WO1998009124A1 - Heat exchanger - Google Patents

Heat exchanger Download PDF

Info

Publication number
WO1998009124A1
WO1998009124A1 PCT/JP1997/003010 JP9703010W WO9809124A1 WO 1998009124 A1 WO1998009124 A1 WO 1998009124A1 JP 9703010 W JP9703010 W JP 9703010W WO 9809124 A1 WO9809124 A1 WO 9809124A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
tube
tank
heat
tubes
Prior art date
Application number
PCT/JP1997/003010
Other languages
French (fr)
Japanese (ja)
Inventor
Kunihiko Nishishita
Original Assignee
Zexel Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP22913796A external-priority patent/JPH1073388A/en
Priority claimed from JP26291696A external-priority patent/JPH10111086A/en
Priority claimed from JP35166596A external-priority patent/JPH10197174A/en
Application filed by Zexel Corporation filed Critical Zexel Corporation
Priority to EP97937831A priority Critical patent/EP0859209A4/en
Publication of WO1998009124A1 publication Critical patent/WO1998009124A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/04Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element
    • F28F3/042Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element in the form of local deformations of the element
    • F28F3/044Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element in the form of local deformations of the element the deformations being pontual, e.g. dimples
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/03Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits
    • F28D1/0308Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits the conduits being formed by paired plates touching each other
    • F28D1/0325Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits the conduits being formed by paired plates touching each other the plates having lateral openings therein for circulation of the heat-exchange medium from one conduit to another
    • F28D1/0333Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits the conduits being formed by paired plates touching each other the plates having lateral openings therein for circulation of the heat-exchange medium from one conduit to another the plates having integrated connecting members
    • F28D1/0341Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits the conduits being formed by paired plates touching each other the plates having lateral openings therein for circulation of the heat-exchange medium from one conduit to another the plates having integrated connecting members with U-flow or serpentine-flow inside the conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/03Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits
    • F28D1/0308Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits the conduits being formed by paired plates touching each other
    • F28D1/035Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits the conduits being formed by paired plates touching each other with U-flow or serpentine-flow inside the conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/03Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits
    • F28D1/0391Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits a single plate being bent to form one or more conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/0408Multi-circuit heat exchangers, e.g. integrating different heat exchange sections in the same unit or heat exchangers for more than two fluids
    • F28D1/0426Multi-circuit heat exchangers, e.g. integrating different heat exchange sections in the same unit or heat exchangers for more than two fluids with units having particular arrangement relative to the large body of fluid, e.g. with interleaved units or with adjacent heat exchange units in common air flow or with units extending at an angle to each other or with units arranged around a central element
    • F28D1/0443Combination of units extending one beside or one above the other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/04Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element
    • F28F3/042Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element in the form of local deformations of the element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/001Casings in the form of plate-like arrangements; Frames enclosing a heat exchange core
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0202Header boxes having their inner space divided by partitions
    • F28F9/0204Header boxes having their inner space divided by partitions for elongated header box, e.g. with transversal and longitudinal partitions
    • F28F9/0209Header boxes having their inner space divided by partitions for elongated header box, e.g. with transversal and longitudinal partitions having only transversal partitions
    • F28F9/0212Header boxes having their inner space divided by partitions for elongated header box, e.g. with transversal and longitudinal partitions having only transversal partitions the partitions being separate elements attached to header boxes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0202Header boxes having their inner space divided by partitions
    • F28F9/0204Header boxes having their inner space divided by partitions for elongated header box, e.g. with transversal and longitudinal partitions
    • F28F9/0214Header boxes having their inner space divided by partitions for elongated header box, e.g. with transversal and longitudinal partitions having only longitudinal partitions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/001Casings in the form of plate-like arrangements; Frames enclosing a heat exchange core
    • F28F2009/004Common frame elements for multiple cores
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F2009/0285Other particular headers or end plates
    • F28F2009/0287Other particular headers or end plates having passages for different heat exchange media
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2210/00Heat exchange conduits
    • F28F2210/04Arrangements of conduits common to different heat exchange sections, the conduits having channels for different circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2215/00Fins
    • F28F2215/02Arrangements of fins common to different heat exchange sections, the fins being in contact with different heat exchange media

Definitions

  • the present invention combines two heat exchangers having different applications in the horizontal or vertical direction, or in the upstream and downstream sides in the ventilation direction to form a single unit. It relates to the formed heat exchanger. Background art
  • a parallel flow type heat exchanger and a single tank type heat exchanger known as heat exchangers for automobiles or home appliances include a plurality of heat exchangers. Tubes and fins are alternately laminated, and both ends of these laminated tubes are inserted and joined into insertion holes provided in tanks installed vertically or horizontally.
  • a partition plate for partitioning the tank in the longitudinal direction is provided at required locations of these tanks, and the tank is divided in the longitudinal direction, and an inlet joint and an outlet joint provided in the tank are provided.
  • the heat exchange medium is meandered several times and flows therethrough. That is, the heat exchange medium supplied to the inlet joint of the heat exchanger flows between the tanks through a tube while meandering several times, and exchanges heat with the outside when passing through the tube, It has a structure to be discharged from the outlet joint.
  • the single-tank type heat exchanger is formed by connecting a tube having a return-shaped passage to one tank.
  • a heat exchanger formed by combining two heat exchangers having different purposes in a horizontal or vertical direction is known.
  • Examples of this type of heat exchanger include, for example, Japanese Utility Model Publication No. 59-16692, Japanese Utility Model Application Publication No. 61-115,62, and Japanese Utility Model Application No. 2-637072.
  • a tube and a fin are arranged between a pair of tanks, and a partition plate is mounted in the middle of the pair of tanks. Nevertheless, it has been proposed to provide a substantially individual heat exchanger.
  • a third tank having two tank sections is disposed between the left and right tanks, and the left and right tanks are arranged. It has been proposed that tubes and fins are arranged between the tank and each tank section of the third tank, and the left and right sides are provided with substantially separate heat exchangers.
  • a plate-like plate fin is laminated, and a plurality of tubes are connected to the plate fin to communicate with each other.
  • One end of the tube is connected to an end plate constituting a tank, and a tank plate is assembled to the end plate to constitute a heat exchanger.
  • a heat exchanger in which the first heat exchanger and the second heat exchanger are formed in the body by separately providing the tank and the tank plate or separately providing the tank plate is proposed. Have been.
  • the two heat exchangers having different functions described above are integrally formed, the number of parts can be reduced, the work process can be reduced, and the cost can be reduced. Also, there is an advantage that the heat exchange space can be reduced if heat exchangers having different functions are integrally formed.
  • the heat exchanger described in Japanese Utility Model Publication No. 6-45157 is provided with a hollow portion between the two tank portions of the third tank provided at the center. To prevent heat transfer.
  • the third tank is arranged between the left and right tanks, there is a disadvantage that the heat exchange space for arranging the tubes is reduced correspondingly and the heat exchange efficiency is deteriorated.
  • individual heat exchangers with different functions are formed in the body-heat exchangers have different heat exchange temperatures and heat release rates depending on the function of each heat exchanger. For example, comparing a condenser with a condenser under a certain condition, the condenser exchanges heat with higher heat. Therefore, in a heat exchanger in which a radiator and a capacitor are integrally formed, heat is transferred to the capacitor because the heat exchange temperature of the radiator is higher, and heat dissipation of the capacitor is hindered. There is a problem that the heat exchange rate of the capacitor decreases.
  • each heat exchanger is formed via an integrally formed fin, tube, tank, or the like.
  • the heat is transferred between the heat exchangers and the heat exchangers formed integrally cannot exchange heat at the optimum temperature.
  • An object of the present invention is to provide a heat exchanger in which individual heat exchangers having different applications are integrally formed, and in which heat transfer between the heat exchangers is prevented.
  • the heat exchanger in which the two heat exchangers are integrally formed differs in the required performance such as the pressure applied to the tube itself and the required corrosion resistance of the tube depending on the function of each heat exchanger. example For example, if the first heat exchanger is a radiator and the second heat exchanger is a condenser, and the first and second heat exchangers are heat exchangers integrally formed, the radiator High corrosion resistance is required on the inner and outer surfaces of the tube.
  • capacitors are required to have high pressure resistance because they condense a high-temperature, high-pressure heat exchange medium.
  • the inner surface of the capacitor tube is in contact with the flowing heat exchange medium, corrosion Although it does not occur, the outer surface of the tube is exposed to high temperature and humidity, so high corrosion resistance is required.
  • tubes include, for example, an extrusion molding method using an improved material in which Cu is added to JISA150 or A110 (99.0 wt% A1).
  • a tube formed by such a method is known.
  • JISA 4343 or JISA 405 (A1-Si type) was added a material that would be an improved material with Zn added to the surface, It is known to use A 3 0 3 (Al—Mn system) with Zn addition.
  • the tubes When these tubes and fins are used in the first and second heat exchangers (radiators and condensers), the tubes have good pressure resistance due to the characteristics of the extruded material, In the combination of tubes, the tube surface potential is noble, and the fins are used as sacrificial anodes, so that the fins can be preferentially corroded to prevent corrosion of the tubes. Since the outer surface has good corrosion resistance, the required performance of the capacitor as the second heat exchanger can be satisfied. However, the tube has a problem in that the corrosion resistance of the inner surface of the tube is poor, and the required performance of the radiator as the first heat exchanger cannot be satisfied.
  • the tube of the first heat exchanger has JISA303 (A1-Mn system) as a core material, and JISA4343 or JISA4045 etc. is formed on the outer layer of the tube. (A1-Si series) is clad in a brazing material, and the inner layer of the tube is made of a three-layer material with JIS ⁇ 702 (A1-Zn) clad.
  • An electric resistance welded tube is formed, while the tube of the second heat exchanger is connected to J1SA1500 or A1100 (99.0 wt% Al) as in the previous example. It is formed by extrusion using the added modifier.
  • the tube of the first heat exchanger has the potential of the core material noble due to the potential difference between JISA3003, which is the core material of the tube, and JISA7072 (A) -Zn).
  • JISA3003 which is the core material of the tube
  • JISA7072 (A) -Zn JISA7072 (A) -Zn.
  • the sacrificial anode effect of JISA 707 2 improves the corrosion resistance of the inner surface of the tube, and the outer surface of the tube improves the corrosion resistance by the sacrificial anti-corrosion effect of the fin, so that the first heat The required performance of the exchanger can be satisfied.
  • a heat exchanger including a pair of tanks, and a plurality of tubes and fins provided between the tanks. At the same time, one of the passages connected to one of the tanks and the other of the passages connected to the other of the tanks are formed in a u-turn shape, and the one of the one tank and the one of the tubes is formed.
  • a first heat exchanger having a one-tank structure is formed by the u-turn shaped passage of the present invention, and a second heat exchange having a one-tank structure is formed by the other tank and the other U-turn shaped passage of the tube. This is a heat exchanger in which a heat exchanger is formed.
  • the overall shape of the heat exchanger is a heat exchanger including a pair of tanks and a plurality of tubes and fins provided between the tanks.
  • a plurality of tubes and fins are alternately stacked and mounted between a pair of tanks. Is integrated between a pair of tanks, and the pair of tanks is used to form both ends of the tube and the fin. Since the heat exchanger is supported, the rigidity of the heat exchanger can be increased. In other words, even if it has a single tank structure, it has the advantage of a parallel flow type.
  • first and second heat exchangers each have a single-tank structure
  • the advantage inherent in a single tank is that the tank is half that of a normal-flow type heat exchanger.
  • a heat exchange space can be taken up to improve heat exchange efficiency, and that the number of parts can be reduced and cost can be reduced.
  • first and second heat exchangers are structurally connected to each other, so that the rigidity is improved as described above, while the heat exchangers are adjacent to each other, so that the performance is deteriorated.
  • the blockage is provided in the middle of the tube, so that not only the exchange of the heat exchange medium is blocked, but also the blockage of both sides. Heat can be reduced as much as possible to prevent performance degradation.
  • the tube is
  • the heat exchanger is formed by combining two plates or by folding one plate in half.
  • the invention of the present application is to form a tube by combining two press-formed or roll-formed plates, or to form a tube by further folding a single pressed or roll-formed plate into half.
  • This method is applied to a device that forms a tube by folding a single plate in half while forming it in a roll.
  • the invention of the present application is the heat exchanger according to the first invention, wherein the tubes are integrally formed with a tank portion that is laminated to form a tank.
  • the heat exchanger having this configuration is of a so-called laminate type in which a tank is integrally formed with a tube. It can also be applied to the native type.
  • the invention of the present application is the heat exchanger according to the first aspect, wherein the closing portion of the tube includes a heat insulating hole.
  • the closing portion connects the passages of both the first and second heat exchangers so that the tube can be integrally formed, and minimizes the heat transfer of both tubes. By providing a hole in the closing portion, the heat insulating effect can be further improved.
  • the invention of the present application is the heat exchanger according to the first invention, wherein the closing portion of the tube includes a heat insulating cavity.
  • the heat insulating effect can be further improved by this cavity.
  • the closed portion of the tube includes a folded portion, and further, separate fins are arranged for the first heat exchanger and the second heat exchanger.
  • a heat exchanger having a configuration in which an end of the fin is positioned at the folded portion of the closing portion.
  • the fins having the performance suitable for each heat exchanger can be individually prepared.
  • the performance required for each heat exchanger can be satisfied, and the closed part has a folded part, so that the end of each fin is positioned at the folded part, and as a result, The installation of the fin is properly maintained, for example, the protrusion of the fin end is prevented.
  • the invention of the present application is the invention according to the first invention, wherein one fin is arranged over each of the first heat exchanger and the second heat exchanger.
  • Heat exchanger and second heat exchanger This is a heat exchanger with a different number of fins.
  • the invention of the present application is the heat exchanger according to the first invention, wherein the tube and the fin are integrally assembled and brazed in a furnace.
  • the tube and the fin are integrated and brazed in the furnace.
  • the tank and the tank described later are used. Any one of the tank part that forms the tank and the end plate that forms the tank will be attached at the same time.
  • the invention of the present application is the heat exchanger according to the i-th invention, wherein the tube, the fin, and the tank are integrally assembled and brazed in a furnace.
  • the tank should be a cylindrical one or a two-part tank, combined together, and fastened together with the tubes and fins.
  • the invention of the present application is the heat exchanger according to the first invention, wherein the tube, the fin, and the tank portion that is laminated to form a tank are integrally assembled and brazed in a furnace.
  • the tube, the fin, and the end plate are integrally assembled, and the furnace plate is attached thereto, and a tank plate is joined to the end plate.
  • Heat exchanger In this case, the tank is formed by the end plate and the tank plate, and after the tube, fin and end plate are brazed, the tank plate is assembled, and the seal is assembled. It is bonded by caulking using a material.
  • the invention of the present application is the heat exchanger according to the first invention, wherein a side plate is provided between the pair of tanks. In this case, the presence of the side plate causes heat exchange. The strength of the vessel is improved. The side plates should be brazed at the same time.
  • the second invention of the present application is directed to a heat exchanger in which tubes and fins are alternately laminated, and an end of the tube is inserted and connected to a tank, and a heat exchanger formed by laminating the tubes and fins is provided.
  • the heat exchanger body is divided into a first heat exchanger and a second heat exchanger, and a fin-free heat insulation area is provided between the first and second heat exchangers. The configuration of the heat exchanger.
  • the heat transfer between adjacent heat exchangers is Insulation can be performed in the service area, and an integrated heat exchanger in which the performance of each heat exchanger is prevented from deteriorating can be obtained.
  • the heat exchange space can be expanded and the heat exchange rate can be improved, and the number of parts can be increased. Is reduced, and costs can be reduced.
  • the first and second heat exchangers are vertically or horizontally adjacent to each other, and the first and second heat exchangers that are in contact with the heat insulating area are joined to each other.
  • This is a heat exchanger with a plate.
  • the joint plate that joins the first and second heat exchangers adjacent to the heat insulation area is provided, the heat insulation area is reinforced, and the heat exchanger as a whole is extended. Is reinforced.
  • the heat insulating area is formed, the pressure resistance and the like of the heat insulating area are reduced, which may cause inconvenience such as deformation of the heat exchanger during production. Therefore, by providing a joining plate in the heat insulating area formed between the heat exchangers, the heat exchanger can be reinforced and the above problem can be solved.
  • the joining plate may be provided by brazing the tube and the fin together with the joining plate in a furnace.
  • the invention of the present application is the heat exchanger according to the second invention, wherein the tank is provided with a partition to separate the first and second heat exchangers.
  • the partition is formed by at least two partition plates, and a hollow portion is formed inside the tank by the two partition plates. It is a heat exchanger of a configuration to be performed.
  • the invention of the present application is the heat exchanger according to the second invention, wherein the cavity has a communication hole communicating with the outside.
  • the outside air flows through the cavity, and the heat insulating effect of the cavity is improved.
  • the bypass due to poor connection between the two partition plates If there is a leak, it can be easily found at the time of airtight inspection, and defective products can be found early.
  • the communication hole since the communication hole is formed, external air may enter the cavity, and water may accumulate in the cavity due to environmental changes such as changes in atmospheric pressure and temperature. In this regard, the communication hole is formed in a portion below the tank. Thereby, the water in the cavity can be easily discharged to the outside, and the corrosion of the tank due to the water can be prevented.
  • the first and second heat exchangers are provided between a pair of tanks.
  • the-path connected to one tank and the other path connected to the other tank are each formed in a u-turn shape, and the one tank and the one of the tubes are formed.
  • the first heat exchanger having a one-tank structure is formed by the u-turn-shaped passage of the present invention
  • the second heat exchange having a one-tank structure is formed by the other tank and the other U-turn-shaped passage of the tube.
  • a heat exchanger, wherein the heat insulating area is formed in the closed portion that divides the tube.
  • the heat exchanger having a single tank structure when the heat exchanger having a single tank structure is integrally formed, the heat transfer generated between both heat exchangers of the heat exchanger is minimized by the closed portion. As the size of the heat exchanger is reduced, it can be blocked in the heat insulation area, so that the performance of each heat exchanger can be prevented from deteriorating.
  • the single-tank type first and second heat exchangers integrally, the heat exchange space is expanded and the heat exchange rate is improved, and the number of parts is reduced to reduce costs. This has the advantage that it can be achieved.
  • the invention of the present application is the second invention, wherein the first and second heat exchangers each have a one-tank structure and are adjacent to each other in the left-right or up-down direction, and the tube is a tank section forming a tank.
  • the tube is a tank section forming a tank.
  • a heat exchanger that is integrally molded.
  • the heat exchanger having this configuration is of a so-called laminate type in which a tank is integrally formed with a tube, and the present invention can also be applied to this laminate type.
  • the third invention of the present application is arranged such that a tube constituting the first heat exchanger and a tube constituting the second heat exchanger are disposed downstream and upstream in the airflow direction, and a space between the two tubes.
  • the first and second heat exchangers are formed by inserting and connecting the ends of the tubes to the respective tanks to form the first and second heat exchangers.
  • the tube is formed by bending a single plate made of an aluminum material or an aluminum alloy that is clad on both sides, or joining two plates.
  • the tube is formed with a closed portion that bisects the passage along the longitudinal direction, one passage forms the first heat exchanger, and the other passage forms the first heat exchanger.
  • Two heat exchangers, and the fins disposed between the tubes are:
  • a heat exchanger structure is a non-click la head material consisting Rumi material or aluminum alloy.
  • the tubes of the first and second heat exchangers are formed using a double-sided clad aluminum material or aluminum alloy, the double-sided clad material and the core material are used.
  • This potential difference makes the potential of the core material noble, and the corrosion resistance of the outer and inner surfaces of the tube can be improved by the sacrificial anode effect of the brazing material.
  • the first heat exchanger is In the second heat exchanger, the corrosion resistance of the inner surface of the tube is not so required, but the corrosion resistance and pressure resistance of the outer surface of the tube are required.
  • tubes satisfying different required performances can be integrally formed for each heat exchanger.
  • the tube since the tube has a blockage, the heat transfer of both heat exchangers can be minimized by the blockage, and the heat transfer between the heat exchangers can be reduced. Prevention, and the heat exchange rate can be improved.
  • the fin can be made of aluminum or aluminum alloy in which the brazing material is not clad.
  • the mold abrasion that occurred when the fins were formed from the clad material using the clad material was reduced, and maintenance costs could be reduced. Since the cost can be reduced, the manufacturing cost can be reduced.
  • the tube material forming the tube has an aluminum material or an aluminum alloy as a core material, and a layer serving as an inner surface of the tube and a layer serving as an outer surface of the tube have A 1 S
  • the core material is a three-layer material in which the i-type brazing material is clad, or an aluminum material or an aluminum alloy, and an aluminum material or an aluminum alloy having a lower potential than the core material.
  • aluminum or aluminum which is a three-layer or four-layer material of a double-sided clad
  • the strength of the tube is improved.
  • the tube is formed with a plurality of protrusions projecting inward in one or both passages, and tips of the protrusions are brought into contact with each other.
  • a heat exchanger having a configuration in which the tip of the projection and the flat portion are joined.
  • a protrusion is formed on one or both of the passages of the tube, and the distal ends of the protrusions are in contact with each other, or the front end of the protrusion is in contact with the plate plane, and the inside of the passage is formed.
  • the tube is formed by folding a single plate, and ends of plates constituting the tube are connected to each other by a tube tube.
  • This is a heat exchanger configured to be superimposed on a metal part, a flat part, an end part or a passage part.
  • the cross-section of the tube is reduced.
  • the left and right shapes can be made the same, the assemblability is improved, and the number of manufacturing equipment can be reduced and the manufacturing process can be simplified.
  • each of the tubes has a U-turn shape in which one passage connected to one tank and the other passage connected to the other tank are formed.
  • a first heat exchanger having a one-tank structure is formed by the tank and the one U-turn shaped passage of the tube, and the one tank is formed by the other tank and the other u-turn shaped passage of the tube.
  • This is a heat exchanger having a configuration in which a second heat exchanger having a tank structure is formed.
  • the heat exchanger of this configuration is of a one-tank type formed by joining the end of the tube on the opposite side of the u-turn-shaped passage to a tank, and the present invention is based on the one-tank type. It can also be applied to
  • Such a single-tank type heat exchanger requires only half the tank as compared with the parallel flow type heat exchanger, and the heat exchange rate is improved by increasing the contact area with air.
  • the invention of the present application is the heat exchanger according to the third invention, wherein the tube is provided with a heat insulating hole in the closed portion that bisects the passage.
  • the heat transfer of both the first and second heat exchangers can be reduced as small as possible by the blocking portion. If a heat insulating hole is formed in the closed portion, the heat transfer can be further prevented, so that there is an advantage that the heat exchange rates of both heat exchangers are improved.
  • the invention of the present application is the heat exchanger according to the third invention, wherein the tube and the fin are integrally assembled and then installed in a furnace. is there.
  • a heat exchanger having a configuration in which a tube and a fin are integrally assembled and attached to a furnace.
  • a tube and a fin are integrated into a furnace and brazed in a furnace.
  • a tank and a tank described later are configured. Either the tank part or the end plate that constitutes the tank will be attached at the same time.
  • the invention of the present application is the heat exchanger according to the third invention, wherein the tube, the fin, and the tank are integrally assembled and then installed in a furnace.
  • the tank may be a cylindrical one or a two-part tank that is integrally combined and attached together with the tube and the fin.
  • a heat exchanger having a structure in which the tube, the fin, and the tank portion which is laminated to form a tank are integrally assembled and then brazed in a furnace.
  • a heat exchanger having a structure in which a tube, a fin, and a tank portion that is laminated to form a tank are integrally assembled and brazed in a furnace.
  • the above-mentioned laminating type in which the tank is integrally formed with the tube, is integrally attached.
  • the invention of the present application is the heat exchanger according to the third invention, wherein the tube, the fin, and the end plate are joined to a tank after being brazed in a furnace.
  • FIG. 1 is a front view of a heat exchanger according to a specific example of the first invention of the present application.
  • FIG. 2 is a cross-sectional view of a tube and a tank used for a heat exchanger according to a specific example of the first invention of the present application.
  • FIG. 3 is a view of the closed portion of the tube shown in FIG. 2 as viewed from the front.
  • FIG. 4 is a cross-sectional view of a tube and a tank used for a heat exchanger according to another specific example of the first invention of the present application.
  • FIG. 5 is a view of the closed portion of the tube shown in FIG. 4 as viewed from the front.
  • FIG. 6 is a sectional view of a passage of the first heat exchanger.
  • FIG. 7 is a cross-sectional view of a passage of the second heat exchanger.
  • FIG. 8 is a cross-sectional view of a tube and a tank used for a heat exchanger according to another specific example of the first invention of the present application.
  • FIG. 9 is a front view of the closed portion of the tube shown in FIG. 8.
  • FIG. 10 According to another specific example of the first invention of the present application, a heat exchanger is used.
  • FIG. 2 is a cross-sectional view of a tube and a tank used.
  • Fig. 11 is a view of the closed portion of the tube shown in Fig. 1 ⁇ viewed from the front.
  • FIG. 12 is a view showing one tube-forming plate used for a heat exchanger according to another specific example of the first invention of the present application.
  • FIG. 13 Fold the plate shown in Fig. 12 in half and chu
  • FIG. 4 is a cross-sectional view of a passage of the first heat exchanger when a fan is formed.
  • FIG. 14 is a cross-sectional view of the passage of the second heat exchanger when the tube shown in FIG. 12 is folded in half to form a tube.
  • FIG. 15 is a front view of a heat exchanger according to another specific example of the first invention of the present application.
  • FIG. 16 is a plan view of the heat exchanger shown in FIG.
  • FIG. 17 is a plan view of the tubes of the heat exchanger shown in FIG. 15.
  • FIG. 18 is a front view of a heat exchanger in which first and second heat exchangers are combined in a vertical direction according to another specific example of the first invention of the present application.
  • FIG. 19 is a longitudinal sectional view of a tube and a tank of the heat exchanger shown in FIG. 18.
  • FIG. 20 relates to another specific example of the first invention of the present application.
  • FIG. 3 is a perspective view of a heat exchanger in which two heat exchangers are combined in a vertical direction.
  • FIG. 21 is a perspective view showing a tank portion of a heat exchanger in which first and second heat exchangers are vertically combined according to another specific example of the first invention of the present application.
  • FIG. 22 is a longitudinal sectional view of a tube of the heat exchanger shown in FIG. 21.
  • FIG. 23 is a front view of a heat exchanger according to a specific example of the second invention of the present application.
  • FIG. 24 is a perspective view of a joining plate.
  • FIG. 25 is a perspective view of a joining plate.
  • FIG. 26 is a perspective view of a joining plate.
  • FIG. 27 is a perspective view of a bonding plate.
  • FIG. 28 is a perspective view of a joining plate.
  • FIG. 29 is a perspective view of a joining plate.
  • FIG. 30 is a perspective view of a joining plate.
  • FIG. 31 is a perspective view of a bonding plate.
  • Fig. 3 2 is a cross-sectional view taken along the line X--X of the C portion of the heat exchanger shown in Fig. 23.
  • FIG. 3 is an enlarged perspective view of a portion C of the heat exchanger shown in FIG.
  • FIG. 34 is a front view of a heat exchanger according to another specific example of the second invention of the present application.
  • FIG. 35 is a front view of a heat exchanger according to another specific example of the second invention of the present application.
  • Fig. 35 is a cross-sectional view of the tube and tank shown in Fig. 35.
  • FIG. 37 is a perspective view of a heat exchanger according to another specific example of the second invention of the present application.
  • FIG. 3 8 is a sectional view taken along the line YY of the heat exchanger shown in FIG. 37.
  • FIG. 39 is a perspective view of a heat exchanger according to a specific example of the third invention of the present application.
  • FIG. 40 is a cross-sectional view of a heat exchanger according to a specific example of the third invention of the present application.
  • FIG. 41 is a perspective view of an end face portion of a tube according to a specific example of the third invention of the present application.
  • FIG. 42 is a perspective view of an end face portion of a tube according to a specific example of the third invention of the present invention.
  • FIG. 43 An end face of a tube according to a specific example of the third invention of the present application. It is a perspective view of a part.
  • FIG. 44 is a perspective view of an end face portion of a tube according to a specific example of the third invention of the present application.
  • FIG. 45 is a perspective view of an end face portion of a tube according to a specific example of the third invention of the present application.
  • FIG. 46 is a perspective view of an end face portion of a tube according to a specific example of the third invention of the present application.
  • FIG. 47 is a perspective view of an end face portion of a tube according to a specific example of the third invention of the present application.
  • FIG. 48 is a perspective view of an end face portion of a tube according to a specific example of the third invention of the present application.
  • FIG. 49 is a perspective view of an end face portion of a tube according to a specific example of the third invention of the present application.
  • FIG. 50 is a perspective view of an end face portion of a tube according to a specific example of the third invention of the present application.
  • FIG. 51 is a perspective view of an end face portion of a tube according to a specific example of the third invention of the present application.
  • FIG. 52 is a perspective view of an end face portion of a tube according to an example A of the third invention of the present application.
  • FIG. 53 is a perspective view of an end face portion of a tube according to a specific example of the third invention of the present application.
  • FIG. 54 is a perspective view of a heat exchanger according to another specific example of the third invention of the present application.
  • FIG. 55 is a cross-sectional view of the tube and tank of the heat exchanger shown in FIG. 54.
  • FIG. 56 is a perspective view of a heat exchanger according to another specific example of the third invention of the present application.
  • FIG. 57 is a perspective view of a heat exchanger according to another specific example of the third invention of the present application.
  • FIG. 1 is a front view of the heat exchanger of this example
  • FIG. 2 is a cross-sectional view of a tube and a tank used in the heat exchanger.
  • the heat exchanger 1 includes a pair of tanks 2 and 2, a heat exchanger comprising a plurality of tubes 4, 4 and fins 3a, 3a, wherein each of the tubes 4, 4 is provided with an obstruction 5 in the middle to divide the passage into two, One passage 6 connected to one tank 2 and the other passage 7 connected to the other tank 2 are each formed in a U-turn shape.
  • FIG. 3 is a view of the closing portion 5 as viewed from the front.
  • the one tank 2 and the one U-turn shaped passage 6 of the tube 4 form a first heat exchanger A having a one-tank structure, and the other tank 2 has a one-tank structure.
  • a second heat exchanger B having a single tank structure is formed by 2 and the other U-turn-shaped passage 7 of the tube.
  • the first heat exchanger A is a radiator
  • the second heat exchanger B is a condenser
  • the first and second heat exchangers A and B are combined laterally to form a heat exchanger 1. Have been.
  • each of the tanks 2, 2 is formed integrally with partition plates 2a, 2a in the longitudinal direction, and the interior is partitioned into an inlet side 20A, 20B and an outlet side 21A, 2IB.
  • the inlet joints 20 A and 20 B are connected to the inlet joints 8 A and 8 B of the heat exchange medium, and the outlet sides 21 A and 21 B are connected to the outlet joints 9 A and 9 B, respectively. I have.
  • the tube 4 may be formed by combining two press-formed or roll-formed plates, or a single press-formed or roll-formed plate. One formed by folding it in half or one formed by folding one plate in half while rolling is used.
  • the tube is made of a three-layer material with a double-sided clad or a four-layer material with an intermediate layer on the double-sided clad.
  • the heat exchange medium flows between the inlet joint 8A and the outlet joint 9A of the first heat exchanger A through the U-turn-shaped passages 6 and 6 of each tube 4 to generate heat.
  • the heat exchange medium is similarly exchanged, and the heat exchange medium flows between the inlet joint 8B and the outlet joint 9B of the second heat exchanger B through the U-turn-shaped passages 7 and 7 of each tube 4 to exchange heat. .
  • the heat exchanger 1 is essentially formed by combining the heat exchangers of the single tank structure (the first and second heat exchangers A and B). Regardless, a plurality of tubes 4, 4 and fins 3a, 3a alternately stacked are mounted between a pair of tanks 2, 2, and moreover, the tube 4 is a pair of tanks 2, 3.
  • the pair of tanks 2, 2 support the ends of the tubes 4, 4 and the fins 3a, 3a, thereby increasing the rigidity of the heat exchanger. be able to.
  • the heat exchanger 1 has a parallel flow structure even in a single tank structure. Will have the advantages of Further, in this example, since the side plate 3b is used, the strength of the heat exchanger 1 is further improved.
  • first and second heat exchangers ⁇ and B have a single tank structure (heat exchanger A is tank 2 and heat exchanger B is tank 2), the advantages inherent in one tank, namely, Since only one tank is required compared to a parallel-flow type heat exchanger, the space required for heat exchange can be increased, heat exchange efficiency can be improved, and the number of parts can be reduced, resulting in cost reduction. This has the advantage that the cost can be reduced.
  • the rigidity is improved as described above, while the closed portion is formed in the middle of the tube 4. 5, the heat exchange medium can be prevented from being exchanged with the heat exchange medium, and the closed portion 5 can minimize the heat transfer between the two as much as possible. The decline can be prevented. Further, the closing portion 5 enables the tube 4 to be integrally formed by connecting the passages of both the first and second heat exchangers ⁇ and ⁇ .
  • the closed part 5 of the tube 4 has holes 5a and 5a for heat insulation.
  • the provision of the holes 5a and 5a in the closing portion 5 makes it impossible to further improve the heat insulating effect.
  • the tube 4 is formed by combining two plates 4a and 4b, and in this example, the hole 5a is made different from that of the previous example. Are also large.
  • the plates 4a and 4b are formed by press or roll forming.
  • FIG. 6 is a cross-sectional view of the passage 6 of the first heat exchanger A
  • FIG. 7 is a cross-sectional view of the passage 7 of the second heat exchanger B.
  • the ridges 60, 70 and the plate surface are joined to form the passages 6, 7 in a U-turn shape.
  • the bead 7a and the plate surface are joined to improve the pressure resistance and generate a turbulent flow in the heat exchange medium to improve the heat exchange efficiency.
  • FIGS. 8 and 9 show another specific example of the tube 4 in which a closed portion 5 of the tube 4 is provided with a cavity 5b for heat insulation.
  • the heat insulation effect can be further improved by the cavity 5b.
  • FIGS. 10 and 11 show another specific example of the tube 4 in which the closed portion 5 of the tube 4 is provided with folded portions 5c, 5c. Further, separate fins 3a are arranged in the first heat exchanger A and the second heat exchanger B, and the ends of the fins are positioned at the folded portions 5c and 5c of the closing portion 5. ing.
  • each fin 3a is arranged for the first heat exchanger A and the second heat exchanger B, so that fins with performance suitable for each heat exchanger must be prepared individually. As a result, the required performance of each heat exchanger can be satisfied.
  • the closing portion 5 has the folded portions 5c, 5c, the ends of each fin 3a are positioned by the folded portions 5c, 5c. Proper installation of the fins will be maintained, such as preventing them from popping out.
  • one fin may be provided for each of the first heat exchanger A and the second heat exchanger B.
  • the fins are provided so that the number of fins is different between the first heat exchanger A and the second heat exchanger B.
  • it is economical because only one kind of fin is required.
  • by changing the number of fins in the first heat exchanger and the second heat exchanger to change the fin pitch it is possible to meet the required performance of each heat exchanger. You.
  • one plate 4c is folded in half to form a tube 4.
  • FIG. The tube 4 is formed by further folding the pressed or roll-formed plate 4 c in half, or by folding the plate 4 c in half while rolling. .
  • FIGS. 15 to 17 are of a laminated type in which the tank portions 2 b and 2 b which are laminated to form the tanks 2 and 2 are integrally formed with the tube 4.
  • the heat exchanger 1 is a heat exchanger having a plurality of tubes 4, 4 and fins 3a, 3a between a pair of tanks 2, 2. Tubes 4 and 4 are provided with an obstruction 5 in the middle to divide the passage into two, and one passage 6 connected to one tank 2 and the other passage 7 connected to the other tank 2 have U-turns respectively. It is press formed into a shape.
  • one tank 2 and one U-turn-shaped passage 6 of the tube 4 form the first heat exchanger A having a single tank structure, and the other tank 2 and the tube 4 are connected to each other.
  • the other U-turn-shaped passage 7 forms a second heat exchanger B having a single tank structure.
  • the fins 3a are separately arranged in the first heat exchanger A and the second heat exchanger B. Therefore, a fin having a performance suitable for each heat exchanger can be individually prepared, thereby satisfying the required performance of each heat exchanger.
  • one fin may be arranged for each of the first heat exchanger A and the second heat exchanger B.
  • the fins are provided so that the number of fins is different between the first heat exchanger A and the second heat exchanger B, and the fins can be adapted to the required performance of each heat exchanger. Can be.
  • FIGS. 18 and 19 are for the first and second heat exchangers. , B are combined in the vertical direction to form a heat exchanger 1, which comprises a plurality of tubes 4, 4 and a plurality of tubes between a pair of upper and lower tanks 2, 2.
  • a heat exchanger equipped with a heat exchanger 3a, 3a, and each of the tubes 4, 4 is provided with a closed part 5 in the middle as in the previous example to divide the passage into two parts, and is connected to one of the tanks 2
  • the passage 6 and the other passage 7 connected to the other tank 2 are each formed in a U-turn shape.
  • each of the above specific examples is a heat exchanger 1 in which the tubes 4, 4 and the fins 3a, 3a are assembled together and the furnace is put in the furnace. That is, each of the heat exchangers 1 shown in Fig. 1, Fig. 15 and Fig. 18 basically includes the tubes 4, 4 and the fins 3a, 3a integrated into a furnace and brazed in the furnace. In addition to the brazing of the tubes and the fins, the tanks 2 and 2 (heat exchangers in FIGS. 1 and 18) and the tank 2 that constitutes the tanks 2 and 2 b, 2b (heat exchanger in Fig. 15) are simultaneously brazed to form a heat exchanger. On the other hand, the heat exchangers shown in FIGS. 20 to 22 are so-called retrofitted tanks and are of the caulking type and the tank separate type.
  • the first and second heat exchangers A and B are vertically combined to form a heat exchanger 1.
  • the heat exchanger 1 is composed of a pair of upper and lower heat exchangers.
  • a heat exchanger provided with a plurality of tubes 4, 4 and fins 3a, 3a between tanks.
  • Each of the tubes 4, 4 is provided with a closed part in the middle as in the previous example to provide a passage.
  • Bifurcated, one passage connected to one tank and the other passage connected to the other tank are each formed in a U-turn shape.
  • This heat exchanger 1 is connected to the first heat exchanger A.
  • the tubes 4 and 4, the fins 3 a and 3 a and the end plate 2 c This is a heat exchanger with a structure in which the components are assembled together and the furnace is put in the furnace, and then the tank plate 2d is joined to the end plate 2c. That is, in this case, the tank 2 is formed by the end plate 2c and the tank plate 2d, and the tubes 4, 4; the fins 3a, 3a; After brazing 2c, the tank plate 2d is assembled and joined by caulking using a sealing material not shown. If the pressure resistance required of the heat exchanger is not so high, a structure such as tank 2 in Fig. 20 that uses a sealing material to connect by caulking or the like is also possible.
  • the heat exchanger 1 is formed by combining the first and second heat exchangers B and B in the vertical direction.
  • a heat exchanger having a plurality of tubes 4, 4 and fins 3a, 3a between a pair of tanks provided, wherein each tube 4, 4
  • the passage is bisected by providing a blocking portion 5, and one passage connected to one tank and the other passage connected to the other tank are each formed in a U-turn shape.
  • a tank 2 is formed by an end plate 2c and a tank plate 2d, and tubes 4, 4 and fins are formed.
  • 3a, 3a, end plate 2c and tank plate 2d are formed by soldering together in a furnace.
  • the heat exchanger of this specific example is basically one in which the tube and the fin are integrated and brazed in the furnace.
  • the tank, the tank, the tank part constituting the tank, the end plate constituting the tank, etc. can be brazed at the same time.
  • the tanks should be cylindrical or two-part tanks. It can be brazed together with the tubes and fins.
  • the tube, fins, and the tank part that is laminated to form a tank are assembled together, that is, a laminated type in which the tank part is integrally formed with the tube is placed in a furnace. And can be. Further, it is also possible to adopt a configuration in which the tube, fin, and end plate are integrally assembled and brazed in a furnace, and then the tank plate is joined to the end plate.
  • the combination of the two heat exchangers has been described as an example of a horizontal or vertical combination.However, the heat exchange formed by combining the two heat exchangers in the horizontal direction has been described.
  • a third heat exchanger may be combined on the upper and lower sides or both sides of the heat exchanger, or a third heat exchanger may be formed on one or both sides of a heat exchanger formed by vertically combining two heat exchangers.
  • the heat exchanger can be formed by an appropriate combination such as a combination of the above heat exchangers.
  • FIG. 23 shows a front view of the heat exchanger of this specific example.
  • This heat exchanger 1 has a plurality of tubes 4 forming a first heat exchanger A between a pair of tanks 2 and 2.
  • A, 4A, fins 3a, 3a, and a plurality of tubes 4B, 4B forming the second heat exchanger B and fins 3a, 3a are stacked in parallel and alternately with each other.
  • the two ends of the stacked tubes 4 are inserted into and connected to tube insertion holes formed in the tank 2. That is, in the heat exchanger], a pair of tanks 2 and 2 are erected on the left and right of the tube, and both ends of the tubes 4 A and 4 A constituting the first heat exchanger A are connected to the upper side of the tank 2.
  • Tubes 4 B, 4 B constituting the second heat exchanger B are connected to the lower side of the tank 2, and the first and second heat exchangers A, B are connected in parallel in the vertical direction. Is formed.
  • the first heat exchanger A has a radiator and the second heat exchanger B has a condenser. Is formed.
  • the upper and lower openings of the tank 2 are closed by caps 3c.
  • the tank 2 is formed by rolling a flat plate material into a circular tube shape. The ends of the side plates 3b, 3b are inserted and joined to the side plate connection holes.
  • one tank 2 is connected to inlet / outlet joints 8 A and 9 A communicating with the first heat exchanger A and the inlet joint 8 B communicating with the second heat exchanger B, and the other tank 2 is connected to the other tank 2.
  • the outlet joint 9B communicating with the second heat exchanger B is connected.
  • partition plates 10 for partitioning the inside of the tank 2 in the longitudinal direction are provided at required positions of both the tanks 2.
  • the heat exchange medium flows between the inlet joints 8A and 8B and the outlet joints 9A and 9B in a meandering manner a plurality of times. That is, the heat exchange medium supplied to the artificial joints 8A and 8B of the heat exchanger 1 forms the first heat exchanger A and the second heat exchanger B from the left and right tanks 2 and 2, respectively. It flows through the tubes 4 ⁇ and 4B in a meandering manner a plurality of times. When passing through the tubes 4A and 4B, it exchanges heat with the outside, and the outlet joints 9A and 9B force Is discharged.
  • the tubes 4A and 4B may be formed by extrusion molding, formed by combining two plates formed by press or mouth-forming, or formed by pressing or roll-forming one plate. Further, a plate formed by folding the plate further in half or a plate formed by folding one plate in half while performing roll forming is used. Also, as the material of the tube, an extruded material, a three-layer material of a double-sided clad, a four-layered material having a middle layer in a double-sided clad, and the like are used.
  • the heat exchanger 1 is provided between the tube 4A constituting the first heat exchanger A and the tube 4B constituting the second heat exchanger B, and a heat insulation area 1 1 without a fin 3a interposed therebetween. Are formed. As described above, when the heat insulating section 11 is formed between the first heat exchanger A and the second heat exchanger B, the heat insulating section 11 transfers heat between the heat exchangers. In this way, the first heat exchanger A and the second heat exchanger B can exchange heat at the optimum temperature. For this reason, it is possible to provide an integrated heat exchanger that prevents performance degradation of each heat exchanger.
  • the heat exchange space can be expanded and the heat exchange rate can be improved. At the same time, the number of parts is reduced, and costs can be reduced.
  • a joint plate 12 having a length substantially equal to the length of the tubes 4A and 4B is provided in a heat insulating area 11 formed between the vertically adjacent tubes 4A and 4B.
  • the tubes 4A and 4B, the fins 3a and 3a, and the joining plate 12 are brazed together in the furnace.
  • the heat exchanger 1 since the heat insulating area 11 is formed, the pressure resistance and the like of the heat insulating area 11 may be reduced, and inconvenience such as deformation may occur during production. By disposing the joining plate 12 in the heat insulating area 11, the inconvenience can be solved and the heat exchanger_L ⁇ can be reinforced.
  • the joining plate 12 is a flat joining material.
  • the joining plate is formed by bending a joining plate into a rectangular shape or a wavy shape.
  • the joining plate is made of a three-layered material of double-sided clad or a bare material, and the joining plate 12 together with the tube and fins is integrally formed by brazing in a furnace. You.
  • the pressure resistance of the bonding plate can be improved, the heat transfer area decreases, and the heat transfer between the two plates decreases. Heat can be prevented.
  • FIGS. 24 to 31 show specific examples in which the joining plate is bent into a rectangular shape or a wavy shape.
  • the long side direction of the joining plate which is a flat plate material, is represented by the longitudinal direction
  • the short side direction is represented by the vertical direction
  • the long side is represented by the long end
  • the short side is simply represented by the end.
  • both ends of the joining plate are bent twice in the vertical direction to form an end joining portion 12a having a square frame shape with a partially open side surface. Further, the central flat portion is bent in the vertical direction at an equal interval to form a plurality of projections 12 b and a plurality of turns 12 c to form a bonding plate 12 (1). Is molded.
  • the joining plate] 2 ( ⁇ ) improves the strength such as pressure resistance at both ends by the end joining portion 12a, and has a central portion by a plurality of convex portions 12b and concave portions 12c. It also has improved pressure resistance.
  • the joining plate 12 (1) is formed unevenly in this way, for example, the flat surface of the end joining portion 12a and the flat surface of the convex portion 12b are joined to the tube 4A.
  • the tube 4B is formed by joining the opposite surface of the end joining portion 12a of the joining plate 12 (1) and the flat surface of the concave portion 12c to the joining plate 12 (1) and the tubes 4A and 4B. Since the heat transfer area of B is reduced, the heat transfer between the first heat exchanger and the second heat exchanger can be reduced.
  • Fig. 25 shows a joint plate that is approximately half the length in the longitudinal direction of the tube 4 when it is bent, and both ends of the joint plate are bent twice in the vertical direction.
  • a joining plate 12 (2) having a joining portion 12d having a rectangular end is formed.
  • the joining plate 12 (3) shown in FIG. 26 is obtained by bending both ends of the joining plate into a rectangular shape in the vertical direction, and joining both ends of the joining plate 12 (3).
  • the L-shaped joint 1 2 e L-shaped cuts are formed from the two long ends at predetermined intervals on the plane portion of the central portion, and the four pieces formed by the cuts are vertically diffracted twice.
  • four L-shaped protrusions 12 f having a height substantially equal to the protrusions 12 e are formed inwardly of the joining plate 12 (3).
  • Fig. 27 shows a welded plate 12 (4) in which the welded plate is bent sequentially in the vertical direction to form a wavy shape.
  • FIG. 28 shows a joining plate 12 (5) having a joining portion 12 g formed by bending both long ends of the joining plate into a rectangular shape in the longitudinal direction.
  • FIG. 29 shows a joining plate 12 (6) having a structure in which a plurality of holes 12h are formed in a plane portion of the joining plate 12 (5).
  • FIG. 30 shows a joining plate 1 2 (7) in which both long ends of the joining plate are bent into a rectangular shape in the longitudinal direction, and a flat portion is bent in the longitudinal direction so as to form recesses 1 2 i. ).
  • FIG. 31 shows a joining plate 12 (8) in which the joining plate is bent into a wavy shape in the longitudinal direction.
  • the joining plate 12 shown in these specific examples improves the heat exchanger's strength, such as pressure resistance, by bending and joining the joining plate, and forms the first heat exchanger A.
  • the heat transfer area between the tube 4A and the tube 4B constituting the second heat exchanger B is reduced to prevent heat transfer between both tubes.
  • the joining plate 12 is formed by bending the joining plate into a wave shape in the vertical direction or the longitudinal direction.
  • Fig. 32 shows a cross-sectional view of a part of heat exchanger 1 (part C in Fig. 23), and Fig. 33 shows a part of tank 2 that constitutes heat exchanger 1 (part C in Fig. 23).
  • a perspective view of the partition plate 10 is shown. The arrow in the figure indicates the direction of gravity.
  • a heat insulating area 11 is formed between the tube 4A and the tube 4B, and the tank 2 on the extension of the heat insulating area 11 Between the tube 4A and the tube 4B, two slits] 3, 13 of a predetermined shape are formed.
  • the partition plate 10 has a large diameter portion 10a corresponding to the outer periphery of the tank 2, a small diameter portion 10b corresponding to the inner periphery of the tank, and a large diameter portion 10a and a small diameter portion 10b. It is molded with the step 10 c provided at the point.
  • the heat exchanger A and the heat exchanger B are formed in the heat insulating area 11. Since the heat conduction generated in the first heat exchanger A and the second heat exchanger B can be prevented, the heat exchangers used for two different purposes can be used as a common tank without deteriorating the performance of the first heat exchanger A and the second heat exchanger B. It can be formed integrally.
  • the communication hole 15 for communicating the cavity portion 14 with the outside is formed, the inside of the tank 2 is not obstructed by the poor joining or brazing of the partition plates 10, 10. When a non-defective product is formed, the communication hole 15 This makes it possible to check for leaks and to find defective products at an early stage.
  • the first and second heat exchangers A and B are arranged in parallel in the horizontal direction and heat is removed.
  • This heat exchanger 1 has a plurality of tubes 4A, 4B and fins 3a, 3a vertically connected between a pair of upper and lower tanks 2, 2. Between the tube 4A constituting the first heat exchanger ⁇ ⁇ adjacent to the left and right and the tube 4B constituting the second heat exchanger B as in the previous example. 1 is formed.
  • the heat insulating area 11 is provided with a bonding plate 12.
  • the tubes 4 A and 4 B of the upper and lower tanks 2 to which the tubes 4 A constituting the first heat exchanger A and the tubes 4 B constituting the second heat exchanger B adjacent to each other are connected. Between them, two partition plates 10 and 10 are provided, and the inside of the tank 2 is closed to form a cavity (not shown). On the outer wall of the tank 2 constituting the hollow portion, a communication hole 15 for communicating the hollow portion with the outside is formed in a portion below the gravity direction.
  • FIGS. 35 and 36 form a laminated tank 2.
  • the formed tank portions 2b and 2b are of a laminated type integrally formed with the tubes 4A and 4B.
  • the heat exchanger 1 is a single-tank type heat exchanger having tank portions 2b, 2b and fins 3a, 3a between the tubes 4, 4.
  • the tubes 4A and 4B are provided with partitioning ridges 22 from one end formed in the tank 2 to the vicinity of the other end of the body.
  • the forward and backward paths of the heat exchange medium are formed in the tubes 4A and 4B along the longitudinal direction, and the path is formed in a U-turn shape at the other end.
  • no fin 3a is interposed between the tubes 4A constituting the first heat exchanger A and the tubes 4B constituting the second heat exchanger B adjacent to each other on the left and right.
  • a heat insulating area 11 is formed, and a joining plate 12 is provided in the heat insulating area 11 described above. Therefore, since the heat conduction of the first heat exchanger ⁇ and the second heat exchanger B is insulated in the heat insulating area 11, the required performance of each heat exchanger can be satisfied.
  • the tubes 4A, 4B and the fins 3a, 3a constituting the first and second heat exchangers A, B are connected vertically to the tank 2.
  • the first and second heat exchangers A and B are combined in parallel to form a one-tank type heat exchanger 1, and tubes 4A constituting the first heat exchanger adjacent to the left and right sides are formed.
  • a heat insulating area 11 without the fin 3a is formed between the tube 4B and the second heat exchanger, and a joining plate 12 is arranged in the heat insulating area 11.
  • Each of the tubes 4A and 4B is provided with a projection 22 for partitioning from one end side formed in the tank 2 to the vicinity of the end on the other end side.
  • a forward path and a return path of the heat exchange medium are formed along the longitudinal direction, and at the other end side, the path is formed in a U-turn shape.
  • the tank 2 is Tubes 4A and 4B, fins 3a and 3a, and end plate 2c, which are formed integrally with each other, and which is formed by tank 2d and tank plate 2d.
  • This is a heat exchanger that attaches the tank plate 2d to the end plate 2c by torch, welding, and force-staking.
  • the tube 4A, 4B, the fins 3a, 3a, the end plate 2c, and the tank plate 2d may be integrally formed in a furnace.
  • the tubes 4 A and 4 A of the tank 2 to which the tube 4 A constituting the first heat exchanger A and the tube 4 B constituting the second heat exchanger B are connected By providing two partition plates 10 and 10 between the tubes 4B and closing the inside of the tank 2, a cavity 14 formed inside the tank 2 is formed.
  • a communication hole 15 is formed on the outer wall of the tank 2 that constitutes 4 at a portion below the direction of gravity. That is, in this example, the communication hole 15 is formed in the end plate 2c.
  • the heat exchanger of this specific example is basically one in which the tube and the fin are integrated and brazed in the furnace.
  • One of a joining plate, a tank, a tank portion forming a tank, an end plate forming a tank, and the like can be simultaneously brazed.
  • the tank is formed by rolling the tank material into a round tube, or by dividing it into two parts, or by assembling the tube with the fin and the tank part that is laminated to form the tank. It is possible to mount a laminated type with the integral molding in the furnace.
  • the combination of the two heat exchangers is described as an example in which the combination is horizontal or vertical. Is formed by combining a third heat exchanger on one or both of the upper and lower sides of the heat exchanger formed by combining in the horizontal direction, or by combining two heat exchangers in the vertical direction.
  • the heat exchanger can be formed by an appropriate combination such as combining a third heat exchanger on one or both sides of the heat exchanger.
  • FIG. 39 is a perspective view of the heat exchanger of this embodiment
  • FIG. 40 is a cross-sectional view of the heat exchanger.
  • the heat exchanger 1 is arranged between a pair of tanks 2 and 2 in parallel with each other. This is a heat exchanger with multiple fins 3a, 3a and tubes 4, 4, which are alternately stacked. As will be described later, the passage inside the tube 4 is divided into two by a closing portion 5.
  • a partition plate is formed in a longitudinal direction with a 2a force-body, and the tanks 2A and 2A of the first heat exchanger A and the tank 2B of the second heat exchanger B are formed inside.
  • the inlet joints 8A, 8B are connected to one tank, and the outlet joints 9A, 9B are connected to the other tank, respectively.
  • the upper and lower ends of the tanks 2B, 2B are closed by caps 3c, 3c.
  • the tanks 2 at the upper end and the lower end of the stacked tubes 4 and 4 are provided with side plate connection holes (not shown), and these side plate connection holes have a U-shaped cross section. G3b, both ends of 3b are inserted and joined.
  • a partition plate (not shown) for partitioning the inside of the tank 2B of the second heat exchanger B in the longitudinal direction is provided at a required portion of the tank 2B, and the inside of the tank is divided into a plurality. Divided.
  • the first heat exchanger A is a radiator
  • the second heat exchanger B is a condenser
  • the first and second heat exchangers A and B are arranged downstream and upstream in the ventilation direction and combined. 1 is formed.
  • tube 4 contains two plates. Both ends 4 m and 4 n are formed by joining both ends of the tube.
  • the tube 4 is divided into two passages in the longitudinal direction of the tube by a closed portion 5, and is connected to one of the tanks 2 A and 2 A. Path 6 and the other path 7 connected to the other tanks 2B, 2B.
  • the heat exchange medium flows between the inlet joints 8A and 8B and the outlet joints 9A and 9B through the passages 6 and 7 of the tube 4 to exchange heat.
  • the passage 7 is formed with beads 7 a, 7 a having a U-shaped cross section projecting inward of the tube, and the tip of the bead 7 a is joined to the plate surface.
  • the bead 7a has an oval shape.
  • the pressure resistance of the tube 4 is improved, and an appropriate turbulence is generated in the flow of the heat exchange medium to generate heat.
  • the exchange rate can be improved, and the required performance of each heat exchanger can be satisfied.
  • the tube material is made of a JIS ⁇ 303 alloy (Al-Mn-based) as a core material, and JISA4045 (A1-S) is formed on both the inner layer and the outer layer of the tube.
  • JIS ⁇ 303 alloy Al-Mn-based
  • JISA4045 Al-Si series
  • Three-layer material clad with i-type) as brazing material, or JISA 300 (A1-Mn-type) as the core material and 100-type in the layer inside the tube 99.0 wt%
  • Aluminum alloy is clad, and JISA4045 (Al-Si series) is applied to both the inner layer and outer layer of the tube.
  • Four layers of clad material are used as the filler material.
  • the potential difference between the core material and the filler material makes the potential of the core material noble.
  • the corrosion resistance of the outer and inner surfaces of the tube can be improved by the sacrificial anode effect of the brazing material.
  • the surface of the intermediate layer can be sacrificed with uniform sacrificial protection.
  • the pitting resistance of the inner surface of the tube is improved.
  • the tube is formed using a three-layer material in which the filler material is clad on both sides of the core material, or a four-layer material in which the filler material is clad in the core material and the intermediate layer.
  • the strength of the tube itself such as pressure resistance, is improved.
  • aluminum or aluminum alloy used for the three-layer material or the four-layer material includes, for example, Si and Mg added. Precipitation of the intermetallic compound Mg 2 S i using an aluminum alloy to improve the strength of the material and to improve the structural strength of the heat exchanger, and to improve the corrosion resistance of the wax An element containing an element can be used.
  • the tube has a blockage
  • the heat conduction of both heat exchangers can be made as small as possible at the blockage, preventing heat transfer between the heat exchangers.
  • the heat exchange rate can be improved.
  • the inner and outer surfaces of the tube can be formed. Both are required to have high corrosion resistance.Also, unlike the condenser that is the second heat exchanger B, the inner surface of the tube is not required to have much corrosion resistance, but the outer surface of the tube is required to have corrosion resistance and pressure resistance.
  • heat exchangers with different applications are integrally formed in a single application, it is possible to integrally form tubes that satisfy different performance requirements for each heat exchanger.
  • the number of parts can be reduced and the manufacturing cost can be reduced.
  • the fin 3a is made of an aluminum material or an aluminum alloy in which the tube 4 is clad on both sides, so that the fin material is clad with the fin material.
  • Aluminum alloy bare material can be used.
  • it can be formed by using JISA 300 (8.1-1 ⁇ system) to which 1.5% Zn has been added, and the filler material is made of a material that is not clad.
  • wear of the mold during fin formation can be reduced, and maintenance costs can be reduced.
  • the fin can be formed without using the clad material as the filler material, the material cost can be reduced, and the manufacturing cost can be reduced.
  • the fin 3a and the tub 4 are combined.
  • the potential of the tube becomes noble, and the sacrificial anode effect of preferentially corroding the fin 3a prevents the outer surface of the tube from being corroded and improves the corrosion resistance of the outer surface of the tube.
  • FIGS. 42 to 44 are other specific examples of the tube 4 formed by using two plates as in the example shown in FIG. 41, and are perspective views as viewed from the end face of the tube. Is shown.
  • the tube 4 is formed by bending the plate so that the bead 7 b projects inward, and the bead 7 b is formed in the longitudinal direction of the tube 4. Is formed over The tip of head 7b is joined to the plate surface.
  • the tube 4 shown in FIG. 43 has a U-shaped bead 7 c with a cross section protruding inward, and the bead 7 c is also in the longitudinal direction of the tube 4 in this example.
  • To! Formed. The tip of this bead 7c is joined to the plate surface.
  • the tube 4 shown in Fig. 44 has a round bead 7d with a U-shaped cross section that protrudes inward, and the tip of the bead 7d is joined to the plate surface. .
  • a tube is formed by using two plates, but a tube formed by folding a single plate formed by pressing or roll further into half, or Beads can also be formed on tubes formed by folding a single plate in half while forming the mouth.
  • FIGS. 45 to 48 are perspective views as viewed from the end face of the tube.
  • One plate is folded in half, and the plate ends 4 m and 4 n are connected to one tube end.
  • the tube 4 is formed with long beads 7 e, 7 e having a U-shaped cross section projecting inward from one of the passages 7, and the flat shape of the long beads 7 e, 7 e. Has an oval shape. The tips of the beads 7e are in contact with each other.
  • the tube 4 has a plate that is bent so as to protrude inward to form a bead 7f along the longitudinal direction of the tube.
  • the tips of 7 f and 7 f are in contact with each other.
  • the tube 4 is formed with a bead 7 g having a U-shaped cross section protruding inward over the longitudinal direction.
  • the tips of this bead 7 g are in contact with each other.
  • FIG. 49 shows another specific example of the tube 4 in which a plurality of beads 7 c and 7 c are formed in one passage 7 of the tube 4 and the other.
  • a bead 6c protruding inward is also formed in the passage 6 of the vehicle, and these beads 6c and 7c are joined to the opposing plane.
  • the beads 6c and 7c are long beads formed along the longitudinal direction of the tube.
  • a bead is formed not only in one passage but also in the other passage so as to improve the heat exchange rate and further satisfy the required performance of each heat exchanger such as pressure resistance. I am doing it.
  • FIGS. 50 to 53 are perspective views as viewed from the end face of the tube.
  • the tube 4 is formed using a single plate. The joining form and the joining portion of the end are changed.
  • a long bead 7c protruding inward in the longitudinal direction of the tube is formed in one of the passages 7, and the tip of the bead 7c is a plate.
  • Both ends 4 m and 4 n of the plate are bent at the tube end so as to protrude inward of the tube, and the planes of the bent ends 4 m and 4 n are joined to each other.
  • a plurality of long beads 7c are provided in one of the passages 7 in the longitudinal direction of the tube. Then, one plate end 4 m is bent into an L shape at the passage 7 and joined to the plate surface, and the other plate end 4 n is similarly bent at the same portion. It is bent in a letter shape and joined so as to overlap on the plate end 4 m. That is, the plate ends 4 m and 4 n form one long bead having a U-shaped cross section.
  • the tube 4 shown in Fig. 52 has a long bead 7c in one passage 7
  • the plate ends 4 m and 4 n are overlapped and joined on a plane that is formed and on which the bead 7 c is not formed. That is, the bead 7c, which is joined to the plane portion where the both ends 4m and 4n of the plate are joined, is formed in a U-shape which is shallower than the other beads, and this bead 7c, One plate end 4 m and the other plate end 4 n are overlapped and joined at the tube flat part to be joined.
  • a plurality of beads 7 c are formed in one passage 7, and both ends 4 m and 4 n of the plate protrude inward at the center of the other passage 6.
  • the surfaces of the bent end portions 4 m and 4 n are joined together, and the end portions 4 m and 4 n are joined to the tube flat portion. That is, the plate ends 4 m and 4 n serve as a bead for joining and forming a tube, and also for dividing the passage 6 into two.
  • the joining form and the joining portion are changed without joining the plate end so that the plate end protrudes outward at the tube end.
  • the outer shape of the tube can be made almost the same on the left and right sides by joining the tube at the end, bead, flat surface, or passage portion of the tube. Since it is not necessary to open a tube insertion hole of a different shape in the tank, manufacturing equipment is reduced, tube assemblability is improved, and the manufacturing process can be simplified.
  • the plate ends are joined to each other with a layer that forms the outer surface of the tube, when forming a tube that does not require corrosion resistance on the inner surface of the tube, or when an intermediate layer having a potential difference from the core material becomes the inner layer of the tube In the case where the tube is covered, it is not necessary to clad the filler material in the layer to be the inner surface of the tube, so that the production cost can be reduced.
  • the heat exchanger 1 is formed by combining the first and second heat exchangers A and B of a single tank type in parallel.
  • the heat exchanger 1 shown in Fig. 54 is a heat exchanger equipped with a plurality of tubes 4, 4 and fins 3a, 3a connected to tanks 2A, 2B.
  • Each of the tubes 4, 4 is formed using one or two plates of aluminum or aluminum alloy which is a three-layer or four-layer material of a double-sided clad, as in the previous example.
  • the tube 4 is divided into two passages in the longitudinal direction of the tube by the obstruction 5, and is connected to one passage 6 connected to one tank 2A and the other tank 2B.
  • Another passage 7 is formed.
  • Protrusions 60, 70 are formed at the center of each of the passages 6, 7, and these ridges 60, 70 are joined to the bracket surface, or ridges 60, 70 are formed. 60 or ridges 70, 70
  • the same soil is joined, and each passage 6, 7 is formed in a U-turn shape. 7a and 7a are oval long beads, and these long beads 7a and 7a are joined to the plate surface, or the long beads 7a and 7a are joined to each other. ing.
  • the tank is halved in comparison with a normal flow type heat exchanger, and the contact area with air is increased, thereby improving the heat exchange rate.
  • there is an advantage that the number of parts is reduced and cost is reduced.
  • the single-tank type first and second heat exchangers A and B are arranged in parallel so that the tank positions are alternated. Is located on the left and the other tank 2B is located on the right. A plurality of tubes 4, 4 and fins 3a, 3a are provided between the tank 2A and the tank 2B, and each of the tubes 4, 4 is provided with a closed portion 5 in the middle thereof as in the previous example. Is divided into two, and one passage 6 connected to one tank 2A and the other passage 7 connected to the other tank 2B are each formed in a U-turn shape.
  • the tubes 4 and 4 are formed using one or two plates of aluminum or aluminum alloy which is a three-layer or four-layer material of a double-sided clad. .
  • the heat exchanger formed by combining the first and second heat exchangers A and B of the single tank type can be mounted on both sides when assembled to the vehicle body. The assemblability is improved.
  • FIG. 57 The specific example shown in FIG. 57 is a laminated type in which the tank portions 2b and 2b forming the stacked tanks 2A and 2B are integrally formed with the tubes 4 and 4.
  • the heat exchanger 1 has a plurality of tubes 4, 4 between two pairs of tanks 28, 2A and 2B, 2B arranged in parallel.
  • each of the tubes 4 and 4 is provided with a blocking portion 5 on the way to divide the passage in the longitudinal direction into two, and one passage 6 connected to one of the tanks 2 ⁇ ⁇ ⁇ and 2 ⁇ and the other The other passage 7 connected to the tanks 2B, 2B is formed.
  • the tubes 4, 4 are formed using one or two plates of aluminum or aluminum alloy that is a three-layer material or a four-layer material of a double-sided clad. Tubes satisfying the required performance of each vessel are integrally molded.
  • the heat exchanger of this specific example is basically one in which the tube and the fin are integrated and brazed in the furnace, and the heat is attached to the tube and the fin.
  • joining plate, tank
  • any one of a tank part constituting the tank, an end plate constituting the tank, and the like can be brazed at the same time.
  • the tank is formed by rolling the tank material into a round tube, or by dividing it into two parts, or by assembling the tube and the fin and the tank part that is laminated to form the tank.
  • the integrally molded laminate type can be brazed in a furnace.
  • the present invention is applied to a heat exchanger for automobiles and home electric appliances, and is particularly used as a heat exchanger for automobiles in which a radiator and a capacitor are integrally formed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

A heat exchanger (1) including a pair of tanks (2 and 2), and a plurality of tubes (4, 4) and fins (3a, 3a) interposed between these tanks (2 and 2), wherein the tubes (4) have closing portions (5) at intermediate parts thereof to divide passages (6, 7) into two parts. One (6) of the passages connected to one (2) of the tanks and the other passage (7) connected to the other tank (2) are shaped into a U-turn shape, and a first heat exchanger A having a partial tank structure and a second heat exchanger B having a partial structural tank structure are formed, respectively. A heat insulating zone (11) not having fins is disposed between the first and second heat exchangers. The first and second heat exchangers are integrally brazed to form a heat exchanger. In this heat exchanger formed by integrally brazing the first and second exchangers, each of the tubes (4, 4) is produced by bending a single plate of an aluminum material or an aluminum alloy cladded on both surfaces or bonding two plates, and the closing portion (5) for dividing the passage into two parts in the longitudinal direction is formed in this tube.

Description

明糸田  Akitoda
熱交換器 技術分野  Heat exchanger technical field
本発明は、 相互に用途の異なる二つの熱交換器を、 横方向も しく は縦方向に組み合わせた り 、 或いは、 通風方向の上流側と 下流側に組み合わせて、 全体が一つのュニッ ト状に形成された 熱交換器に関する。 背景技術  The present invention combines two heat exchangers having different applications in the horizontal or vertical direction, or in the upstream and downstream sides in the ventilation direction to form a single unit. It relates to the formed heat exchanger. Background art
自動車用或いは家電用の熱交換器と して、 パラ レルフロータ イ ブの熱交換器や、 片タ ンク タイ プの熱交換器が知られている パラ レルフロータイプの熱交換器は、 一般に複数のチューブ とフィ ンとが交互に積層され、 これらの積層されたチューブの 両端が、 上下又は左右に設置されたタ ンク に設けられた挿入孔 に挿人されて接合されている。 また、 これらのタ ンク の所要箇 所には、 タ ンクを長手方向に区画する仕切り プレー トが配設さ れ、 タンクを長手方向に分割して、 タンクに設けられた入口継 手と出口継手との間で熱交換媒体を複数回蛇行させて通流させ る構造となっている。 すなわち、 熱交換器の入口継手に供給さ れた熱交換媒体は、 タンク間を、 チューブを介して、 複数回蛇 行しつつ通流され、 このチューブを通過する際に外部と熱交換 し、 出口継手から排出される構造を備えている。  Generally, a parallel flow type heat exchanger and a single tank type heat exchanger known as heat exchangers for automobiles or home appliances include a plurality of heat exchangers. Tubes and fins are alternately laminated, and both ends of these laminated tubes are inserted and joined into insertion holes provided in tanks installed vertically or horizontally. In addition, a partition plate for partitioning the tank in the longitudinal direction is provided at required locations of these tanks, and the tank is divided in the longitudinal direction, and an inlet joint and an outlet joint provided in the tank are provided. In this structure, the heat exchange medium is meandered several times and flows therethrough. That is, the heat exchange medium supplied to the inlet joint of the heat exchanger flows between the tanks through a tube while meandering several times, and exchanges heat with the outside when passing through the tube, It has a structure to be discharged from the outlet joint.
また、 片タンク タイ プの熱交換器は、 一つのタ ンクに、 リ タ ーン形状の通路が形成されたチューブが接続されて形成されて いる。  In addition, the single-tank type heat exchanger is formed by connecting a tube having a return-shaped passage to one tank.
と ころで、 従来、 相互に用途の異なる二つの熱交換器を横方 向又は縦方向に組み合わせて形成される熱交換器が知られてい る。 この種の熱交換器と しては、 例えば実公昭 5 9 — 1 6 6 9 2号公報、 実開昭 6 1 _ 1 1 5 8 6 2号公報、 実開平 2 — 3 6 7 7 2号公報に記載されている もののよ う に、 一対のタンク間 にチューブと フィ ンと を配設し、 前記一対のタンクの途中に仕 切り プレー 卜を装着して、 構造上は一つの熱交換器であっても 、 実質的に個別の熱交換器を備えたものが提案されている。 Meanwhile, conventionally, a heat exchanger formed by combining two heat exchangers having different purposes in a horizontal or vertical direction is known. You. Examples of this type of heat exchanger include, for example, Japanese Utility Model Publication No. 59-16692, Japanese Utility Model Application Publication No. 61-115,62, and Japanese Utility Model Application No. 2-637072. As disclosed in the official gazette, a tube and a fin are arranged between a pair of tanks, and a partition plate is mounted in the middle of the pair of tanks. Nevertheless, it has been proposed to provide a substantially individual heat exchanger.
また、 実公平 6 — 4 5 1 5 7号公報に記載されている ものの よ う に、 左右のタ ンク の間に二つのタンク部を備えた第 3のタ ンク を配置し、 左右それぞれのタ ンク と前記第 3 のタ ンク の各 タンク部との間にチューブ及びフ ィ ンを配設し、 左右それぞれ に実質的に個別の熱交換器を備えたものが提案されている。  In addition, as described in Japanese Utility Model Publication No. 6-4 515 7, a third tank having two tank sections is disposed between the left and right tanks, and the left and right tanks are arranged. It has been proposed that tubes and fins are arranged between the tank and each tank section of the third tank, and the left and right sides are provided with substantially separate heat exchangers.
また、 実開平 2 — 5 4 0 7 6 号公報に記載されているものの よ う に、 平板状のプレー ト フ ィ ンが積層され、 前記プレー ト フ イ ンに複数のチューブが連通接続され、 前記チュ一ブの一端が タンク を構成するエン ドプレー 卜に接続され、 更に、 前記ェン ドブレ一 卜にタ ンク プレ一 トが組み付けられて熱交換器を構成 するものであって、 前記エン ドプレー ト と タンクプレー トを別 体で設け、 又は、 前記タ ンクプレ一 トを別体で設けて、 第 1 の 熱交換器と第 2 の熱交換器が 体に形成されている熱交換器が 提案されている。  Further, as described in Japanese Utility Model Application Laid-Open No. 2-54076, a plate-like plate fin is laminated, and a plurality of tubes are connected to the plate fin to communicate with each other. One end of the tube is connected to an end plate constituting a tank, and a tank plate is assembled to the end plate to constitute a heat exchanger. A heat exchanger in which the first heat exchanger and the second heat exchanger are formed in the body by separately providing the tank and the tank plate or separately providing the tank plate is proposed. Have been.
前述した機能の異なる二つの熱交換器を一体に形成する と、 部品点数が削減して、 作業工程が减少し、 コス ト低減を図る こ とができる。 また、 異なる機能を有する熱交換器を一体に形成 する と熱交換スペースを削減するこ とができ る という利点を有 してレ、る。  If the two heat exchangers having different functions described above are integrally formed, the number of parts can be reduced, the work process can be reduced, and the cost can be reduced. Also, there is an advantage that the heat exchange space can be reduced if heat exchangers having different functions are integrally formed.
と ころが、 複数の熱交換器を組み合わせて形成される従来の 熱交換器は、 前記実公昭 5 9 — 1 6 6 9 2 号公報や実開平 2 — 3 6 7 7 2号公報に記載されている熱交換器のよ う に、 前記一 対のタ ンクの途中に仕切り プレー 卜を装着して、 この仕切り プ レー トで二つの熱交換領域を区分けしている。 従って、 タ ンク がー体のものであるため伝熱されやすく 、 また、 タンクに装着 された仕切 り プレー 卜を介して伝熱される不都合がある。 However, conventional heat exchangers formed by combining a plurality of heat exchangers are described in Japanese Utility Model Publication No. 59-16692 and Japanese Utility Model Publication No. 2-366772. Like a heat exchanger, a partition plate is installed in the middle of the pair of tanks, and this partition The rate separates the two heat exchange zones. Therefore, since the tank is of a body, heat is easily transferred, and heat is transferred via a partition plate mounted on the tank.
この点、 前記実公平 6 — 4 5 1 5 7 号公報に記載されている 熱交換器は、 中央に備えられた前記第 3 のタ ンク の二つのタ ン ク部の間に中空部を具備して伝熱を阻止するよ う に している。 しかし、 左右のタンクの間に第 3 のタンク を配匱しているので 、 その分、 チューブを配置すべき熱交換スペースが削減されて 熱交換効率が悪く なる不都合を有している。  In this regard, the heat exchanger described in Japanese Utility Model Publication No. 6-45157 is provided with a hollow portion between the two tank portions of the third tank provided at the center. To prevent heat transfer. However, since the third tank is arranged between the left and right tanks, there is a disadvantage that the heat exchange space for arranging the tubes is reduced correspondingly and the heat exchange efficiency is deteriorated.
また、 機能の異なる個別の熱交換器が -体に形成されている 熱交換器は、 それぞれの熱交換器の機能によって熱交換温度が 異なり 、 放熱率が異なる。 例えば、 ある条件でラジェ一タ と コ ンデンサを比較する と、 ラ ジェ一タの方が高熱で熱交換される 。 このため、 ラジェ一タ と コンデンサが一体に形成された熱交 換器は、 ラ ジェ一タの熱交換温度の方が高いためコンデンサに 熱が伝熱され、 コ ンデンサの放熱を妨げて、 コ ンデンサの熱交 換率が低下する問題がある。  In addition, individual heat exchangers with different functions are formed in the body-heat exchangers have different heat exchange temperatures and heat release rates depending on the function of each heat exchanger. For example, comparing a condenser with a condenser under a certain condition, the condenser exchanges heat with higher heat. Therefore, in a heat exchanger in which a radiator and a capacitor are integrally formed, heat is transferred to the capacitor because the heat exchange temperature of the radiator is higher, and heat dissipation of the capacitor is hindered. There is a problem that the heat exchange rate of the capacitor decreases.
このよ う に、 複数の機能を有する熱交換器を一体に形成する と、 各々の熱交換器の最適温度が異な り 、 一体に形成されてい るフィ ン、 チューブ及びタ ンク等を介して各々の熱交換器の間 で伝熱され、 一体に形成された各熱交換器が最適温度で熱交換 を行う こ とができない不都合がある。  As described above, when a heat exchanger having a plurality of functions is integrally formed, the optimum temperature of each heat exchanger is different, and each heat exchanger is formed via an integrally formed fin, tube, tank, or the like. There is a disadvantage that the heat is transferred between the heat exchangers and the heat exchangers formed integrally cannot exchange heat at the optimum temperature.
本発明は、 異なる用途を有する個別の熱交換器を一体に形成 した熱交換器において、 各熱交換器の間における伝熱を防止 し た熱交換器を得るこ と を目的とする。 また、 二つの熱交換器が一体に形成されている熱交換器は、 それぞれの熱交換器の機能によってチューブ自体にかかる圧力 や、 チューブに要求される耐食性等の要求性能が異なる。 例え ば、 第 1 の熱交換器がラジェータ、 第 2 の熱交換器がコンデン ザであって、 第 1 及び第 2 の熱交換器が一体に形成された熱交 換器の場合は、 ラジェ一タは、 チューブ内面及び外面において 高い耐食性が要求される。 一方、 コ ンデンサは、 高温高圧の熱 交換媒体を凝縮するため、 高い耐圧性が要求され、 また、 コ ン デンサのチューブ内面は、 通流する熱交換媒体と接触している ため腐食の問題は生じないが、 チューブ外面は、 高温多湿の状 態にさ ら されているため、 高い耐食性が要求される。 An object of the present invention is to provide a heat exchanger in which individual heat exchangers having different applications are integrally formed, and in which heat transfer between the heat exchangers is prevented. In addition, the heat exchanger in which the two heat exchangers are integrally formed differs in the required performance such as the pressure applied to the tube itself and the required corrosion resistance of the tube depending on the function of each heat exchanger. example For example, if the first heat exchanger is a radiator and the second heat exchanger is a condenser, and the first and second heat exchangers are heat exchangers integrally formed, the radiator High corrosion resistance is required on the inner and outer surfaces of the tube. On the other hand, capacitors are required to have high pressure resistance because they condense a high-temperature, high-pressure heat exchange medium.In addition, since the inner surface of the capacitor tube is in contact with the flowing heat exchange medium, corrosion Although it does not occur, the outer surface of the tube is exposed to high temperature and humidity, so high corrosion resistance is required.
従来、 一般に用いられているチューブと しては、 例えば、 J I S A 1 0 5 0や A 1 1 0 0 ( 9 9 . 0 w t % A 1 ) に C u 添加された改良材を用いて押し出し成形法によ り形成されたチ ユ ーブが知られている。 また、 フィ ンと しては、 J I S A 4 3 4 3又は J I S A 4 0 4 5 ( A 1 - S i 系) に Z n添カロさ れた改良材であるろ う材がク ラ ッ ドされ、 Z n添加の A 3 0 0 3 ( A l — M n系) を用いて形成されたものが知られている。  Conventionally, generally used tubes include, for example, an extrusion molding method using an improved material in which Cu is added to JISA150 or A110 (99.0 wt% A1). A tube formed by such a method is known. In addition, as fins, JISA 4343 or JISA 405 (A1-Si type) was added a material that would be an improved material with Zn added to the surface, It is known to use A 3 0 3 (Al—Mn system) with Zn addition.
これらのチューブと フ ィ ンを前記第 1 及ぴ第 2熱交換器 (ラ ジェ一タ と コンデンサ) に用いた場合は、 チューブは押出材の 特性から耐圧性が良く 、 また、 フ ィ ンとチューブの組み合わせ において、 チューブ表面電位を貴と して、 フ ィ ンを犠牲陽極と するこ とによ り フ ィ ンを優先的に腐食させてチューブを防食す るこ とができ るため、 チューブ外面の耐食性はよいこ とから、 第 2熱交換器である コ ンデンサの要求性能を満たすこ とができ る。 しかし、 前記チューブは、 チューブ内面の耐食性が悪く 、 第 1熱交換器であるラジェ一タの要求性能を満たすこ とができ ないという 問題を生じる。  When these tubes and fins are used in the first and second heat exchangers (radiators and condensers), the tubes have good pressure resistance due to the characteristics of the extruded material, In the combination of tubes, the tube surface potential is noble, and the fins are used as sacrificial anodes, so that the fins can be preferentially corroded to prevent corrosion of the tubes. Since the outer surface has good corrosion resistance, the required performance of the capacitor as the second heat exchanger can be satisfied. However, the tube has a problem in that the corrosion resistance of the inner surface of the tube is poor, and the required performance of the radiator as the first heat exchanger cannot be satisfied.
また、 チューブと フ ィ ンを一体ろ う付けするため、 ろう材が ク ラ ッ ドされたブレージンダシー ト を用いてフ ィ ンを形成する 必要が生じるが、 ろ う材がク ラ ッ ドされたフ ィ ン材を用いる と 、 フ ィ ン形成時に使用する金型の摩耗が激しく な り 、 メ ンテナ ンス費用が増大する問題があり 、 また、 材料費が高く なつて製 造コス トが高騰する不都合を生じる。 In addition, it is necessary to form a fin using a brazed sheet that is brazed with brazing material in order to braze the tube and fin together. When the fin material is used, the mold used for forming the fins becomes severely worn, and the In addition, there is a problem that the cost of production increases, and the cost of material increases, resulting in an inconvenience of soaring the production cost.
この問題を解決するために、 各熱交換器の要求性能を満たす チューブをそれぞれ別体で形成する こ とが考えられる。 例えば 、 第 1 の熱交換器のチューブは、 J I S A 3 0 0 3 ( A 1 - M n系) を芯材と して、 チューブ外面となる層に J I S A 4 3 4 3又は J I S A 4 0 4 5等 (A 1 — S i 系) のろ う材を ク ラ ッ ドし、 チューブ内面となる層に J I S Λ 7 0 7 2 ( A 1 - Z n ) をク ラ ッ ドした 3層材を用いて電縫チューブを形成 し、 一方、 第 2の熱交換器のチューブは、 前例と同様に、 J 1 S A 1 0 5 0や A 1 1 0 0 ( 9 9 . 0 w t % A l ) に C u添 加された改良材を用いて押し出 し成形法によ り形成する。 第 1 熱交換器のチューブは、 チューブの芯材である J I S A 3 0 0 3 と、 J I S A 7 0 7 2 (A 】 一 Z n ) の電位差によ り 、 芯材の電位を貴と して、 J I S A 7 0 7 2 の犧牲陽極効果に よ り 、 チューブ内面の耐食性が向上され、 そ して、 チューブ外 面は、 フ ィ ンの犠牲防食効果によ り 耐食性が向上されるため、 第 1熱交換器の要求性能を満足するこ とができる。  To solve this problem, it is conceivable to separately form tubes that satisfy the required performance of each heat exchanger. For example, the tube of the first heat exchanger has JISA303 (A1-Mn system) as a core material, and JISA4343 or JISA4045 etc. is formed on the outer layer of the tube. (A1-Si series) is clad in a brazing material, and the inner layer of the tube is made of a three-layer material with JIS Λ702 (A1-Zn) clad. An electric resistance welded tube is formed, while the tube of the second heat exchanger is connected to J1SA1500 or A1100 (99.0 wt% Al) as in the previous example. It is formed by extrusion using the added modifier. The tube of the first heat exchanger has the potential of the core material noble due to the potential difference between JISA3003, which is the core material of the tube, and JISA7072 (A) -Zn). The sacrificial anode effect of JISA 707 2 improves the corrosion resistance of the inner surface of the tube, and the outer surface of the tube improves the corrosion resistance by the sacrificial anti-corrosion effect of the fin, so that the first heat The required performance of the exchanger can be satisfied.
しかし、 この場合は、 第 1 及び第 2熱交換器のチューブを別 体で^ する必要があるので、 部品点数が増加し、 組み付け及 び作業工程が困難となる問題を生じる。 また、 この場合におい ても、 フィ ンは、 ろ う材がク ラ ッ ドされたフィ ン材を用いる必 要があるため、 前述したよ う にメ ンテナンス費の増大、 材料費 の高騰等の問題は解決されていない。  However, in this case, since the tubes of the first and second heat exchangers need to be separately provided, the number of parts increases, and there arises a problem that the assembling and working processes become difficult. Also, in this case, the fins need to use finned materials in which the filler metal is clad, and as described above, maintenance costs and material costs have increased. The problem has not been solved.
また、 フ ィ ンにろ う材が被覆されていない材料を用いる と と もに、 チューブにろ う材がク ラ ッ ドされた材料を用いるこ とが 考えられる。 すなわち、 例えば、 第 1熱交換器の耐食性を考慮 して、 J I S A 3 0 0 3 (A 1 — M n系) 材を芯材と して、 J I S A 4 3 4 3又は J I S A 4 0 4 5 (A 1 — S i 系) のろ う材がク ラ ッ ドされた材料を用いてチューブを形成する こ とが考えられる。 この場合は、 押し出 し加工性が劣るため、 押 し出し成形によるチューブの加工は不可能であ り 、 従って、 電 縫チューブを形成するこ とが要請される。 しかし、 電縫チュ一 ブでは第 2熱交換器 (例えばコ ンデンサ) の要求する耐圧性を 満足させるこ とができないという 問題を生じる。 It is also conceivable to use a material in which the filler material is not coated with the fin and a material in which the filler material is clad in the tube. That is, for example, considering the corrosion resistance of the first heat exchanger, JISA303 (A1-Mn-based) material is used as the core material, and JISA4303 or JISA4045 (A 1 — S i series) It is conceivable that a tube is formed using a material in which the wax is clad. In this case, the workability of the tube by extrusion molding is impossible due to poor extrusion workability. Therefore, it is required to form an electric resistance welded tube. However, the ERW tube has a problem that the pressure resistance required by the second heat exchanger (for example, a capacitor) cannot be satisfied.
本発明は、 第 1 及び第 2熱交換器が一体に形成される熱交換 器において、 各熱交換器ごとの要求性能を満足する こ とができ るチューブを一体に形成するこ と によ り 、 製造コス トの低減を 図るこ との可能な熱交換器を得るこ と を目的とする。 発明の開示  The present invention provides a heat exchanger in which the first and second heat exchangers are integrally formed, by integrally forming tubes that can satisfy the required performance of each heat exchanger. Another object of the present invention is to obtain a heat exchanger capable of reducing manufacturing costs. Disclosure of the invention
本願の第 1_発明は、 一対のタンク と、 前記タ ンク間に設けら れる複数のチューブ及びフ ィ ンを備えた熱交換器において、 前 記チューブは、 途中に閉塞部を設けて通路を二分する と と もに 、 一方のタ ンクに接続される一方の通路と他方のタ ンクに接続 される他方の通路がそれぞれ uターン形状に形成され、 前記一 方のタンク と前記チューブの前記 方の uターン形状の通路と で片タ ンク構造の第 1 熱交換器が形成され、 且つ、 前記他方の タンク と前記チューブの前記他方の Uターン形状の通路とで片 タンク構造の第 2熱交換器が形成されている構成の熱交換器で ある。  According to a first aspect of the present invention, there is provided a heat exchanger including a pair of tanks, and a plurality of tubes and fins provided between the tanks. At the same time, one of the passages connected to one of the tanks and the other of the passages connected to the other of the tanks are formed in a u-turn shape, and the one of the one tank and the one of the tubes is formed. A first heat exchanger having a one-tank structure is formed by the u-turn shaped passage of the present invention, and a second heat exchange having a one-tank structure is formed by the other tank and the other U-turn shaped passage of the tube. This is a heat exchanger in which a heat exchanger is formed.
このよ う に構成するこ とによ り 、 熱交換器の全体形状は、 一 対のタンク と、 前記タ ンク間に設けられる複数のチューブ及び フ ィ ンを備えた熱交換器であって、 その実質は片タンク構造の 熱交換器が組み合わされて形成されているにも拘らず、 複数の チューブとフィ ンとが交互に積層されたものがー対のタンク間 に装着され、 しかも、 チューブは一対のタンク間で一体のもの であり 、 この一対のタ ンクによってチューブと フ ィ ンの両端部 の支持がなされので、 熱交換器の剛性を大き く するこ とができ る。 つま り 、 片タンク構造であってもパラ レルフロ一タイプの 利点を有する ものである。 With this configuration, the overall shape of the heat exchanger is a heat exchanger including a pair of tanks and a plurality of tubes and fins provided between the tanks. In spite of the fact that it is formed by combining heat exchangers with a single tank structure, a plurality of tubes and fins are alternately stacked and mounted between a pair of tanks. Is integrated between a pair of tanks, and the pair of tanks is used to form both ends of the tube and the fin. Since the heat exchanger is supported, the rigidity of the heat exchanger can be increased. In other words, even if it has a single tank structure, it has the advantage of a parallel flow type.
そして、 第 1及び第 2熱交換器は、 双方が片タンク構造であ るため、 片タンク固有の利点、 すなわち、 ノ ラ レルフロータイ プの熱交換器に比べてタンクが半分で済むので、 その分、 熱交 換スペースをと るこ とができて熱交換効率が向上し、 また、 部 品点数が削減されてコス ト低減を図るこ とができる利点を有す る。  Since the first and second heat exchangers each have a single-tank structure, the advantage inherent in a single tank is that the tank is half that of a normal-flow type heat exchanger. In addition, there is an advantage that a heat exchange space can be taken up to improve heat exchange efficiency, and that the number of parts can be reduced and cost can be reduced.
更に、 第 1 及び第 2熱交換器は、 構造上、 連結して形成され ているので、 前述のよ う に剛性が向上する一方で、 隣接してい るので伝熱がなされて性能低下がもたら されて しま う のではな いかという 点については、 チューブの途中に閉塞部が設けられ ているので、 熱交換媒体の交流が阻止されるこ とは勿論、 こ の 閉塞部によって、 双方の伝熱を可及的に小さ く するこ とができ 、 性能低下を阻止できるよ う に している。  Further, the first and second heat exchangers are structurally connected to each other, so that the rigidity is improved as described above, while the heat exchangers are adjacent to each other, so that the performance is deteriorated. Regarding the possibility that the heat is exchanged, the blockage is provided in the middle of the tube, so that not only the exchange of the heat exchange medium is blocked, but also the blockage of both sides. Heat can be reduced as much as possible to prevent performance degradation.
更に、 本願発明は、 前記第 1 発明において、 前記チューブは Further, in the present invention, in the first invention, the tube is
、 二枚のプレー トを合わせて形成され、 又は、 一枚のプレー ト を半分に折り畳んで形成される構成の熱交換器である。 The heat exchanger is formed by combining two plates or by folding one plate in half.
すなわち、 本願発明は、 プレス又はロール成形された二枚の プレー トを合わせてチューブを形成する ものや、 プレス又は口 —ル成形された一枚のプレー トを更に半分に折り畳んでチュー ブを形成するもの、 或いは、 ロール成形しながら一枚のプレ一 トを半分に折り畳んでチューブを形成する ものに適用される。 更に、 本願発明は、 前記第 1 発明において、 前記チューブは 、 積層されてタンクを形成するタ ンク部を一体成形した構成の 熱交換器である。  That is, the invention of the present application is to form a tube by combining two press-formed or roll-formed plates, or to form a tube by further folding a single pressed or roll-formed plate into half. This method is applied to a device that forms a tube by folding a single plate in half while forming it in a roll. Furthermore, the invention of the present application is the heat exchanger according to the first invention, wherein the tubes are integrally formed with a tank portion that is laminated to form a tank.
この構成の熱交換器は、 チューブにタンク部が一体成形され た所謂ラ ミネー ト タイプのものであり 、 本願発明は、 このラ ミ ネー ト タイプのものにも適用する こ とができ る。 The heat exchanger having this configuration is of a so-called laminate type in which a tank is integrally formed with a tube. It can also be applied to the native type.
更に、 本願発明は、 前記第 1 発明において、 前記チューブの 前記閉塞部は、 断熱用の孔部を備えている構成の熱交換器であ る。  Further, the invention of the present application is the heat exchanger according to the first aspect, wherein the closing portion of the tube includes a heat insulating hole.
前記閉塞部は、 前記第 1 及び第 2の熱交換器の双方の通路を 連結してチューブを一体形成する こ と を可能にする と と もに、 双方の伝熱を可及的に小さ く する ものであり 、 そして、 この閉 塞部に孔部を備えるこ とによ り 、 断熱効果をよ り一層向上する こ とができる。  The closing portion connects the passages of both the first and second heat exchangers so that the tube can be integrally formed, and minimizes the heat transfer of both tubes. By providing a hole in the closing portion, the heat insulating effect can be further improved.
更に、 本願発明は、 前記第 1 発明において、 前記チューブの 前記閉塞部は、 断熱用の空洞を備えている構成の熱交換器であ る。  Furthermore, the invention of the present application is the heat exchanger according to the first invention, wherein the closing portion of the tube includes a heat insulating cavity.
これによ り 、 前記の場合と同様に、 この空洞によって断熱効 果をよ り一層向上するこ とができる。  Thus, as in the case described above, the heat insulating effect can be further improved by this cavity.
更に、 本願発明は、 前記第 1 発明において、 前記チューブの 前記閉塞部は、 折り返し部を備え、 更に、 前記第 1 熱交換器と 第 2熱交換器とでは別々のフ ィ ンを配置 し、 前記閉塞部の前記 折り返し部で前記フィ ンの端部の位置決めを行う構成の熱交換 器である。  Further, in the present invention, in the first invention, the closed portion of the tube includes a folded portion, and further, separate fins are arranged for the first heat exchanger and the second heat exchanger. A heat exchanger having a configuration in which an end of the fin is positioned at the folded portion of the closing portion.
第" 換器と第 2熱交換器と で別々 のフ ィ ンを配置するの で、 各熱交換器に適した性能のフ ィ ンを個別に用意する こ とが でき、 これによ り 、 各熱交換器ごとの要求性能を満足するこ と ができる。 また、 閉塞部は折り 返し部を備えているので、 この 折り 返し部で各フ ィ ンの端部の位置決めを行い、 その結果、 フ イ ン端部の飛び出しが阻止される等、 フィ ンの装着が適正に保 持される。  Since the separate fins are arranged for the second heat exchanger and the second heat exchanger, the fins having the performance suitable for each heat exchanger can be individually prepared. The performance required for each heat exchanger can be satisfied, and the closed part has a folded part, so that the end of each fin is positioned at the folded part, and as a result, The installation of the fin is properly maintained, for example, the protrusion of the fin end is prevented.
更に、 本願発明は、 前記第 1 発明において、 前記第 1熱交換 器と第 2熱交換器に亘つてそれぞれ一つのフ ィ ンを配置する も のであって、 このフ ィ ンは、 前記第 1 熱交換器と第 2熱交換器 とでフ ィ ンの山数が異なる構成の熱交換器である。 Further, the invention of the present application is the invention according to the first invention, wherein one fin is arranged over each of the first heat exchanger and the second heat exchanger. Heat exchanger and second heat exchanger This is a heat exchanger with a different number of fins.
このよ う に第 1 熱交換器と第 2熱交換器に亘つて一つのフィ ンを配置する場合は、 フ ィ ンを一種類で済むため経済的である 。 また、 フ ィ ンの山数を第 1熱交換器と第 2熱交換器とで異な ら しめるこ と (フ ィ ンピッチの変更) によ り 、 各熱交換器ごと の要求性能に適合させる こ とができる。  When one fin is arranged over the first heat exchanger and the second heat exchanger in this way, it is economical because only one type of fin is required. In addition, by making the number of fins different between the first heat exchanger and the second heat exchanger (changing the fin pitch), it is possible to meet the required performance of each heat exchanger. Can be.
更に、 本願発明は、 前記第 1 発明において、 前記チューブと フ ィ ンを一体に組み付けて炉中ろ う付けする構成の熱交換器で ある。  Further, the invention of the present application is the heat exchanger according to the first invention, wherein the tube and the fin are integrally assembled and brazed in a furnace.
このよ う に、 基本的にはチューブと フィ ンを一体に組み込ん で炉中ろ う付けするものであ り 、 このチューブと フ ィ ンのろ う 付けに加えて、 後記のタ ンク、 タ ンクを構成するタ ンク部、 タ ンク を構成するェン ドブレー ト等のいずれかを同時にろ う付け するこ とになる。  As described above, basically, the tube and the fin are integrated and brazed in the furnace. In addition to the brazing of the tube and the fin, the tank and the tank described later are used. Any one of the tank part that forms the tank and the end plate that forms the tank will be attached at the same time.
更に、 本願発明は、 前記第 i 発明において、 前記チューブ、 フィ ン及びタンクを一体に組み付けて炉中ろ う付けする構成の 熱交換器である。  Further, the invention of the present application is the heat exchanger according to the i-th invention, wherein the tube, the fin, and the tank are integrally assembled and brazed in a furnace.
この場合は、 タンクは円筒状のものや、 二分割のものを一体 に組み合わせて、 チューブ及びフ ィ ンと と もに一体ろ う付けす る。  In this case, the tank should be a cylindrical one or a two-part tank, combined together, and fastened together with the tubes and fins.
更に、 本願発明は、 前記第 1 発明において、 前記チューブ、 フ ィ ン及び積層されてタ ンクを形成するタンク部を一体に組み 付けて炉中ろう付けする構成の熱交換器である。  Further, the invention of the present application is the heat exchanger according to the first invention, wherein the tube, the fin, and the tank portion that is laminated to form a tank are integrally assembled and brazed in a furnace.
この場合は、 チューブにタンク部が一体成形された前述のラ ミネ一 ト タイプのものを、 一体ろ う付けするものである。  In this case, the above-mentioned laminated type in which the tank is integrally formed with the tube is integrally brazed.
更に、 本願発明は、 前記第 1発明において、 前記チューブ、 フィ ン及びエン ドプレー トを一体に組み付けて炉中ろ う付けす ると と もに、 タンクプレー トを前記エン ドプレー トに接合する 構成の熱交換器である。 この場合は、 タンクがエン ドプレー ト と タンクプレー ト とに よって形成されるものであって、 チューブ、 フ ィ ン及びエン ド プレー ト をろ う付け した後、 タ ンク プレー トを組み付け、 シー ル材を用いてカシメ等によ り結合するものである。 Further, according to the first aspect of the present invention, in the first aspect, the tube, the fin, and the end plate are integrally assembled, and the furnace plate is attached thereto, and a tank plate is joined to the end plate. Heat exchanger. In this case, the tank is formed by the end plate and the tank plate, and after the tube, fin and end plate are brazed, the tank plate is assembled, and the seal is assembled. It is bonded by caulking using a material.
更に、 本願発明は、 前記第 1発明において、 前記一対のタ ン ク間にサイ ドプレー ト が設けられている構成の熱交換器である この場合は、 サイ ドプレー トの存在によ り 、 熱交換器の強度 が向上する。 また、 サイ ドプレー トは、 同時にろ う付けする と よい。 また、 本願の第 2発明は、 チューブと フ ィ ンを交互に積層 し 、 チューブの端部をタ ンクに挿入接続した熱交換器において、 前記チューブとフ ィ ンを積層 して形成される熱交換器本体を第 1 熱交換器と第 2熱交換器に区分し、 前記区分される第 1 及び 第 2熱交換器の間に、 フ ィ ンの存在しない断熱用区域が設けら れている構成の熱交換器である。  Further, the invention of the present application is the heat exchanger according to the first invention, wherein a side plate is provided between the pair of tanks. In this case, the presence of the side plate causes heat exchange. The strength of the vessel is improved. The side plates should be brazed at the same time. Further, the second invention of the present application is directed to a heat exchanger in which tubes and fins are alternately laminated, and an end of the tube is inserted and connected to a tank, and a heat exchanger formed by laminating the tubes and fins is provided. The heat exchanger body is divided into a first heat exchanger and a second heat exchanger, and a fin-free heat insulation area is provided between the first and second heat exchangers. The configuration of the heat exchanger.
このよ う に、 区分される第 1 及び第 2熱交換器の間に、 フ ィ ンの存在しない断熱用区域が設けられている場合は、 隣接する 各熱交換器間の伝熱を前記断熱用区域で断熱するこ とができ 、 各熱交換器の性能の低下を防止 した一体型の熱交換器を得る こ とができる。 また、 二つの異なる用途を有する第 1 及び第 2熱 交換器を一体に形成する こ と によ り熱交換スペースが拡大して 熱交換率を向上するこ とができる と と もに、 部品点数が削減さ れて、 コス ト低減を図るこ とができ る。  In this way, when a heat-insulating area without fins is provided between the divided first and second heat exchangers, the heat transfer between adjacent heat exchangers is Insulation can be performed in the service area, and an integrated heat exchanger in which the performance of each heat exchanger is prevented from deteriorating can be obtained. In addition, by integrally forming the first and second heat exchangers having two different applications, the heat exchange space can be expanded and the heat exchange rate can be improved, and the number of parts can be increased. Is reduced, and costs can be reduced.
更に、 本願発明は、 前記第 2発明において、 前記第 1 及び第 2熱交換器は上下又は左右に隣接し、 前記断熱用区域には前記 瞵接する第 1 及び第 2熱交換器を接合する接合プレー 卜が配設 されている構成の熱交換器である。 このよ う に、 断熱用区域に隣接する第 1 及び第 2熱交換器を 接合する接合プレー トが配設されている場合は、 この断熱用区 域が補強され、 延いては熱交換器全体が補強される。 すなわち 、 断熱用区域が形成されている と、 断熱用区域分の耐圧性等が 低下し、 生産時に熱交換器が変形する等の不都合が生じる場合 がある。 そこで、 各熱交換器間に形成した断熱用区域に接合プ レー トを設けるこ とによって、 熱交換器を補強し、 前記問題を 解消するこ とができる。 また、 前記接合プレー トは、 チューブ 及びフィ ンのろ う付けに加えて、 接合プレー ト を一体と して炉 中ろ う付けによ り配設する と よい。 Further, in the present invention according to the second invention, the first and second heat exchangers are vertically or horizontally adjacent to each other, and the first and second heat exchangers that are in contact with the heat insulating area are joined to each other. This is a heat exchanger with a plate. In this way, when the joint plate that joins the first and second heat exchangers adjacent to the heat insulation area is provided, the heat insulation area is reinforced, and the heat exchanger as a whole is extended. Is reinforced. In other words, if the heat insulating area is formed, the pressure resistance and the like of the heat insulating area are reduced, which may cause inconvenience such as deformation of the heat exchanger during production. Therefore, by providing a joining plate in the heat insulating area formed between the heat exchangers, the heat exchanger can be reinforced and the above problem can be solved. The joining plate may be provided by brazing the tube and the fin together with the joining plate in a furnace.
更に、 本願発明は、 前記第 2発明において、 前記タ ンクに仕 切り を設けて前記第 1 及び第 2熱交換器を区分した構成の熱交 換器である。  Further, the invention of the present application is the heat exchanger according to the second invention, wherein the tank is provided with a partition to separate the first and second heat exchangers.
このよ う に構成するこ と によ り 、 タ ンクを共通とする第 1 及 び第 2熱交換器において、 これらの間に仕切り を設けて各熱交 換器間の伝熱を遮断するこ とができ 、 各熱交換器の性能の低下 を防止した一体型の熱交換器を得る こ とができる。  With this configuration, in the first and second heat exchangers having a common tank, a partition is provided between the first and second heat exchangers to block heat transfer between the heat exchangers. As a result, it is possible to obtain an integrated heat exchanger in which the performance of each heat exchanger is prevented from deteriorating.
更に、 本願発明は、 前記第 2発明において、 前記仕切り は、 少なく と も二枚の仕切り プレー 卜によって形成される と と もに 、 この二枚の仕切り プレー トによってタンク内部に空洞部が形 成される構成の熱交換器である。  Further, according to the second aspect of the present invention, in the second aspect, the partition is formed by at least two partition plates, and a hollow portion is formed inside the tank by the two partition plates. It is a heat exchanger of a configuration to be performed.
このよ う に構成するこ と によ り 、 タ ンク に形成された空洞部 の断熱作用によって、 第 1 熱交換器と第 2熱交換器間の熱伝導 を阻止する こ とができる。  With such a configuration, heat conduction between the first heat exchanger and the second heat exchanger can be prevented by the heat insulating effect of the cavity formed in the tank.
更に、 本願発明は、 前記第 2発明において、 前記空洞部は、 外部と連通する連通孔を備えている構成の熱交換器である。  Furthermore, the invention of the present application is the heat exchanger according to the second invention, wherein the cavity has a communication hole communicating with the outside.
このよ う に構成するこ とによ り 、 空洞部には外気が通流する こ と となって、 空洞部の断熱作用が向上する。 また、 連通孔の 存在によ り 、 二枚の仕切り プレー ト の接合不良によるバイパス 漏れがあった場合にこれを気密検査時に容易に発見するこ とが でき、 不良品の早期発見が可能となる。 また、 連通孔が形成さ れているために、 外部空気が空洞部内に浸入し、 気圧変化、 温 度変化等の環境変化によ り 空洞部内に水分が溜まる場合がある 。 この点、 連通孔を、 タ ンクの下方となる部分に形成する と よ レ、。 これによ り 、 空洞部内の水分を容易に外部に排出するこ と ができ、 水分によるタンクの腐蝕を防止する こ とができる。 With this configuration, the outside air flows through the cavity, and the heat insulating effect of the cavity is improved. In addition, due to the presence of the communication hole, the bypass due to poor connection between the two partition plates If there is a leak, it can be easily found at the time of airtight inspection, and defective products can be found early. In addition, since the communication hole is formed, external air may enter the cavity, and water may accumulate in the cavity due to environmental changes such as changes in atmospheric pressure and temperature. In this regard, the communication hole is formed in a portion below the tank. Thereby, the water in the cavity can be easily discharged to the outside, and the corrosion of the tank due to the water can be prevented.
更に、 本願発明は、 前記第 2発明において、 前記第 1 及び第 2熱交換器は、 一対のタ ンク間に設けられる ものであって、 前 記各チューブは、 途中に閉塞部を設けて通路を二分する と と も に、 一方のタンク に接続される -方の通路と他方のタンクに接 続される他方の通路がそれぞれ uターン形状に形成され、 前記 一方のタンク と前記チューブの前記一方の u ターン形状の通路 とで片タ ンク構造の第 1 熱交換器が形成され、 且つ、 前記他方 のタンク と前記チューブの前記他方の Uターン形状の通路とで 片タンク構造の第 2熱交換器が形成され、 更に、 チューブを二 分する前記閉塞部に前記断熱用区域が形成される構成の熱交換 Further, according to the present invention, in the second invention, the first and second heat exchangers are provided between a pair of tanks. In addition, the-path connected to one tank and the other path connected to the other tank are each formed in a u-turn shape, and the one tank and the one of the tubes are formed. The first heat exchanger having a one-tank structure is formed by the u-turn-shaped passage of the present invention, and the second heat exchange having a one-tank structure is formed by the other tank and the other U-turn-shaped passage of the tube. A heat exchanger, wherein the heat insulating area is formed in the closed portion that divides the tube.
¾Fである。 ¾F.
このよ う に構成するこ とによ り 、 片タ ンク構造の熱交換器を 一体に形成した場合に、 熱交換器の双方の熱交換器問で生じる 伝熱を閉塞部で可及的に小さ く する と と もに、 断熱用区域で阻 止するこ とができるので、 各熱交換器の性能低下を防止する こ とができる。 そ して、 片タンク タイプの第 1 及び第 2熱交換器 を一体に形成するこ と によって、 熱交換スペースが拡大して熱 交換率が向上し、 また、 部品点数が削減されてコス ト低減を図 る こ とができる利点を有する。  With this configuration, when the heat exchanger having a single tank structure is integrally formed, the heat transfer generated between both heat exchangers of the heat exchanger is minimized by the closed portion. As the size of the heat exchanger is reduced, it can be blocked in the heat insulation area, so that the performance of each heat exchanger can be prevented from deteriorating. In addition, by forming the single-tank type first and second heat exchangers integrally, the heat exchange space is expanded and the heat exchange rate is improved, and the number of parts is reduced to reduce costs. This has the advantage that it can be achieved.
更に、 本願発明は、 前記第 2発明において、 前記第 1 及び第 2熱交換器は、 それぞれ片タンク構造のものであって左右又は 上下に隣接し、 前記チューブは、 タ ンク を形成するタンク部を 一体成形している構成の熱交換器である。 Further, the invention of the present application is the second invention, wherein the first and second heat exchangers each have a one-tank structure and are adjacent to each other in the left-right or up-down direction, and the tube is a tank section forming a tank. To This is a heat exchanger that is integrally molded.
この構成の熱交換器は、 チューブにタンク部が一体成形され た所謂ラ ミネー トタイプのものであ り 、 本発明は、 このラ ミネ ― ト タイプのものにも適用するこ とができる。  The heat exchanger having this configuration is of a so-called laminate type in which a tank is integrally formed with a tube, and the present invention can also be applied to this laminate type.
このよ う に本願の第 2発明の構成によれば、 実質的に異なる 用途の複数の熱交換器が一体に形成された熱交換器において、 各熱交換器間にフ ィ ンを介装しない断熱用区域を形成し、 熱交 換器相互間の伝熱を阻止 して、 熱交換率が向上した熱交換器を 得る こ とができる。 また、 本願の第 3発明は、 第 1 の熱交換器を構成するチュー ブと第 2の熱交換器を構成するチューブを通風方向の下流と上 流に配置し、 前記両チューブの間にフ ィ ンを配設し、 前記各チ ユ ーブの端部を各々 タンクに挿入接続して第 1 及ぴ第 2の熱交 換器を形成し、 これら第 1 及び第 2の熱交換器を一体ろ う付け してなる熱交換器において、 前記チューブは、 両面ク ラ ッ ドさ れたアルミ材も しく はアルミ合金を素材とする一枚プレー トを 折り 曲げ又は二枚のプレー 卜を接合して形成される と と もに、 このチューブは、 その長手方向に沿って通路を二分する閉塞部 が形成されて、 一方の通路が第 1 の熱交換器を、 また、 他方の 通路が第 2の熱交換器を、 それぞれ形成し、 更に、 前記チュー ブ間に配設されるフ ィ ンは、 アルミ材又はアルミ合金からなる 非ク ラ ッ ド材である構成の熱交換器である。  Thus, according to the configuration of the second invention of the present application, in a heat exchanger in which a plurality of heat exchangers for substantially different uses are integrally formed, no fin is interposed between the heat exchangers. By forming an adiabatic zone and preventing heat transfer between the heat exchangers, a heat exchanger with an improved heat exchange rate can be obtained. Further, the third invention of the present application is arranged such that a tube constituting the first heat exchanger and a tube constituting the second heat exchanger are disposed downstream and upstream in the airflow direction, and a space between the two tubes. The first and second heat exchangers are formed by inserting and connecting the ends of the tubes to the respective tanks to form the first and second heat exchangers. In a heat exchanger that is integrally brazed, the tube is formed by bending a single plate made of an aluminum material or an aluminum alloy that is clad on both sides, or joining two plates. In addition, the tube is formed with a closed portion that bisects the passage along the longitudinal direction, one passage forms the first heat exchanger, and the other passage forms the first heat exchanger. Two heat exchangers, and the fins disposed between the tubes are: A heat exchanger structure is a non-click la head material consisting Rumi material or aluminum alloy.
このよ う に、 第 1及び第 2熱交換器のチューブが、 両面ク ラ ッ ドのアルミ材又はアルミ合金を用いて形成されている と、 両 面ク ラ ッ ドされたろ う材と芯材の電位差によ り 、 芯材の電位を 貴と し、 ろ う材の犠牲陽極効果によ り チューブ外面及び内面の 耐食性を向上させるこ とができる。  In this way, if the tubes of the first and second heat exchangers are formed using a double-sided clad aluminum material or aluminum alloy, the double-sided clad material and the core material are used. This potential difference makes the potential of the core material noble, and the corrosion resistance of the outer and inner surfaces of the tube can be improved by the sacrificial anode effect of the brazing material.
このため、 例えば、 第 1 の熱交換器はチューブ内面及び外面 において耐食性が要求される ものであり 、 また、 第 2の熱交換 器は、 チューブ内面の耐食性はさほど要求されないが、 チュー ブ外面の耐食性及び耐圧性が要求される ものである場合等、 実 質的に用途の異なる熱交換器が一体に形成される場合において 、 各熱交換器ごと異なる要求性能を満足するチューブを一体で 形成するこ とができる。 また、 チューブには閉塞部が形成され ているため、 双方の熱交換器の熱の伝達を閉塞部で可及的に小 さ く するこ とができ、 各熱交換器間の熱の伝達を防ぎ、 熱交換 率を向上するこ とができる。 For this reason, for example, the first heat exchanger is In the second heat exchanger, the corrosion resistance of the inner surface of the tube is not so required, but the corrosion resistance and pressure resistance of the outer surface of the tube are required. When heat exchangers having different purposes are integrally formed, tubes satisfying different required performances can be integrally formed for each heat exchanger. In addition, since the tube has a blockage, the heat transfer of both heat exchangers can be minimized by the blockage, and the heat transfer between the heat exchangers can be reduced. Prevention, and the heat exchange rate can be improved.
また、 チューブにろう材がク ラ ッ ドされているため、 フ ィ ン は、 ろ う材がク ラ ッ ドされていないアル ミ材又はアル ミ合金を 材料と して形成するこ とができ、 ろ う材がク ラ ッ ドされた材料 を用いてフィ ンを形成した場合に生じていた金型の摩耗が少な く なり 、 メ ンテナンス費用を削減するこ とができる と と もに、 材料費を低減するこ とができるので、 製造コ ス トを低減するこ とができる。  In addition, since the brazing material is clad in the tube, the fin can be made of aluminum or aluminum alloy in which the brazing material is not clad. In addition, the mold abrasion that occurred when the fins were formed from the clad material using the clad material was reduced, and maintenance costs could be reduced. Since the cost can be reduced, the manufacturing cost can be reduced.
更に、 本願発明は、 前記第 3発明において、 前記チューブを 形成するチューブ材は、 アル ミ材又はアル ミ合金を芯材と し、 チューブ内面となる層及びチューブ外面となる層に A 1 一 S i 系のろ う材がク ラ ッ ドされた 3層材、 又は、 アル ミ材又はァル ミ合金を芯材と し、 更に、 芯材よ り も電位の卑なるアルミ材又 はアルミ合金が中間層にク ラ ッ ドされる と と もにチューブ内面 となる層及びチューブ外面となる層に A 1 — S i 系のろ う材が ク ラ ッ ドされた 4層材である構成の熱交換器である。  Further, in the third aspect of the present invention, in the third aspect, the tube material forming the tube has an aluminum material or an aluminum alloy as a core material, and a layer serving as an inner surface of the tube and a layer serving as an outer surface of the tube have A 1 S The core material is a three-layer material in which the i-type brazing material is clad, or an aluminum material or an aluminum alloy, and an aluminum material or an aluminum alloy having a lower potential than the core material. Is a four-layered material in which A 1 —Si-based filler material is clad on the inner layer and the outer layer of the tube as well as the intermediate layer. It is a heat exchanger.
このよ う に、 芯材とろ う材の間に芯材の電位よ り も電位の卑 なる中間層の存在する 4層材を用いてチューブを形成した場合 、 前記中間層の面均一な犠牲防食によ り 、 チューブ内面の耐孔 食性が向上する。  As described above, when a tube is formed by using a four-layer material having an intermediate layer having a potential lower than the potential of the core material between the core material and the brazing material, the surface of the intermediate layer is sacrificed with uniform sacrificial protection. Thereby, the pitting corrosion resistance of the inner surface of the tube is improved.
また、 両面クラ ッ ドの 3層材又は 4層材であるアル ミ材又は アルミ合金を用いてチューブを形成する と、 チューブの耐圧性 等の強度が向上する。 In addition, aluminum or aluminum, which is a three-layer or four-layer material of a double-sided clad, When a tube is formed using an aluminum alloy, the strength of the tube, such as pressure resistance, is improved.
更に、 本願発明は、 前記第 3発明において、 前記チューブは 、 一方の通路又は双方の通路に内方に向けて突出する複数の突 起部が形成され、 前記突起部の先端同士が当接され、 又は、 前 記突起部の先端と平面部が接合される構成の熱交換器である。  Further, in the present invention according to the third invention, the tube is formed with a plurality of protrusions projecting inward in one or both passages, and tips of the protrusions are brought into contact with each other. Or a heat exchanger having a configuration in which the tip of the projection and the flat portion are joined.
このよ う に、 チューブの通路の一方又は双方に突起部を形成 し、 前記突起部の先端部同士を当接し、 又は、 前記突起部の先 端部とプレー ト平面を当接して通路内部を複数に分割するこ と によ り 、 通路内に通流する熱交換媒体に乱流を生じさせて、 熱 交換率の向上を図るこ とができ、 また、 チューブの耐圧性を向 上させる こ とができるため、 通路の一方又は双方に任意に突起 部を形成するこ と よ り 、 各熱交換器ごとの要求性能を満たすこ とが可能となる。 この場合、 両面ク ラ ッ ドのアル ミ材又はアル ミ合金が用いられているので、 突起部の当接が容易となり 、 任 意に突起部を形成するこ とが可能となる。  In this way, a protrusion is formed on one or both of the passages of the tube, and the distal ends of the protrusions are in contact with each other, or the front end of the protrusion is in contact with the plate plane, and the inside of the passage is formed. By dividing the heat exchanger into a plurality of tubes, a turbulent flow is generated in the heat exchange medium flowing in the passage, thereby improving the heat exchange rate, and improving the pressure resistance of the tube. Therefore, the required performance of each heat exchanger can be satisfied by arbitrarily forming a projection on one or both of the passages. In this case, since the aluminum material or the aluminum alloy of the double-sided clad is used, the abutment of the projection is facilitated, and the projection can be arbitrarily formed.
更に、 本願発明は、 前記第 3発明において、 前記チューブは 、 一枚のプレー トを折り畳んで形成される ものであって、 チュ —ブを構成するプレー トの端部同士が、 チューブのビ一 ド部分 、 平面部分、 端部部分又は通路部分で重ね合わされてろ う付け されている構成の熱交換器である。  Further, according to the present invention, in the third invention, the tube is formed by folding a single plate, and ends of plates constituting the tube are connected to each other by a tube tube. This is a heat exchanger configured to be superimposed on a metal part, a flat part, an end part or a passage part.
従来において、 一枚のプレ一 卜を接合してチューブを形成す る際に、 プレー ト端部をチューブ端部で外方へ突出するよ う に 接合する と、 チューブ断面形状は左右で異なる場合があるため 、 チューブの断面形状に合せてヘッダタ ンクのチューブ揷入孔 を形成する必要があり 、 専用の治具等が必要となって、 製造コ ス 卜が嵩むと と もに製造工程が煩雑となる問題が生じていた。  Conventionally, when a single plate is joined to form a tube, if the plate end is joined so that it protrudes outward at the tube end, the tube cross-sectional shape may differ between the left and right Therefore, it is necessary to form the tube insertion hole of the header tank in accordance with the cross-sectional shape of the tube, which requires special jigs and the like, which increases the manufacturing cost and complicates the manufacturing process. Problem had arisen.
本発明のよ う に、 一枚のプレー トを折り畳んで形成されるチ ユ ーブのプレー 卜の端部接合部位を変える と、 チューブ断面の 左右の形状を同一にするこ とができ、 組み付け性が良く なり 、 製造備品の削減と製造工程の簡易化を図る こ とが可能となる。 As in the present invention, when the end joining portion of the tube plate formed by folding a single plate is changed, the cross-section of the tube is reduced. The left and right shapes can be made the same, the assemblability is improved, and the number of manufacturing equipment can be reduced and the manufacturing process can be simplified.
更に、 本願発明は、 前記第 3発明において、 前記各チューブ は、 一方のタンクに接続される一方の通路と他方のタンクに接 続される他方の通路がそれぞれ Uターン形状に形成され、 前記 一方のタンク と前記チューブの前記一方の Uターン形状の通路 とで片タンク構造の第 1 熱交換器が形成され、 且つ、 前記他方 のタンク と前記チューブの前記他方の uターン形状の通路とで 片タンク構造の第 2熱交換器が形成されている構成の熱交換器 である。  Further, according to the third aspect of the present invention, in the third aspect, each of the tubes has a U-turn shape in which one passage connected to one tank and the other passage connected to the other tank are formed. A first heat exchanger having a one-tank structure is formed by the tank and the one U-turn shaped passage of the tube, and the one tank is formed by the other tank and the other u-turn shaped passage of the tube. This is a heat exchanger having a configuration in which a second heat exchanger having a tank structure is formed.
すなわち、 チューブに、 Uターン形状の通路が形成されてい る構成の熱交換器にも用いられる。 この構成の熱交換器は、 u ターン形状の通路と反対側のチューブの端部をタンクに接合し て形成される片タンク タイ プのものであり 、 本願発明は、 この 片タ ンク タイプのものにも適用するこ とができる。  That is, it is also used for a heat exchanger having a configuration in which a U-turn-shaped passage is formed in a tube. The heat exchanger of this configuration is of a one-tank type formed by joining the end of the tube on the opposite side of the u-turn-shaped passage to a tank, and the present invention is based on the one-tank type. It can also be applied to
このよ う な片タンク タイ プの熱交換器は、 ラ レルフロータ イブの熱交換器と比べてタ ンクが半分で済み、 その分、 空気と の接触面積が大き く なつて熱交換率が向上し、 また、 部品点数 が削减されてコス ト低減を図るこ とができ る利点を有する。  Such a single-tank type heat exchanger requires only half the tank as compared with the parallel flow type heat exchanger, and the heat exchange rate is improved by increasing the contact area with air. In addition, there is an advantage that the number of parts can be reduced and cost can be reduced.
更に、 本願発明は、 前記第 3発明において、 前記チューブは 、 通路を二分する前記閉塞部に断熱用の孔部が設けられている 構成の熱交換器である。  Furthermore, the invention of the present application is the heat exchanger according to the third invention, wherein the tube is provided with a heat insulating hole in the closed portion that bisects the passage.
このよ う に、 チューブに閉塞部が設けられている と、 第 1 及 び第 2熱交換器の双方の熱伝達を前記閉塞部で可及的に小さ く するこ とができ、 そして、 この閉塞部に断熱用の孔部が形成さ れている と、 更に熱の伝達を阻止するこ とができるため、 双方 の熱交換器の熱交換率が向上する利点を有する。  As described above, when the tube is provided with the blocking portion, the heat transfer of both the first and second heat exchangers can be reduced as small as possible by the blocking portion. If a heat insulating hole is formed in the closed portion, the heat transfer can be further prevented, so that there is an advantage that the heat exchange rates of both heat exchangers are improved.
更に、 本願発明は、 前記第 3発明において、 前記チューブと フ ィ ンを一体に組み付けて炉中ろ う付けする構成の熱交換器で ある。 Further, the invention of the present application is the heat exchanger according to the third invention, wherein the tube and the fin are integrally assembled and then installed in a furnace. is there.
すなわち、 チューブとフ ィ ンを一体に組み付けて炉中ろ う付 けする構成の熱交換器に用いるこ とができる。 基本的には、 チ ュ一ブと フ ィ ンを一体に組み込んで炉中ろ う付けするものであ り 、 このチューブと フィ ンのろ う付けに加えて、 後記のタンク 、 タンク を構成するタ ンク部、 タ ンク を構成するエン ドプレー ト等のいずれかを同時にろ う付けする こ とになる。  In other words, it can be used for a heat exchanger having a configuration in which a tube and a fin are integrally assembled and attached to a furnace. Basically, a tube and a fin are integrated into a furnace and brazed in a furnace. In addition to the brazing of the tube and the fin, a tank and a tank described later are configured. Either the tank part or the end plate that constitutes the tank will be attached at the same time.
更に、 本願発明は、 前記第 3発明において、 前記チューブ、 フィ ン及びタンクを一体に組み付けて炉中ろ う付けする構成の 熱交換器である。  Further, the invention of the present application is the heat exchanger according to the third invention, wherein the tube, the fin, and the tank are integrally assembled and then installed in a furnace.
すなわち、 チューブ、 フィ ン及びタンク を一体に組み付けて 炉中ろ う付けする構成の熱交換器にも用いる こ とができる。 こ の場合は、 タンクは円筒状のものや、 二分割のものを一体に組 み合わせて、 チューブ及ぴフ ィ ンと と もに一体にろ う付けする 更に、 本願発明は、 前記第 3発明において、 前記チューブ、 フ ィ ン及び積層されてタ ンク を形成するタンク部を一体に組み 付けて炉中ろ う付けする構成の熱交換器である。  That is, it can also be used for a heat exchanger in which a tube, a fin, and a tank are integrally assembled and brazed in a furnace. In this case, the tank may be a cylindrical one or a two-part tank that is integrally combined and attached together with the tube and the fin. In the invention, there is provided a heat exchanger having a structure in which the tube, the fin, and the tank portion which is laminated to form a tank are integrally assembled and then brazed in a furnace.
すなわち、 チューブ、 フ ィ ン及び積層されてタンク を形成す るタンク部を一体に組み付けて炉中ろ う付けする構成の熱交換 器にも用いるこ とができる。 この場合は、 チューブにタンク部 が一体成形された前述のラ ミネ一 卜タイプのものを、 一体ろ う 付けするものである。  That is, it can also be used for a heat exchanger having a structure in which a tube, a fin, and a tank portion that is laminated to form a tank are integrally assembled and brazed in a furnace. In this case, the above-mentioned laminating type, in which the tank is integrally formed with the tube, is integrally attached.
更に、 本願発明は、 前記第 3発明において、 前記チューブと フィ ンとェン ドプレー トを炉中ろ う付け後にタンク と接合する 構成の熱交換器である。  Further, the invention of the present application is the heat exchanger according to the third invention, wherein the tube, the fin, and the end plate are joined to a tank after being brazed in a furnace.
すなわち、 チューブと フィ ンとェン ドブレー トを炉中ろ う付 けした後にタンク と接合する構成の熱交換器にも用いるこ とが できる。 この場合は、 チューブと フィ ンとエン ドプレー トを炉 0 In other words, it can also be used for a heat exchanger in which tubes, fins, and end plates are attached to a tank after they are placed in a furnace. In this case, put the tube, fins and end plate in the furnace 0
1 8 中ろう付け した後に、 シ一ル材を用いてカシメ等によ り結合す る。 熱交換器に要求される耐圧性があま り高く ない場合である このよ う に、 本願の第 3発明によれば、 実質的に異なる用途 の熱交換器が一体に形成される熱交換器において、 各熱交換器 ごとに異なる要求性能を満たすチューブを、 一体に形成する こ とができ、 用途の異なる熱交換器が一体に形成された熱交換器 の耐久性を向上する と と もに、 製造装置のメ ンテナンス費用の 低減、 材料費の低減を図 り 、 製造コス トを低減する こ との可能 な熱交換器を提供する こ とができ る。 図面の簡単な説明  18 After brazing in the middle, it is joined by caulking using a sealing material. This is the case where the pressure resistance required of the heat exchanger is not so high. Thus, according to the third invention of the present application, in the heat exchanger in which heat exchangers for substantially different applications are integrally formed. In addition, tubes satisfying different performance requirements for each heat exchanger can be integrally formed, and the durability of the heat exchanger in which heat exchangers for different applications are integrally formed is improved. It is possible to provide a heat exchanger capable of reducing the maintenance cost of the production equipment and the material cost, thereby reducing the production cost. BRIEF DESCRIPTION OF THE FIGURES
【図 1 】 本願第 1 発明の具体例に係る熱交換器の正面図で ある。  FIG. 1 is a front view of a heat exchanger according to a specific example of the first invention of the present application.
【図 2】 本願第 1発明の具体例に係り 、 熱交換器に用いる チューブ及びタ ンクの横断面図である。  FIG. 2 is a cross-sectional view of a tube and a tank used for a heat exchanger according to a specific example of the first invention of the present application.
【図 3 】 図 2に示すチューブの閉塞部を正面方向からみた 図である。  FIG. 3 is a view of the closed portion of the tube shown in FIG. 2 as viewed from the front.
【図 4】 本願第 1 発明の他の具体例に係り 、 熱交換器に用 いるチューブ及ぴタ ンク の横断面図である。  FIG. 4 is a cross-sectional view of a tube and a tank used for a heat exchanger according to another specific example of the first invention of the present application.
【図 5】 図 4 に示すチューブの閉塞部を正面方向からみた 図である。  FIG. 5 is a view of the closed portion of the tube shown in FIG. 4 as viewed from the front.
【図 6 】 第 1 熱交換器の通路の断面図である。  FIG. 6 is a sectional view of a passage of the first heat exchanger.
【図 7】 第 2熱交換器の通路の断面図である。  FIG. 7 is a cross-sectional view of a passage of the second heat exchanger.
【図 8 】 本願第 1 発明の他の具体例に係り 、 熱交換器に用 いるチューブ及びタ ンクの横断面図である。  FIG. 8 is a cross-sectional view of a tube and a tank used for a heat exchanger according to another specific example of the first invention of the present application.
【図 9 】 図 8 に示すチューブの閉塞部を正面方向からみた 図である。  FIG. 9 is a front view of the closed portion of the tube shown in FIG. 8.
【図 1 0】 本願第 1発明の他の具体例に係り 、 熱交換器に 用いるチューブ及ぴタ ンク の横断面図である。 [FIG. 10] According to another specific example of the first invention of the present application, a heat exchanger is used. FIG. 2 is a cross-sectional view of a tube and a tank used.
【図 1 1 】 図 1 ◦ に示すチューブの閉塞部を正面方向から みた図である。  [Fig. 11] Fig. 11 is a view of the closed portion of the tube shown in Fig. 1 ◦ viewed from the front.
【図 1 2 】 本願第 1発明の他の具体例に係り 、 熱交換器に 用いる、 チューブ形成用の一枚のプレー ト を示す図である。  FIG. 12 is a view showing one tube-forming plate used for a heat exchanger according to another specific example of the first invention of the present application.
【図 1 3 】 図 1 2 に示すプレー トを半分に折り畳んでチュ [Fig. 13] Fold the plate shown in Fig. 12 in half and chu
—ブを形成した場合の、 第 1熱交換器の通路の断面図である。 FIG. 4 is a cross-sectional view of a passage of the first heat exchanger when a fan is formed.
【図 1 4】 図 1 2 に示すプレー 卜を半分に折り畳んでチュ ーブを形成した場合の、 第 2熱交換器の通路の断面図である。  FIG. 14 is a cross-sectional view of the passage of the second heat exchanger when the tube shown in FIG. 12 is folded in half to form a tube.
【図 1 5 】 本願第 1 発明の他の具体例に係る熱交換器の正 面図である。  FIG. 15 is a front view of a heat exchanger according to another specific example of the first invention of the present application.
【図 1 6 】 図 〗 5 に示す熱交換器の平面図である。  FIG. 16 is a plan view of the heat exchanger shown in FIG.
【図 1 7 】 図 1 5 に示す熱交換器のチューブの平面図であ る。  FIG. 17 is a plan view of the tubes of the heat exchanger shown in FIG. 15.
【図 1 8 】 本願第 1 発明の他の具体例に係り 、 第 1 及び第 2熱交換器を縦方向に組み合わせた熱交換器の正面図である。  FIG. 18 is a front view of a heat exchanger in which first and second heat exchangers are combined in a vertical direction according to another specific example of the first invention of the present application.
【図 1 9 】 図 1 8 に示す熱交換器のチューブ及びタ ンク の 縦断面図である。  FIG. 19 is a longitudinal sectional view of a tube and a tank of the heat exchanger shown in FIG. 18.
【図 2 0 】 本願第 1 発明の他の具体例に係り 、 第 1 及び第 FIG. 20 relates to another specific example of the first invention of the present application.
2熱^ r 器を縦方向に組み合わせた熱交換器の斜視図である。 FIG. 3 is a perspective view of a heat exchanger in which two heat exchangers are combined in a vertical direction.
【図 2 1 】 本願第 1 発明の他の具体例に係り—、 第 1 及び第 2熱交換器を縦方向に組み合わせた熱交換器のタ ンク部分を示 す斜視図である。  FIG. 21 is a perspective view showing a tank portion of a heat exchanger in which first and second heat exchangers are vertically combined according to another specific example of the first invention of the present application.
【図 2 2】 図 2 1 に示す熱交換器のチューブの縦断面図で ある。  FIG. 22 is a longitudinal sectional view of a tube of the heat exchanger shown in FIG. 21.
【図 2 3 】 本願第 2発明の具体例に係る熱交換器の正面図 である。  FIG. 23 is a front view of a heat exchanger according to a specific example of the second invention of the present application.
【図 2 4 】 接合プレー 卜の斜視図である。  FIG. 24 is a perspective view of a joining plate.
【図 2 5 】 接合プレー 卜の斜視図である。 【図 2 6 接合プレー 卜 の斜視図である。 FIG. 25 is a perspective view of a joining plate. FIG. 26 is a perspective view of a joining plate.
【図 2 7 接合プレ一 トの斜視図である。  FIG. 27 is a perspective view of a bonding plate.
【図 2 8 接合プレー 卜の斜視図である。  FIG. 28 is a perspective view of a joining plate.
【図 2 9 接合プレー 卜の斜視図である。  FIG. 29 is a perspective view of a joining plate.
【図 3 0 接合プレー 卜の斜視図である。  FIG. 30 is a perspective view of a joining plate.
【図 3 1 接合プレ一 トの斜視図である。  FIG. 31 is a perspective view of a bonding plate.
【図 3 2 図 2 3 に示す熱交換器の C部分の X— X矢視断 面図である  Fig. 3 2 is a cross-sectional view taken along the line X--X of the C portion of the heat exchanger shown in Fig. 23.
【図 3 3 図 2 3 に示す熱交換器の C部分を拡大した斜視 図である。  FIG. 3 is an enlarged perspective view of a portion C of the heat exchanger shown in FIG.
【図 3 4 本願第 2発明の他の具体例に係る熱交換器の正 面図である  FIG. 34 is a front view of a heat exchanger according to another specific example of the second invention of the present application.
【図 3 5 本願第 2発明の他の具体例に係る熱交換器の正 面図である  FIG. 35 is a front view of a heat exchanger according to another specific example of the second invention of the present application.
【図 3 6 図 3 5 に示すチューブ及ぴタ ンク の横断面図で める。  [Fig. 36] Fig. 35 is a cross-sectional view of the tube and tank shown in Fig. 35.
【図 3 7 本願第 2発明の他の具体例に係る熱交換器の斜 視図である  FIG. 37 is a perspective view of a heat exchanger according to another specific example of the second invention of the present application.
【図 3 8 図 3 7 に示す熱交換器の一部を示す Y— Y断面 図である。  FIG. 3 8 is a sectional view taken along the line YY of the heat exchanger shown in FIG. 37.
【図 3 9 本願第 3発明の具体例に係る熱交換器の斜視図 である。  FIG. 39 is a perspective view of a heat exchanger according to a specific example of the third invention of the present application.
【図 4 0 本願第 3発明の具体例に係る熱交換器の横断面 図である。  FIG. 40 is a cross-sectional view of a heat exchanger according to a specific example of the third invention of the present application.
【図 4 1 本願第 3発明の具体例に係り 、 チューブの端面 部分の斜視図である。  FIG. 41 is a perspective view of an end face portion of a tube according to a specific example of the third invention of the present application.
【図 4 2 】 本顧第 3発明の具体例に係り 、 チューブの端面 部分の斜視図である。  FIG. 42 is a perspective view of an end face portion of a tube according to a specific example of the third invention of the present invention.
【図 4 3 】 本願第 3発明の具体例に係り 、 チューブの端面 部分の斜視図である。 [FIG. 43] An end face of a tube according to a specific example of the third invention of the present application. It is a perspective view of a part.
【図 4 4 】 本願第 3発明の具体例に係り 、 チューブの端面 部分の斜視図である。  FIG. 44 is a perspective view of an end face portion of a tube according to a specific example of the third invention of the present application.
【図 4 5 】 本願第 3発明の具体例に係り 、 チューブの端面 部分の斜視図である。  FIG. 45 is a perspective view of an end face portion of a tube according to a specific example of the third invention of the present application.
【図 4 6 】 本願第 3発明の具体例に係り 、 チューブの端面 部分の斜視図である。  FIG. 46 is a perspective view of an end face portion of a tube according to a specific example of the third invention of the present application.
【図 4 7 】 本願第 3発明の具体例に係り 、 チューブの端面 部分の斜視図である。  FIG. 47 is a perspective view of an end face portion of a tube according to a specific example of the third invention of the present application.
【図 4 8 】 本願第 3発明の具体例に係り 、 チューブの端面 部分の斜視図である。  FIG. 48 is a perspective view of an end face portion of a tube according to a specific example of the third invention of the present application.
【図 4 9 】 本願第 3発明の具体例に係り 、 チューブの端面 部分の斜視図である。  FIG. 49 is a perspective view of an end face portion of a tube according to a specific example of the third invention of the present application.
【図 5 0】 本願第 3発明の具体例に係り 、 チューブの端面 部分の斜視図である。  FIG. 50 is a perspective view of an end face portion of a tube according to a specific example of the third invention of the present application.
【図 5 1 】 本願第 3発明の具体例に係り 、 チューブの端面 部分の斜視図である。  FIG. 51 is a perspective view of an end face portion of a tube according to a specific example of the third invention of the present application.
【図 5 2】 本願第 3発明の A体例に係り 、 チューブの端面 部分の斜視図である。  FIG. 52 is a perspective view of an end face portion of a tube according to an example A of the third invention of the present application.
【図 5 3 】 本願第 3発明の具体例に係り 、 チューブの端面 部分の斜視図である。  FIG. 53 is a perspective view of an end face portion of a tube according to a specific example of the third invention of the present application.
【図 5 4】 本願第 3発明の他の具体例に係る熱交換器の斜 視図である。  FIG. 54 is a perspective view of a heat exchanger according to another specific example of the third invention of the present application.
【図 5 5】 図 5 4に示す熱交換器のチューブ及びタンク の 横断面図である。  FIG. 55 is a cross-sectional view of the tube and tank of the heat exchanger shown in FIG. 54.
【図 5 6 】 本願第 3発明の他の具体例に係る熱交換器の斜 視図である。  FIG. 56 is a perspective view of a heat exchanger according to another specific example of the third invention of the present application.
【図 5 7 】 本願第 3発明の他の具体例に係る熱交換器の斜 視図である。 10 FIG. 57 is a perspective view of a heat exchanger according to another specific example of the third invention of the present application. Ten
2 2  twenty two
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
以下に本願の第 1発明の具体例を図面に基づいて説明する。 図 1 は本具体例の熱交換器の正面図、 図 2 はこの熱交換器に 用いるチューブ及びタ ンクの横断面図を示すもので、 この熱交 換器 1 は、 一対のタ ンク 2, 2の間に、 複数のチューブ 4, 4 及びフ ィ ン 3 a, 3 a を備えた熱交換器であって、 各チューブ 4, 4は、 途中に閉塞部 5 を設けて通路を二分し、 一方のタ ン ク 2に接続される一方の通路 6 と、 他方のタ ンク 2 に接続され る他方の通路 7が、 それぞれ Uターン形状に形成されている。 図 2 において、 6 0, 7 0 は突条であり 、 これらの突条 6 0 , 7 0 とプレー ト面が接合 し、 或レ、は、 突条 6 0 , 6 0又は突 条 7 0 , 7 0 同士が接合して、 各通路 6, 7 が Uターン形状に 形成される。 7 a , 7 a はビ一 ドで、 これらのビ一 ド 7 a とプ レー ト面が接合し、 或いは、 ビー ド 7 a , 7 a 同士が接合して 、 耐圧性の向上と、 熱交換媒体の流れに乱流を生じさせて熱交 換効率の向上を図っている。 また、 図 3 は閉塞部 5 を正面方向 からみた図である。  Hereinafter, a specific example of the first invention of the present application will be described with reference to the drawings. FIG. 1 is a front view of the heat exchanger of this example, and FIG. 2 is a cross-sectional view of a tube and a tank used in the heat exchanger. The heat exchanger 1 includes a pair of tanks 2 and 2, a heat exchanger comprising a plurality of tubes 4, 4 and fins 3a, 3a, wherein each of the tubes 4, 4 is provided with an obstruction 5 in the middle to divide the passage into two, One passage 6 connected to one tank 2 and the other passage 7 connected to the other tank 2 are each formed in a U-turn shape. In FIG. 2, 60 and 70 are ridges, and these ridges 60 and 70 are joined to the plate surface, or are ridges 60 and 60 or ridges 70 and 70, respectively. The 70s are joined together, and the passages 6, 7 are formed in a U-turn shape. 7a and 7a are beads. These beads 7a are joined to the plate surface or the beads 7a and 7a are joined together to improve the pressure resistance and heat exchange. The turbulence is generated in the medium flow to improve the heat exchange efficiency. FIG. 3 is a view of the closing portion 5 as viewed from the front.
そ して、 前記一方のタ ンク 2 とチューブ 4の前記一方の Uタ ーン形状の通路 6 とで片タ ンク構造の第 1 熱交換器 Aが形成さ れ、 また、 前記他方のタ ンク 2 とチューブの前記他方の Uター ン形状の通路 7 とで片タ ンク構造の第 2熱交換器 Bが形成され ている。 この例では、 第 1 熱交換器 Aはラジェ一タ、 第 2熱交 換器 Bはコンデンサであり 、 第 1 及び第 2熱交換器 A , Bを横 方向に組み合わせて熱交換器 1 が形成されている。  The one tank 2 and the one U-turn shaped passage 6 of the tube 4 form a first heat exchanger A having a one-tank structure, and the other tank 2 has a one-tank structure. A second heat exchanger B having a single tank structure is formed by 2 and the other U-turn-shaped passage 7 of the tube. In this example, the first heat exchanger A is a radiator, the second heat exchanger B is a condenser, and the first and second heat exchangers A and B are combined laterally to form a heat exchanger 1. Have been.
尚、 各チューブ 4, 4の両端は、 それぞれ、 左右のタンク 2 , 2 のチューブ揷入孔 (図示を省略) に挿入されて接続されて いる。 また、 タ ンク 2, 2 の上端側及び下端側には、 サイ ドプ レー ト接続孔 (図示を省略) が設けられており 、 これらのサイ ドブレ一 ト接続孔には、 断面コ字状のサイ ドブレ一 ト 3 b の両 端部が挿入されて接合されている。 更に、 各タンク 2, 2は、 長手方向に仕切り板 2 a, 2 a を一体に形成して、 内部が入口 側 2 0 A, 2 0 B と出口側 2 1 A, 2 I Bに区画されており 、 入口側 2 0 A, 2 0 Bに熱交換媒体の入口継手 8 A , 8 Bが、 出口側 2 1 A, 2 1 Bには出口継手 9 A, 9 B力 、 それぞれ接 続されている。 Both ends of the tubes 4, 4 are inserted and connected to the tube insertion holes (not shown) of the left and right tanks 2, 2, respectively. Side plate connection holes (not shown) are provided at the upper and lower ends of the tanks 2 and 2, respectively. Both ends of a side plate 3b having a U-shaped cross section are inserted into and joined to the plate connection hole. Further, each of the tanks 2, 2 is formed integrally with partition plates 2a, 2a in the longitudinal direction, and the interior is partitioned into an inlet side 20A, 20B and an outlet side 21A, 2IB. The inlet joints 20 A and 20 B are connected to the inlet joints 8 A and 8 B of the heat exchange medium, and the outlet sides 21 A and 21 B are connected to the outlet joints 9 A and 9 B, respectively. I have.
本例において、 チューブ 4 は、 後述するよ う に、 プ レス又は ロール成形された二枚のプレー トを合わせて形成される ものや 、 プレス又はロ ール成形された一枚のプレー トを更に半分に折 り畳んで形成されるもの、 或いは、 ロ ール成形しながら一枚の プレー ト を半分に折り 畳んで形成される ものが用いられる。 ま た、 チューブの材質は、 両面ク ラ ッ ドの 3層材や、 両面ク ラ ッ ドに中間層を持った 4層材が用いられる。  In this example, as will be described later, the tube 4 may be formed by combining two press-formed or roll-formed plates, or a single press-formed or roll-formed plate. One formed by folding it in half or one formed by folding one plate in half while rolling is used. The tube is made of a three-layer material with a double-sided clad or a four-layer material with an intermediate layer on the double-sided clad.
上述した熱交換器 1 においては、 第 1熱交換器 Aの入口継手 8 Aと出口継手 9 Aとの間で、 熱交換媒体が各チューブ 4の U ターン形状の通路 6, 6 を流れて熱交換され、 同様に、 第 2熱 交換器 Bの入口継手 8 B と出口継手 9 B との間で、 熱交換媒体 が各チューブ 4 の Uターン形状の通路 7, 7 を流れて熱交換さ れる。  In the heat exchanger 1 described above, the heat exchange medium flows between the inlet joint 8A and the outlet joint 9A of the first heat exchanger A through the U-turn-shaped passages 6 and 6 of each tube 4 to generate heat. The heat exchange medium is similarly exchanged, and the heat exchange medium flows between the inlet joint 8B and the outlet joint 9B of the second heat exchanger B through the U-turn-shaped passages 7 and 7 of each tube 4 to exchange heat. .
熱交換器 1 をこのよ う に構成する こ とによ り 、 その実質は片 タンク構造の熱交換器 (第 1 及び第 2熱交換器 A , B ) が組み 合わされて形成されているにも拘らず、 複数のチューブ 4, 4 とフ ィ ン 3 a , 3 a とが交互に積層されたものがー対のタ ンク 2 , 2間に装着され、 しかも、 チューブ 4は一対のタンク 2, 2間で一体のものであり 、 この一対のタンク 2, 2によってチ ュ一ブ 4, 4 とフィ ン 3 a, 3 a の両端部の支持がなされので 、 熱交換器の剛性を大き く するこ とができ る。 このよ う にして 、 熱交換器 1 は、 片タ ンク構造であってもパラ レルフロ一タイ プの利点を有するこ とになる。 また、 本例では、 サイ ドブレ一 ト 3 b を用いているので、 熱交換器 1 の強度が一層向上する。 そ して、 第 1 及び第 2熱交換器 Λ, Bは、 片タンク構造 (熱 交換器 Aはタ ンク 2、 熱交換器 Bはタンク 2 ) であるため、 片 タ ンク固有の利点、 すなわち、 パラ レルフ ロ 一タイプの熱交換 器に比べてタンクが半分で済むので、 その分、 熱交換スペース をとる こ とができて熱交換効率が向上し、 また、 部品点数が削 減されてコス ト低減を図るこ とができ る利点を有する。 By configuring the heat exchanger 1 in this manner, the heat exchanger 1 is essentially formed by combining the heat exchangers of the single tank structure (the first and second heat exchangers A and B). Regardless, a plurality of tubes 4, 4 and fins 3a, 3a alternately stacked are mounted between a pair of tanks 2, 2, and moreover, the tube 4 is a pair of tanks 2, 3. The pair of tanks 2, 2 support the ends of the tubes 4, 4 and the fins 3a, 3a, thereby increasing the rigidity of the heat exchanger. be able to. In this way, the heat exchanger 1 has a parallel flow structure even in a single tank structure. Will have the advantages of Further, in this example, since the side plate 3b is used, the strength of the heat exchanger 1 is further improved. Since the first and second heat exchangers Λ and B have a single tank structure (heat exchanger A is tank 2 and heat exchanger B is tank 2), the advantages inherent in one tank, namely, Since only one tank is required compared to a parallel-flow type heat exchanger, the space required for heat exchange can be increased, heat exchange efficiency can be improved, and the number of parts can be reduced, resulting in cost reduction. This has the advantage that the cost can be reduced.
更に、 第 1 及び第 2 の熱交換器 Λ, Βは、 構造上、 連結して 形成されているので、 前述のよ う に剛性が向上する一方で、 チ ユ ーブ 4 の途中に閉塞部 5が設けられているので、 熱交換媒体 の交流が阻止されるこ とは勿論、 この閉塞部 5 によって、 双方 の伝熱を可及的に小さ く するこ とができ、 これによ り性能低下 を阻止する こ とができ る。 また、 閉塞部 5 は、 第 1 及び第 2熱 交換器 Α, Βの双方の通路を連結してチューブ 4 を一体形成す るこ と を可能に している。  Further, since the first and second heat exchangers Λ, Β are structurally connected to each other, the rigidity is improved as described above, while the closed portion is formed in the middle of the tube 4. 5, the heat exchange medium can be prevented from being exchanged with the heat exchange medium, and the closed portion 5 can minimize the heat transfer between the two as much as possible. The decline can be prevented. Further, the closing portion 5 enables the tube 4 to be integrally formed by connecting the passages of both the first and second heat exchangers Α and Β.
以下、 好ま しい実施の態様を図面に基づいて説明する。 尚、 共通の構成要素には同一の符号を付して説明を省略する。  Hereinafter, preferred embodiments will be described with reference to the drawings. Note that common components are denoted by the same reference numerals and description thereof is omitted.
図 2において、 チューブ 4 の閉塞部 5 は、 断熱用の孔部 5 a , 5 a を備えている。 このよ う に、 閉塞部 5に孔部 5 a , 5 a を備えるこ と によ り 、 断熱効果をよ り一層向上するこ とができ な  In FIG. 2, the closed part 5 of the tube 4 has holes 5a and 5a for heat insulation. As described above, the provision of the holes 5a and 5a in the closing portion 5 makes it impossible to further improve the heat insulating effect.
図 4ないし図 7 に示す具体例のものは、 二枚のプレー ト 4 a , 4 b を合わせてチューブ 4 を形成したもので、 この例の場合 は、 孔部 5 a を前例のものよ り も大き く 形成している。 また、 プレー ト 4 a , 4 b は、 プレス又はロ ール成形によ り形成され る。  In the specific example shown in FIGS. 4 to 7, the tube 4 is formed by combining two plates 4a and 4b, and in this example, the hole 5a is made different from that of the previous example. Are also large. The plates 4a and 4b are formed by press or roll forming.
尚、 図 6 に示すものは第 1熱交換器 Aの通路 6 の断面図、 ま た、 図 7 に示すものは第 2熱交換器 Bの通路 7 の断面図であ り 、 突条 6 0, 7 0 とプレー ト面が接合して、 各通路 6 , 7 が U ターン形状に形成される。 通路 7 では、 ビ一 ド 7 a とプレー ト 面が接合して、 耐圧性の向上と、 熱交換媒体の流れに乱流を生 じさせて熱交換効率の向上を図っている。 FIG. 6 is a cross-sectional view of the passage 6 of the first heat exchanger A, and FIG. 7 is a cross-sectional view of the passage 7 of the second heat exchanger B. The ridges 60, 70 and the plate surface are joined to form the passages 6, 7 in a U-turn shape. In the passage 7, the bead 7a and the plate surface are joined to improve the pressure resistance and generate a turbulent flow in the heat exchange medium to improve the heat exchange efficiency.
図 8及び図 9 に示すものは、 チューブ 4の他の具体例であつ て、 チューブ 4 の閉塞部 5 に、 断熱用の空洞 5 b を備えている 。 これによ り 、 前例の場合と同様に、 この空洞 5 b によって断 熱効果をよ り 一層向上する こ とができ る。  FIGS. 8 and 9 show another specific example of the tube 4 in which a closed portion 5 of the tube 4 is provided with a cavity 5b for heat insulation. Thus, as in the case of the previous example, the heat insulation effect can be further improved by the cavity 5b.
図 1 0及ぴ図 1 1 に示すものは、 チューブ 4の他の具体例で あって、 チューブ 4 の閉塞部 5に折り返し部 5 c , 5 c を備え ている。 更に、 第 1熱交換器 Aと第 2熱交換器 B とでは別々 の フ ィ ン 3 a を配置し、 閉塞部 5 の折り返し部 5 c, 5 c で前記 フィ ンの端部の位置決めを行っている。  FIGS. 10 and 11 show another specific example of the tube 4 in which the closed portion 5 of the tube 4 is provided with folded portions 5c, 5c. Further, separate fins 3a are arranged in the first heat exchanger A and the second heat exchanger B, and the ends of the fins are positioned at the folded portions 5c and 5c of the closing portion 5. ing.
この例では、 第 1 熱交換器 Aと第 2熱交換器 B とで別々 のフ イ ン 3 a を配置するので、 各熱交換器に適した性能のフ ィ ンを 個別に用意するこ とができ、 これによ り 、 各熱交換器ごとの要 求性能を満足するこ とができる。 また、 閉塞部 5 は折り 返し部 5 c , 5 c を備えているので、 この折り返し部 5 c , 5 c で各 フィ ン 3 a の端部の位置決めを行い、 その結果、 フィ ン端部の 飛び出 しが阻止される等、 フ ィ ンの装着が適正に保持される こ とになる。  In this example, separate fins 3a are arranged for the first heat exchanger A and the second heat exchanger B, so that fins with performance suitable for each heat exchanger must be prepared individually. As a result, the required performance of each heat exchanger can be satisfied. In addition, since the closing portion 5 has the folded portions 5c, 5c, the ends of each fin 3a are positioned by the folded portions 5c, 5c. Proper installation of the fins will be maintained, such as preventing them from popping out.
尚、 図示を省略したが、 第 1 熱交換器 Aと第 2熱交換器 Bに 亘つてそれぞれ一つのフィ ンを配置してもよレ、。 この場合は、 フィ ンは第 1 熱交換器 Aと第 2熱交換器 B とでフ ィ ンの山数を 異なるよ う に設ける と よレ、。 このよ う に第 1 熱交換器と第 2熱 交換器に亘つて一つのフ ィ ンを配置する場合は、 フ ィ ンを一種 類で済むため経済的である。 また、 フ ィ ンの山数を第 1 熱交換 器と第 2熱交換器とで異なら しめてフィ ンピッチを変更する こ とによ り 、 各熱交換器ごとの要求性能に適合させる こ とができ る。 Although not shown, one fin may be provided for each of the first heat exchanger A and the second heat exchanger B. In this case, the fins are provided so that the number of fins is different between the first heat exchanger A and the second heat exchanger B. When one fin is arranged across the first heat exchanger and the second heat exchanger in this way, it is economical because only one kind of fin is required. Also, by changing the number of fins in the first heat exchanger and the second heat exchanger to change the fin pitch, it is possible to meet the required performance of each heat exchanger. You.
図 1 2ないし図 1 4に示す具体例は、 一枚のプレー ト 4 c を 半分に折り畳んでチューブ 4 を形成したものである。 チューブ 4 は、 プレス又はロール成形された -枚のプレー ト 4 c を更に 半分に折り畳んで形成され、 或いは、 ロール成形しながら一枚 のプレー ト 4 c を半分に折り畳んで形成される ものである。  In the specific examples shown in FIGS. 12 to 14, one plate 4c is folded in half to form a tube 4. FIG. The tube 4 is formed by further folding the pressed or roll-formed plate 4 c in half, or by folding the plate 4 c in half while rolling. .
図 1 5 ないし図 1 7 に示す具体例は、 積層されてタンク 2, 2 を形成するタンク部 2 b, 2 bが、 チューブ 4に一体成形さ れたラ ミネー トタイプのものである。 この例の場合も、 熱交換 器 1 は、 一対のタ ンク 2, 2 の間に、 複数のチューブ 4, 4及 びフ ィ ン 3 a, 3 a を備えた熱交換器であって、 各チューブ 4 , 4は、 途中に閉塞部 5 を設けて通路を二分し、 一方のタンク 2 に接続される一方の通路 6 と、 他方のタンク 2に接続される 他方の通路 7が、 それぞれ Uターン形状にプレス形成されてい る。  The specific examples shown in FIGS. 15 to 17 are of a laminated type in which the tank portions 2 b and 2 b which are laminated to form the tanks 2 and 2 are integrally formed with the tube 4. Also in this example, the heat exchanger 1 is a heat exchanger having a plurality of tubes 4, 4 and fins 3a, 3a between a pair of tanks 2, 2. Tubes 4 and 4 are provided with an obstruction 5 in the middle to divide the passage into two, and one passage 6 connected to one tank 2 and the other passage 7 connected to the other tank 2 have U-turns respectively. It is press formed into a shape.
そ して、 前例同様、 一方のタンク 2 とチューブ 4 の一方の U ターン形状の通路 6 とで片タ ンク構造の第 1 熱交換器 Aが形成 され、 また、 他方のタ ンク 2 とチューブの他方の Uターン形状 の通路 7 とで片タ ンク構造の第 2熱交換器 Bが形成されている 。 フ ィ ン 3 a は、 第 1 熱交換器 Aと第 2熱交換器 B とでは別々 に配置している。 従って、 各熱交換器に適した性能のフ ィ ンを 個別に用意するこ とができ、 これによ り 、 各熱交換器ごとの要 求性能を満足するこ とができ る。  Then, as in the previous example, one tank 2 and one U-turn-shaped passage 6 of the tube 4 form the first heat exchanger A having a single tank structure, and the other tank 2 and the tube 4 are connected to each other. The other U-turn-shaped passage 7 forms a second heat exchanger B having a single tank structure. The fins 3a are separately arranged in the first heat exchanger A and the second heat exchanger B. Therefore, a fin having a performance suitable for each heat exchanger can be individually prepared, thereby satisfying the required performance of each heat exchanger.
尚、 前述したよ う に、 第 1 熱交換器 Aと第 2熱交換器 Bに亘 つてそれぞれ一つのフィ ンを配置してもよい。 この場合も、 フ イ ンは第 1 熱交換器 Aと第 2熱交換器 B とでフ ィ ンの山数を異 なるよ う に設けて、 各熱交換器ごとの要求性能に適合させる こ とができる。  Note that, as described above, one fin may be arranged for each of the first heat exchanger A and the second heat exchanger B. In this case, too, the fins are provided so that the number of fins is different between the first heat exchanger A and the second heat exchanger B, and the fins can be adapted to the required performance of each heat exchanger. Can be.
図 1 8及び図 1 9 に示す具体例は、 第 1 及び第 2熱交換器 Λ , Bを縦方向に組み合わせて熱交換器 1 を形成したもので、 こ の熱交換器 1 は、 上下に設けた一対のタンク 2, 2の間に、 複 数のチューブ 4, 4及びフ ィ ン 3 a , 3 a を備えた熱交換器で あって、 各チューブ 4, 4 は、 前例同様、 途中に閉塞部 5 を設 けて通路を二分し、 一方のタンク 2に接続される一方の通路 6 と、 他方のタ ンク 2 に接続される他方の通路 7が、 それぞれ U ターン形状に形成されている。 第 1 及び第 2熱交換器 A, B を 本例のよ う に縦方向に組み合わせて、 或いは、 前例のよ う に横 方向に組み合わせて、 設置スペースに適合する熱交換器 1 を形 成するこ とができる。 The specific examples shown in FIGS. 18 and 19 are for the first and second heat exchangers. , B are combined in the vertical direction to form a heat exchanger 1, which comprises a plurality of tubes 4, 4 and a plurality of tubes between a pair of upper and lower tanks 2, 2. A heat exchanger equipped with a heat exchanger 3a, 3a, and each of the tubes 4, 4 is provided with a closed part 5 in the middle as in the previous example to divide the passage into two parts, and is connected to one of the tanks 2 The passage 6 and the other passage 7 connected to the other tank 2 are each formed in a U-turn shape. Combining the first and second heat exchangers A and B in the vertical direction as in this example, or in the horizontal direction as in the previous example, to form a heat exchanger 1 that fits the installation space be able to.
以上の各具体例は、 チューブ 4, 4 と フィ ン 3 a , 3 a を一 体に組み付けて炉中ろ う付けする構成の熱交換器 1 である。 す なわち、 図 1 、 図 1 5及び図 1 8 に示す各熱交換器 1 は、 基本 的にはチューブ 4, 4 と フ ィ ン 3 a, 3 a を一体に組み込んで 炉中ろ う付けするものであ り 、 更に、 このチューブと フ ィ ンの ろう付けに加えて、 タンク 2, 2 (図 1 及び図 1 8 の熱交換器 ) 、 タ ンク 2, 2 を構成するタ ンク部 2 b, 2 b (図 1 5 の熱 交換器) を同時にろ う付け して熱交換器を形成する。 これに対 して、 図 2 0 ないし図 2 2 に示す熱交換器は、 所謂タ ンク後付 け且つカシメ タイ プと タ ンク別体タイ プのものである。  Each of the above specific examples is a heat exchanger 1 in which the tubes 4, 4 and the fins 3a, 3a are assembled together and the furnace is put in the furnace. That is, each of the heat exchangers 1 shown in Fig. 1, Fig. 15 and Fig. 18 basically includes the tubes 4, 4 and the fins 3a, 3a integrated into a furnace and brazed in the furnace. In addition to the brazing of the tubes and the fins, the tanks 2 and 2 (heat exchangers in FIGS. 1 and 18) and the tank 2 that constitutes the tanks 2 and 2 b, 2b (heat exchanger in Fig. 15) are simultaneously brazed to form a heat exchanger. On the other hand, the heat exchangers shown in FIGS. 20 to 22 are so-called retrofitted tanks and are of the caulking type and the tank separate type.
図 2 0 に示す具体例は、 第 1 及び第 2熱交換器 A, Bを縦方 向に組み合わせて熱交換器 1 を形成したもので、 この熱交換器 1 は、 上下に設けた一対のタンクの間に、 複数のチューブ 4, 4及びフ ィ ン 3 a , 3 a を備えた熱交換器であって、 各チュー ブ 4, 4は、 前例同様、 途中に閉塞部を設けて通路を二分し、 一方のタンクに接続される一方の通路と、 他方のタンクに接続 される他方の通路が、 それぞれ Uターン形状に形成されている ものである。 この熱交換器 1 は、 その第 1 熱交換器 Aにおいて . チューブ 4 , 4 、 フ ィ ン 3 a, 3 a 及びエン ドプレー ト 2 c を一体に組み付けて炉中ろ う付け し、 その後、 タ ンクプレー ト 2 d をェン ドブレ一 卜 2 c に接合する構成の熱交換器である。 すなわち、 この場合は、 タ ンク 2がエン ドプレー ト 2 c と タ ン クプレ一 ト 2 d とによって形成されるものであって、 チューブ 4, 4 、 フ ィ ン 3 a, 3 a 及びエン ドプレー ト 2 c をろ う付け した後、 タンクプレー ト 2 d を組み付け、 図示を省略したシー ル材を用いてカシメ等によ り結合する ものである。 熱交換器に 要求される耐圧性があま り 高く ない場合は、 図 2 0 のタンク 2 のよ う に、 シール材を用いてカシメ等によ り結合する構成も可 能である。 In the specific example shown in FIG. 20, the first and second heat exchangers A and B are vertically combined to form a heat exchanger 1. The heat exchanger 1 is composed of a pair of upper and lower heat exchangers. A heat exchanger provided with a plurality of tubes 4, 4 and fins 3a, 3a between tanks. Each of the tubes 4, 4 is provided with a closed part in the middle as in the previous example to provide a passage. Bifurcated, one passage connected to one tank and the other passage connected to the other tank are each formed in a U-turn shape. This heat exchanger 1 is connected to the first heat exchanger A. The tubes 4 and 4, the fins 3 a and 3 a and the end plate 2 c This is a heat exchanger with a structure in which the components are assembled together and the furnace is put in the furnace, and then the tank plate 2d is joined to the end plate 2c. That is, in this case, the tank 2 is formed by the end plate 2c and the tank plate 2d, and the tubes 4, 4; the fins 3a, 3a; After brazing 2c, the tank plate 2d is assembled and joined by caulking using a sealing material not shown. If the pressure resistance required of the heat exchanger is not so high, a structure such as tank 2 in Fig. 20 that uses a sealing material to connect by caulking or the like is also possible.
図 2 1 及び図 2 2に示す具体例は、 第 1 及び第 2熱交換器 Λ , Bを縦方向に組み合わせて熱交換器 1 を形成したもので、 こ の熱交換器 1 は、 上下に設けた一対のタ ンクの間に、 複数のチ ュ一ブ 4, 4及びフ ィ ン 3 a, 3 a を備えた熱交換器であって 、 各チューブ 4, 4 は、 前例同様、 途中に閉塞部 5 を設けて通 路を二分し、 一方のタンクに接続される一方の通路と、 他方の タンクに接続される他方の通路が、 それぞれ Uターン形状に形 成されているものである。 この熱交換器 1 は、 その第 1 熱交換 器 Aにおいて、 タンク 2 がェン ドブレ一 卜 2 c と タンクプレー 卜 2 d とによって形成されるものであって、 チューブ 4, 4、 フ ィ ン 3 a, 3 a 、 エン ドプレー ト 2 c及びタ ンクプレー ト 2 d を炉中一体ろ う付けして形成する。  In the specific examples shown in FIGS. 21 and 22, the heat exchanger 1 is formed by combining the first and second heat exchangers B and B in the vertical direction. A heat exchanger having a plurality of tubes 4, 4 and fins 3a, 3a between a pair of tanks provided, wherein each tube 4, 4 The passage is bisected by providing a blocking portion 5, and one passage connected to one tank and the other passage connected to the other tank are each formed in a U-turn shape. In this heat exchanger 1, in the first heat exchanger A, a tank 2 is formed by an end plate 2c and a tank plate 2d, and tubes 4, 4 and fins are formed. 3a, 3a, end plate 2c and tank plate 2d are formed by soldering together in a furnace.
このよ う に、 本具体例の熱交換器は、 基本的にはチューブと フ ィ ンを一体に組み込んで炉中ろ う付けする ものであり 、 この チューブと フィ ンのろ う付けに加えて、 タンク、 タンク を構成 するタンク部、 タンクを構成するエン ドプレー 卜等のいずれか を同時にろ う付けするこ とができる。 すなわち、 チューブ、 フ イ ン及びタ ンクを一体に組み付けて炉中ろう付けする場合は、 タンクは円筒状のものや、 二分割のものを一体に組み合わせて 、 チューブ及びフィ ンと と もに一体ろ う付けするこ とができ る 。 また、 チューブ、 フィ ン及び積層されてタンクを形成する タ ンク部を一体に組み付けて、 つま り チューブにタンク部が一体 成形されたラ ミネー ト タイ プのものを、 炉中ろ う付けするこ と ができる。 更に、 チューブ、 フィ ン及びエン ドプレー トを一体 に組み付けて炉中ろ う付けし、 その後、 タンクプレー トをェン ドプレー トに接合する構成も採用するこ とができる。 As described above, the heat exchanger of this specific example is basically one in which the tube and the fin are integrated and brazed in the furnace. In addition to the tube and the fin brazed, The tank, the tank, the tank part constituting the tank, the end plate constituting the tank, etc. can be brazed at the same time. In other words, when assembling tubes, fins and tanks together and brazing in the furnace, the tanks should be cylindrical or two-part tanks. It can be brazed together with the tubes and fins. In addition, the tube, fins, and the tank part that is laminated to form a tank are assembled together, that is, a laminated type in which the tank part is integrally formed with the tube is placed in a furnace. And can be. Further, it is also possible to adopt a configuration in which the tube, fin, and end plate are integrally assembled and brazed in a furnace, and then the tank plate is joined to the end plate.
尚、 前述の具体例では、 二つの熱交換器の組み合わせが横方 向又は縦方向のものを例に採って説明 したが、 二つの熱交換器 が横方向に組み合わされて形成された熱交換器の上下の 方又 は双方に第 3 の熱交換器を組み合わせたり 、 また、 二つの熱交 換器が縦方向に組み合わされて形成された熱交換器の左右の一 方又は双方に第 3の熱交換器を組み合わせる等、 適宜の組み合 わせにて熱交換器を形成する こ と もできる ものである。 次に、 本願の第 2発明の具体例を説明する。  In the above-described specific example, the combination of the two heat exchangers has been described as an example of a horizontal or vertical combination.However, the heat exchange formed by combining the two heat exchangers in the horizontal direction has been described. A third heat exchanger may be combined on the upper and lower sides or both sides of the heat exchanger, or a third heat exchanger may be formed on one or both sides of a heat exchanger formed by vertically combining two heat exchangers. The heat exchanger can be formed by an appropriate combination such as a combination of the above heat exchangers. Next, a specific example of the second invention of the present application will be described.
図 2 3 は本具体例の熱交換器の正面図を示すもので、 この熱 交換器 1 は、 一対のタンク 2, 2の間に、 第 1 の熱交換器 Aを 形成する複数のチューブ 4 A, 4 A、 フィ ン 3 a, 3 a 、 及び 、 第 2熱交換器 Bを形成する複数のチューブ 4 B, 4 B と フ ィ ン 3 a , 3 a が互いに平行に且つ交互に積層され、 積層された チューブ 4の両端が、 タンク 2 に形成されたチューブ挿入孔に 挿入されて接続されている。 すなわち、 熱交換器 ] は、 一対の タ ンク 2, 2がチューブ左右に立設され、 タ ンク 2 の上部側に 第 1熱交換器 Aを構成するチューブ 4 A, 4 Aの両端が接続さ れ、 タンク 2 の下部側に第 2熱交換器 Bを構成するチューブ 4 B , 4 Bの両端が接続されて、 第 1及び第 2熱交換器 A, Bが 縦方向に並列に接続されて形成されている。 本例では、 第 1 熱 交換器 Aはラジェ一タ、 第 2熱交換器 Bはコンデンサが一体に 形成されている。 また、 タンク 2の上下開口はキャ ップ 3 c に よって閉塞されている。 本例においてタンク 2 は平板素材を丸 めて円管状に形成している,:, 積層されたチューブ 4の上端側及 ぴ下端側のタンク 4 には、 サイ ドプレー ト接続孔が設けられ、 これらのサイ ドプレー ト接続孔にサイ ドプレー ト 3 b , 3 b の 両端部が挿入して接合されている。 また、 一方のタ ンク 2 には 、 第 1 熱交換器 Aに連通する出入口継手 8 A, 9 A及び第 2熱 交換器 Bに連通する入口継手 8 Bが接続され、 他方のタンク 2 には、 第 2熱交換器 Bに連通する出口継手 9 Bが接続されてい る。 また更に、 双方のタンク 2の所要箇所には、 タ ンク 2内部 を長手方向に区画する仕切り プレー 卜 1 0が配設されている。 FIG. 23 shows a front view of the heat exchanger of this specific example. This heat exchanger 1 has a plurality of tubes 4 forming a first heat exchanger A between a pair of tanks 2 and 2. A, 4A, fins 3a, 3a, and a plurality of tubes 4B, 4B forming the second heat exchanger B and fins 3a, 3a are stacked in parallel and alternately with each other. The two ends of the stacked tubes 4 are inserted into and connected to tube insertion holes formed in the tank 2. That is, in the heat exchanger], a pair of tanks 2 and 2 are erected on the left and right of the tube, and both ends of the tubes 4 A and 4 A constituting the first heat exchanger A are connected to the upper side of the tank 2. Tubes 4 B, 4 B constituting the second heat exchanger B are connected to the lower side of the tank 2, and the first and second heat exchangers A, B are connected in parallel in the vertical direction. Is formed. In this example, the first heat exchanger A has a radiator and the second heat exchanger B has a condenser. Is formed. The upper and lower openings of the tank 2 are closed by caps 3c. In this example, the tank 2 is formed by rolling a flat plate material into a circular tube shape. The ends of the side plates 3b, 3b are inserted and joined to the side plate connection holes. Also, one tank 2 is connected to inlet / outlet joints 8 A and 9 A communicating with the first heat exchanger A and the inlet joint 8 B communicating with the second heat exchanger B, and the other tank 2 is connected to the other tank 2. The outlet joint 9B communicating with the second heat exchanger B is connected. Further, partition plates 10 for partitioning the inside of the tank 2 in the longitudinal direction are provided at required positions of both the tanks 2.
そ して、 このよ う な熱交換器 1 においては、 入口継手 8 A, 8 B と出口継手 9 A, 9 B との間で熱交換媒体が複数回蛇行し て通流される。 すなわち、 この熱交換器 1 の人口継手 8 A, 8 Bに供給された熱交換媒体は、 左右のタ ンク 2, 2からそれぞ れ第 1 熱交換器 A及び第 2熱交換器 Bを構成するチューブ 4 Λ , 4 Bを介して、 複数回に蛇行して通流され、 このチューブ 4 A , 4 Bを通過する際に、 外部と熱交換を行い、 出口継手 9 A , 9 B力 ら排出される。 前記チューブ 4 A, 4 Bは、 押出 し成 形したものや、 プレス又は口一ル成形された二枚のプレー トを 合せて形成されるもの、 プレス又はロール成形された一枚のプ レー トを更に半分に折り畳んで形成される もの、 或は、 ロール 成形しながら一枚のプレー ト を半分に折り畳んで形成される も のも用いられる。 また、 チューブの材質は、 押出し材ゃ、 両面 ク ラ ッ ドの 3層材、 両面ク ラ ッ ドに中問層を持った 4層材等が 用いられる。  Then, in such a heat exchanger 1, the heat exchange medium flows between the inlet joints 8A and 8B and the outlet joints 9A and 9B in a meandering manner a plurality of times. That is, the heat exchange medium supplied to the artificial joints 8A and 8B of the heat exchanger 1 forms the first heat exchanger A and the second heat exchanger B from the left and right tanks 2 and 2, respectively. It flows through the tubes 4Λ and 4B in a meandering manner a plurality of times. When passing through the tubes 4A and 4B, it exchanges heat with the outside, and the outlet joints 9A and 9B force Is discharged. The tubes 4A and 4B may be formed by extrusion molding, formed by combining two plates formed by press or mouth-forming, or formed by pressing or roll-forming one plate. Further, a plate formed by folding the plate further in half or a plate formed by folding one plate in half while performing roll forming is used. Also, as the material of the tube, an extruded material, a three-layer material of a double-sided clad, a four-layered material having a middle layer in a double-sided clad, and the like are used.
熱交換器 1 は、 前記第 1 熱交換器 Aを構成するチューブ 4 A と第 2熱交換器 Bを構成するチューブ 4 B との間に、 フィ ン 3 a を介装しない断熱用区域 1 1 が形成されている。 このよ う に、 前記断熱用区域 1 1 が第 1 熱交換器 Aと第 2熱 交換器 Bの間に形成されている と、 前記断熱用区域 1 1 が各熱 交換器間の伝熱を阻止 し、 第 1 熱交換器 A及び第 2熱交換器 B がそれぞれ最適温度で熱交換するこ とが可能となる。 このため 各熱交換器の性能低下を防止 した一体型の熱交換器を提供する こ とができる。 The heat exchanger 1 is provided between the tube 4A constituting the first heat exchanger A and the tube 4B constituting the second heat exchanger B, and a heat insulation area 1 1 without a fin 3a interposed therebetween. Are formed. As described above, when the heat insulating section 11 is formed between the first heat exchanger A and the second heat exchanger B, the heat insulating section 11 transfers heat between the heat exchangers. In this way, the first heat exchanger A and the second heat exchanger B can exchange heat at the optimum temperature. For this reason, it is possible to provide an integrated heat exchanger that prevents performance degradation of each heat exchanger.
また、 二つの異なる用途を有する第 】 熱交換器 A及び第 2熱 交換器 Bを一体に形成するこ とによ り 、 熱交換スペースが拡大 して熱交換率を向上する こ とができる と と もに、 部品点数が削 減されて、 コス ト低減を図るこ とができる。  Further, by integrally forming the first heat exchanger A and the second heat exchanger B having two different uses, the heat exchange space can be expanded and the heat exchange rate can be improved. At the same time, the number of parts is reduced, and costs can be reduced.
また、 上下に隣接するチューブ 4 A とチューブ 4 Bの間に形 成された断熱用区域 1 1 には、 前記チューブ 4 A, 4 Bの長さ と略等しい長さの接合プレー ト 1 2が配設され、 チューブ 4 A , 4 B、 フ ィ ン 3 a, 3 a 及び前記接合プレー ト 1 2が一体に 炉中ろう付けされている。  In addition, a joint plate 12 having a length substantially equal to the length of the tubes 4A and 4B is provided in a heat insulating area 11 formed between the vertically adjacent tubes 4A and 4B. The tubes 4A and 4B, the fins 3a and 3a, and the joining plate 12 are brazed together in the furnace.
熱交換器 1 は、 断熱用区域 1 1 が形成されているため、 当該 断熱用区域 1 1 部分の耐圧性等が低下し、 生産時に変形等の不 都合が生じる場合がある。 前記接合プレー ト 1 2 を前記断熱用 区域 1 1 に配設するこ とによって、 前記不都合を解消し、 熱交 換器 _L ^補強するこ とができる。  In the heat exchanger 1, since the heat insulating area 11 is formed, the pressure resistance and the like of the heat insulating area 11 may be reduced, and inconvenience such as deformation may occur during production. By disposing the joining plate 12 in the heat insulating area 11, the inconvenience can be solved and the heat exchanger_L ^ can be reinforced.
接合プレー 卜 1 2は、 平板状の接合素材である-接合プレー ト を矩形状又は波形状に折曲げて成形されている。 接合プレー 卜 は、 両面ク ラ ッ ドの 3層材や、 ベア材が用いられ、 チューブ及 びとフィ ンと と もに接合プレー ト 1 2 も炉中ろ う付けによ り 一 体に成形される。 と り わけ、 平板状の接合プレー トを折り 曲げ て接合プレー ト 1 2 をろ う付けする と、 接合プレー トの耐圧性 を向上するこ とができ、 伝熱面積が減少して双方の伝熱を防止 するこ とができる。  The joining plate 12 is a flat joining material. The joining plate is formed by bending a joining plate into a rectangular shape or a wavy shape. The joining plate is made of a three-layered material of double-sided clad or a bare material, and the joining plate 12 together with the tube and fins is integrally formed by brazing in a furnace. You. In particular, when the flat plate is bent and the bonding plate 12 is brazed, the pressure resistance of the bonding plate can be improved, the heat transfer area decreases, and the heat transfer between the two plates decreases. Heat can be prevented.
以下、 接合プレー ト 1 2 の好ま しい実施態様を図面に基づい て説明する。 Hereinafter, preferred embodiments of the joining plate 12 will be described with reference to the drawings. Will be explained.
図 2 4乃至図 3 1 は接合プレー トを矩形状又は波形状に折曲 げて成形した具体例を示す。 尚、 平板素材である接合プレー ト の長辺方向を長手方向、 短辺方向を垂直方向と表し、 長辺部を 長端部、 短辺部を単に端部と表す。  FIGS. 24 to 31 show specific examples in which the joining plate is bent into a rectangular shape or a wavy shape. The long side direction of the joining plate, which is a flat plate material, is represented by the longitudinal direction, the short side direction is represented by the vertical direction, the long side is represented by the long end, and the short side is simply represented by the end.
図 2 4 に示すよ う に、 例えば、 接合プレー トの両端部を垂直 方向に二回折曲げて、 側面形状が一部が開口 している四角い枠 形状となる端部接合部 1 2 a を形成し、 更に、 中央部の平面部 分を垂直方向に同間隔で凸凹に折曲げて、 複数の凸部 1 2 b と 複数の回部 1 2 c を形成して接合プレー ト 1 2 ( 1 ) を成形し ている。 接合プレー ト ] 2 ( 〗 ) は、 前記端部接合部 1 2 a に よって両端の耐圧性等の強度を向上させる と と もに、 複数の凸 部 1 2 b及び凹部 1 2 c によって中央部の耐圧性も向上させた ものである。 このよ う に接合プレー ト 1 2 ( 1 ) が凸凹に形成 されている と、 例えば、 チューブ 4 Aには端部接合部 1 2 a の 平面及ぴ凸部 1 2 b の平面が接合し、 チューブ 4 B とは、 接合 プレー ト 1 2 ( 1 ) の端部接合部 1 2 a の反対平面及び凹部 1 2 c の平面が接合し、 接合プレー ト 1 2 ( 1 ) とチューブ 4 A 、 4 Bの伝熱面積は減少するため、 第 1 の熱交換器と第 2 の熱 交換器の間での伝熱を减少するこ とができる。  As shown in Fig. 24, for example, both ends of the joining plate are bent twice in the vertical direction to form an end joining portion 12a having a square frame shape with a partially open side surface. Further, the central flat portion is bent in the vertical direction at an equal interval to form a plurality of projections 12 b and a plurality of turns 12 c to form a bonding plate 12 (1). Is molded. The joining plate] 2 (〗) improves the strength such as pressure resistance at both ends by the end joining portion 12a, and has a central portion by a plurality of convex portions 12b and concave portions 12c. It also has improved pressure resistance. If the joining plate 12 (1) is formed unevenly in this way, for example, the flat surface of the end joining portion 12a and the flat surface of the convex portion 12b are joined to the tube 4A. The tube 4B is formed by joining the opposite surface of the end joining portion 12a of the joining plate 12 (1) and the flat surface of the concave portion 12c to the joining plate 12 (1) and the tubes 4A and 4B. Since the heat transfer area of B is reduced, the heat transfer between the first heat exchanger and the second heat exchanger can be reduced.
図 2 5 は、 折曲げたと きにチューブ 4長手方向の長さの略半 分の長さ となる接合プレー トを用いて、 前記接合プレー トの両 端部を垂直方向に二回折り 曲げて、 端部が矩形状に形成された 接合部 1 2 d を設けた接合プレー ト 1 2 ( 2 ) を成形している 。 二つの前記接合プレー ト 1 2 ( 2 ) を前記断熱用区域 1 1 に 配設するこ とによって、 当該断熱用区域 1 1 を補強する。  Fig. 25 shows a joint plate that is approximately half the length in the longitudinal direction of the tube 4 when it is bent, and both ends of the joint plate are bent twice in the vertical direction. In addition, a joining plate 12 (2) having a joining portion 12d having a rectangular end is formed. By disposing the two joining plates 12 (2) in the heat insulating area 11, the heat insulating area 11 is reinforced.
また、 図 2 6 に示した接合プレー ト 1 2 ( 3 ) は、 接合プレ ー トの両端部を垂直方向に矩形状に折曲げて、 両端部に接合プ レー ト 1 2 ( 3 ) の内方に向けて L字状となる接合部 1 2 e を 形成し、 更に、 中央部分の平面部において、 所定間隔を開けて 両長端部から二つずつ、 L字状の切込みを形成し、 前記切込み よって形成された 4つの片を垂直方向に 2回折曲げて、 接合プ レー ト 1 2 ( 3 ) の内方向に向けて前記突片 1 2 e と略等しい 高さの L字状の 4つの突片 1 2 f が形成されている。 In addition, the joining plate 12 (3) shown in FIG. 26 is obtained by bending both ends of the joining plate into a rectangular shape in the vertical direction, and joining both ends of the joining plate 12 (3). The L-shaped joint 1 2 e L-shaped cuts are formed from the two long ends at predetermined intervals on the plane portion of the central portion, and the four pieces formed by the cuts are vertically diffracted twice. By bending, four L-shaped protrusions 12 f having a height substantially equal to the protrusions 12 e are formed inwardly of the joining plate 12 (3).
図 2 7 は、 接合プレー 卜を垂直方向に順次折曲げて波形状に 成形した接合プレー ト 1 2 ( 4 ) を示す。  Fig. 27 shows a welded plate 12 (4) in which the welded plate is bent sequentially in the vertical direction to form a wavy shape.
図 2 8 は、 接合プレー ト の両長端部を長手方向に矩形状に折 曲げた接合部 1 2 gが形成された接合プレー ト 1 2 ( 5 ) を示 す。  FIG. 28 shows a joining plate 12 (5) having a joining portion 12 g formed by bending both long ends of the joining plate into a rectangular shape in the longitudinal direction.
図 2 9 は前記接合プレー ト 1 2 ( 5 ) の平面部に、 複数の孔 部 1 2 hが形成された構造の接合プレー ト 1 2 ( 6 ) を示す。  FIG. 29 shows a joining plate 12 (6) having a structure in which a plurality of holes 12h are formed in a plane portion of the joining plate 12 (5).
図 3 0 は、 接合プレー トの両長端部を長手方向に矩形状に折 曲げ、 更に、 平面部を長手方向に凹凸に折曲げて凹部 1 2 i を 形成した接合プレー ト 1 2 ( 7 ) を示す。  FIG. 30 shows a joining plate 1 2 (7) in which both long ends of the joining plate are bent into a rectangular shape in the longitudinal direction, and a flat portion is bent in the longitudinal direction so as to form recesses 1 2 i. ).
図 3 1 は、 接合プレー トを長手方向に波形状に折曲げた接合 プレー ト 1 2 ( 8 ) を示す。  FIG. 31 shows a joining plate 12 (8) in which the joining plate is bent into a wavy shape in the longitudinal direction.
これらの具体例に示す接合プレー ト 1 2 は、 接合プレー ト を 折曲げて成形するこ と によって、 耐圧性等の熱交換器の補強性 を向上させ、 また、 第 1 熱交換器 Aを構成するチューブ 4 A と 第 2熱交換器 Bを構成するチューブ 4 B との伝熱面積を減少さ せて、 双方の伝熱を防止している。 また、 接合プレー ト 1 2 ( 4 ) 及び接合プレー ト 1 2 ( 8 ) のよ う に、 接合プレー ト を垂 直方向又は長手方向に波形状に折曲げて接合プレー 卜 1 2 を形 成する場合は、 余り細かく 折り 曲げる とフ ィ ンと同じ効果を奏 して しま う ので、 ある程度の間隔を確保して折曲げた方がよい 次に、 熱交換器において、 タ ンク に接続される第 1 熱交換器 Aを構成するチューブと第 2熱交換器 Bを構成するチューブの 間のタンクに、 二枚の仕切り プレー トを設けてタ ンク内部を閉 塞するこ とによって、 タ ンク内部に形成された空洞部について 説明する。 The joining plate 12 shown in these specific examples improves the heat exchanger's strength, such as pressure resistance, by bending and joining the joining plate, and forms the first heat exchanger A. The heat transfer area between the tube 4A and the tube 4B constituting the second heat exchanger B is reduced to prevent heat transfer between both tubes. Also, as in the case of the joining plate 12 (4) and the joining plate 12 (8), the joining plate 12 is formed by bending the joining plate into a wave shape in the vertical direction or the longitudinal direction. In this case, it is better to bend at a certain interval because bending too finely has the same effect as fins.Then, in the heat exchanger, 1 The tubes that make up heat exchanger A and the tubes that make up second heat exchanger B A description will be given of the cavity formed inside the tank by providing two partition plates in the intervening tank and closing the inside of the tank.
図 3 2は、 熱交換器 1 の一部分 (図 2 3 中 C部分) の断面図 を示し、 図 3 3 は、 熱交換器 1 を構成するタ ンク 2 の一部 (図 2 3 中 C部分) 及ぴ仕切り プレー 卜 1 0 の斜視図を示す。 尚、 図中矢印は重力方向を示す。  Fig. 32 shows a cross-sectional view of a part of heat exchanger 1 (part C in Fig. 23), and Fig. 33 shows a part of tank 2 that constitutes heat exchanger 1 (part C in Fig. 23). A perspective view of the partition plate 10 is shown. The arrow in the figure indicates the direction of gravity.
図 3 2 に示すよ う に、 チューブ 4 Aとチューブ 4 B との間に は断熱用区域 1 1 が形成されており 、 この断熱用区域 1 1 の延 長上のタンク 2 には、 すなわちチューブ 4 A とチューブ 4 Bの 間には、 所定形状の二つのス リ ッ ト ] 3, 1 3 が形成されてい る。 仕切り プレー ト 1 0 は、 タンク 2 の外周に対応する大径部 1 0 a と、 タ ンク の内周に対応する小径部 1 0 b及び、 大径部 1 0 a と小径部 1 0 b の問に設けた段部 1 0 c を備えて成形さ れている。 前記ス リ ッ ト 1 3, 1 3から二枚の前記仕切り プレ ー ト 1 0, 1 0が挿入されてろ う付けされる と、 二枚の仕切 り プレー ト 1 0, 1 0 によってタンク 2内部は閉塞され、 空洞部 1 4が形成される。 また、 空洞部 1. 4 を構成しているタンク 2 の外壁の重力方向下方となる部分に、 前記空洞部 1 4 と外部を 連 通孔 1 5が形成されている。  As shown in FIG. 32, a heat insulating area 11 is formed between the tube 4A and the tube 4B, and the tank 2 on the extension of the heat insulating area 11 Between the tube 4A and the tube 4B, two slits] 3, 13 of a predetermined shape are formed. The partition plate 10 has a large diameter portion 10a corresponding to the outer periphery of the tank 2, a small diameter portion 10b corresponding to the inner periphery of the tank, and a large diameter portion 10a and a small diameter portion 10b. It is molded with the step 10 c provided at the point. When the two partition plates 10 and 10 are inserted from the slits 13 and 13 and inserted, the inside of the tank 2 is separated by the two partition plates 10 and 10. Is closed, and a cavity 14 is formed. Further, a communication hole 15 is formed in a portion of the outer wall of the tank 2 constituting the cavity 1.4 below the outer wall of the tank 2 in the direction of gravity.
このよ う に、 第 1 熱交換器 A及び第 2熱交換器の間のタ ンク 2内部に空润部 1 4が形成されている と、 断熱用区域 1 1 で熱 交換器 A, B間で生じる熱の伝導を阻止する こ とができるので 、 第 1熱交換器 A及び第 2熱交換器 B の性能を低下させるこ と なく 、 二つの用途の異なる熱交換器をタンク共通と して一体に 形成するこ とが可能となる。 また、 空洞部 1 4 と外部を連通す る連通孔 1 5が形成されている と 、 前記仕切り プレー ト 1 0 , 1 0の接合不良やろ う付け不良によってタンク 2内部が閉塞さ れていない不良品が形成された場合に、 前記連通孔 1 5からバ ィパス漏れを確認するこ とができ、 不良品を早期に発見する こ とが可能となる。 In this way, if the space 14 is formed inside the tank 2 between the first heat exchanger A and the second heat exchanger, the heat exchanger A and the heat exchanger B are formed in the heat insulating area 11. Since the heat conduction generated in the first heat exchanger A and the second heat exchanger B can be prevented, the heat exchangers used for two different purposes can be used as a common tank without deteriorating the performance of the first heat exchanger A and the second heat exchanger B. It can be formed integrally. In addition, if the communication hole 15 for communicating the cavity portion 14 with the outside is formed, the inside of the tank 2 is not obstructed by the poor joining or brazing of the partition plates 10, 10. When a non-defective product is formed, the communication hole 15 This makes it possible to check for leaks and to find defective products at an early stage.
また、 前記連通孔 1 5から、 空気等が空洞部 1 4の内部に浸 入して、 温度条件や、 圧力条件によって変化して水分となって 空洞部 1 4内部に溜まるおそれがある。 しかし、 前記連通孔 1 5は、 空洞部 1 4 を構成しているタンク 2外壁の重力方向下方 となる部分に形成されているため、 空洞部 1 4内部に溜まった 水分を容易に空洞部 1 4から排出する こ とができ、 水分が溜ま るこ とによって生じるタンク 2の腐蝕を防止するこ とができる o  In addition, there is a possibility that air or the like enters the inside of the hollow portion 14 from the communication hole 15, changes depending on temperature conditions and pressure conditions, becomes water, and accumulates inside the hollow portion 14. However, since the communication hole 15 is formed in a portion below the outer wall of the tank 2 constituting the hollow portion 14 in the direction of gravity, moisture accumulated in the hollow portion 14 can easily be removed. 4 to prevent corrosion of tank 2 caused by accumulation of water o
以下、 その他の好ま しい実施態様を図面に基づいて説明する 。 尚、 共通の構成要素には同一の符号を付して説明を省略する 図 3 4に示す具体例は、 第 1 及び第 2熱交換器 A, Bを横方 向に並列に配置して熱交換器 1 を形成したもので、 この熱交換 器 1 は、 上下に設けた一対のタンク 2, 2に間に複数のチュー ブ 4 A , 4 B とフィ ン 3 a, 3 a を垂直に接続した熱交換器で あって、 左右に隣接する第 1 熱交換器 Λを構成するチューブ 4 Aと第 2熱交換器 Bを構成するチューブ 4 Bの間に、 前例と同 様に断熱用区域 1 1 が形成されている。 前記断熱用区域 1 1 に は接合プレー ト 1 2が設けられている。 また、 左右に隣合う第 1熱交換器 Aを構成するチューブ 4 A と第 2熱交換器 Bを構成 するチューブ 4 Bが接続された上下のタ ンク 2の前記チューブ 4 Aとチューブ 4 Bの間には、 二枚の仕切り プレー ト 1 0, 1 0が配設されてタンク 2内部が閉塞されて、 空洞部 (図示省略 ) が形成されている。 前記空洞部を構成するタンク 2の外壁に は、 重力方向下方となる部分に前記空洞部と外部を連通する連 通孔 1 5が形成されている。  Hereinafter, other preferred embodiments will be described with reference to the drawings. The common components are denoted by the same reference numerals and description thereof is omitted. In the specific example shown in FIG. 34, the first and second heat exchangers A and B are arranged in parallel in the horizontal direction and heat is removed. This heat exchanger 1 has a plurality of tubes 4A, 4B and fins 3a, 3a vertically connected between a pair of upper and lower tanks 2, 2. Between the tube 4A constituting the first heat exchanger す る adjacent to the left and right and the tube 4B constituting the second heat exchanger B as in the previous example. 1 is formed. The heat insulating area 11 is provided with a bonding plate 12. Further, the tubes 4 A and 4 B of the upper and lower tanks 2 to which the tubes 4 A constituting the first heat exchanger A and the tubes 4 B constituting the second heat exchanger B adjacent to each other are connected. Between them, two partition plates 10 and 10 are provided, and the inside of the tank 2 is closed to form a cavity (not shown). On the outer wall of the tank 2 constituting the hollow portion, a communication hole 15 for communicating the hollow portion with the outside is formed in a portion below the gravity direction.
図 3 5及び図 3 6 に示す具体例は、 積層されたタンク 2 を形 成するタ ンク部 2 b, 2 bが、 チューブ 4 A及ぴチューブ 4 B に一体成形されたラ ミネー ト タイプのものである。 この例の場 合、 熱交換器 1 は、 複数のチューブ 4, 4の間に、 タ ンク部 2 b , 2 b及びフ ィ ン 3 a, 3 a を備えた片タ ンク タイプの熱交 換器であって、 前記チューブ 4 A, 4 Bはタンク 2 —体に形成 された一端側から他端側の端部近傍に至るまで仕切り用の突条 2 2が設けられ、 この突条 2 2によ り チューブ 4 A, 4 B内が 長手方向に沿って熱交換媒体の往路と復路が形成され、 他端側 は、 通路が Uターン形状に形成されている。 The specific examples shown in FIGS. 35 and 36 form a laminated tank 2. The formed tank portions 2b and 2b are of a laminated type integrally formed with the tubes 4A and 4B. In this example, the heat exchanger 1 is a single-tank type heat exchanger having tank portions 2b, 2b and fins 3a, 3a between the tubes 4, 4. The tubes 4A and 4B are provided with partitioning ridges 22 from one end formed in the tank 2 to the vicinity of the other end of the body. As a result, the forward and backward paths of the heat exchange medium are formed in the tubes 4A and 4B along the longitudinal direction, and the path is formed in a U-turn shape at the other end.
そ して、 前例同様、 左右に隣合う第 1 熱交換器 Aを構成する チューブ 4 A及び第 2熱交換器 B を構成するチューブ 4 Bの間 には、 フ ィ ン 3 a を介装しない断熱用区域 1 1 が形成され、 前 記断熱用区域 1 1 には接合プレー ト 1 2が配設されている。 従 つて、 第 1 熱交換器 Λと第 2熱交換器 Bの熱伝導が前記断熱用 区域 1 1 で断熱されるため、 各熱交換器ごとの要求性能を満足 するこ とができる。  As in the previous example, no fin 3a is interposed between the tubes 4A constituting the first heat exchanger A and the tubes 4B constituting the second heat exchanger B adjacent to each other on the left and right. A heat insulating area 11 is formed, and a joining plate 12 is provided in the heat insulating area 11 described above. Therefore, since the heat conduction of the first heat exchanger Λ and the second heat exchanger B is insulated in the heat insulating area 11, the required performance of each heat exchanger can be satisfied.
図 3 7及び図 3 8 に示す具体例は、 第 1 及び第 2熱交換器 A , Bを構成するチューブ 4 A, 4 B及びフ ィ ン 3 a, 3 a をタ ンク 2 に垂直に接続し、 前記第 1 及び第 2熱交換器 A, Bを並 列に組み合わせて片タンク タイ プの熱交換器 1 を形成したもの で、 左右に隣接する第 1 熱交換器を構成するチューブ 4 Aと第 2熱交換器を構成するチューブ 4 Bの間にはフ ィ ン 3 a を介装 しない断熱用区域 1 1 が形成され、 前記断熱用区域 1 1 には接 合プレー ト 1 2が配設されている。 前記チューブ 4 A, 4 Bは タンク 2—体に形成された一端側から他端側の端部近傍に至る まで仕切 り 用の突状 2 2が設けられ、 この突状 2 2 によ り チュ ーブ 4 A, 4 B内が長手方向に沿って熱交換媒体の往路と復路 が形成され、 他端側は、 前記通路が Uターン形状に形成されて いる ものである。 この熱交換器 1 は、 タ ンク 2がエン ドプレ一 ト 2 c と タンクプレー ト 2 d と によって形成される ものであつ て、 チューブ 4 A, 4 B、 フ ィ ン 3 a, 3 a及ぴエン ドプレー ト 2 c を一体に組み付けて炉中ろ う付け し、 その後、 タンク プ レー ト 2 d をエン ドプレー ト 2 c に トーチろ う付け、 溶接、 力 シメ等の方法で接合する構成の熱交換器である。 In the specific examples shown in Figs. 37 and 38, the tubes 4A, 4B and the fins 3a, 3a constituting the first and second heat exchangers A, B are connected vertically to the tank 2. The first and second heat exchangers A and B are combined in parallel to form a one-tank type heat exchanger 1, and tubes 4A constituting the first heat exchanger adjacent to the left and right sides are formed. A heat insulating area 11 without the fin 3a is formed between the tube 4B and the second heat exchanger, and a joining plate 12 is arranged in the heat insulating area 11. Has been established. Each of the tubes 4A and 4B is provided with a projection 22 for partitioning from one end side formed in the tank 2 to the vicinity of the end on the other end side. In the tubes 4A and 4B, a forward path and a return path of the heat exchange medium are formed along the longitudinal direction, and at the other end side, the path is formed in a U-turn shape. In this heat exchanger 1, the tank 2 is Tubes 4A and 4B, fins 3a and 3a, and end plate 2c, which are formed integrally with each other, and which is formed by tank 2d and tank plate 2d. This is a heat exchanger that attaches the tank plate 2d to the end plate 2c by torch, welding, and force-staking.
その他、 チューブ 4 A, 4 B , フ ィ ン 3 a, 3 a 、 エン ドプ レ一 ト 2 c及びタンクプレ一 ト 2 d を炉中一体ろ う付け して形 成する場合もある。  In other cases, the tube 4A, 4B, the fins 3a, 3a, the end plate 2c, and the tank plate 2d may be integrally formed in a furnace.
また、 本例の熱交換器 1 においても、 第 1 熱交換器 Aを構成 するチューブ 4 Aと第 2熱交換器 B を構成するチューブ 4 Bが 接続されたタンク 2の前記チューブ 4 A及ぴチューブ 4 Bの間 に、 二枚の仕切り プレー ト 1 0, 1 0 を設けてタンク 2内部を 閉塞するこ とによって、 タンク 2内部に形成された空洞部 1 4 を形成し、 前記空洞部 1 4 を構成するタ ンク 2 の外壁に重力方 向下方となる部分に連通孔 1 5が形成されている ものである。 すなわち、 本例においては、 エン ドプレー ト 2 c に連通孔 1 5 が形成されている。  Also, in the heat exchanger 1 of the present example, the tubes 4 A and 4 A of the tank 2 to which the tube 4 A constituting the first heat exchanger A and the tube 4 B constituting the second heat exchanger B are connected. By providing two partition plates 10 and 10 between the tubes 4B and closing the inside of the tank 2, a cavity 14 formed inside the tank 2 is formed. A communication hole 15 is formed on the outer wall of the tank 2 that constitutes 4 at a portion below the direction of gravity. That is, in this example, the communication hole 15 is formed in the end plate 2c.
このよ う に、 本具体例の熱交換器は、 基本的にはチューブと フィ ンを一体に組み込んで炉中ろ う付けする ものであり、 この チューブと フィ ンのろ う付けに加えて、 接合プレー ト、 タ ンク 、 タンク を構成するタ ンク部、 タ ンク を構成するエン ドプレー ト等のいずれかを同時にろ う付けするこ とができる。 タンクは タンク素材を丸めて円管状に形成したものや、 二分割のもの、 また、 チューブと フ ィ ン及び積層されてタンクを形成するタン ク部を一体に組み付けて、 つま り チューブにタンク部が一体成 形されたラ ミネー トタイプのものを、 炉中ろ う付けするこ とが できる。  As described above, the heat exchanger of this specific example is basically one in which the tube and the fin are integrated and brazed in the furnace. In addition to the brazing of the tube and the fin, One of a joining plate, a tank, a tank portion forming a tank, an end plate forming a tank, and the like can be simultaneously brazed. The tank is formed by rolling the tank material into a round tube, or by dividing it into two parts, or by assembling the tube with the fin and the tank part that is laminated to form the tank. It is possible to mount a laminated type with the integral molding in the furnace.
尚、 前述の具体例では、 二つの熱交換器の組み合わせが横方 向又は縦方向のものを例に採って説明 したが、 二つの熱交換器 が横方向に組み合わされて形成された熱交換器の上下の一方又 は双方に第 3 の熱交換器を組み合わせた り 、 また、 二つの熱交 換器が縦方向に組み合わされて形成された熱交換器の左右の一 方又は双方に第 3の熱交換器を組み合わせる等、 適宜の組み合 わせにて熱交換器を形成するこ と もできる ものである。 次に、 本願の第 3発明の具体例を説明する。 In the above-described specific example, the combination of the two heat exchangers is described as an example in which the combination is horizontal or vertical. Is formed by combining a third heat exchanger on one or both of the upper and lower sides of the heat exchanger formed by combining in the horizontal direction, or by combining two heat exchangers in the vertical direction. The heat exchanger can be formed by an appropriate combination such as combining a third heat exchanger on one or both sides of the heat exchanger. Next, a specific example of the third invention of the present application will be described.
図 3 9は本具体例の熱交換器の斜視図、 図 4 0は熱交換器の 横断面図で、 この熱交換器 1 は、 一対のタンク 2 , 2の間に互 いに平行に且つ交互に積層された複数のフ ィ ン 3 a , 3 a とチ ユーブ 4 , 4 を備えた熱交換器である。 後述するよ う にチュー ブ 4内部の通路は、 閉塞部 5 によって二分されている。 タンク 2 , 2 は長手方向に仕切り板が 2 a 力 -体に形成され、 内部が 第 1 熱交換器 Aのタ ンク 2 A, 2 A及ぴ第 2熱交換器 Bのタ ン ク 2 B, 2 Bに区画されており 、 一方のタンクに入口継手 8 A , 8 B と他方のタ ンク に出口継手 9 A , 9 Bがそれぞれ接続さ れている。 また、 タ ンク 2 Λ , 2 Bの上下端部開口は、 キヤ ッ プ 3 c , 3 c によ り 閉塞されている。 積層されたチューブ 4 , 4の上端側及び下端側のタンク 2には、 サイ ドプレー ト接続孔 (図示省略) が設けられ、 これらのサイ ドプレー 卜接続孔には 、 横断面コ字状のサイ ドプレー ト 3 b , 3 b の両端部が挿入し て接合されている。 そ して、 タンク 2 B の所要箇所には、 第 2 の熱交換器 Bのタンク 2 B内部を長手方向に区画する仕切り プ レー ト (図示省略) が配設され、 タ ンク内部を複数に分割して いる。 この例では第 1 の熱交換器 Aはラジェータ、 第 2熱交換 器 Bはコンデンサであり 、 第 1 及び第 2熱交換器 A , Bを通風 方向の下流と上流に配置し組み合わせて熱交換器 1 が形成され ている。  FIG. 39 is a perspective view of the heat exchanger of this embodiment, and FIG. 40 is a cross-sectional view of the heat exchanger. The heat exchanger 1 is arranged between a pair of tanks 2 and 2 in parallel with each other. This is a heat exchanger with multiple fins 3a, 3a and tubes 4, 4, which are alternately stacked. As will be described later, the passage inside the tube 4 is divided into two by a closing portion 5. In the tanks 2 and 2, a partition plate is formed in a longitudinal direction with a 2a force-body, and the tanks 2A and 2A of the first heat exchanger A and the tank 2B of the second heat exchanger B are formed inside. , 2B, and the inlet joints 8A, 8B are connected to one tank, and the outlet joints 9A, 9B are connected to the other tank, respectively. The upper and lower ends of the tanks 2B, 2B are closed by caps 3c, 3c. The tanks 2 at the upper end and the lower end of the stacked tubes 4 and 4 are provided with side plate connection holes (not shown), and these side plate connection holes have a U-shaped cross section. G3b, both ends of 3b are inserted and joined. A partition plate (not shown) for partitioning the inside of the tank 2B of the second heat exchanger B in the longitudinal direction is provided at a required portion of the tank 2B, and the inside of the tank is divided into a plurality. Divided. In this example, the first heat exchanger A is a radiator, the second heat exchanger B is a condenser, and the first and second heat exchangers A and B are arranged downstream and upstream in the ventilation direction and combined. 1 is formed.
更に図 4 1 に示すよ う に、 チューブ 4は、 二枚のプレー トの 両端部 4 m, 4 n をチューブ両端部で接合して形成するもので 、 チューブ 4 は閉塞部 5 によってチューブの長手方向に通路が 二分され、 一方のタンク 2 A, 2 Aに接続される一方の通路 6 と、 他方のタンク 2 B, 2 Bに接続される他方の通路 7が形成 されている。 そ して、 前記入口継手 8 A, 8 B と出口継手 9 A , 9 B との間で、 熱交換媒体がチューブ 4 の各通路 6, 7 を通 流して熱交換される。 前記通路 7 は、 チューブ内方へ向けて突 出する断面 U字状のビー ド 7 a, 7 a が形成され、 前記ビ一 ド 7 a の先端部がプレー ト面に接合している。 前記ビ一 ド 7 a は 長円形状を呈している。 As further shown in Figure 41, tube 4 contains two plates. Both ends 4 m and 4 n are formed by joining both ends of the tube. The tube 4 is divided into two passages in the longitudinal direction of the tube by a closed portion 5, and is connected to one of the tanks 2 A and 2 A. Path 6 and the other path 7 connected to the other tanks 2B, 2B. The heat exchange medium flows between the inlet joints 8A and 8B and the outlet joints 9A and 9B through the passages 6 and 7 of the tube 4 to exchange heat. The passage 7 is formed with beads 7 a, 7 a having a U-shaped cross section projecting inward of the tube, and the tip of the bead 7 a is joined to the plate surface. The bead 7a has an oval shape.
このよ う に、 一方の通路 7 にビ一 ド 7 a , 7 a を設ける こ と によ り 、 チューブ 4の耐圧性を向上させ、 熱交換媒体の流れに 適度な乱流を生じさせて熱交換率の向上を図るこ とができ、 各 熱交換器ごとの要求性能を満たすこ とが可能となる。  In this way, by providing the beads 7a, 7a in one of the passages 7, the pressure resistance of the tube 4 is improved, and an appropriate turbulence is generated in the flow of the heat exchange medium to generate heat. The exchange rate can be improved, and the required performance of each heat exchanger can be satisfied.
また、 前記チューブ 4 は、 形成された閉塞部 5によ り 、 双方 の熱交換器の熱伝導を可及的に小さ く するこ とができ、 各熱交 換器間の熱の伝達を防ぎ、 熱交換率を向上するこ とができる。 更に、 チューブ 4の閉塞部 5 は、 断熱用の孔 5 a, 5 a を備え ている。 このよ う に、 閉塞部 5 に孔 5 a, 5 a を備えるこ と に よ り 、 断熱効果をよ り 一層向上するこ とができる。  Further, the tube 4 can minimize the heat conduction of both heat exchangers by the formed closed portion 5 and prevent the transfer of heat between the heat exchangers. The heat exchange rate can be improved. Further, the closed part 5 of the tube 4 is provided with holes 5a and 5a for heat insulation. By providing the holes 5a and 5a in the closing portion 5 in this way, the heat insulating effect can be further improved.
前記チューブ材は、 J I S Λ 3 0 0 3合金 (A l — M n系 ) を芯材と し、 チューブ内面となる層及びチューブ外面となる 層の双方に J I S A 4 0 4 5 ( A 1 - S i 系) をろう材と し てク ラ ッ ドした 3層材、 又は、 J I S A 3 0 0 3 ( A 1 - M n系) を芯材と し、 チューブ内側となる層に 1 0 0 0系 ( 9 9 . 0 w t % A 1 ) アルミ合金をク ラ ッ ドし、 更に、 チューブ内 面となる層及びチューブ外面となる層の双方に J I S A 4 0 4 5 (A l - S i 系) をろ う材と してク ラ ッ ドした 4層材が用 いられてレヽる。 このよ う に、 チューブの内面となる層及ぴ外面となる層にろ う材がク ラ ッ ドされていると、 芯材とろ う材の電位差によ り 、 芯材の電位を貴と し、 ろ う材の犠牲陽極効果によ り チューブ外 面及ぴ内面の耐食性を向上するこ とができる。 また、 芯材と ろ ぅ材の間に芯材の電位よ り も電位の卑な中間層が存在する 4層 材を用いてチューブを形成した場合、 前記中間層の面均一な犠 牲防食によ り 、 チューブの内面の耐孔食性が向上する。 The tube material is made of a JIS Λ303 alloy (Al-Mn-based) as a core material, and JISA4045 (A1-S) is formed on both the inner layer and the outer layer of the tube. Three-layer material clad with i-type) as brazing material, or JISA 300 (A1-Mn-type) as the core material and 100-type in the layer inside the tube (99.0 wt% A 1) Aluminum alloy is clad, and JISA4045 (Al-Si series) is applied to both the inner layer and outer layer of the tube. Four layers of clad material are used as the filler material. In this way, when the filler material is clad in the inner and outer layers of the tube, the potential difference between the core material and the filler material makes the potential of the core material noble. The corrosion resistance of the outer and inner surfaces of the tube can be improved by the sacrificial anode effect of the brazing material. Further, when a tube is formed using a four-layer material having an intermediate layer having a potential lower than the potential of the core material between the core material and the filter material, the surface of the intermediate layer can be sacrificed with uniform sacrificial protection. Thus, the pitting resistance of the inner surface of the tube is improved.
また、 芯材の両面にろ う材がク ラ ッ ドされた 3層材、 又は、 芯材及ぴ中間層にろ う材がク ラ ッ ドされた 4層材を用いてチュ ーブを形成する と、 チューブ自体の耐圧性等の強度が向上する 本例のほかに、 3層材又は 4層材に用いられるアル ミ材又は アル ミ合金は、 例えば、 S i 及び M g添加されたアル ミ合金を 用いて、 金属間化合物 M g 2 S i を析出によ り 、 素材の強度向上 効果及ぴ熱交換器の構造強度を向上する効果が得られるものや 、 ろう の耐食性を向上させる元素が含まれている もの等を用い るこ とができる。  In addition, the tube is formed using a three-layer material in which the filler material is clad on both sides of the core material, or a four-layer material in which the filler material is clad in the core material and the intermediate layer. When formed, the strength of the tube itself, such as pressure resistance, is improved.In addition to this example, aluminum or aluminum alloy used for the three-layer material or the four-layer material includes, for example, Si and Mg added. Precipitation of the intermetallic compound Mg 2 S i using an aluminum alloy to improve the strength of the material and to improve the structural strength of the heat exchanger, and to improve the corrosion resistance of the wax An element containing an element can be used.
また、 チューブには閉塞部が形成されているため、 双方の熱 交換器の熱伝導を閉塞部で可及的に小さ く するこ とができ、 各 熱交換器問の熱の伝達を防ぎ、 熱交換率を向上するこ とができ る。  In addition, since the tube has a blockage, the heat conduction of both heat exchangers can be made as small as possible at the blockage, preventing heat transfer between the heat exchangers. The heat exchange rate can be improved.
このよ う に、 耐食性及び耐圧性が向上されたチューブを形成 するこ とが可能となるため、 例えば、 第 1 熱交換器 Aであるラ ジェ一タのよ う に、 チューブの内面及び外面の双方に高い耐食 性が要求され、 また、 第 2熱交換器 Bであるコンデンサのよ う に、 チューブ内面の耐食性はさほど要求されないが、 チューブ 外面の耐食性及び耐圧性が要求される等の実質的に用途の異な る熱交換器が一体に形成される場合において、 各熱交換器ごと に異なる要求性能を満足するチューブを一体で形成するこ とが でき、 第 1 及び第 2 の熱交換器を一体に形成した熱交換器を形 成する場合に部品点数が削減され、 製造コス トを低減するこ と ができ る。 In this way, it is possible to form a tube with improved corrosion resistance and pressure resistance. For example, as in the case of the radiator as the first heat exchanger A, the inner and outer surfaces of the tube can be formed. Both are required to have high corrosion resistance.Also, unlike the condenser that is the second heat exchanger B, the inner surface of the tube is not required to have much corrosion resistance, but the outer surface of the tube is required to have corrosion resistance and pressure resistance. When heat exchangers with different applications are integrally formed in a single application, it is possible to integrally form tubes that satisfy different performance requirements for each heat exchanger. Thus, when forming a heat exchanger in which the first and second heat exchangers are integrally formed, the number of parts can be reduced and the manufacturing cost can be reduced.
また、 フ ィ ン 3 a は、 チューブ 4がろ う材が両面にク ラ ッ ド されたアルミ材又はアルミ合金で形成されるため、 フ ィ ン材と してろ ぅ材がクラ ッ ドされていないアルミ合金のベア材を用い るこ とができる。 例えば、 1 . 5 % Z n を添加した J I S A 3 0 0 3 (八 1 ー 1^ 系) を用いて形成するこ とができ、 ろ う 材がク ラ ッ ドされていない材料でフ ィ ンが形成されるため、 フ イ ン形成時の金型の摩耗を減少する こ とができ、 メ ンテナンス 費用を低減するこ とができる。 また、 ろ う材がク ラ ッ ドされた 材料を用いずにフ ィ ンを形成するこ とができ るため、 材料費を 低減するこ とができ、 製造コス トの低減が可能となる。  In addition, the fin 3a is made of an aluminum material or an aluminum alloy in which the tube 4 is clad on both sides, so that the fin material is clad with the fin material. Aluminum alloy bare material can be used. For example, it can be formed by using JISA 300 (8.1-1 ^ system) to which 1.5% Zn has been added, and the filler material is made of a material that is not clad. As a result, wear of the mold during fin formation can be reduced, and maintenance costs can be reduced. In addition, since the fin can be formed without using the clad material as the filler material, the material cost can be reduced, and the manufacturing cost can be reduced.
また、 フ ィ ン材には、 1 . 5 % Z n が添加されてレ、るため、 チューブ 4 と フ ィ ン 4が組み付けられて一体に形成された場合 、 フィ ン 3 a とチューブ 4の組み合わせにおいて、 チューブの 電位が貴となり 、 優先的にフ ィ ン 3 a が腐食される犠牲陽極効 果によ り 、 チューブ外面が防食され、 チューブ外面の耐食性が 向上される。  In addition, since 1.5% Zn is added to the fin material, when the tube 4 and the fin 4 are assembled and integrally formed, the fin 3a and the tub 4 are combined. In the combination, the potential of the tube becomes noble, and the sacrificial anode effect of preferentially corroding the fin 3a prevents the outer surface of the tube from being corroded and improves the corrosion resistance of the outer surface of the tube.
以下、 前述した両面ク ラ ッ ドの 3層材又は 4層材のアルミ材 又はアルミ合金を用いて形成したチューブの好ま しい実施の態 様を、 図面に基づいて説明する。 尚、 共通の構成要素に同一の 符号を付して説明を省略する。  Hereinafter, a preferred embodiment of a tube formed using the above-described three-layer or four-layer aluminum material or aluminum alloy of a double-sided clad will be described with reference to the drawings. Note that common components are denoted by the same reference numerals and description thereof is omitted.
図 4 2乃至図 4 4に示す具体例は、 図 4 1 に示す例と同様に 二枚のプレー トを用いて形成されたチューブ 4の他の具体例で あり、 チューブの端面からみた斜視図を示している。  The specific examples shown in FIGS. 42 to 44 are other specific examples of the tube 4 formed by using two plates as in the example shown in FIG. 41, and are perspective views as viewed from the end face of the tube. Is shown.
図 4 2に示すよ う に、 チューブ 4は、 内方へ向かってビー ド 7 bが突出するよ う にプレー トが折曲げられて形成され、 ビ一 ド 7 b は、 チューブ 4の長手方向に亘つて形成されており 、 ビ 一 ド 7 b の先端部がプレー ト面に接合している。 As shown in FIG. 42, the tube 4 is formed by bending the plate so that the bead 7 b projects inward, and the bead 7 b is formed in the longitudinal direction of the tube 4. Is formed over The tip of head 7b is joined to the plate surface.
また、 図 4 3 に示すチューブ 4 は、 内方へ向けて突出する断 面 U字状のビー ド 7 c が形成されており 、 ビ一 ド 7 c は、 この 例においてもチューブ 4の長手方向に!:つて形成されている。 また、 このビー ド 7 c の先端部がプレー ト面に接合している。  The tube 4 shown in FIG. 43 has a U-shaped bead 7 c with a cross section protruding inward, and the bead 7 c is also in the longitudinal direction of the tube 4 in this example. To! : Formed. The tip of this bead 7c is joined to the plate surface.
図 4 4 に示すチューブ 4 は、 内方へ向けて突出する断面 U字 状の丸ビー ド 7 dが形成されおり 、 このビ一 ド 7 d の先端部が プレ一 ト面に接合している。  The tube 4 shown in Fig. 44 has a round bead 7d with a U-shaped cross section that protrudes inward, and the tip of the bead 7d is joined to the plate surface. .
これらの例において、 二枚のプレー 卜を用いてチューブを形 成する場合を示したが、 プレス又はロール成形された一枚のプ レー トを更に半分に折り 畳んで形成したチューブ、 或は、 口一 ル成形しながら一枚のプレ一 卜を半分に折り畳んで形成するチ ユーブにも同様にビー ドを形成する こ とができる。  In these examples, the case where a tube is formed by using two plates is shown, but a tube formed by folding a single plate formed by pressing or roll further into half, or Beads can also be formed on tubes formed by folding a single plate in half while forming the mouth.
図 4 5乃至図 4 8 に示す具体例は、 チューブの端面からみた 斜視図であり 、 一枚のプレー トを半分に折り畳んで、 プレー ト 端部 4 m , 4 n同士が一方のチューブ端部で接合されて形成さ れたチューブ 4の他の具体例である。  The specific examples shown in FIGS. 45 to 48 are perspective views as viewed from the end face of the tube. One plate is folded in half, and the plate ends 4 m and 4 n are connected to one tube end. This is another specific example of the tube 4 formed by joining with each other.
図 4 5 において、 チューブ 4は、 一方の通路 7 に内方へ向け て突出する断面 U字状の長ビー ド 7 e, 7 e が形成され、 長ビ ー ド 7 e, 7 e の平面形状は、 長円形状である。 そ して、 前記 ビ一 ド 7 e の先端部同士が当接している。  In FIG. 45, the tube 4 is formed with long beads 7 e, 7 e having a U-shaped cross section projecting inward from one of the passages 7, and the flat shape of the long beads 7 e, 7 e. Has an oval shape. The tips of the beads 7e are in contact with each other.
また、 図 4 6 に示すよ う に、 チューブ 4 は、 内方へ向かって 突出するよ う にプレー トが折曲げられてチューブの長手方向に 亘つてビー ド 7 f が形成され、 ビ一 ド 7 f , 7 f の先端部同士 が当接している。  Also, as shown in FIG. 46, the tube 4 has a plate that is bent so as to protrude inward to form a bead 7f along the longitudinal direction of the tube. The tips of 7 f and 7 f are in contact with each other.
また、 図 4 7 に示すよ う に、 チューブ 4は、 内方へ向けて突 出する断面 U字状のビー ド 7 gが長手方向に亘つて形成されて いる。 このビ一 ド 7 g の先端部同士が当接している。  Further, as shown in FIG. 47, the tube 4 is formed with a bead 7 g having a U-shaped cross section protruding inward over the longitudinal direction. The tips of this bead 7 g are in contact with each other.
また、 図 4 8 に示すよ う に、 チューブ 4 は、 内方へ向けて突 出する断面 U字状の丸ビ一 ド 7 hが形成されおり 、 このビー ド 7 h , 7 h の先端部同士が当接している。 Also, as shown in Fig. 48, tube 4 protrudes inward. An outgoing U-shaped round bead 7 h is formed, and the tips of the beads 7 h, 7 h are in contact with each other.
また、 図 4 9 に示すものは、 チューブ 4 の他の具体例であつ て、 チューブ 4の一方の通路 7 に複数のビー ド 7 c, 7 cが形 成されている と と もに、 他方の通路 6 にも内方へ向けて突出す る ビー ド 6 c が形成され、 これらの ビ一 ド 6 c, 7 c が対向す る平面に接合されている。 本例において、 ビ一 ド 6 c, 7 c は チューブの長手方向に亘つて形成される長ビ一 ドである。  FIG. 49 shows another specific example of the tube 4 in which a plurality of beads 7 c and 7 c are formed in one passage 7 of the tube 4 and the other. A bead 6c protruding inward is also formed in the passage 6 of the vehicle, and these beads 6c and 7c are joined to the opposing plane. In this example, the beads 6c and 7c are long beads formed along the longitudinal direction of the tube.
この例では、 一方の通路のみならず他方の通路にも ビ一 ドを 形成して、 熱交換率を向上させるよ う に し、 更に耐圧性等の各 熱交換器ごとの要求性能を満足させるよ う に している。  In this example, a bead is formed not only in one passage but also in the other passage so as to improve the heat exchange rate and further satisfy the required performance of each heat exchanger such as pressure resistance. I am doing it.
図 5 0乃至図 5 3 に示す具体例は、 チューブの端面からみた 斜視図を示すもので、 前例と同様に、 一枚のプレー トを用いて チューブ 4 を形成するものであるが、 プレー ト端部の接合形態 及び接合部位を変化させたものである。  The specific examples shown in FIGS. 50 to 53 are perspective views as viewed from the end face of the tube. As in the previous example, the tube 4 is formed using a single plate. The joining form and the joining portion of the end are changed.
図 5 0 に示すチューブ 4は、 一方の通路 7 にチューブの長手 方向に亘つて内方へ向かって突出する長ビ一 ド 7 c が形成され ており 、 ビ一 ド 7 c の先端がプレー 卜の平面に接合している。 プレー トの両端部 4 m, 4 n は、 チューブ端部でチューブ内方 突 よ う に折曲げ、 折曲げた端部 4 m, 4 n の平面同士を 接合している。  In the tube 4 shown in FIG. 50, a long bead 7c protruding inward in the longitudinal direction of the tube is formed in one of the passages 7, and the tip of the bead 7c is a plate. Are joined to the plane. Both ends 4 m and 4 n of the plate are bent at the tube end so as to protrude inward of the tube, and the planes of the bent ends 4 m and 4 n are joined to each other.
図 5 1 に示すチューブ 4は、 一方の通路 7 にチューブの長手 方向に亘つて複数の長ビ一 ド 7 cが設けられている。 そ して、 一方のプレー ト端部 4 mを通路 7部分で L字状に折曲げてプレ ー ト面に接合し、 更に、 他方のプレー ト端部 4 n を同部分で同 様に L字状に折曲げて前記プレー ト端部 4 m上に重ね合わせる よ う に接合している。 すなわち、 プレー ト端部 4 m, 4 n は、 断面 U字状の一つの長ビー ドを形成している。  In the tube 4 shown in FIG. 51, a plurality of long beads 7c are provided in one of the passages 7 in the longitudinal direction of the tube. Then, one plate end 4 m is bent into an L shape at the passage 7 and joined to the plate surface, and the other plate end 4 n is similarly bent at the same portion. It is bent in a letter shape and joined so as to overlap on the plate end 4 m. That is, the plate ends 4 m and 4 n form one long bead having a U-shaped cross section.
図 5 2に示すチューブ 4 は、 一方の通路 7 に長ビー ド 7 c が 形成され、 ビ一 ド 7 cが形成されない平面でプレー ト端部 4 m , 4 n 同士が重ね合わされて接合している。 すなわち、 プレー ト両端部 4 m , 4 n同士が接合する平面部に接合する ビー ド 7 c , は、 他のビ一 ドよ り も浅い U字状に形成され、 このビー ド 7 c , が接合するチューブ平面部分で一 方のプレー ト端部 4 m と他方のプレー ト端部 4 nが重ね合わされて接合されている。 図 5 3 に示すチューブ 4は、 一方の通路 7 に複数のビー ド 7 cが形成され、 他方の通路 6 の中央部分で、 プレー トの両端部 4 m, 4 n 同士が内方に突出するよ う に折曲げられ、 折曲げら れた端部 4 m , 4 n の表面同士が接合する と と もに、 端部 4 m , 4 n とチューブ平面部分が接合している。 すなわち、 プレー ト端部 4 m、 4 n は、 接合してチューブを形成する と と もに通 路 6 を二分する ビ一 ドの役割を果た している。 The tube 4 shown in Fig. 52 has a long bead 7c in one passage 7 The plate ends 4 m and 4 n are overlapped and joined on a plane that is formed and on which the bead 7 c is not formed. That is, the bead 7c, which is joined to the plane portion where the both ends 4m and 4n of the plate are joined, is formed in a U-shape which is shallower than the other beads, and this bead 7c, One plate end 4 m and the other plate end 4 n are overlapped and joined at the tube flat part to be joined. In the tube 4 shown in FIG. 53, a plurality of beads 7 c are formed in one passage 7, and both ends 4 m and 4 n of the plate protrude inward at the center of the other passage 6. The surfaces of the bent end portions 4 m and 4 n are joined together, and the end portions 4 m and 4 n are joined to the tube flat portion. That is, the plate ends 4 m and 4 n serve as a bead for joining and forming a tube, and also for dividing the passage 6 into two.
このよ う に、 一枚のプレー 卜でチューブを形成する場合に、 プレー ト端部をチューブ端部で外方に向けて突出するよ う に接 合せずに、 接合形態、 接合部位を変化させて、 チューブの端部 部位、 ビ一 ド部位、 平面部位又は通路部位で接合するこ とによ り 、 チューブの外観形状をチューブ左右で略同一とするこ とが でき、 従来のよ う に左右で異なる形状のチューブ挿入孔をタン クに開ける必要がなく なるため、 製造備品が削減され、 チュー ブ組み付け性が向上し、 製造工程の簡易化を図るこ とが可能と なる。 また、 プレー ト端部同士をチューブ外面となる層で接合 しているため、 チューブ内面の耐食性が要求されないチューブ を形成する場合、 又は、 芯材と電位差のある中間層がチューブ 内面となる層に被覆されている場合は、 チューブ内面となる層 にろ う材をク ラ ッ ドする必要がなく な り 、 製造コス トの低減を 図るこ とができる。  In this way, when forming a tube with a single plate, the joining form and the joining portion are changed without joining the plate end so that the plate end protrudes outward at the tube end. The outer shape of the tube can be made almost the same on the left and right sides by joining the tube at the end, bead, flat surface, or passage portion of the tube. Since it is not necessary to open a tube insertion hole of a different shape in the tank, manufacturing equipment is reduced, tube assemblability is improved, and the manufacturing process can be simplified. In addition, since the plate ends are joined to each other with a layer that forms the outer surface of the tube, when forming a tube that does not require corrosion resistance on the inner surface of the tube, or when an intermediate layer having a potential difference from the core material becomes the inner layer of the tube In the case where the tube is covered, it is not necessary to clad the filler material in the layer to be the inner surface of the tube, so that the production cost can be reduced.
図 5 4及び図 5 5に示す具体例は、 片タ ンク タイ プの第 1 及 び第 2の熱交換器 A, Bを並列に組み合わせて熱交換器 1 を形 成したもので、 この図 5 4 に示す熱交換器 1 は、 タンク 2 A, 2 Bに接続された、 複数のチューブ 4 , 4及びフィ ン 3 a , 3 a を備えた熱交換器である。 各チューブ 4, 4は、 前例同様、 両面ク ラ ッ ドの 3層材又は 4層材であるアルミ材又はアル ミ合 金の一枚又は二枚のプレー トを用いて形成されている。 In the specific examples shown in Figs. 54 and 55, the heat exchanger 1 is formed by combining the first and second heat exchangers A and B of a single tank type in parallel. The heat exchanger 1 shown in Fig. 54 is a heat exchanger equipped with a plurality of tubes 4, 4 and fins 3a, 3a connected to tanks 2A, 2B. . Each of the tubes 4, 4 is formed using one or two plates of aluminum or aluminum alloy which is a three-layer or four-layer material of a double-sided clad, as in the previous example.
図 5 5 において示すよ う に、 チューブ 4 は閉塞部 5 によって チューブの長手方向に通路が二分され、 一方のタンク 2 Aに接 続される一方の通路 6 と、 他方のタンク 2 Bに接続される他方 の通路 7が形成されている。 各通路 6 , 7 の中央部には、 突条 6 0 , 7 0が形成されており 、 これらの突条 6 0, 7 0 と ブレ — 卜面が接合し、 或は、 突条 6 0, 6 0又は突条 7 0, 7 0 同 土が接合して、 各通路 6 , 7が Uターン形状に形成される。 7 a, 7 a は長円形状の長ビー ドで、 これらの長ビー ド 7 a , 7 a がプレー ト面と接合し、 或は、 長ビ一 ド 7 a , 7 a 同士が接 合している。 このよ う に構成するこ とによ り 、 ノ ラ レルフロー タイプの熱交換器と比べてタンクが半分で済み、 その分、 空気 との接触面積が大き く なつて熱交換率が向上し、 また、 部品点 数が削減されてコス ト低減が図られる利点を有する。  As shown in Fig. 55, the tube 4 is divided into two passages in the longitudinal direction of the tube by the obstruction 5, and is connected to one passage 6 connected to one tank 2A and the other tank 2B. Another passage 7 is formed. Protrusions 60, 70 are formed at the center of each of the passages 6, 7, and these ridges 60, 70 are joined to the bracket surface, or ridges 60, 70 are formed. 60 or ridges 70, 70 The same soil is joined, and each passage 6, 7 is formed in a U-turn shape. 7a and 7a are oval long beads, and these long beads 7a and 7a are joined to the plate surface, or the long beads 7a and 7a are joined to each other. ing. With this configuration, the tank is halved in comparison with a normal flow type heat exchanger, and the contact area with air is increased, thereby improving the heat exchange rate. However, there is an advantage that the number of parts is reduced and cost is reduced.
図 5 6 に示す具体例は、 片タンク タイプの第 1 及び第 2の熱 交換器 A, Bを、 タンク位置が交互となるよ う に並列に配置し たものであり 、 一方のタンク 2 Aが左側に、 他方のタ ンク 2 B が右側に配置されている。 これらのタンク 2 A及びタンク 2 B の間に、 複数のチューブ 4, 4及びフ ィ ン 3 a , 3 a を備え、 各チューブ 4, 4は、 前例同様、 途中に閉塞部 5 を設けて通路 を二分し、 一方のタンク 2 Aに接続される一方の通路 6 と、 他 方のタンク 2 Bに接続される他方の通路 7が、 それぞれ Uタ一 ン形状に形成されている。 また、 チューブ 4, 4は、 両面ク ラ ッ ドの 3層材又は 4層材であるアルミ材又はアルミ合金の一枚 又は二枚のプレー トを用いて形成され、 フ ィ ンは、 Z n l . 5 %添加のアルミ材又はアルミ合金を用いて形成されている。 こ のよ う に、 片タンク タイプの第 1 及び第 2の熱交換器 A, Bを 組み合わせて形成された熱交換器は、 車体に組み付ける際に両 側にブラケッ トを取り付けるこ とができるため、 組み付け性が 向上する。 In the specific example shown in FIG. 56, the single-tank type first and second heat exchangers A and B are arranged in parallel so that the tank positions are alternated. Is located on the left and the other tank 2B is located on the right. A plurality of tubes 4, 4 and fins 3a, 3a are provided between the tank 2A and the tank 2B, and each of the tubes 4, 4 is provided with a closed portion 5 in the middle thereof as in the previous example. Is divided into two, and one passage 6 connected to one tank 2A and the other passage 7 connected to the other tank 2B are each formed in a U-turn shape. The tubes 4 and 4 are formed using one or two plates of aluminum or aluminum alloy which is a three-layer or four-layer material of a double-sided clad. . Five It is formed using an aluminum material or an aluminum alloy to which% is added. In this way, the heat exchanger formed by combining the first and second heat exchangers A and B of the single tank type can be mounted on both sides when assembled to the vehicle body. The assemblability is improved.
また、 図 5 7 に示す具体例は、 積層されたタ ンク 2 A, 2 B を形成するタンク部 2 b, 2 bが、 チューブ 4 , 4 に一体成形 されたラ ミネー ト タイプのものであ り 、 この例の場合も、 熱交 換器 1 は、 並列に配置された二対のタ ンク 2 八, 2 A及び 2 B , 2 Bの間に、 複数のチューブ 4 , 4 を備えた熱交換器であつ て、 各チューブ 4 , 4は途中に閉塞部 5 を設けて、 長手方向に 通路を二分し、 一方のタンク 2 Α, 2 Λに接続される一方の通 路 6 と、 他方のタンク 2 B, 2 Bに接続される他方の通路 7 が 形成されている。 そ して前例同様、 チューブ 4, 4 は、 両面ク ラ ッ ドの 3層材又は 4層材であるアルミ材又はアルミ合金の一 枚又は二枚のプレー トを用いて形成され、 各熱交換器ごとの要 求性能を満た したチューブを一体に成形している。  The specific example shown in FIG. 57 is a laminated type in which the tank portions 2b and 2b forming the stacked tanks 2A and 2B are integrally formed with the tubes 4 and 4. In this case, too, the heat exchanger 1 has a plurality of tubes 4, 4 between two pairs of tanks 28, 2A and 2B, 2B arranged in parallel. In the exchanger, each of the tubes 4 and 4 is provided with a blocking portion 5 on the way to divide the passage in the longitudinal direction into two, and one passage 6 connected to one of the tanks 2 タ ン ク and 2Λ and the other The other passage 7 connected to the tanks 2B, 2B is formed. Then, as in the previous example, the tubes 4, 4 are formed using one or two plates of aluminum or aluminum alloy that is a three-layer material or a four-layer material of a double-sided clad. Tubes satisfying the required performance of each vessel are integrally molded.
このよ う に、 本具体例の熱交換器は、 基本的にはチューブと フィ ンを一体に組み込んで炉中ろ う付けする ものであり 、 この チユ^^と フ ィ ンのろ う付けに加えて、 接合プレー ト、 タンク As described above, the heat exchanger of this specific example is basically one in which the tube and the fin are integrated and brazed in the furnace, and the heat is attached to the tube and the fin. In addition, joining plate, tank
、 タ ンク を構成するタ ンク部、 タンクを構成するエン ドプレー 卜等のいずれかを同時にろ う付けするこ とができる。 タンクは タンク素材を丸めて円管状に形成したものや、 二分割のもの、 また、 チューブとフィ ン及び積層されてタンクを形成するタン ク部を一体に組み付けて、 つま り チューブにタンク部が一体成 形されたラ ミネー トタイプのものを、 炉中ろ う付けするこ とが できる。 In addition, any one of a tank part constituting the tank, an end plate constituting the tank, and the like can be brazed at the same time. The tank is formed by rolling the tank material into a round tube, or by dividing it into two parts, or by assembling the tube and the fin and the tank part that is laminated to form the tank. The integrally molded laminate type can be brazed in a furnace.
なお、 前述の具体例では、 二つの熱交換器を横方向に並列に 組み合わせたものを例にと って説明 したが、 二つの熱交換器を 縦方向に並列に組み合わせて形成されたもの、 また、 二つの熱 交換器が組あわされて形成された熱交換器の上下の一方又は双 方に第 3の熱交換器を組み合わせる等、 適宜の組み合わせにて 熱交換器を形成するこ とができるものである。 産業上の利用可能性 In the specific example described above, an example in which two heat exchangers are combined in parallel in the horizontal direction has been described as an example. Appropriate, such as one formed by combining in parallel in the vertical direction, or combining a third heat exchanger on one or both upper and lower sides of a heat exchanger formed by combining two heat exchangers The combination can form a heat exchanger. Industrial applicability
本願発明は、 自動車用、 家電用の熱交換器に適用される もの であ り 、 特に、 自動車用の、 ラジェ一タ と コンデンサが一体に 形成された熱交換器と して用いられる。  INDUSTRIAL APPLICABILITY The present invention is applied to a heat exchanger for automobiles and home electric appliances, and is particularly used as a heat exchanger for automobiles in which a radiator and a capacitor are integrally formed.

Claims

請求の範囲 The scope of the claims
1 . 一対のタンク と、 前記タ ンク間に設けられる複数のチ ユ ーブ及びフィ ンを備えた熱交換器において、 1. In a heat exchanger including a pair of tanks and a plurality of tubes and fins provided between the tanks,
前記チューブは、 途中に閉塞部を設けて通路を二分する と と もに、 一方のタ ンクに接続される一方の通路と他方のタンク に 接続される他方の通路がそれぞれ Uター ン形状に形成され、 前記一方のタ ンク と前記チューブの前記一方の U ターン形状 の通路とで片タンク構造の第 1 熱交換器が形成され、 且つ、 前 記他方のタンク と前記チューブの前記他方の Uターン形状の通 路とで片タンク構造の第 2熱交換器が形成されているこ と を特 徴とする熱交換器。  In the tube, a closed portion is provided in the middle to divide the passage into two, and one passage connected to one tank and the other passage connected to the other tank are formed in a U-turn shape, respectively. A first heat exchanger having a one-tank structure is formed by the one tank and the one-turn U-shaped passage of the tube; and the other U-turn of the other tank and the tube is formed. A heat exchanger characterized in that a second heat exchanger having a one-tank structure is formed by the passage having the shape.
2 . 前記チューブは、 二枚のプレー ト を合わせて形成され 、 又は、 一枚のプレー トを半分に折り畳んで形成されるこ と を 特徴とする前記請求項 1 記載の熱交換器。  2. The heat exchanger according to claim 1, wherein the tube is formed by joining two plates or by folding one plate in half.
3 . 前記チューブは、 積層されてタ ンク を形成するタ ンク 部を一体成形したこ と を特徴とする前記請求項 1 記載の熱交換 器。  3. The heat exchanger according to claim 1, wherein the tube is formed by integrally forming a tank portion which is stacked to form a tank.
4 . 前記チューブの前記閉塞部は、 断熱用の孔部を備えて いるこ と を特徴とする前記請求項 1 記載の熱交換器。  4. The heat exchanger according to claim 1, wherein the closed portion of the tube has a hole for heat insulation.
5 . 前記チューブの前記閉塞部は、 断熱用の空洞を備えて いるこ と を特徴とする前記請求項 1 記載の熱交換器。  5. The heat exchanger according to claim 1, wherein the closed portion of the tube has a cavity for heat insulation.
6 . 前記チューブの前記閉塞部は、 折り 返し部を備え、 更 に、 前記第 1熱交換器と第 2熱交換器とでは別々 のフ ィ ンを配 置し、 前記閉塞部の前記折り返し部で前記フ ィ ンの端部の位置 決めを行う こ と を特徴とする前記請求項 1記載の熱交換器。 6. The closed portion of the tube includes a folded portion, and further, separate fins are arranged for the first heat exchanger and the second heat exchanger, and the folded portion of the closed portion is provided. 2. The heat exchanger according to claim 1, wherein a position of an end of the fin is determined by a method.
7 . 前記第 1 熱交換器と第 2熱交換器に亘つてそれぞれ一 つのフ ィ ンを配置する ものであって、 このフ ィ ンは、 前記第 1 熱交換器と第 2熱交換器とでフィ ンの山数が異なるこ とを特徴 とする前記請求項 1 記載の熱交換器。 7. One fin is arranged over each of the first heat exchanger and the second heat exchanger, and the fin is provided with the first heat exchanger, the second heat exchanger, and the second heat exchanger. 2. The heat exchanger according to claim 1, wherein the number of fins is different.
8 . 前記チューブと フィ ンを一体に組み付けて炉中ろ う付 けするこ と を特徴とする前記請求項 1 記載の熱交換器。  8. The heat exchanger according to claim 1, wherein the tube and the fin are integrally assembled and mounted in a furnace.
9 . 前記チューブ、 フィ ン及ぴタンク を一体に組み付けて 炉中ろ う付けするこ と を特徴とする前記請求項 1 記載の熱交換 an 1 0 . 前記チューブ、 フィ ン及び積層されてタ ンクを形成 するタ ンク部を一体に組み付けて炉中ろ う付けするこ と を特徴 とする前記請求項 3記載の熱交換器。  9. The heat exchange an 10 according to claim 1, wherein the tube, the fin, and the tank are integrally assembled and brazed in a furnace. 4. The heat exchanger according to claim 3, wherein the tank portion forming the heat exchanger is integrally assembled and brazed in a furnace.
1 1 . 前記チューブ、 フ ィ ン及ぴエン ドプレー トを一体に 組み付けて炉中ろ う付けする と と もに、 タ ンクプレー トを前記 エン ドプレー トに接合する こ とを特徴とする前記請求項 1 記載 の熱交換器。  11. The method according to claim 1, wherein the tube, the fin, and the end plate are integrally assembled and then brazed in a furnace, and the tank plate is joined to the end plate. The heat exchanger according to 1.
1 2 . 前記一対のタ ンク間にサイ ドブレ一 トが設けられて いるこ と を特徴とする前記請求項 1 記載の熱交換器。  12. The heat exchanger according to claim 1, wherein a side plate is provided between the pair of tanks.
1 3 . チューブと フィ ンを交互に積層 し、 チューブの端部 をタ ンクに挿入接続した熱交換器において、  1 3. In a heat exchanger in which tubes and fins are alternately stacked, and the ends of the tubes are inserted into the tank and connected,
前記チューブとフィ ンを積層して形成される熱交換器本体を 第 1熱交換器と第 2熱交換器に区分し、 前記区分される第 1 及 び第 2熱交換器の間に、 フ ィ ンの存在しない断熱用区域が設け られているこ と を特徴とする熱交換器。  A heat exchanger body formed by laminating the tubes and fins is divided into a first heat exchanger and a second heat exchanger, and a heat exchanger is provided between the divided first and second heat exchangers. A heat exchanger characterized by being provided with a heat insulating area where no fins exist.
1 4 . 前記第 1及ぴ第 2熱交換器は上下又は左右に隣接し 、 前記断熱用区域には前記隣接する第 1及び第 2熱交換器を接 合する接合プレー 卜が配設されているこ と を特徴とする前記請 求項 1 3記載の熱交換器。 14. The first and second heat exchangers are vertically or horizontally adjacent to each other, and the heat insulating area is provided with a joining plate for joining the adjacent first and second heat exchangers. 13. The heat exchanger according to claim 13, wherein the heat exchanger is a heat exchanger.
1 5 . 前記タ ンク に仕切り を設けて前記第 1 及び第 2熱交 換器を区分したこ と を特徴とする前記請求項 1 3記載の熱交換 器。 15. The heat exchanger according to claim 13, wherein a partition is provided in the tank to separate the first and second heat exchangers.
1 6 . 前記仕切り は、 少なく と も二枚の仕切り プレー トに よって形成される と と もに、 この二枚の仕切り プレー トによつ てタンク内部に空洞部が形成されるこ と を特徴とする前記請求 項 1 5記載の熱交換器。  16. The partition is characterized in that at least two partition plates are formed, and a cavity is formed inside the tank by the two partition plates. The heat exchanger according to claim 15, wherein
1 7 . 前記空洞部は、 外部と連通する連通孔を備えている こ とを特徴とする前記請求項 1 6記載の熱交換器。  17. The heat exchanger according to claim 16, wherein the cavity has a communication hole communicating with the outside.
1 8 . 前記第 1 及び第 2熱交換器は、 一対のタンク間に設 けられる ものであって、 前記各チューブは、 途中に閉塞部を設 けて通路を二分する と と もに、 一方のタ ンク に接続される 一方 の通路と他方のタ ンクに接続される他方の通路がそれぞれリタ —ン形状に形成され、 前記一方のタンク と前記チューブの前記 一方の Uターン形状の通路とで片タンク構造の第 1 熱交換器が 形成され、 且つ、 前記他方のタンク と前記チューブの前記他方 の Uターン形状の通路とで片タンク構造の第 2熱交換器が形成 され、 更に、 チューブを二分する前記閉塞部に前記断熱用区域 が形成されるこ と を特徴とする前記請求項 1 3記載の熱交換器  18. The first and second heat exchangers are provided between a pair of tanks, and each of the tubes is provided with a closed portion in the middle to divide the passage into two, and One of the passages connected to the tank and the other of the passages connected to the other tank are respectively formed in a return shape, and the one tank and the one U-turn-shaped passage of the tube are formed by a return shape. A first heat exchanger having a one-tank structure is formed, and a second heat exchanger having a one-tank structure is formed by the other tank and the other U-turn-shaped passage of the tube. 14. The heat exchanger according to claim 13, wherein the heat insulating area is formed in the closed part that is bisected.
1 9 . 前記第 1 及び第 2熱交換器は、 それぞれ片タ ンク構 造のものであって左右又は上下に隣接し、 前記チューブは、 タ ンクを形成するタンク部を一体成形している こ とを特徴とする 前記請求項 1 3記載の熱交換器。 19. The first and second heat exchangers each have a single tank structure and are adjacent to the left and right or up and down, and the tube integrally forms a tank portion forming a tank. 14. The heat exchanger according to claim 13, wherein:
2 0 . 第 1 の熱交換器を構成するチューブと第 2 の熱交換 器を構成するチューブを通風方向の下流と上流に配置し、 前記 両チューブの間にフ ィ ンを配設し、 前記各チューブの端部を各 々 タ ンク に挿入接続して第 1及び第 2の熱交換器を形成し、 こ れら第 1 及び第 2の熱交換器を一体ろ う付け してなる熱交換器 において、 20. A tube constituting the first heat exchanger and a tube constituting the second heat exchanger are arranged downstream and upstream in the ventilation direction, and a fin is arranged between the two tubes. The end of each tube is inserted and connected to each tank to form the first and second heat exchangers, and the first and second heat exchangers are joined together for heat exchange. In the vessel
前記チューブは、 両面ク ラ ッ ドされたアル ミ材も しく はアル ミ合金を素材とする一枚プレー トを折り 曲げ又は二枚のプレー トを接合して形成される と と もに、 こ のチューブは、 その長手 方向に沿って通路を二分する閉塞部が形成されて、 一方の通路 が第 〗 の熱交換器を、 また、 他方の通路が第 2の熱交換器を、 それぞれ形成し、  The tube is formed by bending a single plate made of an aluminum material or an aluminum alloy which is clad on both sides, or by joining two plates. The tube has a closed portion that bisects the passage along the longitudinal direction, and one of the tubes forms the second heat exchanger, and the other forms the second heat exchanger. ,
更に、 前記チューブ間に配設されるフ ィ ンは、 アル ミ材又は アル ミ合金からなる非ク ラ ッ ド材である こ と を特徴とする熱交 換器。  Further, the fin disposed between the tubes is a non-cladding material made of an aluminum material or an aluminum alloy.
2 1 . 前記チューブを形成するチューブ材は、 アル ミ材又 はアル ミ合金を芯材と し、 チューブ内面となる層及ぴチューブ 外面となる層に A 1 — S i 系のろ う材がク ラ ッ ドされた 3層材 、 又は、 アル ミ材又はアル ミ合金を芯材と し、 更に、 芯材よ り も電位の卑なるアルミ材又はアルミ合金が中間層にク ラ ッ ドさ れると と もにチューブ内面となる層及びチューブ外面となる層 に A 1 — S i 系のろ う材がク ラ ッ ドされた 4層材である こ とを 特徴とする請求項 2 0記載の熱交換器。  2 1. The tube material that forms the tube is made of aluminum or aluminum alloy as the core material, and A 1 —Si-based filler material is used for the inner layer of the tube and the outer layer of the tube. The core is a clad three-layer material or aluminum or aluminum alloy, and an aluminum or aluminum alloy having a lower potential than the core is clad in the intermediate layer. 20. The method according to claim 20, wherein a four-layered material in which a layer serving as an inner surface of the tube and a layer serving as an outer surface of the tube are clad with A 1 —Si-based filler material. Heat exchanger.
2 2 . 前記チューブは、 一方の通路又は双方の通路に内方 に向けて突出する複数の突起部が形成され、 前記突起部の先端 同士が当接され、 又は、 前記突起部の先端と平面部が接合され るこ とを特徴とする請求項 2 0記載の熱交換器。 22. The tube is formed with a plurality of protrusions protruding inward in one or both passages, and the tips of the protrusions are in contact with each other, or the tip of the protrusion is planar with the protrusions. The heat exchanger according to claim 20, wherein the parts are joined.
2 3 . 前記チューブは、 一枚のプレ一 トを折り畳んで形成 される ものであって、 チューブを構成するプ レー ト の端部同士 が、 チューブのビ一 ド部分、 平面部分、 端部部分又は通路部分 で重ね合わされてろう付けされているこ とを特徴とする請求項 2 0記載の熱交換器。 23. The tube is formed by folding a single plate, and the ends of the plates constituting the tube are connected to a bead portion, a flat portion, and an end portion of the tube. 20. The heat exchanger according to claim 20, wherein the heat exchanger is brazed by being overlapped at a passage portion.
2 4 . 前記各チューブは、 一方のタ ンクに接続される一方 の通路と他方のタ ンク に接続される他方の通路がそれぞれ U タ ーン形状に形成され、 前記一方のタンク と前記チューブの前記 —方の Uターン形状の通路とで片タンク構造の第 1 熱交換器が 形成され、 且つ、 前記他方のタ ンク と前記チューブの前記他方 の Uターン形状の通路とで片タンク構造の第 2熱交換器が形成 されている こ と を特徴とする請求項 2 0記載の熱交換器。  24. In each of the tubes, one passage connected to one tank and the other passage connected to the other tank are each formed in a U-turn shape, and the one tank and the tube are connected to each other. The first heat exchanger having a one-tank structure is formed by the above-mentioned U-turn-shaped passage, and the first heat exchanger having a one-tank structure is formed by the other tank and the other U-turn-shaped passage of the tube. 22. The heat exchanger according to claim 20, wherein two heat exchangers are formed.
2 5 . 前記チューブは、 通路を二分する前記閉塞部に断熱 用の孔部が設けられているこ とを特徴とする請求項 2 0記載の 熱交換器。  25. The heat exchanger according to claim 20, wherein the tube is provided with a heat insulating hole at the closed portion that bisects the passage.
2 6 . 前記チューブと フ ィ ンを一体に組み付けて炉中ろ う 付けするこ とを特徴とする請求項 2 0記載の熱交換器。  26. The heat exchanger according to claim 20, characterized in that the tube and the fin are integrally assembled, and the resultant is then placed in a furnace.
2 7 . 前記チューブ、 フ ィ ン及びタ ンク を一体に組み付け て炉中ろ う付けするこ と を特徴とする請求項 2 0記載の熱交換 器。  27. The heat exchanger according to claim 20, wherein the tube, the fin, and the tank are integrally assembled and brazed in a furnace.
2 8 . 前記チューブ、 フ ィ ン及び積層されてタ ンク を形成 するタンク部を一体に組み付けて炉中ろ う付けする こ と を特徴 とする請求項 2 0記載の熱交換器。  28. The heat exchanger according to claim 20, wherein the tube, the fin, and the tank portion that is laminated to form a tank are integrally assembled and brazed in a furnace.
2 9 . 前記チューブと フィ ンとエン ドプ レー トを炉中ろ う 付け後にタ ンク と接合するこ と を特徴とする請求項 2 0記載の 熱交換器。  29. The heat exchanger according to claim 20, wherein the tube, the fin, and the end plate are joined to a tank after being brazed in a furnace.
PCT/JP1997/003010 1996-08-29 1997-08-28 Heat exchanger WO1998009124A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP97937831A EP0859209A4 (en) 1996-08-29 1997-08-28 Heat exchanger

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP8/229137 1996-08-29
JP22913796A JPH1073388A (en) 1996-08-29 1996-08-29 Heat exchanger
JP8/262916 1996-10-03
JP26291696A JPH10111086A (en) 1996-10-03 1996-10-03 Heat exchanger
JP35166596A JPH10197174A (en) 1996-12-27 1996-12-27 Heat exchanger
JP8/351665 1996-12-27

Publications (1)

Publication Number Publication Date
WO1998009124A1 true WO1998009124A1 (en) 1998-03-05

Family

ID=27331486

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1997/003010 WO1998009124A1 (en) 1996-08-29 1997-08-28 Heat exchanger

Country Status (3)

Country Link
EP (1) EP0859209A4 (en)
CN (1) CN1199458A (en)
WO (1) WO1998009124A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002012817A1 (en) * 2000-08-04 2002-02-14 Showa Denko K.K. Integrated heat exchanger

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2785376B1 (en) * 1998-10-29 2001-01-12 Valeo Thermique Moteur Sa MULTIFUNCTIONAL HEAT EXCHANGER, ESPECIALLY FOR A MOTOR VEHICLE
EP1022532A3 (en) 1999-01-19 2001-08-01 Calsonic Kansei Corporation Flat tubes for use with heat exchanger and manufacturing method thereof
US6938675B2 (en) 2000-10-11 2005-09-06 Denso Corporation Heat exchanger
FR2832789B1 (en) * 2001-11-27 2004-07-09 Valeo Thermique Moteur Sa HEAT EXCHANGE MODULE FIN, ESPECIALLY FOR A MOTOR VEHICLE
FR2853052B1 (en) * 2003-03-31 2017-07-21 Valeo Thermique Moteur Sa OPTIMIZED HEAT EXCHANGE MODULE, IN PARTICULAR FOR A MOTOR VEHICLE
JP4221244B2 (en) * 2003-05-14 2009-02-12 カルソニックカンセイ株式会社 Combined heat exchanger
JP4280545B2 (en) * 2003-05-14 2009-06-17 カルソニックカンセイ株式会社 Combined heat exchanger
JP2004340486A (en) * 2003-05-15 2004-12-02 Calsonic Kansei Corp Complex heat exchanger
US6942014B2 (en) 2003-05-30 2005-09-13 Valeo, Inc. Heat exchanger having an improved baffle
JP2005106431A (en) 2003-10-01 2005-04-21 Denso Corp Heat exchanger module
US7096932B2 (en) * 2003-12-22 2006-08-29 Modine Manufacturing Company Multi-fluid heat exchanger and method of making same
DE102004009415A1 (en) * 2004-02-24 2005-09-01 Behr Gmbh & Co. Kg Heat exchanger with side panels
JP4415712B2 (en) * 2004-03-12 2010-02-17 日産自動車株式会社 Heat exchanger
US7726387B2 (en) * 2004-05-11 2010-06-01 Showa Denko K.K. Heat exchangers
US7523782B2 (en) * 2004-07-31 2009-04-28 Valeo, Inc. Heat exchanger having a double baffle
DE102006017434B4 (en) * 2005-08-04 2020-03-12 Hanon Systems Multi-flow heat exchanger
EP1976662B1 (en) 2006-01-19 2013-07-03 Modine Manufacturing Company Flat tube, flat tube heat exchanger, and method of manufacturing same
US8434227B2 (en) 2006-01-19 2013-05-07 Modine Manufacturing Company Method of forming heat exchanger tubes
US8191258B2 (en) 2006-01-19 2012-06-05 Modine Manufacturing Company Flat tube, flat tube heat exchanger, and method of manufacturing same
US7921559B2 (en) 2006-01-19 2011-04-12 Modine Manufacturing Company Flat tube, flat tube heat exchanger, and method of manufacturing same
US8091621B2 (en) 2006-01-19 2012-01-10 Modine Manufacturing Company Flat tube, flat tube heat exchanger, and method of manufacturing same
US8438728B2 (en) 2006-01-19 2013-05-14 Modine Manufacturing Company Flat tube, flat tube heat exchanger, and method of manufacturing same
US8683690B2 (en) 2006-01-19 2014-04-01 Modine Manufacturing Company Flat tube, flat tube heat exchanger, and method of manufacturing same
US8281489B2 (en) 2006-01-19 2012-10-09 Modine Manufacturing Company Flat tube, flat tube heat exchanger, and method of manufacturing same
DE102006037302A1 (en) * 2006-08-08 2008-02-14 Behr Gmbh & Co. Kg Heat exchanger for car heaters has flat pipes fitted with transverse fins and which have transverse grooves, to which inner ends of fins are welded
DE102007004993A1 (en) 2007-02-01 2008-08-07 Modine Manufacturing Co., Racine Production process for flat tubes and roller mill
WO2008131001A1 (en) * 2007-04-16 2008-10-30 Luvata Franklin, Inc. Method of producing a corrosion resistant aluminum heat exchanger
FR2925665B1 (en) * 2007-12-24 2016-06-10 Valeo Systemes Thermiques Branche Thermique Moteur BRAKE TUBE FOR HEAT EXCHANGER BRASE, MANUFACTURING METHOD AND HEAT EXCHANGER
US20100031505A1 (en) * 2008-08-06 2010-02-11 Oddi Frederick V Cross-counterflow heat exchanger assembly
DE102008050611A1 (en) * 2008-10-09 2010-04-15 Behr Gmbh & Co. Kg Heat exchanger, particularly for motor vehicle radiator, has block with two tube elements and rib element, where block has section
JP5408017B2 (en) * 2009-06-05 2014-02-05 株式会社デンソー Cold storage heat exchanger
DE102010023384B4 (en) 2010-06-10 2014-08-28 Modine Manufacturing Co. Manufacturing process, in particular for pipes and tear-off device
DE102011003248A1 (en) * 2011-01-27 2012-08-02 Bayerische Motoren Werke Aktiengesellschaft heat exchangers
JP2016153718A (en) * 2015-02-12 2016-08-25 カルソニックカンセイ株式会社 Heat exchanger, heat exchanger assembling device, and heat exchanger assembling method
JP6767621B2 (en) * 2016-10-21 2020-10-14 パナソニックIpマネジメント株式会社 Heat exchanger and freezing system using it
CN109676367A (en) * 2018-12-28 2019-04-26 乔治洛德方法研究和开发液化空气有限公司 A kind of method of heat exchanger assemblies and the assembly heat exchanger assemblies
FR3141515A1 (en) * 2022-10-26 2024-05-03 Valeo Systemes Thermiques Sas Heat exchanger, particularly for a vehicle

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5916692U (en) 1982-07-26 1984-02-01 株式会社ユニバ−サル Slot machine handle lock device
JPS61115862U (en) 1985-01-05 1986-07-22
JPS6458991A (en) * 1987-08-31 1989-03-06 Hisaka Works Ltd Composite heat exchanger
JPH0236772U (en) 1988-09-02 1990-03-09
JPH0254076U (en) 1988-10-11 1990-04-19
JPH02122966U (en) * 1989-03-15 1990-10-09
JPH0463984U (en) * 1990-09-28 1992-06-01
JPH05272889A (en) * 1992-03-26 1993-10-22 Nippondenso Co Ltd Heat exchanger
JPH0645157U (en) 1992-11-30 1994-06-14 デルタ工業株式会社 Auto change lever for automobile
JPH0645157Y2 (en) * 1988-10-25 1994-11-16 昭和アルミニウム株式会社 Integrated continuous heat exchanger
JPH07332890A (en) * 1994-04-12 1995-12-22 Showa Alum Corp Duplex lamination type heat exchanger
JPH08110189A (en) * 1994-10-11 1996-04-30 Nippondenso Co Ltd Manufacture of multilayer heat exchanger

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB583814A (en) * 1944-01-17 1946-12-31 James Frank Belaieff Improvements in or relating to secondary surface heat exchange apparatus
US2505790A (en) * 1946-07-24 1950-05-02 Perfex Corp Combination radiator and oil cooler
US4651816A (en) * 1986-03-19 1987-03-24 Modine Manufacturing Company Heat exchanger module for a vehicle or the like
US5197538A (en) * 1991-04-22 1993-03-30 Zexel Corporation Heat exchanger apparatus having fluid coupled primary heat exchanger unit and auxiliary heat exchanger unit
US5180004A (en) * 1992-06-19 1993-01-19 General Motors Corporation Integral heater-evaporator core
EP0677716B1 (en) * 1994-04-12 1999-01-07 Showa Aluminum Corporation Stacked-type duplex heat exchanger
EP0694747B1 (en) * 1994-07-25 1999-03-17 Sanden Corporation Heat exchanger
FR2728666A1 (en) * 1994-12-26 1996-06-28 Valeo Thermique Habitacle HEAT EXCHANGER WITH THREE REDUCED BULK FLUIDS
US5509199A (en) * 1995-01-17 1996-04-23 General Motors Corporation Method of making a dual radiator and condenser assembly
DE19536116B4 (en) * 1995-09-28 2005-08-11 Behr Gmbh & Co. Kg Heat exchanger for a motor vehicle

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5916692U (en) 1982-07-26 1984-02-01 株式会社ユニバ−サル Slot machine handle lock device
JPS61115862U (en) 1985-01-05 1986-07-22
JPS6458991A (en) * 1987-08-31 1989-03-06 Hisaka Works Ltd Composite heat exchanger
JPH0236772U (en) 1988-09-02 1990-03-09
JPH0254076U (en) 1988-10-11 1990-04-19
JPH0645157Y2 (en) * 1988-10-25 1994-11-16 昭和アルミニウム株式会社 Integrated continuous heat exchanger
JPH02122966U (en) * 1989-03-15 1990-10-09
JPH0463984U (en) * 1990-09-28 1992-06-01
JPH05272889A (en) * 1992-03-26 1993-10-22 Nippondenso Co Ltd Heat exchanger
JPH0645157U (en) 1992-11-30 1994-06-14 デルタ工業株式会社 Auto change lever for automobile
JPH07332890A (en) * 1994-04-12 1995-12-22 Showa Alum Corp Duplex lamination type heat exchanger
JPH08110189A (en) * 1994-10-11 1996-04-30 Nippondenso Co Ltd Manufacture of multilayer heat exchanger

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0859209A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002012817A1 (en) * 2000-08-04 2002-02-14 Showa Denko K.K. Integrated heat exchanger
US6874570B2 (en) 2000-08-04 2005-04-05 Showa Denko K.K. Integrated heat exchanger

Also Published As

Publication number Publication date
CN1199458A (en) 1998-11-18
EP0859209A1 (en) 1998-08-19
EP0859209A4 (en) 1999-06-09

Similar Documents

Publication Publication Date Title
WO1998009124A1 (en) Heat exchanger
US20040194931A1 (en) Heat exchanger
WO2000052409A1 (en) Heat exchanger and method of manufacturing tube for the heat exchanger
JPH09280754A (en) Heat exchanger
JP3580942B2 (en) Flat tubes for heat exchangers and heat exchangers equipped with the tubes
JP4751662B2 (en) Plate for manufacturing flat tube, method for manufacturing flat tube, and method for manufacturing heat exchanger
JP3901349B2 (en) Flat heat transfer tube for heat exchanger
US20080264620A1 (en) Flat Tube, Platelike Body for Making the Flat Tube and Heat Exchanger
US20080245518A1 (en) Flat Tube Making Platelike Body, Flat Tube, Heat Exchanger and Process for Fabricating Heat Exchanger
JPH11142087A (en) Heat-exchanger
US6543530B2 (en) Heat exchanger having an improved pipe connecting structure
JPH10197174A (en) Heat exchanger
JP3959868B2 (en) Heat exchanger
WO2006073136A1 (en) Heat exchanger
JPH10111086A (en) Heat exchanger
JP4029718B2 (en) Double heat exchanger
JP5140803B2 (en) Heat exchanger and manufacturing method thereof
JP2002011570A (en) Manufacture of heat exchanger
WO1999028693A1 (en) Twin unitary type heat exchanger and method of manufacturing same
US20210348859A1 (en) Heat exchanger with aluminum alloy clad tube and method of manufacture
JP5250210B2 (en) Flat tubes and heat exchangers
WO1994027105A1 (en) Mechanically assembled high internal pressure heat exchanger
JP3651091B2 (en) Laminate heat exchanger
JP2001174167A (en) Heat exchanger
JPH05149691A (en) Heat exchanger

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 97191156.8

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CN US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 09051928

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1997937831

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1997937831

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1997937831

Country of ref document: EP