WO1999003980A1 - Agm-derived stroma cells - Google Patents

Agm-derived stroma cells Download PDF

Info

Publication number
WO1999003980A1
WO1999003980A1 PCT/JP1998/003209 JP9803209W WO9903980A1 WO 1999003980 A1 WO1999003980 A1 WO 1999003980A1 JP 9803209 W JP9803209 W JP 9803209W WO 9903980 A1 WO9903980 A1 WO 9903980A1
Authority
WO
WIPO (PCT)
Prior art keywords
cells
hematopoietic stem
hematopoietic
stem cells
cell
Prior art date
Application number
PCT/JP1998/003209
Other languages
French (fr)
Japanese (ja)
Inventor
Tatsutoshi Nakahata
Original Assignee
Kirin Beer Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kirin Beer Kabushiki Kaisha filed Critical Kirin Beer Kabushiki Kaisha
Priority to AU82437/98A priority Critical patent/AU8243798A/en
Publication of WO1999003980A1 publication Critical patent/WO1999003980A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/38Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells
    • A61L27/3886Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells comprising two or more cell types
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/38Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells
    • A61L27/3804Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells characterised by specific cells or progenitors thereof, e.g. fibroblasts, connective tissue cells, kidney cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/38Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells
    • A61L27/3804Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells characterised by specific cells or progenitors thereof, e.g. fibroblasts, connective tissue cells, kidney cells
    • A61L27/3834Cells able to produce different cell types, e.g. hematopoietic stem cells, mesenchymal stem cells, marrow stromal cells, embryonic stem cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/38Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells
    • A61L27/3895Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells using specific culture conditions, e.g. stimulating differentiation of stem cells, pulsatile flow conditions
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0652Cells of skeletal and connective tissues; Mesenchyme
    • C12N5/0662Stem cells
    • C12N5/0668Mesenchymal stem cells from other natural sources
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy

Definitions

  • the present invention relates to a cell line isolated and established from the AGM region, a method for supporting the growth or survival of hematopoietic stem cells and hematopoietic progenitor cells using this cell line,
  • the present invention relates to a graft and a composition for gene therapy using hematopoietic stem cells or hematopoietic progenitor cells proliferated by the method, a transplantation method, and a gene therapy method.
  • BACKGROUND ART Mature blood cells flowing in vivo have only a short life span (about 120 days for red blood cells and about 7 days for platelets in humans), and mature blood cells are differentiated daily from hematopoietic progenitor cells.
  • peripheral blood mature blood cells Maintains homeostasis of peripheral blood mature blood cells.
  • the number of mature blood cells supplied to peripheral blood is 200 billion Z-days for red blood cells and 700 billion days for neutrophils in humans.
  • the progenitor cells of each of these differentiation lineages proliferate while differentiating from undifferentiated hematopoietic stem cells to form a system in which peripheral blood cells do not constantly die.
  • Hematopoietic stem cells with pluripotency were found to be present in the bone marrow. Then, as a means of analyzing the properties of hematopoietic cells, a transplantation experiment system using irradiated mice, and an in vitro (in vitro) colony formation method (Bradley, TR, J. Exp. Med., 44: 287-299) , 1966), and knowledge on the differentiation of hematopoietic stem cells and hematopoietic progenitor cells has been accumulated.
  • the transplantation experiment system using irradiated mice is the most direct way to decipher the properties of hematopoietic stem cells.
  • Transplantation of bone marrow cells isolated from another mouse (Donna 1) into a mouse (recipient) that has damaged the hematopoietic system by irradiation may reconstitute the donor-derived hematopoietic system in the recipient mouse. it can.
  • Various differentiation antigens expressed on hematopoietic cells (Spangrude, GJ, Proc. Natl. Acad. Sci.
  • hematopoietic stem cells can differentiate into lymphoid cells and myeloid cells even if only one cell is transplanted, and have a long-term Has been shown to be able to build a hematopoietic system in recipients (Osawa, M., Science, 273: 242-245, 1996) Hematopoietic stem cells proliferate in transplant recipients because one cell can reconstitute the hematopoietic system in the recipient individual for a long time. It is believed that you are.
  • hematopoietic progenitor cells can differentiate only into a single lineage of mature blood cells, despite the presence of many cytoplasmic cells, hematopoietic stem cells that can build a long-term hematopoietic lineage in transplanted mice It is possible to differentiate into a cell lineage. From these results, the differentiation from hematopoietic stem cells to mature blood cells flowing in peripheral blood is interpreted as follows.
  • Hematopoietic stem cells have a pluripotency capable of differentiating into various differentiation lineages, and are capable of self-renewal while maintaining this pluripotency property (pluripotency). Hematopoietic stem cells self-renew and partially differentiate, are affected by various site forces, gradually narrow the lineage of cells that can be differentiated, differentiate into only a limited number of cell types, differentiate into hematopoietic progenitor cells Proliferates and eventually matures into blood cells.
  • mice As described above, a series of studies on hematopoietic stem cells have been performed using mice, as described above, because it is possible to confirm the long-term appearance of hematopoietic cells by the transplantation experimental system. Although it is thought that a similar hematopoietic cell differentiation mode exists in humans, it is impossible to establish an experimental system for human-to-human transplantation in humans. difficult.
  • CFU-Emix mixed colonies containing erythrocytes
  • CFU-Emix mixed colonies containing erythrocytes
  • Human hematopoietic stem cells identified using these evaluation systems express CD34 antigen and C-KIT (c-kit gene product). The presence of these hematopoietic stem cells has been confirmed in bone marrow, fetal liver, fetal bone marrow, umbilical cord blood, peripheral blood treated with anticancer drugs or cytokines.
  • hematopoietic cells The long-term maintenance of hematopoietic cells in vitro was due to the use of Dexter for fibroblasts other than bone marrow blood cells, preadipocytes, adipocytes, vascular endothelial cells, smooth muscle cells, etc. After establishing a system for co-culturing stromal cells (also called stromal cells) and bone marrow blood cells in vitro (Dexter, TM, J. Cell. Physiol., 91: 335-344). , 1977) 0 In this culture system, hematopoietic cells can be observed to grow and float in the medium for more than 6 months.
  • stromal cells also called stromal cells
  • bone marrow blood cells In this culture system, hematopoietic cells can be observed to grow and float in the medium for more than 6 months.
  • hematopoietic stem cells and hematopoietic progenitor cells are maintained viable for a long period of time by providing a favorable culture environment for hematopoietic stem cells and hematopoietic progenitor cells.
  • This Dexter culture system has a very large number of cell types, and it is not clear which cell types are involved in the maintenance of hematopoietic stem cells. Is also considered to exist. Therefore, it was considered possible to isolate cells that support the proliferation and maintenance of hematopoietic stem cells from bone marrow.
  • stromal cells which are bone marrow stromal cells that are not hematopoietic cells, have been established from bone marrow cells, and the growth support of hematopoietic stem cells and hematopoietic progenitor cells has been analyzed.
  • hematopoietic stem cells and hematopoietic progenitor cells.
  • International patent applications disclose stromal cell lines that maintain and proliferate hematopoietic progenitor cells. No activity to proliferate is found. Also, US Pat. No.
  • 5,599,703 (Davis et al.) Discloses a hematopoietic stem cell expansion system using porcine brain microvasculature vascular endothelial cells. In both cases, it is necessary to add one kind of site force-in, and there is no description about the proliferation of hematopoietic stem cells when only vascular endothelial cells are used without adding the site force-in. In such a culture system with the addition of site force, it is hard to imagine that the performance of the cells themselves has been accurately evaluated.
  • hematopoiesis mainly occurs in the yolk sac, mainly erythrocytes.
  • hematopoiesis in the yolk sac is transient, and it is thought that hematopoietic cells in this area disappear in this area without migrating to other organs.
  • Subsequent major hematopoietic organs migrate to the liver and bone marrow, and the hematopoietic cells from the liver are thought to become hematopoietic stem cells that have proliferated and differentiated to maintain adult blood cell homeostasis. (Zon, LI, Blood, 86: 2876-2891, 1995).
  • Hematopoietic stem cells responsible for hematopoiesis in the liver are thought to develop in the AGM (Aorta-Gonad-Mesonephros) region prior to hematopoiesis in the liver (Tavian, M. Blood, 87: 66-72 1996; Sanchez, MJ., Immunity, 5: 513-525, 1996).
  • the AGM region refers to the region where the aorta (Aorta), the gonad primordium (Gonad), and the mesonephros primordium (Mesonephros) are present in the early stage of mammalian embryo development.
  • mice In humans, it is often found around 20 to 50 days from embryonic age, and in mice it is often found around 9 to 12 days before embryonic age. In other words, it is thought that adult hematopoietic stem cells, after developing in AGM, migrate to the liver and bone marrow, self-renew and differentiate, and supply peripheral blood cells circulating throughout the body.
  • bone marrow transplantation is one of the treatments for aplastic anemia and congenital immunity deficiency, which are diseases caused by pluripotent stem cell disorders.
  • aplastic anemia and congenital immunity deficiency which are diseases caused by pluripotent stem cell disorders.
  • systemic X-ray therapy and high-dose chemotherapy for leukemia are effective treatments, but bone marrow cells are destroyed by these treatments, and bone marrow transplantation is performed in combination with these treatments. ing.
  • problems with bone marrow transplantation such as the extremely low probability of match between donor and patient histocompatibility antigens and the need for strong immunosuppression.
  • bone marrow used for transplantation is collected by puncturing the bone marrow with a iliac comb under general anesthesia, there is also a pain and danger for the donor.
  • umbilical cord blood has attracted attention as a source of stem cells because it has a lower frequency of graft-versus-host disease (GVHD) and a lower need for immunosuppression than bone marrow cells.
  • GVHD graft-versus-host disease
  • the present invention has been made from the above viewpoint, and is a hematopoietic stem cell or hematopoietic progenitor cell that can be used for blood cell transplantation instead of bone marrow transplantation or umbilical cord blood transplantation, or a hematopoietic stem cell that can be used for gene therapy
  • Another object of the present invention is to provide a means for obtaining hematopoietic progenitor cells, and specifically, a stromal cell line capable of supporting the proliferation or survival of hematopoietic stem cells and hematopoietic progenitor cells, It is an object of the present invention to provide a method for supporting the proliferation or survival of hematopoietic stem cells and hematopoietic pro
  • the present inventors have conducted intensive studies in order to solve the above problems, and as a result, the AGM region is suitable as a source of supporting cells for efficiently growing hematopoietic stem cells and hematopoietic progenitor cells. They found that the established Stoma cell line was able to proliferate hematopoietic stem cells and hematopoietic progenitor cells. Further, as a result of examining the use of the obtained stoma cell line, hematopoietic stem cells or hematopoietic progenitor cells cultured together with the stromal cell line of the present invention can be used as a material for blood cell transplantation or gene therapy.
  • the present invention is a cell line that is isolated and established from the mammalian GM AGM region and that can support the growth or survival of hematopoietic stem cells and hematopoietic progenitor cells. Further, the present invention provides the above-mentioned cell line capable of proliferating hematopoietic stem cells or hematopoietic progenitor cells while at least partially maintaining pluripotency, and hematopoietic stem cells such that at least a part thereof involves cell cycle rotation. Is provided.
  • the present invention also relates to the above-mentioned cell line in which an oncogene or an apobutosis-related gene is introduced, and the self-proliferation or survival is regulated by the gene; and the above-mentioned cell in which a gene encoding a cell stimulating factor is introduced. Offer stocks.
  • the present invention provides a transplant containing hematopoietic stem cells or hematopoietic progenitor cells cultured and proliferated or maintaining survival by culturing with the cell line, and cultured and proliferated or maintained on survival with the cell line, and A gene therapy composition comprising a hematopoietic stem cell or hematopoietic progenitor cell into which a foreign gene has been introduced.
  • the present invention also provides an isolated and established mammalian GM AGM region, and a hematopoietic stem cell. Culturing a cell group or a fraction thereof containing at least hematopoietic stem cells or hematopoietic progenitor cells, together with a cell line capable of supporting the proliferation or survival of the cells and hematopoietic progenitor cells. Methods for supporting growth or survival are provided. Examples of the cell group include a cell group derived from umbilical cord blood, fetal liver, bone marrow, fetal bone marrow, or peripheral blood.
  • the present invention provides a method of isolating and establishing a cell line that is isolated from the AGM region of a mammalian fetus and that is cultured with a cell line that can support the proliferation or survival of hematopoietic stem cells and hematopoietic progenitor cells, and that has grown or has maintained its survival.
  • the present invention provides a method for transplanting hematopoietic stem cells or hematopoietic progenitor cells, which comprises transplanting hematopoietic stem cells or hematopoietic progenitor cells.
  • the present invention provides a hematopoietic cell isolated and established from an AGM region of a mammalian fetus, which is cultured with a cell line capable of supporting the proliferation or survival of hematopoietic stem cells and hematopoietic progenitor cells, and which is proliferated or whose survival is maintained. It is intended to provide a gene therapy method characterized by introducing a foreign gene into stem cells or hematopoietic progenitor cells, and transplanting the transduced cells.
  • the AGM (Aorta-Gonad-Mesonephros) region refers to the fetal aorta, gonads, and mesonephros.
  • the AGM region is an anatomically identified region where fetal adult hematopoietic stem cells appear.
  • a stroma cell is a cell group that exists in a hematopoietic tissue other than hematopoietic cells that supports the survival, differentiation, and proliferation of the hematopoietic cell group, and that constitutes the cell.
  • These cells include cell types such as fibroblasts, preadipocytes, adipocytes, and vascular endothelial cells.
  • the hematopoietic stem cells are cells having pluripotency to differentiate into all of the lineage of blood cells, and stem cells c current human is a cell capable of self-renewal while maintaining their pluripotency
  • stem cells are identified as cells that can form colonies (CFU-Emix) containing erythrocytes in an in vitro Atsushi system.
  • Hematopoietic progenitor cells refer to cells that can differentiate into a single hematopoietic lineage or multiple but not all lineages, and these cells can differentiate into single or multiple lineage cells .
  • the AGM region-derived stromal cell line refers to a single stromal cell isolated and established from the AGM region.
  • the AGM region-derived stoma cell line may be simply referred to as “stroma cell line” or “cell line of the present invention”.
  • stroma cell line or “cell line of the present invention”.
  • the stromal cell line of the present invention is a cell line that is isolated and established from the AGM region of a mammalian fetus and can support the growth or survival of hematopoietic stem cells and hematopoietic progenitor cells.
  • the method for isolating and establishing the cell line of the present invention is exemplified below.
  • mice Male and female mice are bred under SPF (specific pathogen-free) environment, females are placed in the same cage with males overnight, and the following morning, female mice confirmed to have a vaginal plug are transferred to new cages. Breed. The day when the vaginal plug is confirmed is defined as 0.5 day of gestation, and the fetus is removed from the mouse on day 8 to 13 of gestation, preferably at day 10.5. Methods for isolating the AGM region from the fetus are described in Godin et al. (Godin, I., Proc. Natl. Acad. Sci. USA, 92: 773-777, 1997), Medvinsky et al. (Medvinsky, AL, Blood, 87: 557).
  • SPF specific pathogen-free
  • the fetus is placed in a culture dish filled with phosphate buffered saline so that the fetus is immersed, and the AGM region is excised under a stereoscopic microscope so as not to include other regions, and transferred to a new culture dish.
  • a medium for example, a MEM medium containing 10% FCS (male fetal serum) at 37 ° C, 5% CO 2 and 100% humidity. Incubate. When the cells in the AGM region have adhered to the culture dish, the culture is continued by further adding a medium, and stromal cells appear around the tissue piece of the AGM region. After further culturing for about one week, the adherent cells are detached by trypsin treatment, washed in the medium, and seeded on a culture dish. On the next day, remove the cells that have not adhered to the culture dish together with the medium, and add fresh medium.
  • a medium for example, a MEM medium containing 10% FCS (male fetal serum) at 37 ° C, 5% CO 2 and 100% humidity.
  • FCS male fetal serum
  • ⁇ - rays of about 900 rad are applied to remove endogenous hematopoietic cells.
  • the culture system is trypsinized to suspend the cells, and placed in a 24-well culture dish at 10 to 20,000 cell wells, preferably 50 to 100 cells / well. Sowing.
  • the cells do not proliferate, so the number of cells seeded in one well is increased, and After acclimating the cells so that they can be tolerated, it is preferable to carry out cloning by the limiting dilution method.
  • the cells were seeded in a 96-well culture dish by limiting dilution so that the cells became 0.05-1 cell Nowell, preferably 0.3 cells Z cells. Expand the cells growing from the well where only one cell has been seeded.
  • the cell strain of the present invention can be obtained.
  • Such cell selection can be performed by co-culturing the candidate strain with hematopoietic stem cells or hematopoietic progenitor cells, and then evaluating the degree of proliferation of hematopoietic stem cells or hematopoietic progenitor cells.
  • the degree of proliferation of hematopoietic stem cells or hematopoietic progenitor cells is determined by culturing the cells at the start of coculture and after coculture in the presence of cytokines, and comparing the number of blood cell colonies.
  • the AGM region used for establishing a stoma cell line is limited to mouse origin. Instead, it may be another mammal, for example, an AGM region such as pig, sheep, and human.
  • an AGM region such as pig, sheep, and human.
  • a The appearance of hematopoietic stem cells in the GM region was confirmed in both human (Tavian, M., Blood, 87: 67-72, 1996) and mouse (Sanchez, MJ., Immunity, 5: 513-525, 1996). Therefore, it is considered that a common mechanism exists in the developmental process of mammals.
  • human umbilical cord blood-derived hematopoietic stem cells can be expanded using a mouse AGM region-derived stroma cell line. It is strongly supported that stromal cells equivalent to the stomal cell line obtained in the Examples can be isolated from the mammalian GM region of the present invention, and that they can be used equally.
  • a single stromal cell can be isolated from the AGM region and established.
  • This stromal cell line can support the proliferation and survival of hematopoietic stem cells and hematopoietic progenitor cells. That is, a stromal cell line and a hematopoietic stem cell, a hematopoietic progenitor cell, or a hematopoietic cell group containing at least one of them are co-cultured.
  • hematopoietic stem cells rotate through the cell cycle, partly renew themselves as stem cells, partly proliferate while differentiating into hematopoietic progenitor cells, and hematopoietic stem cells are maintained in this culture system.
  • hematopoietic progenitor cells proliferate while differentiating into cells of a single or multiple lineages.
  • the proliferation or survival of the stromal cell line is regulated. It becomes possible. If the growth of stromal cell lines could be regulated, it would be possible to efficiently increase the number of stromal cell lines and extend their lifespan. In general, oncogenes are thought to have an advantageous effect on proliferation.
  • the stromal cell line may have an adverse effect in the body, and avoid bringing it into the body. Is preferred. If the survival of stromal cell lines could be regulated, it would be possible to kill and eliminate only stromal cell lines after hematopoietic cell culture. Therefore, a gene that induces cell death should be in a form that allows its expression to be regulated by an external stimulus, and introduced into a stoma cell line to artificially regulate its growth and viability. You can also create a system that makes it possible.
  • the oncogenes include the human papilloma virus gene (Halbert, C.L., J. Virol., 65: 473, 1991; Ryan, M.J., Kidney Int 45:48, 1994)) and the SV40 gene (Chou,
  • Fas Itoh, N., Cell, 66: 233-243, 1991
  • TNFreceptor type II Litoson, H., Cell 61 (2): 351-359, 1990
  • Death receptor 3 Kitoson, J., Nature, 384: 372-375, 1996)
  • Death receptor 4 Pan, G. ICE (IL-1 ⁇ converting enzyme) (Cerretti, DP, Sc), a proteolytic enzyme belonging to the signal transduction system of the receptor. ience 256: 97-100, 1992), and Caspase Family (Patel, T, FASEB.
  • AAV Adetin, RM Hum Gene Ther 5: 793, 1994
  • a method using a virus-derived animal cell vector such as a simple herpes virus vector, a calcium phosphate coprecipitation method, The DEAE-dextran method, the electoral poration method, the ribosome method, the lipofection method, the microinjection method and the like can be used.
  • a marker gene such as a drug resistance gene is used in addition to the apobutosis-related gene, the selection of a stromal cell line into which the target gene has been introduced is facilitated.
  • the method of the present invention for supporting the growth or survival of hematopoietic stem cells or hematopoietic progenitor cells utilizes the properties of the above-mentioned stromal cell line, and, together with the stromal cell line, at least hematopoietic stem cells or hematopoietic progenitor cells. Culturing the cell group containing the cells or the fraction thereof.
  • the cell group may be one in which one of hematopoietic stem cells or hematopoietic progenitor cells is isolated, or both of them. It may also contain at least one of hematopoietic stem cells or hematopoietic progenitor cells, and may further contain other hematopoietic cells.
  • the fraction refers to a fraction containing hematopoietic stem cells or hematopoietic progenitor cells, which is fractionated from a cell group containing hematopoietic stem cells or hematopoietic progenitor cells.
  • a cell group or a fraction thereof may be simply referred to as hematopoietic stem cells and hematopoietic progenitor cells.
  • stem cells can be obtained by administering fetal liver, bone marrow, fetal bone marrow, peripheral blood, cytokine ⁇ y ⁇ Z or an anticancer agent of a mammal such as a human or a mouse.
  • the mobilized peripheral blood, umbilical cord blood and the like can be mentioned, and any tissue may be used as long as it contains hematopoietic stem cells.
  • a culture method using a so-called culture dish or flask is possible, but the medium composition, pH, etc. are controlled mechanically to achieve high density.
  • the culture system can also be improved by a bioreactor capable of culturing in E. coli (Schwartz, Proc. Natl. Acad. Sci. USA, 88: 6760, 1991; Roller, MR, Bio / Technology, 11: 358). Roller, MR, Blood, 82: 378, 1993; Palsson, B. 0., Bio / Technology, 11: 368, 1993).
  • the medium used for the culture is not particularly limited as long as the growth and survival of hematopoietic stem cells or hematopoietic progenitor cells are not impaired.
  • SF-02 medium Sudo Junyaku
  • Opti-MEM medium GIBC0 BRL
  • MEM medium GIBC0 BRL
  • IMDM medium GIBC0 BRL
  • PRMI1640 medium GIBC0 BRL
  • the culture temperature is usually from 25 to 39 ° C, preferably from 33 to 39 ° C.
  • Materials added to the culture medium include fetal calf serum, human serum, calf serum, insulin, transferrin, lactoferrin, ethanolamine, sodium selenite, monothioglycerol, 2-mercaptoethanol, ⁇ Serum albumin, sodium pyruvate, polyethylene glycol, various vitamins, various amino acids, various growth factors, preferably EGF (epidermal growth factor), PDGF (platelet-derived growth factor), bFGF (basic fibroblast growth factor) , O 2 is typically 4-6%, and preferably 5%.
  • the closed cell line of the present invention can be used to support the growth and survival of hematopoietic stem cells and hematopoietic progenitor cells, but is more effective by adding a cell stimulating factor to the co-culture system. Proliferation and survival can be supported.
  • a cell stimulating factor is not particularly limited as long as it does not prevent the Stoma cell line from supporting the growth and survival of hematopoietic stem cells or hematopoietic progenitor cells.
  • SCF stem cell factor
  • IL-3 interleukin-3
  • GM-CSF granulocyte / macrophage colony-stimulating factor
  • IL -6 interleukin-6
  • TP0 thrombopoetin
  • G-CSF granulocyte colony-stimulating factor
  • TGF- ⁇ transforming growth factor-3
  • MIP-1a Davatelis, G., J. Exp. Med.
  • hematopoietic hormones such as EP0 (erythropoietin), Wnt (Thimoth, AW, Blood, 89: 3624 -3635, 1997) Differentiation and growth regulators such as gene products, or developmental regulation such as Notch / Delta (Moore KA, Proc. Natl. Acad. Sci. USA, 94: 4011-4016, 1997) gene products Factors and the like.
  • a gene that encodes a cell stimulating factor as described above is introduced into a stromal cell line in such a manner that the gene can be expressed in the cell, and the resulting gene-introduced cell is used.
  • the culture system can be improved.
  • the culture supernatant obtained by culturing the Stoma cell line shows activity that contributes to the growth and survival of hematopoietic stem cells or hematopoietic progenitor cells
  • only the culture supernatant is used for hematopoiesis.
  • Stem cells or hematopoietic progenitor cells can be subjected to culture.
  • stromal cells and hematopoietic stem cells or hematopoietic progenitor cells are separated by a porous membrane that allows the penetration of factors involved in the growth and survival of these hematopoietic cells. It is also possible to culture.
  • cell stimulating factors as described above to the culture system in order to favor the survival and proliferation of hematopoietic cells (Verfaillie, CM, Blood, 84: 1442-1449, 1994).
  • the above-mentioned cell stimulating factor, a gene encoding a cell stimulating factor, an oncogene, an apoptosis-related gene, and addition to a cell, a method of introducing a gene into a cell, and a method of culturing a cell are known to those skilled in the art. This is performed by a known method.
  • hematopoietic stem cells or hematopoietic progenitor cells grown and cultured with the cell line of the present invention can be used as a blood substitute for conventional bone marrow transplantation or cord blood transplantation. It can be used as a transplant for cell transplantation.
  • Hematopoietic stem cell transplantation can improve conventional blood cell transplantation treatments because the transplant is semi-permanently engrafted.
  • Conventionally a large amount of bone marrow was collected for bone marrow transplantation, but according to the present invention, a small amount of bone marrow can be collected.
  • the stem cell expansion technology according to the present invention can be used to expand autologous or non-autologous stem cells.
  • Transplantation of hematopoietic stem cells by the method of the present invention can be performed by systemic X-ray therapy or leukemia for leukemia.
  • chemotherapy it can be used for various diseases in addition to combining with these treatments.
  • a treatment that causes bone marrow suppression as a side effect such as chemotherapy or radiation therapy for solid cancer patients
  • bone marrow is collected before the procedure, and hematopoietic stem cells and hematopoietic progenitor cells are expanded in vitro
  • hematopoietic disorders due to side effects can be recovered early, and more powerful chemotherapy can be performed, and the therapeutic effect of chemotherapy can be improved.
  • a patient or another person's hematopoietic stem cells and hematopoietic progenitor cells are differentiated into various blood cells and transferred into the patient's body, thereby reducing the dysfunction due to hypoplasia of various blood cells.
  • Patients presenting can be improved.
  • it can improve hematopoietic failure caused by bone marrow hypoplasia presenting anemia such as aplastic anemia.
  • Other diseases for which hematopoietic stem cell transplantation by the method of the present invention is effective include chronic granulomatosis, double immunodeficiency syndrome, agammaglobulinemia, Wiskott-Aldrich syndrome, acquired immunodeficiency syndrome (AIDS), and the like.
  • Immunodeficiency syndrome thalassemia, hemolytic anemia due to enzyme deficiency, congenital anemia such as sickle cell disease, lysosomal storage diseases such as Gaucher disease and mucopolysaccharidosis, adrenal leukemia, various cancers and tumors, etc. .
  • transplantation of hematopoietic stem cells using the graft of the present invention may be performed in the same manner as conventional bone marrow transplantation or cord blood transplantation, except for the cells used.
  • the origin of hematopoietic stem cells that may be used for hematopoietic stem cell transplantation as described above is not limited to bone marrow, but can be obtained by the administration of fetal liver, fetal bone marrow, peripheral blood, cytokines and anticancer drugs as described above. Mobilized peripheral blood, umbilical cord blood, and the like can be used.
  • the transplant of the present invention may be a composition containing a buffer solution or the like in addition to the hematopoietic stem cells and hematopoietic progenitor cells grown by the method of the present invention.
  • Hematopoietic stem cells or hematopoietic progenitor cells cultured and grown together with the cell line of the present invention can be used for ex vivo gene therapy.
  • Gene therapy includes an in vivo method in which DNA is directly administered to patients and an ex vivo method in which DNA is introduced into target cells and the transfected cells are transplanted into patients.
  • bone marrow cells are used as target cells in the ex vivo method, a large amount of bone marrow must be collected, but according to the present invention, a small amount of bone marrow can be collected.
  • the ability of hematopoietic stem cells to self-renew and supply hematopoietic cells in the long term is considered to be a suitable target for gene therapy.
  • the cell cycle could not be rotated, making gene transfer difficult.
  • co-culturing the cell line of the present invention with hematopoietic stem cells or hematopoietic progenitor cells the cell cycle of these cells can be rotated, and gene transfer can be performed easily. .
  • Gene therapy using the present invention is performed by introducing a foreign gene (therapeutic gene) into hematopoietic stem cells or hematopoietic progenitor cells cultured and grown together with stromal cells, and using the resulting transfected cells.
  • Gene therapy using the gene therapy composition of the present invention is the same as conventional gene therapy except that hematopoietic stem cells or hematopoietic progenitor cells co-cultured and expanded with stromal cells are used as target cells. You can go to The foreign gene to be introduced is appropriately selected depending on the disease.
  • Diseases targeted for gene therapy targeting blood cells include chronic granulomatosis, double immunodeficiency syndrome, agammaglobulinemia, Wiskott-Aldrich syndrome, and acquired immunodeficiency syndrome
  • AIDS thalassemia
  • hemolytic anemia due to enzyme deficiency
  • congenital anemia such as sickle cell disease
  • lysosomal storage disease such as Gaucher disease and mucopolysaccharidosis
  • adrenal white matter degeneration various cancers or Tumors and the like.
  • the origin of hematopoietic stem cells used as target cells is not limited to bone marrow, and fetal liver, fetal bone marrow, peripheral blood, peripheral blood obtained by mobilizing stem cells by administration of cytokine and Z or an anticancer agent, umbilical cord blood, and the like can be used.
  • retrovirus vector such as Moroni murine leukemia virus, adenovirus vector, adeno-associated virus (MV) Vector
  • MV adeno-associated virus
  • a method using a virus-derived animal cell vector such as a simple virus vector, calcium phosphate co-precipitation method, DEAE-dextran method, electrification method, ribosome method, lipofection method, A microinjection method or the like
  • retrovirus vector or an adeno-associated virus vector is preferable, since it can be integrated into the chromosome DNA of the target cell and gene expression can be expected permanently.
  • an adeno-associated virus (AAV) vector can be constructed as follows. First, ITRs (inverted t) at both ends of the wild-type adeno-associated virus DNA Then, transfection of 293 cells with vector plasmid containing the therapeutic gene inserted between them (erminal repeat) and helper plasmid to supplement viral proteins is performed. Subsequent infection with the helper virus adenovirus produces virus particles containing the MV vector. Alternatively, instead of adenovirus, a plasmid expressing an adenovirus gene responsible for helper function may be transfected. Next, the obtained virus particles are used to infect hematopoietic stem cells or hematopoietic progenitor cells.
  • a suitable promoter and enhancer upstream of the target gene in the vector DNA it is preferable to insert a suitable promoter and enhancer upstream of the target gene in the vector DNA, and to regulate the expression of the gene by these.
  • a marker gene such as a drug resistance gene in addition to the therapeutic gene facilitates selection of cells into which the therapeutic gene has been introduced.
  • the therapeutic gene may be a sense gene or an antisense gene.
  • hematopoietic stem cells are mostly in the G0 phase in the cell cycle and cannot be infected with retrovirus. Therefore, IL-1, IL-3, IL-6 and SCF are added to hematopoietic stem cells. It must be allowed to act and enter the cell cycle before infection with the virus (Nolta, J., Exp. Hematol, 20: 1065-1071 1992). Since the cell line of the present invention can rotate the cell cycle of hematopoietic stem cells, efficient virus infection is possible. In addition, it has been reported that the co-existence of bone marrow feeder cells during viral infection increases the efficiency of infection (Moore, KA, AB Blood, 79: 1393-1399, 1992). A possible method would be to infect the virus with the coexisting stromal cell line and hematopoietic stem cells, and then kill the stromal cell line by expressing apobutosis-related genes.
  • the composition for gene therapy of the present invention may be a composition containing a buffer, a novel active substance, and the like, in addition to the hematopoietic stem cells and hematopoietic progenitor cells grown by the method of the present invention.
  • BRIEF DESCRIPTION OF THE DRAWINGSFIG. 1 shows the results of colony assembly 4 weeks after the start of co-culture of mouse AGM-derived stoma cell line and CD34-positive human cord blood-derived hematopoietic stem cells. is there.
  • FIG. 2 is a diagram showing the results of colony attachment three weeks after the start of co-culture of a mouse AGM-derived stoma cell line and CD34-positive human cord blood-derived hematopoietic stem cells.
  • FIG. 3 is a graph showing the results of colony attachment 6 weeks after the start of co-culture of a mouse AGM-derived stroma cell line and CD34-positive human cord blood-derived hematopoietic stem cells.
  • FIG. 4 is a graph showing the results of colony atsieties 10 days after the start of co-culture of mouse AGM-derived stromal cell line and mouse bone marrow-derived C-KIT + Sca-1 + Lin_ hematopoietic stem cells. .
  • FIG. 5 is a diagram showing the ratio of donor cells to myeloid cells and lymphoid cells in mouse peripheral blood transplanted with mouse bone marrow-derived hematopoietic stem cells.
  • indicates hematopoietic stem cells co-cultured with AGM-S3
  • FIG. 6 is a diagram showing the ratio of donor cells to myeloid and lymphoid cells in mouse peripheral blood transplanted with mouse fetal hematopoietic stem cells.
  • indicates hematopoietic stem cells co-cultured with AGM-S3, indicates hematopoietic stem cells not co-cultured with AGM-S3.
  • BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described more specifically with reference to examples.
  • Example 1 Hematopoietic stem cells can support proliferation or survival of hematopoietic progenitor cells
  • mice Males and females of C3H / HeNSLc mice (purchased from Japan SLC Co., Ltd.) were bred under SPF (special pathogen-free) environment. One or two females were placed in the same cage with one male overnight, and the following morning, female mice confirmed to be vaginal were transferred to a new cage for rearing. The day when the vagina was confirmed was defined as 0.5 gestation. Mice at 10.5 days of gestation were killed by cervical dislocation, and the fetuses were removed. Separation of AGM is described in Godin et al. (Godin, I., Proc. Natl. Aacd. Sci. USA, 92: 773-777, 1995) and Medvinsky et al.
  • the adherent cells were detached by trypsin treatment (in PBS containing 0.05% trypsin, 0.53 mM EDTA (Gibco BRL), 37. C, 3 to 5 minutes). After washing twice with the medium, the cells were seeded on 6-well culture dishes (Nunc # 15 2795). The next day, cells that did not adhere to the culture dish were removed together with the medium, and fresh medium was added. Two weeks after transfer to a 6-well culture dish, the cells were irradiated with 900 Rad gamma rays to remove endogenous hematopoietic cells.
  • the cells were directly cloned from this culture system by the limiting dilution method, but no cell growth was observed, and the cells could not be cloned. Therefore, the number of cells seeded in one well was increased, and cells were adapted to withstand proliferation from a small number of cells, and then cloned by the limiting dilution method.
  • AGM was excised and cultured, and the culture system, which had been exposed for 2 weeks after ⁇ -irradiation, was treated with trypsin (in PBS containing 0.05% trypsin and 0.53m EDTA). (37 ° C., 3-5 minutes), and the cells were suspended and seeded on a 24-well culture dish at 50 to 100 cells / well. After culturing for 3 weeks, seed cells in a 96-well culture dish (Nunc # 167008) by limiting dilution to a 0.3-cell Z-well, and seed only one cell. The cells that had proliferated from were expanded and cultured. As a result, fibroblast-like cells and cobblestone-like cells were obtained, and the cloning was successful.
  • Human cord blood-derived CD34-positive cell fraction was co-cultured with fibroblast-like cells for two weeks, Examination of the presence or absence of colony forming cells in the culture system revealed no colony forming cells in the co-culture system with fibroblast-like cells. Therefore, the same examination was performed on 7 clones showing a pavement-like morphology, and three clones having the activity of supporting the growth of human hematopoietic stem cells were obtained. These were named AGM-sl, AGM-s2 and AGM-s3. Using these three clones, the ability to support hematopoietic cells was examined.
  • AGM-derived stromal cell line established as described above was examined using human CD34-positive stem cells.
  • Human umbilical cord blood was collected at the time of normal delivery according to the guidelines of the Institute of Medical Science, the University of Tokyo. According to the method of Sui et al. (Sui, X., Pro Natl, Acad. Sci. U.S.A., 92: 2859-2863, 1995), CD34-positive stem cells were fractionated as follows. Human cord blood was added to silica at a volume of 1/10 (IBL) and left at 37 ° C for 30 minutes with thorough mixing every 10 minutes. Thereafter, the cord blood added with silica was subjected to Ficoll / Hypaque (Pharmacia Biotech) specific gravity centrifugation to separate mononuclear cells.
  • the mononuclear cells are reacted with magnetic beads (Dynabeads M-450 CD34) coated with anti-CD34 antibody, and the cells expressing CD34 are bound to the beads.
  • the CD34-positive cell fraction was eluted using another CD34 antibody (DETACHaBEAD CD34; Dynal, Oslo).
  • This cell population was used as a human umbilical cord blood hematopoietic stem cell population.
  • This cell population was confirmed to contain 85 to 95% of CD34-positive cells by FACS (fluorescence activated cell sorting) analysis using a CD34 antibody (using a Senor Resolator manufactured by Ortho Diagnostics Systems).
  • AGM-derived stoma cell lines (AGM-sl, AGM-s2, AGM-s3) established in 1) above, or MS-5, a mouse bone marrow-derived stoma cell line (Itoh, ⁇ ⁇ , Exp. Hematol., 17: 145-153, 1989) was grown in MEM medium containing 10% FCS until it covered the entire bottom of a 24-well culture dish.
  • MS-5 is Kazuhiro Mori, Department of Biology, Faculty of Science, Niigata University The one provided by the professor and maintained in a MEM medium containing 10% FCS was used.
  • AGM- scan Toroma cells were grown sl, AGM- s2, AGM- s3 each 5 x 1 0 3 / Ueru or is the mouse bone marrow-derived stromal cell line MS- 5 to 1 X 10 4
  • the seeds were inoculated into 24 / well / dwell culture dishes and cultured in a MEM medium containing 10% FCS for 2 days, and grown until the cells covered the entire bottom of the culture dish.
  • a MEM medium containing 10% FCS for 2 days, and grown until the cells covered the entire bottom of the culture dish.
  • 1500 or 500 CD34-positive human cord blood-derived hematopoietic stem cells purified in (1) were overlaid and co-cultured in 1 ml of MEM medium containing 10% FCS.
  • the cells cultured in the above co-culture system were appropriately diluted, applied to a 1 ml methylcellulose culture system, and analyzed in triplicate.
  • the methylcellulose culture system consists of 0.9% methylcellulose (Shin-Etsu Chemical), 30% fetal serum (HyClone), and 1% crystallized deionized serum albumin fraction in ⁇ -medium (Flow Laboratories).
  • the colonies that emerged after two weeks of culture were observed under a microscope, and the properties of the emerging cells were analyzed. Specifically, the emerged CFU-G (granulocyte colony-forming unit) ⁇ CFU-M macrophage co ⁇ ony-forming unit) s CFU-GM (granulocyte-macrophage colony-forming unit) N BFU-E (erythroid burst forming unit), CFU-GEMM (granulocyte-erythrocyte megakaryocyte-macrophage colony- for The number of ming units was counted, and the value obtained by dividing the number of colonies that appeared when human CD34-positive cells at the start of co-culture with stromal cells in a methylcellulose culture system was defined as the growth rate.
  • Fig. 1 Fig. 3 Fig. 3 CFU-Gi granulocyte colony-forming unit
  • CF U-M is macrophage colony-forming unit
  • CFU-GM is granulocyte-macrophage colony-forming unit
  • BFU- E is an erythroid burst forming unit
  • CFU-GEM is an abbreviation for granulocyte-erythrocyte- megakaryocyte- macrophage colony-forming unit. Characteristic of these results is that CFU-GEMM, which can differentiate into neutrophils, erythrocytes, macrophages, and megakaryocytes, is remarkably amplified in the co-culture system with AGM-sl and AGM_s3 cells That is.
  • CFU-GEMM is a very undifferentiated cell of the hematopoietic system, and the above results were obtained by co-culturing with a stromal cell line derived from mouse AGM without differentiation of the undifferentiated human hematopoietic cell line. It shows that it is amplified. So far, stromal cell lines established from bone marrow cannot amplify human CFU-GE marauders in this way (Nishi, N., Exp. Hematol. 24: 1312-1321, 1996). Also in this example, as shown in FIGS. 2 and 3, almost no CFU-GEMM was observed after co-culture in MS-5, a stromal cell established from mouse bone marrow.
  • this activity to support human hematopoietic stem cells is considered to be characteristic of the AGM-derived stromal cell line. Furthermore, no increase in CFU-GEMM was observed in AGM-s2 cells. In other words, it is thought that, among the AGM-derived stromal cell lines having the same morphology, cells capable of supporting human hematopoiesis are limited. As mentioned above, the activity of maintaining human hematopoietic stem cells was not observed in the fibroblast-like cells as well, and specific cell types among the cells in the AGM region have the ability to maintain human hematopoietic stem cells. It was revealed.
  • CFU-GM, CFU-G, and CFU-M human hematopoietic progenitor cells could also be expanded.
  • the mouse AGM-derived stroma cell line can support the proliferation of human hematopoietic stem cells and hematopoietic progenitor cells.
  • the proliferation mechanism of hematopoietic stem cells is conserved across species, and the proliferation of human hematopoietic stem cells and hematopoietic progenitor cells can be carried out using AGM-derived stromal cells derived from heterologous organisms other than human. It has been shown that this is possible.
  • Example 2 A GM-derived stromal cell line against mouse bone marrow hematopoietic stem cells
  • mice AGM-derived stromal cell line obtained in Example 1 was confirmed to have a growth supporting activity on mouse bone marrow-derived hematopoietic stem cells.
  • Bone marrow cells in femurs of C57BL / 6 mice (8-week-old, male) (3 SLC, Inc.) were removed and suspended in a MEM medium containing 10% FCS.
  • a standard method Takashi Takatsu, Basic Technology for Immunological Research, Yodosha 1995
  • the mouse bone marrow mononuclear cell fraction was concentrated by specific gravity centrifugation, followed by staining buffer (5% FCS, 0.05% sodium azide).
  • a hematopoietic stem cell fraction was obtained by the following method (Osawa, M., J. Immunol., 156: 3207-3214, 1996).
  • Phycoerythrin-conjugated Sea-1 antibody (Pharmingen), arophycosinine-conjugated anti-c-KIT antibody (Lifetech Oriental), and the following six types of biotin-specific differentiation antigens as differentiation markers (Lin) Antibody, CD45R / B220 (RA-36B2), CD4 (thigh-5), CD8 (53-6.72), Gr-1 (RB6-8C5), TER119 (more than 5 antibodies
  • the body was purchased from Pharmingen, SanDiego) and Mac-1 (Ml / 70. 15.1) (Serotec, O ford, UK) was added to the cell suspension and allowed to react for 20 minutes on ice. .
  • the suspension was suspended in the staining buffer, Texas Red-conjugated streptavidin (Life Technologies) was added, and the plate was left on ice for 20 minutes. After washing twice, the cells were subjected to cell sorting (Becton Dickinson, FACSVantage) to differentiate hematopoietic stem cells (c-KIT + Sca-1 +) positive for differentiation antigen negative, Sea-1 antibody positive and c-KIT positive. Lin—hematopoietic stem cells).
  • FACS was set using bone marrow cells stained only with phycoerythrin-conjugated rat immunoglobulin G2a (Cedarlane), allophycocynin-conjugated rat immunoglobulin G2b (Pharmingen), or Texas red-conjugated streptavidin as a negative control. Then, only cells that were specifically stained with the antibody were collected.
  • AGM_s3 was seeded at 5 ⁇ 10 3 each in a 24-well culture dish, cultured in a MEM medium containing 10% FCS for 2 days, and grown until the cells covered the entire bottom of the culture dish.
  • 100 mouse-bone marrow-derived C-KIT + Sca-1 + Lin-hematopoietic stem cells were overlaid and cultured in 1 ml of MEM medium containing 10% FCS.
  • a further 1 ml of the same medium was added.
  • C-KIT + Sca-1 + Lin collected at the start of co-culture and a part of hematopoietic stem cells and the co-cultured cells were evaluated for hematopoietic stem cells as follows, and the proliferation status of hematopoietic stem cells was analyzed. did.
  • the cells cultured in the above co-culture system were appropriately diluted, applied to a 1 ml methylcellulose culture system, and analyzed in triplicate.
  • the methylcellulose culture system is 0.9 ° / ⁇ on ⁇ -medium (Flow Labo ratories). Methylcellulose (Shin-Etsu Chemical), 30% fetal serum (HyClone), 1% crystallized deionized serum albumin fraction V (Sigma), 0.05 mM 2-mercaptoethanol (Eastman), lOOng / ml mouse SCF, 20ng / ml mouse IL-3, 2units / ml human EP0, lOOng / ml human IL-6, 10ng / ml human G-CSF, 4ng / ml human TP0
  • the test was performed on a culture dish (Falcon # 1008). Observe under a microscope the colonies that have emerged after 10 days of culture, and analyze the properties of the emerging cells. did.
  • Fig. 4 shows the results.
  • the multiplication factor is defined as the number of colony-forming cells contained in 100 mouse C-KIT + Sca_l + Lin_ hematopoietic stem cells at the start of coculture and the number of colonies formed after coculture. did. CFU-GEMM containing erythroid colonies increased remarkably, confirming that mouse hematopoietic stem cells proliferated by co-culture with AGM-derived stroma cell line.
  • mice 8 weeks old, male were transplanted from the tail vein. On day 12 after the transplantation, the spleen was removed from the mouse, and the number of colonies formed in the spleen (CFU-S12: day 12 spleen colony-for ming unit) was calculated.
  • mice transplanted with 100 c-KIT + Sca-1 + Lin-hematopoietic stem cells 3 ⁇ 1 spleen colonies were formed in mice transplanted with 100 c-KIT + Sca-1 + Lin-hematopoietic stem cells.
  • 4 ⁇ 1 spleen colonies were detected in mice transplanted after diluting 1-well cells recovered from the co-culture system to 1/6. Therefore, it is calculated that from the initial 100 C-KIT + Sca-1 + Lin-hematopoietic stem cells, about 24 (4 ⁇ 6) spleen colony forming cells had proliferated. That is, spleen colony forming cells grew about 8-fold by co-culture.
  • human umbilical cord blood cells containing human hematopoietic stem cells were co-cultured with AGM-s3 and transferred to immunodeficient mice. Transplanted.
  • survival after co-culture of pluripotent human hematopoietic stem cells and hematopoietic progenitor cells capable of differentiating into myeloid and lymphoid lineages ⁇ Proliferation was examined.
  • NOD / Shi-scid mice 1 ⁇ 10 6 mononuclear cells from human umbilical cord blood were transplanted into NOD / Shi-scid mice immediately after isolation and after co-culture with AGM-s3 for 4 weeks.
  • the conditions for cell preparation and co-culture were performed in the same manner as in Example 1.
  • Transplantation of cells into NOD / Shi-scid mice is performed by transplanting cells from the tail vein of 8-10 week old NOD / Shi-scid (Central Laboratory Animal Research Institute) irradiated with 300 Rad of gamma rays. went.
  • anti-asialo GM-1 antibody 2 (g / ml) (Wako Pure Chemical Industries) 3001 was administered immediately before transplantation and 11 days after transplantation.
  • bone marrow cells were collected from mice and stained with various anti-human blood cell marker antibodies that specifically recognize human cells, thereby engrafting human blood cells. Bone marrow cells collected from mice into which cells had not been transplanted were stained in the same manner.These staining techniques and the analysis using FACS described below were performed according to the method described in Example 1. The same was done.
  • CD45 which is a pancreatic cell marker
  • FITC-labeled anti-human CD45 antibody Becton Dickinson
  • mouse bone marrow cells after transplantation.
  • FITC-labeled mouse IgGl (Becton Dickinson) was used as a negative control for FACS.
  • no cells that responded to the anti-human CD45 antibody were detected in the bone marrow cells of mice to which the cells had not been transplanted.
  • monocytes immediately after separation, 6.2 ° /. Of the bone marrow cells were human cells.
  • mice In mouse bone marrow transplanted with mononuclear cells co-cultured with AGM-s3, 5.2% of the cells were human cells. This result suggests that hematopoietic stem cells or hematopoietic progenitor cells were included in the transplanted human hematopoietic cells, and thus the appearance of human hematopoietic cells was observed for 5 weeks after transplantation into immunodeficient mice.
  • Cy5-labeled phycoerythrin (PECy5) -labeled CD45 antibody and antibodies against various differentiation antigens that is, phycoerythrin (PE) -labeled anti-CD13, anti-CD33, anti-CD14, and anti-CD14 antibodies.
  • Double staining was performed using the CD19 antibody, FITC-labeled anti-CD10 antibody, or anti-CD34 antibody.
  • the anti-CD34 antibody was purchased from Ioki unoteck, and all other antibodies were purchased from Becton Dickinson.
  • CD45-positive cells were gated using FACS and the expression of these differentiation antigens on human blood cells was analyzed.
  • CD34-positive cells were 8 ° / CD45-positive cells. It was confirmed that they existed at the frequency of The results indicate that the young hematopoietic cells were maintained in the co-culture with AGM-s3 for 4 weeks and maintained the young trait after transplantation into mice. Furthermore, of the CD45-positive cells, the cells positive for the antigens CD13, CD33, and CD14, which are differentiation markers for myeloid cells, were 29% and 38 ° / 38%, respectively. Was 12%. As for lymphoid cells, the presence of CD19-positive cells, a B cell marker, was confirmed at a frequency of 58%.
  • PBS phosphate buffered saline
  • FCS Hyclone
  • ImM EDTA ImM EDTA
  • a biotinylated antibody against the differentiation antigen marker i.e., an anti-CD4 antibody, an anti-CD8 antibody, an anti-CDllb antibody, an anti-Gr-1 antibody, an anti-B220 antibody, and an anti-Ter9 antibody to this cell suspension, and add ice. It was left in the room for 30 minutes. Then, after washing twice with the staining buffer, a magnetic beads (avidin magnet beads, Perseptive) coated with avidin were added, and the mixture was left on ice for 30 minutes. After washing twice with the staining buffer again, magnet beads were collected using a magnet to remove cells expressing the differentiation antigen, and a differentiation antigen-negative cell group (LirT cells) was obtained.
  • a biotinylated antibody against the differentiation antigen marker i.e., an anti-CD4 antibody, an anti-CD8 antibody, an anti-CDllb antibody, an anti-Gr-1 antibody, an anti-B220 antibody, and an anti-Ter9 antibody to this
  • Lin add FITC-labeled anti-CD34 antibody, phycoerythrin (PE) -labeled anti-Sea-1 antibody, Texas Red-labeled avidin, and arophycocynin (APC) -labeled anti-c-KIT antibody to the cells. For 30 minutes. After washing twice with a staining buffer, hematopoietic stem cell fractions (CD34 negative to weakly positive, Sea-1 positive, C-KIT positive cells) were selected using a cell sorter (FA CSVantage, Becton Dickinson).
  • ⁇ MEM medium As a basal medium for co-culturing hematopoietic stem cells and AGM_s3, ⁇ MEM medium (GIBC0) supplemented with 10% FCS (Hyclone) was used. After seeding 5 ⁇ 10 4 AGM-s3 cells in a 48-well plate, the cells were cultured for 3 days. On this AGM-s3, 50 hematopoietic stem cells separated by a cell sorter were added 50 by 50, and cultured for 0 and 1 week.
  • the cells were washed once with PBS (GIBC0), and a trypsin solution (GIBC0) was added. After standing at 37 ° C for 5 minutes, a cell culture medium was added to collect the cells. The recovered cells were added to a 96-well plate, and Lin-cells prepared from the bone marrow of C57BL / 6N (Nippon Steel Slipper) were added to each well as rescue cells to support the short-term survival of irradiated mice. Added four . After suspending the cells in each well, the cells were transplanted from the tail vein into C57BL / 6N (Nippon Cirrus River 1) that had been subjected to lethal dose of X-ray (9.5 Gy).
  • C57BL / 6N Nippon Cirrus River 1
  • Example 5 Examination of survival or proliferation promoting activity on mouse embryonic hematopoietic stem cell fraction
  • the basic procedure of the cell fractionation method described below is described in Seaberg, LA, "Weir's Handbook of Experimental Immunology, 5th edition, Blackwell science. Inc. 1997; Seiji Takatsu, "Basic Technologies for Immune Research,” Yodosha, 1995. All antibodies used for cell separation were purchased from Pharmingen.
  • Lpep mice Male and female C57BL-Ly5. Lpep mice (aged 8 years or older) (bred to Clea Japan) were mated, and fetuses were removed from female mice 14 days after mating. The fetal liver was aseptically separated under a stereomicroscope, and the liver cells were dispersed through a 23G needle and suspended in PBS. This liver cell suspension was overlaid on an equal volume of Lymphoprep (Nycomed), and centrifuged at 1500 rpm, 20 ° C for 10 minutes to collect cells collected at the interface between Lymphoprep and the upper layer. Cell staining buffer
  • PE phycoerythrin
  • APC arophycocynin
  • Texas Red-labeled avidin to the above Lin-cells and leave on ice for 30 minutes did.
  • FACSVantage, Becton a cell sorter (FACSVantage, Becton). (Dickinson) to sort hematopoietic stem cell fractions (Sea-1 positive, c-KIT positive, differentiated antigen negative cells).
  • a basal medium for co-culturing the above hematopoietic stem cells and AGM-S3 a medium obtained by adding 10% FCS (Hyclone) to ⁇ medium (GIBC0) was used. After seeding 5 ⁇ 10 4 AGM-s3 cells in a 48-well plate, the cells were cultured for 3 days. The AGM- s3 on, was subjected to isolated hematopoietic stem cells by 10 3 added 0 and 4 days co-culture by Celso Ichita scratch. After the culture, the cells were washed once with PBS, and a trypsin solution (GIBC0) was added. After incubation at 37 ° C for 5 minutes, a cell culture medium was added to collect the cells.
  • FCS Hyclone
  • the collected cells were added to a 96-well plate, and Sea-1 positive prepared from the bone marrow of C57BL / 6N (Nippon Charles River) as rescue cells to support the short-term survival of irradiated mice.
  • C-KIT-positive, a differentiation antigen-negative cells were added 10 three in each Uniru. After suspending the cells in each well, the cells were transplanted from the tail vein into C57BL / 6N (Nippon Cirrus River) irradiated with a lethal dose of X-ray (9.5 Gy).
  • Ly5.1 antigen positive cells ie, the percentage of blood cells derived from transplanted cells, was determined by flow cytometry. It was calculated by one.
  • the results are shown in FIG. As is evident from this figure, the percentage of cells derived from cultured hematopoietic stem cells in peripheral blood of recipient mice 1 and 2 months after transplantation was higher in AGM-s3 cultured hematopoietic stem cells. -It was found to be equal to or higher than the group (Input) transplanted with hematopoietic stem cells at the start of co-culture with s3. Considering these results, it is considered that the present invention makes it possible to survive or proliferate fetal hematopoietic stem cells or hematopoietic progenitor cells. INDUSTRIAL APPLICABILITY
  • the stromal cell line of the present invention can support the proliferation or survival of hematopoietic stem cells and hematopoietic progenitor cells.
  • hematopoietic stem cells and hematopoietic progenitor cells can be grown.
  • the hematopoietic stem cells and hematopoietic progenitor cells grown by the method of the present invention can be suitably used as a transplant for blood cell transplantation and a target cell for gene therapy.

Abstract

A cell line isolated and established from a mammalian fetal AGM region and capable of supporting the proliferation or survival of hematopoietic stem cells and hematopoietic progenitor cells; grafts containing hematopoietic stem cells or hematopoietic progenitor cells cultured together with the above cell line and thus proliferated; gene therapy compositions containing hematopoietic stem cells or hematopoietic progenitor cells cultured together with the above cell line and thus proliferated and carrying a foreign gene transferred thereinto; a method for supporting the proliferation or survival of hematopoietic stem cells or hematopoietic progenitor cells characterized by culturing cells involving at least hematopoietic stem cells or hematopoietic progenitor cells or fractions thereof together with the above cell line; a method for transplanting hematopoietic stem cells characterized by transplanting hematopoietic stem cells or hematopoietic progenitor cells cultured together with the above cell line and thus proliferated; and a gene therapy method characterized by transferring a foreign gene into hematopoietic stem cells or hematopoietic progenitor cells cultured together with the above cell line and thus proliferated and then transplanting the cells thus carrying the gene transferred thereinto.

Description

明細書  Specification
A GM領域由来ストロ一マ細胞 技術分野 本発明は、 A GM領域から分離、 株化された細胞株、 この細胞株を用いて造血 幹細胞および造血前駆細胞の増殖または生存を支持する方法、 この方法によって 増殖した造血幹細胞または造血前駆細胞を用いた移植片ならびに遺伝子治療用組 成物、 及ぴ移植方法ならびに遺伝子治療法に関する。 背景技術 生体内を流れる成熟血液細胞は、 短期間の寿命 (ヒ トでは赤血球で約 1 2 0日、 血小板で約 7日) しかなく、 成熟血液細胞は造血前駆細胞から毎日分化すること によって、 末梢血の成熟血液細胞の恒常性を保っている。 末梢血に供給される成 熟血液細胞の数は、 ヒ トの場合赤血球で 2 0 0 0億個 Z日、 好中球で 7 0 0億個 日にもなる。 これらの各分化系列の前駆細胞は、 さらに未分化な造血幹細胞か ら分化しながら増殖することで恒常的に末梢血液細胞が枯渴しないようなシステ ムができている。 TECHNICAL FIELD The present invention relates to a cell line isolated and established from the AGM region, a method for supporting the growth or survival of hematopoietic stem cells and hematopoietic progenitor cells using this cell line, The present invention relates to a graft and a composition for gene therapy using hematopoietic stem cells or hematopoietic progenitor cells proliferated by the method, a transplantation method, and a gene therapy method. BACKGROUND ART Mature blood cells flowing in vivo have only a short life span (about 120 days for red blood cells and about 7 days for platelets in humans), and mature blood cells are differentiated daily from hematopoietic progenitor cells. Maintains homeostasis of peripheral blood mature blood cells. The number of mature blood cells supplied to peripheral blood is 200 billion Z-days for red blood cells and 700 billion days for neutrophils in humans. The progenitor cells of each of these differentiation lineages proliferate while differentiating from undifferentiated hematopoietic stem cells to form a system in which peripheral blood cells do not constantly die.
このような血液細胞の分化系については、 マウスを用いた実験系においてその 性質が明らかにされてきた。  The nature of such a blood cell differentiation system has been clarified in an experimental system using mice.
末梢血を流れる成熟血液細胞が、 一個の造血幹細胞に由来することが明らかに されたのは、 Tillと McCullochの研究による(Till, J. E. , Rad. Res. 14 : 213-22 2, 1961)。 放射線を照射して骨髄の造血系を破壊したマウスに他のマウス由来の 骨髄細胞を移植したところ、 脾臓に血液細胞からなるコロニーの形成(CFU- S; spl een colony- forming- unit)が確認された。 このコロニーの数は移植する骨髄細胞 の数に比例すること、 さらに一個の細胞に由来するコロニーの中に多くの血球系 の細胞の存在が確認されることから、 多くの血液細胞種に分化できる多分化能を 持つ造血幹細胞 (多能性幹細胞) が骨髄中に存在することが明らかにされたので ある。 その後、 造血細胞の性質を解析する手段として放射線照射マウスを用いた移植 実験系、 さらには、 in vitro (インビトロ) のコロニー形成法(Bradley, T. R. , J. Exp. Med., 44: 287 - 299, 1966)が開発され、 造血幹細胞および、 造血前駆細 胞の分化に関する知見が蓄積されてきた。 A study by Till and McCulloch that mature blood cells in the peripheral blood were derived from a single hematopoietic stem cell (Till, JE, Rad. Res. 14: 213-22 2, 1961). When bone marrow cells from other mice were transplanted into mice whose bone marrow hematopoietic system was destroyed by irradiation, colony formation of blood cells in spleen (CFU-S; splene colony-forming-unit) was confirmed. Was done. The number of these colonies is proportional to the number of bone marrow cells to be transplanted.Moreover, the presence of many blood cell types in colonies derived from a single cell confirms that they can differentiate into many blood cell types. Hematopoietic stem cells with pluripotency (pluripotent stem cells) were found to be present in the bone marrow. Then, as a means of analyzing the properties of hematopoietic cells, a transplantation experiment system using irradiated mice, and an in vitro (in vitro) colony formation method (Bradley, TR, J. Exp. Med., 44: 287-299) , 1966), and knowledge on the differentiation of hematopoietic stem cells and hematopoietic progenitor cells has been accumulated.
放射線照射マウスを用いた移植実験系は、 最も直接的に造血幹細胞の性質を解 祈する手法である。 放射線照射し造血系に障害を与えたマウス (レシピエント) に、 他のマウス (ドナ一) から分離した骨髄細胞を移植すると、 レシピエントマ ウス中にドナー由来の造血系を再構築することができる。 造血細胞に発現される 各種分化抗原(Spangrude, G. J. , Proc. Natl. Acad. Sci. U. S. A. , 87 : 7433-7437, 1 990; Visser, J. M. W. , 「Flowcytometry in hematologyj, Academic Press, p9_2 9, 1992)を利用して、 あるいは、 造血細胞の大きさ( Jones, R. J. , Nature, 347 : 188-189, 1990)を利用して、 あるいは、 細胞の性質、 状態によって染色性の異 なる蛍光物質等 (Rhl23, Hoechst 33342) (Wolf, N. S., Exp. Hematol. , 21 : 614 - 622, 1993)を用いて、 骨髄細胞を分画し、 上記の移植実験を行うことで、 骨髄細 胞中の造血幹細胞を同定する試みがなされてきた。 これまでの知見から、 造血幹 細胞は一個の細胞を移植しただけでも、 リンパ球系の細胞にも骨髄球系の細胞に も分化することができ、 かつ、 長期にわたり移植先個体の中で造血系を構築する ことができることも明らかにされている (Osawa, M. , Science, 273: 242-245, 1 996)。 一個の細胞が長期にわたり移植先の個体で造血系を再構築できるというこ とから、 造血幹細胞が移植先個体の中で増殖しているものと考えられている。  The transplantation experiment system using irradiated mice is the most direct way to decipher the properties of hematopoietic stem cells. Transplantation of bone marrow cells isolated from another mouse (Donna 1) into a mouse (recipient) that has damaged the hematopoietic system by irradiation may reconstitute the donor-derived hematopoietic system in the recipient mouse. it can. Various differentiation antigens expressed on hematopoietic cells (Spangrude, GJ, Proc. Natl. Acad. Sci. USA, 87: 7433-7437, 1990; Visser, JMW, "Flowcytometry in hematologyj, Academic Press, p9_29, 1992") Using the size of hematopoietic cells (Jones, RJ, Nature, 347: 188-189, 1990), or using a fluorescent substance (Rhl23 , Hoechst 33342) (Wolf, NS, Exp. Hematol., 21: 614-622, 1993) to fractionate bone marrow cells and perform the transplantation experiment described above to obtain hematopoietic stem cells in bone marrow cells. Based on the findings so far, hematopoietic stem cells can differentiate into lymphoid cells and myeloid cells even if only one cell is transplanted, and have a long-term Has been shown to be able to build a hematopoietic system in recipients (Osawa, M., Science, 273: 242-245, 1996) Hematopoietic stem cells proliferate in transplant recipients because one cell can reconstitute the hematopoietic system in the recipient individual for a long time. It is believed that you are.
放射線照射マウスの移植実験系では、 前述の CFU - Sとして検出される造血幹細胞 よりもさらに未分化な造血幹細胞を検出することに成功している(Osawa Μ·, Sci ence, 273: 242-245, 1996)。 移植実験系で確認される長期の再構築能を有する造 血幹細胞と、 CFU-Sを形成する造血幹細胞の間で分化段階のヒエラルキーが存在し、 この 2つの分化段階が可逆的に相互に分化状態が変化できる状況にあるのか、 あ るいは、 造血幹細胞の CFU-Sを形成するレベルへの分化は不可逆的であり、 もはや 長期骨髄再構築能を持つことはできないのかは、 現在のところ不明である。 また、 このようにマウスの実験系で確実に区別できる造血幹細胞のなかでの差異は、 ヒ トの臨床においてどの程度意味があるのか判らない。 つまり、 ヒ トの造血幹細胞 の中にもこのような質的な差が認められたとしても、 臨床の場ではマウスの CFU - Sに相当するヒ ト造血幹細胞を利用できるだけで十分なことも考えられる。 In transplantation experiments of irradiated mice, we have succeeded in detecting undifferentiated hematopoietic stem cells even more than the aforementioned hematopoietic stem cells detected as CFU-S (Osawa Μ ·, Science, 273: 242-245). , 1996). There is a hierarchy of differentiation stages between hematopoietic stem cells that have long-term reconstitution ability, which is confirmed in transplantation experiments, and hematopoietic stem cells that form CFU-S. It is currently unknown whether the condition can change or whether the differentiation of hematopoietic stem cells to CFU-S-forming levels is irreversible and can no longer have long-term bone marrow remodeling capacity It is. In addition, it is not clear to what extent such differences among hematopoietic stem cells that can be reliably distinguished in the mouse experimental system are significant in human clinical practice. In other words, human hematopoietic stem cells Even if such a qualitative difference is observed in, it may be sufficient in clinical practice to utilize human hematopoietic stem cells equivalent to mouse CFU-S.
一方、 近年、 種々のサイ トカインが取得され、 in vitroで形成されるコロニー 形態から、 血液細胞の性質を解析できるようになった (0gawa, M., Blood, 81 : 2 844-2853, 1993)。 造血前駆細胞は多くのサイ ト力インが存在しても、 単一の分化 系列の成熟血液細胞にしか分化することはできないが、 移植マウスで長期の造血 系を構築できる造血幹細胞は、 多くの細胞分化系列に分化することが可能である。 これらの結果から、 造血幹細胞から末梢血を流れる成熟血液細胞までの分化は、 以下のように解釈されている。 造血幹細胞は、 各種分化系列に分化可能な多分化 能を有しており、 かつ、 この多分化能の性質 (分化多能性) を保持したまま自己 複製することが可能である。 造血幹細胞は、 自己複製するとともに一部は分化し、 各種サイ ト力インの作用を受け、 次第に分化できる細胞系列が狭まり、 限られた 細胞種へしか分化できなレ、造血前駆細胞へと分化増殖し、 最終的に成熟血液細胞 になる。  On the other hand, in recent years, various cytokines have been obtained, and it has become possible to analyze the properties of blood cells from the morphology of colonies formed in vitro (0gawa, M., Blood, 81: 2844-2853, 1993). . Although hematopoietic progenitor cells can differentiate only into a single lineage of mature blood cells, despite the presence of many cytoplasmic cells, hematopoietic stem cells that can build a long-term hematopoietic lineage in transplanted mice It is possible to differentiate into a cell lineage. From these results, the differentiation from hematopoietic stem cells to mature blood cells flowing in peripheral blood is interpreted as follows. Hematopoietic stem cells have a pluripotency capable of differentiating into various differentiation lineages, and are capable of self-renewal while maintaining this pluripotency property (pluripotency). Hematopoietic stem cells self-renew and partially differentiate, are affected by various site forces, gradually narrow the lineage of cells that can be differentiated, differentiate into only a limited number of cell types, differentiate into hematopoietic progenitor cells Proliferates and eventually matures into blood cells.
以上のように、 造血幹細胞に関する一連の研究は、 マウスによってなされてき たが、 これは前述の通り移植の実験系によって長期にわたり造血細胞が出現する ことを確認できることによる。 ヒ トでも同様の造血細胞の分化様式が存在すると 考えられているが、 ヒ トではヒ ト同士の移植の実験系を樹立することは不可能で あり、 マウスと同レベルの造血幹細胞の同定は難しい。  As described above, a series of studies on hematopoietic stem cells have been performed using mice, as described above, because it is possible to confirm the long-term appearance of hematopoietic cells by the transplantation experimental system. Although it is thought that a similar hematopoietic cell differentiation mode exists in humans, it is impossible to establish an experimental system for human-to-human transplantation in humans. difficult.
ヒ トで実現できない移植実験系を、 免疫寛容な実験動物を用いて実現しようと いう試みもある。 免疫系が構築されていないヒッジ胎児 (Civin, C. I. , Blood, 88 : 4102-4109, 1996)、 あるいは、 免疫不全マウス(Human Hematopoiesi s in SCI D mice, Springer-Verlag, 1995)に、 ヒ ト造血細胞を移植し、 移植動物の体内で のヒ ト血液細胞の生着状況を観察することで造血幹細胞を同定する試みもなされ ているが、 これらの実験を行うのは容易ではないし、 これらの実験結果の解釈も 種を越えた移植であることから多くの因子を考慮に入れなければならず、 慎重に 行わなければならない。  There are also attempts to realize transplantation experimental systems that cannot be achieved in humans using immunotolerant experimental animals. Hematopoiesis in embryos of an unstructured hedge (Civin, CI, Blood, 88: 4102-4109, 1996) or immunodeficient mice (Human Hematopoiesis in SCID mice, Springer-Verlag, 1995) Attempts have been made to identify hematopoietic stem cells by transplanting the cells and observing the engraftment status of human blood cells in the body of the transplanted animal.However, it is not easy to carry out these experiments. Interpretation of the results is also a transspecies transplant, so many factors must be taken into account and care must be taken.
ヒ ト造血幹細胞を評価するため、 in vitroの評価系が種々作られている(Moore, M. A. S., Blood, 78 : 1-19, 1991)。 そのなかで広く用いられているのは、 in vit roのコロニー形成能について調べることである。 造血幹細胞を種々の血液細胞が 出現できるように種々のサイ トカインを添加した培地にて培養すると、 分化方向 の決定された造血前駆細胞は、 小数あるいは、 単一な分化系列の細胞しか含まな いコロニーを形成するが、 多分化能を持つ造血幹細胞は、 複数の分化系列の血液 細胞を含むコロニーを形成することができる。 特に、 赤血球を含む混合コロニー (CFU-Emix)を形成することが、 ヒ トでは造血幹細胞の指標とされている。 これら の評価系を用いて明らかにされてきたヒ ト造血幹細胞は、 CD34抗原及び C- KIT (c -kit遺伝子産物) を発現している。 また、 これらの造血幹細胞は、 骨髄、 胎児肝 臓、 胎児骨髄、 臍帯血、 抗癌剤あるいはサイ トカインの投与を受けた末梢血液中 に存在が確認されている。 Various in vitro evaluation systems have been developed to evaluate human hematopoietic stem cells (Moore, MAS, Blood, 78: 1-19, 1991). The most widely used of these is in vit The purpose of this study is to examine the colony forming ability of ro. When hematopoietic stem cells are cultured in a medium supplemented with various cytokines so that various blood cells can appear, hematopoietic progenitor cells whose differentiation direction has been determined contain only a small number or cells of a single differentiation lineage. Hematopoietic stem cells that form colonies but have pluripotency are capable of forming colonies containing blood cells of multiple differentiation lineages. In particular, the formation of mixed colonies containing erythrocytes (CFU-Emix) is regarded as an indicator of hematopoietic stem cells in humans. Human hematopoietic stem cells identified using these evaluation systems express CD34 antigen and C-KIT (c-kit gene product). The presence of these hematopoietic stem cells has been confirmed in bone marrow, fetal liver, fetal bone marrow, umbilical cord blood, peripheral blood treated with anticancer drugs or cytokines.
試験管内で造血細胞を長期間維持することが可能になったのは、 Dexterによつ て骨髄の血液細胞以外の線維芽細胞、 前脂肪細胞、 脂肪細胞、 血管内皮細胞、 平 滑筋細胞などのス トローマ細胞 (間質細胞とも称する) と、 骨髄の血液細胞を試 験管内で共培養する系を確立してからである(Dexter, T. M. , J. Cell. Physiol. , 91 : 335-344, 1977) 0 この培養系では、 造血細胞が増殖し、 培地中に浮遊してく る様子を 6ヶ月以上に亘つて観察することができる。 このことから、 骨髄スト口 —マ細胞が造血幹細胞、 造血前駆細胞に好ましい培養環境を提供することで、 造 血幹細胞、 造血前駆細胞が長期にわたり、 生存維持されているものと考えられる。 この Dexter培養系には、 非常に多くの細胞種が存在しており、 どの細胞種が造血 幹細胞の維持に関っているかは明らかでないが、 骨髄中に造血幹細胞の維持に関 与する細胞群が存在するとも考えられる。 したがって、 骨髄より造血幹細胞の増 殖、 維持を支持する細胞を単離してくることも可能かと考えられた。 この点を明 らかにするため、 骨髄細胞から造血系の細胞ではない骨髄間質細胞であるストロ —マ細胞を種々株化し、 その造血幹細胞、 造血前駆細胞の増殖支持について解析 されている。 (Deryugina E. I., Critical Reviews in Immunology, 13 : 115 - 150, 1993) o しかし、 造血幹細胞の増殖維持を可能にする細胞株は取得されていない。 また、 国際特許出願 (TO96/02662, Torok- Storb等)には、 造血前駆細胞を維持増殖 させるストロ一マ細胞株について開示されているが、 これらの骨髄細胞を不死化 した細胞株に造血幹細胞を増殖させる活性は見出せない。 また、 米国特許 5 5 9 9 7 0 3号 (Davis等) には、 ブタ脳微細血管系の血管内 皮細胞を用いた造血幹細胞増殖系について開示されているが、 この培養系には少 なくとも一種類のサイ ト力インを添加する必要があり、 かつ、 サイ ト力インを添 加しないで血管内皮細胞のみを用いた場合の造血幹細胞の増殖については記載が ない。 このようなサイ ト力イン添加による培養系では、 その細胞自体の能力が正 確に評価されているとは考えがたい。 The long-term maintenance of hematopoietic cells in vitro was due to the use of Dexter for fibroblasts other than bone marrow blood cells, preadipocytes, adipocytes, vascular endothelial cells, smooth muscle cells, etc. After establishing a system for co-culturing stromal cells (also called stromal cells) and bone marrow blood cells in vitro (Dexter, TM, J. Cell. Physiol., 91: 335-344). , 1977) 0 In this culture system, hematopoietic cells can be observed to grow and float in the medium for more than 6 months. From this, it is considered that hematopoietic stem cells and hematopoietic progenitor cells are maintained viable for a long period of time by providing a favorable culture environment for hematopoietic stem cells and hematopoietic progenitor cells. This Dexter culture system has a very large number of cell types, and it is not clear which cell types are involved in the maintenance of hematopoietic stem cells. Is also considered to exist. Therefore, it was considered possible to isolate cells that support the proliferation and maintenance of hematopoietic stem cells from bone marrow. To clarify this point, various types of stromal cells, which are bone marrow stromal cells that are not hematopoietic cells, have been established from bone marrow cells, and the growth support of hematopoietic stem cells and hematopoietic progenitor cells has been analyzed. (Deryugina EI, Critical Reviews in Immunology, 13: 115-150, 1993) However, no cell line has been obtained that allows the maintenance of hematopoietic stem cell growth. International patent applications (TO96 / 02662, Torok-Storb, etc.) disclose stromal cell lines that maintain and proliferate hematopoietic progenitor cells. No activity to proliferate is found. Also, US Pat. No. 5,599,703 (Davis et al.) Discloses a hematopoietic stem cell expansion system using porcine brain microvasculature vascular endothelial cells. In both cases, it is necessary to add one kind of site force-in, and there is no description about the proliferation of hematopoietic stem cells when only vascular endothelial cells are used without adding the site force-in. In such a culture system with the addition of site force, it is hard to imagine that the performance of the cells themselves has been accurately evaluated.
一方、 造血組織について発生の段階から検討すると、 先ず、 卵黄嚢で赤血球を 中心とした造血が生じる。 しかし、 卵黄嚢における造血は一過性のものであり、 この領域に存在する造血細胞は他の器官に移行することなくこの場で消滅して行 くものと考えられている。 その後の主要な造血器官は、 肝臓、 骨髄へと移行して 行き、 肝臓以降の造血細胞が、 成体で血液細胞の恒常性を維持するために増殖分 化している造血幹細胞になるものと考えられる(Zon, L. I. , Blood, 86: 2876-28 91, 1995)。 肝臓での造血を担う造血幹細胞は、 肝臓での造血に先立ち A GM (Ao rta - Gonad-Mesonephros)領域で発生するものと考えられる (Tavian, M. Blood, 87 : 66-72 1996; Sanchez, M-J., Immunity, 5 : 513-525, 1996)。 ここで A GM領域 とは、 哺乳類胚の発生初期の大動脈 (Aorta) 、 生殖腺原基 (Gonad) 、 中腎原基 (Mesonephros)の存在する領域をいう。 ヒ トでは胎生 2 0日から 5 0日前後、 マ ウスでは胎生 9日から 1 2日前後に見られる場合が多い。 つまり成人型の造血幹 細胞は A G Mで発生した後、 肝臓、 骨髄へと移行し自己複製するとともに分化し、 全身を循環する末梢血液細胞を供給するものと考えられている。  On the other hand, when hematopoietic tissues are examined from the developmental stage, first, hematopoiesis mainly occurs in the yolk sac, mainly erythrocytes. However, hematopoiesis in the yolk sac is transient, and it is thought that hematopoietic cells in this area disappear in this area without migrating to other organs. Subsequent major hematopoietic organs migrate to the liver and bone marrow, and the hematopoietic cells from the liver are thought to become hematopoietic stem cells that have proliferated and differentiated to maintain adult blood cell homeostasis. (Zon, LI, Blood, 86: 2876-2891, 1995). Hematopoietic stem cells responsible for hematopoiesis in the liver are thought to develop in the AGM (Aorta-Gonad-Mesonephros) region prior to hematopoiesis in the liver (Tavian, M. Blood, 87: 66-72 1996; Sanchez, MJ., Immunity, 5: 513-525, 1996). Here, the AGM region refers to the region where the aorta (Aorta), the gonad primordium (Gonad), and the mesonephros primordium (Mesonephros) are present in the early stage of mammalian embryo development. In humans, it is often found around 20 to 50 days from embryonic age, and in mice it is often found around 9 to 12 days before embryonic age. In other words, it is thought that adult hematopoietic stem cells, after developing in AGM, migrate to the liver and bone marrow, self-renew and differentiate, and supply peripheral blood cells circulating throughout the body.
上記の A GMで成体型の造血幹細胞が出現することを支持する知見が、 近年得 られてきている (Sanchez, M-J. , Immunity, 5 : 513-525, 19%) 。 注目すべきは A GMの器官培養を行うと、 この領域で造血幹細胞が増殖していると推測されるこ とであり (Medvinsky, A., Cell, 86: 897 - 906, 1996 ; Sanchez, M-J. , Immunity, 5 : 513-525, 1996) 、 この領域が造血幹細胞の発生部位であるとともに、 この領域 で造血幹細胞がその数を増すと想定される。 すなわち、 この領域に存在する細胞 が造血幹細胞の分化を調節し、 かつ、 その増殖を支持していると考えられる。 し かしながら、 これらの結果は、 器官培養系あるいは組織を直接分離してきた標品 について評価しているだけで、 これらの種々の細胞種が存在した組織の中から、 造血幹細胞、 造血前駆細胞の増殖を制御する細胞は特定されていなかった。 In recent years, findings supporting the appearance of adult hematopoietic stem cells in AGM have been obtained (Sanchez, MJ., Immunity, 5: 513-525, 19%). It should be noted that when organ culture of AGM is performed, it is estimated that hematopoietic stem cells are proliferating in this area (Medvinsky, A., Cell, 86: 897-906, 1996; Sanchez, MJ). , Immunity, 5: 513-525, 1996), this region is the site of hematopoietic stem cell development, and it is assumed that hematopoietic stem cells increase in number in this region. In other words, it is considered that the cells existing in this region regulate the differentiation of hematopoietic stem cells and support their proliferation. However, these results are based solely on organ cultures or specimens from which tissues were directly isolated. Cells that regulate the proliferation of hematopoietic stem cells and hematopoietic progenitor cells have not been identified.
ところで、 多能性幹細胞の障害で起こる疾患である再生不良性貧血や先天性免 疫不全症では、 治療の一つとして骨髄移植が行われている。 患者に骨髄を移植す ることによって、 血球系細胞の生産能を高めることができる。 また、 白血病に対 する全身 X線療法や大量化学療法は有効な治療法であるが、 これらの治療によつ て骨髄細胞が破壊されてしまうので、 これらの治療と組み合わせて骨髄移植が行 われている。 しかしながら、 骨髄移植には、 ドナーと患者の組織適合抗原が合致 する確率が極めて低いことや、 強力な免疫抑制が必要となること等の問題がある。 また、 移植に用いる骨髄の採取は、 全身麻酔下で腸骨櫛で骨髄穿刺することによ つて行われるため、 ドナーにとっても苦痛や危険が伴う。  By the way, bone marrow transplantation is one of the treatments for aplastic anemia and congenital immunity deficiency, which are diseases caused by pluripotent stem cell disorders. By transplanting bone marrow into patients, the ability to produce blood cells can be increased. In addition, systemic X-ray therapy and high-dose chemotherapy for leukemia are effective treatments, but bone marrow cells are destroyed by these treatments, and bone marrow transplantation is performed in combination with these treatments. ing. However, there are problems with bone marrow transplantation, such as the extremely low probability of match between donor and patient histocompatibility antigens and the need for strong immunosuppression. In addition, since bone marrow used for transplantation is collected by puncturing the bone marrow with a iliac comb under general anesthesia, there is also a pain and danger for the donor.
これに対し、 臍帯血は、 骨髄細胞に比べて移植後の移植片対宿主病 (G V H D ) の頻度が低く、 免疫抑制の必要性も低いため、 幹細胞の供給源として注目されて いる。 しかしながら、 臍帯血から得られる造血幹細胞が、 量的に成人の移植が可 能なだけあるかどうかは現在確かめられていない。 臍帯血中に存在する幹細胞を 増殖させることができれは、 一人の臍帯血を複数のレシピエントに有効に利用す ることができ、 臍帯血の提供者自身が将来白血病化しても自己の臍帯血を使える ようになる。  In contrast, umbilical cord blood has attracted attention as a source of stem cells because it has a lower frequency of graft-versus-host disease (GVHD) and a lower need for immunosuppression than bone marrow cells. However, it is currently unclear whether hematopoietic stem cells obtained from cord blood are quantitatively viable for adult transplantation. If stem cells present in cord blood can be expanded, one cord blood can be effectively used for multiple recipients, and even if the cord blood donor itself becomes leukemia in the future, You can use blood.
また、 近年、 先天性の遺伝子疾患患者に対し、 欠失あるいは、 変異遺伝子を相 補する遺伝子治療の試みがなされている (大橋十也、 実験医学、 1 2 : 3 3 3、 1 9 9 4 ) 。 遺伝子治療では、 卵子や精子のような生殖細胞に遺伝子を導入する ことは禁止されており、 遺伝子を担う細胞として患者体内に永続的に存在する造 血幹細胞を用いることが、 疾患の根本的な治療になると考えられている。 これら の遺伝子治療は、 まだ試験的なレベルにあり、 治療法として確立するためには幾 つかの障害が残されている (Mulligan, R. C. , Science, 260 : 926, 1993)。 最も重 要な課題は、 造血幹細胞に効率良く遺伝子を導入することである。 この点を改善 するためには、 幹細胞を分化させずに細胞周期を回転させること、 さらに、 遺伝 子導入に用いるウィルスベクターを高効率で産生させること、 高効率で感染でき るべクタ一系を開発することに集約することができる。 発明の開示 本発明は、 上記観点からなされたものであり、 骨髄移植や臍帯血移植に代わる 血液細胞移植に用いることのできる造血幹細胞又は造血前駆細胞、 あるいは遺伝 子治療に用いることができる造血幹細胞又は造血前駆細胞を得る手段を提供する ことを主な目的とするものであり、 具体的には、 造血幹細胞及ぴ造血前駆細胞の 増殖または生存を支持し得るストロ一マ細胞株、 このス トローマ細胞株を用いて 造血幹細胞及び造血前駆細胞の増殖または生存を支持する方法、 及びこれらのス ト口一マ細胞株及び方法を応用した新規な技術を提供することを課題とする。 本発明者は、 上記課題を解決するために鋭意検討を行った結果、 造血幹細胞及 び造血前駆細胞を効率良く増殖させる支持細胞の源として A G M領域が好適であ り、 この A GM領域から分離し、 株化したス ト口一マ細胞株が、 造血幹細胞及び 造血前駆細胞を増殖させることができることを見出した。 また、 得られたス ト口 一マ細胞株の用途について検討を行った結果、 本発明のス トローマ細胞株ととも に培養された造血幹細胞または造血前駆細胞は、 血液細胞移植や遺伝子治療の材 料として好適に用いることができることを見出し、 本発明を完成するに至った。 すなわち本発明は、 哺乳動物胎児の A GM領域から分離、 株化され、 かつ、 造 血幹細胞および造血前駆細胞の増殖または生存を支持し得る細胞株である。 また本発明は、 少なく とも一部が多分化能を維持したまま造血幹細胞または造 血前駆細胞を増殖させ得る前記細胞株、 および、 少なく とも一部が細胞周期の回 転を伴うように造血幹細胞を生存させ得る前記細胞株を提供する。 In recent years, attempts have been made for gene therapy to complement deletion or mutation genes in patients with congenital genetic diseases (Juya Ohashi, Experimental Medicine, 12:33 33, 1994). ). In gene therapy, the introduction of genes into germ cells such as eggs and sperm is prohibited, and the use of hematopoietic stem cells, which are permanently present in the patient as the cells carrying the genes, is fundamental to the disease. It is thought to be a cure. These gene therapies are still at the experimental level, with some obstacles left to establish as therapeutics (Mulligan, RC, Science, 260: 926, 1993). The most important issue is to efficiently introduce genes into hematopoietic stem cells. In order to improve this point, it is necessary to rotate the cell cycle without differentiating stem cells, to produce virus vectors used for gene transfer with high efficiency, and to develop a vector system that can transmit with high efficiency. It can be concentrated on development. DISCLOSURE OF THE INVENTION The present invention has been made from the above viewpoint, and is a hematopoietic stem cell or hematopoietic progenitor cell that can be used for blood cell transplantation instead of bone marrow transplantation or umbilical cord blood transplantation, or a hematopoietic stem cell that can be used for gene therapy Another object of the present invention is to provide a means for obtaining hematopoietic progenitor cells, and specifically, a stromal cell line capable of supporting the proliferation or survival of hematopoietic stem cells and hematopoietic progenitor cells, It is an object of the present invention to provide a method for supporting the proliferation or survival of hematopoietic stem cells and hematopoietic progenitor cells by using a cell line, and a novel technique utilizing these closed cell lines and methods. The present inventors have conducted intensive studies in order to solve the above problems, and as a result, the AGM region is suitable as a source of supporting cells for efficiently growing hematopoietic stem cells and hematopoietic progenitor cells. They found that the established Stoma cell line was able to proliferate hematopoietic stem cells and hematopoietic progenitor cells. Further, as a result of examining the use of the obtained stoma cell line, hematopoietic stem cells or hematopoietic progenitor cells cultured together with the stromal cell line of the present invention can be used as a material for blood cell transplantation or gene therapy. The present inventors have found that they can be suitably used as a material, and have completed the present invention. That is, the present invention is a cell line that is isolated and established from the mammalian GM AGM region and that can support the growth or survival of hematopoietic stem cells and hematopoietic progenitor cells. Further, the present invention provides the above-mentioned cell line capable of proliferating hematopoietic stem cells or hematopoietic progenitor cells while at least partially maintaining pluripotency, and hematopoietic stem cells such that at least a part thereof involves cell cycle rotation. Is provided.
本発明はまた、 発癌遺伝子またはアポブト一シス関連遺伝子が導入され、 該遺 伝子によって自己の増殖または生存が調節される前記細胞株、 および、 細胞刺激 因子をコードする遺伝子が導入された前記細胞株を提供する。  The present invention also relates to the above-mentioned cell line in which an oncogene or an apobutosis-related gene is introduced, and the self-proliferation or survival is regulated by the gene; and the above-mentioned cell in which a gene encoding a cell stimulating factor is introduced. Offer stocks.
さらに本発明は、 前記細胞株とともに培養されて増殖した又は生存が維持され た造血幹細胞または造血前駆細胞を含む移植片、 および、 前記細胞株とともに培 養されて増殖し又は生存が維持され、 かつ、 外来遺伝子が導入された造血幹細胞 または造血前駆細胞を含む遺伝子治療用組成物を提供する。  Further, the present invention provides a transplant containing hematopoietic stem cells or hematopoietic progenitor cells cultured and proliferated or maintaining survival by culturing with the cell line, and cultured and proliferated or maintained on survival with the cell line, and A gene therapy composition comprising a hematopoietic stem cell or hematopoietic progenitor cell into which a foreign gene has been introduced.
本発明はまた、 哺乳動物胎児の A GM領域から分離、 株化され、 かつ、 造血幹 細胞および造血前駆細胞の増殖または生存を支持し得る細胞株とともに、 少なく とも造血幹細胞もしくは造血前駆細胞を含む細胞群またはその分画物を培養する ことを特徴とする、 造血幹細胞または造血前駆細胞の増殖または生存を支持する 方法を提供する。 前記細胞群としては、 臍帯血、 胎児肝臓、 骨髄、 胎児骨髄、 ま たは末梢血由来の細胞群が挙げられる。 The present invention also provides an isolated and established mammalian GM AGM region, and a hematopoietic stem cell. Culturing a cell group or a fraction thereof containing at least hematopoietic stem cells or hematopoietic progenitor cells, together with a cell line capable of supporting the proliferation or survival of the cells and hematopoietic progenitor cells. Methods for supporting growth or survival are provided. Examples of the cell group include a cell group derived from umbilical cord blood, fetal liver, bone marrow, fetal bone marrow, or peripheral blood.
また本発明は、 哺乳動物胎児の A GM領域から分離、 株化され、 かつ、 造血幹 細胞および造血前駆細胞の増殖または生存を支持し得る細胞株とともに培養され て増殖した又は生存が維持された造血幹細胞または造血前駆細胞を移植すること を特徴とする造血幹細胞または造血前駆細胞の移植方法を提供する。  In addition, the present invention provides a method of isolating and establishing a cell line that is isolated from the AGM region of a mammalian fetus and that is cultured with a cell line that can support the proliferation or survival of hematopoietic stem cells and hematopoietic progenitor cells, and that has grown or has maintained its survival. The present invention provides a method for transplanting hematopoietic stem cells or hematopoietic progenitor cells, which comprises transplanting hematopoietic stem cells or hematopoietic progenitor cells.
さらに本発明は、 哺乳動物胎児の A G M領域から分離、 株化され、 かつ、 造血 幹細胞および造血前駆細胞の増殖または生存を支持し得る細胞株とともに培養さ れて増殖した又は生存が維持された造血幹細胞または造血前駆細胞に外来遺伝子 を導入し、 該遺伝子導入細胞を移植することを特徴とする遺伝子治療法を提供す る。  Further, the present invention provides a hematopoietic cell isolated and established from an AGM region of a mammalian fetus, which is cultured with a cell line capable of supporting the proliferation or survival of hematopoietic stem cells and hematopoietic progenitor cells, and which is proliferated or whose survival is maintained. It is intended to provide a gene therapy method characterized by introducing a foreign gene into stem cells or hematopoietic progenitor cells, and transplanting the transduced cells.
本明細書において用いる用語につき、 以下の通り定義する。  Terms used in the present specification are defined as follows.
A G M (Aorta- Gonad- Mesonephros)領域とは、 胎児の大動脈、 生殖腺原器、 中 腎原器のことを指す。 A GM領域は、 胎児期での成人型の造血幹細胞が出現する 解剖学的に特定された領域である。  The AGM (Aorta-Gonad-Mesonephros) region refers to the fetal aorta, gonads, and mesonephros. The AGM region is an anatomically identified region where fetal adult hematopoietic stem cells appear.
スト口一マ細胞とは、 造血細胞群の生存、 分化、 増殖を支持する造血細胞以外 の造血組織に存在する細胞群ならぴにこれを構成する細胞をさす。 これらの細胞 には、 線維芽細胞、 前脂肪細胞、 脂肪細胞、 血管内皮細胞、 などの細胞種が認め られる。  A stroma cell is a cell group that exists in a hematopoietic tissue other than hematopoietic cells that supports the survival, differentiation, and proliferation of the hematopoietic cell group, and that constitutes the cell. These cells include cell types such as fibroblasts, preadipocytes, adipocytes, and vascular endothelial cells.
造血幹細胞とは、 血球の全ての分化系列に分化し得る多分化能を有する細胞で あり、 かつ、 その多分化能を維持したまま自己複製することができる細胞である c 現在のヒ トの幹細胞の評価系では、 in vitroのアツセィ系で赤血球を含むコロニ 一 (CFU-Emix) を形成し得る細胞として識別される。 The hematopoietic stem cells are cells having pluripotency to differentiate into all of the lineage of blood cells, and stem cells c current human is a cell capable of self-renewal while maintaining their pluripotency In this evaluation system, cells are identified as cells that can form colonies (CFU-Emix) containing erythrocytes in an in vitro Atsushi system.
造血前駆細胞とは、 単一の血液細胞分化系列あるいは、 全てではない複数の分 化系列に分化できる細胞を称し、 これらの細胞は単一あるいは複数の分化系列の 細胞への分化が可能である。 AGM領域由来ストロ一マ細胞株とは、 AGM領域から分離 ·株化された単一 なストローマ細胞をいう。 Hematopoietic progenitor cells refer to cells that can differentiate into a single hematopoietic lineage or multiple but not all lineages, and these cells can differentiate into single or multiple lineage cells . The AGM region-derived stromal cell line refers to a single stromal cell isolated and established from the AGM region.
尚、 本明細書において、 AGM領域由来スト口一マ細胞株を、 単に 「ストロー マ細胞株」 または 「本発明の細胞株」 ということがある。 以下、 本発明を詳細に説明する。  In the present specification, the AGM region-derived stoma cell line may be simply referred to as “stroma cell line” or “cell line of the present invention”. Hereinafter, the present invention will be described in detail.
本発明のストローマ細胞株は、 哺乳動物胎児の AGM領域から分離、 株化され、 かつ、 造血幹細胞おょぴ造血前駆細胞の増殖または生存を支持し得る細胞株であ る。  The stromal cell line of the present invention is a cell line that is isolated and established from the AGM region of a mammalian fetus and can support the growth or survival of hematopoietic stem cells and hematopoietic progenitor cells.
本発明の細胞株を分離、 株化する方法を、 以下に例示する。  The method for isolating and establishing the cell line of the present invention is exemplified below.
マウスの雌雄を S P F (specific pathogen- free)の環境のもとで飼育し、 雌を 雄と一晩、 同じケージにいれ、 翌朝、 膣栓の存在が確認された雌マウスを新しい ケージに移して飼育する。 膣栓の確認された日を、 懐胎 0. 5日とし、 懐胎 8〜 13日、 好ましくは 10. 5日目のマウスから胎児を摘出する。 胎児から AGM 領域を分離する方法は、 Godin等(Godin, I. , Proc. Natl. Acad. Sci.U. S. A., 92:7 73-777, 1997)、 Medvinsky等(Medvinsky, A. L. , Blood, 87 : 557- 565, 1996)に記 載されている。 すなわち、 胎児が浸る程度にリン酸緩衝生理食塩水を入れた培養 皿に胎児を入れ、 実体顕微鏡下で、 AGM領域を他の領域を含まないように切除 し、 新たな培養皿に移す。  Male and female mice are bred under SPF (specific pathogen-free) environment, females are placed in the same cage with males overnight, and the following morning, female mice confirmed to have a vaginal plug are transferred to new cages. Breed. The day when the vaginal plug is confirmed is defined as 0.5 day of gestation, and the fetus is removed from the mouse on day 8 to 13 of gestation, preferably at day 10.5. Methods for isolating the AGM region from the fetus are described in Godin et al. (Godin, I., Proc. Natl. Acad. Sci. USA, 92: 773-777, 1997), Medvinsky et al. (Medvinsky, AL, Blood, 87: 557). -565, 1996). That is, the fetus is placed in a culture dish filled with phosphate buffered saline so that the fetus is immersed, and the AGM region is excised under a stereoscopic microscope so as not to include other regions, and transferred to a new culture dish.
上記のようにして得られた AGM領域に、 培地、 例えば 10% FCS (ゥシ胎児血清) を含む MEM培地を一滴加え、 37°C、 5% CO 2, 湿度 100%の条件下でー晚培養 する。 AGM領域の細胞が、 培養皿に付着したところで、 さらに、 培地を添加し て培養を継続し、 AGM領域組織片の周辺にストローマ細胞を出現させる。 さら に 1週間程度培養を継続した後、 接着細胞をトリプシン処理によって剥がし、 培 地で洗浄し、 培養皿に播種する。 翌日、 培養皿に付着しなかった細胞を培地とと もに除去し、 新たに新鮮な培地を添加する。 トリプシン処理後の培養開始から 2 週間後に、 内在する造血細胞を除去するため 900rad程度の γ線を照射する。 その 2週間後、 培養系をトリプシン処理して細胞を懸濁し、 10〜20, 000細胞 ウエル、 好ましくは 50〜100細胞/ゥヱルとなるように 24ゥヱル培養皿に 播種する。 その際、 播種する細胞数を少くし、 直接限界希釈法によるクロ一ニン グを行おうとすると、 細胞は増殖しないので、 一つのゥエルに播種する細胞数を 多く し、 少ない細胞数からの増殖に耐えられるように細胞を馴化した後、 限界希 釈法によるクローニングを行うことが好ましい。 続いて、 3週間程度培養を継続 した後、 限界希釈法により、 0 . 0 5〜1細胞ノウエル、 好ましくは 0 . 3細胞 Zゥ ルとなるように 9 6ゥエル培養皿に細胞を播種し、 一個の細胞のみが播種 されているゥエルから増殖してくる細胞を拡大培養する。 To the AGM region obtained as described above, add a drop of a medium, for example, a MEM medium containing 10% FCS (male fetal serum) at 37 ° C, 5% CO 2 and 100% humidity. Incubate. When the cells in the AGM region have adhered to the culture dish, the culture is continued by further adding a medium, and stromal cells appear around the tissue piece of the AGM region. After further culturing for about one week, the adherent cells are detached by trypsin treatment, washed in the medium, and seeded on a culture dish. On the next day, remove the cells that have not adhered to the culture dish together with the medium, and add fresh medium. Two weeks after the start of culture after trypsinization, γ- rays of about 900 rad are applied to remove endogenous hematopoietic cells. Two weeks later, the culture system is trypsinized to suspend the cells, and placed in a 24-well culture dish at 10 to 20,000 cell wells, preferably 50 to 100 cells / well. Sowing. At this time, if the number of cells to be seeded is reduced and the direct limiting dilution dilution is attempted, the cells do not proliferate, so the number of cells seeded in one well is increased, and After acclimating the cells so that they can be tolerated, it is preferable to carry out cloning by the limiting dilution method. Subsequently, after culturing for about 3 weeks, the cells were seeded in a 96-well culture dish by limiting dilution so that the cells became 0.05-1 cell Nowell, preferably 0.3 cells Z cells. Expand the cells growing from the well where only one cell has been seeded.
上記のようにして得られた細胞の中から、 造血幹細胞または造血前駆細胞の増 殖、 生存を支持することのできる細胞を選択することによって、 本発明のス ト口 —マ細胞株が得られる。 このような細胞の選択は、 候補株と造血幹細胞または造 血前駆細胞とを共培養した後、 造血幹細胞または造血前駆細胞の増殖の程度を評 価することによって行うことができる。 造血幹細胞または造血前駆細胞の増殖の 程度は、 共培養開始時と共培養後の細胞をそれぞれサイ トカイン存在下で培養し、 血液細胞のコロニー数を比較することによって行われる。  By selecting cells capable of supporting the proliferation and survival of hematopoietic stem cells or hematopoietic progenitor cells from the cells obtained as described above, the cell strain of the present invention can be obtained. . Such cell selection can be performed by co-culturing the candidate strain with hematopoietic stem cells or hematopoietic progenitor cells, and then evaluating the degree of proliferation of hematopoietic stem cells or hematopoietic progenitor cells. The degree of proliferation of hematopoietic stem cells or hematopoietic progenitor cells is determined by culturing the cells at the start of coculture and after coculture in the presence of cytokines, and comparing the number of blood cell colonies.
尚、 上記においては、 マウスの A GM領域からス ト口一マ細胞株を樹立する方 法を具体的に説明したが、 ストロ一マ細胞株の樹立に用いる A GM領域はマウス 由来に限られるものではなく、 他の哺乳動物、 例えば、 ブタ、 ヒッジ、 ヒ ト等の A GM領域でもよい。 A GM領域での造血幹細胞の出現は、 ヒ ト (Tavian, M. , Blood, 87 : 67-72, 1996) 、 マウス (Sanchez, M-J., Immunity, 5: 513-525, 199 6) ともに確認されており、 哺乳類の発生過程で共通の機構が存在すると考えられ る。 後述の実施例 1に示すように、 マウスの A GM領域由来のスト口一マ細胞株 を用いてヒ ト臍帯血由来の造血幹細胞を増殖させることができることから、 マウ ス以外の、 ヒ トその他の哺乳動物の A GM領域から、 実施例で得られたス ト口一 マ細胞株と同等のス トローマ細胞を分離し、 同等な利用が可能であることが強く 支持される。  In the above description, a method for establishing a stoma cell line from a mouse AGM region was specifically described.However, the AGM region used for establishing a stoma cell line is limited to mouse origin. Instead, it may be another mammal, for example, an AGM region such as pig, sheep, and human. A The appearance of hematopoietic stem cells in the GM region was confirmed in both human (Tavian, M., Blood, 87: 67-72, 1996) and mouse (Sanchez, MJ., Immunity, 5: 513-525, 1996). Therefore, it is considered that a common mechanism exists in the developmental process of mammals. As shown in Example 1 below, human umbilical cord blood-derived hematopoietic stem cells can be expanded using a mouse AGM region-derived stroma cell line. It is strongly supported that stromal cells equivalent to the stomal cell line obtained in the Examples can be isolated from the mammalian GM region of the present invention, and that they can be used equally.
上記のようにして、 A GM領域から単一なス トローマ細胞を分離し、 株化する ことができる。 このス トローマ細胞株は、 造血幹細胞及び造血前駆細胞の増殖、 生存を支持することができる。 すなわち、 ス トローマ細胞株と、 造血幹細胞もし くは造血前駆細胞またはこれらの少なくともいずれかを含む造血細胞群とを共培 養すると、 造血幹細胞は細胞周期を回転し、 一部は幹細胞のまま自己複製し、 一 部は造血前駆細胞へと分化しながら増殖し、 造血幹細胞はこの培養系で維持され る。 また、 上記共培養によって、 造血前駆細胞は、 単一あるいは複数の分化系列 の細胞に分化しながら増殖する。 As described above, a single stromal cell can be isolated from the AGM region and established. This stromal cell line can support the proliferation and survival of hematopoietic stem cells and hematopoietic progenitor cells. That is, a stromal cell line and a hematopoietic stem cell, a hematopoietic progenitor cell, or a hematopoietic cell group containing at least one of them are co-cultured. When cultured, hematopoietic stem cells rotate through the cell cycle, partly renew themselves as stem cells, partly proliferate while differentiating into hematopoietic progenitor cells, and hematopoietic stem cells are maintained in this culture system. In addition, by the co-culture, hematopoietic progenitor cells proliferate while differentiating into cells of a single or multiple lineages.
本発明のストローマ細胞株に、 発癌遺伝子またはアポブト一シス関連遺伝子を 導入し、 得られる遺伝子導入株を用いて造血幹細胞および造血前駆細胞とともに 培養すると、 ストロ一マ細胞株の増殖または生存を調節することが可能となる。 ストローマ細胞株の生育を調節できれば、 ストロ一マ細胞株を効率良く増やすこ とができ、 かつ、 その寿命を延長させることも可能と考えられる。 一般に発癌遺 伝子は、 増殖に関して有利に作用すると考えられ、 これらの遺伝子を導入するこ とで AGM由来ストロ一マ細胞の増殖速度を調節したり、 寿命を延長することができ る (Roecklein, B. A. , Blood, 85 : 997—1005, 1995; Whitehead, R. H. , Proc. Nat l. Acad. Sci. U. S. A. 90 ; 587—591, 1993)。  By introducing an oncogene or an apobutosis-related gene into the stromal cell line of the present invention, and culturing the resulting gene-introduced cell line with hematopoietic stem cells and hematopoietic progenitor cells, the proliferation or survival of the stromal cell line is regulated. It becomes possible. If the growth of stromal cell lines could be regulated, it would be possible to efficiently increase the number of stromal cell lines and extend their lifespan. In general, oncogenes are thought to have an advantageous effect on proliferation. By introducing these genes, it is possible to regulate the growth rate of AGM-derived stromal cells and extend their life span (Roecklein, BA, Blood, 85: 997-1005, 1995; Whitehead, RH, Proc. Natl. Acad. Sci. USA 90; 587-591, 1993).
逆に、 ストロ一マ細胞株を用いた共培養系で増幅した造血細胞を体内に移植す る場合等には、 ストローマ細胞株は体内で悪影響を及ぼす可能性があり、 体内に 持ち込むことは避けることが好ましい。 ストロ一マ細胞株の生存を調節できれば、 造血細胞の培養後にストロ一マ細胞株のみを死に至らしめ、 除去することも可能 と考えられる。 そこで、 細胞死を誘導するような遺伝子を、 外部からの刺激で発 現の調節ができるような形にしておき、 ス ト口一マ細胞株に導入しその増殖、 生 存を人為的に調節可能とするような系を作ることもできる。  Conversely, when transplanting hematopoietic cells amplified in a co-culture system using a stromal cell line into the body, etc., the stromal cell line may have an adverse effect in the body, and avoid bringing it into the body. Is preferred. If the survival of stromal cell lines could be regulated, it would be possible to kill and eliminate only stromal cell lines after hematopoietic cell culture. Therefore, a gene that induces cell death should be in a form that allows its expression to be regulated by an external stimulus, and introduced into a stoma cell line to artificially regulate its growth and viability. You can also create a system that makes it possible.
発癌遺伝子としては、 ヒ トパピ口一マウィルス遺伝子 (Halbert, C. L. , J. Vir ol., 65 : 473, 1991; Ryan, M. J. , Kidney Int 45 : 48, 1994) )、 SV40遺伝子(Chou, The oncogenes include the human papilloma virus gene (Halbert, C.L., J. Virol., 65: 473, 1991; Ryan, M.J., Kidney Int 45:48, 1994)) and the SV40 gene (Chou,
J. Y., Proc. Natl. Acad. , Sci. USA, 75 : 1854-1858, 1978; Chou, J. Y. , J.Natl. Acad., Sci. USA, 75: 1854-1858, 1978; Chou, J.Y., J.
Cell Biol. , 89 : 216-222, 1981)が、 ァポプトーシス関連遺伝子としては、 デス 領域を持つ受容体遺伝子、 例えば、 Fas ( Itoh, N. , Cell, 66 : 233-243, 1991) , TNFreceptor type II (Loetscher, H., Cell 61 (2) : 351-359 , 1990) , Death r eceptor 3 ( Kitoson, J., Nature, 384 : 372-375, 1996) , Death receptor 4 ( P an, G., Science, 276 : 111-113, 1997) , や、 上記受容体の信号伝達系に属するタ ンパク質分解酵素である ICE (IL- 1 β converting enzyme) (Cerretti, D. P. , Sc ience 256 : 97- 100, 1992), さらには、 Caspase Family ( Patel, T, FASEB. J. , 10 : 587-597, 1996)、 例えば CPP32 (Fernandes- Alnemri, T, J. Biol. Chem., 269 : 30761-30764, 1994)などが挙げられる。 また、 これらの遺伝子の発現を人為的に 制御するには、 テトラサイクリンを用いた発現誘導系 (Manfred, G., Proc. Nat 1. Acad., Sci. USA, 89 : 5547-5551, 1992)が利用できる。 これらの遺伝子をス ト ローマ細胞株に導入するには、 宿主にス トローマ細胞株を用いる以外は、 通常動 物細胞への遺伝子導入に用いられる方法、 例えば、 モロニ一マウス白血病ウィル ス等のレトロウイルスベクタ一、 アデノウイルスベクタ一、 アデノ随伴ウィルスCell Biol., 89: 216-222, 1981), but as apoptosis-related genes, receptor genes having a death region, for example, Fas (Itoh, N., Cell, 66: 233-243, 1991), TNFreceptor type II (Loetscher, H., Cell 61 (2): 351-359, 1990), Death receptor 3 (Kitoson, J., Nature, 384: 372-375, 1996), Death receptor 4 (Pan, G. ICE (IL-1β converting enzyme) (Cerretti, DP, Sc), a proteolytic enzyme belonging to the signal transduction system of the receptor. ience 256: 97-100, 1992), and Caspase Family (Patel, T, FASEB. J., 10: 587-597, 1996), for example, CPP32 (Fernandes- Alnemri, T, J. Biol. Chem., 269: 30761-30764, 1994). To artificially control the expression of these genes, an expression induction system using tetracycline (Manfred, G., Proc. Nat 1. Acad., Sci. USA, 89: 5547-5551, 1992) is used. Available. In order to introduce these genes into stromal cell lines, except for using stromal cell lines as a host, methods generally used for gene transfer into animal cells, for example, retrospective methods such as Moroni murine leukemia virus, are used. Virus vector, adenovirus vector, adeno-associated virus
(AAV) ベクタ一 (Kotin, R. M. Hum Gene Ther 5: 793, 1994) 、 単純ヘルぺスゥ ィルスべクタ一等のウィルス由来の動物細胞用べクタ一を用いる方法、 リン酸カ ルシゥム共沈法、 DEAE -デキス トラン法、 エレク ト口ポレーシヨン法、 リボソーム 法、 リポフエクシヨン法、 マイクロインジェクション法等を用いることができる。 アポブト一シス関連遺伝子を導入する際に、 該遺伝子に加えて薬剤耐性遺伝子等 のマ一カー遺伝子を用いると、 目的遺伝子が導入されたストローマ細胞株の選択 が容易となる。 (AAV) Vector (Kotin, RM Hum Gene Ther 5: 793, 1994), a method using a virus-derived animal cell vector such as a simple herpes virus vector, a calcium phosphate coprecipitation method, The DEAE-dextran method, the electoral poration method, the ribosome method, the lipofection method, the microinjection method and the like can be used. When a marker gene such as a drug resistance gene is used in addition to the apobutosis-related gene, the selection of a stromal cell line into which the target gene has been introduced is facilitated.
本発明の造血幹細胞または造血前駆細胞の増殖または生存を支持する方法は、 上記ストローマ細胞株の持つ性質を利用したものであり、 ストローマ細胞株とと もに、 少なく とも造血幹細胞もしくは造血前駆細胞を含む細胞群またはその分画 物を培養することかちなる。 ここで細胞群とは、 造血幹細胞または造血前駆細胞 のいずれか一方が単離されたものであってもよく、 これらの両方であってもよレ、。 また、 造血幹細胞または造血前駆細胞の少なく とも一方を含み、 さらに他の造血 細胞を含んでいてもよい。 また、 分画物とは造血幹細胞または造血前駆細胞を含 む細胞群から分画された造血幹細胞または造血前駆細胞を含む分画をいう。 以下、 このような細胞群またはその分画物を、 単に造血幹細胞および造血前駆細胞とい うことがある。  The method of the present invention for supporting the growth or survival of hematopoietic stem cells or hematopoietic progenitor cells utilizes the properties of the above-mentioned stromal cell line, and, together with the stromal cell line, at least hematopoietic stem cells or hematopoietic progenitor cells. Culturing the cell group containing the cells or the fraction thereof. Here, the cell group may be one in which one of hematopoietic stem cells or hematopoietic progenitor cells is isolated, or both of them. It may also contain at least one of hematopoietic stem cells or hematopoietic progenitor cells, and may further contain other hematopoietic cells. Further, the fraction refers to a fraction containing hematopoietic stem cells or hematopoietic progenitor cells, which is fractionated from a cell group containing hematopoietic stem cells or hematopoietic progenitor cells. Hereinafter, such a cell group or a fraction thereof may be simply referred to as hematopoietic stem cells and hematopoietic progenitor cells.
本発明の方法における造血幹細胞および造血前駆細胞の採取源としては、 ヒ ト 及びマウス等の哺乳動物の胎児肝臓、 骨髄、 胎児骨髄、 末梢血、 サイ トカインぉ よぴ Zまたは抗癌剤の投与によって幹細胞を動員した末梢血、 及び臍帯血等が挙 げられ、 造血幹細胞を含む組織であればいずれであってもよい。 ストロ一マ細胞株と造血幹細胞または造血前駆細胞を培養するにあたっては、 いわゆる培養用のシャーレ、 フラスコを用いた培養法が可能であるが、 培地組成、 pHなどを機械的に制御し、 高密度での培養が可能なバイオリアクタ一によって、 その培養系を改善することもできる(Schwartz, Proc. Natl. Acad. Sci. U. S. A. , 88: 6760, 1991; Roller, M. R., Bio/Technology, 11 : 358, 1993; Roller, M. R. , Bloo d, 82: 378, 1993; Palsson, B. 0., Bio/Technology, 11 : 368, 1993)。 As a source of hematopoietic stem cells and hematopoietic progenitor cells in the method of the present invention, stem cells can be obtained by administering fetal liver, bone marrow, fetal bone marrow, peripheral blood, cytokine ぉ y ぴ Z or an anticancer agent of a mammal such as a human or a mouse. The mobilized peripheral blood, umbilical cord blood and the like can be mentioned, and any tissue may be used as long as it contains hematopoietic stem cells. When culturing a stromal cell line and hematopoietic stem cells or hematopoietic progenitor cells, a culture method using a so-called culture dish or flask is possible, but the medium composition, pH, etc. are controlled mechanically to achieve high density. The culture system can also be improved by a bioreactor capable of culturing in E. coli (Schwartz, Proc. Natl. Acad. Sci. USA, 88: 6760, 1991; Roller, MR, Bio / Technology, 11: 358). Roller, MR, Blood, 82: 378, 1993; Palsson, B. 0., Bio / Technology, 11: 368, 1993).
培養に用いる培地としては、 造血幹細胞または造血前駆細胞の増殖、 生存が害 されない限り特に制限されないが、 例えば SF - 02培地 (三光純薬) 、 Opti-MEM培地 (GIBC0 BRL) 、 MEM培地 (GIBC0 BRL) 、 IMDM培地 (GIBC0 BRL) 、 PRMI1640培地 (GIBC0 BRL) 、 が好ましいものとして挙げられる。 培養温度は、 通常 2 5〜3 9 °C、 好ましくは 3 3〜3 9 °Cである。 また、 培地に添加する物質としては、 ゥシ 胎児血清、 ヒ ト血清、 ゥマ血清、 インシュリン、 トランスフェリン、 ラク トフエ リン、 エタノールァミン、 亜セレン酸ナトリ ウム、 モノチォグリセロール、 2— メルカプトエタノール、 ゥシ血清アルブミン、 ピルビン酸ナトリウム、 ポリェチ レングリコール、 各種ビタミン、 各種アミノ酸、 各種増殖因子、 好ましくは EGF (上皮増殖因子) 、 PDGF (血小板由来増殖因子) 、 bFGF (塩基性線維芽細胞増殖 因子) 、 O 2は、 通常、 4〜6 %であり、 5 %が好ましい。 The medium used for the culture is not particularly limited as long as the growth and survival of hematopoietic stem cells or hematopoietic progenitor cells are not impaired. For example, SF-02 medium (Sanko Junyaku), Opti-MEM medium (GIBC0 BRL), MEM medium (GIBC0 BRL), IMDM medium (GIBC0 BRL) and PRMI1640 medium (GIBC0 BRL) are preferred. The culture temperature is usually from 25 to 39 ° C, preferably from 33 to 39 ° C. Materials added to the culture medium include fetal calf serum, human serum, calf serum, insulin, transferrin, lactoferrin, ethanolamine, sodium selenite, monothioglycerol, 2-mercaptoethanol,ゥ Serum albumin, sodium pyruvate, polyethylene glycol, various vitamins, various amino acids, various growth factors, preferably EGF (epidermal growth factor), PDGF (platelet-derived growth factor), bFGF (basic fibroblast growth factor) , O 2 is typically 4-6%, and preferably 5%.
上述したように、 本発明のス ト口一マ細胞株は、 造血幹細胞及び造血前駆細胞 の増殖、 生存の支持に利用できるが、 細胞刺激因子を共培養系に添加することに よって、 より有効に増殖、 生存を支持することができる。 このような細胞刺激因 子は、 ス ト口一マ細胞株が造血幹細胞または造血前駆細胞の増殖、 生存を支持す るのを妨げないものであれば、 特に制限されないが、 具体的には、 SCF (幹細胞成 長因子(stem cell factor) ) 、 IL- 3 (インタ一ロイキン— 3 )、 GM-CSF (顆粒球マ クロファ一 1 · コロニー刺激因子 ^granulocyte/macrophage colony-stimulating factor) ) 、 IL- 6 (インタ一ロイキン— 6 ) 、 TP0 (トロンボポェチン)、 G-CSF (顆粒球コロニー刺激因子 ^granulocyte colony-stimulating factor) ^ TGF- β (トランスフォーミング成長因子— /3 ) 、 MIP-1 a (Davateli s, G., J. Exp. Me d. 167 : 1939-1944, 1988)等のサイ ト力インに代表される増殖刺激因子、 EP0 (ェ リスロポェチン) のような造血ホルモン、 Wnt (Thimoth, A. W. , Blood, 89: 3624 -3635, 1997)遺伝子産物のような分化増殖調節因子、 あるいは Notch/Delta (Moore K. A. , Proc. Natl. Acad. Sci. U. S. A. , 94 : 4011-4016, 1997)系の遺伝子産物のよ うな発生調節因子等が挙げられる。 As described above, the closed cell line of the present invention can be used to support the growth and survival of hematopoietic stem cells and hematopoietic progenitor cells, but is more effective by adding a cell stimulating factor to the co-culture system. Proliferation and survival can be supported. Such a cell stimulating factor is not particularly limited as long as it does not prevent the Stoma cell line from supporting the growth and survival of hematopoietic stem cells or hematopoietic progenitor cells. SCF (stem cell factor), IL-3 (interleukin-3), GM-CSF (granulocyte / macrophage colony-stimulating factor), IL -6 (interleukin-6), TP0 (thrombopoetin), G-CSF (granulocyte colony-stimulating factor) ^ TGF-β (transforming growth factor-3), MIP-1a ( Davatelis, G., J. Exp. Med. 167: 1939-1944, 1988) and other growth stimulating factors, hematopoietic hormones such as EP0 (erythropoietin), Wnt (Thimoth, AW, Blood, 89: 3624 -3635, 1997) Differentiation and growth regulators such as gene products, or developmental regulation such as Notch / Delta (Moore KA, Proc. Natl. Acad. Sci. USA, 94: 4011-4016, 1997) gene products Factors and the like.
また、 上記のような細胞刺激因子をコ一ドする遺伝子をス トローマ細胞株に、 該細胞内で前記遺伝子が発現できるような形で導入し、 得られる遺伝子導入株を 用いることによつても、 前記培養系を改善することができる。  Alternatively, a gene that encodes a cell stimulating factor as described above is introduced into a stromal cell line in such a manner that the gene can be expressed in the cell, and the resulting gene-introduced cell is used. The culture system can be improved.
さらに、 ス ト口一マ細胞株を培養して得られる培養上清に、 造血幹細胞または 造血前駆細胞の増殖、 生存の支持に寄与する活性がみられる場合には、 その培養 上清のみを造血幹細胞または造血前駆細胞の培養に付することも可能である。 さ らに、 ス トローマ細胞と造血幹細胞または造血前駆細胞を、 細胞は透過させない 力 これらの造血細胞の増殖、 生存の支持に関与する因子は透過させることがで きるような多孔質の膜で分離して培養することも可能である。 その際、 造血細胞 の生存増殖に有利になるように、 前述したような種々の細胞刺激因子を培養系に 添加することも可能である(Verfaillie, C. M., Blood, 84: 1442-1449, 1994)。 上記で述べた細胞刺激因子、 細胞刺激因子をコードする遺伝子、 発癌遺伝子、 アポプト一シス関連遺伝子の取得、 ならびに細胞への添加、 細胞への遺伝子の導 入方法、 細胞の培養方法は、 当業者に周知の方法により行われる。 (Robin Calla rd et al, The Cytokine Facts Book, Academic Press Inc. , 1994; 村松正実、 遺伝子工学ハンドプック、 羊土社、 1991 ; 黒木登志夫、 細胞工学ハンドブック、 羊土社 1992 ; 黒木登志夫、 培養細胞実験法、 羊土社 1995を参照されたい。 ) 上記のようにして、 本発明の細胞株とともに培養されて増殖した造血幹細胞ま たは造血前駆細胞は、 従来の骨髄移植や臍帯血移植に代わる血液細胞移植用の移 植片として用いることができる。 造血幹細胞の移植は、 移植片が半永久的に生着 させられることから、 従来の血液細胞移植治療を改善することができる。 従来、 骨髄移植には、 大量の骨髄の採取が必要であつたが、 本発明によれば、 少量の骨 髄採取で済ますことができる。 例えば、 自己免疫疾患等の骨髄移植によってその 改善の見られる疾患に対しては、 自己あるいは非自己の幹細胞を増殖させるに際 し、 本発明による幹細胞増殖技術を利用することができる。  Furthermore, if the culture supernatant obtained by culturing the Stoma cell line shows activity that contributes to the growth and survival of hematopoietic stem cells or hematopoietic progenitor cells, only the culture supernatant is used for hematopoiesis. Stem cells or hematopoietic progenitor cells can be subjected to culture. In addition, stromal cells and hematopoietic stem cells or hematopoietic progenitor cells are separated by a porous membrane that allows the penetration of factors involved in the growth and survival of these hematopoietic cells. It is also possible to culture. At this time, it is also possible to add various cell stimulating factors as described above to the culture system in order to favor the survival and proliferation of hematopoietic cells (Verfaillie, CM, Blood, 84: 1442-1449, 1994). . The above-mentioned cell stimulating factor, a gene encoding a cell stimulating factor, an oncogene, an apoptosis-related gene, and addition to a cell, a method of introducing a gene into a cell, and a method of culturing a cell are known to those skilled in the art. This is performed by a known method. (Robin Calla rd et al, The Cytokine Facts Book, Academic Press Inc., 1994; Masami Muramatsu, Handbook of Genetic Engineering, Yodosha, 1991; Toshio Kuroki, Handbook of Cell Engineering, Yodosha 1992; Toshio Kuroki, Cell Culture Experiment See Hedosha 1995.) As described above, hematopoietic stem cells or hematopoietic progenitor cells grown and cultured with the cell line of the present invention can be used as a blood substitute for conventional bone marrow transplantation or cord blood transplantation. It can be used as a transplant for cell transplantation. Hematopoietic stem cell transplantation can improve conventional blood cell transplantation treatments because the transplant is semi-permanently engrafted. Conventionally, a large amount of bone marrow was collected for bone marrow transplantation, but according to the present invention, a small amount of bone marrow can be collected. For example, for a disease such as an autoimmune disease whose improvement is seen by bone marrow transplantation, the stem cell expansion technology according to the present invention can be used to expand autologous or non-autologous stem cells.
本発明の方法による造血幹細胞の移植は、 白血病に対する全身 X線療法や高度 化学療法を行う際に、 これらの治療と組み合わせる他、 種々の疾患に用いること ができる。 例えば、 固形癌患者の化学療法、 放射線療法等の骨髄抑制が副作用と して生じる治療を実施する際に、 施術前に骨髄を採取しておき、 造血幹細胞、 造 血前駆細胞を試験管内で増幅し、 施術後に患者に戻すことで、 副作用による造血 系の障害から早期に回復させることができ、 より強力な化学療法を行えるように なり、 化学療法の治療効果を改善する事ができる。 また、 本発明を利用して、 患 者あるいは他人の造血幹細胞ならびに造血前駆細胞を各種血液細胞に分化させ、 それらを患者の体内に移入することにより、 各種血液細胞の低形成により不全な 状況を呈している患者の改善を図ることができる。 また、 再生不良性貧血などの 貧血を呈する骨髄低形成に起因する造血不全症を改善することができる。 その他、 本発明の方法による造血幹細胞の移植が有効な疾患としては、 慢性肉芽腫症、 重 複免疫不全症候群、 無ガンマグロブリン血症、 Wiskott-Aldrich症候群、 後天性免 疫不全症候群 (AIDS) 等の免疫不全症候群、 サラセミア、 酵素欠損による溶血性 貧血、 鎌状赤血球症等の先天性貧血、 Gaucher病、 ムコ多糖症等のリソゾーム蓄積 症、 副腎白質変性症、 各種の癌または腫瘍等が挙げられる。 Transplantation of hematopoietic stem cells by the method of the present invention can be performed by systemic X-ray therapy or leukemia for leukemia. When performing chemotherapy, it can be used for various diseases in addition to combining with these treatments. For example, when performing a treatment that causes bone marrow suppression as a side effect, such as chemotherapy or radiation therapy for solid cancer patients, bone marrow is collected before the procedure, and hematopoietic stem cells and hematopoietic progenitor cells are expanded in vitro However, by returning to the patient after the procedure, hematopoietic disorders due to side effects can be recovered early, and more powerful chemotherapy can be performed, and the therapeutic effect of chemotherapy can be improved. In addition, by utilizing the present invention, a patient or another person's hematopoietic stem cells and hematopoietic progenitor cells are differentiated into various blood cells and transferred into the patient's body, thereby reducing the dysfunction due to hypoplasia of various blood cells. Patients presenting can be improved. In addition, it can improve hematopoietic failure caused by bone marrow hypoplasia presenting anemia such as aplastic anemia. Other diseases for which hematopoietic stem cell transplantation by the method of the present invention is effective include chronic granulomatosis, double immunodeficiency syndrome, agammaglobulinemia, Wiskott-Aldrich syndrome, acquired immunodeficiency syndrome (AIDS), and the like. Immunodeficiency syndrome, thalassemia, hemolytic anemia due to enzyme deficiency, congenital anemia such as sickle cell disease, lysosomal storage diseases such as Gaucher disease and mucopolysaccharidosis, adrenal leukemia, various cancers and tumors, etc. .
本発明の移植片を用いた造血幹細胞の移植は、 用いる細胞以外は、 従来行われ ている骨髄移植や臍帯血移植と同様に行えばよい。  The transplantation of hematopoietic stem cells using the graft of the present invention may be performed in the same manner as conventional bone marrow transplantation or cord blood transplantation, except for the cells used.
上記のような造血幹細胞移植に用いられる可能性のある造血幹細胞の由来は、 骨髄に限られず、 前述したような胎児肝臓、 胎児骨髄、 末梢血、 サイ トカインぉ よびノまたは抗癌剤の投与によって幹細胞を動員した末梢血、 及び臍帯血等を用 いることができる。 本発明の移植片は、 本発明の方法によって増殖した造血幹細 胞及び造血前駆細胞の他に、 緩衝液等を含む組成物としてもよい。  The origin of hematopoietic stem cells that may be used for hematopoietic stem cell transplantation as described above is not limited to bone marrow, but can be obtained by the administration of fetal liver, fetal bone marrow, peripheral blood, cytokines and anticancer drugs as described above. Mobilized peripheral blood, umbilical cord blood, and the like can be used. The transplant of the present invention may be a composition containing a buffer solution or the like in addition to the hematopoietic stem cells and hematopoietic progenitor cells grown by the method of the present invention.
また、 本発明の細胞株とともに培養されて増殖した造血幹細胞または造血前駆 細胞は、 ex vivoの遺伝子治療に用いることができる。 遺伝子治療には、 D N Aを 患者に直接投与する in vivo法と、 標的細胞に D N Aを導入し、 遺伝子導入細胞を 患者に移植する ex vivo法がある。 ex vivo法において標的細胞に骨髄細胞を用い る場合には、 大量の骨髄の採取が必要であつたが、 本発明によれば、 少量の骨髄 採取で済ますことができる。 また、 造血幹細胞が自己複製し、 長期的に造血細胞 を供給できる性質は、 遺伝子治療の好適な標的と考えられているが、 従来、 その 細胞周期を回転させることができず、 遺伝子の導入が困難であった。 本発明のス ト口一マ細胞株と造血幹細胞または造血前駆細胞とを共培養することにより、 こ れらの細胞の細胞周期を回転させることが可能となり、 遺伝子導入を容易に行う ことができる。 Hematopoietic stem cells or hematopoietic progenitor cells cultured and grown together with the cell line of the present invention can be used for ex vivo gene therapy. Gene therapy includes an in vivo method in which DNA is directly administered to patients and an ex vivo method in which DNA is introduced into target cells and the transfected cells are transplanted into patients. When bone marrow cells are used as target cells in the ex vivo method, a large amount of bone marrow must be collected, but according to the present invention, a small amount of bone marrow can be collected. In addition, the ability of hematopoietic stem cells to self-renew and supply hematopoietic cells in the long term is considered to be a suitable target for gene therapy. The cell cycle could not be rotated, making gene transfer difficult. By co-culturing the cell line of the present invention with hematopoietic stem cells or hematopoietic progenitor cells, the cell cycle of these cells can be rotated, and gene transfer can be performed easily. .
本発明を利用した遺伝子治療は、 ストロ一マ細胞とともに培養されて増殖した 造血幹細胞または造血前駆細胞に外来遺伝子 (治療用遺伝子) を導入し、 得られ る遺伝子導入細胞を用いて行われる。 本発明の遺伝子治療用組成物を用いた遺伝 子治療は、 ストロ一マ細胞と共培養して増幅した造血幹細胞または造血前駆細胞 を標的細胞として用いる以外は、 従来行われている遺伝子治療と同様に行えばよ い。 導入される外来遺伝子は、 疾患によって適宜選択される。 血液細胞を標的細 胞とする遺伝子治療の対象となる疾患としては、 慢性肉芽腫症、 重複免疫不全症 候群、 無ガンマグロブリン血症、 Wiskott-Aldrich症候群、 後天性免疫不全症候群 Gene therapy using the present invention is performed by introducing a foreign gene (therapeutic gene) into hematopoietic stem cells or hematopoietic progenitor cells cultured and grown together with stromal cells, and using the resulting transfected cells. Gene therapy using the gene therapy composition of the present invention is the same as conventional gene therapy except that hematopoietic stem cells or hematopoietic progenitor cells co-cultured and expanded with stromal cells are used as target cells. You can go to The foreign gene to be introduced is appropriately selected depending on the disease. Diseases targeted for gene therapy targeting blood cells include chronic granulomatosis, double immunodeficiency syndrome, agammaglobulinemia, Wiskott-Aldrich syndrome, and acquired immunodeficiency syndrome
(AIDS) 等の免疫不全症候群、 サラセミア、 酵素欠損による溶血性貧血、 鎌状赤 血球症等の先天性貧血、 Gaucher病、 ムコ多糖症等のリソゾーム蓄積症、 副腎白質 変性症、 各種の癌または腫瘍等が挙げられる。 (AIDS) etc., thalassemia, hemolytic anemia due to enzyme deficiency, congenital anemia such as sickle cell disease, lysosomal storage disease such as Gaucher disease and mucopolysaccharidosis, adrenal white matter degeneration, various cancers or Tumors and the like.
標的細胞に用いる造血幹細胞の由来は骨髄に限られず、 胎児肝臓、 胎児骨髄、 末梢血、 サイ トカインおよび Zまたは抗癌剤の投与によって幹細胞を動員した末 梢血、 及び臍帯血等を用いることができる。  The origin of hematopoietic stem cells used as target cells is not limited to bone marrow, and fetal liver, fetal bone marrow, peripheral blood, peripheral blood obtained by mobilizing stem cells by administration of cytokine and Z or an anticancer agent, umbilical cord blood, and the like can be used.
造血幹細胞または造血前駆細胞に治療用遺伝子を導入するには、 通常動物細胞 の遺伝子導入に用いられる方法、 例えば、 モロニ一マウス白血病ウィルス等のレ トロウィルスベクタ一、 アデノウイルスベクタ一、 アデノ随伴ウィルス (MV) ベ クタ一、 単純へルぺスウィルスベクタ一等のウィルス由来の動物細胞用ベクター を用いる方法、 リン酸カルシウム共沈法、 DEAE -デキストラン法、 エレク トロボレ —シヨン法、 リボソーム法、 リポフエクシヨン法、 マイクロインジェクション法 等を用いることができる。 これらの中では、 標的細胞の染色体 D N Aに組み込ま れて恒久的に遺伝子の発現が期待できるという点から、 レトロウィルスベクタ一 またはアデノ随伴ウィルスベクターが好ましい。  In order to introduce a therapeutic gene into hematopoietic stem cells or hematopoietic progenitor cells, a method usually used for gene transfer into animal cells, for example, retrovirus vector such as Moroni murine leukemia virus, adenovirus vector, adeno-associated virus (MV) Vector, a method using a virus-derived animal cell vector such as a simple virus vector, calcium phosphate co-precipitation method, DEAE-dextran method, electrification method, ribosome method, lipofection method, A microinjection method or the like can be used. Among them, a retrovirus vector or an adeno-associated virus vector is preferable, since it can be integrated into the chromosome DNA of the target cell and gene expression can be expected permanently.
例えば、 アデノ随伴ウィルス (AAV) ベクタ一は、 次のようにして作製すること ができる。 まず、 野生型アデノ随伴ウィルス D N Aの両端の I T R (inverted t erminal repeat) の間に治療用遺伝子を挿入したベクタ一プラスミ ドと、 ウィル スタンパク質を補うためのへルパープラスミ ドを 2 9 3細胞にトランスフエクシ ヨンする。 続いてヘルパーウィルスのアデノウイルスを感染させると、 MVベクタ 一を含むウィルス粒子が産生される。 あるいは、 アデノウイルスの代わりに、 へ ルパ一機能を担うアデノウィルス遺伝子を発現するプラスミ ドをトランスフエク シヨンしてもよい。 次に、 得られるウィルス粒子を造血幹細胞または造血前駆細 胞に感染させる。 ベクター D N A中において、 目的遺伝子の上流には、 適当なプ 口モータ—及びェンハンサ—を挿入し、 これらによって遺伝子の発現を調節する ことが好ましい。 さらに、 治療用遺伝子に加えて薬剤耐性遺伝子等のマーカ一遺 伝子を用いると、 治療用遺伝子が導入された細胞の選択が容易となる。 治療用遺 伝子は、 センス遺伝子であってもアンチセンス遺伝子であってもよい。 For example, an adeno-associated virus (AAV) vector can be constructed as follows. First, ITRs (inverted t) at both ends of the wild-type adeno-associated virus DNA Then, transfection of 293 cells with vector plasmid containing the therapeutic gene inserted between them (erminal repeat) and helper plasmid to supplement viral proteins is performed. Subsequent infection with the helper virus adenovirus produces virus particles containing the MV vector. Alternatively, instead of adenovirus, a plasmid expressing an adenovirus gene responsible for helper function may be transfected. Next, the obtained virus particles are used to infect hematopoietic stem cells or hematopoietic progenitor cells. It is preferable to insert a suitable promoter and enhancer upstream of the target gene in the vector DNA, and to regulate the expression of the gene by these. Furthermore, the use of a marker gene such as a drug resistance gene in addition to the therapeutic gene facilitates selection of cells into which the therapeutic gene has been introduced. The therapeutic gene may be a sense gene or an antisense gene.
レトロウィルスベクターを用いる場合は、 造血幹細胞は細胞周期では G 0期に あるものが大半であり、 レトロウイルスが感染できないため、 造血幹細胞に IL-1、 IL- 3、 IL- 6及ぴ SCFを作用させて細胞周期に入らせてから、 ウィルスを感染させる 必要がある (Nolta, J., Exp. Hematol, 20: 1065-1071 1992) 。 本発明の細胞株 は、 造血幹細胞の細胞周期を回転させることができるため、 効率の良いウィルス 感染が可能である。 また、 ウィルス感染に際し、 骨髄支持細胞を共存させると感 染効率が高まるとの報告もあり (Moore, K. A. , A. B. Blood, 79 : 1393 - 1399, 1992) 、 アポブト一シス関連遺伝子が導入されたス トローマ細胞株と造血幹細胞が共存し たままウィルスを感染させた後、 アポブト一シス関連遺伝子を発現させてストロ 一マ細胞株を死滅させる方法が考えられる。  When retroviral vectors are used, hematopoietic stem cells are mostly in the G0 phase in the cell cycle and cannot be infected with retrovirus. Therefore, IL-1, IL-3, IL-6 and SCF are added to hematopoietic stem cells. It must be allowed to act and enter the cell cycle before infection with the virus (Nolta, J., Exp. Hematol, 20: 1065-1071 1992). Since the cell line of the present invention can rotate the cell cycle of hematopoietic stem cells, efficient virus infection is possible. In addition, it has been reported that the co-existence of bone marrow feeder cells during viral infection increases the efficiency of infection (Moore, KA, AB Blood, 79: 1393-1399, 1992). A possible method would be to infect the virus with the coexisting stromal cell line and hematopoietic stem cells, and then kill the stromal cell line by expressing apobutosis-related genes.
本発明の遺伝子治療用組成物は、 本発明の方法によつて増殖した造血幹細胞及 び造血前駆細胞の他に、 緩衝液、 新規の活性物質等を含む組成物としてもよい。 図面の簡単な説明 図 1は、 マウス A GM由来ス ト口一マ細胞株と CD34陽性ヒ ト臍帯血由来造血幹 細胞との共培養開始から 4週間後のコロニーアツセィの結果を示す図である。 図 2は、 マウス A GM由来ス ト口一マ細胞株と CD34陽性ヒ ト臍帯血由来造血幹 細胞との共培養開始から 3週間後のコロニーアツセィの結果を示す図である。 図 3は、 マウス A GM由来スト口一マ細胞株と CD34陽性ヒ ト臍帯血由来造血幹 細胞との共培養開始から 6週間後のコロニーアツセィの結果を示す図である。 図 4は、 マウス A GM由来ストロ一マ細胞株とマウス骨髄由来 C- KIT+Sca- 1+Li n_造血幹細胞との共培養開始から 1 0日後のコロニーアツセィの結果を示す図で ある。 The composition for gene therapy of the present invention may be a composition containing a buffer, a novel active substance, and the like, in addition to the hematopoietic stem cells and hematopoietic progenitor cells grown by the method of the present invention. BRIEF DESCRIPTION OF THE DRAWINGSFIG. 1 shows the results of colony assembly 4 weeks after the start of co-culture of mouse AGM-derived stoma cell line and CD34-positive human cord blood-derived hematopoietic stem cells. is there. FIG. 2 is a diagram showing the results of colony attachment three weeks after the start of co-culture of a mouse AGM-derived stoma cell line and CD34-positive human cord blood-derived hematopoietic stem cells. FIG. 3 is a graph showing the results of colony attachment 6 weeks after the start of co-culture of a mouse AGM-derived stroma cell line and CD34-positive human cord blood-derived hematopoietic stem cells. FIG. 4 is a graph showing the results of colony atsieties 10 days after the start of co-culture of mouse AGM-derived stromal cell line and mouse bone marrow-derived C-KIT + Sca-1 + Lin_ hematopoietic stem cells. .
図 5は、 マウス骨髄由来造血幹細胞を移植したマウス末梢血の骨髄球系細胞及 びリンパ球系細胞におけるドナー細胞の割合を示す図。 〇は、 造血幹細胞を AGM- S3と共培養したものを、 ▲は、 造血幹細胞を AGM-S3と共培養を移植していないも のを示す。  FIG. 5 is a diagram showing the ratio of donor cells to myeloid cells and lymphoid cells in mouse peripheral blood transplanted with mouse bone marrow-derived hematopoietic stem cells. 〇 indicates hematopoietic stem cells co-cultured with AGM-S3, indicates hematopoietic stem cells not co-cultured with AGM-S3.
図 6は、 マウス胎児由来造血幹細胞を移植したマウス末梢血の骨髄球系細胞及 びリンパ球系細胞におけるドナ一細胞の割合を示す図。 〇は、 造血幹細胞を AGM - S3と共培養したものを、 ▲は、 造血幹細胞を AGM-S3と共培養を移植していないも のを示す。 発明を実施するための最良の形態 以下に、 実施例により本発明をさらに具体的に説明する。 実施例 1 造血幹細胞おょぴ造血前駆細胞の増殖または生存を支持し得る  FIG. 6 is a diagram showing the ratio of donor cells to myeloid and lymphoid cells in mouse peripheral blood transplanted with mouse fetal hematopoietic stem cells. 〇 indicates hematopoietic stem cells co-cultured with AGM-S3, indicates hematopoietic stem cells not co-cultured with AGM-S3. BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described more specifically with reference to examples. Example 1 Hematopoietic stem cells can support proliferation or survival of hematopoietic progenitor cells
A GM由来ス トローマ細胞株の樹立 く 1 > A GM由来ス トローマ細胞株の樹立  Establishment of A GM-derived stromal cell line 1> Establishment of A GM-derived stromal cell line
( 1 ) マウス胎児の A GM領域の分離  (1) Isolation of AGM region of mouse embryo
C3H/HeNSLcマウス (日本エスエルシ一株式会社より購入) の雌雄を S P F (spe cific pathogen-free)の環境のもとで飼育した。 1ないし 2匹の雌を 1匹の雄と 一晩、 同じケージにいれ、 翌朝、 膣拴の存在が確認された雌マウスを新しいケ一 ジに移して飼育した。 膣拴の確認された日を、 懐胎 0 . 5日とした。 懐胎 1 0 . 5日目のマウスを頸椎脱臼により死に至らしめた後、 胎児を摘出した。 A G Mの 分離は、 Godin等(Godin, I., Proc. Natl. Aacd. Sci. U. S. A. , 92 : 773-777, 1995)、 Medvinsky等(Medvinsky, A. L., Blood, 87 : 557- 565, 1996)の方法に準拠して実施 した。 胎児が浸る程度に P B S (—) (リン酸緩衝生理食塩水) (日水製薬製) を 入れた培養皿に胎児を入れ、 実体顕微鏡下で、 A GM領域を他の領域を含まない ように慎重に切除し、 新たな 2 4ゥ-ルの培養皿 (Nunc #143982) に移した。 Males and females of C3H / HeNSLc mice (purchased from Japan SLC Co., Ltd.) were bred under SPF (special pathogen-free) environment. One or two females were placed in the same cage with one male overnight, and the following morning, female mice confirmed to be vaginal were transferred to a new cage for rearing. The day when the vagina was confirmed was defined as 0.5 gestation. Mice at 10.5 days of gestation were killed by cervical dislocation, and the fetuses were removed. Separation of AGM is described in Godin et al. (Godin, I., Proc. Natl. Aacd. Sci. USA, 92: 773-777, 1995) and Medvinsky et al. (Medvinsky, AL, Blood, 87: 557-565, 1996). It was performed according to the method. Add PBS (—) (phosphate buffered saline) (Nissui Pharmaceutical) to the extent that the fetus is immersed. The fetuses were placed in the culture dish, and the AGM region was carefully excised under a stereoscopic microscope so as not to include other regions, and transferred to a new 24-well culture dish (Nunc # 143982).
( 2 ) A G M由来細胞株の樹立 (2) Establishment of AGM-derived cell line
2 4ゥエルの培養皿 (Nunc #143982) に移した A G M領域に、 10°/。 FCS (Hyclo ne社) を含む MEM培地 (Sigma社) を一滴加え、 ー晚、 培養器中で培養した。 実施 例中の培養は、 ことわりのない限り、 10% FCS (Hyclone社) を含む MEM培地 (Sig ma社) 、 37°C、 5 % C O 2 , 湿度 100%の条件下で行った。 一晩の培養で、 A GM 領域の細胞が、 培養皿に付着したところで、 さらに、 2 ml の 10°/。 FCSを含む MEM培 地を添加した。 その後、 培養を継続することにより、 AGM領域組織片の周辺には次 第にストローマ細胞が出現した。 さらに 1週間培養を継続した後、 接着細胞をト リプシン処理 (0. 05% トリプシン, 0. 53mM EDTA (Gibco BRL社)を含む PBS中、 37。C、 3〜5分) によって剥がした後、 培地で 2回洗浄し、 6ゥヱル培養皿 (Nunc #15 2795) に播種した。 翌日、 培養皿に付着しなかった細胞を培地とともに除去し、 新たに新鮮な培地を添加した。 6ゥエル培養皿に移してから 2週間後に、 内在す る造血細胞を除去するため 900 Radの γ線を照射した。 この培養系から限界希釈法 で直接細胞のクローニングを行ったが、 細胞の増殖は認められず、 クローニング することはできなかった。 そこで、 一つのゥエルに播種する細胞数を増やし、 少 ない細胞からの増殖に耐えられるように細胞を馴化してから限界希釈法によるク ローニングを実施することとした。  2 Transfer 10 ° / ° to the AGM area transferred to a 4-well culture dish (Nunc # 143982). One drop of MEM medium (Sigma) containing FCS (Hyclone) was added, and the cells were cultured in an incubator. The cultures in the examples were performed under the conditions of a MEM medium (Sigma) containing 10% FCS (Hyclone), 37 ° C, 5% CO 2, and 100% humidity unless otherwise specified. After overnight culture, cells in the AGM area were attached to the culture dish and an additional 2 ml of 10 ° /. MEM medium containing FCS was added. After that, culturing was continued, and stromal cells appeared around the AGM region tissue piece in succession. After further culturing for another week, the adherent cells were detached by trypsin treatment (in PBS containing 0.05% trypsin, 0.53 mM EDTA (Gibco BRL), 37. C, 3 to 5 minutes). After washing twice with the medium, the cells were seeded on 6-well culture dishes (Nunc # 15 2795). The next day, cells that did not adhere to the culture dish were removed together with the medium, and fresh medium was added. Two weeks after transfer to a 6-well culture dish, the cells were irradiated with 900 Rad gamma rays to remove endogenous hematopoietic cells. The cells were directly cloned from this culture system by the limiting dilution method, but no cell growth was observed, and the cells could not be cloned. Therefore, the number of cells seeded in one well was increased, and cells were adapted to withstand proliferation from a small number of cells, and then cloned by the limiting dilution method.
すなわち、 上記と同様にして、 A GMを摘出して培養を行い、 γ線を照射して から 2週間になる培養系をトリプシン処理 (0. 05% トリプシン, 0. 53m EDTAを含 む PBS中、 37°C、 3〜5分) して細胞を懸濁し、 5 0〜 1 0 0細胞/ゥヱルとなるよ うに 24-ゥエル培養皿に播種した。 3週間培養を継続した後、 限界希釈法により、 0 . 3細胞 Zゥエルとなるように 9 6ゥエル培養皿 (Nunc #167008) に細胞を播 種し、 一個の細胞のみが播種されているゥエルから増殖してきた細胞を拡大培養 した。 その結果、 線維芽細胞様の細胞と、 敷石状の細胞が得られ、 クローニング に成功した。  That is, in the same manner as above, AGM was excised and cultured, and the culture system, which had been exposed for 2 weeks after γ-irradiation, was treated with trypsin (in PBS containing 0.05% trypsin and 0.53m EDTA). (37 ° C., 3-5 minutes), and the cells were suspended and seeded on a 24-well culture dish at 50 to 100 cells / well. After culturing for 3 weeks, seed cells in a 96-well culture dish (Nunc # 167008) by limiting dilution to a 0.3-cell Z-well, and seed only one cell. The cells that had proliferated from were expanded and cultured. As a result, fibroblast-like cells and cobblestone-like cells were obtained, and the cloning was successful.
ヒ ト臍帯血由来 CD34陽性細胞分画を、 線維芽細胞様の細胞と二週間共培養し、 培養系中のコロニー形成細胞の有無について検討したところ、 線維芽細胞様の細 胞との共培養系中にはコロニー形成細胞が認められなかった。 そこで、 敷石状の 形態を示す細胞 7クローンについて同様の検討を行い、 ヒ ト造血幹細胞の増殖支 持活性を有するクローンが 3つ得られた。 これらを AGM-sl、 AGM - s2及び AGM - s3と 命名した。 さらにこの 3クローンを用いて造血細胞の支持能について検討した。 Human cord blood-derived CD34-positive cell fraction was co-cultured with fibroblast-like cells for two weeks, Examination of the presence or absence of colony forming cells in the culture system revealed no colony forming cells in the co-culture system with fibroblast-like cells. Therefore, the same examination was performed on 7 clones showing a pavement-like morphology, and three clones having the activity of supporting the growth of human hematopoietic stem cells were obtained. These were named AGM-sl, AGM-s2 and AGM-s3. Using these three clones, the ability to support hematopoietic cells was examined.
< 2〉A GM由来ストロ一マ細胞株の造血幹細胞に対する支持能の評価 <2> Evaluation of the ability of A GM-derived stromal cell lines to support hematopoietic stem cells
上記のようにして樹立された A G M由来ストロ一マ細胞株の造血幹細胞に対す る支持能について、 ヒ ト CD34陽性幹細胞を用いて検討した。  The ability of the AGM-derived stromal cell line established as described above to support hematopoietic stem cells was examined using human CD34-positive stem cells.
( 1 ) ヒ ト臍帯血 CD34陽性幹細胞の取得 (1) Obtaining human cord blood CD34-positive stem cells
ヒ ト臍帯血は東京大学医科学研究所のガイ ドラインに沿って、 正常分娩時に採 取した。 Sui等の方法 (Sui, X. , Pro Natl, Acad. Sci. U. S. A., 92 : 2859-2863, 1 995)にしたがって、 以下に示すようにして CD34陽性幹細胞の分画を行った。 ヒ ト 臍帯血に 1 0分の 1量のシリカ (IBL)を添加し、 1 0分毎によく混和しながら 3 7 °Cで 3 0分間放置した。 その後、 シリカ添加臍帯血を Ficol l/Hypaque (Pharma cia Biotech) 比重遠心に供し、 単核細胞を分離した。 次に、 この単核細胞を、 抗 CD34抗体を被覆した磁性体ビーズ (Dynabeads M - 450 CD34) と細胞を反応させて、 CD34を発現している細胞をビーズに結合させた後、 磁場を利用して CD34陽性細胞 を分離した後、 前記抗体とは別の CD34抗体 (DETACHaBEAD CD34; Dynal社, Oslo) を用いて、 CD34陽性細胞分画を溶出した。 この細胞集団をヒ ト臍帯血造血幹細胞 集団として使用した。 この細胞集団は、 CD34抗体による FACS (fluorescence acti vated cell sorting)分析 (Or tho Diagnostics Systems社製セノレソ一タ一を使用) で、 85から 95%の CD34陽性細胞を含むことを確認した。  Human umbilical cord blood was collected at the time of normal delivery according to the guidelines of the Institute of Medical Science, the University of Tokyo. According to the method of Sui et al. (Sui, X., Pro Natl, Acad. Sci. U.S.A., 92: 2859-2863, 1995), CD34-positive stem cells were fractionated as follows. Human cord blood was added to silica at a volume of 1/10 (IBL) and left at 37 ° C for 30 minutes with thorough mixing every 10 minutes. Thereafter, the cord blood added with silica was subjected to Ficoll / Hypaque (Pharmacia Biotech) specific gravity centrifugation to separate mononuclear cells. Next, the mononuclear cells are reacted with magnetic beads (Dynabeads M-450 CD34) coated with anti-CD34 antibody, and the cells expressing CD34 are bound to the beads. After separating CD34-positive cells, the CD34-positive cell fraction was eluted using another CD34 antibody (DETACHaBEAD CD34; Dynal, Oslo). This cell population was used as a human umbilical cord blood hematopoietic stem cell population. This cell population was confirmed to contain 85 to 95% of CD34-positive cells by FACS (fluorescence activated cell sorting) analysis using a CD34 antibody (using a Senor Resolator manufactured by Ortho Diagnostics Systems).
( 2 ) ヒ ト造血幹細胞に対する支持能の評価 (2) Evaluation of the ability to support human hematopoietic stem cells
( i ) ヒ ト造血幹細胞と A G M由来細胞との共培養  (i) Co-culture of human hematopoietic stem cells and AGM-derived cells
上記く 1〉で樹立された 3種の A GM由来ス ト口一マ細胞株 (AGM- sl、 AGM-s2、 AGM-s3) 、 あるいはマウス骨髄由来スト口一マ細胞株である MS- 5 (Itoh, Κ·, Exp. Hematol. , 17: 145-153, 1989)を、 10% FCSを含む MEM培地を用いて 2 4ゥエルの 培養皿の底一面を覆うまで増殖させた。 MS- 5は、 新潟大学理学部生物学科森和博 教授より供与され、 10% FCSを含む MEM培地にて維持したものを用いた。 The three types of AGM-derived stoma cell lines (AGM-sl, AGM-s2, AGM-s3) established in 1) above, or MS-5, a mouse bone marrow-derived stoma cell line (Itoh, Κ ·, Exp. Hematol., 17: 145-153, 1989) was grown in MEM medium containing 10% FCS until it covered the entire bottom of a 24-well culture dish. MS-5 is Kazuhiro Mori, Department of Biology, Faculty of Science, Niigata University The one provided by the professor and maintained in a MEM medium containing 10% FCS was used.
上記のようにして増殖させたス トローマ細胞 AGM- sl、 AGM- s2、 AGM- s3を各 5 x 1 03/ゥエル、 あるいは、 マウス骨髄由来ストローマ細胞株である MS- 5を 1 X 104/ゥ エル、 2 4ゥエルの培養皿に播種し、 10%FCSを含む MEM培地にて 2日間培養し、 細 胞が培養皿の底一面を覆うまで増殖させた。 このス トローマ細胞上に、 (1 ) で 精製した CD34陽性ヒ ト臍帯血由来造血幹細胞 1500個又は 500個を重層し、 1 mlの 1 0% FCSを含む MEM培地にて共培養した。 共培養開始後、 1週間後に同様の培地 1 m 1をさらに添加した。 2週間後より、 培地の半量を新鮮な同培地と交換し、 培養を 継続した。 共培養開始後の各時点において、 トリプシン処理 (0. 05% トリプシン, 0. 53mM EDTAを含む PBS中、 37°C、 3〜5分) し、 ス トローマ細胞とヒ ト血液細胞を 同時に培養皿より剥がし、 以下に示すように造血幹細胞及び造血前駆細胞の増殖 状況を評価した。 The above manner AGM- scan Toroma cells were grown sl, AGM- s2, AGM- s3 each 5 x 1 0 3 / Ueru or is the mouse bone marrow-derived stromal cell line MS- 5 to 1 X 10 4 The seeds were inoculated into 24 / well / dwell culture dishes and cultured in a MEM medium containing 10% FCS for 2 days, and grown until the cells covered the entire bottom of the culture dish. On this stromal cell, 1500 or 500 CD34-positive human cord blood-derived hematopoietic stem cells purified in (1) were overlaid and co-cultured in 1 ml of MEM medium containing 10% FCS. One week after the start of the co-culture, 1 ml of the same medium was further added. Two weeks later, half of the medium was replaced with fresh same medium, and the culture was continued. At each time point after the start of co-culture, trypsin treatment (in PBS containing 0.05% trypsin and 0.53 mM EDTA, at 37 ° C for 3 to 5 minutes) was performed to simultaneously culture stromal cells and human blood cells. The cells were further peeled off, and the proliferation status of hematopoietic stem cells and hematopoietic progenitor cells was evaluated as described below.
(ii) コロニーアツセィによる造血幹細胞及び造血前駆細胞の増殖状況の評価 上記共培養系にて培養した細胞は、 適宜希釈して 1 mlメチルセルロース培養系 に付し、 3連で解析を行った。 メチルセルロース培養系は、 α -培地 (Flow Labo ratories社) に 0. 9%メチルセルロース (信越化学) 、 3 0 %ゥシ胎児血清(HyClo ne社)、 1 %結晶化脱イオンゥシ血清アルブミン分画 V (Sigma社)、 0. 05mM 2-メル カプトエタノール(Eastman社)、 lOOng/ml ヒ ト SCF (幹細胞成長因子(stem cell factor) ) 、 20ng/ml ヒ ト IL— 3 (インターロイキン一 3 )、 2units/ml EP0 (エリス ロポェチン) 、 100ng/ml ヒ ト IL- 6 (インタ一ロイキン一 6 ) 、 lOng/ml ヒ ト G- C SF (顆粒球コロニ一刺激因子、 granulocyte colony-stimulating factor)を添カロし、 培養皿 (Falcon社製、 #1008) にて実施した。 上記で用いた各種造血因子は、 いず れもリコンビナント体であり、 純粋なものである。  (ii) Evaluation of Proliferation Status of Hematopoietic Stem Cells and Hematopoietic Progenitor Cells by Colony Assy The cells cultured in the above co-culture system were appropriately diluted, applied to a 1 ml methylcellulose culture system, and analyzed in triplicate. The methylcellulose culture system consists of 0.9% methylcellulose (Shin-Etsu Chemical), 30% fetal serum (HyClone), and 1% crystallized deionized serum albumin fraction in α-medium (Flow Laboratories). Sigma), 0.05 mM 2-mercaptoethanol (Eastman), lOOng / ml human SCF (stem cell factor), 20 ng / ml human IL-3 (interleukin-13), 2 units / ml EP0 (erythropoetin), 100 ng / ml human IL-6 (interleukin-16), lOng / ml human G-CSF (granulocyte colony-stimulating factor) Then, the test was performed on a culture dish (Falcon # 1008). The various hematopoietic factors used above are all recombinant and pure.
2週間の培養で出現してくるコロニーについて、 顕微鏡下で観察し、 出現して きた細胞の性質について解析した。 具体的には、 出現した CFU-G (granulocyte co lony-forming unit) ^ CFU-M macrophage co丄 ony - forming unit) s CFU-GM (granul ocyte-macrophage colony-forming unit) N BFU-E (erythroid burst forming uni t)、 CFU - GEMM (granulocyte- erythrocyte megakaryocyte - macrophage colony- for ming unit)の数を計測し、 ストロ一マ細胞との共培養開始時のヒ ト CD34陽性細胞 をメチルセルロース培養系に付したときに出現したコロニー数で割った値を増殖 倍率とした。 The colonies that emerged after two weeks of culture were observed under a microscope, and the properties of the emerging cells were analyzed. Specifically, the emerged CFU-G (granulocyte colony-forming unit) ^ CFU-M macrophage co 丄 ony-forming unit) s CFU-GM (granulocyte-macrophage colony-forming unit) N BFU-E (erythroid burst forming unit), CFU-GEMM (granulocyte-erythrocyte megakaryocyte-macrophage colony- for The number of ming units was counted, and the value obtained by dividing the number of colonies that appeared when human CD34-positive cells at the start of co-culture with stromal cells in a methylcellulose culture system was defined as the growth rate.
( i ) において、 共培養に 1500個の CD34陽性ヒ ト臍帯血由来造血幹細胞を用い たときに、 共培養開始から 4週間後にコロニーアツセィを行った結果を図 1に示 す。 1500個の CD34陽性ヒ ト臍帯血由来造血幹細胞を A GM由来ス トローマ細胞と 共培養した後のコロニー形成数を計数した。 培養開始時の 1500個の CD34陽'性細胞 に含まれていた各コロニー形成細胞数を 1として、 共培養後の各コロニー形成数 を表示した。 すなわち、 共培養による各コロニーの増殖倍率が示されている。  In (i), when 1,500 CD34-positive human umbilical cord blood-derived hematopoietic stem cells were used for co-culture, colony attachment was performed four weeks after the start of co-culture, and the results are shown in FIG. The number of colonies formed after co-culturing 1500 CD34-positive human cord blood-derived hematopoietic stem cells with AGM-derived stromal cells was counted. The number of each colony-forming cell contained in 1500 CD34 positive cells at the start of the culture was set to 1, and the number of each colony-forming cell after the co-culture was displayed. That is, the multiplication factor of each colony by co-culture is shown.
また、 共培養に 500個の CD34陽性ヒ ト臍帯血由来造血幹細胞を用いたときに、 共 培養開始から 3週間後及び 6週間後にコロニーアツセィを行った結果を、 それぞ れ図 2、 3に示す。 コロニ一形成数の表示は図 1と同様であり、 培養開始時の 50 0個の CD34陽性細胞に含まれていた各コロニー形成細胞数を 1として共培養後のコ ロニー形成数を表示した。  In addition, when 500 CD34-positive human cord blood-derived hematopoietic stem cells were used in the co-culture, the results of colony attachment performed 3 weeks and 6 weeks after the start of the co-culture were shown in Figs. 2 and 3, respectively. Shown in The number of colonies formed was the same as in FIG. 1, and the number of colonies formed after co-culture was displayed, with the number of colony forming cells contained in 500 CD34-positive cells at the start of the culture being 1.
なお、 図 1力 ら図 3 ίこおレヽて、 CFU—Giま granulocyte colony-forming unit, CF U - Mは macrophage colony-forming unit、 CFU - GMは granulocyte-macrophage colo ny-forming unit、 BFU-Eは erythroid burst forming unit、 CFU - GEM は granuloc yte-erythrocyte- megakaryocyte- macrophage colony-forming unitの略称である。 これらの結果で特徴的なのは、 好中球、 赤血球、 マクロファ一ジ、 巨核球への 分化が可能な CFU- GEMMが、 AGM- sl、 AGM_s3細胞との共培養系において著明に増幅 していることである。 CFU-GEMMは造血系の非常に未分化な細胞であり、 上記の結 果は、 マウス A G M由来のス トローマ細胞株との共培養により、 ヒ ト造血系の未 分化な細胞を分化させずに増幅させていることを示している。 これまでに骨髄か ら樹立したストロ一マ細胞株ではこのようにヒ ト CFU - GE匪を増幅させることはで きない (Nishi, N. , Exp. Hematol. 24: 1312-1321, 1996) 。 本実施例においても、 図 2、 図 3に示されるように、 マウス骨髄から樹立されたストローマ細胞である MS- 5では共培養後 CFU-GEMMはほとんど観察されなかった。 したがって、 このヒ ト 造血幹細胞を支持する活性は、 A GM由来のストロ一マ細胞株に特徴的であると 考えられる。 さらに、 AGM-s2細胞では CFU- GEMMの増加は確認されなかった。 つまり、 A G M 由来のス トローマ細胞株で同じような形態をした細胞の中でも、 ヒ ト造血支持能 のある細胞は限られていると考えられる。 前述の線維芽細胞様の細胞についても ヒ ト造血幹細胞を維持する活性が認められなかったように、 A GM領域に存在す る細胞の中でも特定の細胞種がヒ ト造血幹細胞の維持能をもっていることが明ら カ こされた。 In addition, Fig. 1 Fig. 3 Fig. 3 CFU-Gi granulocyte colony-forming unit, CF U-M is macrophage colony-forming unit, CFU-GM is granulocyte-macrophage colony-forming unit, BFU- E is an erythroid burst forming unit, and CFU-GEM is an abbreviation for granulocyte-erythrocyte- megakaryocyte- macrophage colony-forming unit. Characteristic of these results is that CFU-GEMM, which can differentiate into neutrophils, erythrocytes, macrophages, and megakaryocytes, is remarkably amplified in the co-culture system with AGM-sl and AGM_s3 cells That is. CFU-GEMM is a very undifferentiated cell of the hematopoietic system, and the above results were obtained by co-culturing with a stromal cell line derived from mouse AGM without differentiation of the undifferentiated human hematopoietic cell line. It shows that it is amplified. So far, stromal cell lines established from bone marrow cannot amplify human CFU-GE marauders in this way (Nishi, N., Exp. Hematol. 24: 1312-1321, 1996). Also in this example, as shown in FIGS. 2 and 3, almost no CFU-GEMM was observed after co-culture in MS-5, a stromal cell established from mouse bone marrow. Therefore, this activity to support human hematopoietic stem cells is considered to be characteristic of the AGM-derived stromal cell line. Furthermore, no increase in CFU-GEMM was observed in AGM-s2 cells. In other words, it is thought that, among the AGM-derived stromal cell lines having the same morphology, cells capable of supporting human hematopoiesis are limited. As mentioned above, the activity of maintaining human hematopoietic stem cells was not observed in the fibroblast-like cells as well, and specific cell types among the cells in the AGM region have the ability to maintain human hematopoietic stem cells. It was revealed.
また、 ヒ ト造血幹細胞の増殖を支持する AGM- sl、 AGM-s3を用いた共培養系では、 CFU- GM、 CFU - G、 CFU-Mのヒ ト造血前駆細胞も増殖させることができた。  In addition, in the co-culture system using AGM-sl and AGM-s3, which support the proliferation of human hematopoietic stem cells, CFU-GM, CFU-G, and CFU-M human hematopoietic progenitor cells could also be expanded. .
以上のことは、 マウス A GM由来スト口一マ細胞株が、 ヒ トの造血幹細胞、 造 血前駆細胞の増殖を支持できるということを示している。 すなわち、 造血幹細胞 の増殖メカニズムは種を越えて保存されており、 ヒ トの造血幹細胞、 造血前駆細 胞の増殖は、 ヒ ト以外の異種の生物由来の A G M由来ストロ一マ細胞をもってし ても可能であることが示された。 実施例 2 A GM由来ストローマ細胞株のマウス骨髄造血幹細胞に対する  The above results indicate that the mouse AGM-derived stroma cell line can support the proliferation of human hematopoietic stem cells and hematopoietic progenitor cells. In other words, the proliferation mechanism of hematopoietic stem cells is conserved across species, and the proliferation of human hematopoietic stem cells and hematopoietic progenitor cells can be carried out using AGM-derived stromal cells derived from heterologous organisms other than human. It has been shown that this is possible. Example 2 A GM-derived stromal cell line against mouse bone marrow hematopoietic stem cells
増殖支持活性の検討 実施例 1で得られたマウス A GM由来ストロ一マ細胞株について、 マウス骨髄 由来造血幹細胞に対する増殖支持活性を確認した。 く 1〉マウス骨髄からの造血幹細胞の調製  Examination of proliferation supporting activity The mouse AGM-derived stromal cell line obtained in Example 1 was confirmed to have a growth supporting activity on mouse bone marrow-derived hematopoietic stem cells. 1) Preparation of hematopoietic stem cells from mouse bone marrow
C57BL/6マウス (8週齢、 雄) (3本 SLC株式会社)の大腿骨内の骨髄細胞を取り 出し、 10% FCSを含む MEM培地にけん濁した。 定法にしたがい (高津聖志、 免疫研 究の基礎技術、 羊土社 1995) マウス骨髄単核細胞分画を比重遠心法により濃縮し た後、 染色バッファー(5% FCS、 0. 05%アジ化ナトリウムを含む PBS) にけん濁し、 以下の方法により造血幹細胞分画を取得した(Osawa, M. , J. Immunol. , 156: 3207- 3214, 1996)。 フィコエリスリン結合 Sea- 1抗体 (Pharmingen社) 、 ァロフィコシァ ニン結合抗 c-KIT抗体(ライフテックオリエンタル社)、 および、 分化マーカー (L in) として以下の 6種類のピオチン化した分化抗原特異的な抗体、 CD45R/B220 (R A- 36B2)、 CD4 (腿 - 5)、 CD8 (53- 6. 72)、 Gr - 1 (RB6-8C5)、 TER119 (以上の 5つの抗 体は、 Pharmingen社, SanDiegoより購入) 、 Mac- 1 (Ml/70. 15. 1) (Serotec社, O ford, UK) を細胞けん濁液に添加し、 20分間、 氷中で反応させた。 染色バッファ —で 2回洗浄した後、 染色バッファ一にけん濁し、 テキサスレッド結合ストレプ トァビジン (Life Technologi es社) を添加し、 氷中に 20分放置した。 2回洗浄し た後、 セルソ一ティング (Becton Dickinson社、 FACSVantage) に供して、 分化抗 原陰性、 Sea- 1抗体陽性、 かつ、 c- KIT陽性の造血幹細胞(c-KIT+Sca-1+Lin—造血幹 細胞) を分取した。 FACSの設定は、 ネガティブコントロールとして、 フィコエリ スリン結合ラッ トイムノグロブリン G2a (Cedarlane)、 ァロフィコシァニン結合ラ ットイムノグロブリン G2b (Pharmingen)、 あるいはテキサスレツド結合ストレプト アビジンのみで染色した骨髄細胞を用いて調整し、 抗体に特異的に染色されてい る細胞のみを分取した。 Bone marrow cells in femurs of C57BL / 6 mice (8-week-old, male) (3 SLC, Inc.) were removed and suspended in a MEM medium containing 10% FCS. According to a standard method (Takashi Takatsu, Basic Technology for Immunological Research, Yodosha 1995) The mouse bone marrow mononuclear cell fraction was concentrated by specific gravity centrifugation, followed by staining buffer (5% FCS, 0.05% sodium azide). , And a hematopoietic stem cell fraction was obtained by the following method (Osawa, M., J. Immunol., 156: 3207-3214, 1996). Phycoerythrin-conjugated Sea-1 antibody (Pharmingen), arophycosinine-conjugated anti-c-KIT antibody (Lifetech Oriental), and the following six types of biotin-specific differentiation antigens as differentiation markers (Lin) Antibody, CD45R / B220 (RA-36B2), CD4 (thigh-5), CD8 (53-6.72), Gr-1 (RB6-8C5), TER119 (more than 5 antibodies The body was purchased from Pharmingen, SanDiego) and Mac-1 (Ml / 70. 15.1) (Serotec, O ford, UK) was added to the cell suspension and allowed to react for 20 minutes on ice. . After washing twice with the staining buffer, the suspension was suspended in the staining buffer, Texas Red-conjugated streptavidin (Life Technologies) was added, and the plate was left on ice for 20 minutes. After washing twice, the cells were subjected to cell sorting (Becton Dickinson, FACSVantage) to differentiate hematopoietic stem cells (c-KIT + Sca-1 +) positive for differentiation antigen negative, Sea-1 antibody positive and c-KIT positive. Lin—hematopoietic stem cells). FACS was set using bone marrow cells stained only with phycoerythrin-conjugated rat immunoglobulin G2a (Cedarlane), allophycocynin-conjugated rat immunoglobulin G2b (Pharmingen), or Texas red-conjugated streptavidin as a negative control. Then, only cells that were specifically stained with the antibody were collected.
< 2 > A G M由来ストロ一マ細胞株及びマウス骨髄由来造血幹細胞の共培養 <2> Co-culture of AGM-derived stromal cell line and mouse bone marrow-derived hematopoietic stem cells
AGM_s3を 5 X 103ずつ 2 4ゥエルの培養皿に播種し、 10% FCSを含む MEM培地にて 2日間培養し、 細胞が培養皿の底一面を覆うまで増殖させた。 前述のマウス骨髄 由来 C- KIT+Sca-1+Lin—造血幹細胞 100個を重層し、 1 mlの FCS 10%を含む MEM培地に て培養した。 培養開始 1週間後に、 同様の培地をさらに l ml添加した。 培養 10日 目に、 トリプシン処理 (0. 05% トリプシン, 0. 53mM EDTAを含む PBS中、 37°C、 3〜 5分) し、 ス トローマ細胞と造血細胞を同時に培養皿より剥がした。 共培養開始時 に採取した C- KIT+Sca- 1+Lin—造血幹細胞の一部と、 共培養を行った細胞について、 以下に示す造血幹細胞の評価実験を行い、 造血幹細胞の増殖状況を解析した。 上記共培養系にて培養した細胞は、 適宜希釈して 1 mlメチルセルロース培養系 に付し、 3連で解析を行った。 メチルセルロース培養系は、 α -培地 (Flow Labo ratori es社) に 0. 9°/。メチルセルロース (信越化学) 、 3 0 %ゥシ胎児血清(HyClo ne社)、 1 %結晶化脱ィオンゥシ血清アルブミン分画 V (Si gma社)、 0. 05mM 2-メル カプトエタノール(Eastman社)、 lOOng/ml マウス SCF、 20ng/ml マウス IL - 3、 2un i ts/ml ヒ ト EP0、 lOOng/ml ヒ ト IL- 6、 10ng/ml ヒ ト G- CSF、 4ng/ml ヒ ト TP0を添 加し、 培養皿 (Falcon社製、 #1008) にて実施した。 1 0日間の培養で出現してく るコロニ一について、 顕微鏡下で観察し、 出現してきた細胞の性質について解析 した。 AGM_s3 was seeded at 5 × 10 3 each in a 24-well culture dish, cultured in a MEM medium containing 10% FCS for 2 days, and grown until the cells covered the entire bottom of the culture dish. 100 mouse-bone marrow-derived C-KIT + Sca-1 + Lin-hematopoietic stem cells were overlaid and cultured in 1 ml of MEM medium containing 10% FCS. One week after the start of the culture, a further 1 ml of the same medium was added. On the 10th day of culture, the cells were treated with trypsin (in PBS containing 0.05% trypsin and 0.53 mM EDTA at 37 ° C for 3 to 5 minutes), and the stromal cells and hematopoietic cells were simultaneously detached from the culture dish. C-KIT + Sca-1 + Lin collected at the start of co-culture and a part of hematopoietic stem cells and the co-cultured cells were evaluated for hematopoietic stem cells as follows, and the proliferation status of hematopoietic stem cells was analyzed. did. The cells cultured in the above co-culture system were appropriately diluted, applied to a 1 ml methylcellulose culture system, and analyzed in triplicate. The methylcellulose culture system is 0.9 ° / α on α-medium (Flow Labo ratories). Methylcellulose (Shin-Etsu Chemical), 30% fetal serum (HyClone), 1% crystallized deionized serum albumin fraction V (Sigma), 0.05 mM 2-mercaptoethanol (Eastman), lOOng / ml mouse SCF, 20ng / ml mouse IL-3, 2units / ml human EP0, lOOng / ml human IL-6, 10ng / ml human G-CSF, 4ng / ml human TP0 The test was performed on a culture dish (Falcon # 1008). Observe under a microscope the colonies that have emerged after 10 days of culture, and analyze the properties of the emerging cells. did.
結果を図 4に示す。 増殖倍率は、 共培養開始時のマウス骨髄由来 C- KIT+Sca_l+ Lin_造血幹細胞 100個に含まれている各コロニー形成細胞の数を 1とし、 共培養後 の各コロニ一形成数を表示した。 赤血球コロニーを含む CFU-GEMMが著明に増加し ており、 マウス造血幹細胞が、 A GM由来スト口一マ細胞株との共培養によって 増殖することが確認された。 く 3 >マウスへの血液細胞移植 Fig. 4 shows the results. The multiplication factor is defined as the number of colony-forming cells contained in 100 mouse C-KIT + Sca_l + Lin_ hematopoietic stem cells at the start of coculture and the number of colonies formed after coculture. did. CFU-GEMM containing erythroid colonies increased remarkably, confirming that mouse hematopoietic stem cells proliferated by co-culture with AGM-derived stroma cell line. 3> Blood cell transplantation into mice
上記のマウス骨髄由来 C- KIT+Sca- 1+Lin—造血幹細胞 100個、 あるいは、 適宜希釈 したく 2 >の共培養系から回収した細胞を、 各々 3匹の 920Radの γ線照射した C5 7BL/6マウス(8週齢、 雄)に、 尾静脈より移植した。 移植後 1 2日にマウスより脾 臓を摘出し、 脾臓に形成されたコロニー数(CFU- S12 : day 12 spleen colony- for ming unit)を算定した。  The above mouse bone marrow-derived C-KIT + Sca-1 + Lin-100 hematopoietic stem cells or cells collected from the co-culture system of 2> / 6 mice (8 weeks old, male) were transplanted from the tail vein. On day 12 after the transplantation, the spleen was removed from the mouse, and the number of colonies formed in the spleen (CFU-S12: day 12 spleen colony-for ming unit) was calculated.
その結果、 c- KIT+Sca- 1+Lin—造血幹細胞 100個を移植したマウスでは、 3 ± 1個 の脾臓コロニ一が形成された。 一方、 共培養系から回収した細胞 1ゥエル分を 6 分の 1に希釈して移植したマウスでは、 4 ± 1個の脾臓コロニーが検出された。 したがって、 当初 100個の C- KIT+Sca- 1+Lin—造血幹細胞からは、 約 2 4 ( 4 x 6 ) 個の脾臓コロニー形成細胞に増殖していたと計算される。 すなわち、 共培養によ つて脾臓コロニー形成細胞は約 8倍に増殖した。  As a result, 3 ± 1 spleen colonies were formed in mice transplanted with 100 c-KIT + Sca-1 + Lin-hematopoietic stem cells. On the other hand, 4 ± 1 spleen colonies were detected in mice transplanted after diluting 1-well cells recovered from the co-culture system to 1/6. Therefore, it is calculated that from the initial 100 C-KIT + Sca-1 + Lin-hematopoietic stem cells, about 24 (4 × 6) spleen colony forming cells had proliferated. That is, spleen colony forming cells grew about 8-fold by co-culture.
この結果は、 脾臓コロニーを形成できる造血幹細胞が、 A G M由来ス トローマ 細胞株との共培養により増殖していることを示している。 マウス造血幹細胞の増 殖を A GM由来スト口一マ細胞株が支持するということは、 ヒ トの造血幹細胞の 増殖を、 A GM由来ストロ一マ細胞株が支持できるという結果をサポートしてい る。 実施例 3 免疫不全マウス移植系を用いたヒ ト造血幹細胞分画の維持、 増殖の確認  This result indicates that hematopoietic stem cells capable of forming spleen colonies are proliferating by co-culture with an AGM-derived stromal cell line. The fact that AGM-derived stroma cell lines support the growth of mouse hematopoietic stem cells supports the result that AGM-derived stromal cell lines can support the growth of human hematopoietic stem cells. . Example 3 Confirmation of maintenance and proliferation of human hematopoietic stem cell fraction using immunodeficient mouse transplantation system
< 1〉ヒ ト臍帯血細胞の免疫不全マウスへの移植 <1> Transplantation of human cord blood cells into immunodeficient mice
ヒ ト造血幹細胞あるいは前駆細胞の AGM - s3による維持、 増殖を確認するため、 ヒ トの造血幹細胞を含むヒ ト臍帯血細胞を AGM- s3と共培養し、 免疫不全マウスへ 移植した。 免疫不全マウスに生着するヒ ト造血細胞の解析を行うことで、 骨髄球 系ならびにリンパ球系への分化が可能な多分化能を有するヒ ト造血幹細胞および 造血前駆細胞の共培養後の生存♦増殖について検討を行った。 To confirm the maintenance and proliferation of human hematopoietic stem cells or progenitor cells by AGM-s3, human umbilical cord blood cells containing human hematopoietic stem cells were co-cultured with AGM-s3 and transferred to immunodeficient mice. Transplanted. By analyzing human hematopoietic cells engrafted in immunodeficient mice, survival after co-culture of pluripotent human hematopoietic stem cells and hematopoietic progenitor cells capable of differentiating into myeloid and lymphoid lineages ♦ Proliferation was examined.
詳細には、 ヒ ト臍帯血由来の単核球細胞 1 X 106個を、 分離直後、 および AGM- s 3と 4週間共培養後に、 NOD/Shi- scidマウスに移植した。 細胞の調製および共培養 の条件は実施例 1と同様に行った。 NOD/Shi- scid マウスへの細胞の移植は、 300 Radの γ線を照射した 8から 1 0週齢の NOD/Shi- scid (実験動物中央研究所) の尾 静脈より細胞を移植することにより行った。 さらに、 NOD/Shi - scidの NK細胞活性 を抑制するために抗ァシァロ GM-1抗体 (2( g/ml) (和光純薬) 300 1を、 移植実 施の直前と移植後 11日目に腹腔内投与した。 移植後 5週目にマウスより骨髄細胞 を採取し、 ヒ ト細胞を特異的に認識する各種抗ヒ ト血球マーカ一抗体で染色する ことによって、 ヒ トの血液細胞の生着を確認した。 細胞を移植していないマウス から採取した骨髄細胞についても同様に染色を行った。 これらの染色技法、 およ ぴ以下の FACSを用いた解析は、 実施例 1に記載の方法と同様にして行った。 Specifically, 1 × 10 6 mononuclear cells from human umbilical cord blood were transplanted into NOD / Shi-scid mice immediately after isolation and after co-culture with AGM-s3 for 4 weeks. The conditions for cell preparation and co-culture were performed in the same manner as in Example 1. Transplantation of cells into NOD / Shi-scid mice is performed by transplanting cells from the tail vein of 8-10 week old NOD / Shi-scid (Central Laboratory Animal Research Institute) irradiated with 300 Rad of gamma rays. went. Furthermore, in order to suppress the NK cell activity of NOD / Shi-scid, anti-asialo GM-1 antibody (2 (g / ml) (Wako Pure Chemical Industries) 3001 was administered immediately before transplantation and 11 days after transplantation. Five weeks after transplantation, bone marrow cells were collected from mice and stained with various anti-human blood cell marker antibodies that specifically recognize human cells, thereby engrafting human blood cells. Bone marrow cells collected from mice into which cells had not been transplanted were stained in the same manner.These staining techniques and the analysis using FACS described below were performed according to the method described in Example 1. The same was done.
< 2 >マウス骨髄におけるヒ ト造血細胞の検出 <2> Detection of human hematopoietic cells in mouse bone marrow
移植後のマウス骨髄細胞について汎血球マ一力一である CD45の発現を、 FITC標 識抗ヒ ト CD45抗体 (Becton Dickinson社)を用いて FACSにより検出した。 また、 F ACSのネガティブコントロールとして FITC標識マウス IgGl (Becton Dickinson杜) を用いた。 その結果、 細胞を移植していないマウスの骨髄細胞では、 抗ヒ ト CD45 抗体に反応する細胞は検出されなかった。 一方、 分離直後の単核球を移植したマ ウスでは 6. 2°/。の骨髄細胞がヒ ト細胞であった。 また、 AGM- s3と共培養を行った単 核球を移植したマウス骨髄でも 5. 2%の細胞がヒ トの細胞であった。 この結果は、 移植したヒ ト造血細胞に造血幹細胞あるいは造血前駆細胞が含まれていたので、 免疫不全マウスに移植した後 5週間にわたり、 ヒ トの造血細胞の出現が認められ たと考えられる。 さらに、 AGM-s3と共培養せずに移植したものと、 共培養後に移 植したものとで、 マウス骨髄におけるヒ ト細胞の存在比率がほとんど変わらなか つたことは、 AGM - s3上で造血幹細胞あるいは造血前駆細胞が生存あるいは増殖し ていたと結論できる く 3 >マウスに移植したヒ ト造血細胞の骨髄球系、 リンパ球系細胞への分化能 上記移植マウス骨髄中の抗ヒ ト CD45抗体に陽性のヒ ト血液細胞の表面抗原を詳 細に解析し、 移植したヒ ト細胞が各種血球に分化していることを確認した。 すな わち、 Cy5標識フィコエリスリン (PECy5) 標識 CD45抗体と、 各種分化抗原に対す る抗体、 つまり、 フィコエリスリン (PE) 標識の抗 CD13抗体、 抗 CD33抗体、 抗 CD 14抗体、 抗 CD19抗体、 FITC標識の抗 CD10抗体、 又は抗 CD34抗体とを用いて二重染 色した。 これらの抗体は、 抗 CD34抗体のみ I隱 unoteck社より購入し、 その他のす ベての抗体は Becton Dickinson社より購入した。 FACSを用いて CD45陽性細胞をゲ ートし、 ヒ ト血液細胞でのこれら分化抗原の発現を解析した。 The expression of CD45, which is a pancreatic cell marker, was detected by FACS using FITC-labeled anti-human CD45 antibody (Becton Dickinson) in mouse bone marrow cells after transplantation. FITC-labeled mouse IgGl (Becton Dickinson) was used as a negative control for FACS. As a result, no cells that responded to the anti-human CD45 antibody were detected in the bone marrow cells of mice to which the cells had not been transplanted. On the other hand, in mice transplanted with monocytes immediately after separation, 6.2 ° /. Of the bone marrow cells were human cells. In mouse bone marrow transplanted with mononuclear cells co-cultured with AGM-s3, 5.2% of the cells were human cells. This result suggests that hematopoietic stem cells or hematopoietic progenitor cells were included in the transplanted human hematopoietic cells, and thus the appearance of human hematopoietic cells was observed for 5 weeks after transplantation into immunodeficient mice. Furthermore, the ratio of human cells in mouse bone marrow was almost the same between transplanted without co-culture with AGM-s3 and transplanted after co-culture, indicating that hematopoietic stem cells on AGM-s3 Alternatively, it can be concluded that hematopoietic progenitor cells have survived or expanded <3> Differentiation of human hematopoietic cells transplanted into mice into myeloid and lymphoid cells Detailed analysis of the surface antigens of human blood cells positive for anti-human CD45 antibody in the transplanted mouse bone marrow described above Then, it was confirmed that the transplanted human cells were differentiated into various blood cells. That is, Cy5-labeled phycoerythrin (PECy5) -labeled CD45 antibody and antibodies against various differentiation antigens, that is, phycoerythrin (PE) -labeled anti-CD13, anti-CD33, anti-CD14, and anti-CD14 antibodies. Double staining was performed using the CD19 antibody, FITC-labeled anti-CD10 antibody, or anti-CD34 antibody. For these antibodies, only the anti-CD34 antibody was purchased from Ioki unoteck, and all other antibodies were purchased from Becton Dickinson. CD45-positive cells were gated using FACS and the expression of these differentiation antigens on human blood cells was analyzed.
その結果、 CD45陽性細胞の内 、 CD34陽性細胞が 8°/。の頻度で存在していることが 確認された。 この結果は、 幼若な造血細胞が、 4週間の AGM-s3との共培養におい て維持され、 かつマウスに移植後も幼若な形質を維持していたことを示している。 さらに、 CD45陽性細胞の内、 骨髄球の分化マ一カーである CD13、 CD33、 CD14の 各抗原が陽性の細胞は、 それぞれ 29%、 38°/。、 12%であった。 また、 リンパ球系の細 胞については、 B細胞マ一カーである CD19陽性細胞は 58%の頻度で存在が確認され た。 レシピエントマウスに骨髄球系おょぴリンパ球系の細胞の出現が同時に認め られたことから、 移植されたヒ ト造血細胞中には骨髄球細胞、 リンパ球細胞に分 化が可能である未分化な造血幹細胞あるいは造血前駆細胞が存在していたことが 示された。 すなわち、 4週間の AGM_s3との共培養で、 多分化能を有するヒ ト造血 幹細胞を生存もしくは増殖させることが可能であると考えられる。 実施例 4 移植実験を用いたマウス骨髄由来造血幹細胞に対する  As a result, CD34-positive cells were 8 ° / CD45-positive cells. It was confirmed that they existed at the frequency of The results indicate that the young hematopoietic cells were maintained in the co-culture with AGM-s3 for 4 weeks and maintained the young trait after transplantation into mice. Furthermore, of the CD45-positive cells, the cells positive for the antigens CD13, CD33, and CD14, which are differentiation markers for myeloid cells, were 29% and 38 ° / 38%, respectively. Was 12%. As for lymphoid cells, the presence of CD19-positive cells, a B cell marker, was confirmed at a frequency of 58%. Since the appearance of myeloid and lymphoid cells was simultaneously observed in the recipient mouse, the transplanted human hematopoietic cells could not be differentiated into myeloid cells and lymphocytes. It was shown that differentiated hematopoietic stem cells or hematopoietic progenitor cells were present. That is, it is considered that human hematopoietic stem cells having pluripotency can survive or proliferate by co-culturing with AGM_s3 for 4 weeks. Example 4 Mouse Transplantation Experiment Using Bone Marrow-Derived Hematopoietic Stem Cells
生存または増殖促進活性の検討 以下に示す細胞分画法の基本的な手技は、 Herzenberg, L. A. , "Weir' s Handboo k oi Experimental Immunology, 5th edition , Blackwel丄 Science Inc. 1997; 高津聖志、 「免疫研究の基礎技術」 羊土社、 1 9 9 5にしたがい行った。 細胞分 離用に用いた抗体は全て、 Pharmingen社より購入した。  Examination of survival or growth promoting activity The following basic techniques for cell fractionation are described in Herzenberg, LA, "Weir's Handbook, Experimental Immunology, 5th edition, Blackwel 丄 Science Inc. 1997; Basic Technology of Research "Yodosha, 1995. All antibodies used for cell separation were purchased from Pharmingen.
8〜 1 0週令の C57BL- Ly5. lpepマウス (日本クレアに飼育委託) より骨髄細胞 を分離した。 骨髄細胞懸濁液を Lymphoprep (Nycomed社) に重層し、 1500rpm, 25°C, 30分間遠心し、 Lymphoprepと上層との界面に集まった細胞を回収した。 細胞を染 色バッファー (PBS (リン酸緩衝生理食塩水) 、 5% FCS (Hyclone社)、 ImM EDTA、 0. 05% NaN3) で 2回洗い、 染色バッファーに懸濁した。 この細胞懸濁液に分化抗 原マーカ一に対するピオチン化抗体、 つまり、 抗 CD4抗体、 抗 CD8抗体、 抗 CDllb抗 体、 抗 Gr- 1抗体、 抗 B220抗体、 及び抗 Terll9抗体を添加し、 氷中で 3 0分間放置 した。 その後、 染色バッファ一で 2回洗浄後、 アビジンをコートした磁性体ビー ズ (アビジンマグネットビーズ、 Perseptive社) を添加し、 氷中で 3 0分間放置 した。 再度、 染色バッファ一で 2回洗浄後、 磁石を用いてマグネットビーズを集 めて、 分化抗原を発現している細胞を除去し、 分化抗原陰性細胞群 (LirT細胞) を取得した。 Bone marrow cells from 8- to 10-week-old C57BL-Ly5. Lpep mice (consigned to CLEA Japan) Was isolated. The bone marrow cell suspension was overlaid on Lymphoprep (Nycomed) and centrifuged at 1500 rpm at 25 ° C for 30 minutes to collect cells collected at the interface between Lymphoprep and the upper layer. The cells were washed twice with a staining buffer (PBS (phosphate buffered saline), 5% FCS (Hyclone), ImM EDTA, 0.05% NaN 3 ) and suspended in the staining buffer. Add a biotinylated antibody against the differentiation antigen marker, i.e., an anti-CD4 antibody, an anti-CD8 antibody, an anti-CDllb antibody, an anti-Gr-1 antibody, an anti-B220 antibody, and an anti-Ter9 antibody to this cell suspension, and add ice. It was left in the room for 30 minutes. Then, after washing twice with the staining buffer, a magnetic beads (avidin magnet beads, Perseptive) coated with avidin were added, and the mixture was left on ice for 30 minutes. After washing twice with the staining buffer again, magnet beads were collected using a magnet to remove cells expressing the differentiation antigen, and a differentiation antigen-negative cell group (LirT cells) was obtained.
Lin—細胞に、 FITC標識抗 CD34抗体、 フィコエリスリン (PE) 標識抗 Sea- 1抗体、 Texas Red標識アビジン、 およびァロフィコシァニン(APC)標識抗 c- KIT抗体を添加 し、 氷中で 3 0分間放置した。 染色バッファーで 2回洗浄後、 セルソ一ター (FA CSVantage, Becton Dickinson社) にて、 造血幹細胞画分 (CD34陰性〜弱陽性、 Sea- 1陽性、 C- KIT陽性細胞) を選別した。 造血幹細胞と AGM_s3を共培養する際の 基礎培地としては、 α MEM培地 (GIBC0社) に 10% FCS (Hyclone社) を添加したも のを用いた。 5 X 104個の AGM- s3を 48穴プレートに播種後、 3日間培養した。 この AGM- s3上に、 セルソータ一により分離した造血幹細胞を 50個ずつ加え、 0および 1週間培養を行った。 Lin—Add FITC-labeled anti-CD34 antibody, phycoerythrin (PE) -labeled anti-Sea-1 antibody, Texas Red-labeled avidin, and arophycocynin (APC) -labeled anti-c-KIT antibody to the cells. For 30 minutes. After washing twice with a staining buffer, hematopoietic stem cell fractions (CD34 negative to weakly positive, Sea-1 positive, C-KIT positive cells) were selected using a cell sorter (FA CSVantage, Becton Dickinson). As a basal medium for co-culturing hematopoietic stem cells and AGM_s3, αMEM medium (GIBC0) supplemented with 10% FCS (Hyclone) was used. After seeding 5 × 10 4 AGM-s3 cells in a 48-well plate, the cells were cultured for 3 days. On this AGM-s3, 50 hematopoietic stem cells separated by a cell sorter were added 50 by 50, and cultured for 0 and 1 week.
培養後、 PBS (GIBC0社) で 1回洗浄し、 トリプシン液 (GIBC0社) を添加した。 37°C、 5分間静置後、 細胞培養用培地を添加し細胞を回収した。 回収した細胞を 96穴プレートに添加し、 さらに放射線照射マウスの短期間の生存を支持するため レスキュー細胞として、 C57BL/6N (日本チヤ一ルスリパー) の骨髄から調製した Lin—細胞を各ゥエルに 104個加えた。 各ゥエルの細胞を懸濁後、 X線を致死線量照 射 (9. 5Gy) した C57BL/6N (日本チヤ一ルスリバ一) に尾部静脈より移植した。 移 植後経時的に、 各マウスの眼窩静脈より血液を採取し、 赤血球を溶血後、 細胞を FITC標識抗 Ly5. 1抗体、 PE標識抗 Mac- 1抗体、 PE標識抗 Gr- 1抗体、 APC標識抗 B220抗 体、 または APC標識抗 Thy- 1抗体で染色して、 骨髄球系 (Mac- 1陽性または Gr- 1陽性) 細胞、 及びリンパ球系 (B220陽性または Thy_l陽性) 細胞における Ly5. 1抗体陽性 細胞の割合をフローサイ トメ トリ一により算定した。 After the culture, the cells were washed once with PBS (GIBC0), and a trypsin solution (GIBC0) was added. After standing at 37 ° C for 5 minutes, a cell culture medium was added to collect the cells. The recovered cells were added to a 96-well plate, and Lin-cells prepared from the bone marrow of C57BL / 6N (Nippon Steel Slipper) were added to each well as rescue cells to support the short-term survival of irradiated mice. Added four . After suspending the cells in each well, the cells were transplanted from the tail vein into C57BL / 6N (Nippon Cirrus River 1) that had been subjected to lethal dose of X-ray (9.5 Gy). Over time after transplantation, blood was collected from the orbital vein of each mouse, and after red blood cells were lysed, the cells were subjected to FITC-labeled anti-Ly5.1 antibody, PE-labeled anti-Mac-1 antibody, PE-labeled anti-Gr-1 antibody, APC Myeloid lineage (Mac-1 positive or Gr-1 positive) stained with labeled anti-B220 antibody or APC-labeled anti-Thy-1 antibody The percentage of Ly5.1 antibody-positive cells in cells and lymphoid (B220-positive or Thy_l-positive) cells was calculated by flow cytometry.
結果を、 図 5に示した。 この図から明らかなように、 AGM- s3上で造血幹細胞を 培養したものでは、 1、 2ヶ月後の末梢血に占める培養幹細胞に由来する細胞の 割合は、 AGM- s3との共培養開始時の造血幹細胞を移植した群(Input)と同等である ことが判明した。 これらの結果から、 本発明により、 造血幹細胞あるいは造血前 駆細胞を生存もしくは増殖させることが可能であると考えられる。 実施例 5 マウス胎児造血幹細胞分画に対する生存又は増殖促進活性の検討 以下に示す細胞分画法の基本的な手技は、 Herzenberg, L. A., "Weir' s Handboo k of Experimental Immunology, 5th edition , Blackwell science Inc. 1997; 高津聖志、 「免疫研究の基礎技術」 羊土社、 1 9 9 5にしたがい行った。 細胞分 離用に用いた抗体は全て、 Pharmingen社より購入した。  The results are shown in FIG. As is evident from this figure, the percentage of cells derived from cultured stem cells in peripheral blood at 1 and 2 months after hematopoietic stem cell culture on AGM-s3 was at the beginning of co-culture with AGM-s3. It was found to be equivalent to the group (Input) to which hematopoietic stem cells were transplanted. From these results, it is considered that hematopoietic stem cells or hematopoietic progenitor cells can survive or proliferate according to the present invention. Example 5 Examination of survival or proliferation promoting activity on mouse embryonic hematopoietic stem cell fraction The basic procedure of the cell fractionation method described below is described in Herzenberg, LA, "Weir's Handbook of Experimental Immunology, 5th edition, Blackwell science. Inc. 1997; Seiji Takatsu, "Basic Technologies for Immune Research," Yodosha, 1995. All antibodies used for cell separation were purchased from Pharmingen.
8週令以上の雌雄 C57BL- Ly5. lpepマウス (日本クレアに飼育委託) を交配し、 交尾後 14日目の雌マウスより胎児を摘出した。 実体顕微鏡下で無菌的に胎児肝臓 を分離し、 23Gの針を通して肝臓細胞を分散させ、 PBSに懸濁した。 この肝臓細胞 懸濁液を等量の Lymphoprep (Nycomed社) に重層し、 1500rpm, 20°C, 10分間遠心し、 Lymphoprepと上層との界面に集まった細胞を回収した。 細胞を染色バッファー  Male and female C57BL-Ly5. Lpep mice (aged 8 years or older) (bred to Clea Japan) were mated, and fetuses were removed from female mice 14 days after mating. The fetal liver was aseptically separated under a stereomicroscope, and the liver cells were dispersed through a 23G needle and suspended in PBS. This liver cell suspension was overlaid on an equal volume of Lymphoprep (Nycomed), and centrifuged at 1500 rpm, 20 ° C for 10 minutes to collect cells collected at the interface between Lymphoprep and the upper layer. Cell staining buffer
(PBS (リン酸緩衝生理食塩水) 、 5% FCS (Hyclone社) , ImM EDTA, 0. 05% NaN3) で 2回洗い、 染色バッファ一に懸濁した。 細胞懸濁液に分化抗原マ一力一に対す るピオチン化抗体、 つまり、 抗 CD3抗体、 抗 Gr_l抗体、 抗 B220抗体、 及ぴ抗 Terll 9抗体を添加し、 氷中で 3 0分間放置した。 その後、 染色バッファ一で 2回洗浄後、 ァビジンをコートした磁性体ビーズ (ァビジンマグネッ トビーズ、 Perseptive社) を添加し、 氷中で 3 0分間放置した。 再度、 染色バッファ一で 2回洗浄後、 磁石 を用いてマグネットビーズを集めて、 分化抗原を発現している細胞を除去し分化 抗原陰性細胞群 (Lin—細胞) を取得した。 (PBS (phosphate buffered saline), 5% FCS (Hyclone), ImM EDTA, 0.05% NaN 3 ), and suspended twice in the staining buffer. To the cell suspension, add a biotinylated antibody against the differentiation antigen, i.e., anti-CD3 antibody, anti-Gr_l antibody, anti-B220 antibody, and anti-Terll 9 antibody, and leave on ice for 30 minutes. . Then, after washing twice with the staining buffer, avidin-coated magnetic beads (Avidin Magnet beads, Perseptive) were added, and the mixture was left on ice for 30 minutes. After washing twice with the staining buffer again, the magnet beads were collected using a magnet, the cells expressing the differentiation antigen were removed, and a differentiation antigen-negative cell group (Lin-cell) was obtained.
上記 Lin—細胞に、 フィコエリスリン(PE)標識抗 Sea- 1抗体、 ァロフィコシァニン (APC)標識抗 c- KIT抗体、 および Texas Red標識アビジンを添加し、 氷中で 3 0分間 放置した。 染色バッファーで 2回洗浄後、 セルソータ一 (FACSVantage, Becton Dickinson社) にて、 造血幹細胞画分 (Sea- 1陽性、 c-KIT陽性、 分化抗原陰性細胞) を選別した。 上記造血幹細胞と AGM-S3を共培養する際の基礎培地としては、 α ΜΕ Μ培地 (GIBC0社) に 10% FCS (Hyclone社) を添加したものを用いた。 5 X 104個の AGM- s3を 48穴プレートに播種後、 3日間培養した。 この AGM- s3上に、 セルソ一タ 一により分離した造血幹細胞を 103個ずつ加え 0および 4日間共培養をおこなった。 培養後、 PBSで 1回洗浄し、 トリプシン液 (GIBC0社) を添加した。 37°Cで 5分 間保温した後、 細胞培養用培地を添加し細胞を回収した。 回収した細胞を 96穴プ レートに添加し、 さらに放射線照射マウスの短期間の生存を支持するためレスキ ユー細胞として、 C57BL/6N (日本チヤ一ルスリバ一) の骨髄から調製した Sea- 1陽 性、 C- KIT陽性、 分化抗原陰性細胞を各ゥニルに 103個加えた。 各ゥエルの細胞を 懸濁後、 致死量の X線 (9. 5Gy) を照射した C57BL/6N (日本チヤ一ルスリバ一) に 尾部静脈より移植した。 移植後経時的に、 各マウスの眼窩静脈より血液を採取し、 赤血球を溶血後、 細胞を FITC標識抗 Ly5. 1抗体、 PE標識抗 Mac- 1抗体、 PE標識抗 Gr - 1抗体、 APC標識抗 B220抗体、 または APC標識抗 Thy- 1抗体で染色して、 骨髄球系Add the phycoerythrin (PE) -labeled anti-Sea-1 antibody, arophycocynin (APC) -labeled anti-c-KIT antibody, and Texas Red-labeled avidin to the above Lin-cells and leave on ice for 30 minutes did. After washing twice with the staining buffer, use a cell sorter (FACSVantage, Becton). (Dickinson) to sort hematopoietic stem cell fractions (Sea-1 positive, c-KIT positive, differentiated antigen negative cells). As a basal medium for co-culturing the above hematopoietic stem cells and AGM-S3, a medium obtained by adding 10% FCS (Hyclone) to αΜΕ medium (GIBC0) was used. After seeding 5 × 10 4 AGM-s3 cells in a 48-well plate, the cells were cultured for 3 days. The AGM- s3 on, was subjected to isolated hematopoietic stem cells by 10 3 added 0 and 4 days co-culture by Celso Ichita scratch. After the culture, the cells were washed once with PBS, and a trypsin solution (GIBC0) was added. After incubation at 37 ° C for 5 minutes, a cell culture medium was added to collect the cells. The collected cells were added to a 96-well plate, and Sea-1 positive prepared from the bone marrow of C57BL / 6N (Nippon Charles River) as rescue cells to support the short-term survival of irradiated mice. , C-KIT-positive, a differentiation antigen-negative cells were added 10 three in each Uniru. After suspending the cells in each well, the cells were transplanted from the tail vein into C57BL / 6N (Nippon Cirrus River) irradiated with a lethal dose of X-ray (9.5 Gy). After transplantation, blood was collected from the orbital vein of each mouse over time, and after red blood cells were lysed, the cells were labeled with FITC-labeled anti-Ly5.1 antibody, PE-labeled anti-Mac-1 antibody, PE-labeled anti-Gr-1 antibody, and APC-labeled. Myeloid cells stained with anti-B220 antibody or APC-labeled anti-Thy-1 antibody
(Mac- 1陽性または Gr- 1陽性) 細胞、 及びリンパ球系 (B220陽性または Thy- 1陽性) 細胞における Ly5. 1抗原陽性細胞の割合、 すなわち移植細胞由来の血液細胞の割合 をフローサイ トメ トリ一により算定した。 (Mac-1 positive or Gr-1 positive) cells and lymphocyte (B220 positive or Thy-1 positive) cells, the percentage of Ly5.1 antigen positive cells, ie, the percentage of blood cells derived from transplanted cells, was determined by flow cytometry. It was calculated by one.
結果を図 6に示した。 この図から明らかなように、 AGM-s3上で造血幹細胞を培 養したものでは、 移植から 1 、 2ヶ月後のレシピエントマウスの末梢血に占める 培養造血幹細胞に由来する細胞の割合は、 AGM- s3との共培養開始時の造血幹細胞 を移植した群(Input)と同等もしくはそれを上回っていることが判明した。 これら の結果を考慮すると、 本発明により、 胎児由来の造血幹細胞あるいは造血前駆細 胞を生存もしくは増殖させることが可能であると考えられる。 産業上の利用の可能性 本発明のストロ一マ細胞株は、 造血幹細胞および造血前駆細胞の増殖または生 存を支持することができる。  The results are shown in FIG. As is evident from this figure, the percentage of cells derived from cultured hematopoietic stem cells in peripheral blood of recipient mice 1 and 2 months after transplantation was higher in AGM-s3 cultured hematopoietic stem cells. -It was found to be equal to or higher than the group (Input) transplanted with hematopoietic stem cells at the start of co-culture with s3. Considering these results, it is considered that the present invention makes it possible to survive or proliferate fetal hematopoietic stem cells or hematopoietic progenitor cells. INDUSTRIAL APPLICABILITY The stromal cell line of the present invention can support the proliferation or survival of hematopoietic stem cells and hematopoietic progenitor cells.
本発明のストロ一マ細胞株を用いると、 造血幹細胞および造血前駆細胞を增殖 させることができる。 本発明の方法により増殖した造血幹細胞および造血前駆細胞は、 血液細胞移植 用の移植片、 遺伝子治療用の標的細胞として好適に利用することができる。 When the stromal cell line of the present invention is used, hematopoietic stem cells and hematopoietic progenitor cells can be grown. The hematopoietic stem cells and hematopoietic progenitor cells grown by the method of the present invention can be suitably used as a transplant for blood cell transplantation and a target cell for gene therapy.

Claims

請求の範囲 The scope of the claims
1 . 哺乳動物胎児の AGM領域から分離、 株化され、 かつ、 造血幹細胞およ び造血前駆細胞の増殖または生存を支持し得る細胞株。 1. A cell line that is isolated and established from the AGM region of a mammalian fetus and that can support the growth or survival of hematopoietic stem cells and hematopoietic progenitor cells.
2 . 造血幹細胞または造血前駆細胞を少なくとも一部が多分化能を維持した まま増殖させ得る請求項 1記載の細胞株。 2. The cell line according to claim 1, wherein hematopoietic stem cells or hematopoietic progenitor cells can be proliferated while at least partially maintaining pluripotency.
3 . 少なくとも一部が細胞周期の回転を伴うように造血幹細胞または造血前 駆細胞を生存させ得る請求項 1または 2記載の細胞株。 3. The cell line according to claim 1 or 2, wherein the hematopoietic stem cells or hematopoietic progenitor cells can be made to survive so that at least a part thereof involves cell cycle rotation.
4 . 前記造血幹細胞おょぴ造血前駆細胞がヒ ト由来である請求項 1〜 3のい ずれか一項に記載の細胞株。 4. The cell line according to any one of claims 1 to 3, wherein the hematopoietic stem cells and hematopoietic progenitor cells are derived from human.
5 . 発癌遺伝子またはァポプトーシス関連遺伝子が導入され、 該遺伝子によ つて自己の増殖または生存が調節される請求項 1〜 4のいずれか一項に記載の細 胞株。 5. The cell strain according to any one of claims 1 to 4, wherein an oncogene or an apoptosis-related gene is introduced, and the self-growth or survival is regulated by the gene.
6 . 細胞刺激因子をコードする遺伝子が導入された請求項 1〜 5のいずれか 一項に記載の細胞株。 6. The cell line according to any one of claims 1 to 5, into which a gene encoding a cell stimulating factor has been introduced.
7 . 前記哺乳動物がマウスである請求項 1記載の細胞株。 7. The cell line according to claim 1, wherein the mammal is a mouse.
8 . 請求項 1〜 7のいずれか一項に記載の細胞株とともに培養されて増殖し た又は生存が維持された造血幹細胞または造血前駆細胞を含む移植片。 8. An implant comprising a hematopoietic stem cell or hematopoietic progenitor cell that has been cultured and proliferated or has been maintained in survival with the cell line according to any one of claims 1 to 7.
9 . 請求項 1〜 7のいずれか一項に記載の細胞株とともに培養されて増殖し 又は生存が維持され、 かつ、 外来遺伝子が導入された造血幹細胞または造血前駆 細胞を含む遺伝子治療用組成物。 9. A composition for gene therapy comprising culturing with the cell line according to any one of claims 1 to 7, proliferating or maintaining survival, and including a hematopoietic stem cell or hematopoietic progenitor cell into which a foreign gene has been introduced. .
1 0 . 哺乳動物胎児の A GM領域から分離、 株化され、 かつ、 造血幹細胞およ び造血前駆細胞の増殖または生存を支持し得る細胞株とともに、 少なくとも造血 幹細胞もしくは造血前駆細胞を含む細胞群またはその分画物を培養することを特 徴とする、 造血幹細胞または造血前駆細胞の増殖または生存を支持する方法。 10. A cell group that contains at least hematopoietic stem cells or hematopoietic progenitor cells, together with a cell line that is isolated and established from the mammalian AGM region and that can support the proliferation or survival of hematopoietic stem cells and hematopoietic progenitor cells. Or a method for supporting the proliferation or survival of hematopoietic stem cells or hematopoietic progenitor cells, which comprises culturing the fraction thereof.
1 1 . 前記細胞株に発癌遺伝子またはアポブト一シス関連遺伝子が導入されて いることを特徴とする請求項 1 0記載の方法。 11. The method according to claim 10, wherein an oncogene or an apobutoxysis-related gene has been introduced into the cell line.
1 2 . 前記細胞株に細胞刺激因子をコードする遺伝子が導入されていることを 特徴とする請求項 1 0記載の方法。 12. The method according to claim 10, wherein a gene encoding a cell stimulating factor has been introduced into the cell line.
1 3 . 前記培養に、 細胞刺激因子の添加を伴う、 請求項 1 0または 1 1記載の 方法。 13. The method according to claim 10 or 11, wherein said culturing is accompanied by the addition of a cell stimulating factor.
1 4 . 前記細胞群が、 臍帯血、 胎児肝臓、 骨髄、 胎児骨髄、 または末梢血由来 である請求項 1 0〜1 3のいずれか一項に記載の方法。 14. The method according to any one of claims 10 to 13, wherein the cell group is derived from cord blood, fetal liver, bone marrow, fetal bone marrow, or peripheral blood.
1 5 . 哺乳動物胎児の A GM領域から分離、 株化され、 かつ、 造血幹細胞およ び造血前駆細胞の増殖または生存を支持し得る細胞株とともに培養されて増殖し た又は生存が維持された造血幹細胞または造血前駆細胞を移植することを特徴と する造血幹細胞または造血前駆細胞の移植方法。 15. Proliferated or maintained when cultured and isolated from a mammalian fetal AGM region and cultured with a cell line capable of supporting the growth or survival of hematopoietic stem cells and hematopoietic progenitor cells. A method for transplanting hematopoietic stem cells or hematopoietic progenitor cells, comprising transplanting hematopoietic stem cells or hematopoietic progenitor cells.
1 6 . 哺乳動物胎児の A GM領域から分離、 株化され、 かつ、 造血幹細胞およ ぴ造血前駆細胞の増殖または生存を支持し得る細胞株とともに培養されて増殖し た又は生存が維持された造血幹細胞または造血前駆細胞に外来遺伝子を導入し、 該遺伝子導入細胞を移植することを特徴とする遺伝子治療法。 16. Proliferated or maintained by culturing with a cell line capable of supporting the growth or survival of hematopoietic stem cells and hematopoietic progenitor cells, isolated and established from the mammalian GM AGM region, and supporting the growth or survival of hematopoietic stem cells and hematopoietic progenitor cells. A gene therapy method comprising introducing a foreign gene into hematopoietic stem cells or hematopoietic progenitor cells and transplanting the transduced cells.
PCT/JP1998/003209 1997-07-16 1998-07-16 Agm-derived stroma cells WO1999003980A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU82437/98A AU8243798A (en) 1997-07-16 1998-07-16 Agm-derived stroma cells

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP9/191216 1997-07-16
JP19121697 1997-07-16

Publications (1)

Publication Number Publication Date
WO1999003980A1 true WO1999003980A1 (en) 1999-01-28

Family

ID=16270846

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1998/003209 WO1999003980A1 (en) 1997-07-16 1998-07-16 Agm-derived stroma cells

Country Status (2)

Country Link
AU (1) AU8243798A (en)
WO (1) WO1999003980A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002537849A (en) * 1999-03-10 2002-11-12 ユニヴァーシティ オヴ ピッツバーグ オヴ ザ コモンウェルス システム オヴ ハイアー エデュケーション Fat-derived stem cells and lattice
WO2002100898A2 (en) * 2001-06-11 2002-12-19 Kirin Beer Kabushiki Kaisha Polypeptide having an activity to support proliferation or survival of hematopoietic stem cell and hematopoietic progenitor cell, and dna coding for the same
WO2003014336A1 (en) * 2001-08-07 2003-02-20 Kirin Beer Kabushiki Kaisha Process for preparing hematopoietic stem cells
WO2003091280A1 (en) * 2002-04-26 2003-11-06 Kirin Beer Kabushiki Kaisha Polypeptide having an activity to support proliferation or survival of hematopoietic stem cell or hematopoietic progenitor cell, and dna coding for the same
WO2007040123A1 (en) * 2005-09-30 2007-04-12 Nihon University Method for detection of human precursor t cell and precursor b cell
WO2012074106A1 (en) * 2010-12-03 2012-06-07 国立大学法人京都大学 Method for production of eosinophil from pluripotent stem cell
US8486700B2 (en) 1999-08-19 2013-07-16 Artecel Sciences Inc. Multiple mesodermal lineage differentiation potentials for adipose tissue-derived stromal cells and uses thereof

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
MEDVINSKY A: "DEFINITIVE HEMATOPOIESIS IS AUTONOMOUSLY INITIATED BY THE AGM REGION", CELL, CELL PRESS, US, vol. 86, 1 January 1996 (1996-01-01), US, pages 897 - 906, XP002911191, ISSN: 0092-8674, DOI: 10.1016/S0092-8674(00)80165-8 *
ROECKLEIN B A, TOROK-STROB B: "FUNCTIONALLY DISTINCT HUMAN MARROW STROMAL CELL LINES IMMORTALIZED BY TRANSDUCTION WITH THE HUMAN PAPILLOMA VIRUS E6/E7 GENES", BLOOD, AMERICAN SOCIETY OF HEMATOLOGY, US, vol. 85, no. 04, 1 January 1995 (1995-01-01), US, pages 997 - 1005, XP002911192, ISSN: 0006-4971 *
TAVIAN M, ET AL.: "AORTA-ASSOCIATED CD34+ HEMATOPOIETIC CELLS IN THE EARLY HUMAN EMBRYO", BLOOD, AMERICAN SOCIETY OF HEMATOLOGY, US, vol. 87, no. 01, 1 January 1996 (1996-01-01), US, pages 67 - 72, XP002911190, ISSN: 0006-4971 *
WHITEHEAD R H, ET AL.: "ESTABLISHMENT OF CONDITIONALLY IMMORTALIZED EPITHELIAL CELL LINES FROM BOTH COLON AND SMALL INTESTINE OF ADULT H-2KB-TSA58 TRANSGENICMICE", PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES, NATIONAL ACADEMY OF SCIENCES, US, vol. 90, 1 January 1993 (1993-01-01), US, pages 587 - 591, XP002911193, ISSN: 0027-8424, DOI: 10.1073/pnas.90.2.587 *
XU M, ET AL.: "STIMULATION OF HUMAN PRIMITIVE HEMATOPOIESIS BY MURINE AGM-DERIVED STROMAL CELLS", BLOOD, AMERICAN SOCIETY OF HEMATOLOGY, US, vol. 90, no. 10, 15 November 1997 (1997-11-15), US, pages 483A, XP002911189, ISSN: 0006-4971 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002537849A (en) * 1999-03-10 2002-11-12 ユニヴァーシティ オヴ ピッツバーグ オヴ ザ コモンウェルス システム オヴ ハイアー エデュケーション Fat-derived stem cells and lattice
JP2015109834A (en) * 1999-03-10 2015-06-18 ユニヴァーシティ オヴ ピッツバーグ オヴ ザ コモンウェルス システム オヴ ハイアー エデュケーション Adipose-derived stem cells and lattices
US8486700B2 (en) 1999-08-19 2013-07-16 Artecel Sciences Inc. Multiple mesodermal lineage differentiation potentials for adipose tissue-derived stromal cells and uses thereof
US7320880B2 (en) 2001-06-11 2008-01-22 Nuvelo, Inc. Polypeptide having an activity to support proliferation or survival of hematopoietic stem cell and hematopoietic progenitor cell, and DNA coding for the same
WO2002100898A3 (en) * 2001-06-11 2003-05-30 Kirin Brewery Polypeptide having an activity to support proliferation or survival of hematopoietic stem cell and hematopoietic progenitor cell, and dna coding for the same
WO2002100898A2 (en) * 2001-06-11 2002-12-19 Kirin Beer Kabushiki Kaisha Polypeptide having an activity to support proliferation or survival of hematopoietic stem cell and hematopoietic progenitor cell, and dna coding for the same
WO2003014336A1 (en) * 2001-08-07 2003-02-20 Kirin Beer Kabushiki Kaisha Process for preparing hematopoietic stem cells
WO2003091280A1 (en) * 2002-04-26 2003-11-06 Kirin Beer Kabushiki Kaisha Polypeptide having an activity to support proliferation or survival of hematopoietic stem cell or hematopoietic progenitor cell, and dna coding for the same
US7439332B2 (en) 2002-04-26 2008-10-21 Kirin Pharma Kabushiki Kaisha Polypeptide having an activity to support proliferation or survival of hematopoietic stem or progenitor cells
WO2007040123A1 (en) * 2005-09-30 2007-04-12 Nihon University Method for detection of human precursor t cell and precursor b cell
JPWO2007040123A1 (en) * 2005-09-30 2009-04-16 学校法人日本大学 Method for detecting human T precursor cells and B precursor cells
WO2012074106A1 (en) * 2010-12-03 2012-06-07 国立大学法人京都大学 Method for production of eosinophil from pluripotent stem cell
US9404082B2 (en) 2010-12-03 2016-08-02 Kyoto University Method for production of eosinophil from pluripotent stem cell
JP5995237B2 (en) * 2010-12-03 2016-09-21 国立大学法人京都大学 Method for producing eosinophils from pluripotent stem cells

Also Published As

Publication number Publication date
AU8243798A (en) 1999-02-10

Similar Documents

Publication Publication Date Title
US20030175955A1 (en) Novel embryonic cell populations and methods to isolate such populations
US5744347A (en) Yolk sac stem cells and their uses
EP1424389A1 (en) Process for preparing hematopoietic stem cells
WO2012176796A1 (en) Method for amplifying nk cells
WO2012133948A1 (en) Composition for allotransplantation cell therapy, said composition containing ssea-3 positive pluripotent stem cell capable of being isolated from body tissue
US20050221482A1 (en) Methods and compositions for obtaining hematopoietic stem cells derived from embryonic stem cells and uses thereof
US8993323B2 (en) Compositions for the in vitro derivation and culture of embryonic stem (ES) cell lines with germline transmission capability and for the culture of adult stem cells
KR20160075676A (en) Method
WO2014188680A1 (en) Method for preparing nk cells
AU2018293389A1 (en) Method for producing erythroid progenitor cells
JP2014080431A (en) Amplification method of nk cells
US20230002727A1 (en) Thymus organoids bioengineered from human pluripotent stem cells
JP6164650B2 (en) Method for preparing NK cells
WO1999003980A1 (en) Agm-derived stroma cells
WO1998012304A1 (en) Culture system for hematopoietic stem cells
JP3962459B2 (en) Methods for regulating differentiation and proliferation of hematopoietic stem cells
JPWO2005056778A1 (en) Method of inhibiting or proliferating hematopoietic stem cells
WO1993002182A1 (en) Yolk sac stem cells
US20050059145A1 (en) Compositions for the in vitro derivation and culture of embryonic stem (es) cell lines with germline transmission capability and for the culture of adult stem cells
JP2001037471A (en) Production of transplantable hematopoietic cell
US20100209396A1 (en) Method of Enhancing Proliferation and/or Hematopoietic Differentiation of Stem Cells
DeLuca et al. Production of human B cells from CD34+ CD38− T− B− progenitors in organ culture by sequential cytokine stimulation

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AL AU BA BB BG BR CA CN CU CZ EE GE HR HU ID IL IS JP KR LC LK LR LT LV MG MK MN MX NO NZ PL RO SG SI SK SL TR TT UA US UZ VN YU

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: KR

NENP Non-entry into the national phase

Ref country code: CA

122 Ep: pct application non-entry in european phase