WO1998000914A1 - Surface acoustic wave device - Google Patents

Surface acoustic wave device Download PDF

Info

Publication number
WO1998000914A1
WO1998000914A1 PCT/JP1997/002212 JP9702212W WO9800914A1 WO 1998000914 A1 WO1998000914 A1 WO 1998000914A1 JP 9702212 W JP9702212 W JP 9702212W WO 9800914 A1 WO9800914 A1 WO 9800914A1
Authority
WO
WIPO (PCT)
Prior art keywords
surface acoustic
acoustic wave
idt
wave filter
excitation
Prior art date
Application number
PCT/JP1997/002212
Other languages
French (fr)
Japanese (ja)
Inventor
Naoyuki Mishima
Original Assignee
Kabushiki Kaisha Toshiba
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kabushiki Kaisha Toshiba filed Critical Kabushiki Kaisha Toshiba
Priority to JP50398398A priority Critical patent/JP4106092B2/en
Publication of WO1998000914A1 publication Critical patent/WO1998000914A1/en

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/64Filters using surface acoustic waves
    • H03H9/6423Means for obtaining a particular transfer characteristic
    • H03H9/6433Coupled resonator filters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/0023Balance-unbalance or balance-balance networks
    • H03H9/0028Balance-unbalance or balance-balance networks using surface acoustic wave devices
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/64Filters using surface acoustic waves
    • H03H9/6423Means for obtaining a particular transfer characteristic
    • H03H9/6433Coupled resonator filters
    • H03H9/644Coupled resonator filters having two acoustic tracks
    • H03H9/6456Coupled resonator filters having two acoustic tracks being electrically coupled
    • H03H9/6469Coupled resonator filters having two acoustic tracks being electrically coupled via two connecting electrodes

Definitions

  • the present invention relates to a surface acoustic wave device, and more particularly to a surface acoustic wave filter.
  • a surface acoustic wave device converts an electric signal into a surface acoustic wave by means of a comb-shaped electrode (IDT : Interdigital Transducer) provided on a piezoelectric substrate, and converts the surface acoustic wave propagating on the piezoelectric substrate. It is also a device that receives by IDT provided on the piezoelectric substrate and uses the frequency characteristics related to the conversion between electric signals and surface acoustic waves.
  • IDT Interdigital Transducer
  • IF intermediate frequency
  • PHS Persona 1H andy-phone System
  • relatively electromechanical coupling coefficient k 2 in linear coefficient of the frequency temperature characteristic 0 is as large as about 1%, and the reflection coefficient of the elastic sheet surface wave is approximately 3% per one I DT Large 45 ° X-cut Z-propagating LB 0 substrate
  • FIG. 18 is a diagram schematically showing an electrode pattern of a surface acoustic wave device 900 provided on a 45 ° X cut Z-propagating LB0 substrate as a piezoelectric substrate and disposed on the substrate. .
  • This surface acoustic wave device 900 is configured by connecting four stages of surface acoustic wave filters 901 to 904 each including one excitation IDT, two reception IDTs, and two reflection electrodes.
  • the surface acoustic wave filter 901 has an excitation IDT 911, which is located at the center, and reception IDTs 91, 931, which are arranged on both sides thereof. Are located.
  • the elastic surface wave filters 902 to 904 have the same configuration.
  • the electric signal is input to the excitation IDT 911 of the surface acoustic wave filter 90 1.
  • the electric signal is converted to a surface acoustic wave, propagates to both sides of the excitation IDT 911, and is converted again to an electric signal at the reception IDTs 921, 931.
  • the reception IDT 921 of the surface acoustic wave filter 901 and the excitation IDT 922 of the surface acoustic wave filter 902, as well as the reception IDT 91 and the excitation IDT 932, are electrically connected.
  • the electric signal output from the surface acoustic wave filter 901 is excited by the surface acoustic wave filter 902, and is converted again to surface acoustic waves by the IDTs 922 and 932, and is transmitted to the IDT 912 to receive the IDT. It is output as an electrical signal from 9 12.
  • the surface acoustic wave filters 903 and 904 are a repetition of the surface acoustic wave filters 901 and 902, and the overall configuration is such that the surface acoustic wave filters are connected in series in four stages. .
  • the aperture of one surface acoustic wave filter is as large as 0.72 mm, and the chip size is the bonding pad width for wire bonding ( Includes about 0.15 mm square), it is about 2.5 mm X 4.1 mm square even if it is small, and there is a problem that it becomes large.
  • an object of the present invention is to provide a surface acoustic wave device having a wide pass frequency band, excellent cutoff characteristics, and low impedance. Also, at the same time An object of the present invention is to provide a surface acoustic wave device which can be downsized in size and is particularly suitable for mobile communication and portable information equipment.
  • the present invention aims to provide a surface acoustic wave device having a small insertion loss.
  • Another object of the present invention is to provide an elastic surface acoustic wave device having small transverse mode spurious characteristics and excellent out-of-band characteristics. Disclosure of the invention
  • the present invention has the following configuration in order to solve the above-mentioned problems.
  • the surface acoustic wave device comprises: a two-port piezoelectric substrate having a center frequency fl disposed between a first input terminal and a first output terminal on the piezoelectric substrate.
  • a 2 port 3 IDT second surface acoustic wave filter having a center frequency f 2 slightly different from the center frequency fl, wherein the first surface acoustic wave filter and the second
  • the surface acoustic wave filter includes: a phase of a signal output from the first input terminal to the first output terminal via the first surface acoustic wave filter; and a second surface acoustic wave filter. And the phase of the signal output to the first output terminal via It is characterized by being arranged at an angle of 80 °.
  • the first surface acoustic wave filter and the second surface acoustic wave filter excite surface acoustic waves having a phase substantially different by 180 ° with respect to a signal input to the first input terminal. You may do so.
  • the first surface acoustic wave filter is connected to the first input terminal.
  • a first excitation IDT that excites a first surface acoustic wave by an electric signal input to the first input terminal; and a first excitation IDT disposed on both sides of the first excitation IDT.
  • a first reception IDT and a second reception IDT that receive a surface acoustic wave and convert it into an electric ft signal, and wherein the second surface acoustic wave filter is connected to the first input terminal.
  • a second excitation IDT that excites a second surface acoustic wave having a 180 ° phase difference from the first surface acoustic wave by an electric signal input to the first input terminal; and A third reception IDT and a fourth reception IDT that are provided on both sides of the excitation IDT and receive the second surface acoustic wave and convert it into an electric signal may be provided.
  • the first surface acoustic wave filter and the second surface acoustic wave filter excite a surface acoustic wave having substantially the same phase with respect to a signal input to the first input terminal.
  • the surface acoustic wave may be converted into an electric signal so that the phase is substantially different by 180 °.
  • the first surface acoustic wave filter is connected to the first input terminal, and the first surface acoustic wave filter excites the first surface acoustic wave by an electric signal input to the first input terminal.
  • 1 excitation IDT, and a first reception IDT and a second reception IDT that are disposed on both sides of the first excitation IDT and receive the first surface acoustic wave and convert it into an electric signal.
  • the second surface acoustic wave filter is connected to the first input terminal, and excites the first surface acoustic wave with an electric signal input to the first input terminal.
  • An IDT disposed on both sides of the second excitation IDT, receiving the first surface acoustic wave, and having a phase of substantially 180 ° with the first reception IDT and the second reception IDT.
  • a third receiving IDT and a fourth receiving IDT for converting into different electrical signals. You may.
  • the piezoelectric substrate is an electromechanical coupling unit for surface acoustic waves propagating on the substrate. It is preferable to use one having a number k 2 of about 1% and a reflection coefficient of the surface acoustic wave per IDT of about 3% or more.
  • lithium tetraborate may be used as the piezoelectric substrate.
  • the first center frequency and the second center frequency are different from each other by about 0.10% to about 0.18%.
  • the cross width of the comb tooth-shaped electrodes constituting each IDT may be set to be about 10 times or less the arrangement period of the comb tooth-shaped electrodes. Thereby, higher-order transverse mode spurious can be suppressed.
  • Such a surface acoustic wave device of the present invention in which the first surface acoustic wave filter having slightly different center frequencies and the second surface acoustic wave filter are connected in anti-phase parallel, has the same piezoelectric property.
  • a plurality of stages may be cascaded on a substrate.
  • the surface acoustic wave device of the present invention having such a configuration is provided with a piezoelectric substrate, and disposed on the piezoelectric substrate between a first input terminal, a first output terminal, and a second output terminal.
  • a first SAW filter of a two-port 3 IDT having a center frequency f 1 and the first SAW filter disposed between the first input terminal, the first output terminal, and the second output terminal.
  • the first surface acoustic wave filter and the second surface acoustic wave filter are connected to the first output terminal via the first input terminal via the first surface acoustic wave filter.
  • the phase of the signal output to the first output terminal via the second surface acoustic wave filter is substantially different by 180 °.
  • the third surface acoustic wave filter and the fourth surface acoustic wave filter are connected to the first output terminal and the second output terminal via the third surface acoustic wave filter.
  • the phase of the signal output to the third output terminal is substantially 180 ° different from the phase of the signal output to the third output terminal via the fourth surface acoustic wave filter. It is characterized by being arranged as follows.
  • the first-stage filter is constituted by the first surface acoustic wave filter and the second surface acoustic wave filter
  • the second-stage filter is constituted by the third surface acoustic wave filter and the fourth surface acoustic wave filter.
  • the first-stage filter and the second-stage filter may or may not have the same configuration.
  • the first-stage filter employs a configuration in which surface acoustic waves of the opposite phase are excited to receive in-phase, and the second stage filter excites surface acoustic waves of the same phase to receive in the opposite phase.
  • a configuration may be adopted.
  • a first input terminal a first excitation IDT connected to the first input terminal, and exciting a first surface acoustic wave by an electric signal input to the first input terminal; and A first receiving IDT and a second receiving IDT that are disposed on both sides of the first excitation IDT and receive the first surface acoustic wave and convert the same into an electric signal;
  • the first surface acoustic wave filter is connected to the first input terminal and the electric signal input to the first input terminal has a phase of substantially 180 ° with the first surface acoustic wave.
  • a second excitation IDT that excites a different second surface acoustic wave of The first center frequency, which is provided on both sides of the second excitation IDT and includes a third reception IDT and a fourth reception IDT that receive the second surface acoustic wave and convert it into an electric signal;
  • a second surface acoustic wave filter having a second center frequency slightly different from the first surface ID, a first output terminal connected in parallel with the first reception IDT and the third reception IDT, and the second A second output terminal connected in parallel to the reception IDT and the fourth reception IDT, a second input terminal connected to the first output terminal, and a third connection connected to the second output terminal
  • a fourth excitation for exciting the third surface acoustic wave by an electric signal input to the input terminal An IDT, and a fifth reception IDT that is provided between the third excitation IDT and the fourth excitation IDT and receives the third surface acoustic wave and converts it into an electric signal.
  • the third surface acoustic wave filter having a first center frequency is connected to the second input terminal, and the third surface acoustic wave is excited by an electric signal input to the input terminal.
  • the fifth excitation IDT, the sixth excitation IDT connected to the third input terminal, and exciting a fourth surface acoustic wave by an electric signal input to the input terminal; and the fifth excitation IDT.
  • a sixth reception IDT disposed between the excitation IDT and the sixth excitation IDT, the sixth reception IDT receiving a fourth surface acoustic wave and converting the same into an electric signal;
  • a fourth surface acoustic wave filter, a third reception IDT connected in parallel with the fifth reception IDT and the sixth reception IDT, An output terminal may be provided.
  • the surface acoustic wave device of the present invention comprises: a piezoelectric substrate; a piezoelectric substrate formed on the piezoelectric substrate; a first input terminal and a first output terminal; and a first input terminal and a second output terminal.
  • Signal input from the first input terminal The signal having the first center frequency is interpolated in parallel so that the phases of the signals output to the first and second output terminals are different from each other by 180 ° with respect to the phase of / 212.
  • a first surface acoustic wave filter and a second surface acoustic wave filter having a second center frequency slightly different from the first center frequency.
  • a surface acoustic wave device includes a piezoelectric substrate, formed on the piezoelectric substrate, between a first input terminal and a first output terminal, and between a first input terminal and a second output terminal. Between the first and second output terminals with respect to the phase of the signal input from the first input terminal so that the phases of the signals output from the first and second output terminals differ from each other by 180 °.
  • the surface acoustic wave device of the present invention is connected in parallel with a piezoelectric substrate so that the phases of electric signals formed on the piezoelectric substrate and output to the output terminals are different from each other by 180 ° between the input and output terminals.
  • a first surface acoustic wave filter and a second surface acoustic wave filter having slightly different pass frequency bands.
  • the piezoelectric substrate constituting the surface acoustic wave device of the present invention It is preferable to use four-layered lithium Li 2 B 4 7 .
  • the elastic surface wave device of the present invention can obtain a greater effect by using lithium tetraborate Li 2 B 0 ?. Similar effects can be obtained by using a piezoelectric substrate material other than lithium tetraborate that has an electromechanical coupling coefficient of about 1% and a surface acoustic wave reflection coefficient per IDT of about 3% or more. Can be.
  • the first center frequency and the second center frequency are set to be different from each other by 0.10 to 0.18%.
  • the surface acoustic wave filter pairs that constitute each stage are resilient so that their center frequencies differ by 0.10 to 0.18%. What is necessary is just to make it consist of surface wave filters.
  • a third surface acoustic wave filter having a first center frequency and a fourth surface acoustic wave filter having a center frequency different from the third surface acoustic wave filter by 0.10 to 0.18% are provided by a surface acoustic wave filter.
  • An evening pair may be formed.
  • the surface acoustic wave device connects the first surface acoustic wave filter and the second surface acoustic wave
  • the signal phase between the input and output of the filter and the second surface acoustic wave filter is changed by 180 °, and the center frequencies of the first surface acoustic wave filter and the second surface acoustic wave filter are slightly different.
  • the impedance in the pass frequency band of the surface acoustic wave device is reduced, and the attenuation of the stop band is secured.
  • the surface acoustic wave element can be downsized.
  • the surface acoustic wave device of the present invention reverses the first surface acoustic wave filter having the first center frequency and the second surface acoustic wave filter having the second center frequency between the input and output terminals. They are connected in parallel.
  • the first center frequency f 1 and the Ri second center frequency f 0. 1 0 to 0. are shifted approximately 1-8%.
  • the first surface acoustic wave filter having the center frequency f and the second surface acoustic wave filter having the center frequency f 2 are provided between the input terminal and the output terminal.
  • the phase of the signal output from the input terminal is different from the phase of the signal input from the input terminal by 180 °, that is, they are interpolated in anti-phase parallel.
  • FIG. 1 is a diagram schematically showing one example of an electrode pattern constituting a surface acoustic wave device of the present invention.
  • the surface acoustic wave device 100 illustrated in FIG. 1 has a conductive pattern including an IDT formed on a piezoelectric substrate, and includes a first input terminal 101 and a first output terminal 102. a and a second output terminal 102 b between the first surface acoustic wave filter 103 having a center frequency f. and the second surface acoustic wave filter 110 having a center frequency f 2 . And are connected in anti-phase parallel.
  • FIG. 2 shows a first surface acoustic wave filter 103 a and a second surface acoustic wave filter 1 in a surface acoustic wave device 100 a having the same configuration as the surface acoustic wave device 100 illustrated in FIG.
  • FIG. 4 is a diagram schematically showing one example of anti-phase parallel connection with 04a.
  • the first surface acoustic wave filter 103a is connected to an input terminal 101 to excite a surface acoustic wave formed, and a first excitation IDT 11 1 and this first excitation IDT 11 1 1
  • a first reception IDT 112 and a second reception IDT 113 that receive a surface acoustic wave and that are formed in a plane-symmetric pattern so as to sandwich the first and second reception IDTs 113 and 113.
  • the second surface acoustic wave filter 104a has the same configuration.
  • the second surface acoustic wave filter 104a sandwiches the second excitation IDT 121 that excites a surface acoustic wave formed by being connected to the input terminal 101 and the second excitation IDT 121.
  • a third receiving IDT 122 and a fourth receiving IDT 123 that receive a surface acoustic wave and are formed in a plane-symmetric pattern as described above, and a second excitation IDT further outside these receiving IDTs. 121, and two reflective electrodes 124 disposed so as to form a cavity with the third reception IDT 122 and the fourth reception IDT 123 interposed therebetween.
  • the first excitation IDT 121 of the first surface acoustic wave filter 103 a and the second excitation IDT 121 of the second surface acoustic wave filter 104 a are connected in parallel to the input terminal 101.
  • the IDTs are connected, and each of the IDTs is composed of a pair of comb-toothed electrodes facing each other. Then, one of the comb-like electrodes 1 1 1 a constituting the first excitation I DT 1 1 1 of the first surface acoustic wave filter 103 a is connected to the input terminal 101, and the other is The comb-shaped electrode is connected to the reference potential side 111b.
  • the comb-shaped electrode 121b corresponding to the comb-shaped electrode 111b connected to the reference potential side of the first excitation IDT 111 is connected to the input terminal 101.
  • the first excitation I DT 11 1 A comb-like electrode 121a corresponding to the comb-like electrode 111a connected to the input terminal 101 of JP97 / 02212 is connected to the reference potential side.
  • the first reception IDT 112 and the second reception IDT 113 of the first surface acoustic wave filter 103a are also the third reception IDT 122 and the second reception IDT 112 of the second surface acoustic wave filter.
  • the four reception IDTs 123 also include a pair of comb-tooth electrodes facing each other.
  • the first reception IDT 12 of the first surface acoustic wave filter 103a and the third reception IDT 122 of the second surface acoustic wave filter are formed in a plane-symmetric pattern, and the comb-shaped electrode 112a And the comb-shaped electrode 122b are connected to the first output terminal 102a.
  • Each of the comb-like electrodes 112b and 122a is connected to a reference potential.
  • the second reception IDT 113 of the first surface acoustic wave filter 103a and the fourth reception IDT 123 of the second surface acoustic wave filter 104a are also formed in a plane symmetric pattern.
  • the comb-shaped electrode 113a and the comb-shaped electrode 123b are connected to the second output terminal 102b.
  • the comb-shaped electrode 113b and the comb-shaped electrode 123a are each connected to a reference potential.
  • the propagated surface acoustic waves are converted into electric signals without any phase shift.
  • the first output terminal 102a and the second output terminal 102b output the signal phase passing through the first surface acoustic wave filter 103a and the signal phase passing through the second surface acoustic wave filter 104a. 180 degrees from the signal phase It will be output as an electric signal in the state where it was turned off.
  • the phase is determined by the first excitation IDT and the second excitation IDT.
  • a surface acoustic wave shifted by 180 ° will be excited.
  • the method of connecting the first surface acoustic wave filter and the second surface acoustic wave filter in anti-phase parallel connection is not limited to the connection illustrated in FIG. 2 .
  • the in-phase surface acoustic waves are excited.
  • the phase may be shifted when the surface acoustic waves are received by the reception IDTs of the first surface acoustic wave filter and the second surface acoustic wave filter.
  • FIG. 3 is a diagram schematically illustrating an example of anti-phase parallel connection of the first surface acoustic wave filter 103a and the second surface acoustic wave filter 104b in the surface acoustic wave device 100b.
  • the excitation IDT excites the same phase surface acoustic wave, and the received IDT The connection is such that the phases are shifted.
  • the first surface acoustic wave filter 103a of the surface acoustic wave device 100b has the same configuration as that of the above-described first surface acoustic wave filter 103a.
  • the second surface acoustic wave filter 104b is connected to the input terminal 101 to excite a formed surface acoustic wave, and the second excitation IDT 131 is symmetric with respect to the second excitation IDT 131.
  • the first excitation I DT lll of the first surface acoustic wave filter 103a and the second excitation I DT 131 of the second surface acoustic wave filter 104b are connected in parallel to the input terminal 101. , And each is composed of a pair of comb-shaped electrodes opposed to a plane symmetric pattern.
  • One of the comb-shaped electrodes 111 a constituting the first excitation IDTll of the first surface acoustic wave filter 103 a is connected to the input terminal 101, and the other comb-shaped electrode is connected to the reference terminal. Connected to potential side 1 1 1 b.
  • the comb-shaped electrode 131b corresponding to the comb-shaped electrode 1 11a connected to the input terminal 101 of the first excitation IDT 1 11 1 is connected to the input terminal 101.
  • the comb-shaped electrode 131a corresponding to the comb-shaped electrode 111b connected to the reference potential side of the first excitation IDTll is connected to the reference potential side.
  • the first excitation I DT I 11 and the second excitation I DT 1 31 By connecting the first excitation I DT I 11 and the second excitation I DT 1 31 in this way, unlike the anti-parallel parallel connection illustrated in FIG. 2, the first excitation I DT Ill The SAW having the same phase is excited by the second excitation IDT 131 and the second excitation.
  • first reception IDT 12 and the second reception IDT 113 of the first surface acoustic wave filter 103 are also the third reception IDT 132 and the fourth reception IDT 132 of the second surface acoustic wave filter.
  • IDT 133 is also composed of a pair of comb-shaped electrodes facing each other.
  • the first reception IDTI 12 of the first surface acoustic wave filter 103a and the third reception IDT 132 of the second surface acoustic wave filter are formed in the same pattern, and have a comb-shaped electrode. 112a and the comb-shaped electrode 132b are connected to the first output terminal 102a.
  • the comb tooth-shaped electrode 132b corresponding to the comb-shaped electrode 112b connected to the reference potential of the first reception IDTI 12 is connected to the first output terminal 102a.
  • the comb-shaped electrode 132a corresponding to the comb-shaped electrode 112a connected to the first output terminal 102a of the first reception IDT 112 is connected to the reference potential. I have.
  • the second reception IDT 113 of the first surface acoustic wave filter 103a and the fourth reception IDT 133 of the second surface acoustic wave filter 104b are similarly connected.
  • the second reception IDT 133 of the first surface acoustic wave filter 103a and the fourth reception IDT 133 of the second surface acoustic wave filter 104b are similarly connected.
  • a comb-like electrode 133b corresponding to the comb-like electrode 113b connected to the reference potential of the second reception IDT 113 is connected to the first output terminal 102b
  • a comb-shaped electrode 133a corresponding to the comb-shaped electrode 113a connected to the first output terminal 102b of the second reception IDT 113 is connected to the reference potential.
  • the in-phase surface acoustic waves excited by the first excitation IDT 111 and the second excitation IDT 131 are used.
  • the wave has a phase of 180 at the receiving IDT. It will be converted to an electrical signal in a shifted state o
  • first output terminal 102a and the second output terminal 102b are connected to the phase of the signal passing through the first surface acoustic wave filter 103a and the second output terminal 102b through the second surface acoustic wave filter 104b.
  • the signals are output as electrical signals 180 ° out of phase with each other.
  • FIG. 4 is a diagram schematically showing one example of a surface acoustic wave device 100 in which a first surface acoustic wave filter 103a and a second surface acoustic wave finolator 104c are connected in anti-phase parallel.
  • the first surface acoustic wave of this surface acoustic wave device 100 c In the filter 103a and the second surface acoustic wave filter 104c, as in the case of the surface acoustic wave device 100b, the excitation IDT excites the same surface acoustic wave and shifts the phase by the reception IDT. It has become. While the surface acoustic wave device 100b illustrated in FIG. 3 is shifted in phase by connection of the reception IDT, the surface acoustic wave device 10b illustrated in FIG.
  • the phase is shifted depending on the location of the receive IDT.
  • the first surface acoustic wave filter 103a of the surface acoustic wave device 100c has the same configuration as the first surface acoustic wave filters 103a and 103b described above.
  • the second surface acoustic wave filter 104c has a second excitation IDT 131 connected to the input terminal 101 to excite a formed surface acoustic wave, and a surface sandwiching the second excitation IDT 131.
  • a third reception IDT 142 and a fourth reception IDT 143 that receive a surface acoustic wave formed in a symmetric pattern, and further outside these reception IDTs, a second excitation IDT 131 and a third
  • the receiving IDT 142 and the fourth receiving IDT 143 are sandwiched between two reflective electrodes 144 arranged to form a cavity.
  • the connection between the first excitation I DT 111 of the first surface acoustic wave filter 103a and the second excitation IDT 131 of the second surface acoustic wave filter 104c is performed using the surface acoustic wave illustrated in FIG. It is connected in the same way as the connection between the excitation IDT 111 of the wave device 100 b and the excitation IDT 121. That is, the first excitation
  • the 1 DT 111 and the second excitation IDT 131 are connected in parallel to the input terminal 101, and are each formed of a pair of comb-shaped electrodes opposed to a plane symmetric pattern.
  • the first surface acoustic wave filter 103a is connected to the input terminal 101 constituting the first excitation IDT 111 of the 103a.
  • the comb-shaped electrode 131b corresponding to the comb-shaped electrode 111b is connected to the input terminal 101, and the other comb-shaped electrode constituting the first excitation IDT is connected to the reference potential side.
  • a comb-shaped electrode 131a corresponding to 111b is connected to the reference potential side.
  • the first excitation ID T 111 and the second excitation I DT 131 are connected in the same manner as the anti-phase parallel connection illustrated in FIG. Surface acoustic waves having the same phase are excited by the excitation IDT 131.
  • the first reception IDT 112 and the second reception IDT 113 of the first surface acoustic wave filter 103a are also the third reception IDT 142 and the fourth reception IDT 142 of the second surface acoustic wave filter.
  • the reception IDT 143 includes a pair of comb-shaped electrodes facing each other.
  • a first reception IDT 112 of the first surface acoustic wave filter 103a, a third reception IDT 142 of the second surface acoustic wave filter 104c are formed in a plane-symmetric pattern, but are arranged at different distances from the excitation IDT.
  • the propagation distance of the surface acoustic wave between the first excitation IDT 111 of the first surface acoustic wave filter 103a and the first and second reception IDTs 112, 113 is 1 ⁇
  • the propagation distance L n of the surface acoustic wave between the second excitation I DT 131 of the second surface acoustic wave filter 104c and the third and fourth reception I DTs 142 and 143 is larger than d. It is arranged to be longer by ⁇ / 2. Of course, it may be arranged to be shorter by two.
  • the first receiving IDT 1 12 has a comb toothbrush electrode 112 b and the third receiving sautidia
  • the IDT comb-shaped electrode 142a is connected to the reference potential. That is, the comb-like electrode 142b corresponding to the comb-like electrode 112b connected to the reference potential of the first reception IDT 112 is connected to the first output terminal 102a, A comb-shaped electrode 142a corresponding to the comb-shaped electrode 112a connected to the first output terminal 102a of the reception IDT 112 is connected to the reference potential.
  • the second reception IDT 113 of the first surface acoustic wave filter 103a and the fourth reception IDT 143 of the second surface acoustic wave filter 104c are similarly connected. That is, the comb-shaped electrode 113a and the comb-shaped electrode 143b are connected to the second output terminal 102b, and the comb-shaped electrode 113b and the comb-shaped electrode 143a are connected to the reference potential. It is connected to the.
  • the same surface acoustic wave device excited by the first excitation IDT 111 and the second excitation IDT 131 is used.
  • the SAW in phase will be converted to an electrical signal with the phase shifted by 180 ° at the receiving IDT.
  • phase of the signal passing through the first surface acoustic wave filter 103a and the signal passing through the second surface acoustic wave filter 104c are applied to the first output terminal 102a and the second output terminal 102b.
  • the surface acoustic wave device of the present invention illustrated in FIGS. 1 to 4 is a device in which a first surface acoustic wave filter and a second surface acoustic wave filter having slightly different center frequencies are connected in anti-phase parallel connection.
  • a pair of surface acoustic wave filters connected in anti-phase parallel may be connected in multiple stages.
  • FIG. 5 is a diagram schematically illustrating an example of an electrode pattern of a surface acoustic wave device 500 in which image electrodes are connected in two stages by taking the electrode pattern illustrated in FIG. 1 as one stage.
  • the surface acoustic wave device 500 illustrated in FIG. 5 is mounted on a piezoelectric substrate.
  • a conductor pattern including an IDT is formed at the center frequency f 1 between the input terminal 101 and the first output terminal 102 a and the second output terminal 102 b.
  • a first surface acoustic wave filter 103 and a second surface acoustic wave filter 104 having a center frequency of ⁇ 2 are connected in anti-phase parallel.
  • the third surface acoustic wave off I the center frequency I 1 and Le evening 1 0 7, and the fourth surface acoustic wave fill evening 1 0 8 center frequency I 2 are opposite phase parallel connection.
  • connection means 109a and 109b respectively.
  • the third surface acoustic wave filter 1 0 7 fourth SAW Fi Le motor 1 0 8 the center frequency is f
  • SIZE is f 2
  • a first surface acoustic wave filter as illustrated in FIG. 2 is a first stage in which a first surface acoustic wave filter 103 and a second surface acoustic wave filter 104 are connected in anti-phase parallel.
  • the third surface acoustic wave filter 107 and the fourth surface acoustic wave filter 108 are composed of 10 3 a and the second surface acoustic wave filter 104 a,
  • the second connected stage may also be constituted by the first surface acoustic wave filter 103a and the second surface acoustic wave filter 104a as illustrated in FIG.
  • the first stage is composed of a first surface acoustic wave filter 103a and a second surface acoustic wave filter 104a as illustrated in FIG. 2, and a surface acoustic wave filter 107 and
  • the second stage in which the fourth surface acoustic wave filter 108 is connected in anti-parallel parallel is a first surface acoustic wave filter 103a and a second surface acoustic wave filter 10 as illustrated in FIG. 4b.
  • P97 / 02212 Further, the first stage is composed of a first surface acoustic wave filter 103a and a second surface acoustic wave filter 104a as illustrated in FIG.
  • the second stage where the filter 107 and the fourth surface acoustic wave filter 108 are connected in anti-phase parallel is the first surface acoustic wave filter 103a and the second surface
  • the surface acoustic wave filter 104c of the above may be used.
  • the first stage is composed of a first surface acoustic wave filter 103a and a second surface acoustic wave filter 104b as illustrated in FIG.
  • the second stage in which the filter 107 and the fourth surface acoustic wave filter 108 are connected in anti-phase parallel is the first surface acoustic wave filter 103 a and the second surface It may be constituted by a surface acoustic wave filter 104c.
  • the surface acoustic wave filter pairs at each stage connected in the image in this manner have center frequencies f i and f. And if they are connected in anti-phase parallel, they need not be the same pattern.
  • the first surface acoustic wave filter and the second surface acoustic wave filter are connected in anti-phase parallel with each other having slightly different pass frequency bands, so that the pass frequency band Inside, the first surface acoustic wave filter and the second surface acoustic wave filter operate in parallel, so that the impedance is reduced to about half.
  • the signal phase is different by 180 ° outside the pass frequency band
  • the signal of the first surface acoustic wave filter and the signal of the second surface acoustic wave filter cancel each other, so that the amount of attenuation is secured.
  • the signal of the first surface acoustic wave filter and the signal of the second surface acoustic wave filter cancel each other, so that the amount of attenuation is secured.
  • the signal of the first surface acoustic wave filter and the signal of the second surface acoustic wave filter cancel each other, so that the amount of attenuation is secured.
  • the out-of-band characteristics are greatly improved.
  • the chip of the surface acoustic wave device can be reduced in size. Also, since the aperture of the surface acoustic wave filter can be narrowed, it is possible to prevent the occurrence of transverse mode 'spurs, and it is not necessary to weight the incoming and outgoing IDTs, thus further increasing the aperture. Can be prevented.
  • FIG. 1 is a diagram schematically showing an example of the configuration of the surface acoustic wave device according to the present invention
  • FIG. 2 is a diagram illustrating a first surface acoustic wave filter and a second surface acoustic wave device in the surface acoustic wave device according to the present invention
  • Fig. 3 is a diagram schematically showing one example of anti-phase parallel connection with a wave filter
  • FIG. 3 is a diagram schematically showing another example of the anti-parallel parallel connection of the first surface acoustic wave filter and the second surface acoustic wave filter in the surface acoustic wave device of the present invention
  • FIG. 4 is a diagram schematically showing another example of anti-phase parallel connection of the first surface acoustic wave filter and the second surface acoustic wave filter in the surface acoustic wave device of the present invention
  • FIG. 5 is a diagram schematically showing another example of the configuration of the surface acoustic wave device according to the present invention.
  • FIG. 6 is a diagram schematically showing an example in which two pairs of surface acoustic wave filter pairs connected in anti-phase parallel are connected in two stages in the surface acoustic wave device of the present invention
  • FIG. 7 is a diagram schematically showing a signal propagation state in the surface acoustic wave device of the present invention illustrated in FIG. 6;
  • FIG. 8 is a diagram showing a frequency characteristic of the surface acoustic wave device of the present invention
  • FIG. 9 is a diagram showing a frequency characteristic of the surface acoustic wave device of the present invention (two-stage antiphase parallel connection);
  • FIG. 10 shows a surface acoustic wave filter of the surface acoustic wave device of the present invention illustrated in FIG.
  • FIG. 7 is a diagram showing a change in frequency characteristics when a frequency difference between a pair of filters is set to a parameter;
  • FIG. 11 is a diagram showing the relationship between the frequency bandwidth of the 3 dB reduction of the surface acoustic wave device of the present invention exemplified in FIG. 6 and the frequency difference of the pair of surface acoustic wave filters connected in anti-parallel. ;
  • FIG. 12 is a diagram showing the relationship between the logarithm of IDT between stages and the frequency characteristic of the surface acoustic wave device of the present invention illustrated in FIG. 6;
  • FIG. 13 is a diagram showing the relationship between the logarithm of the IDT between the stages of the surface acoustic wave device of the present invention illustrated in FIG. 6 and the frequency bandwidth of 3 dB reduction;
  • Figure 14 is a diagram showing the relationship between the stray capacitance of the wiring connecting a plurality of pairs of surface acoustic wave filter pairs and the frequency bandwidth of 4 dB reduction;
  • FIG. 15 is a diagram showing the results of analyzing the occurrence level of transverse mode spurs in the surface acoustic wave device of the present invention.
  • FIG. 17 is a diagram showing a frequency dispersion characteristic
  • FIG. 17 shows a first excitation I DT, a second excitation I DT, a fifth reception I DT, 6 is a diagram showing frequency characteristics when the logarithm of the received IDT 6 is set to 45.5 pairs and the aperture is set to 8.9 pairs;
  • FIG. 18 is a diagram schematically showing an example of an electrode pattern of a conventional surface acoustic wave device.
  • FIG. 19 is a diagram illustrating frequency characteristics of the conventional surface acoustic wave device illustrated in FIG. BEST MODE FOR CARRYING OUT THE INVENTION Example 1
  • FIG. 6 is a diagram schematically showing one example of an electrode pattern of the surface acoustic wave device of the present invention.
  • the surface acoustic wave device 600 is placed on a piezoelectric substrate composed of LB 0 of 45 ° X cut Z propagation so that the input and output signal phases are substantially 180 ° out of phase with each other.
  • the first surface acoustic wave filter and the second surface acoustic wave filter connected in parallel are image-connected in two stages.
  • the operating frequencies of the surface acoustic wave filter pairs connected in antiphase and parallel constituting each stage are shifted from each other by about 0.10-0.18%.
  • the first-stage surface acoustic wave filter pair was connected in anti-phase parallel between the first input terminal 61, the first output terminal 60a, and the second output terminal 602. It comprises a first surface acoustic wave filter 603 having a center frequency f e and a second surface acoustic wave filter 604 having a center frequency f 2 .
  • a surface acoustic wave filter pair that excites a phase-shifted surface acoustic wave is used.
  • the surface acoustic wave filter pair in the second stage has the same configuration as the surface acoustic wave filter pair in the first stage, but the input terminal and the output terminal are connected in reverse.
  • a second input terminal 6 0 5 a and the third input terminal 6 0 5 b and the third output terminal 6 0 6 a third center frequency I 1 which is reverse phase connected in parallel between the And a second surface acoustic wave filter 608 having a center frequency of ⁇ 2.
  • the electrode pattern shape of the second-stage surface acoustic wave filter pair is formed in the same shape as the electrode pattern shape of the first-stage surface acoustic wave filter pair.
  • the first surface acoustic wave filter 603 and the third surface acoustic wave filter 607 are formed in the same shape, and the second surface acoustic wave filter 604 and the fourth surface acoustic wave Wave filter 6 0 12
  • the first surface acoustic wave filter 603 has a first excitation IDT 611 that excites a surface acoustic wave formed in contact with the input terminal 601, and a first excitation IDT 611 that sandwiches the first excitation IDT 611.
  • the second surface acoustic wave filter 604 also has a second excitation I DT 621 that excites a surface acoustic wave formed by being connected to the input terminal 601, and a second excitation I DT 621 that sandwiches the second excitation I DT 621.
  • a pair of reflective electrodes 624 arranged to form a cavity so as to operate as a resonator with the third receiving IDT 622 and the fourth receiving IDT 623 interposed therebetween.
  • the first surface acoustic wave filter 603 and the second surface acoustic wave filter 604 are designed so that their operating frequencies are slightly different, for example, by changing the pitch of the IDT comb-shaped electrodes. It is arranged.
  • the first surface acoustic wave filter 603 and the second surface acoustic wave filter 604 are connected in anti-phase parallel by the same connection method as the surface acoustic wave device 100a illustrated in FIG.
  • the first excitation IDT 603 of the first surface acoustic wave filter 603 and the second excitation IDT 621 of the second surface acoustic wave filter are connected in parallel to the input terminal. And a pair of comb teeth that face each other It is composed of electrodes. Then, the second surface acoustic wave filter corresponding to the comb-shaped electrode connected to the input terminal 601 among the comb-shaped electrodes constituting the first excitation IDT 611 of the first surface acoustic wave filter 603 The comb-shaped electrode of the second excitation IDT 621 of 604 is connected to the reference potential side.
  • the second elastic waves corresponding to the comb-shaped electrodes connected to the reference potential is connected to the input terminal 601.
  • the first surface acoustic wave filter 603 and the second surface acoustic wave The phase of the surface wave is substantially shifted by 180 °.
  • the phase of the surface acoustic wave propagated by the reception IDT is not shifted between the first surface acoustic wave filter 603 and the second surface acoustic wave filter 604.
  • the first output terminal 602a and the second output terminal 602b provide the phase of the signal passing through the first surface acoustic wave filter 603 and the phase of the signal passing through the second elastic surface wave filter 604, respectively. Is output as an electric signal in a state of being substantially 180 ° shifted from each other.
  • the third surface acoustic wave filter 607 is connected to a third input terminal 605a for exciting a surface acoustic wave formed by being connected to the second input terminal 605a, and to a third input terminal 605b.
  • a fourth excitation I DT 632 that excites the formed surface acoustic wave, and a surface acoustic wave formed to be sandwiched between the third excitation I DT 631 and the fourth excitation I DT 632 are received.
  • Fifth recipient The signal I DT 633 and the third excitation I DT 631 and the fourth excitation I DT 632 and the fifth reception IDT 633 are sandwiched from outside the excitation I DT 631 and 632 to operate as a resonator.
  • a wiring 609a made of a conductive thin film formed on the same substrate as the first to fourth surface acoustic wave filters is provided. Are electrically connected to each other.
  • the second output terminal 602b and the third input terminal 605b are similarly connected by the wiring 609b.
  • a fourth surface acoustic wave filter 608 is also connected to a fifth input terminal 605b for exciting a surface acoustic wave formed by connecting to the second input terminal 605a and a third input terminal 605b.
  • the sixth excitation IDT 642 that excites the formed surface acoustic wave, and the surface acoustic wave formed so as to be sandwiched between the fifth excitation IDT 641 and the sixth excitation IDT 642
  • the sixth receiving IDT 643 to operate as a resonator with the fifth excitation IDT 641, the sixth excitation IDT 642, and the sixth reception IDT 643 sandwiched between them.
  • two reflective electrodes 644 arranged in such a way that
  • the shape of the electrode pattern forming the pair of surface acoustic wave filters in the second stage is the same as that in the first stage, and the input / output terminals are reversed. Therefore, the phase of the excited surface acoustic wave does not shift between the pair of surface acoustic wave filters.
  • the phase of the surface acoustic wave propagated in the reception IDT is substantially shifted by 180 °.
  • the third surface acoustic wave The phase of the signal passing through the filter 607 and the phase of the signal passing through the fourth surface acoustic wave filter 608 are output as electric signals while being substantially 180 ° apart from each other.
  • the surface acoustic wave filter pair in the first stage and the surface acoustic wave filter pair in the second stage are formed in the same shape.
  • the shape of the second step may be changed (see Figs. 2 to 4).
  • the electric signal input from the input terminal 601 is applied to the first excitation IDT 61 1 of the first surface acoustic wave filter, and the second excitation of the second elastic surface wave filter 604. Excitation is input to IDT 621 and converted to elastic surface waves. As described above, in the surface acoustic wave device 600 illustrated in FIG. 6, the first excitation IDT and the second excitation IDT 621 excite surface acoustic waves whose phases are substantially shifted by 180 °. .
  • the surface acoustic wave excited by the first excitation IDT 611 propagates to both sides, and is converted again into an electric signal by the first reception IDT 612 and the second reception IDT 613.
  • the surface acoustic wave excited by the second excitation IDT 612 also propagates to both sides, and is converted again into an electric signal by the third reception IDT 622 and the fourth reception IDT 623.
  • the phase does not shift when the received surface acoustic wave is converted into an electric signal. Therefore, the first output terminal 602a and the second output terminal 602b have the first elasticity.
  • a signal passing through the surface acoustic wave filter 603 and a signal passing through the second surface acoustic wave filter 604 substantially 180 ° out of phase with this signal are output.
  • the signal output to the first output terminal 602a is input to the second input terminal 605a of the pair of surface acoustic wave filters in the second stage through the wiring 609a.
  • the signal output to the second output terminal 602 b is input to the third input terminal 605 b of the second-stage surface acoustic wave filter pair via the wiring 609 b.
  • the excitation I DT 63 1, the fourth excitation I DT 63 2, the fifth excitation IDT 64 1, and the sixth excitation I DT 642 are converted into surface acoustic waves again.
  • the phases of the surface acoustic waves to be excited do not shift between the third surface acoustic wave filter 607 and the fourth surface acoustic wave filter 608 constituting the second surface acoustic wave filter pair.
  • the surface acoustic waves excited by the third excitation I DT 631 and the fourth excitation I DT 632 are received by the fifth reception I DT 633, and the fifth excitation I DT 64 1 and the sixth
  • the surface acoustic wave excited by the excitation I DT 642 is received by the sixth reception I DT 643.
  • the propagated surface acoustic wave is converted into an electric signal by the fifth reception IDT 633 and the sixth reception IDT 643 with their phases substantially shifted by 180 ° from each other. Then, it is output to the third output terminal 606.
  • FIG. 5 is a diagram schematically showing a signal propagation state of the surface acoustic wave device 600 of the present invention.
  • the pair of surface acoustic wave filters in the first stage and the pair of surface acoustic wave filters in the second stage are opposite in phase as illustrated in FIG.
  • row connection was adopted, the configuration of the surface acoustic wave filter pair at each stage should have a slightly shifted center frequency, and if connected in anti-phase parallel, use anti-phase parallel connection other than that shown in Fig. 2.
  • the first-stage surface acoustic wave filter pair and the second-stage surface acoustic wave filter pair may be appropriately combined with the anti-phase parallel connection illustrated in FIGS. 2 to 4.
  • FIG. 8 is a diagram showing the frequency characteristics of the surface acoustic wave device of the present invention having the configuration illustrated in FIG. 2 or FIG. 6 (first stage).
  • the first excitation I DT 611, the second excitation I DT 622, the fifth reception I DT 633, and the sixth reception I DT 643 are 20.5 pairs
  • the length of the excitation IDT, the reception IDT, and the reflection electrode (aperture) was set to 0.12 mm, and the input / output termination impedance was set to 400 ⁇ .
  • the center frequencies of the first surface acoustic wave filter and the second surface acoustic wave filter are set to be different from each other by 0.3 MHz.
  • Figure 8 compares the frequency characteristics 800 of a single-stage surface acoustic wave filter pair connected in anti-phase parallel with those of the first surface acoustic wave filter 6
  • the characteristic 8002 of the second surface acoustic wave filter 604 alone is also shown.
  • phase difference 804 generated by the first surface acoustic wave filter 603 and the second surface acoustic wave filter 604 connected in anti-phase parallel is also shown.
  • phase difference between the surface acoustic wave filter pair composed of the first surface acoustic wave filter 603 and the second surface acoustic wave filter 604 is near the passing frequency band of the surface acoustic wave filter. It can be seen that the phase difference is 110 ° to 140 °, but in the stop band it is almost out of phase (essentially 180 ° phase difference).
  • a pass frequency band in which the pass frequency bands of the first SAW filter and the second SAW filter overlap is obtained, and at the same time, in the stop band, The signals of the first surface acoustic wave filter and the second surface acoustic wave filter cancel each other to obtain a sufficient attenuation.
  • Figure 9 shows a first-stage SAW filter pair consisting of a first SAW filter 603 and a second SAW filter 604 connected in anti-phase parallel, and anti-phase parallel connection. This is obtained when the second surface acoustic wave filter pair consisting of the third surface acoustic wave filter 607 and the fourth surface acoustic wave filter 608 is image-connected.
  • FIG. 4 is a diagram showing frequency characteristics obtained. Center frequency difference of the surface acoustic wave filter pair constituting each stage is 0. 3 MH Z.
  • the figure also shows the frequency characteristics of a single-stage surface acoustic wave filter pair connected in anti-parallel and parallel.
  • This one-stage frequency characteristic corresponds to the frequency characteristic of the surface acoustic wave device illustrated in FIG.
  • This frequency characteristic corresponds to the frequency characteristic obtained when the first surface acoustic wave filter and the second surface acoustic wave filter are connected in two stages in series.
  • the first surface acoustic wave filter and the second surface acoustic wave filter are connected in anti-parallel parallel with each other having slightly different pass frequency bands.
  • the impedance can be reduced to about half by operating the first surface acoustic wave filter and the second surface acoustic wave filter in parallel.
  • the signal phase substantially differs by 180 ° outside the pass frequency band, the signal of the first surface acoustic wave filter and the signal of the second surface acoustic wave filter cancel each other, so that the attenuation is caused. Can be secured.
  • a single-stage SAW filter connected in anti-parallel and parallel is substantially equivalent to a two-stage connected SAW filter, especially a pair of anti-parallel connected SAW filters. Furthermore, it can be seen that by connecting in multiple stages, the amount of attenuation outside the pass frequency band is further increased, and the out-of-band characteristics are greatly improved.
  • the surface acoustic wave device of the present invention has two Since the surface acoustic wave filters of CT / JP97 / 02212 are connected in parallel, the input / output impedance of the surface acoustic wave filter can be reduced, and as a result, the chip size of the surface acoustic wave filter can be reduced. Can be. In particular, the size of the surface of the surface acoustic wave filter in the direction of the aperture can be reduced to about half. This is a particularly significant advantage in areas where chip size reduction is required, such as in mobile communications, as well as suppressing lateral mode and spurious, lowering the electrode resistance of the IDT and reducing loss. Can be reduced. This also means that the frequency characteristics are much better for the same chip size.
  • the chip size of the surface acoustic wave device shown in Fig. 9, including the bonding pad, is approximately 2.8 mm x 3.0 mm square.
  • the conventional series four-stage surface acoustic wave filter device shown in Fig. 18 Compared to, the size can be significantly reduced.
  • FIG. 10 shows the frequency difference between the surface acoustic wave filter and the surface acoustic wave device (two-stage configuration of the surface acoustic wave filter pair connected in anti-parallel connection) of the present invention described with reference to FIG. This figure shows the change in the frequency characteristics of the surface acoustic wave device when it is changed over time.
  • Fig. 11 is a plot of the frequency bandwidth of 3 dB reduction against the frequency difference of a pair of surface acoustic wave filters connected in antiphase in order to characterize the frequency characteristics of this surface acoustic wave device. is there.
  • the surface acoustic wave device of the present invention increases its pass frequency as the frequency difference between the pair of elastic surface wave filters increases. Several bandwidth increases. However, if the frequency difference is too wide, ripples appear in the passband and the passband decreases again.
  • the frequency difference between the pair of surface acoustic wave filters that can be substantially used from Fig. 11 is in the range of 0.25 to 0.45 MHz for a surface acoustic wave filter with a center frequency of 244 MHz, that is, the center frequency. It is preferable to set the frequency difference standardized in the range of 0.10 to 0.18%.
  • FIG. 12 shows the inter-stage IDT constituting the surface acoustic wave device (two-stage configuration of the anti-phase parallel connection surface acoustic wave filter pair) of the present invention illustrated in FIG. 6, that is, the first surface acoustic wave filter 603, and FIG.
  • the fourth receiving I DT 623, the third exciting I DT 631, the fourth exciting I DT 632, the fifth exciting I DT 641, and the sixth exciting I DT 64 2 are used as parameters. This figure shows the change in the frequency characteristics of the surface acoustic wave filter when it is changed.
  • FIG. 13 shows a configuration of a surface acoustic wave filter pair in which a 3 dB lower bandwidth is connected in anti-phase parallel to characterize the frequency characteristics of the surface acoustic wave device.
  • Receive IDT 614, Third Receive IDT 622, Fourth Receive IDT 623, Third Excitation IDT 631, Fourth Excitation IDT 632, Fifth Excitation IDT 641, and Sixth Excitation It is the figure which plotted with respect to the logarithm of IDT642.
  • the surface acoustic wave device of the present invention has a first reception IDT 612, a second reception IDT 614, a third reception IDT 622, and a fourth reception IDT 622.
  • the logarithm of the reception I DT623, the third excitation I DT631, the fourth excitation I DT 632, the fifth excitation I DT 641 and the sixth excitation I DT 642 increases, the pass frequency bandwidth increases.
  • ripples appear in the passband and the bandwidth decreases again. Therefore, it is preferable to set the logarithm of these IDTs to 9 or less.
  • the 3 dB bandwidth increases as the logarithm of the IDT increases, but when the logarithm exceeds 8 pairs, the 3 dB bandwidth decreases again. . Therefore, for example, to secure a bandwidth of 0.35 MHz or more as a 3 dB bandwidth, it is preferable to set the logarithm of these IDTs to 5 to 8 pairs. With this logarithm, ripples appear in the passband and the bandwidth does not decrease.
  • FIG. 14 is a diagram showing the relationship between the stray capacitance of wiring connecting a plurality of stages of surface acoustic wave filter pairs and the frequency bandwidth of 4 dB reduction.
  • the logarithm of the IDT should be 10 pairs or more to secure a bandwidth of 0.35 MHz or more.
  • the number of IDTs should be 13 or more to secure a bandwidth of 0.35 MHz or more.
  • FIG. 15 is a diagram showing the results of analysis of the occurrence level of lateral mode spurious in the surface acoustic wave device of the present invention (two-stage configuration of anti-phase parallel connection surface acoustic wave filter).
  • the frequency difference is 0.3 MHz
  • the first and second surface acoustic wave filter excitation IDT the third and fourth surface acoustic wave filter reception IDT is 20.5 pairs
  • the aperture width is 25. 7 ⁇ (where S is the electrode arrangement period).
  • 1 st represents the signal component of the basic transverse mode (the same as in Fig. 9), and 3rd and 5th represent the signal components of the third and fifth transverse modes, respectively.
  • the higher-order transverse mode spur degrades the out-of-band characteristics of the surface acoustic wave filter.
  • the aperture is set to 10 ⁇ or less, the higher-order transverse modes of the third and higher orders will be higher than the power-off frequency, and the transverse modes will not occur.
  • FIG. 17 shows the first excitation I DT 611, the second excitation I DT 621, the second excitation I DT 611 in the surface acoustic wave device of the present invention exemplified in FIG.
  • FIG. 18 is a diagram illustrating frequency characteristics when the logarithm of the fifth reception IDT 633 and the sixth reception IDT 643 is set to 45.5 pairs and the aperture is set to 8.9 ⁇ .
  • the first excitation I DT 61 1 Frequency characteristics when the logarithm of the excitation IDT 621, the fifth reception IDT 633, and the sixth reception IDT 643 are set to 20.5 pairs are also shown for comparison.
  • the surface acoustic wave device in which the logarithm of the first excitation I DT 61 1, the second excitation I DT 621, the fifth reception IDT 633, and the sixth reception I DT 643 is set to 45.5 pairs, Even if DT is set to 20.5 pairs, it is clear that the characteristics in the pass frequency band are hardly impaired.
  • the bandwidth of the pass frequency band as the surface acoustic wave filter can be expanded. it can.
  • the surface acoustic wave device of the present invention is characterized in that the first surface acoustic wave filter and the second surface acoustic wave filter are connected in anti-phase parallel with slightly different pass frequency bands, so that the pass Within the band, the impedance can be reduced to about half by operating the first surface acoustic wave filter and the second surface acoustic wave filter in parallel.
  • the signal phase is different by 180 ° outside the pass frequency band
  • the signal of the first surface acoustic wave filter and the signal of the second surface acoustic wave filter cancel each other, so that the amount of attenuation can be secured.
  • the chip of the surface acoustic wave device can be downsized. Therefore, in applications where chip size reduction is required, such as in mobile communications, This is a particularly suitable surface acoustic wave device.
  • the aperture of the surface acoustic wave filter can be reduced by miniaturization, the occurrence of lateral mode spurious can be prevented, and the electrode resistance of the IDT can be reduced to reduce the loss. Also, the occurrence of lateral mode spurious can be suppressed, and the out-of-band characteristics can be improved. Furthermore, there is no need to weight incoming and outgoing IDTs, and further increase in aperture can be prevented.

Abstract

First and second acoustic wave filters (103 and 104) which are so connected in parallel that the phases of their electric signals output to first and second output terminals (102a and 102b) may be different from each other by substantially 180° and which have slightly different passbands. They are formed on a piezoelectric substrate between an input terminal (101) and the output terminals (102a and 102b). The acoustic wave filters (103 and 104) thus connected in one stage have small input-output impedances in the passband. The chip size of the device is small. The device has excellent frequency characteristics which are nearly equivalent to those of acoustic wave filters connected in series in two stages.

Description

明 細 書  Specification
弾性表面波装置  Surface acoustic wave device
技術分野 Technical field
本発明は弾性表面波装置に関し、 特に弾性表面波フィルタに関する。 背景技術  The present invention relates to a surface acoustic wave device, and more particularly to a surface acoustic wave filter. Background art
弾性表面波装置は圧電性基板上に設けられたく し歯状電極 ( I DT : I n t e r D i g i t a l T r a n s d u c e r) により電気信号 を弾性表面波に変換し、 圧電性基板上を伝搬する弾性表面波を、 同じく 圧電性基板上に設けられた I DTにより受信し、 電気信号と弾性表面波 との変換に関わる周波数特性を利用する装置である。 A surface acoustic wave device converts an electric signal into a surface acoustic wave by means of a comb-shaped electrode (IDT : Interdigital Transducer) provided on a piezoelectric substrate, and converts the surface acoustic wave propagating on the piezoelectric substrate. It is also a device that receives by IDT provided on the piezoelectric substrate and uses the frequency characteristics related to the conversion between electric signals and surface acoustic waves.
近年携帯電話などをはじめとして、 薄型であり小型化できるという利 点により弾性表面波フィルタなどの弾性表面波装置が広く用いられるよ うになつてきている。 この中でごく最近普及の始まつた日本の簡易携帯 電話システム (PH S : P e r s o n a 1 H a n d y - p h o n e S y s t em) の中間周波数 ( I F ) 段 (約 240 M H z ) には約 0. 1 %程度の比帯域を持つ急峻な帯域外減衰特性を持つ弾性表面波フィル 夕が要求されている。  In recent years, surface acoustic wave devices such as surface acoustic wave filters have been widely used due to their advantages of being thin and compact, such as mobile phones. Among them, the intermediate frequency (IF) stage (approximately 240 MHz) of the mobile phone system in Japan (PHS: Persona 1H andy-phone System), which has just recently become popular, is about 0.1 A surface acoustic wave filter with steep out-of-band attenuation characteristics with a fractional bandwidth of about% is required.
このような用途においては、 周波数温度特性の 1次係数が 0で比較的 電気機械結合係数 k 2 が 1%程度と大きく、 I DT 1本当たりの弾性表 面波の反射係数が約 3%と大きい 45° Xカッ ト Z伝搬の L B 0基板In such applications, relatively electromechanical coupling coefficient k 2 in linear coefficient of the frequency temperature characteristic 0 is as large as about 1%, and the reflection coefficient of the elastic sheet surface wave is approximately 3% per one I DT Large 45 ° X-cut Z-propagating LB 0 substrate
(45° X— Z L B0 :特開昭 60 - 25901 ) を利用することが有 望視されている。 この L B 0基板を用いると、 水晶基板 (周波数温度特 性の 1次係数 = 0、 k2 = 0. 15%、 I D T 1本当たりの弾性表面波 の反射係数 = 0. 7 %) を利用した場合に比べて弾性表面波素子 ·弾性 表面波装置を小型化できるという利点がある。 (45 ° X—ZLB0: Japanese Patent Application Laid-Open No. 60-25901) is expected to be used. With this LB 0 substrate, using a quartz substrate (the frequency temperature characteristics of the linear coefficient = 0, k 2 = 0. 15 %, the reflection coefficient = 0.7% of the surface acoustic wave per one IDT) Surface acoustic wave element There is an advantage that the surface acoustic wave device can be downsized.
この L B 0基板を用いた従来の弾性表面波装置の 1例を図 1 8及び図 1 9を用いて説明する。  One example of a conventional surface acoustic wave device using the LB0 substrate will be described with reference to FIGS.
図 1 8は圧電性基板として 4 5° Xカツ トー Z伝搬の L B 0基板を採 用し、 この基板上に配設された弾性表面波装置 9 00の電極パターンを 模式的に示す図である。  FIG. 18 is a diagram schematically showing an electrode pattern of a surface acoustic wave device 900 provided on a 45 ° X cut Z-propagating LB0 substrate as a piezoelectric substrate and disposed on the substrate. .
この弾性表面波装置 90 0は、 1つの励振 I D T、 2つの受信 I D T 及び 2つの反射電極を 1組とする弾性表面波フィルタ 90 1〜 904を 直列に 4段接続したものである。 弾性表面波フィルタ 90 1は中央に励 振 I DT 9 1 1があり、 その両側に受信 I DT 9 2 1、 9 3 1が配置さ れ、 さらにその外側には反射電極 94 1、 9 52が配置されている。 弾 性表面波フィルタ 9 02~9 04についても同様の構成である。  This surface acoustic wave device 900 is configured by connecting four stages of surface acoustic wave filters 901 to 904 each including one excitation IDT, two reception IDTs, and two reflection electrodes. The surface acoustic wave filter 901 has an excitation IDT 911, which is located at the center, and reception IDTs 91, 931, which are arranged on both sides thereof. Are located. The elastic surface wave filters 902 to 904 have the same configuration.
この弾性表面波装置において、 電気信号は弾性表面波フィル夕 90 1 の励振 I DT 9 1 1に入力される。 ここで電気信号は弾性表面波に変換 され励振 I DT 9 1 1の両側に伝搬し受信 I D T 92 1、 9 3 1で再び 電気信号に変換される。 弾性表面波フィルタ 90 1の受信 I D T 92 1 と弾性表面波フィルタ 902の励振 I D T 922、 同様に受信 I D T 9 3 1 と励振 I DT 9 32は電気的に接続されている。 弾性表面波フィル 夕 9 0 1から出力される電気信号は弾性表面波フィ ル夕 9 0 2の励振 I DT 922、 932で再び弾性表面波に変換され受信 I D T 9 12に伝 搬し受信 I DT 9 1 2から電気信号として出力される。  In this surface acoustic wave device, the electric signal is input to the excitation IDT 911 of the surface acoustic wave filter 90 1. Here, the electric signal is converted to a surface acoustic wave, propagates to both sides of the excitation IDT 911, and is converted again to an electric signal at the reception IDTs 921, 931. The reception IDT 921 of the surface acoustic wave filter 901 and the excitation IDT 922 of the surface acoustic wave filter 902, as well as the reception IDT 91 and the excitation IDT 932, are electrically connected. The electric signal output from the surface acoustic wave filter 901 is excited by the surface acoustic wave filter 902, and is converted again to surface acoustic waves by the IDTs 922 and 932, and is transmitted to the IDT 912 to receive the IDT. It is output as an electrical signal from 9 12.
図 1 8において弾性表面波フィルタ 9 0 3、 9 04は弾性表面波フィ ルタ 90 1、 902の緣り返しであり全体では弾性表面波フィル夕が 4 段に直列接続された構成となっている。  In Fig. 18, the surface acoustic wave filters 903 and 904 are a repetition of the surface acoustic wave filters 901 and 902, and the overall configuration is such that the surface acoustic wave filters are connected in series in four stages. .
図 1 9に励振 I DTを 20. 5対、 受信 I DTを 8対とし入受信 I D T間距離を 3 λ (λ = V / f n ; vs は弾性表面波の位相速度、 は弾性表面波フィ ルタが動作する中心周波数) 、 受信 I D T—反射電極 間距離を 0. 375 λ、 反射電極の電極本数を 120本、 励振 I DT、 受信 I D T及び反射電極の長さ (アパーチャ一) を 0. 72 mm、 入出 力終端ィ ンピーダンスを 400 Ωとした場合のシ ミ ュ レーシヨ ンによつ て得られた周波数特性を示す。 ここでは約 300 KH zの通過帯域を持 ち減衰量の大きな弾性表面波フィ ルタが得られている。 1 9 to the excitation I DT of 20.5 pairs, receiving I DT 8 pairs and 3 the incoming received IDT distance and λ (λ = V / f n ; v s is the phase velocity of the surface acoustic wave, Is the center frequency at which the surface acoustic wave filter operates), the distance between the receiving IDT and the reflecting electrode is 0.375 λ, the number of reflecting electrodes is 120, the excitation IDT, the receiving IDT and the length of the reflecting electrode (aperture ) Is 0.72 mm, and the input-output termination impedance is 400 Ω. The frequency characteristics obtained by the simulation are shown. Here, a surface acoustic wave filter with a passband of about 300 KHz and large attenuation is obtained.
図 18及び図 1 9に例示した弾性表面波フィ ルタにおいては 1つの弾 性表面波フィ ルタのアパーチャ一が 0. 72 mmと広く、 チップサイズ がワイヤボンディ ングを行うボンディ ング ·パッ ド幅 (約 0. 15mm 角) を含めると小さ くても 2. 5 mm X 4. 1 mm角程度となってしま い、 大きく なつてしまう という問題がある。  In the surface acoustic wave filters exemplified in FIGS. 18 and 19, the aperture of one surface acoustic wave filter is as large as 0.72 mm, and the chip size is the bonding pad width for wire bonding ( Includes about 0.15 mm square), it is about 2.5 mm X 4.1 mm square even if it is small, and there is a problem that it becomes large.
また実際の弾性表面波フィ ルタにおいては電極長さが長いことにより 電気抵抗が増大し、 弾性表面波フィ ルタとしての損失が大きく なつてし まうという問題がある。  Also, in an actual surface acoustic wave filter, there is a problem that the electric resistance increases due to the long electrode length, and the loss as a surface acoustic wave filter increases.
さらにアパーチャ一幅が広いと、 図 19に示すように第 3次高調波や 第 5次高調波のような高次の横モー ド · スプリァスが発生してしまうた め、 弾性表面波フィ ル夕特性を劣化させてしまう という問題がある。 この横モー ド · スプリ ァスを抑圧するには励振 I DT、 受信 I D丁に 重み付けをかけて、 弾性表面波の伝搬方向に垂直な方向の弾性表面波の 励振分布を I DTの中心に偏らせる方法があるが、 この方法では弾性表 面波フィ ルタのイ ンピーダンスが高く なるために、 イ ンピーダンスを下 げるためにさらにアパーチャ一を広く設定しなくてはならないという問 題がある。  If the aperture is wider, higher-order transverse mode spurs such as the third and fifth harmonics are generated as shown in Fig. 19, and the surface acoustic wave filter There is a problem that characteristics are deteriorated. To suppress this lateral mode spur, the excitation IDT and the reception ID are weighted, and the excitation distribution of the surface acoustic wave in the direction perpendicular to the surface acoustic wave propagation direction is biased toward the center of the IDT. However, in this method, the impedance of the surface acoustic wave filter is high, and there is a problem that the aperture must be set wider to lower the impedance.
本発明はこのような問題点を解決するためになされたものである。 す なわち、 本発明は通過周波数帯域が広く、 遮断特性が優れ、 イ ンピーダ ンスの小さい弾性表面波装置を提供することを目的とする。 また、 同時 に小型化が可能で、 特に移動体通信や、 携帯型情報機器に適した弾性表 面波装置を提供することを目的とする。 The present invention has been made to solve such a problem. That is, an object of the present invention is to provide a surface acoustic wave device having a wide pass frequency band, excellent cutoff characteristics, and low impedance. Also, at the same time An object of the present invention is to provide a surface acoustic wave device which can be downsized in size and is particularly suitable for mobile communication and portable information equipment.
本発明は挿入損失の小さい弾性表面波装置を提供することを目的とす O o  The present invention aims to provide a surface acoustic wave device having a small insertion loss.
さらに本発明は横モー ドスプリアスが小さく、 帯域外特性の優れた弾 性表面波装置を提供することを目的とする。 発明の開示  Another object of the present invention is to provide an elastic surface acoustic wave device having small transverse mode spurious characteristics and excellent out-of-band characteristics. Disclosure of the invention
本発明は上述のような課題を解決するために下記のような構成を備え ている。  The present invention has the following configuration in order to solve the above-mentioned problems.
本発明の弾性表面波装匮は、 圧電性基板と、 前記圧電性基板上で第 1 の入力端子と第 1の出力端子との間に配設された、 中心周波数 f l を有 する 2ポート 3 I DT ( I n t e r D i g i t a l T r a n s d u c e r ) の第 1の弾性表面波フィルタと、 前記第 1の入力端子と前記第 1の出力端子との間に前記第 1の弾性表面波フィルタと並列に配設され た、 前記中心周波数 f l とわずかに異なる中心周波数 f 2 を有する 2ポ ー ト 3 I D Tの第 2の弾性表面波フィルタとを具備し、 前記第 1の弾性 表面波フィルタおよび前記第 2の弾性表面波フィルタは、 前記第 1の入 力端子から前記第 1の弾性表面波フィルタを経由して前記第 1の出力端 子に出力される信号の位相と、 前記第 2の弾性表面波フィルタを経由し て前記第 1の出力端子に出力される信号の位相とが実質的に 1 80° 異 なるように配設されたことを特徴とする。  The surface acoustic wave device according to the present invention comprises: a two-port piezoelectric substrate having a center frequency fl disposed between a first input terminal and a first output terminal on the piezoelectric substrate. A first surface acoustic wave filter of I DT (Inter Digital Transducer), and disposed in parallel with the first surface acoustic wave filter between the first input terminal and the first output terminal. A 2 port 3 IDT second surface acoustic wave filter having a center frequency f 2 slightly different from the center frequency fl, wherein the first surface acoustic wave filter and the second The surface acoustic wave filter includes: a phase of a signal output from the first input terminal to the first output terminal via the first surface acoustic wave filter; and a second surface acoustic wave filter. And the phase of the signal output to the first output terminal via It is characterized by being arranged at an angle of 80 °.
前記第 1の弾性表面波フィルタと前記第 2の弾性表面波フィルタとは、 前記第 1の入力端子に入力される信号に対して位相が実質的に 1 80° 異なった弾性表面波を励振するようにしてもよい。  The first surface acoustic wave filter and the second surface acoustic wave filter excite surface acoustic waves having a phase substantially different by 180 ° with respect to a signal input to the first input terminal. You may do so.
例えば、 前記第 1の弾性表面波フィ ルタは、 前記第 1の入力端子に接 続され、 前記第 1の入力端子に入力された電気信号により第 1の弾性表 面波を励振する第 1の励振 I D Tと、 前記第 1の励振 I D Tの両側に配 設され、 前記第 1の弾性表面波を受信して電気 ft号に変換する第 1の受 信 I D Tおよび第 2の受信 I D Tとを具備し、 前記第 2の弾性表面波フ ィルタは、 前記第 1の入力端子に接続され、 前記第 1の入力端子に入力 された電気信号により前記第 1の弾性表面波と 1 8 0 ° 位相の異なった 第 2の弾性表面波を励振する第 2の励振 I D Tと、 前記第 2の励振 I D Tの両側に配設され、 前記第 2の弾性表面波を受信して電気信号に変換 する第 3の受信 I D Tおよび第 4の受信 I D Tとを具備するようにして もよい。 For example, the first surface acoustic wave filter is connected to the first input terminal. A first excitation IDT that excites a first surface acoustic wave by an electric signal input to the first input terminal; and a first excitation IDT disposed on both sides of the first excitation IDT. A first reception IDT and a second reception IDT that receive a surface acoustic wave and convert it into an electric ft signal, and wherein the second surface acoustic wave filter is connected to the first input terminal. A second excitation IDT that excites a second surface acoustic wave having a 180 ° phase difference from the first surface acoustic wave by an electric signal input to the first input terminal; and A third reception IDT and a fourth reception IDT that are provided on both sides of the excitation IDT and receive the second surface acoustic wave and convert it into an electric signal may be provided.
また、 前記第 1の弾性表面波フィルタと前記第 2の弾性表面波フィル 夕とは、 前記第 1の入力端子に入力される信号に対して実質的に同位相 の弾性表面波を励振するとともに、 この弾性表面波を位相が実質的に 1 8 0 ° 異なるように電気信号に変換するようにしてもよい。  The first surface acoustic wave filter and the second surface acoustic wave filter excite a surface acoustic wave having substantially the same phase with respect to a signal input to the first input terminal. Alternatively, the surface acoustic wave may be converted into an electric signal so that the phase is substantially different by 180 °.
例えば、 前記第 1の弾性表面波フィ ルタは、 前記第 1の入力端子と接 続され、 前記第 1の入力端子に入力された電気信号により前記第 1の弾 性表面波を励振する前記第 1の励振 I D Tと、 前記第 1の励振 I D Tの 両側に配設され、 前記第 1の弾性表面波を受信して電気信号に変換する 第 1の受信 I D Tおよび第 2の受信 I D Tとを具備し、 前記第 2の弾性 表面波フィルタは、 前記第 1の入力端子と接続され、 前記第 1の入力端 子に入力された電気信号により前記第 1の弾性表面波を励振する前記第 2の励振 I D Tと、 前記第 2の励振 I D Tの両側に配設され、 前記第 1 の弾性表面波を受信して前記第 1の受信 I D Tおよび第 2の受信 I D T とは位相が実質的に 1 8 0 ° 異なるような電気信号に変換する第 3の受 信 I D Tおよび第 4の受信 I D Tとを具備するようにしてもよい。  For example, the first surface acoustic wave filter is connected to the first input terminal, and the first surface acoustic wave filter excites the first surface acoustic wave by an electric signal input to the first input terminal. 1 excitation IDT, and a first reception IDT and a second reception IDT that are disposed on both sides of the first excitation IDT and receive the first surface acoustic wave and convert it into an electric signal. The second surface acoustic wave filter is connected to the first input terminal, and excites the first surface acoustic wave with an electric signal input to the first input terminal. An IDT, disposed on both sides of the second excitation IDT, receiving the first surface acoustic wave, and having a phase of substantially 180 ° with the first reception IDT and the second reception IDT. A third receiving IDT and a fourth receiving IDT for converting into different electrical signals. You may.
前記圧電性基板はこの基板上を伝搬する弾性表面波の電気機械結合係 数 k 2 が約 1 %であり、 I D T 1本あたりの前記弾性表面波の反射係数 が約 3 %以上であるものを用いることが好ましい。 The piezoelectric substrate is an electromechanical coupling unit for surface acoustic waves propagating on the substrate. It is preferable to use one having a number k 2 of about 1% and a reflection coefficient of the surface acoustic wave per IDT of about 3% or more.
例えば、 前記圧電性基板としては例えば四硼酸リチウムを用いるよう にしてもよい。  For example, as the piezoelectric substrate, for example, lithium tetraborate may be used.
また、 後で詳しく説明するように、 前記第 1の中心周波数と前記第 2 の中心周波数とは約 0 . 1 0 % ~約0 . 1 8 %異なるようにすること力 好適である。  Further, as will be described in detail later, it is preferable that the first center frequency and the second center frequency are different from each other by about 0.10% to about 0.18%.
また、 前記各 I D Tを構成する櫛歯伏電極の交差幅は、 この櫛歯状電 極の配設周期の約 1 0倍以下に設定するようにしてもよい。 これにより、 高次の横モードスプリアスを抑制することができる。  Further, the cross width of the comb tooth-shaped electrodes constituting each IDT may be set to be about 10 times or less the arrangement period of the comb tooth-shaped electrodes. Thereby, higher-order transverse mode spurious can be suppressed.
このような、 中心周波数がわずかに相違する第 1の弾性表面波フィ ル 夕と第 2の弾性表面波フィルタとを逆相並列に接続した本発明の弾性表 面波装置は、 同一の圧電性基板上に複数段従属接続するようにしてもよ い。  Such a surface acoustic wave device of the present invention in which the first surface acoustic wave filter having slightly different center frequencies and the second surface acoustic wave filter are connected in anti-phase parallel, has the same piezoelectric property. A plurality of stages may be cascaded on a substrate.
このような構成を有する本発明の弾性表面波装置は、 圧電性基板と、 前記圧電性基板上で第 1の入力端子と第 1の出力端子および第 2の出力 端子との間に配設された、 中心周波数 f 1 を有する 2ポー ト 3 I D Tの 第 1の弾性表面波フィルタと、 前記第 1の入力端子と前記第 1の出力端 子および第 2の出力端子との間に前記第 1の弾性表面波フィルタと並列 に配設された、 前記中心周波数 f l とわずかに異なる中心周波数 f 2 を 有する 2ポート 3 I D Tの第 2の弾性表面波フィルタと、 前記第 1の出 力端子および前記第 2の出力端子と第 3の出力端子との間に配設された、 中心周波数 f 1 を有する 2ポート 3 I D Tの第 3の弾性表面波フィ ルタ と、 前記第 1の出力端子および前記第 2の出力端子と第 3の出力端子と の間に前記第 3の弾性表面波フィルタと並列に配設された、 前記中心周 波数 ί 2 を有する 2ポート 3 I D Τの第 4の弾性表面波フイルクとを具 備し、 前記第 1の弾性表面波フィルタおよび前記第 2の弾性表面波フィ ル夕は、 前記第 1の入力端子から前記第 1の弾性表面波フィル夕を経由 して前記第 1の出力端子に出力される信号の位相と、 前記第 2の弾性表 面波フィルタを経由して前記第 1の出力端子に出力される信号の位相と が実質的に 1 8 0 ° 異なるように配設され、 前記第 3の弾性表面波フィ ル夕および前記第 4の弾性表面波フィルタは、 前記第 1の出力端子およ び第 2の出力端子から前記第 3の弾性表面波フィルタを経由して前記第 3の出力端子に出力される信号の位相と、 前記第 4の弾性表面波フィル タを経由して前記第 3の出力端子に出力される信号の位相とが実質的に 1 8 0 ° 異なるように配設されたことを特徴とする。 The surface acoustic wave device of the present invention having such a configuration is provided with a piezoelectric substrate, and disposed on the piezoelectric substrate between a first input terminal, a first output terminal, and a second output terminal. A first SAW filter of a two-port 3 IDT having a center frequency f 1, and the first SAW filter disposed between the first input terminal, the first output terminal, and the second output terminal. A 2 port 3 IDT second surface acoustic wave filter having a center frequency f 2 slightly different from the center frequency fl, disposed in parallel with the surface acoustic wave filter of A third surface acoustic wave filter of a 2-port 3 IDT having a center frequency f 1 and disposed between a second output terminal and a third output terminal; the first output terminal and the third output terminal; Between the second output terminal and the third output terminal in parallel with the third surface acoustic wave filter. Is set, the two-port 3 ID fourth SAW Fuiruku and the ingredients of Τ having the center frequency I 2 Wherein the first surface acoustic wave filter and the second surface acoustic wave filter are connected to the first output terminal via the first input terminal via the first surface acoustic wave filter. And the phase of the signal output to the first output terminal via the second surface acoustic wave filter is substantially different by 180 °. The third surface acoustic wave filter and the fourth surface acoustic wave filter are connected to the first output terminal and the second output terminal via the third surface acoustic wave filter. The phase of the signal output to the third output terminal is substantially 180 ° different from the phase of the signal output to the third output terminal via the fourth surface acoustic wave filter. It is characterized by being arranged as follows.
つまり第 1の弾性表面波フィルタと第 2の弾性表面波フィルタとによ り 1段目のフィルタが構成され、 第 3の弾性表面波フィルタと第 4の弾 性表面波フィルタとにより 2段目のフィル夕が構成され、 これら 2段の フィルタが同一の圧電性基板上で従属接続されている。  That is, the first-stage filter is constituted by the first surface acoustic wave filter and the second surface acoustic wave filter, and the second-stage filter is constituted by the third surface acoustic wave filter and the fourth surface acoustic wave filter. These two filters are cascaded on the same piezoelectric substrate.
1段目のフィルタと 2段目のフィルタとは同一構成でもよいし、 そう でなくてもよい。 例えば 1段目のフィルタでは逆相の弾性表面波を励振 して同相に受信する構成を採用し、 2段目のフィル夕では同相の弾性表 面波を励振して逆相に受信するような構成を採用するようにしてもよい。 例えば、 第 1の入力端子と、 前記第 1の入力端子に接続され、 前記第 1の入力端子に入力された電気信号により第 1の弾性表面波を励振する 第 1の励振 I D Tと、 前記第 1の励振 I D Tの両側に配設され、 前記第 1の弾性表面波を受信して電気信号に変換する第 1の受信 I D Tおよび 第 2の受信 I D Tとからなる、 第 1の中心周波数を有する第 1の弾性表 面波フィ ル夕と、 前記第 1の入力端子に接続され、 前記第 1の入力端子 に入力された電気信号により前記第 1の弾性表面波と実質的に 1 8 0 ° 位相の異なった第 2の弾性表面波を励振する第 2の励振 I D Tと、 前記 第 2の励振 I D Tの両側に配設され、 前記第 2の弾性表面波を受信して 電気信号に変換する第 3の受信 I D Tおよび第 4の受信 I D Tとからな る、 前記第 1の中心周波数とわずかに異なる第 2の中心周波数を有する 第 2の弾性表面波フィルタと、 前記第 1の受信 I D Tおよび前記第 3の 受信 I D Tと並列に接続された第 1の出力端子と、 前記第 2の受信 I D Tおよび前記第 4の受信 I D Tと並列に接続された第 2の出力端子と、 前記第 1の出力端子と接続した第 2の入力端子と、 前記第 2の出力端子 と接続した第 3の入力端子と、 前記第 2の入力端子と接続され、 この入 力端子に入力された電気信号により第 3の弾性表面波を励振する第 3の 励振 I D Tと、 前記第 3の入力端子と接続され、 この入力端子に入力さ れた電気信号により前記第 3の弾性表面波を励振する第 4の励振 I D T と、 前記第 3の励振 I D Tと前記第 4の励振 I D Tとの間に配設され、 前記第 3の弾性表面波を受信して電気信号に変換する第 5の受信 I D T とからなる、 前記第 1の中心周波数を有する前記第 3の弾性表面波フィ ル夕と、 前記第 2の入力端子と接続され、 この入力端子に入力された電 気信号により前記第 3の弾性表面波を励振する前記第 5の励振 I D Tと、 前記第 3の入力端子と接続され、 この入力端子に入力された電気信号に より第 4の弾性表面波を励振する前記第 6の励振 I D Tと、 前記第 5の 励振 I D Tと前記第 6の励振 I D Tとの間に配設され、 第 4の弾性表面 波を受信して電気信号に変換する第 6の受信 I D Tとからなる、 前記第 2の中心周波数を有する第 4の弾性表面波フィルタと、 前記第 5の受信 I D Tおよび前記第 6の受信 I D Tと並列に接続された第 3の出力端子 とを具備するようにしてもよい。 The first-stage filter and the second-stage filter may or may not have the same configuration. For example, the first-stage filter employs a configuration in which surface acoustic waves of the opposite phase are excited to receive in-phase, and the second stage filter excites surface acoustic waves of the same phase to receive in the opposite phase. A configuration may be adopted. For example, a first input terminal, a first excitation IDT connected to the first input terminal, and exciting a first surface acoustic wave by an electric signal input to the first input terminal; and A first receiving IDT and a second receiving IDT that are disposed on both sides of the first excitation IDT and receive the first surface acoustic wave and convert the same into an electric signal; The first surface acoustic wave filter is connected to the first input terminal and the electric signal input to the first input terminal has a phase of substantially 180 ° with the first surface acoustic wave. A second excitation IDT that excites a different second surface acoustic wave of The first center frequency, which is provided on both sides of the second excitation IDT and includes a third reception IDT and a fourth reception IDT that receive the second surface acoustic wave and convert it into an electric signal; A second surface acoustic wave filter having a second center frequency slightly different from the first surface ID, a first output terminal connected in parallel with the first reception IDT and the third reception IDT, and the second A second output terminal connected in parallel to the reception IDT and the fourth reception IDT, a second input terminal connected to the first output terminal, and a third connection connected to the second output terminal An input terminal, connected to the second input terminal, a third excitation IDT for exciting a third surface acoustic wave by an electric signal input to the input terminal, and connected to the third input terminal. A fourth excitation for exciting the third surface acoustic wave by an electric signal input to the input terminal. An IDT, and a fifth reception IDT that is provided between the third excitation IDT and the fourth excitation IDT and receives the third surface acoustic wave and converts it into an electric signal. The third surface acoustic wave filter having a first center frequency is connected to the second input terminal, and the third surface acoustic wave is excited by an electric signal input to the input terminal. The fifth excitation IDT, the sixth excitation IDT connected to the third input terminal, and exciting a fourth surface acoustic wave by an electric signal input to the input terminal; and the fifth excitation IDT. A sixth reception IDT disposed between the excitation IDT and the sixth excitation IDT, the sixth reception IDT receiving a fourth surface acoustic wave and converting the same into an electric signal; A fourth surface acoustic wave filter, a third reception IDT connected in parallel with the fifth reception IDT and the sixth reception IDT, An output terminal may be provided.
すなわち本発明の弾性表面波装置は、 圧電性基板と、 この圧電性基板 上に形成され、 第 1の入力端子と第 1の出力端子との間および第 1の入 力端子と第 2の出力端子との間に、 第 1の入力端子から入力される信号 / 212 の位相に対して第 1および第 2の出力端子に出力される信号の位相が互 いに 1 8 0 ° 異なるように並列に間挿された、 第 1の中心周波数を有す る第 1の弾性表面波フィルタおよび第 1の中心周波数とわずかに異なる 第 2の中心周波数を有する第 2の弾性表面波フィルタとを具備したもの である。 That is, the surface acoustic wave device of the present invention comprises: a piezoelectric substrate; a piezoelectric substrate formed on the piezoelectric substrate; a first input terminal and a first output terminal; and a first input terminal and a second output terminal. Signal input from the first input terminal The signal having the first center frequency is interpolated in parallel so that the phases of the signals output to the first and second output terminals are different from each other by 180 ° with respect to the phase of / 212. A first surface acoustic wave filter and a second surface acoustic wave filter having a second center frequency slightly different from the first center frequency.
また本発明の弾性表面波装置は、 圧電性基板と、 この圧電性基板上に 形成され、 第 1の入力端子と第 1の出力端子との間および第 1の入力端 子と第 2の出力端子との間に、 第 1の入力端子から入力される信号の位 相に対して第 1および第 2の出力端子に出力される信号の位相が互いに 1 8 0 ° 異なるように並列に間挿された、 第 1の中心周波数を有する第 1の弾性表面波フィルタおよび第 1の中心周波数とわずかに異なる第 2 の中心周波数を有する第 2の弾性表面波フィルタと、 前記圧電性基板上 に形成され、 第 2の入力端子と第 3の出力端子との間および第 3の入力 端子と第 3の出力端子との間に、 第 2および第 3の入力端子から入力さ れる信号の位相に対して第 3の出力端子に出力される信号の位相が互い に 1 8 0 ° 異なるように並列に間挿された、 第 1の中心周波数を有する 第 3の弾性表面波フィルタおよび第 2の中心周波数を有する第 4の弾性 表面波フィルタと、 第 1の出力端子と第 2の人力端子との間および第 2 の出力端子と第 3の入力端子との間を電気的に接続する接続手段とを具 備したことを特徴とする。  Further, a surface acoustic wave device according to the present invention includes a piezoelectric substrate, formed on the piezoelectric substrate, between a first input terminal and a first output terminal, and between a first input terminal and a second output terminal. Between the first and second output terminals with respect to the phase of the signal input from the first input terminal so that the phases of the signals output from the first and second output terminals differ from each other by 180 °. A first surface acoustic wave filter having a first center frequency and a second surface acoustic wave filter having a second center frequency slightly different from the first center frequency, formed on the piezoelectric substrate. Between the second input terminal and the third output terminal and between the third input terminal and the third output terminal with respect to the phase of the signal input from the second and third input terminals. In parallel so that the phases of the signals output to the third output terminal differ by 180 ° from each other. A third surface acoustic wave filter having a first center frequency, and a fourth surface acoustic wave filter having a second center frequency, between a first output terminal and a second human terminal, and Connection means for electrically connecting between the second output terminal and the third input terminal.
また本発明の弾性表面波装置は、 圧電性基板と、 この圧電性基板上に 形成され、 入出力端子間に出力端子へ出力する電気信号の位相が互いに 1 8 0 ° 異なるように並列接続された通過周波数帯域がわずかに異なる 第 1の弾性表面波フィルタと第 2の弾性表面波フィルタとを具備したも のである。  Also, the surface acoustic wave device of the present invention is connected in parallel with a piezoelectric substrate so that the phases of electric signals formed on the piezoelectric substrate and output to the output terminals are different from each other by 180 ° between the input and output terminals. A first surface acoustic wave filter and a second surface acoustic wave filter having slightly different pass frequency bands.
前述のように本発明の弾性表面波装置を構成する圧電性基板としては、 四砌酸リチウム L i 2 B47 を用いることが好適である。 本発明の弾 性表面波装置は四硼酸リチウム L i 2 B 0? を用いることにより、 よ り大きな効果を得ることができる。 四硼酸リチウム以外にも、 電気機械 結合係数 がほぼ 1%、 I DT 1本当たりの弾性表面波の反射係数が 約 3 %以上となるような圧電性基板材料を用いれば同様の効果を得るこ とができる。 As described above, as the piezoelectric substrate constituting the surface acoustic wave device of the present invention, It is preferable to use four-layered lithium Li 2 B 4 7 . The elastic surface wave device of the present invention can obtain a greater effect by using lithium tetraborate Li 2 B 0 ?. Similar effects can be obtained by using a piezoelectric substrate material other than lithium tetraborate that has an electromechanical coupling coefficient of about 1% and a surface acoustic wave reflection coefficient per IDT of about 3% or more. Can be.
四硼酸リチウムの場合、 四硼酸リチウム単結晶からの切り出し角およ び弾性表面波伝搬方向をォイラ角表示で、 (90° + ci、 90° 十 3、 90° + 7 ) と表示したとき、 α =+ 38° 〜十 52。 、 /8 =— 5。 〜 + 5° かつ 7 =— 10° 〜+ 10° の範囲に設定するようにすればよい。 また、 対向嚙合して各 I D Τを構成する櫛歯状電極対の交差幅は、 こ の櫛歯状電極の周期の 10倍以下にすることが好適である。  In the case of lithium tetraborate, when the cutout angle and the direction of surface acoustic wave propagation from a single crystal of lithium tetraborate are displayed as (90 ° + ci, 90 ° 13, 90 ° + 7), α = + 38 ° to ten 52. , / 8 = —5. It should be set in the range of + 5 ° and 7 = —10 ° to + 10 °. Further, it is preferable that the intersecting width of the comb-teeth-shaped electrode pairs that face each other and constitute each ID is 10 times or less the period of the comb-teeth-shaped electrodes.
また、 横モー ドスプリアスの発生を抑制するためには、 第 1の中心周 波数と第 2の中心周波数とは 0. 10〜0. 18%異なるように設定す ることが好適である。 逆相並列接続した弾性表面波フィルタ対をさらに 多段に接続する際には、 各段を構成する弾性表面波フィ ルタ対を、 その 中心周波数が 0. 1 0〜0. 18 %異なるような弾性表面波フィ ル夕に より構成するようにすればよい。 例えば第 1の中心周波数を有する第 3 の弾性表面波フイルクと、 中心周波数が第 3の弾性表面波フィルタと 0. 10-0. 18 %異なる第 4の弾性表面波フィルタとにより弾性表面波 フィル夕対を構成するようにすればよい。  In order to suppress the occurrence of lateral mode spurious, it is preferable that the first center frequency and the second center frequency are set to be different from each other by 0.10 to 0.18%. When connecting the surface acoustic wave filter pairs connected in anti-parallel parallel connection in more stages, the surface acoustic wave filter pairs that constitute each stage are resilient so that their center frequencies differ by 0.10 to 0.18%. What is necessary is just to make it consist of surface wave filters. For example, a third surface acoustic wave filter having a first center frequency and a fourth surface acoustic wave filter having a center frequency different from the third surface acoustic wave filter by 0.10 to 0.18% are provided by a surface acoustic wave filter. An evening pair may be formed.
このように本発明の弾性表面波装置は、 第 1の弾性表面波フィル夕と 第 2の弾性表面波フィルタを、 それぞれの入受信 I D Τを並列に接続す るとともに、 第 1の弾性表面波フィルタと第 2の弾性表面波フィル夕の 入出力間の信号位相を 180° 異ならせ、 さらに第 1の弾性表面波フィ ルタと第 2の弾性表面波フィルタの中心周波数をわずかに異ならせるこ とにより、 弾性表面波装置の通過周波数帯域のィンピーダンスが低下す るとともに、 阻止域の減衰量が確保される。 また、 弾性表面波素子を小 型化することができる。 As described above, the surface acoustic wave device according to the present invention connects the first surface acoustic wave filter and the second surface acoustic wave The signal phase between the input and output of the filter and the second surface acoustic wave filter is changed by 180 °, and the center frequencies of the first surface acoustic wave filter and the second surface acoustic wave filter are slightly different. Thus, the impedance in the pass frequency band of the surface acoustic wave device is reduced, and the attenuation of the stop band is secured. Further, the surface acoustic wave element can be downsized.
すなわち、 本発明の弾性表面波装置は第 1の中心周波数を有する第 1 の弾性表面波フィルタと第 2の中心周波数を有する第 2の弾性表面波フ ィル夕とを入出力端子間に逆相並列接続したものである。  That is, the surface acoustic wave device of the present invention reverses the first surface acoustic wave filter having the first center frequency and the second surface acoustic wave filter having the second center frequency between the input and output terminals. They are connected in parallel.
第 1の中心周波数 f 1 と第 2の中心周波数 f り とは 0 . 1 0〜0 . 1 8 %程度ずらせてある。 ここで中心周波数 f i は弾性表面波フィ ルタを 構成する櫛歯状電極のピツチを I、 圧電性基板を伝搬する弾性表面波の 位相速度を V としたとき、 f ,. = v。 Zスで表示されるものとする。 The first center frequency f 1 and the Ri second center frequency f 0. 1 0 to 0. Are shifted approximately 1-8%. Here, the center frequency fi is f,. = V, where I is the pitch of the comb-like electrode composing the surface acoustic wave filter, and V is the phase velocity of the surface acoustic wave propagating through the piezoelectric substrate. It is assumed to be displayed in Z.
S 1  S 1
そして、 本発明の弾性表面波装置においては、 中心周波数 の第 1 の弾性表面波フィルタと、 中心周波数 f 2 の第 2の弾性表面波フィル夕 とが、 入力端子と出力端子との間に、 入力端子から入力される信号の位 相に対して出力端子に出力される信号の位相が互いに 1 8 0 ° 異なるよ うに、 すなわち逆相並列に間挿されている。 Then, in the surface acoustic wave device of the present invention, the first surface acoustic wave filter having the center frequency f and the second surface acoustic wave filter having the center frequency f 2 are provided between the input terminal and the output terminal. The phase of the signal output from the input terminal is different from the phase of the signal input from the input terminal by 180 °, that is, they are interpolated in anti-phase parallel.
図 1は本発明の弾性表面波装置を構成する電極パターンの 1例を模式 的に示す図である。  FIG. 1 is a diagram schematically showing one example of an electrode pattern constituting a surface acoustic wave device of the present invention.
図 1に例示した弾性表面波装置 1 0 0は、 圧電性基板上に I D Tを含 む導体パターンが形成されたものであり、 第 1の入力端子 1 0 1と第 1 の出力端子 1 0 2 aおよび第 2の出力端子 1 0 2 bとの間に、 中心周波 数 f . の第 1の弾性表面波フィルタ 1 0 3と、 中心周波数 f 2 の第 2の 弾性表面波フィル夕 1 0 4とが逆相並列接続されている。 The surface acoustic wave device 100 illustrated in FIG. 1 has a conductive pattern including an IDT formed on a piezoelectric substrate, and includes a first input terminal 101 and a first output terminal 102. a and a second output terminal 102 b between the first surface acoustic wave filter 103 having a center frequency f. and the second surface acoustic wave filter 110 having a center frequency f 2 . And are connected in anti-phase parallel.
図 2は図 1に例示した弾性表面波装置 1 0 0と同様の構成の弾性表面 波装置 1 0 0 aにおいて、 第 1の弾性表面波フィルタ 1 0 3 aと第 2の 弾性表面波フィルタ 1 0 4 aとの逆相並列接続の 1例を模式的に示した 図である。 第 1の弾性表面波フィルタ 103 aは、 入力端子 1 01に接続して形 成された弾性表面波を励振する第 1の励振 I DT 1 1 1と、 この第 1の 励振 I D T 1 1 1を挟むように面対称パターンに形成された、 弾性表面 波を受信する第 1の受信 I D T 1 12及び第 2の受信 I D T 1 13と、 これら受信 I DT 1 12、 1 13のさらに外側に、 第 1の励振 I DT 1 11、 第 1の受信 I DT 1 12及び第 2の受信 I D T 1 1 3を挟み込ん でキヤビティ一を形成するように配設された 2個の反射電極 1 14と力、 ら構成されている。 FIG. 2 shows a first surface acoustic wave filter 103 a and a second surface acoustic wave filter 1 in a surface acoustic wave device 100 a having the same configuration as the surface acoustic wave device 100 illustrated in FIG. FIG. 4 is a diagram schematically showing one example of anti-phase parallel connection with 04a. The first surface acoustic wave filter 103a is connected to an input terminal 101 to excite a surface acoustic wave formed, and a first excitation IDT 11 1 and this first excitation IDT 11 1 1 A first reception IDT 112 and a second reception IDT 113 that receive a surface acoustic wave and that are formed in a plane-symmetric pattern so as to sandwich the first and second reception IDTs 113 and 113. Of two reflective electrodes 114 arranged to form a cavity with the excitation IDT 111, the first reception IDT 112, and the second reception IDT 113 interposed. Have been.
第 2の弾性表面波フィルタ 104 aも同様の構成である。 すなわち、 第 2の弾性表面波フィル夕 104 aは、 入力端子 101に接続して形成 された弾性表面波を励振する第 2の励振 I DT 121と、 この第 2の励 振 I DT 121を挟むように面対称パターンに形成された、 弾性表面波 を受信する第 3の受信 I DT 122及び第 4の受信 I DT 123と、 こ れら受信 I DTのさらに外側に、 第 2の励振 I DT 121、 第 3の受信 I D T 122及び第 4の受信 I D T 123を挟み込んでキヤビティ一を 形成するように配設された 2個の反射電極 124とから構成されている。 第 1の弾性表面波フィルタ 1 03 aの第 1の励振 I DT 1 1 1と第 2 の弾性表面波フィルタ 1 04 aの第 2の励振 I D T 121とは、 入力端 子 101に対して並列に接続されており、 それぞれの I DTは対向嚙合 した 1対の櫛歯状電極から構成されている。 そして、 第 1の弾性表面波 フィ ルタ 103 aの第 1の励振 I DT 1 1 1を構成する一方の櫛歯状電 極 1 1 1 aは入力端子 1 01に接続されており、 もう一方の櫛歯状電極 は基準電位側 11 1 bに接続されている。  The second surface acoustic wave filter 104a has the same configuration. In other words, the second surface acoustic wave filter 104a sandwiches the second excitation IDT 121 that excites a surface acoustic wave formed by being connected to the input terminal 101 and the second excitation IDT 121. A third receiving IDT 122 and a fourth receiving IDT 123 that receive a surface acoustic wave and are formed in a plane-symmetric pattern as described above, and a second excitation IDT further outside these receiving IDTs. 121, and two reflective electrodes 124 disposed so as to form a cavity with the third reception IDT 122 and the fourth reception IDT 123 interposed therebetween. The first excitation IDT 121 of the first surface acoustic wave filter 103 a and the second excitation IDT 121 of the second surface acoustic wave filter 104 a are connected in parallel to the input terminal 101. The IDTs are connected, and each of the IDTs is composed of a pair of comb-toothed electrodes facing each other. Then, one of the comb-like electrodes 1 1 1 a constituting the first excitation I DT 1 1 1 of the first surface acoustic wave filter 103 a is connected to the input terminal 101, and the other is The comb-shaped electrode is connected to the reference potential side 111b.
これに対し、 第 2の励振 I D T 121においては第 1の励振 I D T 1 1 1の基準電位側に接続した櫛歯状電極 1 11 bに対応する櫛歯状電極 121 bが入力端子 101に接続されており、 第 1の励振 I DT 11 1 JP97/02212 の入力端子 101に接続した櫛歯状電極 1 1 1 aに対応する櫛歯状電極 121 aが基準電位側に接続されている。 第 1の励振 I DT 1 1 1と第 2の励振 I DT 121とをこのように接続することにより、 第 1の励振 I D T 1 1 1により励振される弾性表面波と第 2の励振 I D T 121に より、 位相が 180° ずれた弾性表面波が励振されることになる。 On the other hand, in the second excitation IDT 121, the comb-shaped electrode 121b corresponding to the comb-shaped electrode 111b connected to the reference potential side of the first excitation IDT 111 is connected to the input terminal 101. And the first excitation I DT 11 1 A comb-like electrode 121a corresponding to the comb-like electrode 111a connected to the input terminal 101 of JP97 / 02212 is connected to the reference potential side. By connecting the first excitation IDT 1 11 1 and the second excitation IDT 121 in this way, the surface acoustic wave excited by the first excitation IDT 1 11 1 and the second excitation IDT 121 are connected to each other. As a result, the surface acoustic wave whose phase is shifted by 180 ° is excited.
—方、 第 1の弾性表面波フィルタ 103 aの第 1の受信 I DT 112 及び第 2の受信 I D T 1 1 3も、 第 2の弾性表面波フィル夕の第 3の受 信 I DT 122及び第 4の受信 I DT 123も、 それぞれ対向嚙合した 1対の櫛歯状電極から構成されている。  On the other hand, the first reception IDT 112 and the second reception IDT 113 of the first surface acoustic wave filter 103a are also the third reception IDT 122 and the second reception IDT 112 of the second surface acoustic wave filter. The four reception IDTs 123 also include a pair of comb-tooth electrodes facing each other.
第 1の弾性表面波フィルタ 103 aの第 1の受信 I DT 1 12と第 2 の弾性表面波フィルタの第 3の受信 I D T 122とは面対称パターンに 形成されており、 櫛歯状電極 112 aと櫛歯状電極 122 bとが第 1の 出力端子 102 aと接続されている。 櫛歯状電極 1 12 bと櫛歯状電極 122 aはそれぞれ基準電位に接続されている。  The first reception IDT 12 of the first surface acoustic wave filter 103a and the third reception IDT 122 of the second surface acoustic wave filter are formed in a plane-symmetric pattern, and the comb-shaped electrode 112a And the comb-shaped electrode 122b are connected to the first output terminal 102a. Each of the comb-like electrodes 112b and 122a is connected to a reference potential.
また、 第 1の弾性表面波フィルタ 103 aの第 2の受信 I DT 11 3 と第 2の弾性表面波フィ ルタ 104 aの第 4の受信 I DT 123も面対 称パターンに形成されており、 櫛歯状電極 1 1 3 aと櫛歯伏電極 123 bとが第 2の出力端子 1 02 bと接続されている。 櫛歯状電極 1 13 b と櫛歯状電極 123 aはそれぞれ基準電位に接続されている。  In addition, the second reception IDT 113 of the first surface acoustic wave filter 103a and the fourth reception IDT 123 of the second surface acoustic wave filter 104a are also formed in a plane symmetric pattern. The comb-shaped electrode 113a and the comb-shaped electrode 123b are connected to the second output terminal 102b. The comb-shaped electrode 113b and the comb-shaped electrode 123a are each connected to a reference potential.
したがって、 第 1の弾性表面波フィルタ 103 aの受信 I DT 112、  Therefore, the reception I DT 112 of the first surface acoustic wave filter 103a,
1 1 3と第 2の弾性表面波フィル夕 1 04 aの受信 I DT 122、 12 3との間では、 伝搬してきた弾性表面波の位相はずれることなく電気信 号に変換される。 Between 113 and the receiving IDTs 122 and 123 of the second surface acoustic wave filter 104a, the propagated surface acoustic waves are converted into electric signals without any phase shift.
つまり、 第 1の出力端子 102 aおよび第 2の出力端子 102 bには、 第 1の弾性表面波フィルタ 103 aを経由した信号の位相と、 第 2の弾 性表面波フィルタ 104 aを経由した信号の位相とは互いに 1 80° ず れた状態で電気信号として出力されることになる。 In other words, the first output terminal 102a and the second output terminal 102b output the signal phase passing through the first surface acoustic wave filter 103a and the signal phase passing through the second surface acoustic wave filter 104a. 180 degrees from the signal phase It will be output as an electric signal in the state where it was turned off.
図 2に例示した逆相並列接続された第 1の弾性表面波フィ ルタ 103 aと第 2の弾性表面波フィルタ 1 04 aにおいては、 第 1の励振 I D T と第 2の励振 I D Tとにより位相が 180° ずれた弾性表面波が励振さ れることになる。  In the first surface acoustic wave filter 103a and the second surface acoustic wave filter 104a that are connected in anti-parallel and parallel as illustrated in FIG. 2, the phase is determined by the first excitation IDT and the second excitation IDT. A surface acoustic wave shifted by 180 ° will be excited.
第 1の弾性表面波フィルタと第 2の弾性表面波フィル夕とを逆相並列 接続する方法は図 2に例示した接続に限ることはなく、例えば励振 I D Tでは同位相の弾性表面波を励振して、 第 1の弾性表面波フィルタと第 2の弾性表面波フィルタの受信 I D Tで弾性表面波を受信する際に位相 をずらせるようにしてもよい。  The method of connecting the first surface acoustic wave filter and the second surface acoustic wave filter in anti-phase parallel connection is not limited to the connection illustrated in FIG. 2 .For example, in the case of the excitation IDT, the in-phase surface acoustic waves are excited. The phase may be shifted when the surface acoustic waves are received by the reception IDTs of the first surface acoustic wave filter and the second surface acoustic wave filter.
図 3は弾性表面波装置 100 bにおいて、 第 1の弾性表面波フィ ル夕 103 aと第 2の弾性表面波フィルタ 104 bとの逆相並列接続の 1例 を模式的に示した図である。 この弾性表面波装置 1 00 bの第 1の弾性 表面波フィルタ 1 03 aと第 2の弾性表面波フィルタ 1 04 bにおいて は、 励振 I D Tでは同位相の弾性表面波を励振し、 受信 I DTにより位 相をずらせるような接続となっている。  FIG. 3 is a diagram schematically illustrating an example of anti-phase parallel connection of the first surface acoustic wave filter 103a and the second surface acoustic wave filter 104b in the surface acoustic wave device 100b. . In the first surface acoustic wave filter 103a and the second surface acoustic wave filter 104b of the surface acoustic wave device 100b, the excitation IDT excites the same phase surface acoustic wave, and the received IDT The connection is such that the phases are shifted.
弾性表面波装置 100 bの第 1の弾性表面波フィ ルタ 1 03 aについ ては前述した第 1の弾性表面波フィルタ 103 aと同様の構成である。 第 2の弾性表面波フィルタ 104 bは、 入力端子 101に接続して形 成された弾性表面波を励振する第 2の励振 I DT 131と、 この第 2の 励振 I D T 131を挟むように面対称パターンに形成された、 弾性表面 波を受信する第 3の受信 I DT 132及び第 4の受信 I DT 1 33と、 これら受信 I D Tのさらに外側に、 第 2の励振 I DT 13 1、 第 3の受 信 I DT 132及び第 4の受信 I DT 133を挟み込んでキヤビティ一 を形成するように配設された 2個の反射電極 134とから構成されてい The first surface acoustic wave filter 103a of the surface acoustic wave device 100b has the same configuration as that of the above-described first surface acoustic wave filter 103a. The second surface acoustic wave filter 104b is connected to the input terminal 101 to excite a formed surface acoustic wave, and the second excitation IDT 131 is symmetric with respect to the second excitation IDT 131. A third reception IDT 132 and a fourth reception IDT 133 for receiving the surface acoustic wave formed in a pattern, and further outside these reception IDTs, a second excitation IDT 131, a third And two reflective electrodes 134 disposed so as to form a cavity with the receiving IDT 132 and the fourth receiving IDT 133 interposed therebetween.
Ό o 第 1の弾性表面波フィルタ 103 aの第 1の励振 I DT l l lと第 2 の弾性表面波フィル夕 1 04 bの第 2の励振 I DT 131とは、 入力端 子 101に対して並列に接続されており、 それぞれ面対称パターンに対 向嚙合した 1対の櫛歯状電極から構成されている。 そして、 第 1の弾性 表面波フィルタ 103 aの第 1の励振 I DT l l lを構成する一方の櫛 歯状電極 11 1 aは入力端子 101に接続されており、 もう一方の櫛歯 伏電極は基準電位側 1 1 1 bに接続されている。 Ό o The first excitation I DT lll of the first surface acoustic wave filter 103a and the second excitation I DT 131 of the second surface acoustic wave filter 104b are connected in parallel to the input terminal 101. , And each is composed of a pair of comb-shaped electrodes opposed to a plane symmetric pattern. One of the comb-shaped electrodes 111 a constituting the first excitation IDTll of the first surface acoustic wave filter 103 a is connected to the input terminal 101, and the other comb-shaped electrode is connected to the reference terminal. Connected to potential side 1 1 1 b.
第 2の励振 I DT 13 1においても、 第 1の励振 I D T 1 1 1の入力 端子 1 01に接続した櫛歯状電極 1 11 aに対応する櫛歯状電極 131 bが入力端子 1 01に接続されており、 第 1の励振 I DT l l lの基準 電位側に接続した櫛歯状電極 11 1 bに対応する櫛歯状電極 1 31 aが 基準電位側に接続されている。  Also in the second excitation IDT 131, the comb-shaped electrode 131b corresponding to the comb-shaped electrode 1 11a connected to the input terminal 101 of the first excitation IDT 1 11 1 is connected to the input terminal 101. The comb-shaped electrode 131a corresponding to the comb-shaped electrode 111b connected to the reference potential side of the first excitation IDTll is connected to the reference potential side.
第 1の励振 I DT I 1 1と第 2の励振 I DT 1 31とをこのように接 続することにより、 図 2に例示した逆相並列接続とは異なり、 第 1の励 振 I DT l l lと第 2の励振 I DT 131とにより同位相の弾性表面波 が励振される。  By connecting the first excitation I DT I 11 and the second excitation I DT 1 31 in this way, unlike the anti-parallel parallel connection illustrated in FIG. 2, the first excitation I DT Ill The SAW having the same phase is excited by the second excitation IDT 131 and the second excitation.
一方、 第 1の弾性表面波フィルタ 103の第 1の受信 I DT 1 12及 び第 2の受信 I D T 11 3も、 第 2の弾性表面波フィルタの第 3の受信 I DT 132及び第 4の受信 I DT 133も、 それぞれ対向嚙合した 1 対の櫛歯状電極から構成されている。  On the other hand, the first reception IDT 12 and the second reception IDT 113 of the first surface acoustic wave filter 103 are also the third reception IDT 132 and the fourth reception IDT 132 of the second surface acoustic wave filter. IDT 133 is also composed of a pair of comb-shaped electrodes facing each other.
第 1の弾性表面波フィルタ 103 aの第 1の受信 I DT I 12と第 2 の弾性表面波フィル夕の第 3の受信 I D T 1 32とは同じパターンに形 成されており、 櫛歯状電極 1 12 aと櫛歯状電極 132 bとが第 1の出 力端子 102 aと接続されている。  The first reception IDTI 12 of the first surface acoustic wave filter 103a and the third reception IDT 132 of the second surface acoustic wave filter are formed in the same pattern, and have a comb-shaped electrode. 112a and the comb-shaped electrode 132b are connected to the first output terminal 102a.
すなわち、 第 1の受信 I DT I 12の基準電位に接続された櫛歯状電 極 1 12 bに対応した櫛歯伏電極 132 bが第 1の出力端子 1 02 aに 接続されており、 第 1の受信 I DT 112の第 1の出力端子 1 02 aに 接続された櫛歯状電極 1 12 aに対応した櫛歯状電極 1 32 aが基準電 位に接続されている。 That is, the comb tooth-shaped electrode 132b corresponding to the comb-shaped electrode 112b connected to the reference potential of the first reception IDTI 12 is connected to the first output terminal 102a. The comb-shaped electrode 132a corresponding to the comb-shaped electrode 112a connected to the first output terminal 102a of the first reception IDT 112 is connected to the reference potential. I have.
第 1の弾性表面波フィ ルタ 103 aの第 2の受信 I DT 1 13と第 2 の弾性表面波フィルタ 104 bの第 4の受信 I DT 1 33についても同 様に接続されている。  The second reception IDT 113 of the first surface acoustic wave filter 103a and the fourth reception IDT 133 of the second surface acoustic wave filter 104b are similarly connected.
第 1の弾性表面波フィルタ 103 aの第 2の受信 I DT 11 3と第 2 の弾性表面波フィルタ 104 bの第 4の受信 I DT 1 33についても同 様に接続されている。  The second reception IDT 133 of the first surface acoustic wave filter 103a and the fourth reception IDT 133 of the second surface acoustic wave filter 104b are similarly connected.
すなわち、 第 2の受信 I DT 1 13の基準電位に接続された櫛歯状電 極 1 1 3 bに対応した櫛歯状電極 133 bが第 1の出力端子 1 02 bに 接続されており、 第 2の受信 I DT 11 3の第 1の出力端子 1 02 bに 接続された櫛歯状電極 1 13 aに対応した櫛歯状電極 133 aが基準電 位に接続されている。  That is, a comb-like electrode 133b corresponding to the comb-like electrode 113b connected to the reference potential of the second reception IDT 113 is connected to the first output terminal 102b, A comb-shaped electrode 133a corresponding to the comb-shaped electrode 113a connected to the first output terminal 102b of the second reception IDT 113 is connected to the reference potential.
したがって、 第 1の弾性表面波フィルタ 103 aおよび第 2の弾性表 面波フィルタ 104 bにおいては、 第 1の励振 I D T 11 1および第 2 の励振 I DT 131とにより励振された同位相の弾性表面波は受信 I D Tにおいて位相が 180。 ずれた状態で電気信号に変換されることにな る o  Therefore, in the first surface acoustic wave filter 103a and the second surface acoustic wave filter 104b, the in-phase surface acoustic waves excited by the first excitation IDT 111 and the second excitation IDT 131 are used. The wave has a phase of 180 at the receiving IDT. It will be converted to an electrical signal in a shifted state o
つまり、 第 1の出力端子 102 aおよび第 2の出力端子 102 bには、 第 1の弾性表面波フィル夕 103 aを経由した信号の位相と、 第 2の弾 性表面波フィルタ 104 bを経由した信号の位相とは互いに 180° ず れた状態で電気信号として出力されることになる。  That is, the first output terminal 102a and the second output terminal 102b are connected to the phase of the signal passing through the first surface acoustic wave filter 103a and the second output terminal 102b through the second surface acoustic wave filter 104b. The signals are output as electrical signals 180 ° out of phase with each other.
図 4は第 1の弾性表面波フィルタ 103 aと第 2の弾性表面波フィノレ タ 1 04 cとの逆相並列接続した弾性表面波装置 100じ の 1例を模式 的に示した図である。 この弾性表面波装置 1 00 cの第 1の弾性表面波 フィルタ 103 aと第 2の弾性表面波フィルタ 104 cにおいても弾性 表面波装置 100 bと同じように、 励振 I D Tでは同位相の弾性表面波 を励振し、 受信 I DTにより位相をずらせるような接続となっている。 図 3に例示した弾性表面波装置 100 bが受信 I DTの接続により位相 をずらせたものであるのに対して、 図 4に例示した弾性表面波装置 1 0FIG. 4 is a diagram schematically showing one example of a surface acoustic wave device 100 in which a first surface acoustic wave filter 103a and a second surface acoustic wave finolator 104c are connected in anti-phase parallel. The first surface acoustic wave of this surface acoustic wave device 100 c In the filter 103a and the second surface acoustic wave filter 104c, as in the case of the surface acoustic wave device 100b, the excitation IDT excites the same surface acoustic wave and shifts the phase by the reception IDT. It has become. While the surface acoustic wave device 100b illustrated in FIG. 3 is shifted in phase by connection of the reception IDT, the surface acoustic wave device 10b illustrated in FIG.
0 cにおいては受信 I DTの配設位置により位相をずらせる構造となつ ている。 At 0c, the phase is shifted depending on the location of the receive IDT.
弾性表面波装置 100 cの第 1の弾性表面波フィ ルタ 1 03 aについ ては前述した第 1の弾性表面波フィルタ 103 a、 103 bと同様の構 成である。  The first surface acoustic wave filter 103a of the surface acoustic wave device 100c has the same configuration as the first surface acoustic wave filters 103a and 103b described above.
第 2の弾性表面波フィルタ 104 cは、 入力端子 1 01に接続して形 成された弾性表面波を励振する第 2の励振 I DT 131と、 この第 2の 励振 I D T 131を挟むように面対称パターンに形成された、 弾性表面 波を受信する第 3の受信 I DT 142及び第 4の受信 I DT 143と、 これら受信 I DTのさらに外側に、 第 2の励振 I DT 131、 第 3の受 信 I DT 142及び第 4の受信 I DT 143を挟み込んでキヤビティ一 を形成するように配設された 2個の反射電極 144とから構成されてい る。  The second surface acoustic wave filter 104c has a second excitation IDT 131 connected to the input terminal 101 to excite a formed surface acoustic wave, and a surface sandwiching the second excitation IDT 131. A third reception IDT 142 and a fourth reception IDT 143 that receive a surface acoustic wave formed in a symmetric pattern, and further outside these reception IDTs, a second excitation IDT 131 and a third The receiving IDT 142 and the fourth receiving IDT 143 are sandwiched between two reflective electrodes 144 arranged to form a cavity.
第 1の弾性表面波フィル夕 103 aの第 1の励振 I DT 1 11と第 2 の弾性表面波フィルタ 1 04 cの第 2の励振 I D T 1 31との接続は、 図 3に例示した弾性表面波装置 100 bの励振 I DT 11 1と励振 I D T 121との接続と同じように接続されている。 すなわち、 第 1の励振 The connection between the first excitation I DT 111 of the first surface acoustic wave filter 103a and the second excitation IDT 131 of the second surface acoustic wave filter 104c is performed using the surface acoustic wave illustrated in FIG. It is connected in the same way as the connection between the excitation IDT 111 of the wave device 100 b and the excitation IDT 121. That is, the first excitation
1 D T 1 11と第 2の励振 I D T 131とは、 入力端子 1 01に対して 並列に接続されており、 それぞれ面対称パターンに対向嚙合した 1対の 櫛歯状電極から構成されている。 そして、 第 1の弾性表面波フィ ルタ 1 03 aの第 1の励振 I D T 1 11を構成する入力端子 1 01に接続され た櫛歯状電極 1 11 aに対応する櫛歯状電極 131 bが入力端子 101 に接続されており、 第 1の励振 I D Tを構成するもう一方の、 基準電位 側に接続された櫛歯状電極 1 1 1 bに対応した櫛歯状電極 13 1 aが基 準電位側に接続されている。 The 1 DT 111 and the second excitation IDT 131 are connected in parallel to the input terminal 101, and are each formed of a pair of comb-shaped electrodes opposed to a plane symmetric pattern. The first surface acoustic wave filter 103a is connected to the input terminal 101 constituting the first excitation IDT 111 of the 103a. The comb-shaped electrode 131b corresponding to the comb-shaped electrode 111b is connected to the input terminal 101, and the other comb-shaped electrode constituting the first excitation IDT is connected to the reference potential side. A comb-shaped electrode 131a corresponding to 111b is connected to the reference potential side.
第 1の励振 I DT I 1 1と第 2の励振 I DT 131とをこのように接 続することにより、 図 3に例示した逆相並列接続と同様に、 第 1の励振 I D T 111と第 2の励振 I D T 131とにより同位相の弾性表面波が 励振される。  By connecting the first excitation I DT I 11 and the second excitation I DT 131 in this manner, the first excitation ID T 111 and the second excitation I DT 131 are connected in the same manner as the anti-phase parallel connection illustrated in FIG. Surface acoustic waves having the same phase are excited by the excitation IDT 131.
—方、 第 1の弾性表面波フィ ル夕 103 aの第 1の受信 I D T 112 及び第 2の受信 I D T 113も、 第 2の弾性表面波フイルクの第 3の受 信 I DT 142及び第 4の受信 I DT 143は、 前述のように、 それぞ れ対向嚙合した 1対の櫛歯状電極から構成されている。  On the other hand, the first reception IDT 112 and the second reception IDT 113 of the first surface acoustic wave filter 103a are also the third reception IDT 142 and the fourth reception IDT 142 of the second surface acoustic wave filter. As described above, the reception IDT 143 includes a pair of comb-shaped electrodes facing each other.
この弾性表面波装置 100 cにおいては、 第 1の弾性表面波フィルタ 103 aの第 1の受信 I DT 1 12と、 第 2の弾性表面波フィ ルタ 1 0 4 cの第 3の受信 I D T 142とは面対称パターンに形成されているが、 励振 I DTからの距離が異なるように配設されている。  In the surface acoustic wave device 100c, a first reception IDT 112 of the first surface acoustic wave filter 103a, a third reception IDT 142 of the second surface acoustic wave filter 104c, Are formed in a plane-symmetric pattern, but are arranged at different distances from the excitation IDT.
すなわち、 第 1の弾性表面波フィルタ 1 03 aの第 1の励振 I D T 1 1 1と第 1および第 2の受信 I DT 1 1 2、 1 13との間の弾性表面波 の伝搬距離を 1^ とすると、 第 2の弾性表面波フィ ルタ 104 cの第 2 の励振 I DT 131と第 3および第 4の受信 I DT 142、 143との 間の弾性表面波の伝搬距離 Ln は ェ よりも λ/2だけ長くなるように 配設している。 当然ながらス 2だけ短くなるように配設するようにし てもよい。 That is, the propagation distance of the surface acoustic wave between the first excitation IDT 111 of the first surface acoustic wave filter 103a and the first and second reception IDTs 112, 113 is 1 ^ Then, the propagation distance L n of the surface acoustic wave between the second excitation I DT 131 of the second surface acoustic wave filter 104c and the third and fourth reception I DTs 142 and 143 is larger than d. It is arranged to be longer by λ / 2. Of course, it may be arranged to be shorter by two.
そして、 第 1の受信 I DT 1 12の櫛歯状電極 1 12 aと、 第 3の受 信 I DTの櫛歯伏電極 142 bとが第 1の出力端子 1 02 aと接続され ており、 第 1の受信 I DT 1 12の櫛歯伏電極 112 bと、 第 3の受信 „ Then, the comb-shaped electrode 112a of the first reception IDT 112 and the comb tooth-shaped electrode 142b of the third reception IDT are connected to the first output terminal 102a, The first receiving IDT 1 12 has a comb toothbrush electrode 112 b and the third receiving „
PCT/JP 7/02212 PCT / JP 7/02212
I D Tの櫛歯状電極 142 aとが基準電位に接続されている。 すなわち、 第 1の受信 I D T 1 12の基準電位に接続された櫛歯状電極 1 12 bに 対応した櫛歯状電極 142 bが第 1の出力端子 102 aに接続されてお り、 第 1の受信 I D T 1 12の第 1の出力端子 102 aに接続された櫛 歯状電極 112 aに対応した櫛歯状電極 142 aが基準電位に接続され ている。 The IDT comb-shaped electrode 142a is connected to the reference potential. That is, the comb-like electrode 142b corresponding to the comb-like electrode 112b connected to the reference potential of the first reception IDT 112 is connected to the first output terminal 102a, A comb-shaped electrode 142a corresponding to the comb-shaped electrode 112a connected to the first output terminal 102a of the reception IDT 112 is connected to the reference potential.
第 1の弾性表面波フィルタ 103 aの第 2の受信 I DT 113と第 2 の弾性表面波フィル夕 1 04 cの第 4の受信 I DT 143についても同 様に接続されている。 すなわち、 櫛歯状電極 113 aと櫛歯状電極 14 3 bとが第 2の出力端子 102 bに接続されており、 櫛歯状電極 1 1 3 bと櫛歯状電極 143 aとが基準電位に接続されている。  The second reception IDT 113 of the first surface acoustic wave filter 103a and the fourth reception IDT 143 of the second surface acoustic wave filter 104c are similarly connected. That is, the comb-shaped electrode 113a and the comb-shaped electrode 143b are connected to the second output terminal 102b, and the comb-shaped electrode 113b and the comb-shaped electrode 143a are connected to the reference potential. It is connected to the.
したがって、 図 4に例示した弾性表面波装置においては、 図 3に例示 した弾性表面波装置と同様に、 第 1の励振 I DT 11 1および第 2の励 振 I DT 131とにより励振された同位相の弾性表面波は、 受信 I DT において位相が 1 80° ずれた状態で電気信号に変換されることになる。  Therefore, in the surface acoustic wave device illustrated in FIG. 4, similarly to the surface acoustic wave device illustrated in FIG. 3, the same surface acoustic wave device excited by the first excitation IDT 111 and the second excitation IDT 131 is used. The SAW in phase will be converted to an electrical signal with the phase shifted by 180 ° at the receiving IDT.
つまり、 第 1の出力端子 102 aおよび第 2の出力端子 102 bに第 1の弾性表面波フィルタ 1 03 aを経由した信号の位相と、 第 2の弾性 表面波フィルタ 1 04 cを経由した信号の位相とは互いに 180° ずれ た状態で電気信号として出力されることになる。  That is, the phase of the signal passing through the first surface acoustic wave filter 103a and the signal passing through the second surface acoustic wave filter 104c are applied to the first output terminal 102a and the second output terminal 102b. Are output as electric signals in a state where they are 180 ° out of phase with each other.
図 1〜図 4に例示した本発明の弾性表面波装置は、 中心周波数がわず かに異なつた第 1の弾性表面波フィルタと第 2の弾性表面波フィル夕と を逆相並列接続したものであるが、 逆相並列接続した 1対の弾性表面波 フィルタを多段に接続するようにしてもよい。  The surface acoustic wave device of the present invention illustrated in FIGS. 1 to 4 is a device in which a first surface acoustic wave filter and a second surface acoustic wave filter having slightly different center frequencies are connected in anti-phase parallel connection. However, a pair of surface acoustic wave filters connected in anti-phase parallel may be connected in multiple stages.
図 5は図 1に例示した電極パターンを 1段として、 2段にわたってィ メ一ジ接続した弾性表面波装置 500の電極パターンの 1例を模式的に 示す図である。 図 5に例示した弾性表面波装置 500は、 圧電性基板上 に I D Tを含む導体パターンが形成されたものであり、 入力端子 1 0 1 と第 1の出力端子 1 0 2 aおよび第 2の出力端子 1 0 2 bとの間に、 中 心周波数 f 1 の第 1の弾性表面波フィ ルタ 1 0 3と、 中心周波数 ί 2 の 第 2の弾性表面波フィルタ 1 0 4とが逆相並列接続されている。 FIG. 5 is a diagram schematically illustrating an example of an electrode pattern of a surface acoustic wave device 500 in which image electrodes are connected in two stages by taking the electrode pattern illustrated in FIG. 1 as one stage. The surface acoustic wave device 500 illustrated in FIG. 5 is mounted on a piezoelectric substrate. A conductor pattern including an IDT is formed at the center frequency f 1 between the input terminal 101 and the first output terminal 102 a and the second output terminal 102 b. A first surface acoustic wave filter 103 and a second surface acoustic wave filter 104 having a center frequency of ί2 are connected in anti-phase parallel.
同様に、 第 2の入力端子 1 0 5 aおよび第 3の入力端子 1 0 5 bと第 3の出力端子 1 0 6との間にも、 中心周波数 ί 1 の第 3の弾性表面波フ ィル夕 1 0 7と、 中心周波数 ί 2 の第 4の弾性表面波フィル夕 1 0 8と が逆相並列接続されている。 Similarly, also between the second input terminal 1 0 5 a and the third input terminal 1 0 5 b and the third output terminal 1 0 6, the third surface acoustic wave off I the center frequency I 1 and Le evening 1 0 7, and the fourth surface acoustic wave fill evening 1 0 8 center frequency I 2 are opposite phase parallel connection.
そして、 第 1の出力端子 1 0 2 aと第 2の入力端子 1 0 5 aとの間、 および第 2の出力端子 1 0 2 bと第 3の入力端子 1 0 2 bとの間はそれ ぞれ接続手段 1 0 9 a、 1 0 9 bにより電気的に接続されている。 ここで、 第 3の弾性表面波フィ ルタ 1 0 7 と第 4の弾性表面波フィ ル タ 1 0 8は、 中心周波数が f 、 f 2 であり、 逆相並列接続されていれ ばよい。 And between the first output terminal 102a and the second input terminal 105a, and between the second output terminal 102b and the third input terminal 102b. They are electrically connected by connection means 109a and 109b, respectively. Here, the third surface acoustic wave filter 1 0 7 fourth SAW Fi Le motor 1 0 8, the center frequency is f, SIZE is f 2, if is reverse-phase parallel connection Bayoi.
例えば、 第 1の弾性表面波フィルタ 1 0 3と第 2の弾性表面波フィル 夕 1 0 4とを逆相並列接続した 1段目を図 2に例示したような第 1の弾 性表面波フィルタ 1 0 3 aと第 2の弾性表面波フィルタ 1 0 4 aとによ り構成し、 第 3の弾性表面波フィルタ 1 0 7と第 4の弾性表面波フィル 夕 1 0 8とを逆相並列接続した 2段目も図 2に例示したような第 1の弾 性表面波フィルタ 1 0 3 aと第 2の弾性表面波フィルタ 1 0 4 aとによ り構成するようにしてもよい。  For example, a first surface acoustic wave filter as illustrated in FIG. 2 is a first stage in which a first surface acoustic wave filter 103 and a second surface acoustic wave filter 104 are connected in anti-phase parallel. The third surface acoustic wave filter 107 and the fourth surface acoustic wave filter 108 are composed of 10 3 a and the second surface acoustic wave filter 104 a, The second connected stage may also be constituted by the first surface acoustic wave filter 103a and the second surface acoustic wave filter 104a as illustrated in FIG.
また、 1段目を図 2に例示したような第 1の弾性表面波フィルタ 1 0 3 aと第 2の弾性表面波フィルタ 1 0 4 aとにより構成し、 弾性表面波 フィ ルタ 1 0 7と第 4の弾性表面波フィルタ 1 0 8とを逆相並列接続し た 2段目は図 3に例示したような第 1の弾性表面波フィルタ 1 0 3 aと 第 2の弾性表面波フィルタ 1 0 4 bとにより構成するようにしてもよい。 P97/02212 さらに、 1段目を図 2に例示したような第 1の弾性表面波フィ ルタ 1 0 3 a と第 2の弾性表面波フィ ルタ 1 0 4 a とにより構成し、 弾性表面 波フィ ルタ 1 0 7 と第 4の弾性表面波フィ ルタ 1 0 8とを逆相並列接続 した 2段目は図 4に例示したような第 1の弾性表面波フィ ル夕 1 0 3 a と第 2の弾性表面波フィ ルタ 1 0 4 c とにより構成するようにしてもよ い。 The first stage is composed of a first surface acoustic wave filter 103a and a second surface acoustic wave filter 104a as illustrated in FIG. 2, and a surface acoustic wave filter 107 and The second stage in which the fourth surface acoustic wave filter 108 is connected in anti-parallel parallel is a first surface acoustic wave filter 103a and a second surface acoustic wave filter 10 as illustrated in FIG. 4b. P97 / 02212 Further, the first stage is composed of a first surface acoustic wave filter 103a and a second surface acoustic wave filter 104a as illustrated in FIG. The second stage where the filter 107 and the fourth surface acoustic wave filter 108 are connected in anti-phase parallel is the first surface acoustic wave filter 103a and the second surface The surface acoustic wave filter 104c of the above may be used.
またさ らに、 1段目を図 3に例示したような第 1の弾性表面波フィ ノレ 夕 1 0 3 a と第 2の弾性表面波フィ ルタ 1 0 4 bとにより構成し、 弾性 表面波フィルタ 1 0 7と第 4の弾性表面波フィ ルタ 1 0 8とを逆相並列 接続した 2段目は図 4に例示したような第 1の弾性表面波フィ ルタ 1 0 3 a と第 2の弾性表面波フィ ル夕 1 0 4 c とにより構成するようにして もよい。  Further, the first stage is composed of a first surface acoustic wave filter 103a and a second surface acoustic wave filter 104b as illustrated in FIG. The second stage in which the filter 107 and the fourth surface acoustic wave filter 108 are connected in anti-phase parallel is the first surface acoustic wave filter 103 a and the second surface It may be constituted by a surface acoustic wave filter 104c.
このようにィメージ接続する各段の弾性表面波フィ ルタ対は中心周波 数が f i 、 f 。 であり、 かつ逆相並列接続されていれば、 同一パターン でなく ともよい。  The surface acoustic wave filter pairs at each stage connected in the image in this manner have center frequencies f i and f. And if they are connected in anti-phase parallel, they need not be the same pattern.
本発明の弾性表面波装置は、 第 1の弾性表面波フィ ルタと第 2の弾性 表面波フィ ルタを各々の通過周波数帯域をわずかに異ならせて逆相並列 に接続することにより、 通過周波数帯域内においては、 第 1の弾性表面 波フィ ルタと第 2の弾性表面波フィ ルタとは並列動作することによりィ ンピーダンスが約半分に低下する。  According to the surface acoustic wave device of the present invention, the first surface acoustic wave filter and the second surface acoustic wave filter are connected in anti-phase parallel with each other having slightly different pass frequency bands, so that the pass frequency band Inside, the first surface acoustic wave filter and the second surface acoustic wave filter operate in parallel, so that the impedance is reduced to about half.
また、 通過周波数帯域外では信号位相が 1 8 0 ° 異なることにより、 第 1の弾性表面波フィルタと第 2の弾性表面波フィ ルタとの信号が互い に打ち消し合うことにより減衰量が確保される。 特に、 逆相並列接続し た 1対の弾性表面波フィ ルタをさらに多段に接続することにより、 十分 な減衰量が確保され、 帯域外特性は大きく向上する。  Further, since the signal phase is different by 180 ° outside the pass frequency band, the signal of the first surface acoustic wave filter and the signal of the second surface acoustic wave filter cancel each other, so that the amount of attenuation is secured. . In particular, by connecting a pair of surface acoustic wave filters connected in anti-phase parallel connection in more stages, sufficient attenuation is secured and the out-of-band characteristics are greatly improved.
したがって、 従来の直列 4段の弾性表面波フィ ルタと比較すると、 弾 性表面波装置のチップを小型化することができる。 また、 弾性表面波フ ィル夕のアパーチャ一を狭めることができるため、 横モード ' スプリア スの発生を防ぐことができ、 入受信 I D Tに重み付けを施す必要がなく なり、 さらなるアパーチャ一の増大を防ぐことができる。 図面の簡単な説明 Therefore, compared to the conventional 4-stage surface acoustic wave filter, The chip of the surface acoustic wave device can be reduced in size. Also, since the aperture of the surface acoustic wave filter can be narrowed, it is possible to prevent the occurrence of transverse mode 'spurs, and it is not necessary to weight the incoming and outgoing IDTs, thus further increasing the aperture. Can be prevented. BRIEF DESCRIPTION OF THE FIGURES
図 1は本発明の弾性表面波装置の構成の 1例を模式的に示す図であり ; 図 2は本発明の弾性表面波装置における、 第 1の弾性表面波フィル夕 と第 2の弾性表面波フィルタとの逆相並列接続の 1例を模式的に示す図 であり ;  FIG. 1 is a diagram schematically showing an example of the configuration of the surface acoustic wave device according to the present invention; FIG. 2 is a diagram illustrating a first surface acoustic wave filter and a second surface acoustic wave device in the surface acoustic wave device according to the present invention. Fig. 3 is a diagram schematically showing one example of anti-phase parallel connection with a wave filter;
図 3は本発明の弾性表面波装置における、 第 1の弾性表面波フィル夕 と第 2の弾性表面波フィルタとの逆相並列接続の別の 1例を模式的に示 す図であり ;  FIG. 3 is a diagram schematically showing another example of the anti-parallel parallel connection of the first surface acoustic wave filter and the second surface acoustic wave filter in the surface acoustic wave device of the present invention;
図 4は本発明の弾性表面波装置における、 第 1の弾性表面波フィル夕 と第 2の弾性表面波フィルタとの逆相並列接続のさらに別の 1例を模式 的に示す図であり ;  FIG. 4 is a diagram schematically showing another example of anti-phase parallel connection of the first surface acoustic wave filter and the second surface acoustic wave filter in the surface acoustic wave device of the present invention;
図 5は本発明の弾性表面波装置の構成の別の 1例を模式的に示す図で あり ;  FIG. 5 is a diagram schematically showing another example of the configuration of the surface acoustic wave device according to the present invention;
図 6は本発明の弾性表面波装置における、 逆相並列接続した弾性表面 波フィルタ対を 2段接続した例を模式的に示す図であり ;  FIG. 6 is a diagram schematically showing an example in which two pairs of surface acoustic wave filter pairs connected in anti-phase parallel are connected in two stages in the surface acoustic wave device of the present invention;
図 7は図 6に例示した本発明の弾性表面波装置における信号伝搬の様 子を模式的に示す図であり ;  FIG. 7 is a diagram schematically showing a signal propagation state in the surface acoustic wave device of the present invention illustrated in FIG. 6;
図 8は本発明の弾性表面波装置の周波数特性を示す図であり ; 図 9は本発明の弾性表面波装置の周波数特性を示す図 (逆相並列 2段 接続) であり ;  FIG. 8 is a diagram showing a frequency characteristic of the surface acoustic wave device of the present invention; FIG. 9 is a diagram showing a frequency characteristic of the surface acoustic wave device of the present invention (two-stage antiphase parallel connection);
図 1 0は図 6に例示した本発明の弾性表面波装置の、 弾性表面波フィ ルタ対間の周波数差をパラメ一夕としたときの周波数特性の変化を示す 図であり ; FIG. 10 shows a surface acoustic wave filter of the surface acoustic wave device of the present invention illustrated in FIG. FIG. 7 is a diagram showing a change in frequency characteristics when a frequency difference between a pair of filters is set to a parameter;
図 1 1は図 6に例示した本発明の弾性表面波装置の 3 d B低下の周波 数帯域幅と、 逆相並列接続した弾性表面波フィルタ対の周波数差との関 係を示す図であり ;  FIG. 11 is a diagram showing the relationship between the frequency bandwidth of the 3 dB reduction of the surface acoustic wave device of the present invention exemplified in FIG. 6 and the frequency difference of the pair of surface acoustic wave filters connected in anti-parallel. ;
図 12は図 6に例示した本発明の弾性表面波装置の段間の I D Tの対 数と周波数特性との関係を示す図であり ;  FIG. 12 is a diagram showing the relationship between the logarithm of IDT between stages and the frequency characteristic of the surface acoustic wave device of the present invention illustrated in FIG. 6;
図 13は図 6に例示した本発明の弾性表面波装置の段間の I DTの対 数と 3 d B低下の周波数帯域幅との関係を示す図であり ;  FIG. 13 is a diagram showing the relationship between the logarithm of the IDT between the stages of the surface acoustic wave device of the present invention illustrated in FIG. 6 and the frequency bandwidth of 3 dB reduction;
図 14は複数段の弾性表面波フィルタ対を接続する配線の浮遊容量と 4 d B低下の周波数帯域幅との関係を示す図であり ;  Figure 14 is a diagram showing the relationship between the stray capacitance of the wiring connecting a plurality of pairs of surface acoustic wave filter pairs and the frequency bandwidth of 4 dB reduction;
図 15は本発明の弾性表面波装置における横モー ド · スプリァスの発 生レベルの解析を行った結果を示す図であり ;  FIG. 15 is a diagram showing the results of analyzing the occurrence level of transverse mode spurs in the surface acoustic wave device of the present invention;
図 16は中心周波数 f を 244 MH z ( λ = 14. O jum) と設定 した弾性表面波フィル夕のアパーチャ一幅に対する 45° Xカッ ト Z伝 搬の L B 0基板の各次横モー ドの周波数分散特性を示す図であり ; 図 1 7は図 6に例示した本発明の弾性表面波装置において、 第 1の励 振 I DT、 第 2の励振 I DT、 第 5の受信 I DT、 第 6の受信 I DTの 対数を 45. 5対、 アパーチャ一を 8. 9スと設定した場合の周波数特 性を示す図であり ;  Figure 16 shows the 45 ° X-cut Z-propagation LB0 substrate of each next-order lateral mode for the width of the aperture of the surface acoustic wave filter with the center frequency f set to 244 MHz (λ = 14.O jum). FIG. 17 is a diagram showing a frequency dispersion characteristic; FIG. 17 shows a first excitation I DT, a second excitation I DT, a fifth reception I DT, 6 is a diagram showing frequency characteristics when the logarithm of the received IDT 6 is set to 45.5 pairs and the aperture is set to 8.9 pairs;
図 18は従来の弾性表面波装置の電極パターンの 1例を模式的に示す 図であり ; そして、  FIG. 18 is a diagram schematically showing an example of an electrode pattern of a conventional surface acoustic wave device; and
図 19は図 18に例示した従来の弾性表面波装置の周波数特性を示す 図である。 発明を実施するための最良の形態 実施例 1 FIG. 19 is a diagram illustrating frequency characteristics of the conventional surface acoustic wave device illustrated in FIG. BEST MODE FOR CARRYING OUT THE INVENTION Example 1
図 6は本発明の弾性表面波装置の電極パターンの 1例を模式的に示し た図である。  FIG. 6 is a diagram schematically showing one example of an electrode pattern of the surface acoustic wave device of the present invention.
この弾性表面波装置 6 0 0は、 4 5 ° Xカツ 卜 Z伝搬の L B 0からな る圧電性基板上に、 入出力の信号位相が相互に実質的に 1 8 0 ° ずれる ように逆相並列接続した第 1の弾性表面波フィルタと第 2の弾性表面波 フィ ルタを 2段にわたってイメージ接続したものである。 各段を構成す る逆相並列接続された弾性表面波フィルタ対は互いに動作周波数を 0 . 1 0 - 0 . 1 8 %程度ずらせてある。  The surface acoustic wave device 600 is placed on a piezoelectric substrate composed of LB 0 of 45 ° X cut Z propagation so that the input and output signal phases are substantially 180 ° out of phase with each other. The first surface acoustic wave filter and the second surface acoustic wave filter connected in parallel are image-connected in two stages. The operating frequencies of the surface acoustic wave filter pairs connected in antiphase and parallel constituting each stage are shifted from each other by about 0.10-0.18%.
1段目の弾性表面波フィルタ対は、 第 1の入力端子 6 0 1と第 1の出 力端子 6 0 2 aおよび第 2の出力端子 6 0 2 との間に逆相並列接続さ れた中心周波数 f ェ の第 1の弾性表面波フィルタ 6 0 3と中心周波数 f 2 の第 2の弾性表面波フィル夕 6 0 4とから構成されている。 ここでは 図 2に例示した弾性表面波フィルタ対と同様の、 相互に実質的に 1 8 0 。 位相のずれた弾性表面波を励振する弾性表面波フィル夕対を用いてい る。 The first-stage surface acoustic wave filter pair was connected in anti-phase parallel between the first input terminal 61, the first output terminal 60a, and the second output terminal 602. It comprises a first surface acoustic wave filter 603 having a center frequency f e and a second surface acoustic wave filter 604 having a center frequency f 2 . Here, as in the case of the surface acoustic wave filter pair illustrated in FIG. A surface acoustic wave filter pair that excites a phase-shifted surface acoustic wave is used.
2段目の弾性表面波フィルタ対も 1段目の弾性表面波フィルタ対と同 様の構成であるが、 入力端子と出力端子が逆に接続されている。 すなわ ち、 第 2の入力端子 6 0 5 aおよび第 3の入力端子 6 0 5 bと第 3の出 力端子 6 0 6との間に逆相並列接続された中心周波数 ί 1 の第 3の弾性 表面波フィルタ 6 0 7と中心周波数 ί 2 の第 2の弾性表面波フィル夕 6 0 8とから構成されている。 ここでは 2段目の弾性表面波フィルタ対の 電極パターン形状は、 1段目の弾性表面波フィルタ対の電極パターン形 状と同一形状に形成されている。 すなわち、 第 1の弾性表面波フィルタ 6 0 3と第 3の弾性表面波フィルタ 6 0 7とは同一形状に形成されてお り、 第 2の弾性表面波フィルタ 6 0 4と第 4の弾性表面波フィルタ 6 0 12The surface acoustic wave filter pair in the second stage has the same configuration as the surface acoustic wave filter pair in the first stage, but the input terminal and the output terminal are connected in reverse. Sunawa Chi, a second input terminal 6 0 5 a and the third input terminal 6 0 5 b and the third output terminal 6 0 6 a third center frequency I 1 which is reverse phase connected in parallel between the And a second surface acoustic wave filter 608 having a center frequency of ί2. Here, the electrode pattern shape of the second-stage surface acoustic wave filter pair is formed in the same shape as the electrode pattern shape of the first-stage surface acoustic wave filter pair. That is, the first surface acoustic wave filter 603 and the third surface acoustic wave filter 607 are formed in the same shape, and the second surface acoustic wave filter 604 and the fourth surface acoustic wave Wave filter 6 0 12
8とは同一形状に形成されている。 8 is formed in the same shape.
第 1の弾性表面波フィ ルタ 603は、 入力端子 601に接铳して形成 された弾性表面波を励振する第 1の励振 I DT 61 1と、 この第 1の励 振 I D T 611を挟むように面対称パターンに形成された、 弾性表面波 を受信する第 1の受信 I D T 612及び第 2の受信 I DT 61 3と、 こ れら受信 I DT 612、 613のさらに外側に、 第 1の励振 I DT 61 1、 第 1の受信 I DT 612及び第 2の受信 I DT 61 3を挟み込んで 共振器と して動作するようキヤ ビティ 一を形成するように配設された 2 個の反射電極 614とから構成されている。  The first surface acoustic wave filter 603 has a first excitation IDT 611 that excites a surface acoustic wave formed in contact with the input terminal 601, and a first excitation IDT 611 that sandwiches the first excitation IDT 611. A first reception IDT 612 and a second reception IDT 613 for receiving a surface acoustic wave formed in a plane-symmetric pattern, and further outside these reception IDTs 612 and 613, a first excitation I DT 611, two reception electrodes 614 arranged to form a cavity so as to operate as a resonator with the first reception I DT 612 and the second reception I DT 613 interposed therebetween. It is composed of
第 2の弾性表面波フィ ルタ 604も、 入力端子 601に接続して形成 された弾性表面波を励振する第 2の励振 I DT 62 1と、 この第 2の励 振 I DT 621を挟むように面対称パターンに形成された、 弾性表面波 を受信する第 3の受信 I DT 622及び第 4の受信 I DT 623と、 こ れら受信 I DT 622、 623のさらに外側から、 第 2の励振 I DT 6 21、 第 3の受信 I DT 622及び第 4の受信 I DT 623を挟み込ん で共振器として動作するようキヤ ビティ一を形成するように配設された 1対の反射電極 624とから構成されている。 そして、 第 1の弾性表面 波フィルタ 603と第 2の弾性表面波フィ ル夕 604とは、 例えば I D Tの櫛歯状電極のピッチを変えるなどして、 その動作周波数がわずかに 異なるように設計して配設されている。  The second surface acoustic wave filter 604 also has a second excitation I DT 621 that excites a surface acoustic wave formed by being connected to the input terminal 601, and a second excitation I DT 621 that sandwiches the second excitation I DT 621. A third reception I DT 622 and a fourth reception I DT 623 for receiving a surface acoustic wave formed in a plane symmetric pattern, and a second excitation I DT from further outside of these reception I DTs 622 and 623 And a pair of reflective electrodes 624 arranged to form a cavity so as to operate as a resonator with the third receiving IDT 622 and the fourth receiving IDT 623 interposed therebetween. ing. The first surface acoustic wave filter 603 and the second surface acoustic wave filter 604 are designed so that their operating frequencies are slightly different, for example, by changing the pitch of the IDT comb-shaped electrodes. It is arranged.
第 1の弾性表面波フィ ル夕 603と第 2の弾性表面波フィ ル夕 604 とは図 2に例示した弾性表面波装置 100 aと同様の接続方法で逆相並 列に接続されている。  The first surface acoustic wave filter 603 and the second surface acoustic wave filter 604 are connected in anti-phase parallel by the same connection method as the surface acoustic wave device 100a illustrated in FIG.
すなわち、 第 1の弾性表面波フイ ルク 603の第 1の励振 I DT 60 3と第 2の弾性表面波フィルタの第 2の励振 I DT 621とは、 入力端 子に対して並列に接続されており、 それぞれ対向嚙合した 1対の櫛歯状 電極から構成されている。 そして、 第 1の弾性表面波フィ ル夕 603の 第 1の励振 I DT 611を構成する櫛歯状電極のうち入力端子 601に 接続された櫛歯状電極に対応する第 2の弾性表面波フィルタ 604の第 2の励振 I DT 621の櫛歯状電極は基準電位側に接続されている。 これに対し、 第 1の弾性表面波フィルタ 603の第 1の励振 I DT 6 1 1を構成する櫛歯状電極のうち基準電位に接続された櫛歯状電極に対 応する、 第 2の弾性表面波フィル夕 604の第 2の励振 I DT 621の 櫛歯状電極が入力端子 601にされている。 That is, the first excitation IDT 603 of the first surface acoustic wave filter 603 and the second excitation IDT 621 of the second surface acoustic wave filter are connected in parallel to the input terminal. And a pair of comb teeth that face each other It is composed of electrodes. Then, the second surface acoustic wave filter corresponding to the comb-shaped electrode connected to the input terminal 601 among the comb-shaped electrodes constituting the first excitation IDT 611 of the first surface acoustic wave filter 603 The comb-shaped electrode of the second excitation IDT 621 of 604 is connected to the reference potential side. On the other hand, of the comb-shaped electrodes constituting the first excitation IDT 611 of the first surface acoustic wave filter 603, the second elastic waves corresponding to the comb-shaped electrodes connected to the reference potential. The comb-shaped electrode of the second excitation IDT 621 of the surface wave filter 604 is connected to the input terminal 601.
第 1の励振 I DT 611と第 2の励振 I DT 621とをこのように接 続することにより、 第 1の弾性表面波フィルタ 603と第 2の弾性表面 波フィルタ 604とでは、 励振される弾性表面波の位相が実質的に 1 8 0° ずれることになる。  By connecting the first excitation I DT 611 and the second excitation I DT 621 in this manner, the first surface acoustic wave filter 603 and the second surface acoustic wave The phase of the surface wave is substantially shifted by 180 °.
—方、 前述のように第 1の弾性表面波フィルタ 603と第 2の弾性表 面波フィルタ 604とでは受信 I D Tでは伝搬してきた弾性表面波の位 相はずれることはない。  On the other hand, as described above, the phase of the surface acoustic wave propagated by the reception IDT is not shifted between the first surface acoustic wave filter 603 and the second surface acoustic wave filter 604.
したがって、 第 1の出力端子 602 aおよび第 2の出力端子 602 b に第 1の弾性表面波フィルタ 603を経由した信号の位相と、 第 2の弾 性表面波フィル夕 604を経由した信号の位相とは互いに実質的に 1 8 0° ずれた状態で電気信号として出力されることになる。  Accordingly, the first output terminal 602a and the second output terminal 602b provide the phase of the signal passing through the first surface acoustic wave filter 603 and the phase of the signal passing through the second elastic surface wave filter 604, respectively. Is output as an electric signal in a state of being substantially 180 ° shifted from each other.
つぎに図 6に例示した弾性表面波装置 600を構成する 2段目の弾性 表面波フィルタ対について説明する。  Next, a second-stage surface acoustic wave filter pair constituting the surface acoustic wave device 600 illustrated in FIG. 6 will be described.
第 3の弾性表面波フィルタ 607は、 第 2の入力端子 605 aに接続 して形成された弾性表面波を励振する第 3の励振 I DT 631と、 第 3 の入力端子 605 bに接続して形成された弾性表面波を励振する第 4の 励振 I DT 632と、 この第 3の励振 I DT 631と第 4の励振 I DT 632とに挟まれるように形成された、 弾性表面波を受信する第 5の受 信 I DT 633と、 これら励振 I DT631、 632のさらに外側から、 第 3の励振 I DT 631および第 4の励振 I DT 632と第 5の受信 I D T 633とを挟み込んで共振器と して動作するようキヤ ビティ一を形 成するように配設された 2個の反射電極 634とから構成されている。 また、 第 1の出力端子 602 aと第 2の入力端子 605 aとの間は、 例えば第 1乃至第 4の弾性表面波フィ ルタと同一基板上に形成された導 体薄膜からなる配線 609 aにより電気的に接続されている。 第 2の出 力端子 602 bと第 3の入力端子 605 bとの間についても配線 609 bにより同様に接続されている。 The third surface acoustic wave filter 607 is connected to a third input terminal 605a for exciting a surface acoustic wave formed by being connected to the second input terminal 605a, and to a third input terminal 605b. A fourth excitation I DT 632 that excites the formed surface acoustic wave, and a surface acoustic wave formed to be sandwiched between the third excitation I DT 631 and the fourth excitation I DT 632 are received. Fifth recipient The signal I DT 633 and the third excitation I DT 631 and the fourth excitation I DT 632 and the fifth reception IDT 633 are sandwiched from outside the excitation I DT 631 and 632 to operate as a resonator. And two reflective electrodes 634 arranged to form a cavity. Further, between the first output terminal 602a and the second input terminal 605a, for example, a wiring 609a made of a conductive thin film formed on the same substrate as the first to fourth surface acoustic wave filters is provided. Are electrically connected to each other. The second output terminal 602b and the third input terminal 605b are similarly connected by the wiring 609b.
第 4の弾性表面波フィ ルタ 608も、 第 2の入力端子 605 aに接続 して形成された弾性表面波を励振する第 5の励振 I DT 641と、 第 3 の入力端子 605 bに接続して形成された弾性表面波を励振する第 6の 励振 I DT 642と、 この第 5の励振 I DT 641と第 6の励振 I DT 642とに挟まれるように形成された、 弾性表面波を受信する第 6の受 信 I D T 643と、 これら第 5の励振 I D T 641および第 6の励振 I DT 642と第 6の受信 I DT 643とを挟み込んで共振器と して動作 するようキヤ ビティ一を形成するように配設された 2個の反射電極 64 4とから構成されている。  A fourth surface acoustic wave filter 608 is also connected to a fifth input terminal 605b for exciting a surface acoustic wave formed by connecting to the second input terminal 605a and a third input terminal 605b. The sixth excitation IDT 642 that excites the formed surface acoustic wave, and the surface acoustic wave formed so as to be sandwiched between the fifth excitation IDT 641 and the sixth excitation IDT 642 The sixth receiving IDT 643 to operate as a resonator with the fifth excitation IDT 641, the sixth excitation IDT 642, and the sixth reception IDT 643 sandwiched between them. And two reflective electrodes 644 arranged in such a way that
このように図 6に例示した弾性表面波素子 600では、 2段目の弾性 表面波フィルタ対を構成する電極パターン形伏は 1段目と同一であり、 入出力端子が逆になつている。 したがって、 励振される弾性表面波の位 相は弾性表面波フィ ルタ対間でずれることはない。 一方、 第 3の弾性表 面波フィ ルタ 607と第 4の弾性表面波フィルタ 608とでは受信 I D Tにおいて伝搬してきた弾性表面波の位相が実質的に 180° ずれるこ とになる。  As described above, in the surface acoustic wave element 600 illustrated in FIG. 6, the shape of the electrode pattern forming the pair of surface acoustic wave filters in the second stage is the same as that in the first stage, and the input / output terminals are reversed. Therefore, the phase of the excited surface acoustic wave does not shift between the pair of surface acoustic wave filters. On the other hand, in the third surface acoustic wave filter 607 and the fourth surface acoustic wave filter 608, the phase of the surface acoustic wave propagated in the reception IDT is substantially shifted by 180 °.
したがって、 第 3の出力端子 606においては、 第 3の弾性表面波フ ィル夕 607を経由した信号の位相と、 第 4の弾性表面波フィルタ 60 8を経由した信号の位相とは互いに実質的に 180° ずれた状態で電気 信号として出力される。 Therefore, at the third output terminal 606, the third surface acoustic wave The phase of the signal passing through the filter 607 and the phase of the signal passing through the fourth surface acoustic wave filter 608 are output as electric signals while being substantially 180 ° apart from each other.
図 6に例示した本発明の弾性表面波装置では、 1段目の弾性表面波フ ィルタ対と 2段目の弾性表面波フィルタ対とを同一形状に形成したが、 前述のように 1段目と 2段目の形状を変えるようにしてもよい (図 2〜 図 4参照) 。 実施例 2  In the surface acoustic wave device of the present invention illustrated in FIG. 6, the surface acoustic wave filter pair in the first stage and the surface acoustic wave filter pair in the second stage are formed in the same shape. The shape of the second step may be changed (see Figs. 2 to 4). Example 2
ここで、 図 6に例示した本発明の弾性表面波装置により、 信号の伝搬 について説明する。  Here, signal propagation by the surface acoustic wave device of the present invention illustrated in FIG. 6 will be described.
この弾性表面波装置 600では、 入力端子 601から入力された電気 信号は第 1の弾性表面波フィル夕の第 1の励振 I DT 61 1、 第 2の弾 性表面波フィル夕 604の第 2の励振 I D T 621に入力されて弾性表 面波に変換される。 前述のように、 図 6に例示した弾性表面波装置 60 0では、 第 1の励振 I DTと第 2の励振 I DT 621とでは位相が実質 的に 180° ずれた弾性表面波が励振される。  In the surface acoustic wave device 600, the electric signal input from the input terminal 601 is applied to the first excitation IDT 61 1 of the first surface acoustic wave filter, and the second excitation of the second elastic surface wave filter 604. Excitation is input to IDT 621 and converted to elastic surface waves. As described above, in the surface acoustic wave device 600 illustrated in FIG. 6, the first excitation IDT and the second excitation IDT 621 excite surface acoustic waves whose phases are substantially shifted by 180 °. .
第 1の励振 I D T 61 1により励振された弾性表面波は両側に伝搬し、 第 1の受信 I DT 612および第 2の受信 I DT 61 3で再び電気信号 に変換される。  The surface acoustic wave excited by the first excitation IDT 611 propagates to both sides, and is converted again into an electric signal by the first reception IDT 612 and the second reception IDT 613.
第 2の励振 I DT 612により励振された弾性表面波も同様に両側に 伝搬し、 第 3の受信 I DT 622および第 4の受信 I DT 623で再び 電気信号に変換される。 第 1の弾性表面波フィルタ 603および第 2の 弾性表面波フィルタ 604の受信 I DTにおいては、 受信した弾性表面 波を電気信号に変換する際に位相がずれることはない。 したがって、 第 1の出力端子 602 aおよび第 2の出力端子 602 bには、 第 1の弾性 表面波フィルタ 6 0 3を経由した信号と、 この信号と実質的に 1 80° 位相のずれた第 2の弾性表面波フィルタ 604を経由した信号とが出力 される。 The surface acoustic wave excited by the second excitation IDT 612 also propagates to both sides, and is converted again into an electric signal by the third reception IDT 622 and the fourth reception IDT 623. In the reception IDT of the first surface acoustic wave filter 603 and the second surface acoustic wave filter 604, the phase does not shift when the received surface acoustic wave is converted into an electric signal. Therefore, the first output terminal 602a and the second output terminal 602b have the first elasticity. A signal passing through the surface acoustic wave filter 603 and a signal passing through the second surface acoustic wave filter 604 substantially 180 ° out of phase with this signal are output.
第 1の出力端子 6 02 aに出力した信号は、 配線 6 0 9 aを通じて 2 段目の弾性表面波フィルタ対の第 2の入力端子 6 0 5 aに入力される。 同様に第 2の出力端子 602 bに出力した信号は、 配線 6 09 bを通じ て 2段目の弾性表面波フィルタ対の第 3の入力端子 6 0 5 bに入力され る  The signal output to the first output terminal 602a is input to the second input terminal 605a of the pair of surface acoustic wave filters in the second stage through the wiring 609a. Similarly, the signal output to the second output terminal 602 b is input to the third input terminal 605 b of the second-stage surface acoustic wave filter pair via the wiring 609 b.
第 2の入力端子 6 0 5 aおよび第 3の入力端子 605 bから、 第 3の 弾性表面波フィル夕 607および第 4の弾性表面波フィルタ 6 08に入 力された電気信号は、 第 3の励振 I DT 63 1、 第 4の励振 I DT 6 3 2、 第 5の励振 I D T 64 1、 第 6の励振 I DT 642により再び弾性 表面波に変換される。 2段目の弾性表面波フィルタ対を構成する第 3の 弾性表面波フィルタ 607と第 4の弾性表面波フィル夕 608とは、 励 振する弾性表面波の位相はずれることはない。  The electric signals input from the second input terminal 605 a and the third input terminal 605 b to the third surface acoustic wave filter 607 and the fourth surface acoustic wave filter The excitation I DT 63 1, the fourth excitation I DT 63 2, the fifth excitation IDT 64 1, and the sixth excitation I DT 642 are converted into surface acoustic waves again. The phases of the surface acoustic waves to be excited do not shift between the third surface acoustic wave filter 607 and the fourth surface acoustic wave filter 608 constituting the second surface acoustic wave filter pair.
第 3の励振 I DT 6 3 1と第 4の励振 I DT 6 32とにより励振され た弾性表面波は、 第 5の受信 I DT 633により受信され、 第 5の励振 I DT 64 1と第 6の励振 I DT 642とにより励振された弾性表面波 は、 第 6の受信 I DT 64 3により受信される。 この際、 第 5の受信 I DT 6 3 3と第 6の受信 I DT 64 3とにより、 伝搬してきた弾性表面 波はその位相が互いに実質的に 1 80° ずれた状態で電気信号に変換さ れ、 第 3の出力端子 606に出力される。  The surface acoustic waves excited by the third excitation I DT 631 and the fourth excitation I DT 632 are received by the fifth reception I DT 633, and the fifth excitation I DT 64 1 and the sixth The surface acoustic wave excited by the excitation I DT 642 is received by the sixth reception I DT 643. At this time, the propagated surface acoustic wave is converted into an electric signal by the fifth reception IDT 633 and the sixth reception IDT 643 with their phases substantially shifted by 180 ° from each other. Then, it is output to the third output terminal 606.
図 Ίは本発明の弾性表面波装置 6 00の信号伝搬の様子を模式的に示 した図である。  FIG. 5 is a diagram schematically showing a signal propagation state of the surface acoustic wave device 600 of the present invention.
図 6に例示した弾性表面波装置 600では、 1段目の弾性表面波フィ ル夕対も 2段目の弾性表面波フィルタ対も図 2に例示したような逆相並 列接続を採用したが、 各段の弾性表面波フィルタ対の構成は中心周波数 がわずかにずれていることと、 逆相並列接続されているならば図 2以外 の逆相並列接続を採用することができる。 例えば、 1段目の弾性表面波 フィ ルタ対と 2段目の弾性表面波フィ ルタ対とに、 図 2乃至図 4に例示 した逆相並列接続を適宜組み合わせて採用するようにしてもよい。 In the surface acoustic wave device 600 illustrated in FIG. 6, the pair of surface acoustic wave filters in the first stage and the pair of surface acoustic wave filters in the second stage are opposite in phase as illustrated in FIG. Although row connection was adopted, the configuration of the surface acoustic wave filter pair at each stage should have a slightly shifted center frequency, and if connected in anti-phase parallel, use anti-phase parallel connection other than that shown in Fig. 2. Can be. For example, the first-stage surface acoustic wave filter pair and the second-stage surface acoustic wave filter pair may be appropriately combined with the anti-phase parallel connection illustrated in FIGS. 2 to 4.
2段目の弾性表面波フィルタ対に図 3または図 4に例示したような逆 相並列接続を採用した場合、 第 3の励振 I DT 631および第 4の励振 I D T 632により励振される弾性表面波と、 第 5の励振 I DT 641 および第 6の励振 I DT 642により励振される弾性表面波とは、 その 位相が実質的に 1 80° ずれることになるが、 第 5の受信 I D T 633 と第 6の受信 I DT 643とにより位相がずれることはない。 実施例 3  When the anti-parallel parallel connection as illustrated in Fig. 3 or Fig. 4 is adopted for the second-stage surface acoustic wave filter pair, surface acoustic waves excited by the third excitation IDT 631 and the fourth excitation IDT 632 And the surface acoustic waves excited by the fifth excitation IDT 641 and the sixth excitation IDT 642 are substantially 180 ° out of phase with each other. The phase is not shifted by the 6 reception IDT 643. Example 3
以下に本発明の弾性表面波装置の周波数特性について説明する。 図 6に例示した弾性表面波装置 600においては、 第 1の弾性表面波 フィ ルタ 603の中心周波数 f i (約 244 MH z) と第 2の弾性表面 波フィ ルタ 604の中心周波数 f り および第 3との弾性表面波フィル夕 607の中心周波数 ί 1 と第 2の弾性表面波フィ ルタ 608のの中心周 波数 f 2 とは、 Δ f = f 。 一 f 丄 = 0. 3 MH zだけ異なるように設定 されている。 Hereinafter, the frequency characteristics of the surface acoustic wave device according to the present invention will be described. In the surface acoustic wave device 600 illustrated in FIG. 6, the center frequency fi (about 244 MHz) of the first surface acoustic wave filter 603, the center frequency f of the second surface acoustic wave filter 604, and the third the center frequency I 1 of the surface acoustic wave fill evening 607 and the center frequency f 2 of the second surface acoustic wave filter 608, Δ f = f. It is set to differ by one f 異 な る = 0.3 MHz.
この弾性表面波装置の周波数特性を図 8及び図 9を用いて説明する。 図 8は図 2または図 6 (1段目) に例示した構成の本発明の弾性表面 波装置の周波数特性を示す図である。  The frequency characteristics of this surface acoustic wave device will be described with reference to FIGS. FIG. 8 is a diagram showing the frequency characteristics of the surface acoustic wave device of the present invention having the configuration illustrated in FIG. 2 or FIG. 6 (first stage).
ここでは第 1の励振 I DT 611、 第 2の励振 I DT 622、 第 5の 受信 I DT 633、 第 6の受信 I DT 643を 20. 5対とし、 第 1の 受信 I DT 612、 第 2の受信 I DT613、 第 3の受信 I DT 622、 PC丽漏 2 第 4の受信 I D T 6 2 3、 第 3の励振 I D T 6 3 1、 第 4の励振 I D THere, the first excitation I DT 611, the second excitation I DT 622, the fifth reception I DT 633, and the sixth reception I DT 643 are 20.5 pairs, and the first reception I DT 612, the second Receiving IDT 613, third receiving IDT 622, PC leak 2 4th receive IDT 6 2 3, 3rd excitation IDT 6 3 1, 4th excitation IDT
6 3 2、 第 5の励振 I D T 6 4 1、 第 6の励振 I D T 6 4 2を 8対と し た。 8 pairs of 6 32, fifth excitation I D T 64 1, and sixth excitation I D T 64 2 were used.
また、 各弾性表面波フィ ル夕の励振 I D Tと受信 I D Tとの間の距離 を 3 λ ( λ = ν / f . ; v は弾性表面波の位相速度、 f . は弾性表  The distance between the excitation I D T and the reception I D T of each surface acoustic wave filter is set to 3λ (λ = ν / f .; v is the phase velocity of the surface acoustic wave, and f.
S 1 S 1 面波フィ ルタが動作する中心周波数) と し、 受信 I D Tと反射電極との 間距離を 0. 3 7 5 ス と し、 反射電極の電極本数を 1 2 0本と した。  The center frequency at which the S1S1 surface wave filter operates), the distance between the receiving IDT and the reflective electrode was 0.375, and the number of reflective electrodes was 120.
さ らに、 励振 I D T、 受信 I D T及び反射電極の長さ (アパーチャ一) を 0. 1 2 mm、 入出力終端ィンピーダンスを 4 0 0 Ωと した。 また、 第 1の弾性表面波フィルタと第 2の弾性表面波フィ ルタでは中心周波数 が 0. 3 MH z異なるように設定している。  In addition, the length of the excitation IDT, the reception IDT, and the reflection electrode (aperture) was set to 0.12 mm, and the input / output termination impedance was set to 400 Ω. Also, the center frequencies of the first surface acoustic wave filter and the second surface acoustic wave filter are set to be different from each other by 0.3 MHz.
図 8には、 逆相並列接続した 1段の弾性表面波フィルタ対の周波数特 性 8 0 0と比校して、 第 1の弾性表面波フィ ルタ 6 0 3単独での特性 8 0 1および第 2の弾性表面波フィ ルタ 6 0 4単独での特性 8 0 2につい ても示した。  Figure 8 compares the frequency characteristics 800 of a single-stage surface acoustic wave filter pair connected in anti-phase parallel with those of the first surface acoustic wave filter 6 The characteristic 8002 of the second surface acoustic wave filter 604 alone is also shown.
また、 逆相並列接続された第 1の弾性表面波フイ ルク 6 0 3 と第 2の 弾性表面波フィ ルタ 6 0 4 とにより生じる位相差 8 0 4についても合わ せて示した。  Also, the phase difference 804 generated by the first surface acoustic wave filter 603 and the second surface acoustic wave filter 604 connected in anti-phase parallel is also shown.
第 1の弾性表面波フィ ルタ 6 0 3と第 2の弾性表面波フィ ルタ 6 0 4 とからなる弾性表面波フィ ルタ対の位相差は、 弾性表面波フィ ル夕の通 過周波数帯域近傍では 1 1 0〜 1 4 0° の位相差となっているが、 阻止 域ではほぼ逆相 (実質的に 1 8 0° 位相差) となっていることがわかる。  The phase difference between the surface acoustic wave filter pair composed of the first surface acoustic wave filter 603 and the second surface acoustic wave filter 604 is near the passing frequency band of the surface acoustic wave filter. It can be seen that the phase difference is 110 ° to 140 °, but in the stop band it is almost out of phase (essentially 180 ° phase difference).
したがって、 1段の弾性表面波フィ ルタ対では第 1の弾性表面波フィ ル 夕と第 2の弾性表面波フィ ルタの通過周波数帯域が重なつた通過周波数 帯域が得られ、 同時に阻止域では第 1の弾性表面波フィ ルタと第 2の弾 性表面波フィ ルタとの信号がお互いにキヤ ンセルして十分な弒衰量が得 られる。 Therefore, in a single-stage SAW filter pair, a pass frequency band in which the pass frequency bands of the first SAW filter and the second SAW filter overlap is obtained, and at the same time, in the stop band, The signals of the first surface acoustic wave filter and the second surface acoustic wave filter cancel each other to obtain a sufficient attenuation. Can be
図 9は逆相並列接続された第 1の弾性表面波フィ ルタ 6 0 3 と第 2の 弾性表面波フィ ルタ 6 0 4 とからなる 1段目の弾性表面波フィルタ対と、 逆相並列接続された第 3の弾性表面波フィ ルタ 6 0 7 と第 4の弾性表面 波フィ ルタ 6 0 8 とからなる 2段目の弾性表面波フィ ル夕対とをィメ ー ジ接続した場合に得られる周波数特性を示す図である。 各段を構成する 弾性表面波フィ ルタ対の中心周波数差は 0 . 3 M H Zである。 Figure 9 shows a first-stage SAW filter pair consisting of a first SAW filter 603 and a second SAW filter 604 connected in anti-phase parallel, and anti-phase parallel connection. This is obtained when the second surface acoustic wave filter pair consisting of the third surface acoustic wave filter 607 and the fourth surface acoustic wave filter 608 is image-connected. FIG. 4 is a diagram showing frequency characteristics obtained. Center frequency difference of the surface acoustic wave filter pair constituting each stage is 0. 3 MH Z.
比絞のため、 図中には逆相並列接続した 1段の弾性表面波フィ ルタ対 の周波数特性もあわせて示した。 この 1段の周波数特性は図 2に例示し た弾性表面波装置の周波数特性に相当するものである。 またこの周波数 特性は、 第 1の弾性表面波フィ ルタと第 2の弾性表面波フイ ルクとを直 列 2段接続した際に得られる周波数特性に相当するものである。  For comparison, the figure also shows the frequency characteristics of a single-stage surface acoustic wave filter pair connected in anti-parallel and parallel. This one-stage frequency characteristic corresponds to the frequency characteristic of the surface acoustic wave device illustrated in FIG. This frequency characteristic corresponds to the frequency characteristic obtained when the first surface acoustic wave filter and the second surface acoustic wave filter are connected in two stages in series.
本発明の弾性表面波装置では、 第 1の弾性表面波フィ ルタと第 2の弾 性表面波フィ ルタを各々の通過周波数帯域をわずかに異ならせて逆相並 列に接続することにより、 通過周波数帯域内においては、 第 1の弾性表 面波フィ ルタと第 2の弾性表面波フィルタとが並列動作することにより イ ンピーダンスを約半分に低下することができる。 また、 通過周波数帯 域外では信号位相が実質的に 1 8 0 ° 異なることにより、 第 1の弾性表 面波フィ ルタと第 2の弾性表面波フィルタとの信号が互いに打ち消し合 うことにより減衰置が確保することができる。  In the surface acoustic wave device according to the present invention, the first surface acoustic wave filter and the second surface acoustic wave filter are connected in anti-parallel parallel with each other having slightly different pass frequency bands. In the frequency band, the impedance can be reduced to about half by operating the first surface acoustic wave filter and the second surface acoustic wave filter in parallel. In addition, since the signal phase substantially differs by 180 ° outside the pass frequency band, the signal of the first surface acoustic wave filter and the signal of the second surface acoustic wave filter cancel each other, so that the attenuation is caused. Can be secured.
逆相並列接続した 1段の弾性表面波フィルタは、 直列 2段接続した弾 性表面波フィル夕と実質的に同等であり、 特に、 逆相並列接続した 1対 の弾性表面波フィ ルタをさ らに多段に接続することにより、 通過周波数 帯域外での減衰量がさらに大きくなり、 帯域外特性が大き く向上してい ることがわかる。  A single-stage SAW filter connected in anti-parallel and parallel is substantially equivalent to a two-stage connected SAW filter, especially a pair of anti-parallel connected SAW filters. Furthermore, it can be seen that by connecting in multiple stages, the amount of attenuation outside the pass frequency band is further increased, and the out-of-band characteristics are greatly improved.
さ らに、 本発明の弾性表面波装置は通過周波数帯域においては、 2つ CT/JP97/02212 の弾性表面波フィルタが並列に接続されるため、 弾性表面波フィ ルタの 入出力イ ンピーダンスを下げることができ、 この結果、 弾性表面波フィ ル夕のチップサイズを小さくすることができる。 特に、 弾性表面波フィ ル夕のアパーチャ一の方向の大きさを約半分程度まで縮減することがで きる。 このことは、 移動体通信などチップサイズの小型化が求められて いる分野においてはとりわけ大きな利点となるだけでなく、 横モー ド · スプリアスを抑制することができ、 I D Tの電極抵抗を低下し損失を低 減することができる。 さらにこのことは、 同一のチップサイズであれば その周波数特性が格段に優れていることを意味する。 Furthermore, the surface acoustic wave device of the present invention has two Since the surface acoustic wave filters of CT / JP97 / 02212 are connected in parallel, the input / output impedance of the surface acoustic wave filter can be reduced, and as a result, the chip size of the surface acoustic wave filter can be reduced. Can be. In particular, the size of the surface of the surface acoustic wave filter in the direction of the aperture can be reduced to about half. This is a particularly significant advantage in areas where chip size reduction is required, such as in mobile communications, as well as suppressing lateral mode and spurious, lowering the electrode resistance of the IDT and reducing loss. Can be reduced. This also means that the frequency characteristics are much better for the same chip size.
図 9に示した弾性表面波装置のチップサイズはボンディ ングパッ ドも 含め約 2 . 8 m m X 3 . 0 m m角程度となり、 例えば図 1 8に例示した 従来の直列 4段の弾性表面波フィルタ装置と比較しても、 その大きさを 格段に小型化することができる。 実施例 4  The chip size of the surface acoustic wave device shown in Fig. 9, including the bonding pad, is approximately 2.8 mm x 3.0 mm square.For example, the conventional series four-stage surface acoustic wave filter device shown in Fig. 18 Compared to, the size can be significantly reduced. Example 4
次に一対の弾性表面波フィ ルタ対を逆相並列接続する際の好適な条件 について説明する。  Next, preferable conditions for connecting a pair of surface acoustic wave filter pairs in anti-phase parallel connection will be described.
図 1 0は図 6を用いて説明した本発明の弾性表面波装置 (逆相並列接 続した弾性表面波フィ ルタ対の 2段構成) において、 弾性表面波フィ ル 夕対間の周波数差をパラメ一夕として変化させた場合の弾性表面波装置 の周波数特性の変化を示したものである。  FIG. 10 shows the frequency difference between the surface acoustic wave filter and the surface acoustic wave device (two-stage configuration of the surface acoustic wave filter pair connected in anti-parallel connection) of the present invention described with reference to FIG. This figure shows the change in the frequency characteristics of the surface acoustic wave device when it is changed over time.
図 1 1はこの弾性表面波装置の周波数特性を特徴づけるために、 3 d B低下の周波数帯域幅を、 逆相並列接続した弾性表面波フィルタ対の周 波数差に対してプロッ ト した図である。  Fig. 11 is a plot of the frequency bandwidth of 3 dB reduction against the frequency difference of a pair of surface acoustic wave filters connected in antiphase in order to characterize the frequency characteristics of this surface acoustic wave device. is there.
図 1 0および図 1 1からわかるように、 本発明の弾性表面波装置は弾 性表面波フィ ルタ対間の周波数差を広げるにしたがって、 その通過周波 数帯域幅が拡大する。 しかしながら周波数差を広げすぎると、 通過周波 数帯域内にリ ップルが現れて再び通過周波数帯域が減少することがわか る As can be seen from FIGS. 10 and 11, the surface acoustic wave device of the present invention increases its pass frequency as the frequency difference between the pair of elastic surface wave filters increases. Several bandwidth increases. However, if the frequency difference is too wide, ripples appear in the passband and the passband decreases again.
図 1 1から実質的に利用できる弾性表面波フィルタ対間の周波数差は、 中心周波数が 244 MH zの弾性表面波フィルタにおいては 0. 25〜 0. 45 MH zの範囲、 すなわち中心周 ¾数で規格化した周波数差では 0. 1 0〜0. 1 8%の範囲に設定することが好適である。 実施例 5  The frequency difference between the pair of surface acoustic wave filters that can be substantially used from Fig. 11 is in the range of 0.25 to 0.45 MHz for a surface acoustic wave filter with a center frequency of 244 MHz, that is, the center frequency. It is preferable to set the frequency difference standardized in the range of 0.10 to 0.18%. Example 5
図 12は図 6に例示した本発明の弾性表面波装置 (逆相並列接続弾性 表面波フィルタ対の 2段構成) を構成する段間 I DT、 すなわち第 1の 弾性表面波フィル夕 603、 第 2の弾性表面波フィルタ 604、 第 3の 弾性表面波フィルタ 607および第 4の弾性表面波フィルタ 608の、 第 1の受信 I DT 612、 第 2の受信 I DT 614、 第 3の受信 I DT 622、 第 4の受信 I DT 623、 第 3の励振 I DT 631、 第 4の励 振 I DT 632、 第 5の励振 I DT 641および第 6の励振 I DT 64 2の電極対数をパラメ一夕として変えた場合の弾性表面波フィ ル夕の周 波数特性の変化を示したものである。  FIG. 12 shows the inter-stage IDT constituting the surface acoustic wave device (two-stage configuration of the anti-phase parallel connection surface acoustic wave filter pair) of the present invention illustrated in FIG. 6, that is, the first surface acoustic wave filter 603, and FIG. The first reception I DT 612, the second reception I DT 614, and the third reception I DT 622 of the second surface acoustic wave filter 604, the third surface acoustic wave filter 607, and the fourth surface acoustic wave filter 608. The fourth receiving I DT 623, the third exciting I DT 631, the fourth exciting I DT 632, the fifth exciting I DT 641, and the sixth exciting I DT 64 2 are used as parameters. This figure shows the change in the frequency characteristics of the surface acoustic wave filter when it is changed.
図 13はこの弾性表面波装置の周波数特性を特徴づけるために、 3 d B低下の帯域幅を逆相並列接続した弾性表面波フィルタ対を構成する、 第 1の受信 I DT 612、 第 2の受信 I DT 614、 第 3の受信 I DT 622、 第 4の受信 I DT 623、 第 3の励振 I DT 631、 第 4の励 振 I DT 632、 第 5の励振 I DT 641および第 6の励振 I DT 64 2の対数に対してプロッ 卜した図である。  FIG. 13 shows a configuration of a surface acoustic wave filter pair in which a 3 dB lower bandwidth is connected in anti-phase parallel to characterize the frequency characteristics of the surface acoustic wave device. Receive IDT 614, Third Receive IDT 622, Fourth Receive IDT 623, Third Excitation IDT 631, Fourth Excitation IDT 632, Fifth Excitation IDT 641, and Sixth Excitation It is the figure which plotted with respect to the logarithm of IDT642.
図 12からわかるように、 本発明の弾性表面波装置は第 1の受信 I D T 612、 第 2の受信 I DT 614、 第 3の受信 I DT 622、 第 4の 受信 I DT 623、 第 3の励振 I DT631、 第 4の励振 I DT 632、 第 5の励振 I DT 641および第 6の励振 I DT 642の対数を増やす にしたがって、 その通過周波数帯域幅が拡大するが、 その対数が 9対を 越えると通過周波数帯域内にリップルが現れ再び帯域幅が減少すること がわかる。 したがって、 これらの I D Tの対数は 9対以下に設定するこ とが好適である。 As can be seen from FIG. 12, the surface acoustic wave device of the present invention has a first reception IDT 612, a second reception IDT 614, a third reception IDT 622, and a fourth reception IDT 622. As the logarithm of the reception I DT623, the third excitation I DT631, the fourth excitation I DT 632, the fifth excitation I DT 641 and the sixth excitation I DT 642 increases, the pass frequency bandwidth increases. However, when the logarithm exceeds 9 pairs, ripples appear in the passband and the bandwidth decreases again. Therefore, it is preferable to set the logarithm of these IDTs to 9 or less.
—方、 図 13からわかるように I DTの対数を增やすにしたがって、 3 d B帯域幅が拡大するが、 その対数が 8対を越えると再び 3 d B帯域 幅が'减少することがわかる。 したがって、 例えば 3 d B帯域幅として 0. 35MH z以上の帯域幅を確保しようとする場合にはこれらの I D Tの 対数は 5〜 8対に設定することが好適である。 この対数では通過周波数 帯域内にリ ップルが現れ帯域幅が減少することはない。 実施例 6  On the other hand, as can be seen from Fig. 13, the 3 dB bandwidth increases as the logarithm of the IDT increases, but when the logarithm exceeds 8 pairs, the 3 dB bandwidth decreases again. . Therefore, for example, to secure a bandwidth of 0.35 MHz or more as a 3 dB bandwidth, it is preferable to set the logarithm of these IDTs to 5 to 8 pairs. With this logarithm, ripples appear in the passband and the bandwidth does not decrease. Example 6
図 14は、 複数段の弾性表面波フィルタ対を接続する配線の浮遊容量 と 4 d B低下の周波数帯域幅との関係を示す図である。  FIG. 14 is a diagram showing the relationship between the stray capacitance of wiring connecting a plurality of stages of surface acoustic wave filter pairs and the frequency bandwidth of 4 dB reduction.
例えば段間接続により形成される浮遊容量が 1. 5 p Fである場合、 0. 35 MH z以上の帯域幅を確保するためには I DTの対数を 10対 以上にすればよいことがわかる。 また例えば、 段間接続により形成され る浮遊容量が 2. 5 p Fである場合、 0. 35 MH z以上の帯域幅を確 保するためには I D Tの対数を 1 3対以上にすればよいことがわかる。 このように本発明の弾性表面波装置においては、 段間接続により浮遊容 量が形成される場合でも、 I D Tの対数を最適化することによつて十分 な帯域幅を確保することができる。 実施例 7 次に本発明の弾性表面波装置において横モード · スプリァスを抑える 手段を説明する。 For example, if the stray capacitance formed by the interstage connection is 1.5 pF, it can be seen that the logarithm of the IDT should be 10 pairs or more to secure a bandwidth of 0.35 MHz or more. . Also, for example, if the stray capacitance formed by the interstage connection is 2.5 pF, the number of IDTs should be 13 or more to secure a bandwidth of 0.35 MHz or more. You can see that. As described above, in the surface acoustic wave device of the present invention, a sufficient bandwidth can be ensured by optimizing the logarithm of the IDT even when a floating capacitance is formed by interstage connection. Example 7 Next, means for suppressing the transverse mode and spurious in the surface acoustic wave device of the present invention will be described.
図 15は本発明の弾性表面波装置 (逆相並列接続弾性表面波フィルタ の 2段構成) における横モー ド · スプリアスの発生レベルの解析を行つ た結果を示す図である。 周波数差を 0. 3MH z、 第 1および第 2の弾 性表面波フィルタの励振 I D T、 第 3および第 4の弾性表面波フィル夕 の受信 I DTを 20. 5対、 アパーチャ一幅を 25. 7 λ (スは電極の 配設周期) とした。  FIG. 15 is a diagram showing the results of analysis of the occurrence level of lateral mode spurious in the surface acoustic wave device of the present invention (two-stage configuration of anti-phase parallel connection surface acoustic wave filter). The frequency difference is 0.3 MHz, the first and second surface acoustic wave filter excitation IDT, the third and fourth surface acoustic wave filter reception IDT is 20.5 pairs, and the aperture width is 25. 7λ (where S is the electrode arrangement period).
図 15において、 1 s tとして基本の横モードの信号成分 (図 9と同 じもの) を示し、 3 r d、 5 t hとしてそれぞれ 3次と 5次の横モー ド の信号成分を示した。 図 1 5から明らかなように、 高次の横モード · ス プリァスは弾性表面波フィルタの帯域外特性を劣化させてしまう。 図 16は、 中心周波数 を 244MH z ( λ = 14. 0 m) と設 定した弾性表面波フィルタのアパーチャ一幅に対する 45° Xカツ 卜 Z 伝搬の L B 0基板の各次横モー ドの周波数分散特性を示す図である。 図 6に例示した弾性表面波装置においてアパーチャ一幅を 25. 7 λ に設定した場合、 5次までの高次横モー ドスプリァスが発生することが わ力、る。  In Fig. 15, 1 st represents the signal component of the basic transverse mode (the same as in Fig. 9), and 3rd and 5th represent the signal components of the third and fifth transverse modes, respectively. As is clear from Fig. 15, the higher-order transverse mode spur degrades the out-of-band characteristics of the surface acoustic wave filter. Figure 16 shows the frequency dispersion of each lateral mode of the LB0 substrate of 45 ° Xcut Z propagation with respect to the width of the aperture of the surface acoustic wave filter with the center frequency set to 244 MHz (λ = 14.0 m). It is a figure showing a characteristic. When the width of the aperture is set to 25.7 λ in the surface acoustic wave device illustrated in FIG. 6, high order transverse mode spurs up to the fifth order are generated.
アパーチャ一を 10 λ以下に設定した場合には 3次以降の高次の横モ — ドは力ッ トオフ周波数以上となり横モードの発生はなくなることがわ カヽる。  If the aperture is set to 10 λ or less, the higher-order transverse modes of the third and higher orders will be higher than the power-off frequency, and the transverse modes will not occur.
図 17は図 6に例示した本発明の弾性表面波装匱 (逆相並列接続弾性 表面波フィルタの 2段構成) において、 第 1の励振 I DT 61 1、 第 2 の励振 I DT 621、 第 5の受信 I DT 633、 第 6の受信 I D T 64 3の対数を 45. 5対、 アパーチャ一を 8. 9 λと設定した場合の周波 数特性を示す図である。 図 9と同様に第 1の励振 I DT 61 1、 第 2の 励振 I D T 621、 第 5の受信 I DT 633、 第 6の受信 I DT 643 の対数を 20. 5対とした場合の周波数特性も比較のため示した。 第 1の励振 I DT 61 1、 第 2の励振 I DT 621、 第 5の受信 I D T 633、 第 6の受信 I DT 643の対数を 45. 5対に設定した弾性 表面波装置は、 これらの I DTを 20. 5対と設定した場合と比較して も、 その通過周波数帯域内の特性をほとんど損なわれていないことがわ 力、る。 産業上の利用可能性 FIG. 17 shows the first excitation I DT 611, the second excitation I DT 621, the second excitation I DT 611 in the surface acoustic wave device of the present invention exemplified in FIG. FIG. 18 is a diagram illustrating frequency characteristics when the logarithm of the fifth reception IDT 633 and the sixth reception IDT 643 is set to 45.5 pairs and the aperture is set to 8.9 λ. As in Fig. 9, the first excitation I DT 61 1 Frequency characteristics when the logarithm of the excitation IDT 621, the fifth reception IDT 633, and the sixth reception IDT 643 are set to 20.5 pairs are also shown for comparison. The surface acoustic wave device in which the logarithm of the first excitation I DT 61 1, the second excitation I DT 621, the fifth reception IDT 633, and the sixth reception I DT 643 is set to 45.5 pairs, Even if DT is set to 20.5 pairs, it is clear that the characteristics in the pass frequency band are hardly impaired. Industrial applicability
本発明の弾性表面波装置は、 わずかに中心周波数の異なる 2つの弾性 表面波フィルタを逆相並列接続することにより、 弾性表面波フィル夕と しての通過周波数帯域の帯域幅を拡大することができる。  According to the surface acoustic wave device of the present invention, by connecting two surface acoustic wave filters having slightly different center frequencies in anti-phase parallel connection, the bandwidth of the pass frequency band as the surface acoustic wave filter can be expanded. it can.
また、 本発明の弾性表面波装置は、 第 1の弾性表面波フィ ルタと第 2 の弾性表面波フィルタを各々の通過周波数帯域をわずかに異ならせて逆 相並列に接続することにより、 通過周波数帯域内においては、 第 1の弾 性表面波フィルタと第 2の弾性表面波フィルタとは並列動作することに よりインピーダンスを約半分に低下することができる。  Further, the surface acoustic wave device of the present invention is characterized in that the first surface acoustic wave filter and the second surface acoustic wave filter are connected in anti-phase parallel with slightly different pass frequency bands, so that the pass Within the band, the impedance can be reduced to about half by operating the first surface acoustic wave filter and the second surface acoustic wave filter in parallel.
また、 通過周波数帯域外では信号位相が 180° 異なることにより、 第 1の弾性表面波フィルタと第 2の弾性表面波フィルタとの信号が互い に打ち消し合うことにより減衰量が確保することができる。 特に、 逆相 並列接続した 1対の弾性表面波フィルタをさらに多段に接続することに より、 十分な減衰量が確保され、 帯域外特性は大きく向上することがで さる 0 Further, since the signal phase is different by 180 ° outside the pass frequency band, the signal of the first surface acoustic wave filter and the signal of the second surface acoustic wave filter cancel each other, so that the amount of attenuation can be secured. In particular, more to connect the surface acoustic wave filter of a pair of reverse-phase parallel connection further in multiple stages, sufficient attenuation can be secured, it is monkey in the out-of-band characteristics are improved greatly 0
したがって、 従来の直列 4段の弾性表面波フィルタ装置と比蛟すると、 弾性表面波装置のチップを小型化することができる。 したがって、 移動 体通信などチップサイズの小型化が求められている用途においてはとり わけ好適な弾性表面波装置である。 Therefore, when compared with the conventional serial four-stage surface acoustic wave filter device, the chip of the surface acoustic wave device can be downsized. Therefore, in applications where chip size reduction is required, such as in mobile communications, This is a particularly suitable surface acoustic wave device.
また、 小型化により弾性表面波フィルタのアパーチャ一を狭めること ができるため、 横モー ド · スプリァスの発生を防ぐことができ、 I D T の電極抵抗を低下し損失を低減することができる。 また、 横モー ド · ス プリアスの発生も抑制でき、 帯域外特性を向上することができる。 さら に、 入受信 I D Tに重み付けを施す必要がなくなり、 さらなるァパーチ ヤーの増大を防ぐことができる。  In addition, since the aperture of the surface acoustic wave filter can be reduced by miniaturization, the occurrence of lateral mode spurious can be prevented, and the electrode resistance of the IDT can be reduced to reduce the loss. Also, the occurrence of lateral mode spurious can be suppressed, and the out-of-band characteristics can be improved. Furthermore, there is no need to weight incoming and outgoing IDTs, and further increase in aperture can be prevented.

Claims

請 求 の 範 囲 The scope of the claims
1 . 圧電性基板と、 1. a piezoelectric substrate;
前記圧電性基板上で第 1の入力端子と第 1の出力端子との間に配設さ れた、 中心周波数 f 1 を有する 2ポート 3 I D Tの第 1の弾性表面波フ ィルタと、  A two-port 3IDT first surface acoustic wave filter having a center frequency f1 and disposed between the first input terminal and the first output terminal on the piezoelectric substrate;
前記第 1の入力端子と前記第 1の出力端子との間に前記第 1の弾性表 面波フィルタと並列に配設された、 前記中心周波数 f l とわずかに異な る中心周波数 ί 2 を有する 2ポート 3 I D Τの第 2の弾性表面波フィル 夕とを具備し、  2 having a center frequency ί 2 slightly different from the center frequency fl, disposed in parallel with the first surface acoustic wave filter between the first input terminal and the first output terminal. A second surface acoustic wave filter of port 3 ID Τ,
前記第 1の弾性表面波フィルタおよび前記第 2の弾性表面波フィルタ は、 前記第 1の入力端子から前記第 1の弾性表面波フィルタを経由して 前記第 1の出力端子に出力される信号の位相と、 前記第 2の弾性表面波 フィルタを経由して前記第 1の出力端子に出力される信号の位相とが実 質的に 1 8 0 ° 異なるように配設されたことを特徴とする弾性表面波装 置。  The first surface acoustic wave filter and the second surface acoustic wave filter may include a signal output from the first input terminal to the first output terminal via the first surface acoustic wave filter. And a phase of a signal output to the first output terminal via the second surface acoustic wave filter is substantially different by 180 °. Surface acoustic wave device.
2 . 請求項 1に記載の弾性表面波装置において、 前記第 1の弾性表面波 フィルタと前記第 2の弾性表面波フィルタとは、 前記第 1の入力端子に 入力される信号に対して位相が実質的に 1 8 0 ° 異なった弾性表面波を 励振することを特徴とする。  2. The surface acoustic wave device according to claim 1, wherein the first surface acoustic wave filter and the second surface acoustic wave filter have a phase with respect to a signal input to the first input terminal. It is characterized by exciting substantially different surface acoustic waves by 180 °.
3 . 請求項 1乃至請求項 2のいずれかに記載の弾性表面波装置において、 前記第 1の弾性表面波フィルタは、 前記第 1の入力端子に接続され、 前記第 1の入力端子に入力された電気信号により第 1の弾性表面波を励 振する第 1の励振 I D Tと、 前記第 1の励振 I D Tの両側に配設され、 前記第 1の弾性表面波を受信して電気信号に変換する第 1の受信 I D Τ および第 2の受信 I D Tとを具備し、 前記第 2の弾性表面波フィルタは、 前記第 1の入力端子に接続され、 前記第 1の入力端子に入力された電気信号により前記第 1の弾性表面波 と 1 8 0 ° 位相の異なった第 2の弾性表面波を励振する第 2の励振 I D 丁と、 前記第 2の励振 I D Tの両側に配設され、 前記第 2の弾性表面波 を受信して電気信号に変換する第 3の受信 I D Tおよび第 4の受信 I D Tとを具備したことを特徴とする。 3. The surface acoustic wave device according to any one of claims 1 and 2, wherein the first surface acoustic wave filter is connected to the first input terminal, and is input to the first input terminal. A first excitation IDT that excites a first surface acoustic wave by the applied electric signal, and disposed on both sides of the first excitation IDT to receive and convert the first surface acoustic wave into an electric signal A first receiving ID Τ and a second receiving IDT, The second surface acoustic wave filter is connected to the first input terminal, and has a 180 ° phase difference from the first surface acoustic wave due to an electric signal input to the first input terminal. A second excitation ID for exciting the second surface acoustic wave, and a third reception IDT arranged on both sides of the second excitation IDT for receiving the second surface acoustic wave and converting it into an electric signal And a fourth reception IDT.
4 . 請求項 1に記載の弾性表面波装置において、 前記第 1の弾性表面波 フィルタと前記第 2の弾性表面波フィルタとは、 前記第 1の入力端子に 入力される信号に対して実質的に同位相の弾性表面波を励振するととも に、 この弾性表面波を位相が実質的に 1 8 0 ° 異なるように電気信号に 変換することを特徴とする。  4. The surface acoustic wave device according to claim 1, wherein the first surface acoustic wave filter and the second surface acoustic wave filter substantially correspond to a signal input to the first input terminal. In addition, a surface acoustic wave having the same phase is excited, and the surface acoustic wave is converted into an electric signal so that the phase is substantially different by 180 °.
5 . 請求項 1乃至請求項 4のいずれかに記載の弾性表面波フィルタにお いて、  5. The surface acoustic wave filter according to any one of claims 1 to 4,
前記第 1の弾性表面波フィルタは、 前記第 1の入力端子と接続され、 前記第 1の入力端子に入力された電気信号により前記第 1の弾性表面波 を励振する前記第 1の励振 I D Tと、 前記第 1の励振 I D Tの両側に配 設され、 前記第 1の弾性表面波を受信して電気信号に変換する第 1の受 信 I D Tおよび第 2の受信 I D Tとを具備し、  The first surface acoustic wave filter is connected to the first input terminal, and the first excitation IDT that excites the first surface acoustic wave by an electric signal input to the first input terminal. A first reception IDT and a second reception IDT that are disposed on both sides of the first excitation IDT and receive the first surface acoustic wave and convert the same into an electric signal,
前記第 2の弾性表面波フィルタは、 前記第 1の入力端子と接続され、 前記第 1の入力端子に入力された電気信号により前記第 1の弾性表面波 を励振する前記第 2の励振 I D Tと、 前記第 2の励振 I D Tの両側に配 設され、 前記第 1の弾性表面波を受信して前記第 1の受信 I D Tおよび 第 2の受信 I D Tとは位相が実質的に 1 8 0 ° 異なるような電気信号に 変換する第 3の受信 I D Tおよび第 4の受信 I D Tとを具備したことを 特徵とする。  The second surface acoustic wave filter is connected to the first input terminal, and the second excitation IDT that excites the first surface acoustic wave by an electric signal input to the first input terminal. The first and second receiving IDTs are disposed on both sides of the second excitation IDT, and receive the first surface acoustic wave so that the phases thereof are substantially different by 180 ° from the first and second receiving IDTs. A third reception IDT and a fourth reception IDT that convert the signal into a simple electrical signal.
6 . 請求項 1乃至請求項 5のいずれかに記載の弾性表面波装置において、 前記圧電性基板はこの基板上を伝搬する弾性表面波の電気機械結合係数 k 2 が約 1 %であり、 I D T 1本あたりの前記弾性表面波の反射係数が 約 3 %以上であることを特徴とする。 6. The surface acoustic wave device according to any one of claims 1 to 5, Wherein the piezoelectric substrate is the electromechanical coupling coefficient k 2 of the surface acoustic wave propagating on this substrate is about 1%, the reflection coefficient of the surface acoustic wave per one IDT is about 3% or more And
7 . 請求項 1乃至請求項 6のいずれかに記載の弾性表面波装置において、 前記圧電性基板は四硼酸リチウムからなることを特徴とする。  7. The surface acoustic wave device according to any one of claims 1 to 6, wherein the piezoelectric substrate is made of lithium tetraborate.
8 . 請求項 1乃至請求項 7のいずれかに記載の弾性表面波装置において、 前記第 1の中心周波数と前記第 2の中心周波数とは約 0 . 1 0 %~約0. 1 8 %異なることを特徴とする。  8. The surface acoustic wave device according to any one of claims 1 to 7, wherein the first center frequency and the second center frequency are different from about 0.10% to about 0.18%. It is characterized by the following.
9 . 請求項 1乃至請求項 8のいずれかに記載の弾性表面波装置において、 前記各 I D Tを構成する櫛歯状電極の交差幅は、 この櫛歯状電極の配設 周期の約 1 0倍以下であることを特徴とする。  9. The surface acoustic wave device according to any one of claims 1 to 8, wherein the intersecting width of the comb-shaped electrodes constituting each IDT is about 10 times the arrangement period of the comb-shaped electrodes. It is characterized by the following.
1 0 . 請求項 1乃至請求項 9に記載の弾性表面波フィルタを前記圧電性 基板上で複数段従属接続したことを特徴とする弾性表面波装置。  10. A surface acoustic wave device comprising a plurality of cascade-connected surface acoustic wave filters according to claim 1 on the piezoelectric substrate.
1 1 . 圧電性基板と、  1 1. Piezoelectric substrate,
前記圧電性基板上で第 1の入力端子と第 1の出力端子および第 2の出 力端子との間に配設された、 中心周波数 ί 1 を有する 2ポート 3 I D Τ の第 1の弾性表面波フイルクと、  A first elastic surface of a two-port 3 ID having a center frequency ί1 and disposed between a first input terminal, a first output terminal, and a second output terminal on the piezoelectric substrate. With the wave film,
前記第 1の入力端子と前記第 1の出力端子および第 2の出力端子との 間に前記第 1の弾性表面波フィルタと並列に配設された、 前記中心周波 数 f 1 とわずかに異なる中心周波数 f 2 を有する 2ポート 3 I D Tの第 2の弾性表面波フィル夕と、  A center slightly different from the center frequency f 1, disposed between the first input terminal and the first output terminal and the second output terminal in parallel with the first surface acoustic wave filter; A second surface acoustic wave filter of a 2-port 3 IDT having a frequency f 2,
前記第 1の出力端子および前記第 2の出力端子と第 3の出力端子との 間に配設された、 中心周波数 f 1 を有する 2ポー ト 3 I D Tの第 3の弾 性表面波フィル夕と、  A third elastic surface wave filter of a 2-port 3 IDT having a center frequency f 1 and disposed between the first output terminal, the second output terminal, and the third output terminal; ,
前記第 1の出力端子および前記第 2の出力端子と第 3の出力端子との 間に前記第 3の弾性表面波フィルタと並列に配設された、 前記中心周波 数 f 2 を有する 2ポート 3 I D Tの第 4の弾性表面波フィルタとを具備 し、 The center frequency disposed between the first output terminal, the second output terminal, and the third output terminal in parallel with the third surface acoustic wave filter; A 2 port 3 IDT fourth surface acoustic wave filter having a number f 2,
前記第 1の弾性表面波フィルタおよび前記第 2の弾性表面波フィルタ は、 前記第 1の入力端子から前記第 1の弾性表面波フィルタを経由して 前記第 1の出力端子に出力される信号の位相と、 前記第 2の弾性表面波 フィルタを経由して前記第 1の出力端子に出力される信号の位相とが実 質的に 1 8 0 ° 異なるように配設され、  The first surface acoustic wave filter and the second surface acoustic wave filter may include a signal output from the first input terminal to the first output terminal via the first surface acoustic wave filter. A phase and a phase of a signal output to the first output terminal via the second surface acoustic wave filter are arranged so as to be substantially 180 ° different from each other;
前記第 3の弾性表面波フィルタおよび前記第 4の弾性表面波フィルタ は、 前記第 1の出力端子および第 2の出力端子から前記第 3の弾性表面 波フィル夕を経由して前記第 3の出力端子に出力される信号の位相と、 前記第 4の弾性表面波フィルタを経由して前記第 3の出力端子に出力さ れる信号の位相とが実質的に 1 8 0 ° 異なるように配設されたことを特 徴とする弾性表面波装置。  The third surface acoustic wave filter and the fourth surface acoustic wave filter are configured to output the third output from the first output terminal and the second output terminal via the third surface acoustic wave filter. The phase of the signal output to the terminal and the phase of the signal output to the third output terminal via the fourth surface acoustic wave filter are substantially different by 180 °. Surface acoustic wave device characterized by the fact that:
1 2 . 圧電性基板上に I D Tが形成された弾性表面波装置において、 第 1の入力端子と、  1 2. In a surface acoustic wave device in which an IDT is formed on a piezoelectric substrate, a first input terminal;
前記第 1の入力端子に接続され、 前記第 1の入力端子に入力された電 気信号により第 1の弾性表面波を励振する第 1の励振 I D Tと、 前記第 1の励振 I D Tの両側に配設され、 前記第 1の弾性表面波を受信して電 気信号に変換する第 1の受信 I D Tおよび第 2の受信 I D Tとからなる、 第 1の中心周波数を有する第 1の弾性表面波フィルタと、  A first excitation IDT that is connected to the first input terminal and excites a first surface acoustic wave by an electric signal input to the first input terminal, and is disposed on both sides of the first excitation IDT. A first surface acoustic wave filter having a first center frequency, comprising: a first reception IDT and a second reception IDT that receive the first surface acoustic wave and convert it to an electric signal; ,
前記第 1の入力端子に接続され、 前記第 1の入力端子に入力された電 気信号により前記第 1の弾性表面波と実質的に 1 8 0 ° 位相の異なった 第 2の弾性表面波を励振する第 2の励振 I D Tと、 前記第 2の励振 I D Tの両側に配設され、 前記第 2の弾性表面波を受信して電気信号に変換 する第 3の受信 I D Tおよび第 4の受信 I D Tとからなる、 前記第 1の 中心周波数とわずかに異なる第 2の中心周波数を有する第 2の弾性表面 波フィ ルタと、 A second surface acoustic wave, which is connected to the first input terminal and has a phase substantially 180 ° different from that of the first surface acoustic wave, is generated by an electric signal input to the first input terminal. A second excitation IDT to be excited; a third reception IDT and a fourth reception IDT disposed on both sides of the second excitation IDT to receive the second surface acoustic wave and convert it into an electric signal. A second elastic surface having a second center frequency slightly different from said first center frequency Wave filters and
前記第 1の受信 I D Tおよび前記第 3の受信 I D Tと並列に接続され た第 1の出力端子と、  A first output terminal connected in parallel with the first reception IDT and the third reception IDT;
前記第 2の受信 I D Tおよび前記第 4の受信 I D Tと並列に接続され た第 2の出力端子と、  A second output terminal connected in parallel with the second reception IDT and the fourth reception IDT;
前記第 1の出力端子と接続した第 2の入力端子と、  A second input terminal connected to the first output terminal;
前記第 2の出力端子と接続した第 3の入力端子と、  A third input terminal connected to the second output terminal,
前記第 2の入力端子と接続され、 この入力端子に入力された電気信号 により第 3の弾性表面波を励振する第 3の励振 I D Tと、 前記第 3の入 力端子と接続され、 この入力端子に入力された電気信号により前記第 3 の弾性表面波を励振する第 4の励振 I D Tと、 前記第 3の励振 I D Tと 前記第 4の励振 I D Tとの間に配設され、 前記第 3の弾性表面波を受信 して電気信号に変換する第 5の受信 I D Tとからなる、 前記第 1の中心 周波数を有する前記第 3の弾性表面波フィルタと、  A third excitation IDT that is connected to the second input terminal, excites a third surface acoustic wave by an electric signal input to the input terminal, and is connected to the third input terminal; A fourth excitation IDT that excites the third surface acoustic wave by an electric signal input to the third excitation IDT, the fourth excitation IDT being disposed between the third excitation IDT and the fourth excitation IDT, A third reception surface acoustic wave filter having the first center frequency, comprising: a fifth reception IDT that receives a surface wave and converts it into an electric signal;
前記第 2の入力端子と接続され、 この入力端子に入力された電気信号 により前記第 3の弾性表面波を励振する前記第 5の励振 I D Tと、 前記 第 3の入力端子と接続され、 この入力端子に入力された電気信号により 第 4の弾性表面波を励振する前記第 6の励振 I D Tと、 前記第 5の励振 I D Tと前記第 6の励振 I D Tとの間に配設され、 第 4の弾性表面波を 受信して電気信号に変換する第 6の受信 I D Tとからなる、 前記第 2の 中心周波数を有する第 4の弾性表面波フィルタと、  A fifth excitation IDT that is connected to the second input terminal, excites the third surface acoustic wave by an electric signal input to the input terminal, and is connected to the third input terminal; A sixth excitation IDT that excites a fourth surface acoustic wave by an electric signal input to a terminal; and a fourth excitation IDT disposed between the fifth excitation IDT and the sixth excitation IDT. A fourth surface acoustic wave filter having the second center frequency, comprising: a sixth reception IDT that receives a surface wave and converts it into an electric signal;
前記第 5の受信 I D Tおよび前記第 6の受信 I D Tと並列に接続され た第 3の出力端子と  A third output terminal connected in parallel with the fifth reception IDT and the sixth reception IDT;
を具備したことを特徴とする弾性表面波装置。 A surface acoustic wave device comprising:
1 3 . 請求項 1 1乃至請求項 1 2のいずれかに記載の弾性表面波装置に おいて、 前記圧電性基板はこの基板上を伝搬する弾性表面波の電気機械 結合係数 k 2 が約 1%であり、 I DT 1本あたりの前記弾性表面波の反 射係数が約 3 %以上であることを特徴とする。 13. The surface acoustic wave device according to claim 11, wherein the piezoelectric substrate is an electromechanical device of a surface acoustic wave propagating on the substrate. Coupling coefficient k 2 is about 1%, and wherein the reflection coefficient of the surface acoustic wave per one I DT is about 3% or more.
14. 請求項 11乃至請求項 13のいずれかに記載の弾性表面波装置に おいて、 前記圧電性基板は四硼酸リチウムからなることを特徴とする。 14. The surface acoustic wave device according to any one of claims 11 to 13, wherein the piezoelectric substrate is made of lithium tetraborate.
15. 請求項 11乃至請求項 14のいずれかに記載の弾性表面波装置に おいて、 前記第 1の中心周波数と前記第 2の中心周波数とは約 0. 1 0 %~約 0. 18 %異なることを特徴とする。 15. The surface acoustic wave device according to any one of claims 11 to 14, wherein the first center frequency and the second center frequency are about 0.10% to about 0.18%. It is different.
16. 請求項 1 1乃至請求項 15のいずれかに記載の弾性表面波装置に おいて、 前記各 I D Tを構成する櫛歯状電極の交差幅は、 この櫛歯状電 極の配設周期の約 1 0倍以下であることを特徴とする。  16. The surface acoustic wave device according to any one of claims 11 to 15, wherein an intersecting width of the comb-shaped electrodes constituting each of the IDTs is equal to a period of arrangement of the comb-shaped electrodes. It is characterized by being about 10 times or less.
PCT/JP1997/002212 1996-06-28 1997-06-26 Surface acoustic wave device WO1998000914A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP50398398A JP4106092B2 (en) 1996-06-28 1997-06-26 Surface acoustic wave device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP16948196 1996-06-28
JP8/169481 1996-06-28

Publications (1)

Publication Number Publication Date
WO1998000914A1 true WO1998000914A1 (en) 1998-01-08

Family

ID=15887345

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1997/002212 WO1998000914A1 (en) 1996-06-28 1997-06-26 Surface acoustic wave device

Country Status (2)

Country Link
JP (1) JP4106092B2 (en)
WO (1) WO1998000914A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0961404A3 (en) * 1998-05-29 2000-08-09 Fujitsu Limited Surface-acoustic-wave filter having an improved suppression outside a pass-band
EP1244212A2 (en) * 2001-03-23 2002-09-25 Murata Manufacturing Co., Ltd. Surface acoustic wave apparatus and communications unit
JP2002359541A (en) * 2000-10-27 2002-12-13 Toyo Commun Equip Co Ltd Resonator-type surface acoustic wave filter
EP1137176A3 (en) * 2000-03-17 2003-08-20 Fujitsu Media Devices Limited Surface acoustic wave device
WO2009045469A2 (en) 2007-10-02 2009-04-09 Amgen Inc. Increasing erythropoietin using nucleic acids hybridizable to micro-rna and precursors thereof
EP3647318A1 (en) 2014-04-28 2020-05-06 Ionis Pharmaceuticals, Inc. Linkage modified oligomeric compounds

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60259011A (en) * 1984-06-05 1985-12-21 Toshiba Corp Surface acoustic wave device
JPS6243204A (en) * 1985-08-20 1987-02-25 Toyo Commun Equip Co Ltd Saw resonator filter
JPS6392123A (en) * 1987-09-24 1988-04-22 Hitachi Ltd Surface acoustic wave resonator composite filter
JPH02172312A (en) * 1988-12-26 1990-07-03 Hitachi Ltd Surface acoustic wave filter
JPH05335881A (en) * 1992-06-04 1993-12-17 Murata Mfg Co Ltd Longitudinal dual mode surface acoustic wave filter

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60259011A (en) * 1984-06-05 1985-12-21 Toshiba Corp Surface acoustic wave device
JPS6243204A (en) * 1985-08-20 1987-02-25 Toyo Commun Equip Co Ltd Saw resonator filter
JPS6392123A (en) * 1987-09-24 1988-04-22 Hitachi Ltd Surface acoustic wave resonator composite filter
JPH02172312A (en) * 1988-12-26 1990-07-03 Hitachi Ltd Surface acoustic wave filter
JPH05335881A (en) * 1992-06-04 1993-12-17 Murata Mfg Co Ltd Longitudinal dual mode surface acoustic wave filter

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0961404A3 (en) * 1998-05-29 2000-08-09 Fujitsu Limited Surface-acoustic-wave filter having an improved suppression outside a pass-band
EP1137176A3 (en) * 2000-03-17 2003-08-20 Fujitsu Media Devices Limited Surface acoustic wave device
JP2002359541A (en) * 2000-10-27 2002-12-13 Toyo Commun Equip Co Ltd Resonator-type surface acoustic wave filter
EP1244212A2 (en) * 2001-03-23 2002-09-25 Murata Manufacturing Co., Ltd. Surface acoustic wave apparatus and communications unit
EP1244212A3 (en) * 2001-03-23 2009-12-30 Murata Manufacturing Co., Ltd. Surface acoustic wave apparatus and communications unit
EP2372910A1 (en) * 2001-03-23 2011-10-05 Murata Manufacturing Co. Ltd. Surface acoustic wave apparatus and communications unit
WO2009045469A2 (en) 2007-10-02 2009-04-09 Amgen Inc. Increasing erythropoietin using nucleic acids hybridizable to micro-rna and precursors thereof
EP3647318A1 (en) 2014-04-28 2020-05-06 Ionis Pharmaceuticals, Inc. Linkage modified oligomeric compounds

Also Published As

Publication number Publication date
JP4106092B2 (en) 2008-06-25

Similar Documents

Publication Publication Date Title
JP3244386B2 (en) Surface acoustic wave device
JP4917396B2 (en) Filters and duplexers
US5844453A (en) Surface acoustic wave filter utilizing a transducer having interdigital electrodes and continuously adjacent electrodes
JP3191473B2 (en) Surface acoustic wave filter
KR100609966B1 (en) Surface acoustic wave filter apparatus and communication apparatus
US6462632B1 (en) Composite saw filter with a saw filter and a withdrawal weighted or electrode reversed saw resonator
JP4407696B2 (en) Surface acoustic wave device
EP1885064B1 (en) Filter having multiple surface acoustic wave filters connected in parallel
JP5810113B2 (en) Elastic wave resonator and elastic wave filter and antenna duplexer using the same
US5760664A (en) Acoustic wave filter with double reflective gratings and method for producing the same
WO1998000914A1 (en) Surface acoustic wave device
CN219107409U (en) SAW filter for Band1 receiving frequency Band
US6798318B1 (en) Hybrid leaky surface acoustic wave resonator filter
WO2022158470A1 (en) Elastic wave filter and multiplexer
JP3476299B2 (en) Double mode surface acoustic wave resonator filter
EP0930703A2 (en) Surface acoustic wave filter having improved frequency characteristic
JP3820954B2 (en) Surface acoustic wave device, communication device
JP4031096B2 (en) Surface acoustic wave filter and method of constructing surface acoustic wave filter
JP3839866B2 (en) Surface acoustic wave filter and method of forming pass frequency band
JP3315913B2 (en) Surface acoustic wave filter
JP3131573B2 (en) Surface acoustic wave filter
JPH09181565A (en) Surface acoustic wave filter device
WO2022091582A1 (en) Elastic wave filter
JP7132841B2 (en) SAW DEVICE, DISPENSER, AND COMMUNICATION DEVICE
JP4548305B2 (en) Dual-mode surface acoustic wave filter

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase