WO2000029681A1 - Toilet device and toilet device designing method - Google Patents

Toilet device and toilet device designing method Download PDF

Info

Publication number
WO2000029681A1
WO2000029681A1 PCT/JP1999/006401 JP9906401W WO0029681A1 WO 2000029681 A1 WO2000029681 A1 WO 2000029681A1 JP 9906401 W JP9906401 W JP 9906401W WO 0029681 A1 WO0029681 A1 WO 0029681A1
Authority
WO
WIPO (PCT)
Prior art keywords
blower
air
impeller
toilet
toilet device
Prior art date
Application number
PCT/JP1999/006401
Other languages
French (fr)
Japanese (ja)
Inventor
Noboru Shimbara
Hisato Haraga
Yuichi Furuta
Humitsuki Tanaka
Ryosuke Hayashi
Yasuhiro Yanagawa
Original Assignee
Toto Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toto Ltd. filed Critical Toto Ltd.
Priority to AU11817/00A priority Critical patent/AU1181700A/en
Priority to JP2000582652A priority patent/JP4465881B2/en
Publication of WO2000029681A1 publication Critical patent/WO2000029681A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/28Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
    • F04D29/281Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps for fans or blowers
    • F04D29/282Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps for fans or blowers the leading edge of each vane being substantially parallel to the rotation axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/28Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
    • F04D29/30Vanes

Definitions

  • the present invention relates to a toilet apparatus and a method of designing a toilet apparatus.
  • the present invention relates to a toilet device provided with a blower and a method for designing a toilet device.
  • blowers are used in the toilet room for various applications such as local drying after local washing, deodorization in the toilet room, and air conditioning such as heating and cooling.
  • air conditioning such as heating and cooling.
  • these blowers are built into a human body cleaning device in a narrow toilet room, the size of the device itself will increase, resulting in problems such as impaired operability and poor design, and interference with walls and pipes and the device in the first place. In some cases, installation was not possible.
  • centrifugal blowers use the centrifugal force generated by the rotation of the impeller to blow air, so if the rotation speed of the motor is reduced, the impeller and the blower unit become large, and the inside of the human body cleaning device The space occupied by the blowers is very large.
  • blower is forcibly reduced in size in order to reduce the size of the human body local cleaning device, the motor speed will increase unnecessarily, generating large vibrations and noise. This causes a new problem in designing the device. This is more remarkable in high-performance models that have multiple blowers such as drying, deodorizing, and cooling / heating.Because they have multiple blowers, the occupied volume of the blowers becomes very large, and the blowers can be used for multiple purposes.
  • a human body cleaning device having an instantaneous heat exchanger has a configuration that makes it easy to reduce the size of the device because it does not have a large hot water storage tank like a hot water storage type, but on the other hand, the size of the blower Occupied a larger part in reducing the size of the entire apparatus.
  • an axial blower that is frequently used in the same manner as a centrifugal blower can obtain a large amount of air at a low pressure by using a small blower.
  • An object of the present invention is to provide a toilet device having a blower, which is excellent in operability, design, usability, and comfort even in a small toilet room, and furthermore, the device design.
  • Another object of the present invention is to provide a toilet device that can be easily installed and constructed, and a method for designing the toilet device. That is, an object of the present invention is to provide a very small toilet apparatus by using a blower capable of obtaining a required air volume and pressure even at a low rotation and small size.
  • the invention according to claim 1 has been made to solve the above-mentioned problem.
  • the invention relates to a toilet device having a blower driven and rotated by a motor,
  • the blower is a blower
  • An impeller support that is rotationally driven by a motor; and an outer periphery of the impeller support, which is arranged substantially evenly in the circumferential direction, and blows and boosts air sucked from the suction port by centrifugal force generated by rotation.
  • An impeller having a blowing blade to perform;
  • the blower blades are configured as a speed-up cascade that increases the velocity of the air that has flowed in through the suction port and reduces the flow area by reducing the flow area in the radial direction from the center of the impeller support.
  • the air sucked from the suction port by the impeller of the centrifugal blower is blown and pressurized by the blower blade and is blown out.
  • the blower blades use speed-increasing blades that reduce the flow area in the radial direction from the center of the impeller support. Can get You. Therefore, by attaching a small impeller blower to a human body local cleaning device or a toilet device, these can be reduced in size.
  • the blower can obtain a desired air volume even when it is rotated at a low speed, transmission of unpleasant vibrations during use can be prevented, and comfortable washing can be performed.
  • a pressure recovery means is provided on the outer periphery of the blower blade for converting dynamic pressure generated by rotation of the impeller into static pressure to recover the pressure.
  • the pressure recovery means can be realized, for example, as a scroll casing integrally formed with a casing that rotatably supports the impeller.
  • blower blades are configured such that a flow passage area formed between the adjacent speed increasing blades gradually decreases from an inlet portion to an outlet portion of the speed increasing blades.
  • the configuration of the speed increasing blade can be suitably realized.
  • the blower blades are arranged such that the inclination of the chord connecting the leading edge of the inlet blade tip and the trailing edge of the outlet blade tip is in the same direction as the impeller rotation direction.
  • the outflowing air can be effectively sent in the rotating direction, and a large pressure head and high air volume can be obtained.
  • air can be sent from a plurality of outlets, efficient air can be sent to a room or a human body even when used for air conditioning such as indoor heating and cooling.
  • the discharge is performed by selecting a discharge direction by switching a plurality of discharge ports. Equipped with mouth-switching means so that air can be blown to the required place when needed, and to provide airflow with excellent comfort.
  • a single blower is used for multiple purposes. Even if there is, it is possible to perform optimal ventilation without causing a decrease in air volume or a change in the number of revolutions.
  • a blower duct is provided which communicates with the blower and transports air from the blower to the discharge port. It is easy to handle and assemble, and the volume occupied by the air duct is small, and the entire device can be downsized.
  • pressure recovery means for converting dynamic pressure into static pressure is provided at a connection portion between the blower pipe and the discharge port, so that air flowing at a high speed in the blower pipe having a small pipe cross-sectional area is provided. Ventilation is possible without losing pressure. If dynamic pressure is converted to static pressure, even if air is blown through a small-diameter air duct, the pressure required for air blowing is small and efficient air blowing is possible. As described above, if the required pressure can be reduced, the drive torque of the blower is also reduced, so that it is possible to drive with a small motor having a low rotation.
  • one of the suction ports is installed in the area around the bowl surface of the toilet bowl, which is a position where the odor can be efficiently sucked for deodorization, and the other suction port is used for air conditioning such as cooling and heating.
  • the suction port is used for air conditioning such as cooling and heating.
  • it can be installed on the back side where dust is not sucked or at a position away from the toilet.
  • Claim 11 includes suction port switching means for selecting a suction direction by switching a plurality of suction ports.
  • This suction port switching means switches the suction port from a position where it is easy to suck odors to a position where it is difficult to suck odors so that unpleasant odors are not diffused during indoor air conditioning and drying.
  • switching to a position where the odor is easily sucked will enable effective deodorizing.
  • blower output adjusting means for adjusting the output state, even if the blower is also used for a plurality of purposes, it is possible to obtain a blowing amount according to the purpose. It is also possible to control the air flow according to room temperature and user preference. In particular, when a speed-increasing blade is used, it has excellent hydrodynamic characteristics and can obtain a large pressure head and a high airflow even at the same rotation speed, so it can be used in a wide range of applications from low airflow to high airflow. By controlling the number of rotations, it is possible to use a single blower.
  • the air temperature adjusting means controls the temperature of the air based on the output of the air temperature detecting means, so that the air can be blown at an optimum temperature suitable for the application.
  • Claims 21 and 22 include an air processing unit control unit that starts, stops, and adjusts the output of the air processing unit in conjunction with the discharge port switching unit and / or the suction port switching unit. , Even if the odor component concentration is different Alternatively, it is possible to perform air treatment that is optimal according to the user's preference and according to the application.
  • the blower includes a casing that rotatably supports the impeller, and is detachably attached to the casing and is detachably attached thereto, so that air blown out from the blower blades is directed to the outside. It is composed of a blowing duct to guide. According to this aspect, since the blower is sufficiently small and the blowing capacity can be freely controlled by controlling the rotation speed in a wide range, it is possible to replace only the blowing duct according to the application and operating conditions. In addition, there is no need to newly design the impeller support or the blower blades, or to change the arrangement and the layout, so that the number of parts can be reduced.
  • impeller support and the blower blades are configured with units having the same shape, it is not necessary to individually design a new unit, and a common unit can be used. Therefore, the number of parts can be reduced.
  • the motor is a DC brushless motor including a rotor having a permanent magnet, and an electromagnet arranged to face the rotor.
  • the motor for rotating the blower is not particularly limited, but its operation and effect can be enhanced by using a DC brushless motor that is small but has a large rated output.
  • the DC brushless motor can control the number of rotations freely, and can reduce the vibration and reduce the size even when used at high speed for a long time, so that the arrangement and the blowing capacity can be controlled freely.
  • the permanent magnets are arranged in the outer rotor, so that the permanent magnet can have a large magnet area and be small in size.
  • the blower includes:
  • An impeller support that is rotationally driven by a motor; and an outer periphery of the impeller support, which is arranged substantially evenly in the circumferential direction, and blows and boosts air sucked from the suction port by centrifugal force generated by rotation.
  • An impeller having a blowing blade to perform;
  • the blower blades are composed of a speed-up cascade in which the flow area is narrowed in the radial direction from the center of the rotating support to increase the velocity of the air flowing in from the suction port and flow out, and the flow coefficient ⁇ is reduced.
  • This is the design method of the toilet equipment set to 0.15 or more as defined by the following equation.
  • V e is the rotational speed of the outer periphery of the rotary support.
  • the impeller of the blower is constituted by a speed increasing blade, and in claim 27, the flow coefficient ⁇ of the blower is determined so as to be 0.15 or more. Since the method of designing the storage device has been shown, the size of the storage device can be significantly reduced.
  • FIG. 1 is a perspective view showing a blower unit for drying used in a human body local cleaning device.
  • FIG. 2 is a perspective view showing a configuration around an impeller of the blower.
  • FIG. 3 is a perspective view showing the blower with the blower duct of FIG. 1 removed.
  • FIG. 4 is a perspective view showing a conventional impeller.
  • FIG. 5 is an explanatory diagram for explaining a circular blade of a conventional impeller.
  • FIG. 6 is an explanatory diagram for explaining the speed increasing blade used in the blower according to the present embodiment.
  • FIG. 7 is a graph showing a change in the cross-sectional area of the passage between the blades.
  • FIG. 8 is an explanatory diagram showing a speed triangle representing a state at the time of the outflow of the impeller.
  • FIG. 9 is an explanatory view of an impeller used in the blower unit shown in FIG.
  • FIG. 10 is an explanatory diagram for explaining the shape of the speed increasing blade.
  • FIG. 11 is a graph showing the measurement results of the hydrodynamic characteristics of the blower shown in FIG.
  • FIG. 12 is an external view of a drying fan unit.
  • FIG. 13 is a perspective view showing the internal structure of the blower.
  • FIG. 14 is a schematic diagram of a drying fan unit using a conventional arc blade.
  • FIG. 15 is a graph illustrating the measurement results of the hydrodynamic characteristics.
  • FIG. 16 is an explanatory view for explaining a pressure recovery means according to a second embodiment of the present invention.
  • C FIG. 17 is a block diagram for explaining a blowing mechanism using the pressure recovery means shown in FIG.
  • FIG. 18 is an explanatory diagram showing a blower control routine.
  • FIG. 19 is an explanatory view showing the internal structure of a conventional human body cleaning apparatus.
  • FIG. 20 is an external view of a conventional human body cleaning apparatus.
  • FIG. 1 is a perspective view showing a drying fan unit used for a human body local cleaning device ⁇
  • the blower unit 10 for drying includes a drive motor 12, a blower 14, and a blower duct 19.
  • the blower 14 is attached to the drive shaft of the motor 12, sucks air from the suction port 14 a with the drive of the motor 12, and after increasing the pressure to a desired pressure, the blower duct 19 To send to.
  • a blower (not shown) is provided in the blower opening 19 a at the tip of the blower duct 19.
  • the damper is self-closing when no air is blown to prevent backflow of sewage and garbage from the outside.
  • the damper is automatically opened by the air pressure to blow air.
  • the air duct 19 is provided with a heater for the purpose of raising the temperature of the drying air (not shown) and increasing the drying efficiency.
  • the heater is controlled by a blast temperature control means for controlling the temperature to a predetermined value and drying safely and comfortably. That is, the blower temperature controller controls the temperature of the blown air by controlling the power supplied to the heater based on a detection signal from a temperature sensor provided in the blower duct 19.
  • the suction port 14a of the blower 14 is configured as a single suction with only the motor mounting surface and the opposite surface due to the connection.However, if the configuration is such that cooling of the motor is performed at the same time, It may be arranged on the mounting surface side, or if it is desired to improve the characteristics at the time of high air flow, it may be a double suction structure that suctions from both surfaces.
  • FIG. 2 is a perspective view showing a configuration around the impeller 15 of the blower 14.
  • the blower 14 includes an impeller 15 driven to rotate by a motor 12 and a scroll casing 18 (see FIG. 1).
  • the impeller 15 includes an impeller support 16 fixed to the rotating shaft of the motor 12, and a high-speed blade 17 fixed substantially evenly in the circumferential direction of the impeller support 16. I have.
  • the impeller support 16 is provided with a wing fixing ring 16a in the circumferential direction to prevent deformation of the wing due to rotation, thereby preventing unnecessary vibration of the wing and the like due to rotation.
  • Motor housing 16b is provided for mounting with the evening 12 inserted into the inner diameter part, and the overall size of the blower 14 is reduced.
  • the upper portion of the motor housing 16b is a rectifying portion 16c which is rounded to reduce the air inflow resistance due to the protrusion of the motor 12.
  • FIG 3 on the outer peripheral side of the c impeller support 1 6 is a perspective view showing the blower 1 4 removed the air duct 1 9 of Figure 1, scroll one Luque one single 1 8 through a mount 1 8 a is Are located.
  • the scroll casing 18 has a spiral shape and functions as pressure recovery means for converting the dynamic pressure of the fluid flowing out while rotating from the impeller 15 into static pressure. Since the blower 14 can be used not only for drying but also for other purposes, the blower port 19a may be connected to another device, for example, a deodorizing device.
  • FIG. 4 is a perspective view showing a conventional impeller 100.
  • the impeller 100 includes an impeller support 101 and arc-shaped blades 102 arranged at equal intervals on the outer periphery of the impeller support 101.
  • the arc blade 102 has an arc shape, and includes a blade front portion 102 a that is a blade tip of an impeller inflow portion and a blade that is a blade tip of an impeller outflow portion.
  • the trailing edge 102b is connected with an arc-shaped wing.
  • the air that has flowed into the impeller 100 is bent in the same direction as the rotational direction represented by the arrow in FIG. 5 as it flows from the leading wing portion 102 a to the trailing edge portion 102 b.
  • FIG. 6 is an explanatory diagram for explaining the speed increasing blades 17 used in the blower 14 according to the present embodiment.
  • the speed-increasing wing 17 has a shape in which the inclination of the chord represented by a straight line connecting the leading edge 17 a and the trailing edge 17 b is the same as the rotation direction indicated by the arrow. is there.
  • the air flowing through the speed-increasing wing 17 enters the wing leading edge 17a, it is bent in the same direction as the rotational direction, and flows out along the wing trailing portion 17b.
  • the circle shown in FIG. 6 is drawn so that the adjacent speed increasing blades 17 are in contact with each other, and indicates the cross-sectional area of the flow path.
  • the size of the circle decreases from the leading edge ⁇ 7 a of the blade to the trailing edge 17 b of the wing.In other words, the flow area becomes smaller toward the downstream side, and the flow velocity decreases. It can be seen that the structure is increasing.
  • FIG. 7 is a graph showing a flow path cross-sectional area along a movement locus 0 L at the center of the circle in FIG.
  • the arc blade 102 according to the prior art shown in FIG.
  • the length of the trajectory from the blade inlet to an arbitrary position is defined as the length of the trajectory from the blade inlet to the position corresponding to the blade tip.
  • S be the area of the tangent circle
  • S i be the cross-section of a circle whose diameter is the line connecting the two adjacent wing leading edges 17a.
  • the conventional arc blade 102 has a substantially constant flow path cross-sectional area ratio in the region of LZL w > 0.2, whereas the speed increasing blade 17 of the present embodiment has However, the flow rate decreases almost linearly, and the minimum flow path cross-sectional area ratio is about 0.5. Therefore, it can be seen that the average speed at the time of outflow of the blower 14 of this embodiment is about twice as large as the average speed at the time of inflow.
  • the flow path cross-sectional area ratio decreases in the range of 0 ⁇ LZL w ⁇ 0.2, but this is due to the flow contraction due to the blade thickness. Yes, the flow velocity at inflow and outflow is almost the same.
  • FIG. 8 is an explanatory diagram showing a speed triangle representing a state at the time of the outflow of the impeller.
  • the radial velocity at U is the impeller outlet, circumferential relative speed when V 2 is the impeller outlet, W 2 is the relative velocity at the impeller outlet, the impeller inside diameter, R 2 is the impeller outer diameter , ⁇ 2 represents the impeller exit angle.
  • V 2 W 2 si ⁇ ( ⁇ - ⁇ ,)
  • V 2 ⁇ V, (R 2 / R / ⁇ ) ⁇ cos ( ⁇ - ⁇ ) If the absolute velocity in the circumferential direction of the blade outlet is V and the slip at the time of outflow is ignored, V is expressed by the following equation ( ⁇ ) Is represented.
  • V (V e + V 2 )
  • the size of the scroll casing installed to convert the dynamic pressure of the impeller into static pressure must be large.
  • the scroll casing 18 can be reduced.
  • the optimal design condition of the blower is when the outflow angle and the divergence angle of the scroll casing match, so by using the blades with speed increasing effect, a large pressure head and high air volume can be obtained. However, since the spread angle of the optimal scrolling can be reduced while the air volume is high, the size of the entire blower can be reduced.
  • the speed increasing blade 17 can reduce the flow coefficient (based on this, the impeller 15 itself can be realized. That is, the flow coefficient of the above equation (1) ⁇ It can be transformed into
  • Q / (2 ⁇ 2 2 ⁇ ) ⁇ ⁇ ⁇ (3)
  • is a dimensionless number, and is one index that indicates the operating conditions of the blower.
  • ⁇ R 2 2 H ⁇ Q / (2 ⁇ ) ⁇ ⁇ (1 /) ⁇ ( ⁇ )
  • the left side of the equation ( ⁇ ) represents the volume of the impeller. From the right side, it can be seen that the volume of this impeller is proportional to the reciprocal of the flow coefficient ⁇ .
  • the blower of the present embodiment can realize a blower having the same rated output with half the capacity of the conventional blower, so that the conventional blower that uses two blowers for drying and room heating is different from the conventional blower.
  • One unit can be shared.
  • the design of the blower unit can be made very simple. Furthermore, when switching the flow path, of course, it is not possible to use multiple applications simultaneously, but if the blower is provided independently, the necessary air can be blown at any time, so it has excellent comfort and usability. Things.
  • FIG. 9 is a schematic view of an impeller 15 used in the blower unit shown in FIG.
  • impeller outer diameter: D 2 56 mm
  • impeller inner diameter: D, 47 mm
  • impeller Height: H 8 mm
  • the ratio of the inner diameter to the outer diameter of the impeller: ⁇ is set to about 0.85.
  • is determined in consideration of the following points. In other words, when ⁇ is reduced, noise such as wind noise can be reduced, but the characteristics at high airflow deteriorate as the suction area of the blower decreases. On the other hand, when ⁇ is increased, the characteristics at high airflow are slightly improved, but due to the shorter blade length, separation easily occurs inside the impeller, lowering efficiency and increasing noise. Taking these factors into consideration, ⁇ is determined as a condition under which the characteristics at the time of high air volume and the characteristics such as noise can be compatible. In view of these points, ⁇ is preferably 0.75 to 0.95, particularly preferably 0.8 to 0.92.
  • Figure 10 and Table 1 show the main specifications of the speed-up wing shape.
  • the ratio ⁇ of the cross-sectional area of the channel in the speed increasing section can be set arbitrarily according to the blade shape. If ⁇ is small, a large speed can be obtained, so that a higher pressure and a higher air volume can be designed.However, if ⁇ is too large, the speed distribution at the time of the outflow of the impeller becomes large, resulting in lower efficiency. The noise level also rises. If ⁇ is taken too large, the speed effect will be weakened and it will be difficult to improve the characteristics. Therefore, in consideration of these parameters, ⁇ is preferably 0.30 to 0.80, particularly preferably 0.4 to 0.65, and ⁇ is set to 0.45 in the present embodiment.
  • FIG. 11 shows the measurement results of the hydrodynamic characteristics of the blower unit shown in Figure 3.
  • the pressure coefficient remains high until the flow coefficient ⁇ becomes very high.
  • instantaneous type heat exchanger volume of 1 200 W about power used on the human private washing apparatus and Bok - directional device think about 9.
  • blower 4 X 1 0 4 mm 3 der Rukoto, the conventional blower, It has a volume comparable to an instantaneous heat exchanger with only the impeller volume.
  • the use of the blower according to the present invention makes it possible to reduce the size of the human body local cleaning device and the toilet device.
  • FIG. 12 is an external view of a blower unit for drying
  • FIG. 13 is a perspective view showing the blower 14.
  • the blower 14 and the blower duct 19 are detachably connected to each other through a duct connection portion 19b.
  • the blower 14 according to the present embodiment is extremely small and quiet, and can obtain a high air volume and a high pressure at a low rotation speed. Therefore, even if the blower shape is not designed for the air blow application, the blower 12 can be used. By simply adjusting the rotation speed, it is possible to handle a very wide range of applications, from high airflow applications for indoor air conditioning to low airflow applications for deodorization.
  • the blower 14 is used as a common part, and the load, blown area, duct length
  • the blow duct By adjusting the air flow and appropriately selecting and using a blow duct having a different shape, it is possible to use the blow duct as it is for different blow applications by changing only the shape of the blow duct. Therefore, if a small blower is used as a common part, it is not necessary to consider the blower performance and size as design variables when designing equipment and examining internal arrangements, and it is possible to flexibly respond to changes in design specifications. Yes, it is very easy to design a human body cleaning device and a toilet device.
  • Fig. 14 is a schematic diagram of a blower unit for drying using a conventional arc blade.
  • Fig. 15 is a schematic diagram of a fan unit using a conventional arc blade for drying and drying. 7 shows the measurement results of the hydrodynamic characteristics in the case of connecting. When a load is connected compared to a single blower, the characteristics are significantly reduced, and the flow coefficient at the design point is 0.065.
  • FIG. 16 shows an example of pressure recovery means according to the second embodiment of the present invention.
  • the air supplied from the connection pipe connection port 22 having a smaller flow path cross-sectional area flows into the pressure recovery means 21.
  • the pressure recovery means 21 is formed as a conduit that expands gradually to convert it to a blowing area and flow velocity suitable for the application, so that the air flowing at high speed is gradually decelerated as the cross-sectional area of the flow path increases.
  • the air is sent to the air outlet 24 having a larger flow path cross-sectional area.
  • the large dynamic pressure of the high-speed air during the deceleration process is gradually converted into a static pressure, so that no pressure loss or energy loss occurs.
  • the pressure recovery means 21 is divided into a plurality of passages by the partition walls 23, the deceleration can be efficiently performed, and the pressure can be sufficiently converted. Dividing the inside of the enlarged flow path in this way has a rectifying effect and prevents separation of the flow, so that pressure loss does not occur. If there is no pressure loss in this way, the load on the blower can be reduced, greatly contributing to downsizing and energy saving.
  • the pressure recovery means 21 with small energy loss, air can be transported through a pipeline having a smaller cross-sectional area than the air outlet. To reduce the size Always preferred.
  • FIG. 17 shows an embodiment in which an air blowing mechanism is configured by using the pressure recovery means 21 shown in FIG.
  • the air supplied from the blower 14 is sent to the outlet switching means 33.
  • the discharge port switching means 33 includes a heater 29 for heating the air as an air processing device, a temperature detection means 32 for detecting the temperature of the air, and a flow path switching means 31 for switching the flow path.
  • the air switched by the flow path switching means 31 is guided to the air duct 28.
  • the pressure recovery means 21 is connected to the air duct 28 at a position suitable for each application.
  • the flow path switching means 31, the temperature detecting means 32, the heater 29 and the motor 122 are connected to the controller 30, and the controller 30 is activated when the user performs a remote control or manual operation.
  • control is performed such that a predetermined temperature, air volume, rotation speed, and air outlet are selected.
  • the discharge port is provided with the pressure recovery means 21, even if air is blown through the blower pipe 28 having a smaller pipe diameter, pressure loss and energy loss are less generated, and the blower 14 and the motor 12 are It can be a small size suitable for a human body local cleaning device and a toilet device.
  • FIG. 18 is an explanatory diagram showing a transmitter control routine.
  • the controller 30 controls the rotation speed of the blower 14 based on a predetermined program. That is, in step S12, it is determined based on an output signal from a switch (not shown) whether drying, deodorization, or heating is required, and any of the processing is requested. If there is no such process, the process is temporarily terminated. On the other hand, if any one of these processes is requested, the process proceeds to step S14. In step S14, the target rotation speed of the blower is calculated. The target rotation speed is obtained, for example, from a preset table or an arithmetic expression.
  • step S16 the detection value from the rotation speed sensor of the blower is read, and the process proceeds to step S18.
  • step S18 the detected value of the rotation speed sensor and the target The deviation from the target rotation speed is determined, and it is determined whether these deviations are within a predetermined range. If it is determined that the deviation is higher than the predetermined range, the process proceeds to step S20, and the control power to the blower is increased or decreased. You. In this way, the blower is controlled to a predetermined rotation speed based on a request for drying, heating, or the like. Note that the target rotation speed of the blower can be set so that it can be changed according to the user's preference.
  • the configuration using the heater 29 as the air processing device has been described.
  • a deodorizing device instead of the heater, a deodorizing device, a cooling device, or a device for radiating a diffused substance such as a fragrance may be provided.
  • the selection and output adjustment of the air treatment device be linked with the flow path switching means 31.
  • the air-blowing unit 34 since the air can be routed freely using a small-diameter air duct 28, the air-blowing unit 34 may be installed outside the human body local cleaning device and the tray device, or as an option. It may be retrofitted.
  • FIG. 19 shows the internal structure of a conventional human body cleaning apparatus. Deodorizing blower unit 50, drying blower unit 51, washing nozzle 52, heating toilet seat 53, indoor heating blower unit 54, hot water sink 55, controller 56, flow control valve 57 It has been.
  • FIG. 20 is an external view of a conventional human body cleaning apparatus.
  • the present invention is not limited to the above embodiment, and does not depart from the gist of the present invention.
  • the present invention can be implemented in various modes within the scope, and for example, the following modifications are also possible.
  • the hydrodynamic characteristics of the blower can be changed according to the application, and may be determined according to the design. For example, if the motor used can be reduced in size, the inner diameter of the impeller can be further reduced, so that the outer diameter of the impeller can also be reduced. Similarly, if the size is reduced as it is, the required pressure and air volume cannot be obtained, and the motor speed must be increased. Therefore, it is necessary to improve the hydrodynamic characteristics of the blower. For example, in order to further improve the characteristics at high airflow, it is necessary to use both suction, increase the scroll angle, increase the outflow angle at the blade outlet, and reduce the cross-sectional area ratio of the speed increasing section. They can be used, or they can be combined. By doing so, the flow coefficient ⁇ at the time of installation of the blower can be made larger than 0.26 shown in Table 1, and it is possible to experimentally exceed 0.4, and the pressure coefficient is 2 It has been confirmed that it is possible to set the value to more than 0.
  • Toilet devices such as toilets equipped with a function to dry local parts after washing, a deodorizing function, an indoor heating function, etc., as well as a human body cleaning device that sprays washing water to local parts of the human body, storage cabinets, etc.
  • the toilet device incorporating the blower may be built in the device body in advance, or may be retrofitted.
  • the shape of the scroll casing can be a logarithmic spiral represented by the following function in polar coordinates.
  • the shape of the scroll casing can be an Archimedes spiral represented by the following function in polar coordinates.
  • a winged diffuser for converting dynamic pressure into static pressure may be arranged on the outer periphery of the impeller.
  • This winged diffuser can be configured as an arc-shaped standing wall in the radial direction.
  • the present invention is applicable to a human body local cleaning device for cleaning a local part of a human body and a toilet device used for heating a toilet room.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

A human body washing device excellent in operability, design feature, feeling of use, and comfortableness even in a restricted toilet room and also easy in design, assembly, and installation, wherein a blower (14) is provided with a fresh air sucking port (14a) and an impeller comprising an impeller support body driven rotatably by a motor (12) and air blowing vanes which are disposed roughly uniformly on the outer periphery of the impeller support body and blow and build up air sucked from the sucking port (14a) by a centrifugal force generated by the rotation of the air blowing vanes, and the air blowing vanes comprise speed increasing vanes (17) which increase the velocity of air flowing in from the air sucking port (14a) to allow it to flow out by reducing the flow path area radially from the center of the impeller support body.

Description

明細書  Specification
トイレ装置およびトイレ装置の設計方法 技術分野  TECHNICAL FIELD The present invention relates to a toilet apparatus and a method of designing a toilet apparatus.
本発明は、 送風機を備えたトイレ装置およびトイレ装置の設計方法に関するも のである。 背景技術  TECHNICAL FIELD The present invention relates to a toilet device provided with a blower and a method for designing a toilet device. Background art
従来、 この種の人体局部洗浄装置として、 特開平 1 0— 1 6 8 9 8 0号公報 に示すように、 軸流ファンを使ったものが知られている。 この人体局部洗浄装置 は、 設置条件の最適化を行なうことにより、 ケーシングの小型化を図っている。 また、 他の従来の技術として、 特開平 6— 3 1 3 3 3 1号公報に示すように、 乾燥と臀部の局所暖房用に共通のファンを使用することにより、 小型化および低 コスト化をはかるものも知られている。  2. Description of the Related Art Conventionally, as this kind of a human body local cleaning device, a device using an axial fan has been known as disclosed in Japanese Patent Application Laid-Open No. H10-168980. This body part cleaning device attempts to reduce the size of the casing by optimizing the installation conditions. As another conventional technique, as disclosed in Japanese Patent Application Laid-Open No. Hei 6-3131331, by using a common fan for drying and local heating of the buttocks, miniaturization and cost reduction are achieved. Something to measure is also known.
これらの送風機は、 トイレ室内において、 局部洗浄後の局部乾燥、 トイレ室内 の脱臭や暖房冷房等の空気調和等様々な用途で使用されている。 一方、 狭いトイ レ室内においてこれら送風機を人体局部洗浄装置に内蔵させると装置自体が大型 化し、 操作性を損なったり、 意匠性が優れないなどの問題や壁面や配管と装置が 干渉して、 そもそも設置が不可能な場合もあった。  These blowers are used in the toilet room for various applications such as local drying after local washing, deodorization in the toilet room, and air conditioning such as heating and cooling. On the other hand, if these blowers are built into a human body cleaning device in a narrow toilet room, the size of the device itself will increase, resulting in problems such as impaired operability and poor design, and interference with walls and pipes and the device in the first place. In some cases, installation was not possible.
人体局部洗浄装置においては構造上からも振動が人体に伝達しやすいために、 振動が発生すると他の装置以上に不快な感触を与えるので、 送風機に用いるモー 夕の回転数は低く抑える必要がある。 一般的に使用されている遠心送風機は羽根 車の回転による遠心力を用いて送風を行なうので、 モータの回転数を抑えると、 羽根車および送風機ュニッ卜が大型のものとなり、 人体局部洗浄装置内部の送風 機が占める空間は非常に大きなものとなっている。  In human body cleaning equipment, vibration is easily transmitted to the human body even from the structural point of view, so if vibration occurs, it gives a more unpleasant feeling than other equipment, so it is necessary to keep the rotation speed of the motor used for the blower low . Generally used centrifugal blowers use the centrifugal force generated by the rotation of the impeller to blow air, so if the rotation speed of the motor is reduced, the impeller and the blower unit become large, and the inside of the human body cleaning device The space occupied by the blowers is very large.
一方、 人体局部洗浄装置を小型化するために無理に送風機を小型のものにする と、 いたずらにモータ回転数を上昇させることになり、 大きな振動や騒音の発生 原因となるので装置を設計する上では新たな問題を引き起こすことになる。 これ は乾燥、脱臭、冷暖房等の複数の送風機構を有する高機能なものほど顕著であり、 複数の送風機を有するために送風機の占有容積が非常に大きなものとなり、 送風 機を複数の用途で兼用し流路を切り替えて使用することで送風機の占有容積を小 さくした場合であっても、 送風管路が長く、 管路の途中で切替機構を有するため に圧力損失が高まるので結果として大きな送風圧力を必要とすることとなり、 モ —夕回転数を大幅に増加させたり、 送風機自体を大型にする必要があった。 On the other hand, if the blower is forcibly reduced in size in order to reduce the size of the human body local cleaning device, the motor speed will increase unnecessarily, generating large vibrations and noise. This causes a new problem in designing the device. This is more remarkable in high-performance models that have multiple blowers such as drying, deodorizing, and cooling / heating.Because they have multiple blowers, the occupied volume of the blowers becomes very large, and the blowers can be used for multiple purposes. Even if the occupied volume of the blower is reduced by switching the flow path, the blower pipe is long, and the switching mechanism is provided in the middle of the pipe, which increases the pressure loss, resulting in a large blower Since pressure was required, it was necessary to greatly increase the number of revolutions in the evening and to make the blower itself large.
また、 送風管路を取り回すと、 その占有体積が無視できないものとなり、 装置 設計を困難にし、 製造■組立てを難しくする問題も有していた。  In addition, when the air ducts are routed, the volume occupied by the ducts is not negligible, which makes the device design difficult, and has a problem that manufacturing and assembly are difficult.
さらに、 瞬間式熱交換器を有する人体局部洗浄装置においては、 貯湯式のよう な大きな貯湯タンクを持たないために装置の小型化を図りやすい構成を有してい るものの、 一方で送風機の大きさが装置全体の小型化を図る上でより大きなゥェ ィ卜を占めていた。  Furthermore, a human body cleaning device having an instantaneous heat exchanger has a configuration that makes it easy to reduce the size of the device because it does not have a large hot water storage tank like a hot water storage type, but on the other hand, the size of the blower Occupied a larger part in reducing the size of the entire apparatus.
また、 送風する空気の加熱、 冷却、 脱臭、 化学処理、 香り等拡散物質の混入を 行なう空気処理装置を設置した場合には、 装置小型化のために処理部と空気との 接触面積を確保しながら小型化を図る必要がある。 しかし、 これでは接触部の流 路断面積が小さくなることで圧力損失が増大し、 この圧力損失の増大により送風 機負荷は大きなものとなる。 これは送風機の更なる大型化や高速運転を強いるも のとなり、 操作性、 施工性の悪化や振動騒音の増大等を引き起こすことにより、 人体局部洗浄装置およびトイレ装置の小型化と快適性の両立は相反するものとな つてしまっていた。  In addition, if an air treatment device is installed to heat, cool, deodorize, chemically treat, or mix in diffusing substances such as fragrance, the area of contact between the treatment section and air must be ensured to reduce the size of the device. However, it is necessary to reduce the size. However, in this case, the pressure loss increases due to the decrease in the cross-sectional area of the channel at the contact portion, and the blower load increases due to the increase in the pressure loss. This imposes a further increase in size and high-speed operation of the blower, causing a deterioration in operability and workability and an increase in vibration noise. Had become contradictory.
一般的に遠心式送風機と同様に使用される頻度の高い軸流送風機は、 小型の送 風機を用いて低圧ではあるが高風量を得ることができる。  Generally, an axial blower that is frequently used in the same manner as a centrifugal blower can obtain a large amount of air at a low pressure by using a small blower.
しかし、 通常、 人体局部洗浄装置やトイレ装置においては、 乾燥機構、 暖房機 構、 冷房機構ゃハニカム触媒等の脱臭機構などの圧力負荷の高いものを接続する 必要があるため、 軸流送風機においては必要な風量が取れずに十分な送風性能を 得ることができない However, since a high pressure load such as a drying mechanism, a heating mechanism, a cooling mechanism and a deodorizing mechanism such as a honeycomb catalyst must be connected to a human body cleaning device or a toilet device, an axial blower is usually used. Sufficient ventilation performance without the required air volume Can't get
発明の開示 Disclosure of the invention
本発明は上記課題を解決するためになされたもので、 本発明の目的は送風機を 有するトイレ装置において、 狭いトイレ室内においても操作性、 意匠性、 使用感 や快適性に優れ、 さらに装置の設計、 設置や施工が容易なトイレ装置およびその 設計方法を提供することにある。 すなわち、 本発明は、 低回転、 小型であっても 必要な風量、 圧力を得ることのできる送風機を用いることにより、 非常に小型な トイレ装置を提供することにある。  The present invention has been made to solve the above-mentioned problems. An object of the present invention is to provide a toilet device having a blower, which is excellent in operability, design, usability, and comfort even in a small toilet room, and furthermore, the device design. Another object of the present invention is to provide a toilet device that can be easily installed and constructed, and a method for designing the toilet device. That is, an object of the present invention is to provide a very small toilet apparatus by using a blower capable of obtaining a required air volume and pressure even at a low rotation and small size.
本発明は上記課題を解決するためになされた請求項 1 にかかる発明は、 モータにより駆動され回転する送風機を備えたトイレ装置において、  The invention according to claim 1 has been made to solve the above-mentioned problem.The invention relates to a toilet device having a blower driven and rotated by a motor,
上記送風機は、  The blower is
外気を吸引する吸引口と、  A suction port for sucking outside air,
モータにより回転駆動される羽根車支持体と、 羽根車支持体の外周であって周 方向にほぼ均等に配置されかつ回転により発生する遠心力により上記吸引口から 吸引された空気を送風および昇圧を行なう送風翼とを有する羽根車と、  An impeller support that is rotationally driven by a motor; and an outer periphery of the impeller support, which is arranged substantially evenly in the circumferential direction, and blows and boosts air sucked from the suction port by centrifugal force generated by rotation. An impeller having a blowing blade to perform;
を備え、  With
上記送風翼は、 羽根車支持体の中心から半径方向に向かって流路面積を狭くす ることで、 吸引口から流入した空気の速度を高めて流出させる増速翼列で構成さ れたこと  The blower blades are configured as a speed-up cascade that increases the velocity of the air that has flowed in through the suction port and reduces the flow area by reducing the flow area in the radial direction from the center of the impeller support.
を特徴とする。  It is characterized by.
請求項 1においては、 遠心式の送風機の羽根車により吸引口から吸引された空 気は、 送風翼により送風および昇圧されて噴き出される。 送風翼は、 羽根車支持 体の中心から半径方向に向かって流路面積を狭くする増速翼を用いているので、 小型かつ低回転で駆動しても、 十分な圧力へッドで大きな風量を得ることができ る。 したがって、 小型の羽根車の送風機を人体局部洗浄装置またはトイレ装置に 取り付けることにより、これらの小型化を図ることができる。しかも、送風機は、 所望の風量を、 低回転で回転させても得ることができるので、 使用時に不快な振 動が伝達するのを防止することができ、 快適な洗浄を可能とする。 According to the first aspect, the air sucked from the suction port by the impeller of the centrifugal blower is blown and pressurized by the blower blade and is blown out. The blower blades use speed-increasing blades that reduce the flow area in the radial direction from the center of the impeller support. Can get You. Therefore, by attaching a small impeller blower to a human body local cleaning device or a toilet device, these can be reduced in size. In addition, since the blower can obtain a desired air volume even when it is rotated at a low speed, transmission of unpleasant vibrations during use can be prevented, and comfortable washing can be performed.
請求項 2においては、 上記送風翼の外周に前記羽根車が回転することにより発 生する動圧を静圧に変換して圧力を回復する圧力回復手段を設ける構成をとつて いる。 この構成において、 圧力回復手段は、 例えば、 羽根車を回転自在に支持す るケーシングに一体に構成したスクロ一ルケ一シングとして実現することができ る。  In claim 2, a pressure recovery means is provided on the outer periphery of the blower blade for converting dynamic pressure generated by rotation of the impeller into static pressure to recover the pressure. In this configuration, the pressure recovery means can be realized, for example, as a scroll casing integrally formed with a casing that rotatably supports the impeller.
請求項 3においては、 U rを羽根車の流出時の半径方向速度、 V eを羽根車の外 周の回転速度とし、 流量係数 Φを Φ = υ 「 / ν θ次式で定義したときに、 0 . 1 5 以上に設定することにより、 送風機を従来と比較して約半分の大きさとすること ができ、 トイレ装置を大幅に小型化できる。 このように、 送風機の流量係数 Φを 大きく設定すれば、 回転数を上げることなく送風機の小型化が可能なので快適性 に優れる。 このような流量係数 Φは、 上記送風翼を増速翼で形成するほか、 スク 口ールの広がり角を大きくすることにより実現できる。 In claim 3, when U r is the radial velocity at the time of the impeller outflow, V e is the rotational speed of the outer periphery of the impeller, and the flow coefficient Φ is defined as Φ = υ `` / ν θ By setting the value to 0.15 or more, the size of the blower can be reduced to about half the size of the conventional type, and the toilet device can be significantly reduced in size. This makes it possible to reduce the size of the blower without increasing the number of revolutions, resulting in excellent comfort. This can be achieved by performing
請求項 4においては、 送風翼は、 該増速翼の流入部から流出部にかけて、 隣接 する該増速翼との間で形成される流路面積が漸次、 減少するように構成すること により、 増速翼の構成を好適に実現することができる。  In claim 4, the blower blades are configured such that a flow passage area formed between the adjacent speed increasing blades gradually decreases from an inlet portion to an outlet portion of the speed increasing blades. The configuration of the speed increasing blade can be suitably realized.
請求項 5においては、 流入部翼端の前縁および流出部翼端の後縁を結んだ翼弦 の傾きが羽根車回転方向と同一方向となるように送風翼を配置したので、 羽根車 から流出する空気を効果的に回転方向に送り出すことができ、 大きな圧力へッド と高風量を得ることが可能である。  In claim 5, the blower blades are arranged such that the inclination of the chord connecting the leading edge of the inlet blade tip and the trailing edge of the outlet blade tip is in the same direction as the impeller rotation direction. The outflowing air can be effectively sent in the rotating direction, and a large pressure head and high air volume can be obtained.
請求項 6においては、 複数の吐出口から送風できるので、 室内暖冷房などの空 気調和等の用途に用いても、 室内や人体に対して効率的な送風が可能である。 請求項 7においては、 複数の吐出口を切り替えて吐出方向の選択を行なう吐出 口切替手段を備えたので、 必要なときに必要な場所に送風を行なうことができ、 快適性に優れた送風が可能であり、 しかも複数の用途でひとつの送風機を兼用し て使用する場合であっても風量低下や回転数の変化などを起こさない最適な送風 が可能である。 According to claim 6, since air can be sent from a plurality of outlets, efficient air can be sent to a room or a human body even when used for air conditioning such as indoor heating and cooling. In claim 7, the discharge is performed by selecting a discharge direction by switching a plurality of discharge ports. Equipped with mouth-switching means so that air can be blown to the required place when needed, and to provide airflow with excellent comfort.Moreover, when a single blower is used for multiple purposes. Even if there is, it is possible to perform optimal ventilation without causing a decrease in air volume or a change in the number of revolutions.
請求項 8においては、 送風機と連通し送風機から空気を吐出口に輸送する送風 管路を備え、 送風管路の管路断面積が吐出口の送風断面積よりも小さいので、 装 置内部機構の取り回しゃ組立て性に優れるとともに、 送風管路の占有する容積が 小さくて済み、 装置全体の小型化が可能である。  In claim 8, a blower duct is provided which communicates with the blower and transports air from the blower to the discharge port. It is easy to handle and assemble, and the volume occupied by the air duct is small, and the entire device can be downsized.
請求項 9においては、 送風管路と前記吐出口の接続部分に動圧を静圧に変換す る圧力回復手段を備えたので、 管路断面積の小さな送風管路を高速で流れる空気 の動圧を失うことなく、 送風が可能である。 動圧を静圧に変換すれば、 径の小さ な送風管路で送風を行なっても送風に必要な圧力が小さくて済み効率的な送風が 可能である。 このように、 必要圧力を小さくすることができれば、 送風機の駆動 卜ルクも小さくなるので低回転の小型モータによる駆動が可能となる。  In the ninth aspect, pressure recovery means for converting dynamic pressure into static pressure is provided at a connection portion between the blower pipe and the discharge port, so that air flowing at a high speed in the blower pipe having a small pipe cross-sectional area is provided. Ventilation is possible without losing pressure. If dynamic pressure is converted to static pressure, even if air is blown through a small-diameter air duct, the pressure required for air blowing is small and efficient air blowing is possible. As described above, if the required pressure can be reduced, the drive torque of the blower is also reduced, so that it is possible to drive with a small motor having a low rotation.
請求項 1 0においては、 吸引口を複数有するので、 用途に応じた最適な吸引が 可能である。 例えば、 吸引口の 1つは、 脱臭用途において、 臭いを効率的に吸引 できる位置である便器ボール面周辺などに吸引口を設置し、吸引口の他の 1つは、 冷暖房等の空気調和や乾燥用途に関しては埃等の吸引を起こさない位置である背 面側や便器から離れた位置に設置することができる。  According to the tenth aspect, since a plurality of suction ports are provided, it is possible to perform optimal suction according to the application. For example, one of the suction ports is installed in the area around the bowl surface of the toilet bowl, which is a position where the odor can be efficiently sucked for deodorization, and the other suction port is used for air conditioning such as cooling and heating. For dry use, it can be installed on the back side where dust is not sucked or at a position away from the toilet.
請求項 1 1においては、 複数の吸引口を切り替えて吸引方向の選択を行なう吸 引口切替手段を備えたものである。 この吸引口切替手段は、 室内の空気調和や乾 燥を行なう際には不快な臭いを拡散させないように、 臭いを吸引しやすい位置か ら臭いを吸引しにくい位置に吸引口を切り替えることにより快適な送風を可能と し、 一方、 脱臭を行なう際には臭いを吸引しやすい位置に切り替えれば効果的な 脱臭を可能とする。  Claim 11 includes suction port switching means for selecting a suction direction by switching a plurality of suction ports. This suction port switching means switches the suction port from a position where it is easy to suck odors to a position where it is difficult to suck odors so that unpleasant odors are not diffused during indoor air conditioning and drying. On the other hand, when deodorizing, switching to a position where the odor is easily sucked will enable effective deodorizing.
請求項 1 2においては、 前記送風機の回転数を制御することにより送風機から の出力状態を調整する送風機出力調整手段を備えることにより、 複数の用途で送 風機を兼用する場合であっても、目的に応じた送風量を得ることができる。また、 室温や使用者の好みによって送風量を制御することも可能である。 特に、 増速翼 を用いた場合においては、 流体力学的特性に非常に優れ同一の回転数であっても 大きな圧力ヘッドと高風量を得ることができるので、 低風量から高風量の幅広い 用途に対しても回転数を制御することにより、 1つの送風機で対応することが可 能である。 According to claim 12, by controlling the rotation speed of the blower, from the blower By providing the blower output adjusting means for adjusting the output state, even if the blower is also used for a plurality of purposes, it is possible to obtain a blowing amount according to the purpose. It is also possible to control the air flow according to room temperature and user preference. In particular, when a speed-increasing blade is used, it has excellent hydrodynamic characteristics and can obtain a large pressure head and a high airflow even at the same rotation speed, so it can be used in a wide range of applications from low airflow to high airflow. By controlling the number of rotations, it is possible to use a single blower.
請求項 1 3においては、 送風機出力調整手段により吐出口切替手段および/ま たは吸引口切替手段と連動して送風機の出力状態を調整するので、 吐出口および Zまたは吸引口を切り替えて送風負荷や必要風量が異なる場合であっても、 用途 に適した送風量を確保することが可能である。  In claim 13, since the output state of the blower is adjusted by the blower output adjusting means in conjunction with the discharge port switching means and / or the suction port switching means, the blowout load is switched by switching the discharge port and Z or the suction port. Even if the required airflow is different, it is possible to secure a suitable airflow for the application.
請求項 1 4、 1 5、 1 6、 1 8、 2 0においては、 送風機に連通する管路中に 空気処理装置を備えたので、 温度の高低が大きく、 湿度が高く、 臭気等のある環 境がすぐれないトイレ室内であっても常に快適な状態に保つことができる。また、 これら空気処理装置の小型化に伴う送風機負荷の増大に対しても、 送風機を大型 にしたり、 回転数を高める必要がなく、 快適性、 操作性や施工性と卜ィレ装置の 小型化を両立することが可能である。  In Claims 14, 15, 16, 16, 18, and 20, since the air treatment device is provided in the pipeline communicating with the blower, a ring having high and low temperature, high humidity, odor, etc. Even in a toilet room where boundaries are not good, it can always be kept in a comfortable state. In addition, it is not necessary to increase the size of the blower or increase the number of revolutions even if the load on the blower increases due to the downsizing of these air treatment devices. It is possible to achieve both.
請求項 1 7においては、 空気温度検知手段の出力に基づいて空気温度調整手段 は空気の温度を制御するので、 用途に適した最適な温度に調整した送風が可能で ある。  In claim 17, the air temperature adjusting means controls the temperature of the air based on the output of the air temperature detecting means, so that the air can be blown at an optimum temperature suitable for the application.
請求項 1 9においては、 空気温度調整手段により温度を調整された空気を、 局 部洗浄後の局部乾燥手段として用いたので、 局部洗浄後の水分を乾燥させること により快適な状態に保つことができる。  In claim 19, since the air whose temperature has been adjusted by the air temperature adjusting means is used as the local drying means after the local washing, it is possible to maintain a comfortable state by drying the moisture after the local washing. it can.
請求項 2 1 、 2 2においては、 吐出口切替手段およびまたは吸引口切替手段と 連動して前記空気処理装置の起動、 停止及び出力調整を行なう空気処理装置制御 手段を備えたので、 室温、 湿度、 臭気成分濃度が異なった場合であっても、 ある いは使用者の好みにより最適で用途に応じた空気処理が可能である。 Claims 21 and 22 include an air processing unit control unit that starts, stops, and adjusts the output of the air processing unit in conjunction with the discharge port switching unit and / or the suction port switching unit. , Even if the odor component concentration is different Alternatively, it is possible to perform air treatment that is optimal according to the user's preference and according to the application.
請求項 2 3においては、 上記送風機は、 羽根車を回転自在に支持するケーシン グと、 このケ一シングと別体でありかつ着脱可能に取り付けられ、 送風翼から噴 き出される空気を外部へ導く送風ダク卜とから構成したものである。 この態様に よれば、 送風機が十分に小型でありかつ広い範囲の回転数制御により送風能力を 自由に制御することができるので、 用途や運転状況に応じて送風ダク卜のみを交 換することにより、 羽根車支持体や送風翼を新たに設計したり、 配置や取り回し を変更したりしなくてよいので、 部品点数の削減を行なうことができる。  In claim 23, the blower includes a casing that rotatably supports the impeller, and is detachably attached to the casing and is detachably attached thereto, so that air blown out from the blower blades is directed to the outside. It is composed of a blowing duct to guide. According to this aspect, since the blower is sufficiently small and the blowing capacity can be freely controlled by controlling the rotation speed in a wide range, it is possible to replace only the blowing duct according to the application and operating conditions. In addition, there is no need to newly design the impeller support or the blower blades, or to change the arrangement and the layout, so that the number of parts can be reduced.
請求項 2 4において、 送風機は、 羽根車支持体および送風翼が同じ形状のュニ ッ卜で構成することにより、 個別に新たな設計を行なう必要がなく、 共通のュニ ッ卜を利用できるので、 部品点数を削減することができる。  In claim 24, since the impeller support and the blower blades are configured with units having the same shape, it is not necessary to individually design a new unit, and a common unit can be used. Therefore, the number of parts can be reduced.
請求項 2 5において、 上記モータは、 永久磁石を有するロータと、 このロータ に対向して配置された電磁石とを備えた直流ブラシレスモータで構成したもので ある。 送風機を回転駆動するモータとしては、 特に限定されないが、 小型である が定格出力の大きい直流ブラシレスモータを用いることにより、 その作用、 効果 を高めることができる。 すなわち、 直流ブラシレスモー夕は、 回転数が自由に制 御できるとともに、 高回転で長時間使用しても振動が少なく、 かつ小型にできる ので配置や送風能力の制御も自由に行なうことができる。 さらに、 直流ブラシレ スモータとして、 ァウタロータを備えたタイプのモータを使用した場合には、 永 久磁石をァゥタロー夕に配置している構成により、 永久磁石の磁石面積を大きく とることができ、 小型であっても大きな定格出力を得ることができ、 その効果を 一層高める。 このように、 直流ブラシレスモータを使用することにより、 交流誘 導モータを使用した場合に比べて、 容積を小さくすることができることから、 人 体洗浄装置のように狭いスペースに簡単に取り付けることができる。 また、 モー タは、 このように小型化することができることから、 その駆動回路を容易に内蔵 することができる。 請求項 2 6は、 第 2の発明にかかり、 In claim 25, the motor is a DC brushless motor including a rotor having a permanent magnet, and an electromagnet arranged to face the rotor. The motor for rotating the blower is not particularly limited, but its operation and effect can be enhanced by using a DC brushless motor that is small but has a large rated output. In other words, the DC brushless motor can control the number of rotations freely, and can reduce the vibration and reduce the size even when used at high speed for a long time, so that the arrangement and the blowing capacity can be controlled freely. Furthermore, when a type of motor having an outer rotor is used as the DC brushless motor, the permanent magnets are arranged in the outer rotor, so that the permanent magnet can have a large magnet area and be small in size. However, a large rated output can be obtained, further enhancing the effect. In this way, the use of a DC brushless motor reduces the volume compared to the case of using an AC induction motor, so that it can be easily installed in a narrow space like a human body washing device. . Further, since the motor can be miniaturized in this way, its driving circuit can be easily incorporated. Claim 26 relates to the second invention,
モータにより駆動され回転する送風機を備えたトイレ装置の設計方法において、 上記送風機は、  In a method for designing a toilet device including a blower that is driven and rotated by a motor, the blower includes:
外気を吸引する吸引口と、  A suction port for sucking outside air,
モータにより回転駆動される羽根車支持体と、 羽根車支持体の外周であって周 方向にほぼ均等に配置されかつ回転により発生する遠心力により上記吸引口から 吸引された空気を送風および昇圧を行なう送風翼とを有する羽根車と、  An impeller support that is rotationally driven by a motor; and an outer periphery of the impeller support, which is arranged substantially evenly in the circumferential direction, and blows and boosts air sucked from the suction port by centrifugal force generated by rotation. An impeller having a blowing blade to perform;
を備え、  With
上記送風翼は、 回転支持体の中心から半径方向に向かって流路面積を狭くする ことで、吸引口から流入した空気の速度を高めて流出させる増速翼列で構成され、 流量係数 Φを次式で定義したときに、 0 . 1 5以上に設定したトイレ装置の設 計方法である。  The blower blades are composed of a speed-up cascade in which the flow area is narrowed in the radial direction from the center of the rotating support to increase the velocity of the air flowing in from the suction port and flow out, and the flow coefficient Φ is reduced. This is the design method of the toilet equipment set to 0.15 or more as defined by the following equation.
= υ Γ / ν θ = υ Γ / ν θ
ただし、 U は送風機の流出時の半径方向速度、 V eは、 回転支持体の外周 の回転速度をいう。 However, U is the radial velocity at outlet of the blower, V e refers to the rotational speed of the outer periphery of the rotary support.
請求項 2 6においては、送風機の羽根車を増速翼で構成することにより、また、 請求項 2 7においては、送風機の流量係数 φを 0 . 1 5以上となるように定めて、 卜ィレ装置の設計方法を示したので、 卜ィレ装置の大幅な小型化が可能である。  In claim 26, the impeller of the blower is constituted by a speed increasing blade, and in claim 27, the flow coefficient φ of the blower is determined so as to be 0.15 or more. Since the method of designing the storage device has been shown, the size of the storage device can be significantly reduced.
図面の簡単な説明 BRIEF DESCRIPTION OF THE FIGURES
図 1は人体局部洗浄装置に用いる乾燥用の送風機ュニッ卜を示す斜視図であ る。  FIG. 1 is a perspective view showing a blower unit for drying used in a human body local cleaning device.
図 2は送風機にかかる羽根車の周辺の構成を示す斜視図である。  FIG. 2 is a perspective view showing a configuration around an impeller of the blower.
図 3は図 1の送風ダク卜を取り外した送風機をあらわす斜視図である。  FIG. 3 is a perspective view showing the blower with the blower duct of FIG. 1 removed.
図 4は従来技術の羽根車を示す斜視図である。 図 5は従来の羽根車の円弧翼を説明する説明図である。 FIG. 4 is a perspective view showing a conventional impeller. FIG. 5 is an explanatory diagram for explaining a circular blade of a conventional impeller.
図 6は本実施例にかかる送風機で使用されている増速翼を説明する説明図で ある。  FIG. 6 is an explanatory diagram for explaining the speed increasing blade used in the blower according to the present embodiment.
図 7は翼間の流路断面積の変化を表わすグラフである。  FIG. 7 is a graph showing a change in the cross-sectional area of the passage between the blades.
図 8は羽根車流出時の状態をあらわす速度三角形を示す説明図である。  FIG. 8 is an explanatory diagram showing a speed triangle representing a state at the time of the outflow of the impeller.
図 9は図 3で示される送風機ュニッ卜に用いられている羽根車の説明図であ る。  FIG. 9 is an explanatory view of an impeller used in the blower unit shown in FIG.
図 1 0は増速翼の形状を説明する説明図である。  FIG. 10 is an explanatory diagram for explaining the shape of the speed increasing blade.
図 1 1は図 3で示された送風機の流体力学的特性の測定結果を示すグラフで ある。  FIG. 11 is a graph showing the measurement results of the hydrodynamic characteristics of the blower shown in FIG.
図 1 2は乾燥用送風機ュニッ卜の外観図である。  FIG. 12 is an external view of a drying fan unit.
図 1 3は送風機の内部構造を示す斜視図である。  FIG. 13 is a perspective view showing the internal structure of the blower.
図 1 4は従来技術による円弧翼を用いた乾燥用送風機ュニッ卜の概略図であ る。  FIG. 14 is a schematic diagram of a drying fan unit using a conventional arc blade.
図 1 5は流体力学的特性の測定結果を説明するグラフである。  FIG. 15 is a graph illustrating the measurement results of the hydrodynamic characteristics.
図 1 6は本発明の第 2実施例に係わる圧力回復手段を説明する説明図である c 図 1 7は図 1 6に示した圧力回復手段を用いた送風機構を説明するブロック 図である。 FIG. 16 is an explanatory view for explaining a pressure recovery means according to a second embodiment of the present invention. C FIG. 17 is a block diagram for explaining a blowing mechanism using the pressure recovery means shown in FIG.
図 1 8は送風機制御ルーチンを示す説明図である。  FIG. 18 is an explanatory diagram showing a blower control routine.
図 1 9は従来技術の人体局部洗浄装置の内部構造図をあらわす説明図である < 図 2 0は従来技術の人体局部洗浄装置の外観図である。  FIG. 19 is an explanatory view showing the internal structure of a conventional human body cleaning apparatus. <FIG. 20 is an external view of a conventional human body cleaning apparatus.
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
本発明の第一実施例に係わるトイレ装置としての人体局部洗浄装置を説明する < 図 1は人体局部洗浄装置に用いる乾燥用の送風機ュニッ卜を示す斜視図である < 乾燥用の送風機ユニット 1 0は、 駆動用のモータ 1 2と、 送風機 1 4と、 送風ダ ク卜 1 9と、 から構成されている。 送風機 1 4は、 モー夕 1 2の駆動軸に取り付 けられて、 モー夕 1 2の駆動に伴い吸引口 1 4 aから空気を吸引し、 所望の圧力 まで昇圧した後に、 送風ダクト 1 9へと送り出す。 DESCRIPTION OF THE PREFERRED EMBODIMENTS A human body local cleaning device as a toilet device according to a first embodiment of the present invention will be described <FIG. 1 is a perspective view showing a drying fan unit used for a human body local cleaning device < The blower unit 10 for drying includes a drive motor 12, a blower 14, and a blower duct 19. The blower 14 is attached to the drive shaft of the motor 12, sucks air from the suction port 14 a with the drive of the motor 12, and after increasing the pressure to a desired pressure, the blower duct 19 To send to.
送風ダク卜 1 9の先端の送風口 1 9 aには、 図示しないダンパーが設けられて いる。 ダンパーは、 送風の無いときには自閉して外部からの汚水やゴミの逆流を 防止し、 一方、 送風のあるときには送風圧力により自動的に開口して送風を行な う構成を備えている。  A blower (not shown) is provided in the blower opening 19 a at the tip of the blower duct 19. The damper is self-closing when no air is blown to prevent backflow of sewage and garbage from the outside. On the other hand, when air is blown, the damper is automatically opened by the air pressure to blow air.
また、 送風ダクト 1 9には、 図示しない乾燥用の空気を昇温させ、 乾燥効率を 高める目的でヒータが備え付けられている。 ヒータは、 所定の温度に制御し安全 かつ快適に乾燥を行なうための送風温度制御手段により制御される。 すなわち、 送風温度制御手段は、 送風ダクト 1 9内に設けられた温度センサからの検出信号 に基づいてヒータへの投入電力の制御を行なうことにより、 噴き出される空気の 温度を制御している。  Further, the air duct 19 is provided with a heater for the purpose of raising the temperature of the drying air (not shown) and increasing the drying efficiency. The heater is controlled by a blast temperature control means for controlling the temperature to a predetermined value and drying safely and comfortably. That is, the blower temperature controller controls the temperature of the blown air by controlling the power supplied to the heater based on a detection signal from a temperature sensor provided in the blower duct 19.
ここで、 送風機 1 4の吸引口 1 4 aは、 取り合いの関係からモータ取付面と反 対面のみとした片吸い込みの構成としたが、 モー夕の冷却を同時に行なう構成と する場合には、 モータ取付面側に配置した構成としてもよく、 また、 高風量時の 特性を向上させたい場合には、 両方の面から吸引する両吸い込み構造としてもよ い。  Here, the suction port 14a of the blower 14 is configured as a single suction with only the motor mounting surface and the opposite surface due to the connection.However, if the configuration is such that cooling of the motor is performed at the same time, It may be arranged on the mounting surface side, or if it is desired to improve the characteristics at the time of high air flow, it may be a double suction structure that suctions from both surfaces.
図 2は送風機 1 4にかかる羽根車 1 5の周辺の構成を示す斜視図である。 図 2 において、 送風機 1 4は、 モータ 1 2により回転駆動される羽根車 1 5と、 スク ロールケ一シング 1 8 (図 1参照) と、 を備えている。 羽根車 1 5は、 モータ 1 2の回転軸に固定された羽根車支持体 1 6と、 羽根車支持体 1 6の周方向に略均 等に固定された增速翼 1 7とを備えている。 羽根車支持体 1 6は、 回転による翼 の変形を防止するために周方向に翼固定リング 1 6 aを備えており、 回転による 翼などの不要な振動を防止している。 また、 羽根車支持体 1 6の中央部には、 モ —夕 1 2を内径部分に挿入した状態で取り付けるモータ収納部 1 6 bが設けられ ており、 送風機 1 4の全体の小型化を図っている。 このモータ収納部 1 6 bの図 示上部は、 モータ 1 2の突出による空気の流入抵抗を低減するために丸みを設け た整流部 1 6 cとなっている。 FIG. 2 is a perspective view showing a configuration around the impeller 15 of the blower 14. In FIG. 2, the blower 14 includes an impeller 15 driven to rotate by a motor 12 and a scroll casing 18 (see FIG. 1). The impeller 15 includes an impeller support 16 fixed to the rotating shaft of the motor 12, and a high-speed blade 17 fixed substantially evenly in the circumferential direction of the impeller support 16. I have. The impeller support 16 is provided with a wing fixing ring 16a in the circumferential direction to prevent deformation of the wing due to rotation, thereby preventing unnecessary vibration of the wing and the like due to rotation. In the center of the impeller support 16, —Motor housing 16b is provided for mounting with the evening 12 inserted into the inner diameter part, and the overall size of the blower 14 is reduced. The upper portion of the motor housing 16b is a rectifying portion 16c which is rounded to reduce the air inflow resistance due to the protrusion of the motor 12.
図 3は図 1の送風ダクト 1 9を取り外した送風機 1 4をあらわす斜視図である c 羽根車支持体 1 6の外周側には、 マウント 1 8 aを介してスクロ一ルケ一シング 1 8が配置されている。 このスクロールケーシング 1 8は、 渦巻き形状であり、 羽根車 1 5から回転しながら流出する流体の動圧を静圧に変換する圧力回復手段 として作用する。 この送風機 1 4は、 乾燥用途に限らず使用可能なので、 その他 の用途に用いる場合には送風口 1 9 aを他の機器、 例えば、 脱臭装置などに接続 すればよい。 Figure 3 on the outer peripheral side of the c impeller support 1 6 is a perspective view showing the blower 1 4 removed the air duct 1 9 of Figure 1, scroll one Luque one single 1 8 through a mount 1 8 a is Are located. The scroll casing 18 has a spiral shape and functions as pressure recovery means for converting the dynamic pressure of the fluid flowing out while rotating from the impeller 15 into static pressure. Since the blower 14 can be used not only for drying but also for other purposes, the blower port 19a may be connected to another device, for example, a deodorizing device.
図 4は従来技術の羽根車 1 0 0を示す斜視図である。 羽根車 1 0 0は、 羽根車 支持体 1 0 1と、 この羽根車支持体 1 0 1の外周に等間隔に配置された円弧翼 1 0 2とを備えている。図 5に示すように、円弧翼 1 0 2は、円弧状の形状であり、 羽根車流入部の翼端である翼前緣部 1 0 2 aと、 羽根車流出部の翼端である翼後 縁部 1 0 2 bとを円弧形状の翼で結んだものである。 羽根車 1 0 0に流入した空 気は、 翼前緣部 1 0 2 aから翼後縁部 1 0 2 bに流れるにつれ、 図 5中の矢印で あらわされる回転方向と同じ方向に曲げられつつ羽根車 1 0 0から流出する。 な お、 図 5で示されている円は、 隣接する翼により形成される翼間流路の流路断面 積の大きさをあらわしており、流入時と流出時で円の大きさはほとんど変化せず、 流路断面積はほぼ一定であることを表わしている。  FIG. 4 is a perspective view showing a conventional impeller 100. The impeller 100 includes an impeller support 101 and arc-shaped blades 102 arranged at equal intervals on the outer periphery of the impeller support 101. As shown in FIG. 5, the arc blade 102 has an arc shape, and includes a blade front portion 102 a that is a blade tip of an impeller inflow portion and a blade that is a blade tip of an impeller outflow portion. The trailing edge 102b is connected with an arc-shaped wing. The air that has flowed into the impeller 100 is bent in the same direction as the rotational direction represented by the arrow in FIG. 5 as it flows from the leading wing portion 102 a to the trailing edge portion 102 b. Outflow from the impeller 100. The circle shown in Fig. 5 indicates the size of the cross-sectional area of the flow path between the blades formed by adjacent blades, and the size of the circle changes almost during inflow and outflow. This indicates that the cross-sectional area of the flow channel is almost constant.
図 6は本実施例にかかる送風機 1 4で使用されている増速翼 1 7を説明する説 明図である。 増速翼 1 7は、 翼前縁部 1 7 aと翼後縁部 1 7 bを結ぶ直線であら わされる翼弦の傾きが矢印で示された回転方向と同一方向となった形状である。 この増速翼 1 7を流れる空気は、 翼前縁部 1 7 aから進入すると、 回転方向と同 一方向に曲げられ、 翼後緣部 1 7 bに沿って流出する。 図 6中に示されている円は、隣接する増速翼 1 7同士が接するように描かれて、 流路断面積を示している。 この円から分かるように、 翼前縁部〗 7 aから翼後縁 部 1 7 bにかけて円の大きさが縮小しており、 つまり、 下流側にいくほど流路断 面積が小さくなり、 流速が高まる構造であることが分かる。 FIG. 6 is an explanatory diagram for explaining the speed increasing blades 17 used in the blower 14 according to the present embodiment. The speed-increasing wing 17 has a shape in which the inclination of the chord represented by a straight line connecting the leading edge 17 a and the trailing edge 17 b is the same as the rotation direction indicated by the arrow. is there. When the air flowing through the speed-increasing wing 17 enters the wing leading edge 17a, it is bent in the same direction as the rotational direction, and flows out along the wing trailing portion 17b. The circle shown in FIG. 6 is drawn so that the adjacent speed increasing blades 17 are in contact with each other, and indicates the cross-sectional area of the flow path. As can be seen from this circle, the size of the circle decreases from the leading edge〗 7 a of the blade to the trailing edge 17 b of the wing.In other words, the flow area becomes smaller toward the downstream side, and the flow velocity decreases. It can be seen that the structure is increasing.
図 7は図 6の円の中心の移動軌跡 0 Lに沿った流路断面積を示すグラフである。 図 5の従来技術にかかる円弧翼 1 0 2についても同様に求めて併記している。 こ こで、 翼流入部からの任意の位置までの軌跡の長さをし、 翼流入部から翼端に相 当する位置までの軌跡の長さを Lw、 翼静圧面と翼負圧面に同時に接する円の面 積を S、 互いに隣接する二つの翼前縁部 1 7 aを結ぶ線分を直径とする円の断面 積を S i とする。  FIG. 7 is a graph showing a flow path cross-sectional area along a movement locus 0 L at the center of the circle in FIG. The arc blade 102 according to the prior art shown in FIG. Here, the length of the trajectory from the blade inlet to an arbitrary position is defined as the length of the trajectory from the blade inlet to the position corresponding to the blade tip. Let S be the area of the tangent circle, and S i be the cross-section of a circle whose diameter is the line connecting the two adjacent wing leading edges 17a.
図 7において、 従来の円弧翼 1 0 2は、 LZLw>0. 2の領域で、 ほぼ流路 断面積比が一定であるのに対して、 本実施例の増速翼 1 7の場合は、 ほぼ直線的 に減少を続け、 最小の流路断面積比が 0. 5程度となっている。 したがって、 本 実施例の送風機 1 4は、 流出時の平均速度は、 流入時の平均速度に対してほぼ 2 倍程度となることが分かる。 なお、 図 5の従来の技術にかかる円弧翼 1 0 2につ いて、 0<LZLw<0. 2の範囲で流路断面積比が減少しているが、 これは翼 厚みによる縮流であり、 流入時と流出時の流速はほとんど変わらない。 In FIG. 7, the conventional arc blade 102 has a substantially constant flow path cross-sectional area ratio in the region of LZL w > 0.2, whereas the speed increasing blade 17 of the present embodiment has However, the flow rate decreases almost linearly, and the minimum flow path cross-sectional area ratio is about 0.5. Therefore, it can be seen that the average speed at the time of outflow of the blower 14 of this embodiment is about twice as large as the average speed at the time of inflow. In addition, for the circular arc blade 102 according to the conventional technology in FIG. 5, the flow path cross-sectional area ratio decreases in the range of 0 <LZL w <0.2, but this is due to the flow contraction due to the blade thickness. Yes, the flow velocity at inflow and outflow is almost the same.
次に、 増速翼 1 7を用いた場合の送風機性能に関する理論的背景を述べる。 図 8は羽根車流出時の状態をあらわす速度三角形を示す説明図である。  Next, the theoretical background of the blower performance when the speed-increasing wing 17 is used is described. FIG. 8 is an explanatory diagram showing a speed triangle representing a state at the time of the outflow of the impeller.
ここで、 U「は羽根車流出時の半径方向速度、 V 2は羽根車流出時の周方向相対 速度、 W2は羽根車流出時の相対速度、 は羽根車内径、 R 2は羽根車外径、 β 2 は羽根車出口角度をあらわす。 Here, the radial velocity at U "is the impeller outlet, circumferential relative speed when V 2 is the impeller outlet, W 2 is the relative velocity at the impeller outlet, the impeller inside diameter, R 2 is the impeller outer diameter , Β 2 represents the impeller exit angle.
また、 流量を Q、 羽根車高さを H、 羽根車回転角速度を ω、 羽根車外周の回転 速度を Ve、 送風機の全圧を P tとすると、 流量係数: φ、 圧力係数: ゆは、 次式 ( 1 )、 (2) で表わされる。 Further, the flow rate Q, the impeller height H, an impeller rotational angular velocity omega, the rotational speed of the impeller periphery V e, when the total pressure of the blower and P t, flow coefficient: phi, pressure coefficient: Yuno It is expressed by the following equations (1) and (2).
Φ = U r/Ve … ( 1 ) = P t/ {( p / 2 ) Ve 2} (2) Φ = U r / V e … (1) = P t / {(p / 2) V e 2 } (2)
U r, Veは、 それぞれ次式で表わされる。 U r and V e are represented by the following equations, respectively.
U r = Q/ (2 π R 2H) U r = Q / (2 π R 2 H)
V R 2 ω  V R 2 ω
また、 羽根車出口の速度三角形から、 次式に変形される。  From the speed triangle at the exit of the impeller, it is transformed into the following equation.
U r = W2 c 0 s (π-β 2) U r = W 2 c 0 s (π-β 2 )
V 2 = W2 s i η (κ-β ,) V 2 = W 2 si η (κ-β,)
さらに、 羽根車入り口の半径方向速度を U i nとすると Furthermore, assuming that the radial velocity at the impeller entrance is U in
U , n = Q/ (2 π R, H) U, n = Q / (2 π R, H)
= { ν θ (2 TT R 2 H) }/ ( 2 K R , H) = {ν θ (2 TT R 2 H)} / (2 KR, H)
= Φ V, (R2/R = Φ V, (R 2 / R
ここで、 増速部分の面積比を ζとすると  Here, if the area ratio of the speed increasing part is ζ
W2 = ノ ζ W 2 = no ζ
U r = {φ Vfl (R2/R ,) /ζ } s i η ( π-β 2) U r = {φ V fl (R 2 / R,) / ζ} si η (π-β 2 )
V2 = { V, (R2/R /ζ } c o s (π-β ,) 翼出口の円周方向の絶対速度を Vとして流出時の滑りを無視すると、 Vは、 次 式 (Α) で表わされる。 V 2 = {V, (R 2 / R / ζ)} cos (π-β) If the absolute velocity in the circumferential direction of the blade outlet is V and the slip at the time of outflow is ignored, V is expressed by the following equation (Α) Is represented.
V = (Ve + V2) V = (V e + V 2 )
=Ve { 1 +φ ( R 2/ R , ) c o s (π-β 2) / ζ } ■■■ (A) (Α) 式から明らかなように、 羽根車から流出する空気の回転方向速度は、 増 速部分の面積比 ζにより変化し、 ζを小さくするほど回転方向に高速で流出する ことが示されている。 このような遠心式送風機の場合の仕事は、 回転による遠心 力によるものであるから、 流出時の回転方向速度が上昇すれば、 回転数を上昇さ せたのと同じ効果を得ることができ、 大きな圧力へッドと高風量を得ることがで きる。 すなわち、 増速翼 1 7を用いることにより、 低い回転数、 小さな羽根車で あっても大きな圧力へッドと高風量を得ることができ、 装置の大幅な小型化を可 能とする。 = V e {1 + φ (R 2 / R,) cos (π-β 2 ) / ζ} ■■■ (A) As is clear from equation (Α), the rotational speed of the air flowing out of the impeller It is shown that は changes depending on the area ratio の of the speed-up portion, and the smaller the ζ, the higher the flow rate in the rotational direction. The work of such a centrifugal blower is due to the centrifugal force of rotation, so if the rotational speed at the time of outflow increases, the same effect as increasing the rotational speed can be obtained. Large pressure head and high air volume can be obtained. In other words, by using the speed-increasing wings 17, a large pressure head and a large air volume can be obtained even with a low rotation speed and a small impeller, and the equipment can be significantly downsized. Noh.
また、 一般的にファンの設計を高風量なものとすると、 羽根車の動圧を静圧に 変換する目的で設置されているスクロールケ一シングの大きさも大きなものとす る必要がある。 しかし、 以下に述べる理由により、 増速翼 1 7によれば、 スクロ 一ルケ一シング 1 8を小さくすることができる。  In general, if the fan is designed to have a high air volume, the size of the scroll casing installed to convert the dynamic pressure of the impeller into static pressure must be large. However, for the following reasons, according to the speed increasing wing 17, the scroll casing 18 can be reduced.
すなわち、 増速翼 1 7による増速効果を加味した流量係数 φ ' を以下のように 定義すると、  That is, if the flow coefficient φ ′ taking into account the speed increasing effect of the speed increasing blade 17 is defined as follows,
φ ' = U r/V φ '= U r / V
= φ/[ { 1 + (R 2/R ,) c o s (π-β 2) /ζ } ] φ ' は増速部分の面積比 ζにより変化し、 ζを小さくするほど Φ ' は小さくな ることがわかる。 = φ / [{1 + (R 2 / R)) cos (π-β 2 ) / ζ}] φ は changes depending on the area ratio 速 of the speed increasing part, and 、 'decreases as ζ decreases You can see that.
この時の流出角 αは  The outflow angle α at this time is
= tan"1 ( ) = tan " 1 ()
であらわされるので、 &を小さくするほど αも小さくなることがわかる。 送風 機の最適設計条件はこの流出角とスクロールケ一シングの広がり角が一致したと きであるので、 増速効果のある翼を使用することにより、 大きな圧力ヘッドと高 風量を得ることができ、 なおかつ高風量でありながら最適なスクロ一ルケ一シン グの広がり角を小さくすることができるので、 送風機全体の大きさを小さくする ことができる。  It can be seen that the smaller &, the smaller α. The optimal design condition of the blower is when the outflow angle and the divergence angle of the scroll casing match, so by using the blades with speed increasing effect, a large pressure head and high air volume can be obtained. However, since the spread angle of the optimal scrolling can be reduced while the air volume is high, the size of the entire blower can be reduced.
また、 増速翼 1 7は、 流量係数 ( こ基づき、 羽根車 1 5自体の小型化を実現す ることができる。 すなわち、 上式 (1 ) の流量係数 < ま、 式 (3) のように変形 可能である。  Further, the speed increasing blade 17 can reduce the flow coefficient (based on this, the impeller 15 itself can be realized. That is, the flow coefficient of the above equation (1) < It can be transformed into
Φ = ur/ve Φ = u r / v e
= Q/ (2 κ 2 2 ω) ■·■ (3) 式 (3) に示すように流量係数: Φは無次元数であり、 送風機の運転条件をあ らわすひとつの指標である。 送風機に関する相似則を適用すれば、 異なった条件 や大きさで運転される送風機の特性を普遍的にあらわすことができる。 = Q / (2 κ 2 2 ω) ■ · ■ (3) As shown in equation (3), Φ is a dimensionless number, and is one index that indicates the operating conditions of the blower. Applying the similarity rules for blowers, different conditions The characteristics of a blower operated at a small size can be universally represented.
装置設計変数としての流量 Qは、 一定であり、 羽根車回転数 Nは、 振動や騒音 を防止する意味から上限があるのでほぼ一定とすることができる。 式 (3) を以 下のように変形すると、 式 (B) となる。  The flow rate Q as a device design variable is constant, and the impeller rotation speed N has an upper limit in order to prevent vibration and noise, so that it can be made almost constant. By transforming equation (3) as follows, equation (B) is obtained.
π R2 2H = {Q/ (2 ω)} ■ ( 1 / ) ■■■ (Β) ここで、 式 (Β) の左辺は、 羽根車の体積をあらわしている。 右辺からは、 こ の羽根車の体積が流量係数 φの逆数に比例することがわかる。 すなわち、 大きな 流量係数 Φで運転することができれば、 羽根車を小型にできるので送風機を小型 化することができる。 従来の送風機が Φ = 0. 0 6〜0. 0 9 (平均: 0, 0 7 5) で使用されていることを考慮すると、 φ= 0. 1 5以上で運転することがで き、 送風機を約半分以下の大きさとすることができる。 また、 Φ = 0. 1 8以上 とすれば、 従来技術における最小の送風機と比較しても半分の大きさとすること ができるのは言うまでもない。 π R 2 2 H = {Q / (2 ω)} ■ (1 /) ■■■ (Β) Here, the left side of the equation (を) represents the volume of the impeller. From the right side, it can be seen that the volume of this impeller is proportional to the reciprocal of the flow coefficient φ. In other words, if operation can be performed with a large flow coefficient Φ, the size of the impeller can be reduced, and the size of the blower can be reduced. Considering that the conventional blower is used at Φ = 0.06 to 0.09 (average: 0, 0 7 5), it can be operated at φ = 0.15 or more. Can be about half or less in size. If Φ = 0.18 or more, it is needless to say that the size can be reduced to half that of the smallest blower in the conventional technology.
このように、 本実施例の送風機は、 同じ定格出力を有する送風機を従来の送風 機の半分の容量で実現できることから、 従来、 乾燥と室内暖房とで 2台の送風機 を用いていたものを、 1台で兼用することができる。  As described above, the blower of the present embodiment can realize a blower having the same rated output with half the capacity of the conventional blower, so that the conventional blower that uses two blowers for drying and room heating is different from the conventional blower. One unit can be shared.
さらに、 流路を切り替える場合は、 流路切替機構を新たに必要とするが、 この 機構の信頼性、大きさや切替部で発生する圧力損失の問題を考慮する必要がなく、 また送風機の用途に応じ必要な位置に配置可能なので、 ダク卜の取り回しの必要 もないので、 ユニット全体では小型化が可能である。  Furthermore, when switching the flow path, a new flow path switching mechanism is required, but there is no need to consider the reliability and size of this mechanism and the problems of pressure loss generated in the switching section. Since it can be arranged at any required position, there is no need to route the duct, and the entire unit can be reduced in size.
また、 送風ユニットの設計も非常に簡便なものとすることができる。 さらに、 流路を切り替える場合は、 当然のことながら複数の用途を同時に使用することが できないが、 送風機を独立しても設ければ、 いつでも必要な送風が可能なので快 適性や使用感に優れたものとすることができる。  Further, the design of the blower unit can be made very simple. Furthermore, when switching the flow path, of course, it is not possible to use multiple applications simultaneously, but if the blower is provided independently, the necessary air can be blown at any time, so it has excellent comfort and usability. Things.
図 9は図 3で示される送風機ユニットに用いられている羽根車 1 5の概略図で ある。 ここで羽根車外径: D2= 5 6 mm、 羽根車内径: D , = 4 7 mm、 羽根車 高さ : H = 8 mmとしており、 翼枚数は 36枚である。 羽根車内径と外径の比: λは 0. 85程度に設定されている。 λは、 以下の点を考慮して定められる。 す なわち、 λを小さくすると、 風きり音等の騒音を低減できるが、 送風機の吸い込 み面積の低下に伴って高風量時の特性が悪化する。 一方、 λを大きくすると、 高 風量時の特性は若干向上するが、 翼長が短くなることにより羽根車内部で剥離が 発生しやすく効率が低下し騒音が増大する。 これらを考慮して高風量時の特性と 騒音等の特性を両立させることができる条件として、 λを定める。 これらの点を 考慮して、 λは、 好ましくは 0. 75〜0. 95、 特に好ましくは、 0. 8〜0. 92である。 FIG. 9 is a schematic view of an impeller 15 used in the blower unit shown in FIG. Where impeller outer diameter: D 2 = 56 mm, impeller inner diameter: D, = 47 mm, impeller Height: H = 8 mm and the number of blades is 36. The ratio of the inner diameter to the outer diameter of the impeller: λ is set to about 0.85. λ is determined in consideration of the following points. In other words, when λ is reduced, noise such as wind noise can be reduced, but the characteristics at high airflow deteriorate as the suction area of the blower decreases. On the other hand, when λ is increased, the characteristics at high airflow are slightly improved, but due to the shorter blade length, separation easily occurs inside the impeller, lowering efficiency and increasing noise. Taking these factors into consideration, λ is determined as a condition under which the characteristics at the time of high air volume and the characteristics such as noise can be compatible. In view of these points, λ is preferably 0.75 to 0.95, particularly preferably 0.8 to 0.92.
図 1 0および表 1は、 増速翼形状の主要諸元をあらわしている。 増速部分の流 路断面積の比 ζは翼形状により任意に設定可能である。 ζを小さく取ると大きな 速度を得ることができるので、 より高圧、 高風量の設計とすることができるが、 λが大きくなりすぎると、 羽根車流出時の速度分布が大きくなるので効率が低下 しゃすく騒音レベルも上昇する。 ζを大きく取ると增速効果が薄れ特性の向上が 得られにくい。 したがって、 これらのパラメータを考慮して、 ζは、 好ましくは 0. 30-0. 80、 特に好ましくは、 0. 4〜 0. 65であり、 本実施例では、 ζ = 0. 45としている。  Figure 10 and Table 1 show the main specifications of the speed-up wing shape. The ratio の of the cross-sectional area of the channel in the speed increasing section can be set arbitrarily according to the blade shape. If ζ is small, a large speed can be obtained, so that a higher pressure and a higher air volume can be designed.However, if λ is too large, the speed distribution at the time of the outflow of the impeller becomes large, resulting in lower efficiency. The noise level also rises. If ζ is taken too large, the speed effect will be weakened and it will be difficult to improve the characteristics. Therefore, in consideration of these parameters, ζ is preferably 0.30 to 0.80, particularly preferably 0.4 to 0.65, and 本 is set to 0.45 in the present embodiment.
表 1 従来技術品 本発明品  Table 1 Prior art product Invention product
羽根車外径 [mm] 66 59  Impeller outer diameter [mm] 66 59
羽根車内径 [mm] 5 1. 5 50  Impeller inner diameter [mm] 5 1. 5 50
羽根車高さ [mm] 28 7. 8  Impeller height [mm] 28 7. 8
羽根車容積 [mm3] 9. 6 X 1 0 2. 1 X 1 04 流量係数 [一] 0. 065 0. 26 圧力係数 [一] 1. 35 1 . 30 翼形状 円弧翼 増速翼 Impeller volume [mm 3 ] 9.6 X 10 2. 1 X 10 4 Flow coefficient [1] 0.065 0.26 Pressure coefficient [1] 1.35 1.30 Wing shape
増速比 [一] 0. 9 0. 45  Speed increase ratio [1] 0.9 0.94
翼出口角 [度] 1 55 1 65  Wing exit angle [deg] 1 55 1 65
翼入口角 [度] 90. 0 87. 5  Wing inlet angle [deg] 90. 0 87. 5
スクロール角 [度] 3. 5 4. 0  Scroll angle [degree] 3.5 4.0
設計条件、 流量: 0. 30 mVm i n、 全圧: 1 37. 0 P a 図 1 1には図 3で示された送風機ユニットの流体力学的特性の測定結果を示し ている。 同時に示された円弧翼を用いた従来送風機の結果と比較すると、 流量係 数 Φが非常に高い値まで、 圧力係数 は高い値を維持している。 この結果を用い て実際に送風機の設計を行ない測定したものは、 表 1 に示したとおり同一の設計 条件に対して羽根車容積を、 約 22% ( 2. 1 X 1 04/ 9. 6 X 1 04) にま で小型化することが可能である。 一般的に人体局部洗浄装置および卜ィレ装置に 用いる 1 200W程度の電力の瞬間式熱交換器容積が約 9. 4 X 1 04mm3であ ることを考えると、 従来の送風機は、 羽根車容積のみで瞬間式熱交換器に匹敵す る容積を有している。 このように、 本発明による送風機を用いれば、 人体局部洗 浄装置およびトイレ装置の小型化を実現できる。 Design conditions, flow rate: 0.30 mVmin, total pressure: 137.0 Pa Figure 11 shows the measurement results of the hydrodynamic characteristics of the blower unit shown in Figure 3. At the same time, when compared with the results of the conventional fan using arc blades, the pressure coefficient remains high until the flow coefficient Φ becomes very high. The results obtained by measuring performs actual blower designed using the impeller volume for the same design conditions as shown in Table 1, about 22% (2. 1 X 1 0 4 / 9. 6 X 1 0 4) can be miniaturized by Nima. Generally instantaneous type heat exchanger volume of 1 200 W about power used on the human private washing apparatus and Bok - directional device think about 9. 4 X 1 0 4 mm 3 der Rukoto, the conventional blower, It has a volume comparable to an instantaneous heat exchanger with only the impeller volume. Thus, the use of the blower according to the present invention makes it possible to reduce the size of the human body local cleaning device and the toilet device.
図 1 2は乾燥用送風機ユニットの外観図であり、 図 1 3は送風機 1 4を示す斜 視図である。 図 1 2に示すように、 送風機 1 4と送風ダクト 1 9とは、 ダクト接 続部 1 9 bを介して着脱可能に接続されている。 本実施の形態にかかる送風機 1 4は、非常に小型静音であり、なおかつ低回転で高風量、高圧力が得られるので、 送風用途に合わせて送風機形状を設計しなくとも、 モー夕 1 2の回転数調整のみ で、 室内の空気調和に用いる高風量用途から脱臭に用いる低風量用途まで非常に 幅広く対応可能である。  FIG. 12 is an external view of a blower unit for drying, and FIG. 13 is a perspective view showing the blower 14. As shown in FIG. 12, the blower 14 and the blower duct 19 are detachably connected to each other through a duct connection portion 19b. The blower 14 according to the present embodiment is extremely small and quiet, and can obtain a high air volume and a high pressure at a low rotation speed. Therefore, even if the blower shape is not designed for the air blow application, the blower 12 can be used. By simply adjusting the rotation speed, it is possible to handle a very wide range of applications, from high airflow applications for indoor air conditioning to low airflow applications for deodorization.
すなわち、 送風機 1 4を共通部品として使用し、 負荷や送風面積、 ダクト長さ を調整しかつ異なった形状の送風ダク卜を適宜選択して使用することにより、 送 風ダク卜の形状だけの変更により、 異なる送風用途に対してもそのまま使用する ことが可能である。 したがって、 小型送風機を共通部品として使用すれば、 装置 設計や内部の取り合い検討の際にも、 設計変数として送風機性能や大きさを考慮 する必要がなく、 設計仕様の変更にも柔軟に対応可能であり、 非常に簡便に人体 局部洗浄装置および卜ィレ装置の設計が可能である。 In other words, the blower 14 is used as a common part, and the load, blown area, duct length By adjusting the air flow and appropriately selecting and using a blow duct having a different shape, it is possible to use the blow duct as it is for different blow applications by changing only the shape of the blow duct. Therefore, if a small blower is used as a common part, it is not necessary to consider the blower performance and size as design variables when designing equipment and examining internal arrangements, and it is possible to flexibly respond to changes in design specifications. Yes, it is very easy to design a human body cleaning device and a toilet device.
図 1 4は従来技術による円弧翼を用いた乾燥用送風機ュニッ卜の概略図である < 図 1 5は従来技術による円弧翼を用いた送風機ユニットに、 乾燥用のヒ一夕およ びダク卜を接続した場合の流体力学的特性の測定結果である。 送風機単体と比較 して負荷を接続した場合には特性が著しく低下し、設計点における流量係数が 0 . 0 6 5となっている。  Fig. 14 is a schematic diagram of a blower unit for drying using a conventional arc blade. <Fig. 15 is a schematic diagram of a fan unit using a conventional arc blade for drying and drying. 7 shows the measurement results of the hydrodynamic characteristics in the case of connecting. When a load is connected compared to a single blower, the characteristics are significantly reduced, and the flow coefficient at the design point is 0.065.
図 1 6は本発明の第 2実施例に係わる圧力回復手段をあらわした一例である。 流路断面積のより小さい連結管接続口 2 2から供給された空気は、 圧力回復手段 2 1 に流入する。 圧力回復手段 2 1は、 用途に適した送風面積および流速に変換 するため漸次拡大する管路として形成されているので、 流路断面積の拡大に伴つ て高速で流れる空気が徐々に減速され、 より大きな流路断面積を有する送風口 2 4へと送られる。  FIG. 16 shows an example of pressure recovery means according to the second embodiment of the present invention. The air supplied from the connection pipe connection port 22 having a smaller flow path cross-sectional area flows into the pressure recovery means 21. The pressure recovery means 21 is formed as a conduit that expands gradually to convert it to a blowing area and flow velocity suitable for the application, so that the air flowing at high speed is gradually decelerated as the cross-sectional area of the flow path increases. The air is sent to the air outlet 24 having a larger flow path cross-sectional area.
このとき、 この減速過程で高速な空気が有している大きな動圧は、 静圧に徐々 に変換されるので、 圧力損失やエネルギー損失を生じない。 また、 圧力回復手段 2 1は、 隔壁 2 3により複数に分割して通路に分けられているので、 減速を効率 的に行ない、 圧力を十分に変換することができる。 このように拡大流路内を分割 すれば整流効果があるとともに流れの剥離を防止できるので、 圧力損失を発生さ せない。 このように圧力損失がなければ送風機の負荷を軽減できるので、 小型化 や省エネに大きく貢献する。 また、 エネルギー損失の少ない圧力回復手段 2 1を 設けることにより、 送風口よりも小さな断面積を有する管路で空気の輸送を行な うことができるので、 複数の送風口を有する場合や装置を小型化するためには非 常に好適である。 At this time, the large dynamic pressure of the high-speed air during the deceleration process is gradually converted into a static pressure, so that no pressure loss or energy loss occurs. Further, since the pressure recovery means 21 is divided into a plurality of passages by the partition walls 23, the deceleration can be efficiently performed, and the pressure can be sufficiently converted. Dividing the inside of the enlarged flow path in this way has a rectifying effect and prevents separation of the flow, so that pressure loss does not occur. If there is no pressure loss in this way, the load on the blower can be reduced, greatly contributing to downsizing and energy saving. In addition, by providing the pressure recovery means 21 with small energy loss, air can be transported through a pipeline having a smaller cross-sectional area than the air outlet. To reduce the size Always preferred.
図 1 7は図 1 6に示した圧力回復手段 2 1を用いることにより、 送風機構を構 成した実施例である。 送風機 1 4から供給された空気は、 吐出口切替手段 3 3へ と送られる。 吐出口切替手段 3 3には、 空気処理装置として空気を加熱するヒー タ 2 9と、 空気の温度を検出する温度検出手段 3 2と、 流路の切替を行なう流路 切替手段 3 1が備えられており、流路切替手段 3 1 により切り替えられた空気は、 それぞれ送風管路 2 8へと導かれる。 送風管路 2 8には、 それぞれの用途に適し た位置に圧力回復手段 2 1がそれぞれ接続されている。 流路切替手段 3 1、 温度 検出手段 3 2、 ヒー夕 2 9およびモー夕 1 2は、 制御器 3 0に接続されており、 使用者がリモコンあるいは手動操作を行なえば制御器 3 0が起動され、 それぞれ をあらかじめ定められた温度、 風量、 回転数、 送風口が選択されるような制御が 行なわれる。 この実施例では、 吐出口に圧力回復手段 2 1を備えたので管路径の 小さい送風管路 2 8により送風を行なっても圧力損失やエネルギー損失の発生が 少なく、 送風機 1 4やモータ 1 2を人体局部洗浄装置およびトイレ装置に適した 小型のものとすることができる。  FIG. 17 shows an embodiment in which an air blowing mechanism is configured by using the pressure recovery means 21 shown in FIG. The air supplied from the blower 14 is sent to the outlet switching means 33. The discharge port switching means 33 includes a heater 29 for heating the air as an air processing device, a temperature detection means 32 for detecting the temperature of the air, and a flow path switching means 31 for switching the flow path. The air switched by the flow path switching means 31 is guided to the air duct 28. The pressure recovery means 21 is connected to the air duct 28 at a position suitable for each application. The flow path switching means 31, the temperature detecting means 32, the heater 29 and the motor 122 are connected to the controller 30, and the controller 30 is activated when the user performs a remote control or manual operation. Then, control is performed such that a predetermined temperature, air volume, rotation speed, and air outlet are selected. In this embodiment, since the discharge port is provided with the pressure recovery means 21, even if air is blown through the blower pipe 28 having a smaller pipe diameter, pressure loss and energy loss are less generated, and the blower 14 and the motor 12 are It can be a small size suitable for a human body local cleaning device and a toilet device.
図 1 8は送付機制御ルーチンを示す説明図である。 図 1 8において、 制御器 3 0は、 予め定められたプログラムに基づいて送風機 1 4を回転数制御する。 すな わち、 ステップ S 1 2にて、 図示しないスィッチからの出力信号に基づいて、 乾 燥 ·脱臭 ·暖房のいずれの処理が求められているかについて判定されて、 いずれ の処理も要求されていない場合には一旦処理を終了し、 一方、 これらの処理のい ずれか 1つの処理が要求されている場合にはステップ S 1 4へ進む。 ステップ S 1 4では、 送風機の目標回転数が演算される。 この目標回転数は、 例えば、 予め 設定されたテーブルや、 演算式により求められる。 この場合において、 例えば、 乾燥、脱臭、暖房のいずれかの要求が多いほど、送風機の回転数を高く設定する。 続くステップ S 1 6にて、 送風機の回転数センサからの検出値が読み込まれ、 さらにステップ S 1 8へ進む。 ステップ S 1 8では、 回転数センサの検出値と目 標回転数との偏差が求められ、 これらが所定以内の偏差か判定され、 所定以上の 偏差であると判定された場合には、 ステップ S 2 0へ進み、 送風機への制御電力 が増減制御される。 このように、 乾燥、 暖房などの要求に基づいて送風機が所定 回転数に制御される。 なお、 送風機の目標回転数は、 使用者の好みにより変更で きるように設定することもできる。 FIG. 18 is an explanatory diagram showing a transmitter control routine. In FIG. 18, the controller 30 controls the rotation speed of the blower 14 based on a predetermined program. That is, in step S12, it is determined based on an output signal from a switch (not shown) whether drying, deodorization, or heating is required, and any of the processing is requested. If there is no such process, the process is temporarily terminated. On the other hand, if any one of these processes is requested, the process proceeds to step S14. In step S14, the target rotation speed of the blower is calculated. The target rotation speed is obtained, for example, from a preset table or an arithmetic expression. In this case, for example, as the demand for drying, deodorizing, or heating increases, the rotation speed of the blower is set higher. In the following step S16, the detection value from the rotation speed sensor of the blower is read, and the process proceeds to step S18. In step S18, the detected value of the rotation speed sensor and the target The deviation from the target rotation speed is determined, and it is determined whether these deviations are within a predetermined range.If it is determined that the deviation is higher than the predetermined range, the process proceeds to step S20, and the control power to the blower is increased or decreased. You. In this way, the blower is controlled to a predetermined rotation speed based on a request for drying, heating, or the like. Note that the target rotation speed of the blower can be set so that it can be changed according to the user's preference.
図 1 7の実施例では、 空気処理装置として、 ヒータ 2 9を用いた構成を説明し たが、 ヒータのかわりに脱臭装置、 冷却装置や香り等の拡散物質放射装置を備え ることもできるし、 いくつかを組み合わせて備えることもできる。 いくつかを組 み合わせて使用する場合は、 空気処理装置の選択および出力調整は、 流路切替手 段 3 1 と連動することが望ましい。 また、 管路径の小さな送風管路 2 8により自 由に取り回しが可能なので、 送風ユニット 3 4は、 人体局部洗浄装置および卜ィ レ装置の外部に設置してもよいし、 オプションとして装置への後付けを行なって もよい。  In the embodiment of FIG. 17, the configuration using the heater 29 as the air processing device has been described. However, instead of the heater, a deodorizing device, a cooling device, or a device for radiating a diffused substance such as a fragrance may be provided. However, some can be combined. When several air conditioners are used in combination, it is desirable that the selection and output adjustment of the air treatment device be linked with the flow path switching means 31. In addition, since the air can be routed freely using a small-diameter air duct 28, the air-blowing unit 34 may be installed outside the human body local cleaning device and the tray device, or as an option. It may be retrofitted.
なお、 ここでは送風側管路構成についてのみ述べたが、 同様に吸引側管路につ いても流路切替手段と送風管路を組み合わせて、 適した吸引口からの空気の吸引 が可能なのはいうまでもない。 とくに、 ヒートポンプ等で空気の冷却を行なう場 合にあっては、 快適性を確保するためには冷却に伴う廃熱を効果的に系外に排出 する必要があるが、 本発明によれば管路径の小さい送風管路により効果的な送風 を行なうことができるので、 このような廃熱を排出する用途においては特に好適 である。 また、 この場合は図示しない廃熱排出手段を装置の外部に設け、 送風ュ ニットと連結することにより効果的な廃熱を行なうことができる。  Here, only the configuration of the blower-side pipeline has been described, but it can be said that air can be sucked from the appropriate suction port by combining the flow path switching means and the blower pipeline for the suction-side pipeline. Not even. In particular, when air is cooled by a heat pump or the like, it is necessary to effectively discharge the waste heat accompanying the cooling out of the system in order to ensure comfort. Since the air can be effectively blown by the air duct having a small diameter, it is particularly suitable for the use of discharging such waste heat. Further, in this case, effective waste heat can be performed by providing a waste heat discharging means (not shown) outside the apparatus and connecting it to a blower unit.
図 1 9は従来技術の人体局部洗浄装置の内部構造図をあらわす。 脱臭送風機ュ ニット 5 0、 乾燥送風機ユニット 5 1、 洗浄ノズル 5 2、 暖房便座 5 3、 室内暖 房送風機ュニッ卜 5 4、 温水夕ンク 5 5、 制御器 5 6、 流調バルブ 5 7が示され ている。 図 2 0は従来技術の人体局部洗浄装置の外観図である。  FIG. 19 shows the internal structure of a conventional human body cleaning apparatus. Deodorizing blower unit 50, drying blower unit 51, washing nozzle 52, heating toilet seat 53, indoor heating blower unit 54, hot water sink 55, controller 56, flow control valve 57 It has been. FIG. 20 is an external view of a conventional human body cleaning apparatus.
なお、 この発明は上記実施例に限られるものではなく、 その要旨を逸脱しない 範囲において種々の態様において実施することが可能であり、 例えば次のような 変形も可能である。 The present invention is not limited to the above embodiment, and does not depart from the gist of the present invention. The present invention can be implemented in various modes within the scope, and for example, the following modifications are also possible.
( 1 ) 送風機の流体力学的特性は、 用途に合わせて変更可能であり、 設計に応 じて定めればよい。 例えば、 使用モータを小型化できる場合は羽根車内径をさら に小さくすることができるので、 羽根車外径も小さくできる。 相似的にそのまま 小型にすると必要な圧力や風量が得られず、 モータ回転数を上昇させる必要があ るので、 送風機の流体力学的特性を向上させる必要がある。 例えば高風量時の特 性をさらに向上させるためには、両吸い込みとする、スクロール角を大きくする、 翼出口の流出角を大きくする、 増速部の流路断面積比を小さくするなどを行なえ ばよいし、 これらを組み合わせることもできる。 こうすることにより送風機設置 時の流量係数^を表 1に示した 0 . 2 6よりも大きくすることができ、 実験的に は 0 . 4を超える程度まで可能であること、 および圧力係数 が 2 . 0を越える 値とすることが可能であることが確認されている。  (1) The hydrodynamic characteristics of the blower can be changed according to the application, and may be determined according to the design. For example, if the motor used can be reduced in size, the inner diameter of the impeller can be further reduced, so that the outer diameter of the impeller can also be reduced. Similarly, if the size is reduced as it is, the required pressure and air volume cannot be obtained, and the motor speed must be increased. Therefore, it is necessary to improve the hydrodynamic characteristics of the blower. For example, in order to further improve the characteristics at high airflow, it is necessary to use both suction, increase the scroll angle, increase the outflow angle at the blade outlet, and reduce the cross-sectional area ratio of the speed increasing section. They can be used, or they can be combined. By doing so, the flow coefficient ^ at the time of installation of the blower can be made larger than 0.26 shown in Table 1, and it is possible to experimentally exceed 0.4, and the pressure coefficient is 2 It has been confirmed that it is possible to set the value to more than 0.
( 2 ) トイレ装置としては、 人体の局部に洗浄水を噴出する人体洗浄装置のほ かに、 洗浄後の局部を乾燥する機能、 脱臭機能、 室内暖房機能等を装備した便器 や、 収納キャビネットなどが含まれる。 この場合において、 送風機を組み込んだ トイレ装置は、 装置本体に予め内蔵する場合のほか、 後付けで組み込む場合であ つてもよい。  (2) Toilet devices, such as toilets equipped with a function to dry local parts after washing, a deodorizing function, an indoor heating function, etc., as well as a human body cleaning device that sprays washing water to local parts of the human body, storage cabinets, etc. Is included. In this case, the toilet device incorporating the blower may be built in the device body in advance, or may be retrofitted.
( 3 ) 圧力回復手段として、 スクロールケ一シングを用いた場合において、 そ の形状は特に限定されず、 例えば、 以下の構成をとることができる。  (3) When scroll casing is used as the pressure recovery means, its shape is not particularly limited. For example, the following configuration can be adopted.
① 対数螺旋で描かれるスクロール形状  ① Scroll shape drawn by logarithmic spiral
スクロールケ一シングの形状は、 極座標にて、 次式の関数で表わされる対数螺 旋とすることができる。  The shape of the scroll casing can be a logarithmic spiral represented by the following function in polar coordinates.
r = r o e x p [ 0 · tan Θ r] r = r o exp [0 · tan Θ r]
r :スクロールケーシングの外径  r: Outer diameter of scroll casing
r Q:羽根車の外径 Θ :極座標の角度 r Q : Outer diameter of impeller Θ: Polar coordinate angle
Θ r :対数螺旋の角度  Θ r: Angle of logarithmic spiral
② アルキメデス螺旋で描かれるスクロール形状  ② Scroll shape drawn by Archimedes spiral
スクロールケーシングの形状は、 極座標にて、 次式の関数で表わされるアルキ メデス螺旋とすることができる。  The shape of the scroll casing can be an Archimedes spiral represented by the following function in polar coordinates.
r = r 0 + C · Θ r = r 0 + C
r :スクロールケ一シングの外径  r: Outer diameter of scroll casing
r。:羽根車の外径  r. : Outer diameter of impeller
Θ :極座標の角度  Θ: Polar coordinate angle
C :定数  C: Constant
③ 翼なしディフューザ  ③ Wingless diffuser
上記実施例では、 スクロールケ一シングを用いた構成を説明したが、 スクロー ルケ一シングを用いないで、 羽根車の全周を開放した翼なしディフューザとして もよい。 この形態では、 送風機の回転にしたがって、 羽根車の全周に均等に圧送 すると、 渦巻き状に広がるにしたがって自然に動圧から静圧へ変換される。 本実 施例では、 羽根車の周方向へ広い範囲にわたって送風するので、 トイレ室の暖房 用の送風や、 脱臭後の送風などに好適である。  In the above-described embodiment, the configuration using scroll casing is described. However, a wingless diffuser in which the entire periphery of the impeller is opened may be used without using scroll casing. In this configuration, when the air is uniformly pumped over the entire circumference of the impeller according to the rotation of the blower, dynamic pressure is naturally converted to static pressure as it spreads spirally. In the present embodiment, since air is blown over a wide range in the circumferential direction of the impeller, it is suitable for blowing air for heating a toilet room or blowing air after deodorization.
④ 翼付きディフューザ  ④ Wing diffuser
また、 羽根車の外周であって、 動圧を静圧に変換するための翼付きディフユ一 ザを配置してよい。 この翼付きディフューザは、 半径方向に向かって円弧状の立 壁として構成することができる。 産業上の利用可能性  Further, a winged diffuser for converting dynamic pressure into static pressure may be arranged on the outer periphery of the impeller. This winged diffuser can be configured as an arc-shaped standing wall in the radial direction. Industrial applicability
この発明は、 人体の局部を洗浄する人体局部洗浄装置やトイレ室の暖房などに 使用されるトイレ装置に適用可能である。  INDUSTRIAL APPLICABILITY The present invention is applicable to a human body local cleaning device for cleaning a local part of a human body and a toilet device used for heating a toilet room.

Claims

請求の範囲 The scope of the claims
1 . モータにより駆動され回転する送風機を備えたトイレ装置において、 上記送風機は、  1. In a toilet apparatus provided with a blower driven and rotated by a motor, the blower is
外気を吸引する吸引口と、  A suction port for sucking outside air,
モ一夕により回転駆動される羽根車支持体と、 羽根車支持体の外周であって周 方向にほぼ均等に配置されかつ回転により発生する遠心力により上記吸引口から 吸引された空気を送風および昇圧を行なう送風翼とを有する羽根車と、  An impeller support that is rotationally driven by the motor; and air that is blown from the suction port by centrifugal force generated by rotation, which is arranged on the outer periphery of the impeller support and is substantially even in the circumferential direction. An impeller having a blower blade for increasing pressure,
を備え、  With
上記送風翼は、 羽根車支持体の中心から半径方向に向かって流路面積を狭くす ることで、 吸引口から流入した空気の速度を高めて流出させる増速翼列で構成さ れたこと  The blower blades are configured as a speed-up cascade that increases the velocity of the air that has flowed in through the suction port and reduces the flow area by reducing the flow area in the radial direction from the center of the impeller support.
を特徴とするトイレ装置。  A toilet device characterized by the above-mentioned.
2 . 請求項 1 において、 2. In Claim 1,
上記送風翼の外周には、 前記羽根車が回転することにより発生する動圧を静圧 に変換して圧力を回復する圧力回復手段を配置したトイレ装置。  A toilet device, wherein pressure recovery means for recovering pressure by converting dynamic pressure generated by rotation of the impeller to static pressure is disposed on the outer periphery of the blower blade.
3 . モータにより駆動され回転する送風機を備えたトイレ装置において、 上記送風機は、 3. In a toilet device provided with a blower driven and rotated by a motor, the blower includes:
外気を吸引する吸引口と、  A suction port for sucking outside air,
モータにより回転駆動される羽根車支持体と、 羽根車支持体の外周であって周 方向にほぼ均等に配置されかつ回転により発生する遠心力により上記吸引口から 吸引された空気を送風および昇圧を行なう送風翼とを有する羽根車と、  An impeller support that is driven to rotate by a motor; An impeller having a blowing blade to perform;
を備え、  With
- / '瓜ヰ量係数 Φを次式で定義したときに、 0 . 1 5以上に設定したトイレ装置。  -/ 'Toilet equipment with cucumber volume coefficient Φ set to 0.15 or more when Φ is defined by the following equation.
= υ Γ / ν θ ただし、 U rは羽根車の流出時の半径方向速度、 V eは羽根車の外周の回転 速度をいう。 = υ Γ / ν θ However, U r is the radial velocity, V e at the outflow of the impeller means a rotational speed of the outer periphery of the impeller.
4 . 請求項 1ないし請求項 3のいずれかにおいて、 4. In any one of claims 1 to 3,
上記送風翼は、 該増速翼の流入部から流出部にかけて、 隣接する該増速翼との 間で形成される流路面積が漸次、 減少するように構成したトイレ装置。  A toilet apparatus, wherein the blower wing is configured such that a flow passage area formed between the speed-increasing wing and an adjacent speed-increasing wing gradually decreases from an inflow portion to an outflow portion of the speed-increasing wing.
5 . 請求項 1ないし請求項 4のいずれかにおいて、 5. In any one of claims 1 to 4,
前記送風翼は、 流入部翼端の前縁および流出部翼端の後縁を結んだ翼弦の傾き が羽根車の回転方向と同一方向となるように配置されたトイレ装置。  A toilet apparatus wherein the blower blades are arranged such that the inclination of a chord connecting a leading edge of an inlet-portion wing tip and a trailing edge of an outlet-portion wing tip is in the same direction as a rotation direction of an impeller.
6 . 請求項 1ないし請求項 5のいずれかにおいて、 6. In any one of claims 1 to 5,
上記羽根車から噴き出される空気を吐出する吐出口を複数備えたトイレ装置。  A toilet device having a plurality of discharge ports for discharging air blown out from the impeller.
7 . 請求項 6において、 7. In Claim 6,
前記複数の吐出口を切り替えて吐出方向の選択を行なう吐出口切替手段を備え たトイレ装置。  A toilet apparatus comprising: a discharge port switching unit that switches the plurality of discharge ports to select a discharge direction.
8 . 請求項 1ないし請求項 5のいずれかにおいて、 8. In any one of claims 1 to 5,
上記羽根車から噴き出される空気を吐出する吐出口を備え、  Equipped with a discharge port for discharging air ejected from the impeller,
該吐出口と送風機と連通して送風機から空気を上記吐出口へ輸送する送風管路 を備え、 該送風管路の管路断面積が吐出口の送風断面積よりも小さく構成した卜 ィレ装置。 9 . 請求項 8において、  A tilling device including a blower duct communicating with the discharge port and the blower to transport air from the blower to the discharge port, wherein a cross-sectional area of the blower pipe is smaller than a cross-sectional area of the blower of the discharge port. . 9. In Claim 8,
前記送風管路と前記吐出口の接続部分に、 動圧を静圧に変換する圧力回復手段 を備えたトイレ装置。 Pressure recovery means for converting dynamic pressure to static pressure at a connection portion between the blower pipe and the discharge port Toilet device equipped with.
1 0 . 請求項 1ないし請求項 9のいずれかにおいて、 10. In any one of claims 1 to 9,
前記吸引口を複数有するトイレ装置。  A toilet device having a plurality of the suction ports.
1 1 . 請求項 1 0において、 1 1. In claim 10,
前記複数の吸引口を切り替えて吸引方向の選択を行なう吸引口切替手段を備え たトイレ装置。 1 2 . 請求項 1ないし請求項 1 1のいずれかにおいて、  A toilet apparatus provided with suction port switching means for switching the plurality of suction ports to select a suction direction. 1 2. In any one of claims 1 to 11,
前記送風機の回転数を制御することにより送風機からの出力状態を調整する送 風機出力調整手段を有するトイレ装置。  A toilet device having a blower output adjusting means for adjusting an output state from the blower by controlling a rotation speed of the blower.
1 3 . 請求項 7または請求項 1 1 において、 1 3. In claim 7 or claim 11,
上記吐出口切替手段および Zまたは吸引口切替手段に連動して、 送風機の回転 数を制御することにより送風機からの出力状態を調整する送風機出力調整手段を 備えたトイレ装置。  A toilet device comprising a blower output adjusting means for adjusting an output state from the blower by controlling the rotation speed of the blower in conjunction with the discharge port switching means and the Z or suction port switching means.
1 4 . 請求項 1ないし請求項 1 3のいずれかにおいて、 1 4. In any one of claims 1 to 13,
前記送風機に連通する管路中に空気処理装置を備えたトイレ装置。  A toilet device provided with an air treatment device in a pipe communicating with the blower.
1 5 . 請求項 1 4において、 15. In claim 14,
前記空気処理装置は、 空気の温度を調整する空気温度調整手段により構成され たトイレ装置。  The toilet device, wherein the air treatment device is configured by air temperature adjusting means for adjusting the temperature of the air.
1 6 . 請求項 1 5において、 前記空気温度調整手段は、 熱交換を行なうことにより空気を加熱し空気の温度 を上昇させる加熱手段、 および Zまたは熱交換を行なうことにより空気を冷却し 空気の温度を低下させる冷却手段で構成されたトイレ装置。 1 6. In claim 15, The air temperature adjusting means includes heating means for heating the air by performing heat exchange to increase the temperature of the air, and cooling means for cooling the air by performing Z or heat exchange to reduce the temperature of the air. Toilet equipment.
1 7 . 請求項 1 6において、 1 7. In claim 16,
前記送風機から流出する空気を導く管路中に空気の温度を検知する空気温度検 知手段を備え、  Air temperature detecting means for detecting the temperature of air in a conduit for guiding air flowing out of the blower,
上記空気温度調節手段は、 該空気温度検知手段の出力に基づいて空気の温度を 制御するように構成したトイレ装置。  The toilet device, wherein the air temperature adjusting means is configured to control the temperature of the air based on the output of the air temperature detecting means.
1 8 . 請求項 1 5ないし請求項 1 7のいずれかにおいて、 18. In any one of claims 15 to 17,
前記空気温度調整手段により温度を調整された空気を、 トイレ室内の冷暖房と して用いる空気調和手段を備えたトイレ装置。  A toilet apparatus provided with air conditioning means for using the air, the temperature of which has been adjusted by the air temperature adjusting means, as cooling and heating of a toilet room.
1 9 . 請求項 1 5ないし請求項 1 7のいずれかにおいて、 1 9. In any one of claims 15 to 17,
前記空気温度調整手段により温度を調整された空気を、 局部洗浄後に、 人体局 部に付着した水分を乾燥させる温風として用いる局部乾燥手段を備えたトイレ装  Toilet equipment provided with a local drying means for using the air, the temperature of which has been adjusted by the air temperature adjusting means, as hot air for drying the moisture adhered to the human body part after the local washing.
2 0 . 請求項 1 4において、 20. In claim 14,
前記空気処理装置は、 トイレ室内の臭気成分を吸着、 分解または変質させる臭 気成分除去手段により構成されたトイレ装置。  The above-mentioned air treatment device is a toilet device constituted by odor component removing means for adsorbing, decomposing or deteriorating odor components in the toilet room.
2 1 . 請求項 7において、 2 1. In Claim 7,
前記送風機に連通する管路中に設けられた空気処理装置と、  An air treatment device provided in a pipe communicating with the blower,
前記吐出口切替手段と連動して前記空気処理装置の起動、 停止及び出力調整を 行なう空気処理装置制御手段と、 Start, stop and output adjustment of the air treatment device in conjunction with the discharge port switching means Air treatment device control means for performing;
を備えたトイレ装置。  Toilet device equipped with.
2 2 . 請求項 1 1 において、 2 2. In claim 11,
前記送風機に連通する管路中に設けられた空気処理装置と、  An air treatment device provided in a pipe communicating with the blower,
前記吸引口切替手段と連動して前記空気処理装置の起動、 停止及び出力調整を 行なう空気処理装置制御手段と、  Air treatment device control means for starting, stopping and adjusting the output of the air treatment device in conjunction with the suction port switching means;
を備えたトイレ装置。 2 3 . 請求項 1ないし請求項 2 2において、  Toilet device equipped with. 2 3. In claims 1 to 22,
上記送風機は、  The blower is
羽根車を回転自在に支持するケ一シングと、  A casing that rotatably supports the impeller,
このケーシングと別体でありかつ着脱可能に取り付けられ、 送風翼から噴き出 される空気を外部へ導く送風ダク卜と、  A blower duct which is detachably attached to the casing and which is detachably attached and guides air blown out from the blower blades to the outside;
を備えた人体局部洗浄装置。  A human body local cleaning device provided with:
2 4 . 請求項 1ないし請求項 2 3において、 2 4. In claims 1 to 23,
同じ形状の羽根車から構成される送風機を、 複数備えたトイレ装置。 2 5 . 請求項 1または請求項 2 4において、  A toilet device equipped with multiple blowers composed of impellers of the same shape. 25. In claim 1 or claim 24,
上記モータは、 永久磁石を有するロー夕と、 このロー夕に対向して配置された 電磁石とを備えた直流ブラシレスモー夕であるトイレ装置。  A toilet device, wherein the motor is a direct current brushless motor including a rotor having a permanent magnet and an electromagnet arranged opposite to the rotor.
2 6 . モータにより駆動され回転する送風機を備えたトイレ装置の設計方法に おいて、 26. In the method of designing a toilet device equipped with a blower that is driven and rotated by a motor,
上記送風機は、 外気を吸引する吸引口と、 The blower is A suction port for sucking outside air,
モータにより回転駆動される羽根車支持体と、 羽根車支持体の外周であって周 方向にほぼ均等に配置されかつ回転により発生する遠心力により上記吸引口から 吸引された空気を送風および昇圧を行なう送風翼とを有する羽根車と、  An impeller support that is rotationally driven by a motor; and an outer periphery of the impeller support, which is arranged substantially evenly in the circumferential direction, and blows and boosts air sucked from the suction port by centrifugal force generated by rotation. An impeller having a blowing blade to perform;
を備え、  With
上記送風翼は、 回転支持体の中心から半径方向に向かって流路面積を狭くする ことで、 吸引口から流入した空気の速度を高めて流出させる増速翼列で構成する トイレ装置の設計方法。 2 7 . モータにより駆動され回転する送風機を備えたトイレ装置の設計方法に おいて、  The method for designing a toilet device, wherein the blower blades are configured as a speed-increasing cascade in which a flow area is narrowed in a radial direction from a center of a rotary support to increase a speed of air flowing in from a suction port and flow out. . 27. In the method of designing a toilet device equipped with a blower that is driven and rotated by a motor,
上記送風機は、  The blower is
外気を吸引する吸引口と、  A suction port for sucking outside air,
モータにより回転駆動される羽根車支持体と、 羽根車支持体の外周であって周 方向にほぼ均等に配置されかつ回転により発生する遠心力により上記吸引口から 吸引された空気を送風および昇圧を行なう送風翼とを有する羽根車と、  An impeller support that is rotationally driven by a motor; and an outer periphery of the impeller support, which is arranged substantially evenly in the circumferential direction, and blows and boosts air sucked from the suction port by centrifugal force generated by rotation. An impeller having a blowing blade to perform;
を備え、  With
流量係数 Φを次式で定義したときに、 0 . 1 5以上に設定したトイレ装置の設 計方法。  Design method for toilet equipment with a flow coefficient Φ set to 0.15 or more when Φ is defined by the following equation.
φ = υ r / V e φ = υ r / V e
ただし、 U rは送風機の流出時の半径方向速度、 V 0は、 回転支持体の外周 の回転速度をいう。 However, U r is the radial velocity at outlet of the blower, V 0 refers to the rotational speed of the outer periphery of the rotary support.
PCT/JP1999/006401 1998-11-16 1999-11-16 Toilet device and toilet device designing method WO2000029681A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU11817/00A AU1181700A (en) 1998-11-16 1999-11-16 Toilet device and toilet device designing method
JP2000582652A JP4465881B2 (en) 1998-11-16 1999-11-16 Toilet equipment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP10/343574 1998-11-16
JP34357498 1998-11-16

Publications (1)

Publication Number Publication Date
WO2000029681A1 true WO2000029681A1 (en) 2000-05-25

Family

ID=18362583

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1999/006401 WO2000029681A1 (en) 1998-11-16 1999-11-16 Toilet device and toilet device designing method

Country Status (3)

Country Link
JP (1) JP4465881B2 (en)
AU (1) AU1181700A (en)
WO (1) WO2000029681A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001087162A (en) * 1999-09-27 2001-04-03 Toto Ltd Human body dryer and method for designing the dryer
JP2013510967A (en) * 2009-11-17 2013-03-28 シャンハイ コーラー エレクトロニクス リミテッド Dryer assembly
TWI509132B (en) * 2010-11-12 2015-11-21 Shanghai Kohler Electronics Separable dryer assembly
US9528254B2 (en) 2009-11-17 2016-12-27 Shanghai Kohler Electronics, Ltd. Injection member assembly
CN114483648A (en) * 2022-01-27 2022-05-13 杭州老板电器股份有限公司 Blade design method, blade and centrifugal fan

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62202134A (en) * 1986-02-27 1987-09-05 日立化成工業株式会社 Hot water washing device with hot air blower
JPH025461U (en) * 1988-06-20 1990-01-16
JPH03111697A (en) * 1989-09-22 1991-05-13 Jidosha Denki Kogyo Co Ltd Small centrifugal pump
JPH04159498A (en) * 1990-10-22 1992-06-02 Hitachi Ltd Impeller of multiblade fan
JPH05339972A (en) * 1992-06-11 1993-12-21 Toto Ltd Private-part washer
JPH07279217A (en) * 1994-04-11 1995-10-24 Toto Ltd Local dryer
JPH08107641A (en) * 1994-10-06 1996-04-23 Seiko Seiki Co Ltd Dc brushless motor
JPH09195986A (en) * 1996-01-17 1997-07-29 Taiheiyo Kiko Kk Impeller of fluid machinery
JPH10153194A (en) * 1996-11-22 1998-06-09 Hitachi Koki Co Ltd Centrifugal fan

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62202134A (en) * 1986-02-27 1987-09-05 日立化成工業株式会社 Hot water washing device with hot air blower
JPH025461U (en) * 1988-06-20 1990-01-16
JPH03111697A (en) * 1989-09-22 1991-05-13 Jidosha Denki Kogyo Co Ltd Small centrifugal pump
JPH04159498A (en) * 1990-10-22 1992-06-02 Hitachi Ltd Impeller of multiblade fan
JPH05339972A (en) * 1992-06-11 1993-12-21 Toto Ltd Private-part washer
JPH07279217A (en) * 1994-04-11 1995-10-24 Toto Ltd Local dryer
JPH08107641A (en) * 1994-10-06 1996-04-23 Seiko Seiki Co Ltd Dc brushless motor
JPH09195986A (en) * 1996-01-17 1997-07-29 Taiheiyo Kiko Kk Impeller of fluid machinery
JPH10153194A (en) * 1996-11-22 1998-06-09 Hitachi Koki Co Ltd Centrifugal fan

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001087162A (en) * 1999-09-27 2001-04-03 Toto Ltd Human body dryer and method for designing the dryer
JP2013510967A (en) * 2009-11-17 2013-03-28 シャンハイ コーラー エレクトロニクス リミテッド Dryer assembly
US9528254B2 (en) 2009-11-17 2016-12-27 Shanghai Kohler Electronics, Ltd. Injection member assembly
US9551140B2 (en) 2009-11-17 2017-01-24 Shanghai Kohler Electronics, Ltd. Dryer component
TWI509132B (en) * 2010-11-12 2015-11-21 Shanghai Kohler Electronics Separable dryer assembly
CN114483648A (en) * 2022-01-27 2022-05-13 杭州老板电器股份有限公司 Blade design method, blade and centrifugal fan
CN114483648B (en) * 2022-01-27 2024-04-09 杭州老板电器股份有限公司 Blade design the method is blade and centrifugal fan

Also Published As

Publication number Publication date
JP4465881B2 (en) 2010-05-26
AU1181700A (en) 2000-06-05

Similar Documents

Publication Publication Date Title
WO1997009572A1 (en) Outlet unit for underfloor air conditioning and underfloor air conditioning system using same
KR20020066551A (en) Flow path structure for cassette typed air conditioner
JP4760411B2 (en) Blower
JP2004060447A (en) Multiblade blower
CN112789451B (en) Ductless reverse ventilation system for ventilation equipment and buildings
WO2000029681A1 (en) Toilet device and toilet device designing method
JP2009041517A (en) Centrifugal blower and air conditioning device for vehicle
JP4760410B2 (en) Blower
JP5206365B2 (en) Blower
RU2287088C2 (en) Exhaust fan
KR100662329B1 (en) Air Conditioner
US20050123399A1 (en) Compact diagonal fan
JP4760462B2 (en) Blower
JP4411724B2 (en) Centrifugal blower
JP3059683B2 (en) Central ventilation system
JP2001087201A (en) Dishwasher and dish dryer
JPH10252682A (en) Centrifugal blower
JP2001087162A (en) Human body dryer and method for designing the dryer
JP2006022999A (en) Ventilation device
JP2728855B2 (en) Sound conditioning type blower
JPH10184597A (en) Sirocco fan with muffling box
JPH0650597A (en) Air conditioner
JP5506096B2 (en) Blower
KR20030059620A (en) In-door-unit of ceiling type air-conditioner
KR200353929Y1 (en) Ventilating device of bathroom

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref country code: AU

Ref document number: 2000 11817

Kind code of ref document: A

Format of ref document f/p: F

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AL AM AT AU AZ BA BB BG BR BY CA CH CN CR CU CZ DE DK DM EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
ENP Entry into the national phase

Ref country code: JP

Ref document number: 2000 582652

Kind code of ref document: A

Format of ref document f/p: F

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642