of the liquid crystal layer 9 on the output light side is in the range of 30 ° to 80 °, and contacts the polarizing plate 12 b side. The angle between the optical axis 39 of the first retardation plate 1 2c and the orientation axis 36 of the liquid crystal layer 9 on the output light side is in the range of 60 ° to 130 °, and the optical axis of the polarizing plate 12b is The angle between the axis 3 8 and the alignment axis 3 6 of the liquid crystal layer 9 on the exit light side is 7 The angle between the alignment axis 36 of the liquid crystal layer 9 on the exit light side and the alignment axis 37 of the liquid crystal on the incident light side is set to 240 ° or more, and the retardation of the liquid crystal layer 9 is set within the range of 0 ° to 150 °. An'd is 0.7 0m to 0.95〃m, and the retardation Δηd of the second retardation plate 12 d is 13 nm to 250 nm, and the first The retardation Δη · d of the phase difference plate 12 c was optimized to be between 380 nm and 500 nm.
本発明によれば、 液晶表示装置の表示部に設ける光拡散層 1 l aを 接着剤 1 7と、 接着剤 1 7と屈折率が異なる光拡散材 1 6とで構成して いるので、 光拡散フィルムが不要になり、 液晶表示装置の薄型化、 小型 化及び軽量化が出来る。 According to the present invention, the light diffusion layer 1 la provided in the display section of the liquid crystal display device is constituted by the adhesive 17 and the light diffusion material 16 having a different refractive index from the adhesive 17. This eliminates the need for a light-diffusing film, making it possible to reduce the thickness, size, and weight of the liquid crystal display device.
また本発明によれば、 第 6図に示すように、 光拡散層 1 1 aの透過 分光特性 3 5 aを、 液晶表示パネルの光反射層 2の反射分光特性 3 4の ように、 フラッ トにすることにより、 液晶表示装置の反射率特性を改善 することが出来る。 従って光利用効率の良い液晶表示装置を提供出来る また本発明によれば、 液晶表示パネル及び夫々の位相差板のリタデ —シヨン Δ η · dを最適化することにより、 高いコントラスト特性を有 する液晶表示装置を提供することが出来る。  According to the present invention, as shown in FIG. 6, the transmission spectral characteristic 35a of the light diffusion layer 11a is flattened like the reflection spectral characteristic 34 of the light reflection layer 2 of the liquid crystal display panel. By doing so, the reflectance characteristics of the liquid crystal display device can be improved. Therefore, it is possible to provide a liquid crystal display device having good light use efficiency. Further, according to the present invention, by optimizing the retardation Δη · d of the liquid crystal display panel and each of the retardation plates, a liquid crystal having a high contrast characteristic can be provided. A display device can be provided.
また本発明によれば、 第 7図に示す、 偏光板 1 2 bの光学軸 3 8、 第 1位相差板 1 2 cの光学軸 3 9、 第 2位相差板 1 2 dの光学軸 4 0、 液晶表示パネルの入射光側配向軸 3 7及び出射光側配向軸 3 6の関係を 最適化することにより、 第 1の位相差板 1 2 cや第 2の位相差板 1 2 d のリタデ一シヨンにばらつきが有っても、 高いコントラスト特性を有す る液晶表示装置を提供することが出来る。  According to the present invention, the optical axis 38 of the polarizing plate 12b, the optical axis 39 of the first retardation plate 12c, and the optical axis 4 of the second retardation plate 12d shown in FIG. 0, by optimizing the relationship between the incident-light-side alignment axis 37 and the outgoing-light-side alignment axis 36 of the liquid crystal display panel, the first retardation plate 12 c and the second retardation plate 12 d It is possible to provide a liquid crystal display device having high contrast characteristics even if the retardation varies.
[図面の簡単な説明]  [Brief description of drawings]
第 1図 aは本発明の一実施形態における液晶表示装置の断面図、 第 1図 bは第 1図 aの I部の拡大図である。  FIG. 1a is a sectional view of a liquid crystal display device according to an embodiment of the present invention, and FIG. 1b is an enlarged view of a portion I in FIG. 1a.
第 2図は光拡散フィルムを用いた反射型液晶表示装置の断面図であ る o  FIG. 2 is a cross-sectional view of a reflective liquid crystal display device using a light diffusion film.
第 3図は光拡散フィルが無い場合の反射型液晶表示装置の断面図で 第 4図 a〜 eは本発明の一実施形態における液晶表示装置の外観を 示す図である。  FIG. 3 is a cross-sectional view of a reflective liquid crystal display device without a light diffusion filter, and FIGS. 4a to 4e are views showing the appearance of a liquid crystal display device according to an embodiment of the present invention.
第 5図 aは第 4図 aの A— A個所の断面図、 第 5図 bは第 4図 aの B— B個所の断面図、 第 5図 cは第 4図 aの C一 C個所の断面図、 第 5 図 dは第 4図 aの D— D個所の断面図である。 Fig. 5a is a sectional view taken along the line A-A in Fig. 4a, and Fig. 5b is a sectional view of Fig. 4a. Fig. 5c is a cross-sectional view taken along a line C-C in Fig. 4a, and Fig. 5d is a cross-sectional view taken along a line D-D in Fig. 4a.
第 6図は反射層と、 拡散材入り接着剤の分光特性を示す図である。 第 7図は本発明の一実施形態における、 偏光板の吸収軸と、 第 1位 相差板の延伸軸と、 第 2位相差板の延伸軸との間の角度の関係を説明す る図である。  FIG. 6 is a diagram showing the spectral characteristics of the reflective layer and the adhesive containing the diffusing material. FIG. 7 is a diagram for explaining an angle relationship among an absorption axis of a polarizing plate, a stretching axis of a first retardation plate, and a stretching axis of a second retardation plate in one embodiment of the present invention. is there.
第 8図は位相差板のリタデーシヨン (Δ η · d ) の変動に対する液 晶表示装置の表示のコントラスト比の変化を示す図である。  FIG. 8 is a diagram showing a change in the contrast ratio of the display of the liquid crystal display device with respect to the fluctuation of the retardation (Δη · d) of the phase difference plate.
第 9図は位相差板のリタデーションの変動に対する液晶表示装置の 外部光の反射率の変化を示す図である。  FIG. 9 is a diagram showing a change in the reflectance of external light of the liquid crystal display device with respect to a change in retardation of the phase difference plate.
第 1 0図は本発明の第 2の実施形態における液晶表示装置の断面図 であ。。  FIG. 10 is a sectional view of a liquid crystal display device according to a second embodiment of the present invention. .
第 1 1図は本発明の第 3の実施形態における液晶表示装置の断面図 0"、める。  FIG. 11 is a sectional view 0 "of a liquid crystal display device according to a third embodiment of the present invention.
第 1 2図は本発明の第 4の実施形態における液晶表示装置の断面図 こ "あ o。  FIG. 12 is a sectional view of a liquid crystal display device according to a fourth embodiment of the present invention.
第 1 3図は本発明の第 5の実施形態における液晶表示装置の断面図 である。  FIG. 13 is a sectional view of a liquid crystal display device according to a fifth embodiment of the present invention.
第 1 4図は本発明の第 6の実施形態における液晶表示装置の断面図 である。  FIG. 14 is a sectional view of a liquid crystal display device according to a sixth embodiment of the present invention.
第 1 5図は本発明の第 7の実施形態における液晶表示装置の断面図 である。  FIG. 15 is a sectional view of a liquid crystal display device according to a seventh embodiment of the present invention.
第 1 6図は本発明の液晶表示装置を用いた情報処理装置の外観を示 す斜視図である。  FIG. 16 is a perspective view showing the appearance of an information processing device using the liquid crystal display device of the present invention.
[発明を実施するための最良の形態]  [Best Mode for Carrying Out the Invention]
以下、 図面を用いて本発明の実施の形態について詳細に説明する。 なお、 以下で説明する図面で、 同一機能を有するものは同一符号を付け 、 その繰返しの説明は省略する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In the drawings described below, components having the same function are denoted by the same reference numerals, and the description thereof will not be repeated.
第 1の実施形態.  First embodiment.
第 1図 aは本発明の一実施形態における液晶表示装置の断面図、 第 1図 bは第 1図 aの I部の拡大図である。  FIG. 1a is a sectional view of a liquid crystal display device according to an embodiment of the present invention, and FIG. 1b is an enlarged view of a portion I in FIG. 1a.
本実施形態は、 反射型液晶表示パネルに導光体 1 3と蛍光ランプや L E D等の線状光源 1 4からなる照明装置と夕ツチパネル等の入力装置 1 5を設置したものである。  In this embodiment, an illumination device including a light guide 13 and a linear light source 14 such as a fluorescent lamp or an LED and an input device 15 such as a sunset panel are installed on a reflective liquid crystal display panel.
下部ガラス基板である第 1の基板 1の内面にはアルミニウム薄膜か らなる反射層 2、 S i 0 2等の酸化防止膜からなる保護膜 3、 I T O ( Indium Tin oxide) 等の透明導電膜からなる下側電極 (信号電極) 4が 形成されている。 A first aluminum thin film or Ranaru reflective layer 2 on the inner surface of the substrate 1, S i 0 2 such as a protective film 3 made of anti-oxidation film of, ITO (Indium Tin oxide) transparent conductive film such as a lower glass substrate The lower electrode (signal electrode) 4 is formed.
また、 上部ガラス基板である第 2の基板 5の内面には、 有機樹脂膜 に染料あるいは顔料を添加した 3色 (R , G, B ) のカラーフィルタ 6 、 カラーフィルタ 6から液晶層 9に不純物が混入するのを防止し、 第 2 の基板 5の内面を平坦化するための有機材料からなる保護膜 7、 I T O 等の透明導電膜からなる上側電極 (走査電極) 8が形成されている。 なお、 カラ一フィルタ 6を構成する各色 R , G , Bの間には必要に 応じて格子状またはストライプ状の遮光膜 (ブラックマトリックス) を 形成し、 その上に保護膜 7を形成する。  In addition, on the inner surface of the second substrate 5 which is the upper glass substrate, a color filter 6 of three colors (R, G, B) obtained by adding a dye or a pigment to an organic resin film, and impurities from the color filter 6 to the liquid crystal layer 9 are formed. A protective film 7 made of an organic material and a top electrode (scanning electrode) 8 made of a transparent conductive film such as ITO are formed to prevent contamination of the second substrate 5 and planarize the inner surface of the second substrate 5. A light-shielding film (black matrix) in the form of a lattice or stripe is formed between the colors R, G, and B of the color filter 6 as necessary, and the protective film 7 is formed thereon.
これら第 1及び第 2の基板 1と 5の間には液晶組成物からなる液晶 層 9が注入され、 エポキシ樹脂等のシール材 1 0で封止されて液晶表示 パネルが構成されている。  A liquid crystal layer 9 made of a liquid crystal composition is injected between the first and second substrates 1 and 5, and sealed with a sealing material 10 such as an epoxy resin to form a liquid crystal display panel.
液晶表示パネルの観測者側の基板となる第 2の基板 5の外側 (上側 ) には、 偏光板 1 2 b、 第 1の位相差板 1 2 c及び第 2の位相差板 1 2 dが積層されている。 第 2の基板 5、 偏光板 1 2 b、 第 1の位相差板 1 2 c及び第 2の位相差板 1 2 dの間は接着剤 (例えばエポキシ系ゃァク リル系の接着剤) や粘着材等の接着層 1 1、 1 1 aが設けられ各部材が 固定されている。 なおここで粘着剤とは、 各種の光学フィルム 1 2同志 を一度貼り付けた後に剥がしても、 再度光学フイルム 1 2同志を貼り付 けることが出来る接着剤のことを意味する。 粘着剤を用いて各種光学フ イルム 1 2や液晶表示パネル同志を固定することにより、 誤って光学フ イルム 1 2を固定した場合に再生が可能になり、 液晶表示装置の製造歩 留を改善することが出来る。 On the outside (upper side) of the second substrate 5, which is the substrate on the observer side of the liquid crystal display panel, a polarizing plate 12b, a first retardation plate 12c, and a second retardation plate 12d are provided. It is laminated. Second substrate 5, Polarizer 1 2b, First retarder 1 An adhesive layer (eg, an epoxy-based adhesive) or an adhesive layer 11 such as an adhesive is provided between 2c and the second retardation plate 12d, and each member is fixed. Have been. Here, the adhesive means an adhesive capable of attaching the optical films 12 again, even if the various optical films 12 are once adhered and then peeled off. By fixing various optical films 12 and liquid crystal display panels together using an adhesive, if the optical film 12 is fixed by mistake, reproduction becomes possible, improving the production yield of liquid crystal display devices. I can do it.
反射層 2は反射率の点から鏡面反射性を有するものが良く、 本実施 の形態ではアルミニウム膜を蒸着法で形成している。 この反射層 2の表 面には反射率を向上させるための多層膜を施してもよく、 その上に反射 層 2の腐蝕保護と表面の平坦化を行う目的で保護膜 3を形成する。  The reflective layer 2 preferably has a specular reflectivity in terms of reflectance. In the present embodiment, an aluminum film is formed by an evaporation method. A multilayer film for improving the reflectance may be formed on the surface of the reflective layer 2, and a protective film 3 is formed thereon for the purpose of protecting the reflective layer 2 against corrosion and flattening the surface.
なお、 この反射層 2はアルミニウムに限らず、 鏡面反射性を有する 膜であればク口ムゃ銀等の金属膜やあるし、は非金属膜を用いてもよい。 また、 保護膜 3は S i 0 2膜に限定されず、 反射層 2を保護する絶縁膜 であれば良く、 シリコンの窒化膜等の無機膜や有機チタニウム膜等の有 機金属膜やポリイミ ドゃエポキシ等の有機膜でも良い。 特にポリイミ ド やエポキシ等の有機膜は平坦性の点で優れており、 保護膜 3の上に形成 される下側電極 4を容易に形成することが出来る。 また保護膜 3に有機 チタニウム膜等の有機金属膜を用いると、 下側電極 4を高温で形成する ことが出来、 下側電極 4の配線抵抗を下げること力出来る。 The reflective layer 2 is not limited to aluminum, and may be a metal film such as silver or silver as long as it is a film having specular reflectivity, or a non-metal film. Further, the protective film 3 is not limited to the SiO 2 film, but may be any insulating film that protects the reflective layer 2, such as an inorganic film such as a silicon nitride film, an organic metal film such as an organic titanium film, or a polyimide.有機 An organic film such as epoxy may be used. In particular, an organic film such as polyimide or epoxy is excellent in flatness, and the lower electrode 4 formed on the protective film 3 can be easily formed. When an organic metal film such as an organic titanium film is used for the protective film 3, the lower electrode 4 can be formed at a high temperature, and the wiring resistance of the lower electrode 4 can be reduced.
多層光学フィルム 1 2を設置した液晶パネルの上方には、 外部光が 少ない時に使用する照明装置として導光体 1 3と光源 1 4が設けられて いる。 導光体 1 3はアクリル樹脂などの透明樹脂からなり観測者側の面 (上面) には光源 1 4の光 L 4を液晶表示パネル側に出射するための印 刷パターンや凹凸の加工が施されている。 さらに、 照明装置の上には、 夕ツチパネル等の入力装置 1 5が設け られている。 この入力装置 1 5はペンのように先の尖った棒状のものや 指等で入力装置 1 5の表面を押すことで、 押された部分の位置を検出し 、 情報処理装置 4 7のホスト 5 0に送るためのデータ信号を出力するも のである。 Above the liquid crystal panel on which the multilayer optical film 12 is installed, a light guide 13 and a light source 14 are provided as an illumination device used when there is little external light. The light guide 13 is made of a transparent resin such as acrylic resin, and the surface (top surface) on the observer side is subjected to a printing pattern or irregularities for emitting the light L 4 of the light source 14 to the liquid crystal display panel side. Have been. Further, an input device 15 such as a sunset panel is provided above the lighting device. The input device 15 detects the position of the pressed portion by pressing the surface of the input device 15 with a pointed stick or a finger like a pen, and detects the position of the pressed portion. It outputs a data signal to send to 0.
液晶表示パネルの第 2の基板 5、 導光体 1 3及び入力装置は両面粘 着テープ (例えば不織布に粘着剤を染み込ませたもの) 等により固定さ れる。 両面粘着テープを用いることにより、 一度貼り付けた後剥がすこ とが可能なので、 液晶表示パネル、 照明装置及び入力装置を誤って固定 した場合でも再生すること力出来る。  The second substrate 5, the light guide 13 and the input device of the liquid crystal display panel are fixed with a double-sided adhesive tape (for example, a nonwoven fabric impregnated with an adhesive) or the like. By using a double-sided adhesive tape, it can be peeled off after being pasted once, so that it can reproduce even if the liquid crystal display panel, lighting device and input device are fixed by mistake.
なお、 照明やデータ入力が不要な場合は照明装置や入力装置 1 5は 無くてもよく、 必要に応じて照明装置や入力装置 1 5を液晶表示パネル に付加すればよい。  Note that when lighting and data input are not required, the lighting device and the input device 15 may not be provided, and the lighting device and the input device 15 may be added to the liquid crystal display panel as needed.
本実施形態では、 第 1の位相差板 1 2 cと第 2の位相差板 1 2 dの 間に設ける接着層 1 1 aに光拡散機能を持たせている。 具体的には第 1 図 bに示すように、 接着剤 1 7の中に接着剤 1 7とは屈折率の異なる光 拡散材 1 6を混入している。 接着剤 1 7と拡散材 1 6の屈折率が異なる ので光は接着層 1 1 aの中で散乱される。 接着剤 1 7と拡散材 1 6は屈 折率が異なればよく、 接着剤 1 7にエポキシ系ゃァクリル系接着剤を用 いた場合は拡散材 1 6にポリエチレン、 ポリスチレン、 ジビニールベン ゼン等の透明な有機物の粒や、 シリ力等の透明な無機物の粒を用いる事 が出来る。 なお接着剤 1 7は, 屈折率が拡散材 1 6と異なれば, 先に説 明した粘着剤を用いても良く、 その場合は第 1の位相差板 1 2 cを誤つ て第 2の位相差板 1 2 cに貼り付けても再生する事が出来る。 拡散材 1 6に透明な無機物や有機物の粒を用いる事により、 可視光領域の吸収が 少ないので、 液晶表示装置の反射率や分光特性を改善することが出来る 。 さらに接着剤 1 7が有機系物質の場合は拡散材 1 6に有機物の粒を用 いる事により、 熱膨張率の差を少なくすることが出来るので、 接着層 1 1 aでクラックが発生する事も無い。 In the present embodiment, the adhesive layer 11a provided between the first retardation plate 12c and the second retardation plate 12d has a light diffusion function. Specifically, as shown in FIG. 1b, a light diffusing material 16 having a different refractive index from the adhesive 17 is mixed into the adhesive 17. Light is scattered in the adhesive layer 11a because the adhesive 17 and the diffusing material 16 have different refractive indexes. Adhesive 17 and diffusing material 16 need only have different refractive indices.If epoxy-acrylic adhesive is used for adhesive 17, transparent material such as polyethylene, polystyrene, divinylbenzene, etc. is used for diffusing material 16. Organic particles and transparent inorganic particles such as silicide can be used. If the refractive index of the adhesive 17 is different from that of the diffusing material 16, the adhesive described above may be used. In that case, the first retardation plate 12 c is erroneously used and the second adhesive is used. Even if it is pasted on the phase difference plate 1 2 c, it can be reproduced. By using transparent inorganic or organic particles for the diffusion material 16, the absorption in the visible light region is small, so that the reflectance and spectral characteristics of the liquid crystal display device can be improved. . Further, when the adhesive 17 is an organic substance, the difference in coefficient of thermal expansion can be reduced by using organic particles for the diffusing material 16, so that cracks are generated in the adhesive layer 11a. Not even.
なお接着剤 1 7の中に拡散材 1 6を混入すると、 接着剤 1 7のみの 場合に比べて、 接着層 1 1 aにクラックが発生し易くなる場合があるが 、 本実施例では熱膨張率が実質的に同じ第 1の位相差板 1 2 cと第 2の 位相差板 1 2 dの間に光拡散材入りの接着層 1 1 aを設けているので、 接着層 1 1 aにクラックが発生する問題もない。  When the diffusing material 16 is mixed into the adhesive 17, cracks may be easily generated in the adhesive layer 11 a as compared with the case where only the adhesive 17 is used. Since the adhesive layer 11 a containing the light diffusing material is provided between the first retarder 12 c and the second retarder 12 d having substantially the same ratio, the adhesive 11 1 a There is no problem of cracking.
《画像表示の原理》  《Principle of image display》
次に本実施の形態の液晶表示装置の表示原理を説明する。  Next, the display principle of the liquid crystal display device of the present embodiment will be described.
様々な方向から照射される太陽光等の外部光 (入射光) L 1は、 入 力装置 1 5、 導光体 1 3、 特定の偏光軸の光のみを透過する偏光板 1 2 b、 第 1の位相差板 1 2 cに偏光板 1 2 bを固定するための接着層 1 1 、 第 1の位相差板 1 2 c、 第 2の位相差板 1 2 dに第 1の位相差板 1 2 cを固定するための光拡散機能を有する接着層 1 1 a、 第 2の位相差板 1 2 d、 第 2の基板 5に第 2の位相差板 1 2 dを固定するための接着層 1 1、 第 2の基板 5、 カラ一フィルタ 6、 上側電極 8、 液晶層 9及び特 定の画素電極 (または特定の信号線) 4 aを通って反射層 2に達する。 反射層 2に達した外部光 L 1は反射されて反射光 L 2になり、 入射 光 L 1とは逆の経路で、 特定の画素電極 4 a、 液晶層 9、 上側電極 8、 カラーフィルタ 6、 第 2の基板 5、 接着層 1 1、 複屈折効果を利用して 反射光 L 2を偏光板 1 2を透過し易い光に変換する第 2の位相差板 1 2 dを通って光拡散機能を有する接着層 1 1 aに達する。  External light (incident light) L 1 radiated from various directions, such as sunlight, is input device 15, light guide 13, polarizing plate 1 b that transmits only light of a specific polarization axis, Adhesive layer 11 for fixing polarizing plate 12b to 1st retarder 12c, 1st retarder 12c, 2nd retarder 12d to 1st retarder Adhesive layer 11 1a having a light diffusion function for fixing 12 c, second retarder 12 d, adhesion for fixing second retarder 12 d to second substrate 5 The light reaches the reflective layer 2 through the layer 11, the second substrate 5, the color filter 6, the upper electrode 8, the liquid crystal layer 9, and a specific pixel electrode (or specific signal line) 4 a. The external light L1 that has reached the reflective layer 2 is reflected and becomes reflected light L2, and has a specific pixel electrode 4a, a liquid crystal layer 9, an upper electrode 8, and a color filter 6 in a path opposite to that of the incident light L1. , The second substrate 5, the adhesive layer 11, and the light diffusing through the second retardation plate 12 d that converts the reflected light L 2 into light that easily transmits through the polarizing plate 12 using the birefringence effect. The functional adhesive layer reaches 1a.
接着層 1 1 aに入った反射光 L 2は様々な方向に散乱され散乱光 L 3を生じる。 接着層 1 1 aから出た直接反射光 L 2や散乱光 L 3は、 液 晶層 9を光が通過する時に生じる位相差を複屈折効果を利用して補償す る第 1の位相差板 1 2 c、 接着層 1 1、 偏光板 1 2 b、 導光体 1 3及び 入力装置 1 5を通って液晶表示装置の外に放出される。 観測者は液晶表 示装置の外に放出された直接反射光 L 2や散乱光 L 3を見ることで、 特 定の画素 4 aにより制御される、 表示を認識する事ができる。 The reflected light L2 entering the adhesive layer 11a is scattered in various directions to generate scattered light L3. The direct reflection light L2 and the scattered light L3 emitted from the adhesive layer 11a compensate for the phase difference generated when light passes through the liquid crystal layer 9 using the birefringence effect. The light is emitted to the outside of the liquid crystal display device through the first retardation plate 12 c, the adhesive layer 11, the polarizing plate 12 b, the light guide 13, and the input device 15. The observer can recognize the display controlled by the specific pixel 4a by looking at the directly reflected light L2 and the scattered light L3 emitted outside the liquid crystal display device.
《光拡散機能を有する接着層》  《Adhesive layer with light diffusion function》
本実施の形態では、 第 2の位相差板 1 2 dに第 1の位相差板 1 2 c を固定するための接着層 1 1 aが光拡散機能を有するので、 直接反射光 L 2の通り道以外の場所の観測者も散乱光 L 3により表示を認識する事 が出来るので、 液晶表示装置の視角特性が良好である。  In the present embodiment, since the adhesive layer 11a for fixing the first retardation plate 12c to the second retardation plate 12d has a light diffusion function, the path of the directly reflected light L2 An observer in a place other than the above can recognize the display by the scattered light L3, so that the viewing angle characteristics of the liquid crystal display device are good.
さらに、 光拡散フィルム 1 2 aが不要になるので、 液晶表示装置を 薄型化、 小型化及び軽量化出来る。 また光拡散フィルム 1 2 aが不要に なるので、 液晶表示装置の構造が簡単になり生産性が向上する。  Further, since the light diffusion film 12a becomes unnecessary, the liquid crystal display device can be made thinner, smaller, and lighter. Further, since the light diffusion film 12a is not required, the structure of the liquid crystal display device is simplified, and the productivity is improved.
なお本実施形態において光拡散機能を有する接着層 1 1 aはヘイズ 値が 6 0 %~ 9 0 %のものを使用すると良い。 ヘイズ値 Hは全光線透過 率を T t、 拡散透過率を T dとすると式 1で与えられる。  In this embodiment, the adhesive layer 11a having a light diffusion function preferably has a haze value of 60% to 90%. The haze value H is given by Equation 1 where Tt is the total light transmittance and Td is the diffuse transmittance.
H = T t / T d X 1 0 0 式 1  H = T t / T d X 1 0 0 Equation 1
接着層 1 1 aのヘイズ値 Hが 6 0 %よりも小さいと拡散光 L 3の量 が減り視角特性が悪化する。 また接着層 1 1 aのヘイズ値 Hが 9 0 %よ りも大きいと接着層 1 1 aの光透過率が悪くなり液晶表示装置の反射率 が低下する。  If the haze value H of the adhesive layer 11a is smaller than 60%, the amount of diffused light L3 decreases and the viewing angle characteristics deteriorate. If the haze value H of the adhesive layer 11a is larger than 90%, the light transmittance of the adhesive layer 11a becomes poor, and the reflectance of the liquid crystal display device decreases.
本実施形態のように光拡散機能を有する接着層 1 1 aを用いると、 接着剤 1 7と拡散材 1 6の屈折率の差、 拡散材 1 6の分散密度、 拡散材 1 6の粒径 dを調節する事により、 ヘイズ値 Hを簡単に最適な値に設定 する事ができる。 また、 接着剤 1 7にエポキシ系やアクリル系接着剤、 拡散材 1 6にジビニールベンゼン等の有機樹脂からなる透明ビーズ(球 形) を用いた例では拡散材 1 6の球径 dは 3〃 n!〜 1 0〃 mの範囲に設 定すると 6以上の高いコントラストを得る事が出来る。 When the adhesive layer 11 a having the light diffusion function is used as in this embodiment, the difference in the refractive index between the adhesive 17 and the diffusion material 16, the dispersion density of the diffusion material 16, and the particle size of the diffusion material 16 By adjusting d, the haze value H can be easily set to an optimum value. In the case of using an epoxy or acrylic adhesive for the adhesive 17 and transparent beads (spherical) made of an organic resin such as divinylbenzene for the diffusing material 16, the sphere diameter d of the diffusing material 16 is 3 〃 n! ~ 10 1 m When set, a high contrast of 6 or more can be obtained.
また光拡散機能を有する接着層 1 1 aの透過分光特性は反射層 2の 反射分光特性に合わせると液晶表示装置の反射率が向上する。  When the transmission spectral characteristics of the adhesive layer 11a having the light diffusion function are matched with the reflection spectral characteristics of the reflective layer 2, the reflectance of the liquid crystal display device is improved.
第 6図は反射層 2の反射分光特性 3 4、 フラッ トタイプの光拡散性 接着層の透過分光特性 3 5 a及び非フラッ トタイプの光拡散性接着層の 透過分光特性 3 5 bを示したものである。  Figure 6 shows the reflection spectral characteristics 34 of the reflective layer 2, the transmission spectral characteristics 35a of the flat type light diffusing adhesive layer, and the transmission spectral characteristics 35b of the non-flat type light diffusing adhesive layer. It is.
可視光領域の反射層 2の反射分光特性 3 4は光の波長によらず略一 定のフラッ トな特性を示している。  The reflection spectral characteristic 34 of the reflective layer 2 in the visible light region shows a substantially constant flat characteristic regardless of the wavelength of light.
フラッ トタイプの光拡散性接着層の透過分光特性 3 5 aも可視光領 域において実質的に一定のフラッ トな特性に調整してある。  The transmission spectral characteristic 35a of the flat type light diffusing adhesive layer is also adjusted to a substantially constant flat characteristic in the visible light region.
非フラッ トタイプの光拡散性接着層の透過分光特性 3 5 bは特に分 光特性を調整していないので波長が長くなるに従つて透過率が高くなる 特性を示している。  The transmission spectral characteristics 35b of the non-flat type light diffusing adhesive layer show characteristics in which the transmittance increases as the wavelength becomes longer because the spectroscopic characteristics are not particularly adjusted.
一般的な接着剤は 3 5 bに示すように波長によって透過率が大きく 変化し、 波長が長いほど透過率が高くなる。  As shown in 35b, the transmittance of a general adhesive greatly changes depending on the wavelength. The longer the wavelength, the higher the transmittance.
Figure imgf000014_0001
Figure imgf000014_0001
* : 第 6 図に示す拡散材の符号に対応 表 1はフラッ トタイプ 3 5 aの光拡散性接着層と非フラッ トタイプ 3 5 bの光拡散性接着層とで、 液晶表示装置のコントラスト、 O N時の 反射率、 O F F時の反射率を比較したデータである。 なお表 1のデータ は分光特性の差を説明するためにフラッ トタイプ 3 5 aと非フラッ ト夕 イブ 3 5 bで光拡散性接着層のヘイズ値 Hが同じ 7 8 %のものを使用し た。 表 1から明らかな様に、 反射層 2の分光特性に近いフラッ トタイプ 3 5 aの光拡散性接着層の方が液晶表示装置のコントラスト、 O N時の 反射率が改善されていることがわかる。 O F F時の反射率についてはフ ラッ トタイプ 3 5 aは非フラッ トタイプ 3 5 bよりも少し低いが、 反つ て 0 F F時の反射率は低 、方が黒表示の沈みが深くなるのでコントラス トが高くなる。 *: Corresponds to the sign of the diffusion material shown in Fig. 6. Table 1 shows the contrast and ON of the liquid crystal display device, with the light diffusion adhesive layer of the flat type 35a and the light diffusion adhesive layer of the non-flat type 35b. of time This is data comparing reflectance and reflectance at OFF. The data in Table 1 used the flat type 35a and the non-flat evening 35b with the same haze value H of the light diffusing adhesive layer of 78% to explain the difference in spectral characteristics. . As is evident from Table 1, the contrast of the liquid crystal display device and the reflectance at the time of ON are improved with the light diffusing adhesive layer of the flat type 35a which is close to the spectral characteristics of the reflective layer 2. With respect to the reflectance at OFF, the flat type 35a is slightly lower than the non-flat type 35b, but the reflectance at 0FF is low, and the black display is deeper, so the contrast is higher. Will be higher.
また上記説明では可視光領域は 400〜760 n mの波長領域とし、 フラ ッ トタイプとは透過率又は反射率が可視光領域内で土 1 0 %以内とした 。 またコントラスト Cは、 液晶表示装置の最大階調表示時の輝度を V o n、 最低階調表示時の輝度を V o f f とすると、 式 2で定義される。  In the above description, the visible light region is set to a wavelength region of 400 to 760 nm, and the transmittance or reflectance of the flat type is set to within 10% of soil within the visible light region. Contrast C is defined by Equation 2 where V on is the luminance at the maximum gradation display of the liquid crystal display device and V off is the luminance at the lowest gradation display.
C = V o n /V o f f 式 2  C = V on / V off formula 2
本実施の形態によれば、 光拡散層に光拡散機能を有する接着層 1 1 aを用いたので、 接着剤 1 7と拡散材 1 6の材質、 拡散材 1 6の分散密 度、 拡散材 1 6の粒径 dを調節する事により光拡散性接着層 1 1 aの透 過分光特性を反射層 2の反射分光特性に合わせる事が容易になり、 反射 率が高くかつコントラストも高い液晶表示装置を提供する事が出来る。 本願の発明者等の研究によれば、 光拡散材 1 6及び接着剤 1 7の屈 折率を小さくする程、 また光拡散材 1 6の径 dを小さくする程、 光拡散 接着層 1 1 aの分光特性がフラッ 卜になるという結果が出ている。 しか し、 光拡散材 1 6及び接着剤 1 7の屈折率を小さく したり、 光拡散材 1 6の径 dを小さくするとコントラスト等の表示特性が低下するので、 そ れらのパラメータを低く設定するのも限度がある。  According to the present embodiment, since the adhesive layer 11a having a light diffusion function is used for the light diffusion layer, the materials of the adhesive 17 and the diffusion material 16, the dispersion density of the diffusion material 16 and the diffusion material Adjusting the particle size d of 16 makes it easy to match the transmission spectral characteristics of the light-diffusing adhesive layer 1 1a with the reflection spectral characteristics of the reflective layer 2, and provides a liquid crystal display with high reflectivity and high contrast Equipment can be provided. According to the study of the inventors of the present application, as the refractive index of the light diffusing material 16 and the adhesive 17 decreases, and as the diameter d of the light diffusing material 16 decreases, the light diffusing adhesive layer 11 The result is that the spectral characteristics of a become flat. However, if the refractive index of the light diffusing material 16 and the adhesive 17 is reduced, or if the diameter d of the light diffusing material 16 is reduced, display characteristics such as contrast deteriorate, so these parameters are set low. There are limits to what you can do.
また、 第 1の位相差板 1 2 cと第 2の位相差板 1 2 dは共にポリ力 —ボネイト、 ポリアクリレート、 ポリサルフォン等の有機樹脂のフィル ムで構成する事が出来る。 In addition, both the first retardation plate 1 2 c and the second retardation plate 1 2 d —Can be composed of films of organic resins such as Bonate, Polyacrylate and Polysulfone.
従って本実施の形態によれば、 光拡散性接着層 1 1 aは熱膨張率の 差が少ない第 1の位相差板 1 2 cと第 2の位相差板 1 2 dの間に設ける ので、 液晶表示装置に熱ショックを加えても光拡散性接着層 1 1 aにク ラックが発生すること力なく、 第 2の位相差板 1 2 d力、ら第 1の位相差 板 1 2 cが剥離することがない。 なお本実施形態において第 1の位相差 板 1 2 cは位相差補償板とも呼ばれ液晶層 9により表示に特定の色が付 くのを防止し、 白色の表示を可能にするために設けられるものである。 また第 2の位相差板 1 2 dは、 1 Z 4波長板とも呼ばれ、 反射層 2 で反射された楕円偏光の反射光 L 2を直線偏光に変換し反射光 L 2ゃ拡 散光 L 3が偏光板 1 2 bを透過し易くする為に設けるもので、 液晶表示 装置の反射率を向上させる為に設けている。  Therefore, according to the present embodiment, the light diffusing adhesive layer 11 a is provided between the first retardation plate 12 c and the second retardation plate 12 d having a small difference in the coefficient of thermal expansion. Even if a heat shock is applied to the liquid crystal display device, the light diffusing adhesive layer 11a has no cracking force, and the second retardation plate 12d force and the first retardation plate 12c Does not peel. In the present embodiment, the first retardation plate 12 c is also referred to as a retardation compensator, and is provided by the liquid crystal layer 9 to prevent the display from being given a specific color and to enable white display. Things. The second retardation plate 1 2 d is also referred to as a 1 Z 4 wavelength plate, and converts the elliptically polarized light L 2 reflected by the reflective layer 2 into linearly polarized light to produce a reflected light L 2 ゃ divergent light L 3. Are provided to facilitate transmission of the polarizing plate 12b, and are provided to improve the reflectance of the liquid crystal display device.
《液晶表示パネルの駆動方法》  《Driving method of LCD panel》
また本実施の形態では特定の画素 4 aによる表示の制御は、 ッイス トネマチック (T N ) モード又はスーパ一ツイストネマチック (S T N ) モードで行う。 T Nモードの場合は液晶層 9にッイストネマチック液 晶を用い、 S T Nモードの場合は液晶層 9にスーパ一ツイストネマチッ ク液晶を用いる。  In the present embodiment, the display control by the specific pixel 4a is performed in the twisted nematic (TN) mode or the super twisted nematic (STN) mode. In the case of the TN mode, a twisted nematic liquid crystal is used for the liquid crystal layer 9, and in the case of the STN mode, a super twisted nematic liquid crystal is used for the liquid crystal layer 9.
液晶層 9は上側電極 8と下側電極 4とで形成される電界により複屈 折率等の光学特性が変化する。 T Nモード、 S T Nモードの液晶表示装 置は偏光板 1 2 bを通して液晶層 9を観察する事により、 液晶層 9の光 学特性の変化を、 光の透過する状態 (O N ) と光が透過しない状態 (0 F F ) として表示を制御する事ができる。  In the liquid crystal layer 9, optical characteristics such as birefringence change due to an electric field formed by the upper electrode 8 and the lower electrode 4. By observing the liquid crystal layer 9 through the polarizing plate 12b, the TN mode and STN mode liquid crystal display devices can observe the change in the optical characteristics of the liquid crystal layer 9 to determine whether the light is transmitted (ON) or not. The display can be controlled as the state (0 FF).
特定画素 4 aの選択方法は、 本実施形態では電圧平均化法 (マルチ プレックス駆動法) を用いている。 第 1の基板 1には複数の信号電極( 下側電極) 4が第 1の方向に延在して設けられ、 第 2の基板 5には走査 電極 (上側電極) 8が第 1の方向と異なる第 2の方向 (例えば第 1の方 向と垂直な方向) に延在して設けられ、 平面的に見ると信号電極 4と走 查電極 8が交差しマトリックス状になっている。 そして、 信号電極 4と 走査電極 8が交差した部分が一つの画素に相当し、 特定の画素電極 4 a に対応する信号電極 4及び走査電極 8に選択電圧を印加する事により特 定の画素電極 4 aを選択する事が出来る。 選択した画素の ON、 OFF を制御するには、 信号電極 4に選択電圧と共に ON、 OFFに対応した 階調電圧を加えればよい。 As a method for selecting the specific pixel 4a, a voltage averaging method (multiplex driving method) is used in the present embodiment. The first substrate 1 has a plurality of signal electrodes ( A lower electrode 4 is provided extending in a first direction, and a scanning electrode (upper electrode) 8 is provided on a second substrate 5 in a second direction (for example, a first direction) different from the first direction. The signal electrodes 4 and the scanning electrodes 8 intersect in a matrix when viewed in a plan view. A portion where the signal electrode 4 and the scanning electrode 8 intersect corresponds to one pixel, and a specific pixel electrode is applied by applying a selection voltage to the signal electrode 4 and the scanning electrode 8 corresponding to the specific pixel electrode 4a. 4 You can select a. To control ON / OFF of the selected pixel, a gradation voltage corresponding to ON / OFF may be applied to the signal electrode 4 together with the selection voltage.
《液晶表示パネルと各種光学フィルムとの光学軸の関係》  << Relationship of optical axis between liquid crystal display panel and various optical films >>
本実施形態では、 第 2の基板 5に接する第 2の位相差板 1 2 dの延 伸軸 (光学軸) と出射光側の液晶の配向軸のなす角度は 30° ~80° の範囲とし、 偏光板 12 b側に接する第 1の位相差板 12 cの延伸軸( 光学軸) と出射光側の液晶層 9の配向軸のなす角度は 60° 〜130° の範囲とし、 偏光板 12 bの吸収軸 (光学軸、 偏光軸または延伸軸) と 出射光側の液晶層 9の配向軸のなす角度は 70° 〜150° の範囲とし 、 出射光側の液晶層 9の配向軸と入射光側の液晶の配向軸の角度を 24 0度以上とし、 液晶層 9のリタデ一シヨン Δη · dを 0. 7〃m〜0. 95〃mとし、 第 2の位相差板 12 dのリタデ一シヨン Δη · dは 13 0 nm〜250 nmとし、 第 1の位相差板 12 cのリタデ一シヨン Δ n • dは 380 nm〜500 nmとすることにより、 高いコントラストの 表示が得られる。  In the present embodiment, the angle between the extension axis (optical axis) of the second retardation plate 12 d in contact with the second substrate 5 and the alignment axis of the liquid crystal on the emission light side is in the range of 30 ° to 80 °. The angle between the stretching axis (optical axis) of the first retardation plate 12c in contact with the polarizing plate 12b side and the alignment axis of the liquid crystal layer 9 on the emission light side is in the range of 60 ° to 130 °. The angle between the absorption axis b (optical axis, polarization axis or stretching axis) and the alignment axis of the liquid crystal layer 9 on the outgoing light side is in the range of 70 ° to 150 °. The angle of the alignment axis of the liquid crystal on the light side is set to 240 ° or more, the retardation Δηd of the liquid crystal layer 9 is set to 0.7 0m to 0.95〃m, and the retardation of the second retardation plate 12 d High contrast display can be obtained by setting the difference Δη · d to 130 nm to 250 nm and setting the retardation Δn • d of the first retardation plate 12 c to 380 nm to 500 nm.
第 7図は本実施形態における、 偏光板の吸収軸と、 第 1位相差板の 延伸軸と、 第 2位相差板の延伸軸との間の角度の関係を具体的に説明す る図である。 第 7図は STNモードの液晶を例に説明している。  FIG. 7 is a diagram specifically illustrating the angle relationship between the absorption axis of the polarizing plate, the stretching axis of the first retardation plate, and the stretching axis of the second retardation plate in the present embodiment. is there. FIG. 7 illustrates an STN mode liquid crystal as an example.
第 7図で e - eは基準線で具体的には液晶表示パネルの第 2の基板 5の長辺に平行な線、 f 一 f は e— e線に垂直な線を表す。 3 6は液晶 層 9の出射光側配向軸、 3 7は液晶層 9の入射光側配向軸、 3 8は偏光 板 1 2 bの吸収軸 (偏光板の光学軸) 、 3 9は第 1の位相差板 1 2 cの 延伸軸 (第 1の位相差板の光学軸) 、 4 0は第 2の位相差板 1 2 dの延 伸軸 (第 2の位相差板の光学軸) である。 In FIG. 7, e-e is a reference line, specifically, the second substrate of the liquid crystal display panel. 5 A line parallel to the long side, f 1 f is a line perpendicular to the e- e line. 36 is the alignment axis on the outgoing light side of the liquid crystal layer 9, 37 is the alignment axis on the incident light side of the liquid crystal layer 9, 38 is the absorption axis of the polarizing plate 12b (optical axis of the polarizing plate), and 39 is the first axis. The extension axis of the phase difference plate 12c (optical axis of the first phase difference plate), and 40 is the extension axis of the second phase difference plate 12d (the optical axis of the second phase difference plate). is there.
4 1は偏光板吸収軸と e - e線のなす角度で具体的には 1 2 5 ± 1 0 ° 、 4 2は第 1の位相差板の延伸軸 3 9と e— e線のなす角度で具体 的には 1 0 8 ± 1 0 ° 、 4 3は第 2の位相差板の延伸軸 4 0と e— e線 のなす角度で具体的には 7 2 ± 1 0 ° 、 4 4は出射光側配向軸 3 6と入 射光側配向軸 3 7のなす角度 (液晶表示パネルのッイスト角) で S T N モードの液晶では 2 4 0 ° 以上、 4 5は出射光側配向軸 3 6と e — e線 のなす角度で具体的には (3 6 0—ツイスト角 4 4 ) / 2 [° ] に設定 する。 T Nモードの時はツイスト角 4 4を 9 0 ± 1 0 ° に設定すればよ い。 なお本実施例に S T Nモードの液晶を用いると、 走査線 8の数を増 やしても十分なコントラストが得られるので、 精細度の高い表示が得ら れる。  4 1 is the angle between the absorption axis of the polarizing plate and the e-e line, specifically 1 25 ± 10 °, and 42 is the angle between the stretching axis 39 of the first retardation plate and the e-e line Specifically, 108 ± 10 °, 43 is the angle between the elongation axis 40 of the second retardation plate and the e-e line, and specifically, 72 ± 10 °, and 44 is The angle (the twist angle of the liquid crystal display panel) formed between the outgoing light-side alignment axis 36 and the incoming light-side alignment axis 37 is 240 ° or more for STN mode liquid crystals, and 45 is the outgoing light-side alignment axis 36 and e. — Specifically set to (360-twist angle 4 4) / 2 [°] with the angle formed by the e-line. In the TN mode, the twist angle 44 should be set to 90 ± 10 °. In addition, when the STN mode liquid crystal is used in this embodiment, a sufficient contrast can be obtained even when the number of the scanning lines 8 is increased, so that a display with high definition can be obtained.
本実施形態で光学軸の関係を上記に示した関係に設定した場合の、 液晶表示装置の表示特性を第 8図及び第 9図に示す。  FIGS. 8 and 9 show the display characteristics of the liquid crystal display device when the relationship between the optical axes is set to the relationship described above in the present embodiment.
第 8図は、 第 1の位相差板 1 2 cと第 2の位相差板 1 2 dを合わせ たリタデーシヨン Δ η · dとコントラスト比の関係を示したものである 。 液晶表示装置を先に示した光学軸の関係に設定すれば、 第 1の位相差 板 1 2 cと第 2の位相差板 1 2 dのリタデーション Δ η · dの合計を 6 1 3 n mに設定する事により、 最大のコントラスト比が得られる。 また 第 1の位相差板 1 2 cと第 2の位相差板 1 2 dのリタデーシヨン Δ η · dが土 1 0 n mのバラツキがあっても 1 0以上の高いコントラスト比が 得られる。 第 9図は、 第 1の位相差板 1 2 cと第 2の位相差板 1 2 dを合わせ たリタデーシヨン Δ η · dと反射率の関係を示したものである。 液晶表 示装置を先に示した光学軸の関係に設定すれば、 第 1の位相差板 1 2 c と第 2の位相差板 1 2 dのリ夕デ一シヨン Δ η · dの合計を 6 1 3 n m に設定する事により、 最大の反射率が得られる。 また第 1の位相差板 1 2 cと第 2の位相差板 1 2 dのリ夕デ一シヨン厶 n · dが土 1 0 n mの バラツキがあっても 1 5 %以上の高い反射率が得られる。 FIG. 8 shows the relationship between the retardation Δη · d combining the first retardation plate 12 c and the second retardation plate 12 d and the contrast ratio. If the liquid crystal display device is set to the relationship between the optical axes described above, the sum of the retardation Δηd of the first retardation film 12 c and the second retardation film 12 d becomes 6 13 nm. By setting, the maximum contrast ratio can be obtained. Further, even if the retardation Δη · d of the first retardation plate 12 c and the second retardation plate 12 d has a variation of 10 nm in soil, a high contrast ratio of 10 or more can be obtained. FIG. 9 shows the relationship between the retardation Δη · d combining the first retardation plate 12 c and the second retardation plate 12 d and the reflectance. If the liquid crystal display device is set to the relationship between the optical axes described above, the sum of the re-determination Δη · d of the first retardation plate 12 c and the second retardation plate 12 d can be calculated. The maximum reflectance can be obtained by setting to 6 13 nm. In addition, even if the first retardation plate 12c and the second retardation plate 12d have a variation of 10 nm in soil, a high reflectance of 15% or more can be obtained even if there is a variation of 10 nm in soil. can get.
従って本実施の形態では液晶表示パネルと各種光学フィルムとの光 学軸の関係を最適化する事により各種光学フィルムの特性 (例えばリタ デーシヨン Δ η · d ) が変動しても高いコントラスト比及び高反射率が 維持出来るので、 製造歩留の高い液晶表示装置を提供する事が出来る。  Therefore, in the present embodiment, by optimizing the relationship between the optical axes of the liquid crystal display panel and the various optical films, a high contrast ratio and a high contrast ratio can be obtained even if the characteristics (for example, retardation Δη · d) of the various optical films fluctuate. Since the reflectance can be maintained, a liquid crystal display device having a high production yield can be provided.
なお、 本実施例の形態では第 1の位相差板 1 2 c及び第 2の位相差 板 1 2 dのリタデーシヨン Δ η · dの測定方法は分光法を用いた。 例え ば、 測定対象の位相差板を偏光軸が直行する第 1及び第 2の偏光フィル ムの間に挟み、 測定対象の光学軸を第 1及び第 2の偏光フィルムの偏光 軸と 4 5 ° の角度をなすように配置し、 測定対象と第 1及び第 2の偏光 フィルムを透過する光の分光特性を測定する。 上記測定対象と第 1及び 第 2の偏光フィルムの分光特性は特定の波長 λで透過率が最小値(バレ ィ値) を示すので、 この時の特定の波長; Iを測定する事により測定対象 のリタデーシヨン Δ η · dを求める事が出来る。 なお、 第 1の位相差板 1 2 cは 1枚の第 1の位相差板 1 2 cを用いて測定したが、 第 2の位相 差板 1 2 dは、 1枚では測定が困難なので、 3枚重ねた第 2の位相差板 1 2 dのバレイ値に対応する波長ス 2を測定し、 波長ス 2を 1 Z 3にし た、 平均値を用いた。  In the present embodiment, a spectroscopic method was used to measure the retardation Δη · d of the first retardation plate 12 c and the second retardation plate 12 d. For example, the phase difference plate to be measured is sandwiched between the first and second polarizing films whose polarization axes are perpendicular to each other, and the optical axis to be measured is 45 ° with the polarization axes of the first and second polarizing films. And measure the spectral characteristics of light transmitted through the measurement object and the first and second polarizing films. Since the spectral characteristics of the above-mentioned measurement object and the first and second polarizing films show a minimum value (Bary value) at a specific wavelength λ, the specific wavelength at this time; It is possible to obtain the retardation Δ η · d of Note that the first retardation plate 12c was measured using one first retardation plate 12c, but the second retardation plate 12d was difficult to measure with one sheet. The wavelength spectrum 2 corresponding to the valley value of the three second phase difference plates 12d was measured, and the average value obtained by setting the wavelength spectrum 2 to 1Z3 was used.
《液晶表示装置の全体構成》  《Overall configuration of liquid crystal display device》
本実施形態をより具体的にした例を第 4図 a、 第 4図 b、 第 4図 c 、 第 4図 d、 第 4図 e、 第 5図 a、 第 5図 b、 第 5図 c及び第 5図 dに ^ B O FIGS. 4a, 4b, and 4c show more specific examples of this embodiment. , Figure 4d, Figure 4e, Figure 5a, Figure 5b, Figure 5c and Figure 5d
第 4図 aは液晶表示装置 4 6の組立完成後の表示側から見た正面図 、 第 4図 bは前側面図、 第 4図 cは後側面図、 第 4図 dは左側面図、 第 4図 eは右側面図である。  Fig. 4a is a front view from the display side after assembly of the liquid crystal display device 46 is completed, Fig. 4b is a front side view, Fig. 4c is a rear side view, Fig. 4d is a left side view, Fig. 4e is a right side view.
第 4図 a乃至 eにおいて、 1 8は、 ステンレス、 鉄、 アルミニウム 等の、 金属板からなる上側ケース (シールドケース) 、 2 0は上側ケ一 ス 1 8に設けた、 表示窓となる、 第 1の開口である。 1 9は、 ステンレ ス、 鉄、 アルミニウム等の金属板、 またはポリカーボネート、 A B S樹 脂等のプラスチックからなる下側ケースである。  In FIGS. 4a to e, 18 is an upper case (shield case) made of a metal plate of stainless steel, iron, aluminum, or the like, and 20 is a display window provided in the upper case 18. 1 opening. Reference numeral 19 denotes a lower case made of a metal plate such as stainless steel, iron, or aluminum, or a plastic such as polycarbonate or ABS resin.
2 1は上側ケース 1 8に設けた爪で、 2 2は上側ケース 1 8に設け たフックで、 上側ケース 1 8は爪 2 1とフック 2 2とで下側ケース 1 9 を押さえ下側ケース 1 9と結合する。  2 1 is the claw provided on the upper case 18, 2 2 is the hook provided on the upper case 18, and the upper case 18 holds the lower case 1 9 with the claw 21 and the hook 22 and the lower case Combine with 1 9
1 4は、 蛍光灯や L E D (Light Emitting Diode) 等の光源である 。 1 3は、 ァクリル樹脂やガラス等の透明な材質からなり、 光源 1 4の 光を液晶表示パネルへ照射する為の導光体である。 光源 1 4と導光体 1 3により、 外部光が少ない時に液晶表示装置 4 6に光を供給するための 、 照明装置 (フロントライ ト) が構成される。  Reference numeral 14 denotes a light source such as a fluorescent lamp or an LED (Light Emitting Diode). Reference numeral 13 denotes a light guide made of a transparent material such as acryl resin or glass for irradiating the light of the light source 14 to the liquid crystal display panel. The light source 14 and the light guide 13 constitute a lighting device (front light) for supplying light to the liquid crystal display device 46 when external light is small.
1 5は、 液晶表示装置 4 6に接続されるホスト (情報処理部) に送 る、 データを入力するための、 入力装置 (タツチパネル) である。  Reference numeral 15 denotes an input device (touch panel) for inputting data to be sent to a host (information processing unit) connected to the liquid crystal display device 46.
1 2は、 液晶表示装置 4 6の表示部に設けられる、 光拡散層 1 1 a 、 偏光板 1 2 b、 第 1の位相差板 1 2 c及び第 2の位相差板 1 2 d等の 光学フィルムである。 光学フィルム 1 2は液晶表示装置 4 6の厚さを薄 くするために、 上側ケースの第 1の開口の領域内に収まるように設けら れている。  Reference numeral 12 denotes a light diffusion layer 11 a, a polarizing plate 12 b, a first retardation plate 12 c, a second retardation plate 12 d, etc., provided on a display portion of the liquid crystal display device 46. It is an optical film. The optical film 12 is provided so as to fit within the area of the first opening of the upper case in order to reduce the thickness of the liquid crystal display device 46.
第 5図 aは第 4図 aの A— A切断線における断面図、 第 5図 bは第 4図 aの B— B切断線における断面図、 第 5図 cは第 4図 aの C一 C切 断線における断面図、 第 5図 dは第 4図 aの D— D切断線における断面 図である。 FIG. 5a is a cross-sectional view taken along the line A--A in FIG. 4a, and FIG. 4A is a cross-sectional view taken along line BB of FIG. A, FIG. 5C is a cross-sectional view taken along line C-C of FIG. 4A, and FIG. 5D is a cross-sectional view taken along line DD of FIG. 4A. It is.
液晶表示パネル (液晶セル) は第 1の基板 1と第 2の基板 5を貼り 合わせて構成される。 第 1の基板 1と第 2の基板 5の側壁には液晶セル 内に液晶層 9を注入した後に注入孔を封止する、 封止材 3 1が設けられ ている。 封止材 3 1に対応する部分の上側ケース 1 8には第 2の開口 2 3が設けられ、 封止材 3 1が突出しても液晶表示装置の外形寸法が小さ くなるようにしている。 第 2の基板 5の外側の面 (上面) には先に説明 した各種光学フィルム 1 2が固定されている。 第 1の基板 1と第 2の基 板 5の周辺には、 走査線駆動用プリント基板 (走査線駆動用 P C B ) 3 0、 走査線駆動用 I Cチップ 2 8、 フレキシブルプリント基板(T C P ) 2 9、 信号線駆動用 I Cチップ 3 2及び信号線駆動用プリント基板 ( 信号線駆動用 P C B ) 3 3で構成される、 液晶表示パネルの駆動回路が 設けられている。 信号線駆動用 I Cチップ 3 2、 T C P 2 9、 及び信号 線駆動用 P C B 3 3により信号線駆動回路が構成され、 信号線駆動回路 は第 1の基板 1の信号線 4に接続される。  The liquid crystal display panel (liquid crystal cell) is formed by bonding a first substrate 1 and a second substrate 5 together. On the side walls of the first substrate 1 and the second substrate 5, a sealing material 31 for sealing the injection hole after injecting the liquid crystal layer 9 into the liquid crystal cell is provided. A second opening 23 is provided in a portion of the upper case 18 corresponding to the sealing material 31 so that the external dimensions of the liquid crystal display device are reduced even if the sealing material 31 protrudes. On the outer surface (upper surface) of the second substrate 5, the various optical films 12 described above are fixed. Around the first substrate 1 and the second substrate 5, a scanning line driving printed circuit board (scanning line driving PCB) 30, a scanning line driving IC chip 28, a flexible printed circuit board (TCP) 29 A driving circuit for a liquid crystal display panel, which is composed of a signal line driving IC chip 32 and a signal line driving printed circuit board (signal line driving PCB) 33, is provided. A signal line driving circuit is configured by the signal line driving IC chip 32, the TCP 29, and the signal line driving PCB 33, and the signal line driving circuit is connected to the signal line 4 of the first substrate 1.
走査線駆動用 P C B 3 0、 走査線駆動用 I Cチップ 2 8及び T C P 2 9により走査線駆動回路が構成され、 電圧平均化法を用いたマトリッ クス型液晶表示装置の場合、 走査線駆動回路は第 2の基板 5の走査信号 線 8に接続される。 なお薄膜トランジスタ (T F T ) を用いた液晶表示 装置では、 走査線は信号線と同じ第 1の基板 1に設けられるので、 走査 線駆動回路は第 1の基板 1に接続される。 2 4は液晶表示装置 4 6を外 部回路であるホスト 5 0に電気的に接続するためのィンターフェイスコ ネクタである。 本実施形態ではインターフェイスコネクタ 2 4を走査線 駆動用 P C B 3 0に設けている力 信号線駆動用 P C B 3 3に設けても よい。 なお図示してはいないが走査線駆動用 P C B 3 0と信号線駆動用 P C B 3 3は接続手段により電気的に接続されている。 2 6は走査線駆 動用 P C B 3 0を固定する為のスぺーサである。 2 7は走査線駆動回路 及び信号線駆動回路と液晶表示パネルの接続部を押さえるためのスぺー ザで、 ゴム等の絶縁性弾性体からなる。 2 5は両面粘着テープで、 例え ば不織布にエポキシ系接着剤を染み込ませたものが使用出来る。 本実施 の形態では、 液晶表示パネルは両面粘着テープ 2 5により上側ケース 1 8に固定される。 また両面粘着テープ 2 5は上側ケース 1 8に導光体 1 3や、 入力装置 1 5を固定するのにも使用している。 本実施形態のよう に、 各部材を両面粘着テープ 2 5を用いて固定する事により、 液晶表示 装置の組み立てが簡単になり、 各部材を誤って固定しても再生する事が 出来るので液晶表示装置の製造歩留が向上する。 また下側ケース 1 9に は液晶表示パネルを押さえるために凹凸が設けられている。 A scanning line driving circuit is constituted by the scanning line driving PCB 30, the scanning line driving IC chip 28 and the TCP 29, and in the case of a matrix type liquid crystal display device using a voltage averaging method, the scanning line driving circuit is Connected to scanning signal line 8 of second substrate 5. In a liquid crystal display device using a thin film transistor (TFT), the scanning lines are provided on the same first substrate 1 as the signal lines, so that the scanning line driving circuit is connected to the first substrate 1. Reference numeral 24 denotes an interface connector for electrically connecting the liquid crystal display device 46 to a host 50 which is an external circuit. In this embodiment, the interface connector 24 may be provided on the signal line driving PCB 33 provided on the scanning line driving PCB 30. Good. Although not shown, the scanning line driving PCB 30 and the signal line driving PCB 33 are electrically connected by connecting means. Reference numeral 26 denotes a spacer for fixing the scanning line driving PCB 30. Reference numeral 27 denotes a spacer for pressing a connection portion between the scanning line driving circuit and the signal line driving circuit and the liquid crystal display panel, and is made of an insulating elastic material such as rubber. 25 is a double-sided adhesive tape, for example, a nonwoven fabric impregnated with an epoxy adhesive can be used. In the present embodiment, the liquid crystal display panel is fixed to upper case 18 with double-sided adhesive tape 25. The double-sided adhesive tape 25 is also used to fix the light guide 13 and the input device 15 to the upper case 18. By fixing each member using the double-sided adhesive tape 25 as in the present embodiment, the assembly of the liquid crystal display device is simplified, and the reproduction can be performed even if each member is fixed by mistake. The manufacturing yield of the device is improved. The lower case 19 is provided with irregularities for holding down the liquid crystal display panel.
《本発明の応用例》  << Application examples of the present invention >>
第 1 6図は本発明の液晶表示装置 4 6を用いた情報処理装置 4 7の 外観を示す斜視図である。  FIG. 16 is a perspective view showing the appearance of an information processing device 47 using the liquid crystal display device 46 of the present invention.
4 8は情報処理装置 4 7の表示部、 4 9は情報処理装置 4 7のキー ボード部、 5 0は情報処理装置 4 7の情報処理を行うホスト、 5 1はマ イク口プロセッサ、 5 2はバッテリー、 5 3は液晶表示装置 4 6とホス ト 5 0を接続するインターフェイスケーブル、 5 4は照明装置用のイン バー夕電源、 5 5はインバータ電源 5 4と照明装置の光源 1 4を接続す るケーブル、 5 6は入力装置 1 5を用いて情報を入力するためのペン、 5 7はペン 5 6を収納するためのペンホルダ、 6 0は携帯電話、 6 1は 携帯電話と情報処理装置 4 7を接続するケーブルである。  48 is a display part of the information processing device 47, 49 is a keyboard part of the information processing device 47, 50 is a host that performs information processing of the information processing device 47, 51 is a micro processor, and 5 2 Is a battery, 53 is an interface cable that connects the liquid crystal display device 46 to the host 50, 54 is an inverter power supply for the lighting device, 55 is an inverter power supply 54, and the light source 14 of the lighting device is connected. 5 is a pen for inputting information using the input device 15, 57 is a pen holder for storing the pen 56, 60 is a mobile phone, 61 is a mobile phone and an information processing device This is the cable that connects 4 7.
本実施の形態では液晶表示装置 4 6は情報処理装置 4 7の表示部 4 8に設けられる。 本実施の形態の液晶表示装置によれば、 入力装置 1 5 が表示部と重ねて設けられているので、 所定の部分をペン 5 6や指で押 すことにより、 文字 5 8を入力したり、 アイコン 5 9を選択しソフトゥ エアの機能を実行する事が出来る。 また本実施の形態の液晶表示装置 4 6は反射型なので、 太陽光などの外部光がある時はインバータ電源 5 4 のスィッチを切る事により消費電力を抑えることが出来、 バッテリー 5 2の消耗を少なくする事が出来る。 In the present embodiment, the liquid crystal display device 46 is provided on the display unit 48 of the information processing device 47. According to the liquid crystal display device of the present embodiment, the input device 15 Is superimposed on the display, so pressing a predetermined part with a pen 56 or a finger allows you to enter characters 58 or select the icon 59 to execute the soft-to-air function. I can do it. In addition, since the liquid crystal display device 46 of the present embodiment is of a reflective type, when there is external light such as sunlight, the power consumption can be suppressed by switching off the inverter power supply 54 to reduce the consumption of the battery 52. Can be reduced.
さらに本実施の形態によれば、 液晶表示装置 4 6を薄型で小型で軽 量に出来るので、 情報処理装置 4 7も薄型で小型で軽量にする事が出来 る。  Further, according to the present embodiment, the liquid crystal display device 46 can be made thin, small, and light, so that the information processing device 47 can also be thin, small, and light.
第 2の実施形態.  Second embodiment.
第 1 0図は本発明の第 2の実施形態における液晶表示装置の断面図 である。 各符号は、 先に第 1の実施の形態で説明した、 第 1図 aの符号 と同じである。  FIG. 10 is a sectional view of a liquid crystal display device according to a second embodiment of the present invention. Each reference numeral is the same as the reference numeral in FIG. 1A described in the first embodiment.
第 2の実施形態では、 第 2の基板 5に第 2の位相差板 1 2 dを固定 する接着層に光拡散機能を有する接着層 1 1 aを用いたことを特徴にし ている。 それ以外の構成は、 基本的に、 先に説明した第 1の実施形態と 同じである。  The second embodiment is characterized in that an adhesive layer 11a having a light diffusion function is used as an adhesive layer for fixing the second retardation plate 12d to the second substrate 5. Other configurations are basically the same as those of the first embodiment described above.
本実施形態では、 光拡散機能を有する接着層 (光拡散層) 1 1 aが 、 他の光学フィルム 1 2や接着層 1 1よりも、 最も反射層 2に近い層に あるので、 画像の輪郭のぼけが少ない、 鮮明な表示が得られる。  In this embodiment, since the adhesive layer (light diffusion layer) 11 a having the light diffusion function is located closest to the reflection layer 2 than the other optical films 12 and the adhesion layer 11, the outline of the image Clear display with little blurring.
反射型液晶表示装置では、 様々な方向から入射する光を用いて表示 を行う。 例えば第 1 0図に示すように、 入射光 L 1と入射光 L 1と異な る角度で入射する第 2の入射光 L 1 bは、 反射層 2で反射され、 夫々反 射光 L 2及び第 2の反射光 L 2 bを生じる。 反射光 L 2及び第 2の反射 光 L 2 bの出射角は異なるので、 反射光 L 2及び第 2の反射光 L 2 が 光拡散層 1 1 aを通過する位置に d 2の差が生じる。 観測者は光拡散層 1 1 aで拡散した光を見て画像を認識するので、 反射光し 2及び L 2 b が光拡散層 1 1 aを通過する位置の差 d 2は画像の輪郭のぼやけとして δ忍 れる。 In a reflection type liquid crystal display device, display is performed using light incident from various directions. For example, as shown in FIG. 10, the incident light L1 and the second incident light L1b incident at an angle different from that of the incident light L1 are reflected by the reflective layer 2, and are reflected by the reflected light L2 and the incident light L2, respectively. A reflected light L 2 b of 2 is generated. Since the emission angles of the reflected light L2 and the second reflected light L2b are different, there is a difference d2 between the positions where the reflected light L2 and the second reflected light L2 pass through the light diffusion layer 11a. . Observer is light diffusion layer Since the image is recognized by looking at the light diffused by 11a, the difference d2 between the positions where the reflected light 2 and L2b pass through the light diffusion layer 11a is δ as the blur of the outline of the image.
しかし光拡散層 1 1 aが反 層 2に近い位置にあればあるほど、 光 拡散層 1 1 aを通過する反射光 L 2、 L 2 bの位置の差 d 2は少なくな るので、 画像の輪郭のぼけが少なくなり、 より鮮明な表示が得られる。 なお本実施形態で第 2の基板 5にガラス基板を用いた場合は、 第 2 の位相差板 1 2 dと第 2の基板 5にガラス基板の熱膨張率の差により、 光拡散機能を有する接着層 1 1 aにクラックが入り易いが、 接着層 1 1 aの接着剤 1 7、 光拡散材 1 6の材料を選ぶ事により改善することが可 能である。  However, the closer the light-diffusing layer 11a is to the layer 2, the smaller the difference d2 between the positions of the reflected light L2 and L2b passing through the light-diffusing layer 11a. The blur of the outline of is reduced, and a clearer display is obtained. When a glass substrate is used as the second substrate 5 in the present embodiment, the second retardation plate 12d and the second substrate 5 have a light diffusion function due to a difference in the coefficient of thermal expansion between the glass substrates. Cracks are easily formed in the adhesive layer 11a, but it can be improved by selecting the adhesive 17 and the light diffusing material 16 of the adhesive layer 11a.
第 3の実施形態.  Third embodiment.
第 1 1図は本発明の第 3の実施形態における液晶表示装置の断面図 である。 各符号は、 先に第 1の実施の形態で説明した、 第 1図 aの符号 と同じである。  FIG. 11 is a sectional view of a liquid crystal display device according to a third embodiment of the present invention. Each reference numeral is the same as the reference numeral in FIG. 1A described in the first embodiment.
第 3の実施形態では、 第 1の位相差板 1 2 cに偏光板 1 2 bを固定 する接着層に光拡散機能を有する接着層 1 1 aを用いたことを特徴にし ている。 それ以外の構成は、 基本的に、 先に説明した第 1の実施形態と The third embodiment is characterized in that an adhesive layer 11a having a light diffusion function is used as an adhesive layer for fixing the polarizing plate 12b to the first retardation plate 12c. Other configurations are basically the same as those of the first embodiment described above.
|BJしでめな。 | BJ
偏光板 1 2 bは、 トリァセチルセルロース (T A C ) などの有機樹 脂フィルムで構成されるのが一般的である。 第 1の位相差板 1 2 cもポ リカーボネイト、 ポリアクリレート、 ポリサルフォン等の有機樹脂フィ ルムで形成出来るので、 偏光板 1 2 bとの熱膨張率の差を小さくする事 が出来る。  The polarizing plate 12b is generally composed of an organic resin film such as triacetyl cellulose (TAC). Since the first retardation plate 12c can also be formed of an organic resin film such as polycarbonate, polyacrylate, or polysulfone, the difference in the coefficient of thermal expansion between the first retardation plate 12c and the polarizing plate 12b can be reduced.
本実施の形態では、 熱膨張率の差を少なくできる、 偏光板 1 2 bと 第 1の位相差板 1 2 cの間に光拡散機能を有する接着層 1 1 aを設けて いるので、 接着層 1 1 aにクラックが入る問題が無く、 液晶表示装置の 信頼性が向上する。 In the present embodiment, an adhesive layer 11a having a light diffusion function is provided between the polarizing plate 12b and the first retardation plate 12c, which can reduce the difference in the coefficient of thermal expansion. Therefore, there is no problem of cracks in the adhesive layer 11a, and the reliability of the liquid crystal display device is improved.
なお本実施の形態では、 先に述べた第 2の実施の形態と比べて、 光 拡散層 1 1 aが反射層 2よりも遠くなり、 先に述べた反射光 L 2、 L 2 bが光拡散層 1 1 aを通過する位置の差 d 3が大きくなり、 表示画像の 輪郭がぼけ易くなる。 しかし液晶表示パネルや光学フィルム 1 2を薄型 にすることにより表示画像の輪郭のぼけを改善出来る。  Note that, in this embodiment, the light diffusion layer 11a is farther than the reflection layer 2 as compared with the above-described second embodiment, and the above-described reflected lights L2 and L2b are light. The difference d3 between the positions passing through the diffusion layer 11a is increased, and the outline of the displayed image is easily blurred. However, by reducing the thickness of the liquid crystal display panel or the optical film 12, blurring of the outline of the displayed image can be improved.
第 4の実施形態.  Fourth embodiment.
第 1 2図は本発明の第 4の実施形態における液晶表示装置の断面図 である。 各符号は、 先に第 1の実施の形態で説明した、 第 1図 aの符号 と同じである。  FIG. 12 is a sectional view of a liquid crystal display device according to a fourth embodiment of the present invention. Each reference numeral is the same as the reference numeral in FIG. 1A described in the first embodiment.
第 4の実施形態では反射層 2を、 液晶表示パネルの外側の面、 即ち 第 1の基板の液晶層 9と対向しない側の面に設けたことを特徴にしてい る。 それ以外の構成は、 基本的に、 先に説明した第 1の実施形態と同じ である。  The fourth embodiment is characterized in that the reflective layer 2 is provided on the outer surface of the liquid crystal display panel, that is, on the surface of the first substrate not facing the liquid crystal layer 9. Other configurations are basically the same as those of the first embodiment described above.
本実施の形態では、 第 1の基板 1と第 2の基板を貼り合わせて液晶 表示パネルを形成した後に反射層 2を設けて、 反射型液晶表示装置を完 成するので、 液晶表示パネルは透過型液晶表示装置と兼用する事ができ 、 液晶表示パネルを大量生産することが可能になり、 生産性の良い反射 型液晶表示装置を提供する事ができる。  In the present embodiment, the first substrate 1 and the second substrate are attached to each other to form a liquid crystal display panel, and then the reflective layer 2 is provided to complete a reflective liquid crystal display device. The liquid crystal display device can also be used as a liquid crystal display device, so that a liquid crystal display panel can be mass-produced, and a reflective liquid crystal display device with good productivity can be provided.
本実施の形態では、 ステンレス、 クロム、 アルミニウム、 銀等の光 反射率の良い薄い金属板を反射層 2に用い、 反射層 2を接着層 1 1によ り第 1の基板 1に固定している。 反射層 2に上記金属板を用いる事によ り反射層 2に鏡面加工を施すのが容易なので反射率を向上する事ができ る。  In the present embodiment, a thin metal plate having good light reflectivity such as stainless steel, chromium, aluminum, silver, or the like is used for the reflective layer 2, and the reflective layer 2 is fixed to the first substrate 1 by the adhesive layer 11. I have. By using the metal plate for the reflective layer 2, it is easy to perform mirror finishing on the reflective layer 2, so that the reflectance can be improved.
また反射層 2は、 クロム、 アルミニウム、 銀等の金属を第 1の基板 1に、 スパッ夕等の、 蒸着により形成してもよい。 反射層 2を金属の蒸 着で形成する場合は接着層 1 1が不要になる。 The reflection layer 2 is made of a metal such as chromium, aluminum, silver, etc. on the first substrate. 1, it may be formed by vapor deposition such as spattering. When the reflective layer 2 is formed by vapor deposition of a metal, the adhesive layer 11 becomes unnecessary.
第 5の実施形態.  Fifth embodiment.
第 1 3図は本発明の第 5の実施形態における液晶表示装置の断面図 である。 各符号は、 先に第 1の実施の形態で説明した、 第 1図 aの符号 と同じである。  FIG. 13 is a sectional view of a liquid crystal display device according to a fifth embodiment of the present invention. Each reference numeral is the same as the reference numeral in FIG. 1A described in the first embodiment.
第 4の実施形態では反射層 2を、 液晶表示パネルの外側の面、 即ち 第 1の基板の液晶層 9と対向しない側の面に設け、 かつ反射層 2と第 1 の基板 1の間に光拡散機能を有する接着層 1 1 aを設けたことを特徴に している。 それ以外の構成は、 基本的に、 先に説明した第 1の実施形態 及び第 4の実施形態と同じである。  In the fourth embodiment, the reflective layer 2 is provided on the outer surface of the liquid crystal display panel, that is, on the surface of the first substrate not facing the liquid crystal layer 9, and between the reflective layer 2 and the first substrate 1. An adhesive layer 11a having a light diffusion function is provided. Other configurations are basically the same as those of the first and fourth embodiments described above.
本実施の形態では、 光拡散層 1 1 aが反射層 2に最も近い位置にあ るので、 外部光 L l、 L 2 bの入射角度の差により生じる、 反射光 L 2 、 L 2 bが光拡散層 1 1 aを通過する位置の差が最も少なくなり、 輪郭 のはっきりした鮮明な表示画像が得られる。  In the present embodiment, since the light diffusion layer 11a is located closest to the reflection layer 2, the reflected light L2, L2b generated by the difference between the incident angles of the external lights Ll, L2b The difference between the positions passing through the light diffusion layer 11a is minimized, and a clear display image with a clear outline is obtained.
また本実施の形態では、 先に説明した第 4の実施形態と同様に、 液 晶表示パネルに透過型液晶表示装置と同じ物が使用出来る効果や、 反射 層 2に鏡面反射処理を施した金属板を用 L、る事が出来るという効果が得 られる。  Further, in the present embodiment, similar to the above-described fourth embodiment, the effect that the same thing as the transmissive liquid crystal display device can be used for the liquid crystal display panel and the metallization in which the reflective layer 2 is subjected to the mirror reflection processing are used. The effect is that the board can be used.
第 6の実施形態.  Sixth embodiment.
第 1 4図は本発明の第 6の実施形態における液晶表示装置の断面図 である。 各符号は、 先に第 1の実施の形態で説明した、 第 1図 aの符号 と同じである。  FIG. 14 is a sectional view of a liquid crystal display device according to a sixth embodiment of the present invention. Each reference numeral is the same as the reference numeral in FIG. 1A described in the first embodiment.
第 6の実施形態では、 反射層を信号電極 4や画素電極 4 aと兼用し た事、 即ち信号電極 4や画素電極 4 aを金属膜等の反射性導電膜で形成 したことを特徴にしている。 それ以外の構成は、 基本的に、 先に説明し た第 1の実施形態と同じである。 The sixth embodiment is characterized in that the reflection layer is also used as the signal electrode 4 and the pixel electrode 4a, that is, the signal electrode 4 and the pixel electrode 4a are formed of a reflective conductive film such as a metal film. I have. Other configurations are basically explained earlier. This is the same as the first embodiment.
本実施の形態では、 信号電極 4や画素電極 4 aに電気抵抗が透明導 電膜よりも低い金属膜を使用出来るので、 信号電極 4や画素電極 4 aへ の給電が良好となり、 信号電極 4や画素電極 4 a数の多い高解像度の液 晶表示装置や、 信号電極 4の長さが長い大画面の液晶表示装置を提供す る事が出来る。  In the present embodiment, since a metal film having lower electric resistance than the transparent conductive film can be used for the signal electrode 4 and the pixel electrode 4a, the power supply to the signal electrode 4 and the pixel electrode 4a is improved, and A high-resolution liquid crystal display device having a large number of pixel electrodes 4a and a large-screen liquid crystal display device having a long signal electrode 4 can be provided.
信号電極 4の材料としては、 抵抗率が低い点ではアルミニウム、 金 、 銀、 銅、 モリブデン等の金属膜が良く、 光反射率の点ではクロム、 ァ ノレミニゥム、 銀等の金属膜が良い。 信号電極 4に用いる金属膜は、 スパ ッ夕等の蒸着法で形成する事が出来る。  As a material of the signal electrode 4, a metal film such as aluminum, gold, silver, copper, or molybdenum is preferable in terms of low resistivity, and a metal film such as chromium, anolymium, or silver is preferable in terms of light reflectivity. The metal film used for the signal electrode 4 can be formed by an evaporation method such as sputtering.
また第 1 4図には図示していないが、 本実施の形態において、 光拡 散層 1 1 aを画素電極 4 aと液晶層 9の間に設けることにより、 第 5の 実施例と同様に、 輪郭のはっきりした鮮明な表示画像が得られる。  Although not shown in FIG. 14, in the present embodiment, the light diffusing layer 11a is provided between the pixel electrode 4a and the liquid crystal layer 9 in the same manner as in the fifth embodiment. A clear display image with a clear outline can be obtained.
第 7の実施形態.  Seventh embodiment.
第 1 5図は本発明の第 7の実施形態における液晶表示装置の断面図 である。 各符号は、 先に第 1の実施の形態で説明した、 第 1図 aの符号 と同じである。  FIG. 15 is a sectional view of a liquid crystal display device according to a seventh embodiment of the present invention. Each reference numeral is the same as the reference numeral in FIG. 1A described in the first embodiment.
第 7の実施形態では、 液晶表示パネルに T F T等のスィツチング素 子を用いたアクティブマトリックス液晶表示パネルを用いたことを特徴 にしている。  The seventh embodiment is characterized in that an active matrix liquid crystal display panel using a switching element such as TFT is used for the liquid crystal display panel.
以下にアクティブマトリックス液晶表示パネルの構成を説明するが 、 特に説明しない構成は、 基本的に、 先に説明した第 1の実施形態と同 じである。  The configuration of the active matrix liquid crystal display panel will be described below, but the configuration not particularly described is basically the same as that of the first embodiment described above.
アクティブマトリ ックス液晶表示パネルは第 1 5図に示すように第 1の基板 1の内側 (液晶側) の表面上に、 薄膜トランジスタ T F T 1及 び画素電極 4 aを有する画素が複数形成されている。 各画素は、 隣接す る 2本の走査信号線と隣接する 2本の映像信号線との交差領域内に配置 されている。 薄膜トランジスタ TFT 1は第 1の基板 1上に設けたゲー ト電極 GT、 その上に設けたゲート絶縁膜 G I、 その上に設けた第 1の 半導体層 (チャネル層) AS、 その上に設けた第 2の半導体層 (不純物 を含んだ半導体層) r 0、 その上に設けたソース電極 SD 1及びドレイ ン電極 SD 2から構成されている。 本実施形態では r 1と r 2の多層の 導電膜でソース電極 S D 1及びドレイン電極 S D 2を形成しているが、 r lのみの単層導電膜でもよい。 なお電圧の加え方により電極の関係が 逆になり、 SD2がソース電極、 SD 1がドレイン電極となるが、 以下 の説明は便宜上 SD 1をソース電極、 SD 2をドレイン電極として説明 する。 PSV1は薄膜トランジスタ TFT 1を保護膜する絶縁膜から成 る保護膜、 4 aは画素電極、 0 R I 1は液晶層 9の第 1の基板 1側を配 向させる、 第 1の配向膜、 OR I 2は液晶層 9第 2の基板 5側を配向さ せる第 2の配向膜、 8は上側電極 (共通電極) である。 BMは薄膜トラ ンジス夕 TFT 1を遮光する遮光膜である。 BMはまたブラックマトリ ックスとも呼ばれ、 画素電極 4 aと隣接する画素電極の間も遮光し表示 コントラストを向上する機能も果たす。 S I Lは上側電極 8と第 1の基 板 1に設けた端子 (g 1, g 2, r l, r 2及び r 3に示す多層金属膜 力、らなる。 ) を電気的に接続する導電膜である。 In the active matrix liquid crystal display panel, as shown in FIG. 15, a plurality of pixels each having a thin film transistor TFT 1 and a pixel electrode 4a are formed on a surface inside a first substrate 1 (liquid crystal side). Each pixel is adjacent Are arranged in the intersection area between two scanning signal lines and two adjacent video signal lines. The thin film transistor TFT 1 includes a gate electrode GT provided on the first substrate 1, a gate insulating film GI provided thereon, a first semiconductor layer (channel layer) AS provided thereon, and a gate electrode GT provided thereon. The second semiconductor layer (semiconductor layer containing impurities) r0 has a source electrode SD1 and a drain electrode SD2 provided thereon. In the present embodiment, the source electrode SD1 and the drain electrode SD2 are formed of a multilayer conductive film of r1 and r2, but may be a single-layer conductive film of only rl. The relationship between the electrodes is reversed depending on how the voltage is applied, and SD2 becomes the source electrode and SD1 becomes the drain electrode. However, in the following description, SD1 will be described as the source electrode and SD2 will be described as the drain electrode for convenience. PSV1 is a protective film made of an insulating film for protecting the thin film transistor TFT1, 4a is a pixel electrode, 0RI1 is the direction of the liquid crystal layer 9 on the first substrate 1 side, 1st alignment film, ORI Reference numeral 2 denotes a liquid crystal layer 9, a second alignment film for aligning the second substrate 5 side, and 8 an upper electrode (common electrode). BM is a light shielding film that shields the thin film transistor TFT1 from light. The BM is also called a black matrix, and also functions to improve the display contrast by blocking light between the pixel electrode 4a and the adjacent pixel electrode. SIL is a conductive film that electrically connects the upper electrode 8 to the terminals (g1, g2, rl, r2, and r3) provided on the first substrate 1. is there.
薄膜トランジスタ TFT 1は、 絶縁ゲート型の電界効果型トランジ ス夕と同様に、 ゲート電極 GTに選択電圧を印加するとソース電極 SD 1とドレイン電極 SD 2の間が電気的に導通し、 スィツチとして機能す る。 画素電極 4 aはソース電極 SD 1に電気的に接続され、 映像信号線 はドレイン電極 S D 2に電気的に接続され、 走査信号線はゲート電極に 電気的に接続されるので、 走査信号線に加える選択電圧で特定の画素電 極 4 aを選択し、 映像信号線に加えた階調電圧を特定の画素電極 4 aに 供給する事が出来る。 C s tは容量電極で画素電極 4 aに供給した階調 電圧を次の選択期間まで保持する機能をする。 When a selection voltage is applied to the gate electrode GT, the thin-film transistor TFT 1 becomes electrically conductive between the source electrode SD 1 and the drain electrode SD 2 and functions as a switch, similarly to the insulated gate field-effect transistor. You. The pixel electrode 4a is electrically connected to the source electrode SD1, the video signal line is electrically connected to the drain electrode SD2, and the scanning signal line is electrically connected to the gate electrode. Select the specific pixel electrode 4a with the applied selection voltage, and apply the gradation voltage applied to the video signal line to the specific pixel electrode 4a. Can be supplied. C st is a capacitor electrode and functions to hold the gradation voltage supplied to the pixel electrode 4a until the next selection period.
アクティブマトリックス液晶表示装置は、 画素毎に薄膜トランジス タ等のスィツチング素子を設けているので、 異なる画素間でクロストー クが発生する問題が無く、 電圧平均化法などの特殊な駆動によりクロス トークを除去する必要が無く、 簡単に多階調表示を実現出来る、 走査線 数を増やしてもコントラス卜が低下しない等の特徴がある。  Active matrix liquid crystal display devices have switching elements such as thin film transistors for each pixel, so there is no problem of crosstalk between different pixels, and crosstalk is eliminated by special driving such as voltage averaging. There is no need to perform, and it is easy to realize multi-gradation display, and the contrast does not decrease even if the number of scanning lines is increased.
本実施の形態では画素電極 4 aは、 アルミニウム、 クロム、 チタン 、 タンタル、 モリブデン、 銀等の反射性金属膜で構成している。 また本 実施の形態では画素電極 4 aと薄膜トランジスタ T F T 1の間には保護 膜 P S V Iを設けているので、 画素電極 4 aを大きく して薄膜トランジ スタ T F T 1と重なっても誤動作する事が無く、 反射率が高い液晶表示 装置を実現する事が出来る。  In the present embodiment, the pixel electrode 4a is made of a reflective metal film of aluminum, chromium, titanium, tantalum, molybdenum, silver, or the like. Further, in the present embodiment, since the protective film PSVI is provided between the pixel electrode 4a and the thin film transistor TFT1, no malfunction occurs even when the pixel electrode 4a is enlarged and overlaps with the thin film transistor TFT1. It is possible to realize a liquid crystal display device having a high reflectance.
なお本実施の形態では、 第 1の位相差板 1 2 cが無く、 視角特性を 改善するための第 3の位相差板 1 2 eが設けられている点で先に述べた 第 1の実施形態と異なる。 その他の光学フィルム 1 2の構成は第 1の実 施形態と同じである。 第 3の位相差板 1 2 eは視角拡大フィルムとも呼 ばれ、 複屈折特性を利用して液晶表示装置の表示特性の角度依存性を改 善する目的で設けている。 本実施の形態では、 第 3の位相差板 1 2 eも ポリカーボネイ ト、 ポリアクリレート、 ポリサルフォン等の有機樹脂の フィルムで構成できるので、 第 2の位相差板 1 2 dに第 3の位相差板 1 2 eを固定する接着層に光拡散接着層 1 1 aを用いることにより、 光拡 散接着層 1 1 aにクラックが発生する事を防止出来る。  Note that, in the present embodiment, the first embodiment has been described in that the first retarder 12 c is not provided, and the third retarder 12 e for improving the viewing angle characteristics is provided. Different from form. Other configurations of the optical film 12 are the same as those of the first embodiment. The third retardation film 12 e is also called a viewing angle widening film, and is provided for the purpose of improving the angle dependence of the display characteristics of the liquid crystal display device using birefringence characteristics. In the present embodiment, since the third retardation plate 12 e can also be formed of an organic resin film such as polycarbonate, polyacrylate, or polysulfone, the third retardation plate 12 d has the third retardation By using the light diffusion bonding layer 11a as the bonding layer for fixing the plate 12e, it is possible to prevent cracks from being generated in the light diffusion bonding layer 11a.
[産業上の利用可能性]  [Industrial applicability]
本発明は、 太陽光等の外部光がある時は、 外部光を利用して表示を 行う反射型液晶表示装置に適用され、 特にペン入力形コンピュータのよ うな携帯型情報処理装置の表示部に搭載して、 情報処理装置の消費電力 を低減することが出来かつ、 情報処理装置を小型化、 薄型化、 軽量化で きるという、 実用可能性のあるものである。 INDUSTRIAL APPLICABILITY The present invention is applied to a reflection type liquid crystal display device which performs display using external light such as sunlight when there is external light, and is particularly suitable for a pen input type computer. It can be mounted on the display of such a portable information processing device to reduce the power consumption of the information processing device and reduce the size, thickness, and weight of the information processing device. It is.

Claims

請求の範囲 The scope of the claims
1 . 第 1の基板と第 2の基板の間に液晶層を挟持した液晶表示パネ ルと、 前記第 1の基板に設けた光を反射する反射層と、 前記第 2の基板 に設けた偏光板と位相差板を積層した多層光学フィルムとを有し、 前記多層光学フィルムを構成する部材が、 偏光板と第 1の位相差板 を接着する第 1の接着層と、 第 2の位相差板と前記第 1の位相差板を接 着する第 2の接着層と、 前記第 2の位相差板を前記第 2の基板に接着す る第 3の接着層で構成し、 前記第 1の接着層と第 2の接着層および第 3 の接着層の中の少なくとも一つの層は、 接着剤に該接着剤と異なる屈折 率を有する粒を混入した、 光拡散性接着層としたことを特徴とする液晶 表示装置。  1. A liquid crystal display panel having a liquid crystal layer sandwiched between a first substrate and a second substrate; a reflective layer provided on the first substrate for reflecting light; and a polarized light provided on the second substrate. A multi-layer optical film in which a plate and a retardation plate are laminated, wherein a member constituting the multi-layer optical film includes a first adhesive layer for adhering a polarizing plate and a first retardation plate, and a second retardation. A second adhesive layer for bonding the plate and the first retardation plate, and a third adhesive layer for bonding the second retardation plate to the second substrate, wherein the first At least one of the adhesive layer, the second adhesive layer, and the third adhesive layer is a light-diffusing adhesive layer obtained by mixing particles having a different refractive index from the adhesive into the adhesive. Liquid crystal display device.
2 . 前記多層光学フィルム上に前記液晶表示パネルの上面を照明す るための補助光源とデータを入力するための入力装置を設置したことを 特徴とする請求項 1に記載の液晶表示装置。  2. The liquid crystal display device according to claim 1, wherein an auxiliary light source for illuminating the upper surface of the liquid crystal display panel and an input device for inputting data are provided on the multilayer optical film.
3 . 前記第 1の基板と第 2の基板の何れか一方の内面にカラーフィ ルタ膜を備えたことを特徴とする請求項 1に記載の液晶表示装置。  3. The liquid crystal display device according to claim 1, wherein a color filter film is provided on an inner surface of one of the first substrate and the second substrate.
4 . 第 1の基板と第 2の基板の間に液晶層を挟持した液晶表示パネ ルと、 前記第 1の基板に設けた光を反射する反射層と、 前記第 2の基板 に設けた光拡散層とを有し、  4. A liquid crystal display panel having a liquid crystal layer sandwiched between a first substrate and a second substrate; a reflection layer provided on the first substrate for reflecting light; and a light provided on the second substrate. Having a diffusion layer,
前記光拡散層の可視光領域の透過分光特性を前記反射層の可視光領 域の反射分光特性に合わせたことを特徴とする液晶表示装置。  A liquid crystal display device, wherein a transmission spectral characteristic of a visible light region of the light diffusion layer is matched with a reflection spectral characteristic of a visible light region of the reflection layer.
5 . 光拡散層上に前記液晶表示パネルの上面を照明するための補助 光源とデータを入力するための入力装置を設置したことを特徴とする請 求項 4に記載の液晶表示装置。  5. The liquid crystal display device according to claim 4, wherein an auxiliary light source for illuminating the upper surface of the liquid crystal display panel and an input device for inputting data are installed on the light diffusion layer.
6 . 前記第 1の基板と第 2の基板の何れか一方の内面にカラーフィ ルタ膜を備えたことを特徴とする請求項 4に記載の液晶表示装置。 6. The liquid crystal display device according to claim 4, wherein a color filter film is provided on an inner surface of one of the first substrate and the second substrate.
7 . 第 1の基板と第 2の基板の間に液晶層を挟持し、 前記第 2の基 板上に第 2の位相差板を設け、 該第 2の位相差板上に第 1の位相差板を 設け、 該第 1の位相差板上に偏光板を設けてなり、 7. A liquid crystal layer is sandwiched between the first substrate and the second substrate, a second retardation plate is provided on the second substrate, and a first phase difference plate is provided on the second retardation plate. A retardation plate, a polarizing plate is provided on the first retardation plate,
前記液晶層の前記第 1の基板側の配向軸を第 1の液晶配向軸、 前記 液晶層の前記第 2の基板側の配向軸を第 2の液晶配向軸とすると、 前記 第 2の位相差板の延伸軸と前記第 2の液晶配向軸のなす角度を 3 0度か ら 8 0度の範囲とし、 前記第 1の位相差板の延伸軸と前記第 2の液晶配 向軸のなす角度を 6 0度から 1 3 0度の範囲とし、 前記偏光板の吸収軸 と前記第 2の液晶配向軸のなす角度を 7 0度から 1 5 0度の範囲とし、 前記第 1の液晶配向軸と前記第 2の液晶配向軸のなす角度を 2 4 0度以 上とし、 前記液晶層のリタデ一シヨンを 0 . 7〃mから 0 . 9 5〃mの 範囲とし、 前記第 1の位相差板のリタデ一シヨンを 1 3 0 n mから 2 5 0 n mの範囲とし、 前記第 2の位相差板のリタデーションを 3 8 0 n m から 5 0 0 n mの範囲としたことを特徴とする液晶表示装置。  When the alignment axis of the liquid crystal layer on the first substrate side is a first liquid crystal alignment axis, and the alignment axis of the liquid crystal layer on the second substrate side is a second liquid crystal alignment axis, the second phase difference The angle between the stretching axis of the plate and the second liquid crystal orientation axis is in the range of 30 to 80 degrees, and the angle between the stretching axis of the first retardation plate and the second liquid crystal orientation axis. In the range of 60 degrees to 130 degrees, the angle between the absorption axis of the polarizing plate and the second liquid crystal alignment axis in the range of 70 degrees to 150 degrees, the first liquid crystal alignment axis And the second liquid crystal alignment axis has an angle of 240 degrees or more, the retardation of the liquid crystal layer is in the range of 0.7 to 0.95 μm, and the first phase difference is A liquid crystal display device, wherein the retardation of the plate is in a range from 130 nm to 250 nm, and the retardation of the second retardation plate is in a range from 380 nm to 500 nm. .
8 . 前記偏光板上に前記液晶層に光を供給するための補助光源とデ 一夕を入力するための入力装置を設置したことを特徴とする請求項 7に 記載の液晶表示装置。  8. The liquid crystal display device according to claim 7, wherein an auxiliary light source for supplying light to the liquid crystal layer and an input device for inputting data are installed on the polarizing plate.
9 . 前記第 1の基板と第 2の基板の何れか一方の内面にカラ一フィ ルタ膜を備えたことを特徴とする請求項 7に記載の液晶表示装置。  9. The liquid crystal display device according to claim 7, wherein a color filter film is provided on an inner surface of one of the first substrate and the second substrate.
PCT/JP1999/001403 1999-03-19 1999-03-19 Liquid crystal display WO2000057240A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP1999/001403 WO2000057240A1 (en) 1999-03-19 1999-03-19 Liquid crystal display

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP1999/001403 WO2000057240A1 (en) 1999-03-19 1999-03-19 Liquid crystal display

Publications (1)

Publication Number Publication Date
WO2000057240A1 true WO2000057240A1 (en) 2000-09-28

Family

ID=14235252

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1999/001403 WO2000057240A1 (en) 1999-03-19 1999-03-19 Liquid crystal display

Country Status (1)

Country Link
WO (1) WO2000057240A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005008323A1 (en) * 2003-07-16 2005-01-27 Sharp Kabushiki Kaisha Liquid crystal display device and back-light device
CN100409076C (en) * 2003-07-16 2008-08-06 夏普株式会社 Liquid crystal display device and back-light device
CN104076554A (en) * 2013-03-27 2014-10-01 株式会社日本显示器 Reflective liquid-crystal display device and electronic apparatus

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10142423A (en) * 1996-11-08 1998-05-29 Nitto Denko Corp Polarizing plate with wide visual field
JPH10170906A (en) * 1996-12-09 1998-06-26 Hitachi Ltd Reflection-type liquid crystal display device
JPH10326515A (en) * 1997-03-28 1998-12-08 Sharp Corp Front lighting system and reflection type liquid crystal display device provided with the system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10142423A (en) * 1996-11-08 1998-05-29 Nitto Denko Corp Polarizing plate with wide visual field
JPH10170906A (en) * 1996-12-09 1998-06-26 Hitachi Ltd Reflection-type liquid crystal display device
JPH10326515A (en) * 1997-03-28 1998-12-08 Sharp Corp Front lighting system and reflection type liquid crystal display device provided with the system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005008323A1 (en) * 2003-07-16 2005-01-27 Sharp Kabushiki Kaisha Liquid crystal display device and back-light device
CN100409076C (en) * 2003-07-16 2008-08-06 夏普株式会社 Liquid crystal display device and back-light device
CN104076554A (en) * 2013-03-27 2014-10-01 株式会社日本显示器 Reflective liquid-crystal display device and electronic apparatus
CN104076554B (en) * 2013-03-27 2017-06-23 株式会社日本显示器 Reflective LCD device and electronic equipment

Similar Documents

Publication Publication Date Title
US6456279B1 (en) Liquid crystal display device with a touch panel
US6771327B2 (en) Liquid crystal display device with an input panel
US6909486B2 (en) Liquid crystal display viewable under all lighting conditions
US7268841B2 (en) Display device and electronic equipment having the same comprising a region for reflecting a polarized light and a region for absorbing the polarized light
US8638411B2 (en) Transparent liquid crystal display device
EP1584972B1 (en) Liquid crystal display device
US6806934B2 (en) Transflective liquid crystal display having dielectric multilayer in LCD cells
WO1999040480A1 (en) Liquid crystal display and electronic device
WO2004090708A1 (en) Display device with display panel
JP2007004156A (en) Substrate assembly and display device having the same
JP3347302B2 (en) Liquid crystal display
US20060001806A1 (en) Liquid crystal display device
JP2001051256A (en) Liquid crystal display device
JP2002116877A (en) Liquid crystal display device
JP2002277856A (en) Liquid crystal display
WO2000057240A1 (en) Liquid crystal display
US20050157230A1 (en) Transflective liquid crystal display device
EP1059557A1 (en) Liquid-crystal display
US20030063242A1 (en) Liquid crystal display device and electronic apparatus
US20050140902A1 (en) In plane switching liquid crystal display with transflector
JP2001125091A (en) Liquid crystal display device
TW522275B (en) Liquid crystal display device
JP4169066B2 (en) Liquid crystal display device and electronic device
JP2000235180A (en) Liquid crystal device and electronic equipment
JPH1138410A (en) Liquid crystal display device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref country code: JP

Ref document number: 2000 607054

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 09936999

Country of ref document: US

122 Ep: pct application non-entry in european phase