WO1999045536A1 - Magnetic recording medium, method of production thereof, and magnetic storage - Google Patents

Magnetic recording medium, method of production thereof, and magnetic storage Download PDF

Info

Publication number
WO1999045536A1
WO1999045536A1 PCT/JP1998/004038 JP9804038W WO9945536A1 WO 1999045536 A1 WO1999045536 A1 WO 1999045536A1 JP 9804038 W JP9804038 W JP 9804038W WO 9945536 A1 WO9945536 A1 WO 9945536A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
substrate
recording medium
magnetic recording
film
Prior art date
Application number
PCT/JP1998/004038
Other languages
French (fr)
Japanese (ja)
Inventor
Yoshinori Honda
Yuuichi Kokaku
Mitsuhiro Syouda
Toshinori Ohno
Original Assignee
Hitachi, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi, Ltd. filed Critical Hitachi, Ltd.
Publication of WO1999045536A1 publication Critical patent/WO1999045536A1/en

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/84Processes or apparatus specially adapted for manufacturing record carriers
    • G11B5/8404Processes or apparatus specially adapted for manufacturing record carriers manufacturing base layers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/74Record carriers characterised by the form, e.g. sheet shaped to wrap around a drum
    • G11B5/82Disk carriers

Definitions

  • Magnetic recording medium method of manufacturing the same, and magnetic storage device using the same
  • the present invention relates to a magnetic storage device such as a magnetic disk device, and further relates to a magnetic storage device.
  • the present invention relates to a magnetic recording medium used for a head assembly of a device and a manufacturing method thereof.
  • it relates to an inexpensive and high-quality magnetic recording medium capable of high-density recording, a manufacturing method thereof, and an HDD using the magnetic recording medium.
  • a magnetic disk drive mainly includes a magnetic disk 1 and a magnetic head 2 that floats on the magnetic disk 1 for recording and reproduction, as shown in FIG. 12, and also rotates the magnetic disk 1 It consists of a rotating mechanism 3, a head positioning mechanism (servo mechanism) 4 for positioning the magnetic head 2 on the rotating magnetic disk 1, and an RZW signal circuit 5 for recording and reproducing from the magnetic disk using a magnetic head.
  • the floating gap between the magnetic disk 1 and the magnetic head 2 has become less than 0.05 m due to the increase in recording density. It is desired to guarantee the sliding reliability at the time of contact.
  • the magnetic recording medium is composed of a substrate and a layered structure such as a magnetic film and a protective film formed on the substrate.Fine abrasive grains are applied to the surface of the substrate to prevent the magnetic head and magnetic disk from attracting.
  • the method of forming fine grooves by circumferential or non-directional polishing called texture by the machining method used has been generally adopted.
  • Other methods include so-called deposition texture, in which fine projections are formed on the surface of the substrate or magnetic film by sputtering, or DRY etching after coating the surface with teflon particles after forming the protective film.
  • the purpose is to prevent adhesion between the magnetic head and the magnetic disk and to ensure reliability by contact start / stop (hereinafter referred to as CS / S). Needs a certain height. As a result, the flying height of the magnetic head cannot be reduced below the height of the unevenness, and the low flying height of the magnetic head required to achieve the high recording density required today is reduced. There was a problem that I could not do it. In other words, the flying characteristics of the conventional magnetic head depend on the height at which contact between the magnetic head and the magnetic recording medium starts (hereinafter referred to as H to), the protective film thickness on the magnetic film, and the lubricating film thickness. Defined. As a result, conventionally, the limit of H to was about 2 O nm.
  • the height of the hill for etching the protective film and the film thickness of the etched surface cannot be absolutely reduced from the viewpoint of adhesion and strength, and the roughness of the substrate also cannot be reduced.
  • the height of the hill is limited to about 10 nm because it appears to be transferred to the protective film surface, and the remaining film thickness needs to be about 10 to 15 nm, making it difficult to improve the flying characteristics.
  • the uniformity of the hills secondary and tertiary agglomeration cannot be avoided because the fine particles are applied and masked. This allows thermal aspirity due to contact between the magnetic head and large hills
  • T.A (Hereinafter referred to as T.A) is inevitable.
  • the conventional technology does not consider the uniformity of the surface of the substrate over the entire surface, so the anti-adhesion and reliability of the magnetic head and magnetic disk, which are increasingly required in recent years, In addition, it is difficult to achieve high recording density by lowering the height of the magnetic head. Disclosure of the invention
  • Another object of the present invention is to provide a magnetic recording medium and a magnetic storage device having high performance. For this purpose, as described above, it is essential to supply a process capable of making the surface of the magnetic disk uneven and uniform in the disk surface and selecting an arbitrary surface roughness.
  • the basic concept for obtaining a uniform surface is that the height of the concaves and convexes can be controlled uniformly in the plane, and the number of irregularities and the pitch of the irregularities are controlled.
  • the above-mentioned problems of the prior art are solved based on controllability, non-directionality such as machining, improvement of mechanical properties of the surface by processing only the surface, and the present invention. It achieves its purpose.
  • the average center of the surface roughness of the substrate before treatment was The position of the average center line of the surface roughness after processing is lower than the position of the line. In other words, it was found that under the conditions that would cause etching, the surface would not be uniform in height of the projections, but only roughened. Thus, by selecting the processing conditions, the present inventors did not change the average center line of the surface roughness of the substrate even after plasma processing, as shown in the lower part of Fig. 1, and changed the surface shape minutely. I found something that could be done. This can be achieved by treating the main constituent elements on the surface of the substrate without erosion by ions or radicals in the plasma.
  • the present inventors as shown in FIG. 2, FIG. 3, FIG. 4, FIG. 5, FIG. 6, FIG. 7, and FIG.
  • the height depends on the processing time and the energy of the plasma to be processed. Tsuchi was found to be dependent on the type of gas being processed and the pressure of the gas. Therefore, it is found that the magnetic recording medium required for the present invention can be obtained by appropriately selecting the processing conditions such as the processing time, the energy of the plasma to be processed, the gas type and the gas pressure, and performing the plasma processing. Was.
  • the cause of the protrusions formed by performing the treatment according to the present invention is that the ions or radicals of the gas excited by the plasma are replaced with some of the constituent elements on the substrate surface or the constituent elements on the surface.
  • the composition was formed by releasing or increasing the stress and strain of the substrate surface by changing the composition. This is because the release or increase of stress and strain is allowed only above the surface of the substrate, so that a projection is formed upward above the surface.
  • Ni-P substrate surface as an example, Ni is usually an fcc structure, but the structure of Ni-12 wt% P is C22 type.
  • FIG. 1 is a diagram showing a roughness curve in the processing of the present invention with “Etchin moat”.
  • FIG. 2 is a diagram showing a relationship between plasma power and surface roughness.
  • FIG. 3 is a diagram showing the relationship between the plasma power and the pitch of the minute projections.
  • FIG. 4 is a diagram showing the relationship between plasma treatment time and surface roughness.
  • FIG. 5 is a diagram showing the relationship between the plasma processing time and the pitch of the minute projections.
  • FIG. 6 is a diagram showing the relationship between the processing gas pressure and the surface roughness.
  • FIG. 7 is a diagram showing the relationship between the processing gas pressure and the pitch of the fine projections.
  • FIG. 8 is a diagram showing the relationship of surface roughness.
  • FIG. 9 is a diagram showing hardness and Young's modulus before and after the treatment of the present invention.
  • FIG. 10 is a diagram showing a manufacturing flowchart of this embodiment and a conventional example.
  • FIG. 11 is a diagram showing AFM images of the substrate surface of the present embodiment and the conventional example.
  • FIG. 12 is a schematic diagram of a magnetic disk drive.
  • FIG. 13 is a diagram showing processing conditions of the present example and a comparative example.
  • FIG. 14 is a diagram showing evaluation results for the present example and the comparative example.
  • FIG. 15 is a schematic view showing a magnetic recording medium according to this embodiment.
  • FIG. 16 is a schematic structural view of Ni—P in the substrate of the present invention.
  • FIG. 17 is a structural change model for explaining the mechanism of the present invention .
  • FIG. 18 is an analysis result of a substrate surface in one embodiment of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
  • a Ni-P plating on aluminum followed by a machined flat surface, and a chemically strengthened glass substrate.
  • the substrate size is 3.5 inches for the aluminum ZN i-P substrate and 2.5 inches for the glass substrate.
  • FIG. 10 is a flowchart comparing the manufacturing process of the present invention with the manufacturing process of the prior art.
  • the center line average roughness (R a) is 0.15 nm or more and 10 nm or less
  • the center line peak height (R p) is 0.3 or more and 20 ⁇ . m or less is preferable.
  • the processing conditions are different depending on the processing method, but the ultimate pressure of the vacuum exhaust is set to 1 E-4 Pa or less.
  • the treatment of the surface of the substrate is not limited to the treatment method of this embodiment, but may include a plasma etching method, a reactive ion etching method, a reactive ion beam etching method, a chemical assist ion beam etching method, and an ion beam etching method.
  • a sputter etching method, or an induced plasma method such as ERC and ICP can be used.
  • a soda glass substrate processed in the same way as the machined Ni-P plating AL alloy substrate was prepared as a reference.
  • Each processed according to the present invention was processed under the following conditions and analyzed.
  • Processing condition 2 a glass substrate, 26. 6 P a (0.2T orr ), RF200W, processing time 60s ec, process gas were the Ar + O 2 10%.
  • the measuring instrument used for the analysis was Physical Electronics, INC. Quantum 2000.
  • the measurement conditions were a beam diameter of 200 / zm-40w, a target: A1, an excitation source A1 ⁇ , and an extraction angle: 24.
  • Pulse energy 3.57 ⁇ -17 J (187.85 eV), step: 2.56E-19 J (1.6 eV).
  • Figure 18 shows the measurement results.
  • Fig. 18 shows the following.
  • the P concentration of Ni-P on the surface is clearly reduced from 5.89% to 0.58% after treatment, and N increases to 3.15% instead. I have. As a result, the concentration of Ni increases and the surface becomes rich in Ni.
  • the oxygen concentration increases, and alkali metals such as Na, Cl, and Ca decrease.
  • the surface of the glass substrate has changed to a composition closer to Si ⁇ 2 than the state before the treatment according to the present invention.
  • the surface composition is obviously changed and the projections are formed by performing the treatment of the present invention.
  • a magnetic recording medium 1 was obtained by sequentially forming a base film 12, a magnetic film 13 and a protective film 14 on the substrate 11 of this embodiment by a sputtering apparatus. .
  • the underlayer 12 was sputtered to 30 nm in an Ar gas atmosphere using a Cr target, and the magnetic film 13 was sputtered in an Ar gas atmosphere using a CoCrPt target. And set it to 25 nm.
  • the protective film 14 was sputtered in an Ar gas atmosphere using a graphite target to a thickness of 15 nm. After film formation, the surface of the magnetic recording medium is rubbed and dust is removed while rotating the substrate with a tape with abrasive grains to clean the surface. Was. Thereafter, a fluorine-based lubricant was applied by DiP to a thickness of 15 A, and cured at 80 ° C. in a clean open to form a lubricant film 15.
  • the magnetic recording media of Examples 1 to 10 were evaluated as described below, and the results are shown in FIG.
  • the evaluation methods include tangential force, CSS resistance, scratch occurrence frequency due to random seek, magnetic head levitation (H to), T.A occurrence frequency, and static magnetic characteristics (H c, S *, B rt) And magnetic anisotropy.
  • any other manufacturing method can be used as long as it is a surface treatment method using a plasma in a vacuum, and the latitude in equipment is increased.
  • this embodiment (N o. 5) to have One substrate of the substrate and the comparative example (No. 2), 1 0 micron 2 area with the surface state AFM (Atomic Force 'Microscopy copy I) was measured.
  • the result is shown in Fig. 11 as an image of unevenness.
  • the substrate surface has been subjected to a uniform surface treatment and has extremely fine irregularities due to the treatment in this embodiment.
  • the underlying film, magnetic film, protective film, and lubricating film of the magnetic recording medium are not limited to those of the present embodiment, but include a two-layer underlying film, an alloy underlying film, a Co-based magnetic film, Protective film, reactive sputter carbon (H2, N2, etc.) It is also possible to use any combination of such as a carbon film containing PCVD) and a PCVD carbon film. In particular, a combination with a carbon protective film containing H2 and N2, which has a high film strength, is even better.
  • the CSS zone is LZT and the processing method of the present invention makes it possible to use a processing method of the present invention to create a high-density surface with extremely low levitation. It is clear that recording density media can be made.
  • the in-plane magnetic anisotropy of the magnetic layer disappears, and a magnetic recording medium having isotropic magnetic characteristics is obtained.
  • the present invention it is possible to realize a magnetic disk medium capable of achieving extremely low flying height and to supply a sufficiently clean substrate without using an unstable and special cleaning technique such as machining.
  • a cheaper and higher quality magnetic recording medium can be obtained. Therefore, not only can the reliability of the HDD be ensured, but also a system such as a HDD with a high recording density and a high capacity can be supplied.
  • the total amount of investment in manufacturing equipment itself is reduced by eliminating the process of machining such as machining in the manufacturing process, and the manufacturing yield power is significantly increased, so that the cost of magnetic disks is reduced.
  • the cost of HDDs can be greatly reduced.
  • the in-plane magnetic anisotropy of the magnetic layer disappears, and a magnetic recording medium having isotropic magnetic characteristics is obtained.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)
  • Magnetic Record Carriers (AREA)

Abstract

The surface of a substrate for a magnetic recording medium is processed with a plasma so as to impart an arbitrary uniform surface roughness to the substrate without removing principal elements in the surface of the substrate with ions or free radicals in the plasma. It has become possible to prevent the adhesion of a magnetic head to the magnetic recording medium, enhance the reliability, to lower the flying height of the magnetic head, to increase TPI through the isotropy of the magnetic characteristics, and to lower the noise of recording. Also a highly reliable magnetic storage having a high recording density can be realized.

Description

 Light
磁気記録媒体とその製造方法並びにこれを用いた磁気記憶装置 Magnetic recording medium, method of manufacturing the same, and magnetic storage device using the same
技術分野 Technical field
本発明は、磁気ディスク装置等の磁気記憶装置に関し、さらに磁気記憶 田  The present invention relates to a magnetic storage device such as a magnetic disk device, and further relates to a magnetic storage device.
装置のへッ ド 'ディスク ·アッセンプリ (H D A)に使用される磁気記録媒体 とその製造方法に関する。 特に高密度記録を可能とした安価で高品質の 磁気記録媒体とその製造方法及びこの磁気記録媒体を用いた H D Dに関 するものである. The present invention relates to a magnetic recording medium used for a head assembly of a device and a manufacturing method thereof. In particular, it relates to an inexpensive and high-quality magnetic recording medium capable of high-density recording, a manufacturing method thereof, and an HDD using the magnetic recording medium.
背景技術 Background art
近年、 情報量の増加、 伝達速度の高速化に伴いコンピューターの外部 記憶装置として使用される磁気記憶装置の高密度化、 高速化の重要度は ますます高まりを見せている。  In recent years, with the increase in the amount of information and the increase in transmission speed, the importance of increasing the density and speed of magnetic storage devices used as external storage devices for computers has been increasing more and more.
一般的に磁気ディスク装置は第 1 2図に示すように磁気ディスク 1と 磁気ディスク 1上を浮上して記録再生を行う磁気へッド 2を主構成要素 とし、 その他、 磁気ディスク 1を回転させる回転機構 3、 磁気ヘッド 2 を回転する磁気ディスク 1上に位置決めするへッド位置決め機構(サーボ 機構) 4、 磁気ディスクから磁気へッドにより記録再生を行うための RZ W信号回路 5から構成される。 ここで磁気ディスク 1と磁気へッド 2の 浮上間隙は、 高密度記録化に伴い 0 . 0 5 m以下となってきており、 この小さい間隙を確保したまま、 磁気へッドと磁気ディスクの接触時の 摺動信頼性を保証することが望まれている。  In general, a magnetic disk drive mainly includes a magnetic disk 1 and a magnetic head 2 that floats on the magnetic disk 1 for recording and reproduction, as shown in FIG. 12, and also rotates the magnetic disk 1 It consists of a rotating mechanism 3, a head positioning mechanism (servo mechanism) 4 for positioning the magnetic head 2 on the rotating magnetic disk 1, and an RZW signal circuit 5 for recording and reproducing from the magnetic disk using a magnetic head. You. Here, the floating gap between the magnetic disk 1 and the magnetic head 2 has become less than 0.05 m due to the increase in recording density. It is desired to guarantee the sliding reliability at the time of contact.
これらの対策のため従来より、 磁気記録媒体の構成及びその製造方法 に関しては、 その目的に応じてさまざまな提案がなされてきた。 磁気記 録媒体は基板と基板上に形成された磁性膜、 保護膜等の層構造から成り、 磁気へッドと磁気ディスクの吸着を防止するために、 基板の表面には微 細砥粒を用いた機械加工法によるテクスチャーと呼ばれる周方向もしく は無方向研磨による微細な溝を形成する方法が一般的に採られてきた。 また、 その他の方法としては、 基板もしくは磁性膜表面にスパッタリン グにより微細な突起を形成する所謂デポテクスチャーと呼ばれる方法、 また、 保護膜形成後テフ口ン粒子などを塗布した後表面を D R Yエッチ ング法によりエッチングして保護膜表面に凹凸を形成する所謂エツチン グテクスチャ一法などがある. これらの例としては、 特開昭 6 0— 1 1 9 6 3 5、 特開昭 6 1— 2 0 2 3 2 4、 特開昭 5 8— 5 3 0 2 6などが ある。 Conventionally, a configuration of a magnetic recording medium and a method of manufacturing the same have been proposed for these measures. Various proposals have been made for the purpose. The magnetic recording medium is composed of a substrate and a layered structure such as a magnetic film and a protective film formed on the substrate.Fine abrasive grains are applied to the surface of the substrate to prevent the magnetic head and magnetic disk from attracting. The method of forming fine grooves by circumferential or non-directional polishing called texture by the machining method used has been generally adopted. Other methods include so-called deposition texture, in which fine projections are formed on the surface of the substrate or magnetic film by sputtering, or DRY etching after coating the surface with teflon particles after forming the protective film. There is a method such as the so-called etching texture method of forming irregularities on the surface of a protective film by etching by an etching method. Examples of these methods are disclosed in Japanese Patent Application Laid-Open Nos. And Japanese Patent Laid-Open No. 58-53026.
いずれの方法においても、 その目的は磁気へッドと磁気ディスクとの 粘着防止とコンタクトスタートストップ (以下 C S / Sと呼ぶ) による耐 信頼性確保であるため、 この目的を達成するために凹凸にはある程度以 上の高さが必要である。 そのため、 磁気へッドの浮上量はこの凹凸の高 さ以下にすることは出来ず、 現在要求されている程度の高記録密度を達 成するために必要な磁気へッドの低浮上化ができないという問題があつ た。 つまり、 従来の磁気へッドの浮上特性は、 磁気へッドと磁気記録媒 体との接触が開始する高さ (以下 H t oと呼ぶ) と磁性膜上の保護膜厚、 潤滑膜厚で定義される。 この結果、 従来は、 H t oとして約 2 O nm前後 が限界であった。 これは、 磁気記録媒体の表面粗さをある一定値以下に することが難しく且つ基板を加工した際に起こるバリの発生により、 中 心線平均粗さ (R a ) は小さくできても中心線ピーク高さ (R p ) 、 最 大ピーク高さ (R m a x ) は異常に高い値が出るなど基板全体の表面の 形状の均一性に関しては制御できていないためである。 この現象はデポ テクスチャー、 エッチングテクスチャーにおいても同様であり、 デポテ クスチヤ一の場合には、 スパッタリングにより形成するため突起物が異 常成長する可能性が大きく且つ大きさをそろえることが難しい。 エッチ ングテクスチャーの場合には、 保護膜をエッチングするため丘となる部 分の高さとエツチングされた面の膜厚は粘着と強度の点から一概に小さ くすることはできず且つ基板の粗さも保護膜表面まで転写されて現れる ことから丘の高さは 1 0 n m程度が限界であり、 残膜厚は 1 0から 1 5 n m程度を要することになり浮上特性の改善は難しい。 また丘の均一性に関 しても、 微細粒子を塗布してマスキングするため 2次 3次の凝集はさけ られず、 まちまちになるとともに大きな丘が形成される可能性が高い。 これにより磁気へッドと大きな丘の接触によるサーマルアスピリティIn either method, the purpose is to prevent adhesion between the magnetic head and the magnetic disk and to ensure reliability by contact start / stop (hereinafter referred to as CS / S). Needs a certain height. As a result, the flying height of the magnetic head cannot be reduced below the height of the unevenness, and the low flying height of the magnetic head required to achieve the high recording density required today is reduced. There was a problem that I could not do it. In other words, the flying characteristics of the conventional magnetic head depend on the height at which contact between the magnetic head and the magnetic recording medium starts (hereinafter referred to as H to), the protective film thickness on the magnetic film, and the lubricating film thickness. Defined. As a result, conventionally, the limit of H to was about 2 O nm. This is because it is difficult to reduce the surface roughness of the magnetic recording medium to a certain value or less, and the burrs that occur when processing the substrate cause the center line average roughness (R a) to be small even if the center line average roughness (R a) can be reduced. The reason is that the peak height (R p) and the maximum peak height (R max) have abnormally high values, and the uniformity of the surface shape of the entire substrate cannot be controlled. This phenomenon is The same applies to texture and etching texture. In the case of depot texture, since projections are formed by sputtering, there is a high possibility that projections will grow abnormally, and it is difficult to make them uniform in size. In the case of the etching texture, the height of the hill for etching the protective film and the film thickness of the etched surface cannot be absolutely reduced from the viewpoint of adhesion and strength, and the roughness of the substrate also cannot be reduced. The height of the hill is limited to about 10 nm because it appears to be transferred to the protective film surface, and the remaining film thickness needs to be about 10 to 15 nm, making it difficult to improve the flying characteristics. Regarding the uniformity of the hills, secondary and tertiary agglomeration cannot be avoided because the fine particles are applied and masked. This allows thermal aspirity due to contact between the magnetic head and large hills
(以下 T . Aと呼ぶ) の発生が避けられなくなる。 (Hereinafter referred to as T.A) is inevitable.
以上述べたように、 従来技術においては、 基板表面の形状の全面にわ たる均一性に関して考慮されていないため、 近年ますます要求されてい る、 磁気ヘッドと磁気ディスクとの粘着防止と耐信頼性を確保するとと もに磁気へッドの低浮上化を図って高記録密度を達成することが難しい。 発明の開示  As described above, the conventional technology does not consider the uniformity of the surface of the substrate over the entire surface, so the anti-adhesion and reliability of the magnetic head and magnetic disk, which are increasingly required in recent years, In addition, it is difficult to achieve high recording density by lowering the height of the magnetic head. Disclosure of the invention
本発明の目的は、 従来技術の問題点を解決すると共に極低浮上化と 耐摺動性、 耐 T . Aの両立及び磁気異方性の消失による高 T P I化、 低 ノイズ化のなされた信頼性の高い磁気記録媒体及び磁気記憶装置の提供 にある。 この為には先にも述べたように、 磁気ディスク表面の凹凸を円 板面内に於て均一等方等質にし、 且つ任意の表面粗さを選択できるプロ セスの供給が必須である。  It is an object of the present invention to solve the problems of the prior art and to achieve ultra-low levitation, high sliding resistance, high TPI and high TPI by eliminating magnetic anisotropy, and reliability with low noise. Another object of the present invention is to provide a magnetic recording medium and a magnetic storage device having high performance. For this purpose, as described above, it is essential to supply a process capable of making the surface of the magnetic disk uneven and uniform in the disk surface and selecting an arbitrary surface roughness.
本発明においては、 均一な表面を得るための基本的な考え方として凹 凸の高さを面内で均一に制御できること、 凹凸の数、 凹凸のピッチを制 御できること、 機械加工のように方向性を持たないこと、 表面のみを処 理でき表面の機械的性質を向上させること等を基本として、 上述の従来 技術の問題点を解決し、 且つ本発明の目的を達するものである。 In the present invention, the basic concept for obtaining a uniform surface is that the height of the concaves and convexes can be controlled uniformly in the plane, and the number of irregularities and the pitch of the irregularities are controlled. The above-mentioned problems of the prior art are solved based on controllability, non-directionality such as machining, improvement of mechanical properties of the surface by processing only the surface, and the present invention. It achieves its purpose.
スパッタリングによる媒体の形成方法においては、 基板の表面粗さを そのまま ト レースすることが基本的な現象であることから、 非磁性基板 表面を処理することを検討した。  In the method of forming a medium by sputtering, tracing the surface roughness of the substrate as it is is a fundamental phenomenon.
処理方法においては、 大きく 2つの方法がある。 一つはウエッ トによ る化学的な処理方法、 もう一つは真空とプラズマを用いる ドライな方法 である。 ウエッ トな方法では、 エッチング、 メツキなどによる方法が主 であるため制御が難しいことと安定性が無く基板の汚れ、 処理後の洗浄 が必要になるなどの影響が大きい。 ドライな方法による表面形状を形成 する方法としては、 プラズマを用いた物理的な方法によるものが制御し 易く、 且つ任意のプロセス構築にはよいと考えた。 そこで平行平板 R F エッチング装置にて A rガスを用いて基板の表面処理を行ったところ、 基板表面が削られるため、 第 1図の上側に示す様に処理前の基板の表面 粗さの平均中心線の位置より処理後の表面粗さの平均中心線の位置が低 くなる。 つまり、 エッチングしてしまう条件では粗れるだけで凸部高さ の均一な表面にできないことがわかった。 そこで本発明者らは処理条件 を選定することにより、 第 1図の下側に示す様にプラズマによる処理後 も基板の表面粗さの平均中心線が変化せず、 表面の形状を微細に変化さ せることができることを見いだした。 これは、 プラズマ中のイオン若し くはラジカルによつて基板の表面の主構成元素を浸食することなく処理 することにより達成できる。  There are roughly two processing methods. One is a wet chemical treatment method, and the other is a dry method using vacuum and plasma. In wet methods, methods such as etching and plating are the main methods, so control is difficult, there is no stability, and there are significant effects such as contamination of the substrate and necessity of cleaning after processing. As a method of forming the surface shape by a dry method, a physical method using plasma was considered to be easy to control and suitable for arbitrary process construction. Therefore, when the substrate surface was treated with Ar gas using a parallel plate RF etching system, the surface of the substrate was shaved. As shown in the upper part of Fig. 1, the average center of the surface roughness of the substrate before treatment was The position of the average center line of the surface roughness after processing is lower than the position of the line. In other words, it was found that under the conditions that would cause etching, the surface would not be uniform in height of the projections, but only roughened. Thus, by selecting the processing conditions, the present inventors did not change the average center line of the surface roughness of the substrate even after plasma processing, as shown in the lower part of Fig. 1, and changed the surface shape minutely. I found something that could be done. This can be achieved by treating the main constituent elements on the surface of the substrate without erosion by ions or radicals in the plasma.
さらに、 本発明者らは、 第 2図、 第 3図、 第 4図、 第 5図、 第 6図、 第 7図及び第 8図に示すように、 プラズマ処理後の基板表面の凸部の高 さは処理時間、 処理するプラズマのエネルギーに依存し、 且つ凸部のピ ツチは処理するガス種及びガスの圧力に依存することを見いだした。 従 つて、 処理時間、 処理するプラズマのエネルギー、 ガス種及びガスの圧 力等の処理条件を適切に選定してプラズマ処理を行うことにより本発明 に要求される磁気記録媒体が得られることがわかった。 Further, the present inventors, as shown in FIG. 2, FIG. 3, FIG. 4, FIG. 5, FIG. 6, FIG. 7, and FIG. The height depends on the processing time and the energy of the plasma to be processed. Tsuchi was found to be dependent on the type of gas being processed and the pressure of the gas. Therefore, it is found that the magnetic recording medium required for the present invention can be obtained by appropriately selecting the processing conditions such as the processing time, the energy of the plasma to be processed, the gas type and the gas pressure, and performing the plasma processing. Was.
これより従来技術では得られなかったピッチの微細化が可能であり、 非常に微細な凹凸を再現良く制御できる。  This makes it possible to make the pitch finer than was possible with the prior art, and to control very fine irregularities with good reproducibility.
さらに検討を進めた結果本発明による処理を行うことにより形成され る突起の発因はプラズマにより励起されたガスのイオンもしくはラジカ ルが基体表面の構成元素の一部と置換もしくは表面の構成元素の組成を 変化させることにより基体表面の持つ応力, ひずみの開放もしくは増長 により形成されるものであることが解った。 これは, 応力, ひずみの開 放もしくは増長が基体表面の上方にのみ許されるため表面上方に向かつ て突起が形成される。 たとえば, N i— Pの基板表面を例に取り説明す ると通常 N iは f c c構造であるが N i - 1 2 w t % Pの構造は C 2 2 型である。 メツキによって形成される構造は熱処理により第 1 6図に示 す M3 P (M = N i ) を取り実線で示した位置から点線で示す位置へ変化 したひずみを持った構造の集まりである。 さらにこのメツキ膜の表面は 機械加工により平坦化されるがこれにより移動度の大きレ、 (蒸気圧の高 レ、) P原子は表面に拡散しやすく加工後の表面は Pがリツチな表面とな つていると考えられる。 As a result of further study, the cause of the protrusions formed by performing the treatment according to the present invention is that the ions or radicals of the gas excited by the plasma are replaced with some of the constituent elements on the substrate surface or the constituent elements on the surface. It was found that the composition was formed by releasing or increasing the stress and strain of the substrate surface by changing the composition. This is because the release or increase of stress and strain is allowed only above the surface of the substrate, so that a projection is formed upward above the surface. For example, taking the Ni-P substrate surface as an example, Ni is usually an fcc structure, but the structure of Ni-12 wt% P is C22 type. The structure formed by the plating is a group of structures having a strain that has changed from the position shown by the solid line to the position shown by the dotted line by taking M 3 P (M = N i) shown in FIG. 16 by the heat treatment. Furthermore, the surface of this plating film is flattened by machining, but this results in high mobility, high vapor pressure, and P atoms are easily diffused to the surface. It is considered that it is.
これらの表面を N原子にて処理した場合のメカニズムは第 1 7図に示 すように活性化された N原子が P原子にァタックし P原子を表面から追 い出しその代わりに N原子が入り込む。 これによつて元々持っていた N i 一 Pのひずみは実線のように開放され N i原子間距離が変化するため この変化分は表面に上方に向けられることになる。 従って, 表面にはひ ずみの開放により突起の形成がなされる。 更に、 本発明にて処理した表面の硬度、 ヤング率をナノインデンタ社 の薄膜硬度測定器にて測定した結果である第 9図に示すように、 処理前 に比べ明らかに硬度、 ヤング率が向上していることから、 磁気ディスク と磁気へッドの接触時の衝撃を緩和する効果が大いに期待できる。 これ は基板表面の組成変化に伴う形態の変化による明らかな効果である。 従 つて耐スクラッチ、 クラッシュ性の向上が見込める。 図面の簡単な説明 The mechanism when these surfaces are treated with N atoms is that activated N atoms attack P atoms, drive P atoms out of the surface, and N atoms enter instead, as shown in Fig. 17. . As a result, the originally possessed strain of Ni-P is released as shown by the solid line, and the distance between Ni atoms changes, so this change is directed upward to the surface. Therefore, projections are formed on the surface by opening the strain. Further, as shown in Fig. 9, which is a result of measuring the hardness and Young's modulus of the surface treated by the present invention with a thin film hardness tester manufactured by Nanoindenter, the hardness and Young's modulus are clearly improved as compared to before the treatment. Therefore, the effect of alleviating the impact at the time of contact between the magnetic disk and the magnetic head can be greatly expected. This is a clear effect due to the change in morphology accompanying the change in the composition of the substrate surface. Therefore, improvement in scratch resistance and crashability can be expected. BRIEF DESCRIPTION OF THE FIGURES
第 1図はエッチン モ-ト"と本発明の処理での粗さ曲線を表す図である。 第 2図はプラズマパワーと表面粗さの関係を示す図である。  FIG. 1 is a diagram showing a roughness curve in the processing of the present invention with “Etchin moat”. FIG. 2 is a diagram showing a relationship between plasma power and surface roughness.
第 3図はプラズマパワーと微小突起のピッチの関係を示す図である。 第 4図はブラズマ処理時間と表面粗さの関係を示す図である。  FIG. 3 is a diagram showing the relationship between the plasma power and the pitch of the minute projections. FIG. 4 is a diagram showing the relationship between plasma treatment time and surface roughness.
第 5図はブラズマ処理時間と微小突起のピッチの関係を示す図である。 第 6図は処理ガス圧力と表面粗さの関係を示す図である。  FIG. 5 is a diagram showing the relationship between the plasma processing time and the pitch of the minute projections. FIG. 6 is a diagram showing the relationship between the processing gas pressure and the surface roughness.
第 7図は処理ガス圧力と微小突起のピッチの関係を示す図である。 第 8図は表面粗さの関係を示す図である。  FIG. 7 is a diagram showing the relationship between the processing gas pressure and the pitch of the fine projections. FIG. 8 is a diagram showing the relationship of surface roughness.
第 9図は本発明の処理前と後の硬度及びヤング率を示す図である。 第 1 0図は本実施例と従来例の製造フローチャートを示す図である。 第 1 1図は本実施例と従来例の基板表面の A F M像を示す図である。 第 1 2図は磁気ディスク装置の概略図である。  FIG. 9 is a diagram showing hardness and Young's modulus before and after the treatment of the present invention. FIG. 10 is a diagram showing a manufacturing flowchart of this embodiment and a conventional example. FIG. 11 is a diagram showing AFM images of the substrate surface of the present embodiment and the conventional example. FIG. 12 is a schematic diagram of a magnetic disk drive.
第 1 3図は本実施例と比較例の処理条件を示す図である。  FIG. 13 is a diagram showing processing conditions of the present example and a comparative example.
第 1 4図は本実施例と比較例に対する評価結果を示す図である。  FIG. 14 is a diagram showing evaluation results for the present example and the comparative example.
第 1 5図は本実施例における磁気記録媒体を示す概略図である。  FIG. 15 is a schematic view showing a magnetic recording medium according to this embodiment.
第 1 6図は本発明の基板における N i—Pの構造概略図である。  FIG. 16 is a schematic structural view of Ni—P in the substrate of the present invention.
第 1 7図は本発明のメカニズム解説のための構造変化モデルである,:, 第 1 8図は本発明の一実施例における基板表面の分析結果である。 発明を実施するための最良の形態 FIG. 17 is a structural change model for explaining the mechanism of the present invention .: FIG. 18 is an analysis result of a substrate surface in one embodiment of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明の実施例を図面を用いて具体的に説明する。  Hereinafter, embodiments of the present invention will be specifically described with reference to the drawings.
まず、 基板としては、 アルミニウムに N i— Pメツキを施した後機械 加工により平面とした基板と、 化学強化されたガラス基板の 2種類を用 意した。 基板サイズは、 アルミ ZN i— P基板は 3 . 5インチ、 ガラス 基板は 2 . 5インチである。  First, we prepared two types of substrates: a Ni-P plating on aluminum, followed by a machined flat surface, and a chemically strengthened glass substrate. The substrate size is 3.5 inches for the aluminum ZN i-P substrate and 2.5 inches for the glass substrate.
基板を純水にて洗浄した後、 プラズマ中のイオン若しくはラジカルに よって基板の表面の主構成元素を浸食することなく基板表面を処理する ために、 第 1 3図に示す処理条件により処理を行った。 この結果、 同図 に示す機械的性質及び表面状態を有する実施例 N o . :!〜 1 0の基板を作 成した。 比較例として、 第 1 3図の比較例 1〜 4に示すように従来技術 である機械加工によるテクスチャーを形成した基板 (アルミ/ N i— P 基板) と無処理のガラス基板を用意して、 その基板の機械的性質及び表 面状態を調べた。 比較例である基板についても、 再洗浄以降の処理プロ セスは同様とした。 第 1 0図に本発明の製造行程と従来技術の製造工程 とを比較してフローチャートとして示した。  After cleaning the substrate with pure water, treatment is performed under the processing conditions shown in Fig. 13 to treat the substrate surface without eroding the main constituent elements on the substrate surface by ions or radicals in the plasma. Was. As a result, Example No.:! Having the mechanical properties and surface state shown in FIG. ~ 10 substrates were made. As a comparative example, as shown in Comparative Examples 1 to 4 in FIG. 13, a substrate (aluminum / Ni-P substrate) having a texture formed by machining, which is a conventional technique, and an untreated glass substrate were prepared. The mechanical properties and surface condition of the substrate were examined. The processing steps after the re-cleaning were the same for the substrate as the comparative example. FIG. 10 is a flowchart comparing the manufacturing process of the present invention with the manufacturing process of the prior art.
第 1 3図から本実施例の基板の機械的性質である硬度及びヤング率は 比較例よりも向上しており、 本実施例では表面改質が行われている事が わかる。 ここで、 本発明の処理をしていない比較例の硬度及びヤング率 に比べて本実施例では両性質とも 1 0 %以上向上している。  From FIG. 13, it can be seen that the mechanical properties of the substrate of this example, the hardness and Young's modulus, are higher than those of the comparative example, and that the surface modification is performed in this example. Here, both properties are improved by 10% or more in this example as compared with the hardness and Young's modulus of the comparative example not treated in the present invention.
また、 本実施例ではいづれも基板の表面に形成される突起の数が I X 10 8個/ mm2以上 (7 X 109個/ mm2以下) に微細化できる。 Further, it refinement to the number of projections is also formed on the surface of the substrate Izure In this embodiment IX 10 8 pieces / mm 2 or more (7 X 10 9 pieces / mm 2 or less).
ここで、 本発明の目的を達成するためには、 中心線平均粗さ (R a ) は 0. 15 n m 以上 10 n m以下、 中心線ピーク高さ (R p ) は 0. 3以上 20 η m以下とすることが好ましい。 Here, in order to achieve the object of the present invention, the center line average roughness (R a) is 0.15 nm or more and 10 nm or less, and the center line peak height (R p) is 0.3 or more and 20 η. m or less is preferable.
第 1 3図に示すように本実施例ではそれぞれの処理方式により処理条 件は異なっているが、 真空排気の到達圧力に関しては、 全て 1 E— 4P a 以下とした。  As shown in FIG. 13, in this embodiment, the processing conditions are different depending on the processing method, but the ultimate pressure of the vacuum exhaust is set to 1 E-4 Pa or less.
また、 基板の表面の処理は、 本実施例の処理方式に限られず、 プラズ マエッチング方法、 反応性イオンエッチング法、 反応性イオンビームェ ツチング法、 ケミカルアシス トイオンビームエッチング法、 イオンビ一 ムエッチング法、 スパッタエッチング法または E RC、 I CPなどの誘 導プラズマ法を用いることができる。  The treatment of the surface of the substrate is not limited to the treatment method of this embodiment, but may include a plasma etching method, a reactive ion etching method, a reactive ion beam etching method, a chemical assist ion beam etching method, and an ion beam etching method. , A sputter etching method, or an induced plasma method such as ERC and ICP can be used.
次に、 N i一 P及びガラスからなる基板を用いて本発明の処理を行った 基板表面の元素分析を行った結果を以下に示す。 分析には E S C Aを用 いて定量分析を行った。  Next, the results of an elemental analysis of the surface of the substrate that has been treated according to the present invention using a substrate made of NiP and glass are shown below. Quantitative analysis was performed using ESC A for analysis.
尚, リファレンスとして機械加工した N i — Pメツキ A L合金基板と 同じく加工したソーダガラス基板を用意した。 それぞれ本発明の処理を 行ったものを以下の条件にて処理を行い分析を行った。  A soda glass substrate processed in the same way as the machined Ni-P plating AL alloy substrate was prepared as a reference. Each processed according to the present invention was processed under the following conditions and analyzed.
処理条件 1 : N i— P基板, 40 P a (0.3T o r r ) , RF200W, 処理 時間 70 s e c, 処理ガス : N2 Processing condition 1: N i-P substrate, 40 P a (0.3T orr) , RF200W, processing time 70 sec, process gas: N 2
処理条件 2:ガラス基板, 26. 6 P a (0.2T o r r) , RF200W, 処 理時間 60s e c, 処理ガス: Ar+O210%とした。 Processing condition 2: a glass substrate, 26. 6 P a (0.2T orr ), RF200W, processing time 60s ec, process gas were the Ar + O 2 10%.
分析に使用した測定器は Physical Electronics, INC. Quantum 2000 で 測定条件はビーム径 200/zm- 40w, ターゲット : A 1, 励起源 A 1 Κα, 取り出し角度: 24。 , パルスエネルギ一: 3.57Ε- 17 J (187.85 e V) , ステップ: 2.56E - 19 J (1.6e V) とした。  The measuring instrument used for the analysis was Physical Electronics, INC. Quantum 2000. The measurement conditions were a beam diameter of 200 / zm-40w, a target: A1, an excitation source A1Κα, and an extraction angle: 24. , Pulse energy: 3.57Ε-17 J (187.85 eV), step: 2.56E-19 J (1.6 eV).
測定結果を第 18図に示す。 第 18図より次のことが判った。  Figure 18 shows the measurement results. Fig. 18 shows the following.
N i— P基板の場合には表面の N i一 Pの Pの濃度が 5.89%から処理 後に 0.58%と明らかに下がっており, 代わって Nが 3.15%まで増加して いる。 これに伴い N iの濃度は増加しており N i リッチの表面になって いる。 In the case of the Ni-P substrate, the P concentration of Ni-P on the surface is clearly reduced from 5.89% to 0.58% after treatment, and N increases to 3.15% instead. I have. As a result, the concentration of Ni increases and the surface becomes rich in Ni.
さらに, ガラス基板の場合には A r, Nは検出されず, 酸素濃度が高 くなり, N a, C l, C a等のアルカリ金属が減少している。 これによ りガラス基板表面は本発明の処理前の状態より S i〇 2に近い組成に変 化している。 これにより本発明の処理を行うことで明らかに表面組成は 変化し突起の形成がなされることが角军る。  Furthermore, in the case of a glass substrate, Ar and N are not detected, the oxygen concentration increases, and alkali metals such as Na, Cl, and Ca decrease. As a result, the surface of the glass substrate has changed to a composition closer to Si〇2 than the state before the treatment according to the present invention. Thus, it is apparent that the surface composition is obviously changed and the projections are formed by performing the treatment of the present invention.
以上処理した基板を用いて下地層, 磁性層, 保護層, 潤滑層を形成し た磁気記録媒体における効果は後述する実施例の中で詳細に述べるが成 膜後の表面形状も基体を処理した形状に習い, 突起形状をそのまま維持 していることが解っており, 成膜後においても基板表面と同等の評価が 可能である。  The effect of a magnetic recording medium in which an underlayer, a magnetic layer, a protective layer, and a lubricating layer are formed using the substrate that has been processed as described above will be described in detail in an example described later. It is known that the shape of the protrusion is maintained as it is, following the shape, and the same evaluation as the substrate surface is possible even after film formation.
さらに, 上述した結果から, 組成の変化に伴う突起の形成が可能であ ることは明白でありこれによつて特に磁気記録媒体の基体表面に限らず、 磁気記録媒体に積層される下地層、 磁性層、 保護層の何れにおいても本 発明の処理は効果があることを示しているので, 本発明は基体表面にと らわれるものではない。  Further, from the above results, it is clear that projections can be formed with a change in the composition, and thus, not only the base surface of the magnetic recording medium, but also the underlayer, Since the treatment of the present invention has been shown to be effective for both the magnetic layer and the protective layer, the present invention is not limited to the substrate surface.
次に、 第 1 5図に示すように、 スパッタリング装置にて、 本実施例の 基板 1 1上に下地膜 1 2、 磁性膜 1 3及び保護膜 1 4を順次形成し磁気 記録媒体 1とした。  Next, as shown in FIG. 15, a magnetic recording medium 1 was obtained by sequentially forming a base film 12, a magnetic film 13 and a protective film 14 on the substrate 11 of this embodiment by a sputtering apparatus. .
下地膜 1 2は、 C rターゲットを用いて A rガス雰囲気中にてスパッ タし 3 0 n mとし、 磁性膜 1 3は C o C r P tターゲットを用いて A r ガス雰囲気中にてスパッタし 2 5 n mとした。 保護膜 1 4は、 グラファ ィ トターゲットを用いて A rガス雰囲気中にてスパッタし 1 5 n mの厚 みとした。 成膜後は、 表面をクリーニングするため砥粒付きのテープに より基板を回転しながら、 磁気記録媒体表面をこすり塵埃の除去を行つ た。 この後、 フッ素系の潤滑剤を 1 5 Aの厚みになるよう D i P塗布し クリーンオープンにて 80° Cキュアを行って潤滑膜 1 5を形成した。 この実施例 No. 1〜1 0の磁気記録媒体について、 以下に示す評価を 行い、 その結果を第 14図に示した。 The underlayer 12 was sputtered to 30 nm in an Ar gas atmosphere using a Cr target, and the magnetic film 13 was sputtered in an Ar gas atmosphere using a CoCrPt target. And set it to 25 nm. The protective film 14 was sputtered in an Ar gas atmosphere using a graphite target to a thickness of 15 nm. After film formation, the surface of the magnetic recording medium is rubbed and dust is removed while rotating the substrate with a tape with abrasive grains to clean the surface. Was. Thereafter, a fluorine-based lubricant was applied by DiP to a thickness of 15 A, and cured at 80 ° C. in a clean open to form a lubricant film 15. The magnetic recording media of Examples 1 to 10 were evaluated as described below, and the results are shown in FIG.
評価方法としては、 接線力、 C S S耐カ、 ランダムシークによるスク ラッチの発生頻度、 磁気ヘッドの浮上性 (H t o) 、 T. A発生頻度、 静磁気特性 (H c、 S*、 B r t) 及び磁気異方性である。  The evaluation methods include tangential force, CSS resistance, scratch occurrence frequency due to random seek, magnetic head levitation (H to), T.A occurrence frequency, and static magnetic characteristics (H c, S *, B rt) And magnetic anisotropy.
第 14図より比較例に比べ、 明らかに本実施例はいずれの評価結果に おいても優れていることは明白であり、 本発明の目的を十分に満足する ものであることが解る。  From FIG. 14, it is clear that this example is superior in any of the evaluation results as compared with the comparative example, and it can be seen that the object of the present invention is sufficiently satisfied.
そして本実施例の他に、 製造方法としては、 真空中でプラズマを使用 する方式の表面処理方法であればいずれも使用が可能であり、 設備的に は選択の裕度が広がる。  In addition to this embodiment, any other manufacturing method can be used as long as it is a surface treatment method using a plasma in a vacuum, and the latitude in equipment is increased.
また、 本発明によれば、 従来技術の基板加工、 洗浄工程および成膜時 の DE PO— TEX形成、 保護膜形成後の粒子塗布によるエッチング、 洗浄工程などの必要が無く、 処理工程毎に状態が確認できる。 さらにコ ストパフォーマンスに優れた効果がある。  In addition, according to the present invention, there is no need for the conventional substrate processing, cleaning process, formation of DEPO-TEX at the time of film formation, etching by applying particles after formation of the protective film, cleaning process, and the like. Can be confirmed. In addition, it has an excellent cost performance.
さらに、 本実施例 (N o. 5) の基板と比較例 (No. 2) の基板につ いて、 その表面状態を AFM (アトミック · フォース 'マイクロスコピ 一) を用いて 1 0ミクロン2のエリアを測定した。 その結果を凹凸のィメ ージ像として第 1 1図に示した。 同図からも解るように、 明らかに本実 施例における処理をしたことにより、 その基板表面は均一な表面処理が され、 極微細な凹凸を持っていることが解る。 Furthermore, this embodiment (N o. 5) to have One substrate of the substrate and the comparative example (No. 2), 1 0 micron 2 area with the surface state AFM (Atomic Force 'Microscopy copy I) Was measured. The result is shown in Fig. 11 as an image of unevenness. As can be seen from the figure, it is clear that the substrate surface has been subjected to a uniform surface treatment and has extremely fine irregularities due to the treatment in this embodiment.
また、 磁気記録媒体の下地膜、 磁性膜、 保護膜、 潤滑膜は本実施例に 限定されることはなく、 2層の下地膜、 合金の下地膜、 C o系合金の磁 性膜、 2層の保護膜、 リアクティブスパッタカーボン (H2, N 2等の 入ったカーボン膜) 、 PCVDカーボン膜等いずれを組み合わせて使用 することも可能である。 特に膜の強度の高い H2、 N 2入りのカーボン 保護膜との組み合わせは更によレ、結果となる。 The underlying film, magnetic film, protective film, and lubricating film of the magnetic recording medium are not limited to those of the present embodiment, but include a two-layer underlying film, an alloy underlying film, a Co-based magnetic film, Protective film, reactive sputter carbon (H2, N2, etc.) It is also possible to use any combination of such as a carbon film containing PCVD) and a PCVD carbon film. In particular, a combination with a carbon protective film containing H2 and N2, which has a high film strength, is even better.
また、 LZT (レーザーゾーンテクスチャー) との組みあわせとすれ ば、 C S Sゾーンは LZTでデータ面は本発明の処理方法で極低浮上の 容易な高記録密度面が可能となり、 より信頼性の高い高記録密度媒体が 作成できることは明らかである。  In addition, when combined with LZT (laser zone texture), the CSS zone is LZT and the processing method of the present invention makes it possible to use a processing method of the present invention to create a high-density surface with extremely low levitation. It is clear that recording density media can be made.
また、 基板に本発明の表面処理を施したことにより磁性層の面内磁気 異方性が消失し等方性磁気特性を有する磁気記録媒体となる。  Further, by subjecting the substrate to the surface treatment of the present invention, the in-plane magnetic anisotropy of the magnetic layer disappears, and a magnetic recording medium having isotropic magnetic characteristics is obtained.
このため、 磁気異方性の消失による高 TP I化、 低ノイズ化のなされ た信頼性の高い磁気記録媒体となる。 産業上の利用可能性  Therefore, a highly reliable magnetic recording medium with high TPI and low noise due to loss of magnetic anisotropy is obtained. Industrial applicability
本発明によれば、 極低浮上化に対応した磁気ディスク媒体が実現でき ると共に機械加工のような不安定で且つ特殊な洗浄技術を使用せずとも 十分に清浄な基板の供給ができ、 これによりさらに安価で高品質な磁気 記録媒体が得られることになる。 従って HDDの信頼性が確保できるば かりでなく、 高記録密度の高容量の HDD、 如いてはシステムが供給で きることになる。  According to the present invention, it is possible to realize a magnetic disk medium capable of achieving extremely low flying height and to supply a sufficiently clean substrate without using an unstable and special cleaning technique such as machining. Thus, a cheaper and higher quality magnetic recording medium can be obtained. Therefore, not only can the reliability of the HDD be ensured, but also a system such as a HDD with a high recording density and a high capacity can be supplied.
さらに本発明によれば製造工程に機械加工のようなゥエツトの行程が 無くなることで、 製造装置の投資額の総額自体が減少し、 且つ製造歩留 まり力 大幅に上がることから磁気ディスクの原価低減、 HDDのコス トダウンも大幅に見込めることになる。  Further, according to the present invention, the total amount of investment in manufacturing equipment itself is reduced by eliminating the process of machining such as machining in the manufacturing process, and the manufacturing yield power is significantly increased, so that the cost of magnetic disks is reduced. In addition, the cost of HDDs can be greatly reduced.
また、 基板に本発明の表面処理を施したことにより磁性層の面内磁気 異方性が消失し等方性磁気特性を有する磁気記録媒体となる。  Further, by subjecting the substrate to the surface treatment of the present invention, the in-plane magnetic anisotropy of the magnetic layer disappears, and a magnetic recording medium having isotropic magnetic characteristics is obtained.
このため、 極低浮上化と耐摺動性、 耐 T. Aの両立及び磁気異方性の 消失による高 T P I化、 低ノイズ化のなされた信頼性の高い磁気記録媒 体及び磁気記憶装置が提供できる。 For this reason, ultra-low flying and compatibility with sliding resistance and T.A. It is possible to provide a highly reliable magnetic recording medium and a magnetic storage device having a high TPI and low noise due to disappearance.

Claims

請 求 の 範 囲 The scope of the claims
1. 非磁性基板上に下地膜、 磁性膜、 保護膜及び潤滑膜を有する磁気 記録媒体において、 前記基板の表面には、 プラズマを用いて該プラズマ 中のイオン若しくはラジカルによって該基板の表面の主構成元素を浸食 することなく処理して微小な突起が形成されていることを特徴とする磁 気記録媒体。 1. In a magnetic recording medium having a base film, a magnetic film, a protective film, and a lubricating film on a non-magnetic substrate, the surface of the substrate is formed on a surface of the substrate by plasma using ions or radicals. A magnetic recording medium characterized in that minute projections are formed by treating the constituent elements without erosion.
2. 非磁性基板上に下地膜、 磁性膜、 保護膜及び潤滑膜を有する磁気 記録媒体において、 前記基板の表面には微小な突起が形成され、 該突起 の構成元素は該突起以外の残りの部分の構成元素と異なることを特徴と する磁気記録媒体。  2. In a magnetic recording medium having a base film, a magnetic film, a protective film, and a lubricating film on a non-magnetic substrate, minute protrusions are formed on the surface of the substrate, and the constituent elements of the protrusions are other than the protrusions. A magnetic recording medium characterized by being different from a constituent element of a portion.
3. 前記基板の表面は、 中心線平均粗さ (Ra) が 0.15nm 以上 10η m以下、 中心線ピーク高さ (Rp) 力 .3以上 20n m以下であり、 前記突 起の数が 1 X 108個/ mm2以上であり、 等方性磁気特性を有することを特 徴とする請求項 1記載の磁気記録媒体。 3. The surface of the substrate has a centerline average roughness (Ra) of 0.15 nm or more and 10 ηm or less, a centerline peak height (Rp) force of 0.3 or more and 20 nm or less, and the number of protrusions is 1 X 2. The magnetic recording medium according to claim 1, wherein the magnetic recording medium has an isotropic magnetic property of 10 8 pieces / mm 2 or more.
4. 前記基板の表面は、 中心線平均粗さ (Ra) が 0.15n m 以上 10 η m以下、 中心線ピーク高さ (Rp) が 0.3以上 20n m以下であり、 前記突 起の数が 1 X 108個/ mm2以上であり、 等方性磁気特性を有することを特 徴とする請求項 2記載の磁気記録媒体。 4. The surface of the substrate has a centerline average roughness (Ra) of 0.15 nm or more and 10 ηm or less, a centerline peak height (Rp) of 0.3 or more and 20 nm or less, and the number of protrusions is 1 X 3. The magnetic recording medium according to claim 2, wherein the number is 10 8 / mm 2 or more, and the magnetic recording medium has isotropic magnetic characteristics.
5. 非磁性基板の表面に、 プラズマを用い且つ該プラズマ中のイオン 若しくはラジカルによつて該基板の表面の主構成元素を浸食することな く処理して微少な突起を形成し、  5. On the surface of the non-magnetic substrate, use plasma and treat the main constituent elements on the surface of the substrate without erosion by ions or radicals in the plasma to form minute projections.
該基板上に下地膜、 磁性膜、 保護膜をスパッタリングにより順次形成し、 さらに潤滑膜を形成することを特徴とする磁気記録媒体の製造方法。 A method for manufacturing a magnetic recording medium, comprising sequentially forming a base film, a magnetic film, and a protective film on the substrate by sputtering, and further forming a lubricating film.
6. 前記基板の表面の硬度及びヤング率が共に処理前の基板の表面の 硬度及びヤング率に比し 1 0 %以上向上するよう前記基板の表面を処理 することを特徴とする請求項 5記載の磁気記録媒体の製造方法。 6. Treating the surface of the substrate so that both the hardness and the Young's modulus of the surface of the substrate are improved by at least 10% compared to the hardness and the Young's modulus of the surface of the substrate before the treatment. 6. The method for producing a magnetic recording medium according to claim 5, wherein:
7 . 前記基板の表面の粗さの平均中心線位置が処理前の表面の粗さの 平均中心線位置とほぼ等しいことを特徴とする請求項 6記載の磁気記録 媒体の製造方法。 7. The method of manufacturing a magnetic recording medium according to claim 6, wherein an average centerline position of the surface roughness of the substrate is substantially equal to an average centerline position of the surface roughness before the processing.
8 . 前記基板の表面の処理は、 H2、 H e、 N、 〇、 F、 N e、 A r、 K r、 X eの內少なくともいずれか一種以上のガスを用いることを特徴 とする請求項 7記載の磁気記録媒体の製造方法。 8. The treatment of the surface of the substrate uses at least one gas of H2, He, N, 〇, F, Ne, Ar, Kr, and Xe. 8. The method for producing a magnetic recording medium according to 7.
9 . 前記基板の表面の処理は、 プラズマエッチング方法、 反応性ィォ ンエッチング法、 反応性イオンビームエッチング法、 ケミカルアシス ト イオンビームエッチング法、 イオンビームエッチング、法、 スパッタエツ チング法または誘導プラズマ法のいずれか一の方法により行うことを特 徴とする請求項 7記載の磁気記録媒体の製造方法。  9. The surface treatment of the substrate may be performed by a plasma etching method, a reactive ion etching method, a reactive ion beam etching method, a chemical assisted ion beam etching method, an ion beam etching method, a sputter etching method or an induction plasma method. 8. The method for producing a magnetic recording medium according to claim 7, wherein the method is performed by any one of the following methods.
1 0 . 磁気記録媒体、 該磁気記録媒体を回転させる回転機構、 前記磁 気記録媒体上を浮上して記録再生を行う磁気へッド、 該磁気へッドを回 転する前記磁気記録媒体上に位置決めするへッド位置決め機構から構成 される磁気記憶装置において、  10. A magnetic recording medium, a rotating mechanism for rotating the magnetic recording medium, a magnetic head for levitating above the magnetic recording medium to perform recording and reproduction, and on the magnetic recording medium for rotating the magnetic head In a magnetic storage device composed of a head positioning mechanism for positioning at
前記磁気記録媒体は、 非磁性基板上に下地膜、 磁性膜、 保護膜及び潤滑 膜から構成され、 前記基板の表面をプラズマを用いて該プラズマ中のィ オン若しくはラジカルによって前記基板の表面の主構成元素を浸食する ことなく処理することにより微小な突起が該基板の表面に形成されると ともに、 等方性磁気特性を有することを特徴とする磁気記憶装置。 The magnetic recording medium is composed of a base film, a magnetic film, a protective film, and a lubricating film on a non-magnetic substrate. A magnetic storage device characterized in that minute projections are formed on the surface of the substrate by processing without eroding constituent elements, and the magnetic storage device has isotropic magnetic characteristics.
PCT/JP1998/004038 1998-03-04 1998-09-09 Magnetic recording medium, method of production thereof, and magnetic storage WO1999045536A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JPPCT/JP98/00886 1998-03-04
PCT/JP1998/000886 WO1999045537A1 (en) 1998-03-04 1998-03-04 Magnetic recording medium, process for fabricating the same, and magnetic storage apparatus made by using the same

Publications (1)

Publication Number Publication Date
WO1999045536A1 true WO1999045536A1 (en) 1999-09-10

Family

ID=14207708

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP1998/000886 WO1999045537A1 (en) 1998-03-04 1998-03-04 Magnetic recording medium, process for fabricating the same, and magnetic storage apparatus made by using the same
PCT/JP1998/004038 WO1999045536A1 (en) 1998-03-04 1998-09-09 Magnetic recording medium, method of production thereof, and magnetic storage

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP1998/000886 WO1999045537A1 (en) 1998-03-04 1998-03-04 Magnetic recording medium, process for fabricating the same, and magnetic storage apparatus made by using the same

Country Status (1)

Country Link
WO (2) WO1999045537A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4631971B2 (en) * 2006-07-13 2011-02-16 コニカミノルタオプト株式会社 Glass substrate manufacturing method and magnetic disk manufacturing method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02128317A (en) * 1988-11-07 1990-05-16 Matsushita Electric Ind Co Ltd Thin film type magnetic disk
JPH07230620A (en) * 1994-02-16 1995-08-29 Mitsubishi Chem Corp Substrate for magnetic disk and magnetic disk
JPH07244947A (en) * 1994-03-08 1995-09-19 Hitachi Ltd Magnetic disk device, magnetic disk and production of magnetic disk
JPH08147692A (en) * 1994-11-28 1996-06-07 Mitsubishi Chem Corp Manufacture of magnetic recording medium
JPH09138944A (en) * 1995-11-10 1997-05-27 Fujitsu Ltd Nonmagnetic substrate, magnetic recording medium, magnetic recording device and roughening method of layer surface

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5982625A (en) * 1982-11-01 1984-05-12 Nippon Telegr & Teleph Corp <Ntt> Manufacture of substrate for magnetic disk
JPS62219224A (en) * 1986-03-19 1987-09-26 Fujitsu Ltd Magnetic recording medium and its production
US5119258A (en) * 1990-02-06 1992-06-02 Hmt Technology Corporation Magnetic disc with low-friction glass substrate
JPH0461625A (en) * 1990-06-27 1992-02-27 Victor Co Of Japan Ltd Magnetic disk consisting of glass
US5366607A (en) * 1991-08-05 1994-11-22 Hmt Technology Corporation Sputtering target and assembly
US5322595A (en) * 1993-03-19 1994-06-21 Kabushiki Kaisha Kobe Seiko Sho Manufacture of carbon substrate for magnetic disk
JPH076349A (en) * 1993-06-18 1995-01-10 Kao Corp Substrate for magnetic recording medium and its production and magnetic recording medium
US5635037A (en) * 1993-08-02 1997-06-03 Industrial Technology Research Institute Method of texture by in-situ masking and etching for thin film magnetic recording medium
EP0671728A3 (en) * 1994-03-04 1995-09-27 Shin-Etsu Chemical Co., Ltd. Improvement in magnetic recording medium
GB2295159B (en) * 1994-11-21 1997-04-02 Kao Corp Magnetic recording medium
JPH08315356A (en) * 1995-05-15 1996-11-29 Hitachi Ltd Formation of ruggedness and production of magnetic recording medium
JPH09180179A (en) * 1995-12-22 1997-07-11 Mitsubishi Chem Corp Magnetic recording medium and its production
US5733370A (en) * 1996-01-16 1998-03-31 Seagate Technology, Inc. Method of manufacturing a bicrystal cluster magnetic recording medium
US5718811A (en) * 1996-02-28 1998-02-17 Seagate Technology, Inc. Sputter textured magnetic recording medium

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02128317A (en) * 1988-11-07 1990-05-16 Matsushita Electric Ind Co Ltd Thin film type magnetic disk
JPH07230620A (en) * 1994-02-16 1995-08-29 Mitsubishi Chem Corp Substrate for magnetic disk and magnetic disk
JPH07244947A (en) * 1994-03-08 1995-09-19 Hitachi Ltd Magnetic disk device, magnetic disk and production of magnetic disk
JPH08147692A (en) * 1994-11-28 1996-06-07 Mitsubishi Chem Corp Manufacture of magnetic recording medium
JPH09138944A (en) * 1995-11-10 1997-05-27 Fujitsu Ltd Nonmagnetic substrate, magnetic recording medium, magnetic recording device and roughening method of layer surface

Also Published As

Publication number Publication date
WO1999045537A1 (en) 1999-09-10

Similar Documents

Publication Publication Date Title
CN100356450C (en) Magnetic recording medium, method of manufacturing the same, and magnetic recording/reproduction apparatus
JP4881908B2 (en) Magnetic recording medium manufacturing method and magnetic recording / reproducing apparatus
JP4488236B2 (en) Magnetic recording medium manufacturing method and magnetic recording / reproducing apparatus
JP2009199683A (en) Magnetic recording medium and method for manufacturing thereof
JP2007226862A (en) Magnetic recording medium, its manufacturing method, and magnetic recording and reproducing device
WO1988005953A1 (en) Improved protective layer for magnetic disk
US20100232056A1 (en) Method for manufacturing magnetic recording medium, and magnetic recording/reproducing device
US20110032635A1 (en) Magnetic recording medium and method for manufacturing the same, and magnetic recording reproducing apparatus
US8070967B2 (en) Method for manufacturing patterned magnetic recording medium
JP2008034034A (en) Manufacturing method of magnetic recording medium, magnetic recording medium, and magnetic recording device
US8303828B2 (en) Method for manufacturing magnetic recording medium and magnetic recording-reproducing apparatus
US8284520B2 (en) Magnetic recording medium, method for producing magnetic recording medium, and magnetic recording/reproducing apparatus
JP2010140544A (en) Method of manufacturing magnetic recording medium, magnetic recording medium, and magnetic recording and reproducing device
JP3965277B2 (en) Magnetic recording medium and magnetic storage device
JP3848672B2 (en) Magnetic recording medium and method for manufacturing the same
JP2005235356A (en) Manufacturing method of magnetic recording medium
WO1999045536A1 (en) Magnetic recording medium, method of production thereof, and magnetic storage
US8213118B2 (en) Magnetic recording medium, method for production thereof and magnetic recording and reproducing device
JP2008135138A (en) Magnetic recording medium, its manufacturing method and magnetic recording device having magnetic recording medium
JP3657196B2 (en) Magnetic recording medium and magnetic disk device
JP2000212738A (en) Magnetron sputtering method and production of magnetic recording medium
JP2011018425A (en) Method for manufacturing magnetic recording medium, and magnetic recording and playback device
JP2006155863A (en) Perpendicular magnetic recording medium, its manufacturing method, and magnetic recording and reproducing apparatus
JP2006048860A (en) Magnetic recording medium and magnetic recording device
JP3523602B2 (en) Magnetic disk drive

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 09380796

Country of ref document: US

AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: KR

122 Ep: pct application non-entry in european phase