WO1997014719A1 - Analogue de fragment d'anticorps bifonctionnel ou bivalent - Google Patents

Analogue de fragment d'anticorps bifonctionnel ou bivalent Download PDF

Info

Publication number
WO1997014719A1
WO1997014719A1 PCT/EP1996/003605 EP9603605W WO9714719A1 WO 1997014719 A1 WO1997014719 A1 WO 1997014719A1 EP 9603605 W EP9603605 W EP 9603605W WO 9714719 A1 WO9714719 A1 WO 9714719A1
Authority
WO
WIPO (PCT)
Prior art keywords
antibody fragment
pgosa
peptide linker
gosa
fragment analogue
Prior art date
Application number
PCT/EP1996/003605
Other languages
English (en)
Inventor
Paul James Davis
Cornelis Paul Erik Van Der Logt
Martine Elisa Verhoeijen
Steve Wilson
Original Assignee
Unilever N.V.
Unilever Plc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unilever N.V., Unilever Plc filed Critical Unilever N.V.
Priority to AU68733/96A priority Critical patent/AU6873396A/en
Priority to BR9606706A priority patent/BR9606706A/pt
Priority to US08/860,174 priority patent/US5989830A/en
Priority to EP96929260A priority patent/EP0799244A1/fr
Publication of WO1997014719A1 publication Critical patent/WO1997014719A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/46Hybrid immunoglobulins
    • C07K16/468Immunoglobulins having two or more different antigen binding sites, e.g. multifunctional antibodies
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide

Definitions

  • the invention relates to new bispecific or bivalent
  • antibody fragment analogues a process for preparing such antibody fragment analogues and various uses of such antibody fragment analogues.
  • Antibody molecules typically are Y-shaped molecules whose basic unit consist of four polypeptides, two identical heavy chains and two identical light chains, which are covalently linked together by disulfide bonds. Each of these chains is folded in discrete domains.
  • the C- terminal regions of both heavy and light chains are conserved in sequence and are called the constant regions, also known as C-domains.
  • the N-terminal regions, also known as V-domains are variable in sequence and are responsible for the antibody specificity.
  • the antibody specifically recognizes and binds to an antigen mainly through six short
  • fragments as they contained the antigen-binding site.
  • Digestion with pepsin is such that the two Fab's remain connected via the hinge, forming only two fragments: Fc' and Fab 2 .
  • the Fv is the smallest unit of an antibody which still contains the complete binding site (see Figure 1) and full antigen binding activity. It consists of only the V-domains of the heavy and light chains thus forming a small,
  • Fv's have a
  • Fv's were only available by proteolysis in a select number of cases (Givol, 1991).
  • the production of Fv's can now be achieved more routinely using genetic engineering methods through cloning and expressing DNA encoding only the V-domains of the antibody of interest.
  • Smaller fragments such as individual V-domains (Domain Antibodies or dABs, Ward et al . , 1989), and even individual CDR's (Williams et al . , 1989; Taub et al . , 1989) were shown to retain the binding characteristics of the parent
  • the exposed hydrophobic patches are thought to contribute to aggregation of the protein inside the cells and/or in the culture medium, leading to poor expression and/or poor solubility (Anthony et al . , 1992; Ward et al . , 1989).
  • the hydrophobic patches can also explain the high non-specific binding described by Berry and Davies, 1992. These problems clearly limit the usefulness of these molecules.
  • Camelid antibodies appear to be an exception to this rule in that they only need one V-domain, namely V H , to specifically and effectively bind an antigen (Hamers-Castermans et al ., 1993). In addition, preliminary data indicate that they seem not to suffer from the
  • mouse dABs as these camelid antibodies or fragments thereof are soluble and have been shown to express well in yeast and Aspergillus moulds.
  • alternative systems can be relatively high (1-2 g/1 for Fab secreted to the periplasmic space of E. coli in high cell density fermentation, see Carter et al . , 1992), or at a lower level, e.g. about 0.1 mg/l for Fab in yeast in fermenters (Horwitz et al . , 1988), and 150 mg/l for a fusion protein CBHI-Fab and 1 mg/1 for Fab in Trichoderma in fermenters (Nyyssönen et al . , 1993) and such production is very cheap compared to whole antibody production in mammalian cells (hybridoma, myeloma, CHO).
  • the fragments can be produced as Fab's or as Fv's, but additionally it has been shown that a V H and a V L can be genetically linked in either order by a flexible
  • the antibody fragments Fab, Fv and scFv differ from whole antibodies in that the antibody fragments carry only a single antigen-binding site .
  • Recombinant f ragments with two binding sites have been made in several ways, for example, by chemical cross-linking of cysteine residues introduced at the C-terminus of the V H of an Fv (Cumber et al . , 1992), or at the C-terminus of the V L of an scFv (Pack and
  • bispecific antibody fragments When two different specificities are desired, one can generate bispecific antibody fragments.
  • the traditional approach to generate bispecific whole antibodies was to fuse two hybridoma cell lines each producing an antibody having the desired specificity. Because of the random association of immunoglobulin heavy and light chains, these hybrid hybridomas produce a mixture of up to 10 different heavy and light chain combinations, only one of which is the bispecific antibody (Milstein and Cuello, 1983).
  • V H and V L covalently linking V H and V L was removed, thus generating two proteins each consisting of a V H directly and
  • Patent application WO 94/09131 (SCOTGEN LTD; priority date 15.10.92) relates to a bispecific binding protein in which the binding domains are derived from both a V H and a V L region either present at two chains or linked in an scFv, whereas other fused antibody domains, e.g. C-terminal constant domains, are used to stabilise the dimeric constructs.
  • Patent application WO 94/13804
  • V H 1-linker-V L 1-linker-V H 2-linker-V L 2 fragment was shown to contain both antigen binding specificities 1 and 2.
  • Traditionally whenever single-chain antibody fragments are referred to, a single molecule consisting of one heavy chain linked to one (corresponding) light chain in the presence or absence of a polypeptide linker is implicated.
  • the present invention provides a bispecific or bivalent antibody fragment analogue, which comprises a binding complex containing two polypeptide chains, one of which comprises two times a variable domain of a heavy chain (V H ) in series and the other comprises two times a variable domain of a light chain (V L ) in series.
  • one chain of the antibody fragment analogue comprises a first V H (V H -A) connected to a second V H (V H -B) and the other chain comprises a first V L (V L -A) connected to a second V L (V L -B).
  • one chain comprises a first V H (V H -A) followed by a second V H (V H -B), thus [V H -A * V H -B]
  • the other chain comprises a first V L (V L -A) preceded by a second V L (V L -B), thus [V L -B * V L -A].
  • the two V H 's are directly connected to each other, but for other embodiments of this aspect of the invention the two V L 's are directly connected to each other.
  • the two V H 's are connected to each other by a linker and also the two V L 's are connected to each other by a linker.
  • a linker usually comprises at least one amino acid residue.
  • one chain comprises a first V H (V H -A) followed by a second V H (V H -B), thus [V H -A * V H -B], and the other chain comprises a first V L (V L -A) followed by a second V L (V L -B), thus [V L -A * V L -B], and in which the two V H 's are connected to each other by a linker and also the two V L 's are
  • each linker comprises at least 10 amino acid residues.
  • bispecific or bivalent antibody fragment analogues can be used in a diagnostic technique or for immunoassays, in a purification method, for therapy, or in other methods in which immunoglobulins or fragments thereof are used. Such uses are well-known in the art.
  • the invention also provides a process for producing the antibody fragments of the invention in that a host is transformed by incorporating into that host a DNA encoding the two V H 's with or without a connecting linker and a DNA encoding the two V L 's with or without a connecting linker.
  • a host is transformed by incorporating into that host a DNA encoding the two V H 's with or without a connecting linker and a DNA encoding the two V L 's with or without a connecting linker.
  • the two DNA's are placed in a dicistronic arrangement.
  • the two linked V H 's and the two linked V L 's are produced separately by different hosts, after which the linked V H 's produced by one host can be combined with the linked V L 's produced by the other host.
  • the hosts can be selected from the group consisting of prokaryotic bacteria of which examples are Gram-negative bacteria, e.g. E. coli , and Gram-positive bacteria, e.g. B . subtilis or lactic acid bacteria, lower eukaryotes examples of which are yeasts, e.g. belonging to the genera
  • Saccharomyces, Kluyveromyces, or Trichoderma, moulds e.g. belonging to the genera Aspergillus and Neurospora, and higher eukaryotes, examples of which are plants, e.g.
  • Figure 1 depicts in schematic form the structure of a typical antibody (immunoglobulin) molecule.
  • Figure 2 shows a schematic representation of published arrangements of heavy and light chain V-domain gene fragments that have been proven to produce bispecific antibody fragments.
  • V H A-V H B + V L B-V L A arrangement of the V-domains of a double head antibody fragment according to the invention with the V-domains in the following order: V H A-V H B + V L B-V L A.
  • Figure 4 shows the nucleotide sequence of the EcoRI- HindIII insert of pUR.4124 containing DNA (see SEQ ID NO: 1) encoding V L Lys-Linker-V H Lys (see SEQ ID NO: 2).
  • Figure 5 shows the nucleotide sequence of the HindIII- EcoRI insert of plasmid Fv.3418 (see SEQ ID NO: 3) containing DNA encoding pelB leader- V H 3418 (see SEQ ID NO: 4) and DNA encoding pelB leader-V L 3418 (see SEQ ID NO: 5).
  • Figure 6 shows the nucleotide sequence of the HindIII- EcoRI insert of plasmid Fv.4715-myc (see SEQ ID NO: 6) containing DNA encoding pelB leader- V H 4715 (see SEQ ID NO : 7) and DNA encoding pelB leader-V L 4715-Myc tag (see SEQ ID NO: 8).
  • Figure 7 shows the nucleotide sequence of the HindIII- EcoRI insert of scFv.4715-myc containing DNA (see SEQ ID NO: 9) encoding pelB leader- V H 4715-Linker-V L 4715-Myc tag (see SEQ ID NO: 10).
  • Figure 8 a/b shows the nucleotide sequence of the HindIII- EcoRI insert of pGOSA.E (see SEQ ID NO: 11) containing DNA encoding pelB leader-V H 4715- Linker-V L 3418 (see SEQ ID NO: 12) and DNA encoding pelB leader-V L 3418-Linker-V H 4715 (see SEQ ID NO: 13).
  • Figure 9 gives an overview of the oligonucleotides and their positions in pGOSA.E that can be used to replace V-domain gene fragments.
  • Figure 10 illustrates the amino acid sequence of the V H - V H and V L -V L domain junctions in fusion
  • polypeptides GOSA.E see amino acids 114-145 in SEQ ID NO: 12 and amino acids 102-128 in
  • Figure 11 shows the specificity of Streptococcus binding of scFv.4715-myc.
  • Figure 12 shows the specificity of glucose oxidase
  • Figure 13 shows the specificity of glucose oxidase
  • Figure 14 shows the specificity of glucose oxidase
  • Figure 15 shows the specificity of glucose oxidase
  • Figure 16 shows the results of an ELISA.
  • Figure 17 shows the results of an ELISA. Individual
  • Figure 18 shows the results of an ELISA. Individual
  • Figure 19 shows the results of an ELISA. Individual
  • Figure 20 shows the source of fragment PCR.
  • I BstEII/SacI Figure 21 shows the source of fragment PCR.
  • II SfiI/EcoRI Figure 22 shows the source of fragment PCR.
  • III NheI/SacI Figure 23 shows the source of fragment PCR.
  • IV XhoI/EcoRI Figure 24 shows the source of fragment PCR.
  • V SalI/EcoRI Figure 25 shows the source of fragment PCR.
  • VI SfiI/NheI Figure 26 shows the source of fragment PCR.VII
  • Figure 27 shows the source of fragment PCR.VIII
  • Figure 28 shows the source of fragment PCR.
  • Figure 29 shows the source of fragment PCR.
  • X PstI/EcoRI Figure 30 shows the construction of plasmid pGOSA.
  • a Figure 31 shows the construction of plasmid pGOSA.
  • B Figure 32 shows the construction of plasmid pGOSA.
  • C Figure 33 shows the construction of plasmid pGOSA.
  • D Figure 34 shows the construction of plasmid pGOSA.
  • E Figure 35 shows the construction of plasmid pGOSA.
  • V Figure 36 shows the construction of plasmid pGOSA.
  • S Figure 37 shows the construction of plasmid pGOSA.T Figure 38 a/b shows the construction of plasmid pGOSA.G Figure 39 shows the construction of plasmid pGOSA.
  • J Figure 40 shows the construction of plasmid pGOSA.Z Figure 41 shows the construction of plasmid pGOSA.
  • AA Figure 42 shows the construction of plasmid pGOSA.AB
  • Figure 43 shows the construction of plasmid pGOSA.L
  • Figure 44 shows the construction of plasmid pGOSA.Y
  • Figure 45 shows the construction of plasmid pGOSA.
  • Figure 46 shows the construction of plasmid pGOSA.AC
  • Figure 47 shows the construction of plasmid pGOSA.AD.
  • an antibody fragment analogue consisting of a two chain protein complex
  • one of the chains consists of two heavy chain V-domains and the other chain consists of the two corresponding light chain V-domains in either order.
  • variable domains are linked either directly or through a polypeptide linker. Subsequent molecular modelling of this combination suggested that the protein chains could fold such that both binding sites are fully accessible, provided that the connecting linkers are kept long enough to span 30 to 35 A.
  • double heads contain both antigen binding specificities of the Fv's used to generate these bispecific antibody fragments. It is exemplified that these type of constructs according to the invention can be used to target the enzyme glucose oxidase to whole
  • E. coli JM109 endA1, recA1, gyrA96, thi, hsdR17(r K , m K + ), relA1, supE44, ⁇ ( lac-proAB), [F', traD36, proAB, lacI q Z ⁇ M15].
  • E. coli cultures were grown in 2xTY medium (16 g tryptone, 10 g yeast extract, 5 g NaCl per litre H 2 O), where indicated supplemented with 2% glucose and/or 100 ⁇ g/ml ampicillin.
  • Transformations were plated out on SOBAG plates (20 g tryptone, 5 g yeast extract, 15 g agar, 0.5 g NaCl per litre H 2 O plus 10 mM MgCl 2 , 2% glucose, 100 ⁇ g/ml
  • the expression vectors used are derivatives of pUC19.
  • the oligonucleotide primers used in the PCR are derivatives of pUC19.
  • Colonies from freshly transformed JM109 plated onto SOBAG plates were used to inoculate 2xTY medium supplemented with 100 ⁇ g/ml ampicillin, 2% glucose. Cultures were shaken at 37°C to an OD 600 in the range of 0.5 to 1.0. Cells were pelleted by centrifugation and the supernatant was removed. The pelleted cells were resuspended in 2xTY medium with 100 ⁇ g/ml ampicillin, 1 mM IPTG, and grown for a further 18 hours at 25°C. Cells were pelleted by centrifugation and the supernatant, containing the secreted chains, used directly in an ELISA.
  • the proteins in the periplasm of the pelleted cells were extracted by resuspending the cell pellet in 1/20 of the original culture volume of lysis buffer (20% sucrose, 200 mM Tris-HCl pH 7.5, 1 mM EDTA, 500 ⁇ g/ml lysozyme). After incubation at 25°C for 20 minutes an equal volume of H 2 O was added and the incubation was
  • GOSA.E, GOSA.V, GOSA.S and GOSA.T were partially purified by affinity chromatography. 100 ml periplasmic extract of each of these constructs was loaded onto a Glucose-oxidase-Sepharose column (CNBr-Sepharose, Pharmacia) prepared according to the manufacturer's instructions. After
  • variable domains are linked either directly or through a polypeptide linker.
  • the expression vectors used are
  • HindIII-EcoRI fragment that in the case of plasmid scFv.4715-myc contains a DNA fragment encoding one pelB signal sequence fused to the N-terminus of the V H that is directly linked to the corresponding V L of the antibody through a connecting flexible peptide linker, (Gly 4 Ser) 3 (present in SEQ ID NO: 2 as amino acids 109-123 and in SEQ ID NO: 10 as amino acids 121-135), thus generating a single-chain molecule (see Figure 7).
  • the DNA fragments encoding both the V H and V L of the antibody are preceded by a ribosome binding site and a DNA sequence encoding the pelB signal sequence in an artificial
  • the pGOSA.E derivatives pGOSA.V, pGOSA.S and pGOSA.T with only one or no linker sequence are derived from the pGOSA.E construct by removing the linker sequences by means of PCR directed mutagenesis with oligonucleotides listed in Table 1 below. These three constructs lack some of the restriction sites at the new joining points.
  • the V H A-V H B gene fragment without a linker lacks the 5' V H B SfiI site.
  • the V L B-V L A gene fragment without a linker lacks the 5' V L A SalI site.
  • FIG. 9 shows the amino acid sequence of the junctions between the V H A-V H B and V L B-V L A fragments encoded by DNA present in pGOSA.E, pGOSA.V, pGOSA.S and pGOSA.T.
  • pGOSA.E, pGOSA.V, pGOSA.S and pGOSA.T A more detailed description of the preparation of pGOSA.E, pGOSA.V, pGOSA.S and pGOSA.T is given in Example 5.
  • double heads i.e. the two chain protein complexes, contain both antigen binding
  • Figure 12-15 show that GOSA.E, GOSA.V, GOSA.S and GOSA.T can be used to specifically target the enzyme glucose oxidase to several Streptococcus sanguis strains using antibody fragments derived from hybridoma' s expressing antibodies directed against these antigens.
  • GOSA.E, GOSA.V, GOSA.S and GOSA.T samples were analysed on a Pharmacia FPLC Superose 12 column. The analysis was performed using PBS at a flow rate of 0.3 ml/minute. Eluate was monitored at 280 nm and 0.3 ml fractions were collected and analysed by ELISA.
  • GOSA.E, GOSA.V, GOSA.S and GOSA.T are primarily produced as dimeric molecules. Occasionally an activity peak with an apparent molecular weight of ⁇ 200 kD was observed (see Figure 16). The presence of Glucose Oxidase activity in these fractions (data not shown) indicate that these fractions contain GOSA double head complexed with glucose oxidase that was eluted with the GOSA sample from the glucose oxidase-sepharose affinity matrix.
  • the primary structures of the oligonucleotide primers used in the construction of the bispecific 'pGOSA' constructs are shown in Table 1 above.
  • Reaction mixture used for amplification of DNA fragments were 10 mM Tris-HCl, pH 8.3, 2.5 mM MgCl 2 , 50 mM KCl, 0.01% gelatin (w/v), 0.1% Triton X-100, 400 mM of each dNTP, 5.0 units of Vent DNA polymerase (New England Biolabs), 100 ng of template DNA, and 500 ng of each primer (for 100 ⁇ l reactions).
  • Reaction conditions were: 94°C for 4 minutes, followed by 33 cycles of each 1 minute at 94°C, 1 minute at 55°C, and 1 minute 72°C.
  • Plasmid DNA was prepared using the 'Qiagen P-100 Midi-DNA Preparation' system. Vectors and inserts were prepared by digestion of 10 ⁇ g (for vector preparation) or 20 ⁇ g (for insert preparation) with the specified restriction
  • Vector DNAs and inserts were separated through agarose gel electrophoresis and purified with DEAE-membranes NA45 (Schleicher & Schuell) as described by Maniatis et al .
  • Ligations were performed in 20 ⁇ l volumes containing 30 mM Tris-HCl pH 7.8, 10 mM MgCl 2 , 10 mM DTT, 1 mM ATP, 300-400 ng vector DNA, 100-200 ng insert DNA and 1 Weiss unit T 4 DNA ligase. After ligation for 2-4 h at room temperature, CaCl 2 competent E. coli JM109 (Maniatis) were transformed using 7.5 ⁇ l ligation reaction. The transformation mixtures were plated onto SOBAG plates and grown overnight at 37°C.
  • each reaction was checked for the presence of a band of the appropriate size by agarose gel electrophoresis.
  • One or two 100 ⁇ l PCR reaction mixtures of each of the PCR reactions PCR.I - PCR.X ( Figure 20-29), together containing approximately 2-4 ⁇ g DNA product were subjected to phenol-chloroform extraction, chloroform extraction and ethanol precipitation. The DNA pellets were washed twice with 70% ethanol and allowed to dry. Next, the PCR products were digested overnight (18 h) in the presence of excess restriction enzyme in the following mixes at the specified temperatures and volumes.
  • PCR . I I I was digested with EcoRI (overnight at 37°C) by the addition of 16 ⁇ l H 2 O, 30 ⁇ l 10x "One-
  • pGOSA.E The construction of pGOSA.E (see Figure 8) involved several cloning steps that produced 4 intermediate constructs pGOSA.A to pGOSA.D (see Figure 30-34).
  • the final expression vector pGOSA.E and the oligonucleotides in Table 1 above have been designed to enable most specificities to be cloned into the final pGOSA.E construct ( Figure 9).
  • the upstream V H domain can be replaced by any PstI-BstEII V H gene fragment obtained with oligonucleotides PCR.51 and
  • PCR.89 see Table 1 above.
  • the oligonucleotides DBL.3 and DBL.4 were designed to introduce SfiI and NheI restriction sites in the V H gene fragments thus allowing cloning of those V H gene fragments into the SfiI- NheI sites as the downstream V H domain. All V L gene
  • fragments obtained with oligonucleotides PCR.116 and PCR.90 can be cloned into the position of the V L .3418 gene fragment as a SacI-XhoI fragment.
  • V H .3418 gene fragment Oligonucleotides DBL.8 and DBL.9 (see Table 1 above) are designed to allow cloning of V L gene fragments into the position of the V L .4715 gene fragment as a SalI -NotI fragment.
  • the pGOSA.E derivatives pGOSA.V, pGOSA.S and pGOSA.T with only one or no linker sequences contain some aberrant restriction sites at the new joining points.
  • the V H A-V H B construct without a linker lacks the 5' V H B SfiI site.
  • V H B fragment is cloned into these constructs as a BstEII/NheI fragment using oligonucleotides DBL.10 or DBL.11 and DBL.4 (see Table 1 above).
  • the V L B-V L A construct without a linker lacks the 5' V L A SalI site.
  • the V L A fragment is cloned into these constructs as a XhoI/EcoRI fragment using oligonucleotides DBL.11 and DBL.9 (see Table l above).
  • This plasmid is derived from both the Fv.4715-myc construct and the scFv.4715-myc construct.
  • oligonucleotides used to produce PCR-I were designed to match the sequence of the framework-3 region of V H .4715 and to prime at the junction of the DNA encoding the (Gly 4 Ser) 3 linker and the V L .4715 gene fragment, respectively.
  • pGOSA.A can be indicated as: pelB-V H 4715-linkerA-(SfiI)-V L 4715-myc.
  • This plasmid is derived from plasmid Fv.3418 (see Figure 31).
  • the XhoI-EcoRI fragment of plasmid Fv.3418 comprising the 3' end of DNA encoding framework-4 of the V L including the stop codon was removed and replaced by the fragment PCR-IV XhoI/ EcoRI ( Figure 23).
  • the oligonucleotides used to produce PCR-IV (DBL.6 and DBL.7, see Table 1 above) were designed to match the sequence at the junction of the V L and the (Gly 4 Ser) 3 linker perfectly (DBL.6), and to be able to prime at the junction of the (Gly 4 Ser) 3 linker and the V H in pUR.4124 (DBL.7).
  • pGOSA.B can be indicated as:
  • This plasmid contains DNA encoding V H .4715 linked by the (Gly 4 Ser) 3 AlaGlySerAla linker to V H .3418 (see Figure 32), thus: pelB-V H 4715-linkerA-V H 3418.
  • This construct was obtained by replacing the SfiI-EcoRI fragment from pGOSA.A encoding V L .4715 by the fragment PCR-II SfiI/EcoRI containing the V H .3418 gene (see Figure 21).
  • the oligonucleotides used to produce PCR-II hybridize in the framework-1 and framework-4 region of the gene encoding V H .3418,
  • DBL.3 was designed to remove the PstI
  • DBL.4 destroys the BstEII restriction site in the framework-4 region and introduces an NheI restriction site downstream of the stopcodon.
  • This plasmid contains a dicistronic operon comprising the V H .3418 gene and D ⁇ A encoding V L .3418 linked by the
  • oligonucleotides used to obtain PCR-V were designed to match the nucleotide sequence of the framework-1 and framework-4 regions of the V L .4715 gene, respectively.
  • DBL.8 removed the SacI site from the framework-1 region (silent mutation) and introduced a SalI restriction site upstream of the V L .4715 gene.
  • DBL.9 destroyed the XhoI restriction site in the framework-4 region of the V L .4715 gene (silent mutation) and introduced a NotI and an EcoRI restriction site downstream of the stop codon.
  • This plasmid contains a dicistronic operon comprising D ⁇ A encoding V H .4715 linked by the (Gly 4 Ser) 3 AlaGlySerAla linker to V H .3418 plus D ⁇ A encoding V L .3418 linked by the
  • the remaining PstI-SacI pGOSA.D vector contains the 5' end of the framework-1 region of V H .3418 upto the PstI restriction site and V L .3418 linked by the (Gly 4 Ser) 2 Gly 4 Val linker to V L .4715 starting from the SacI restriction site in V L .3418.
  • the PstI- NheI pGOSA.C insert contains V H .4715 linked by the (Gly 4 Ser) 3 -AlaGlySerAla linker to V H .3418, starting from the PstI restriction site in the framework-1 region in V H .4715.
  • the NheI-SacI PCR-III fragment provides the ribosome binding site and D ⁇ A encoding the pelB leader sequence for the V L .3418-(Gly 4 Ser) 2 Gly 4 Val-V L .4715 construct.
  • the oligonucleotides DBL.5 and PCR.116 (see Table 1 above) used to generate PCR-III were designed to match the sequence upstream of the ribosome binding site of V L .4715 in Fv.4715 and to introduce an NheI restriction site (DBL.5), and to match the framework-4 region of V L .3418 (PCR.116).
  • This plasmid is derived from pGOSA.E (see Figure 35) from which the BstEII/NheI fragment containing D ⁇ A encoding linkerA-V H .3418 was excised and replaced by the fragment PCR-VII BstEII/NheI containing the V H .3418 gene (see Figure 26).
  • the resulting plasmid pGOSA.V contains V H .3418 linked directly to the framework-4 region of V H .4715, plus V L .4715 linked by the (Gly 4 Ser) 2 Gly 4 Val linker to the framework-4 region of V L .3418, thus:
  • This plasmid is derived from pGOSA.E (see Figure 36) from which the (Gly 4 Ser) 2 Gly 4 Val-V L 4715 XhoI/EcoRI fragment was excised and replaced by the fragment PCR-VIII XhoI/EcoRI which contains V L .4715 (see Figure 27).
  • the resulting plasmid pGOSA.S contains V H .4715 linked by the (Gly 4 Ser) 3 -AlaGlySerAla linker to V H .3418 plus V L .3418 linked directly to the 5' end of the framework-1 region of V L -4715, thus: pelB-V H .4715-linkerA-V H .3418 + pelB-V L .3418*V L .4715.
  • This plasmid contains a dicistronic operon consisting of V H .3418 directly to the framework-4 region of V H .4715 plus V L .3418 linked directly to the 5' end of the framework-1 region of V L .4715 (see Figure 37). Both transcriptional units are preceded by a ribosome binding site and a pelB leader sequence, thus:
  • This plasmid is an intermediate for the synthesis of pGOSA.J. It is derived from pGOSA.E from which the V H 4715 PstI/BstEII fragment has been excised and replaced by the V H 3418 PstI/BstEII fragment (excised from Fv.3418).
  • the resulting plasmid pGOSA.G contains two copies of V H .3418 linked by the (Gly 4 Ser) 3 AlaGlySerAla linker, plus V L .4715 linked by the (Gly 4 Ser) 2 Gly 4 Val linker to the framework-4 region of V L .3418, thus:
  • This plasmid contains a dicistronic operon consisting of V H .3418 linked by the (Gly 4 Ser) 3 AlaGlySerAla linker to
  • This plasmid is derived from pGOSA.G from which the
  • This plasmid contains a dicistronic operon consisting of the V H .3418 linked directly to the 5' end of the framework-1 region of V H .4715 plus V L .3418 linked directly to the 5' end of the framework-1 region of V L .4715.
  • transcriptional units are preceded by a ribosome binding site and a pelB leader sequence (see Figure 41).
  • This construct was obtained by inserting the NheI/EcoRI fragment of pGOSA.T which contains V L .3418 linked directly to the 5' end of the framework-1 region of V L .4715, into the vector pGOSA.Z from which the NheI/EcoRI fragment containing
  • This plasmid is derived from pGOSA.J by a three point ligation reaction (see Figure 42).
  • V H .3418 linked directly to the framework-1 region of V L .4715 (see Figure 37).
  • the resulting plasmid contains V H .3418 linked by the (Gly 4 Ser) 3 AlaGlySerAla linker to the 5' end of the framework-1 region of V H .4715 plus V L .3418 linked directly to the 5' end of the framework-1 region of V L .4715, thus:
  • This plasmid is derived from pGOSA.E from which the
  • HindIII/NheI fragment containing D ⁇ A encoding V H .4715- (Gly 4 Ser) 3 AlaGlySerAla-V H .3418 was removed (see Figure 43).
  • the D ⁇ A ends of the vector were made blunt-end using Klenow D ⁇ A polymerase and ligated.
  • the resulting plasmid pGOSA.L contains V L .3418 linked by the (Gly 4 Ser) 2 Gly 4 Val linker to the 5' end of the framework-1 region of V L .4715, thus:
  • This plasmid is derived from pGOSA.T from which the
  • HindIII/NheI fragment containing D ⁇ A encoding V H .4715-V H .3418 was removed (see Figure 44).
  • the D ⁇ A ends of the vector were made blunt-end using Klenow D ⁇ A polymerase and ligated.
  • the resulting plasmid pGOSA.Y contains V L .3418 linked directly to 5' end of the framework-1 region of V L .4715, thus:
  • This plasmid is derived from pGOSA.T from which the
  • This plasmid is derived from pGOSA.Z from which the
  • NheI/EcoRI fragment containing DNA encoding V L .3418- (Gly 4 Ser) 2 Gly 4 Val-V L .4715 was removed (see Figure 46).
  • the DNA ends of the vector were made blunt-end using Klenow DNA polymerase and ligated.
  • the resulting plasmid pGOSA.AC contains V H .3418 linked directly to 5' end of the
  • This plasmid was obtained by inserting the PstI/ EcoRI PCR.X fragment containing DNA encoding V H .3418-(Gly 4 Ser) 3 AlaGly-SerAla-V H .4715 (see Figure 29) into the Fv.4715-myc vector from which the PstI/EcoRI Fv.4715-myc insert was removed (see Figure 47), thus: pelB-V H .3418-linkerA-V H .4715.
  • These monocistronic constructs can be used to transform the same host with two different plasmids or to transform two different hosts, so that the two V H 's in series can be produced separately from the two V L 's in series.
  • variable domains are linked either directly or through a polypeptide linker.
  • double heads contain both antigen binding specificities of the Fv's used to generate these multi-functional antibody fragments.
  • Figure 12 shows that GOSA.E can be used to specifically target the enzyme glucose oxidase to several Streptococcus sanguis strains, using antibody fragments derived from hybridomas expressing antibodies directed against these antigens.
  • Figure 12 further shows that the fine specificity of the anti- Streptococcus sanguis scFv 4715 is preserved in the GOSA.E double head.
  • V H A-V H B + V L B-V L A V H A-LinkerA-V H B + V L B-LinkerV-V L A
  • GOSA.J V H B-LinkerA-V H A + V L B-LinkerV-V L A
  • connecting linkers are kept long enough (to span 30 to 35 ⁇ ), the protein chains could fold such that both binding sites are fully accessible.
  • V H A-V H B + V L B-V L A (GOSA.E) wherein linker length was not critical, was predicted to result in a complex with both binding sites facing in opposite directions, without the restraints suggested for the configuration V H B-V H A + V L B-V L A (GOSA.J).
  • the sensitivity of the GOSA.E double head is as least as a sensitive as an
  • IgG-glucose oxidase conjugate as determined by the lowest concentration of Streptococcus sanguis antigen immobilised on a solid phase that is still detectable.
  • GOSA double heads are produced as dimers
  • GOSA.V, GOSA.S and GOSA.T samples usually gave only one GOSA double head activity peak as determined by ELISA
  • molecules together in one cell can be produced by translation from one dicistronic messenger (GOSA.E, GOSA.S,
  • Table 2A describes intermediate constructs that were not further tested.
  • Table 2B describes the dicistronic constructs.
  • Table 2C describes the monocistronic constructs.
  • PROTEINS THEIR MANUFACTURE AND USE; first priority date 04.12.92
  • Platelet Fibrinogen Receptor Contains a Sequence That

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • Genetics & Genomics (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Peptides Or Proteins (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

L'invention concerne un analogue de fragment d'anticorps bispécifique ou bivalent, comprenant un complexe de fixation contenant deux chaînes polypeptidiques, et caractérisé en ce que l'une de celles-ci comporte deux domaines (VH) variables de chaîne lourde, en série, et l'autre comporte deux domaines (VL) variables de chaîne légère, en série, et en ce que le complexe de fixation comprend en outre deux paires de domaines variables (VH-A//VL-A et VHB//VL-B). Les deux domaines VH et/ou les deux domaines VL sont reliés directement ou au moyen d'un segment de liaison peptidique intermédiaire. On décrit également un procédé de production de tels analogues de fragment d'anticorps.
PCT/EP1996/003605 1995-10-16 1996-08-14 Analogue de fragment d'anticorps bifonctionnel ou bivalent WO1997014719A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
AU68733/96A AU6873396A (en) 1995-10-16 1996-08-14 A bifunctional or bivalent antibody fragment analogue
BR9606706A BR9606706A (pt) 1995-10-16 1996-08-14 Análogo de fragmento de anticorpo biespecífico ou bivalente uso processo para produzir o mesmo
US08/860,174 US5989830A (en) 1995-10-16 1996-08-14 Bifunctional or bivalent antibody fragment analogue
EP96929260A EP0799244A1 (fr) 1995-10-16 1996-08-14 Analogue de fragment d'anticorps bifonctionnel ou bivalent

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP95307332 1995-10-16
GB95307332.7 1995-10-16

Publications (1)

Publication Number Publication Date
WO1997014719A1 true WO1997014719A1 (fr) 1997-04-24

Family

ID=8221367

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1996/003605 WO1997014719A1 (fr) 1995-10-16 1996-08-14 Analogue de fragment d'anticorps bifonctionnel ou bivalent

Country Status (6)

Country Link
US (1) US5989830A (fr)
EP (1) EP0799244A1 (fr)
CN (1) CN1173878A (fr)
AU (1) AU6873396A (fr)
BR (1) BR9606706A (fr)
WO (1) WO1997014719A1 (fr)

Cited By (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997038102A1 (fr) * 1996-04-04 1997-10-16 Unilever Plc Proteine, polyvalente et a specificites multiples, de fixation sur un antigene
WO2000024884A2 (fr) * 1998-10-27 2000-05-04 Unilever Plc Proteines de fixation d'antigene
US6066719A (en) * 1995-04-20 2000-05-23 Genetech, Inc. Antibody fragments
WO2000036094A1 (fr) * 1998-12-11 2000-06-22 Unilever N.V. Enzymes de blanchiment et compositions detergentes les renfermant
US6333396B1 (en) 1998-10-20 2001-12-25 Enzon, Inc. Method for targeted delivery of nucleic acids
US6824782B2 (en) 1997-04-30 2004-11-30 Enzon, Inc. Polyalkylene oxide-modified single chain polypeptides
JP2009504191A (ja) * 2005-08-19 2009-02-05 アボット・ラボラトリーズ 二重可変ドメイン免疫グロブリン及びその使用
EP2050764A1 (fr) * 2007-10-15 2009-04-22 sanofi-aventis Nouveau format d'anticorps bispécifique polyvalent
EP2070947A1 (fr) 2003-12-05 2009-06-17 multimmune GmbH Anticorps anti-Hsp70 thérapeutiques et de diagnostic
CN102168058A (zh) * 2010-11-30 2011-08-31 湖南师范大学 一种抗肿瘤靶向工程菌和菌剂及其制备方法
WO2012135345A1 (fr) * 2011-03-28 2012-10-04 Sanofi Protéines de liaison à des anticorps-like à double région variable ayant une orientation croisée de région de liaison
JP2012228248A (ja) * 2005-08-19 2012-11-22 Abbott Lab 二重可変ドメイン免疫グロブリン及びその使用
US8722859B2 (en) 2000-04-11 2014-05-13 Genentech, Inc. Multivalent antibodies and uses therefor
WO2014100490A1 (fr) * 2012-12-19 2014-06-26 Adimab, Llc Analogues d'anticorps multivalents, et leurs procédés de préparation et d'utilisation
WO2015069865A1 (fr) 2013-11-06 2015-05-14 Janssen Biotech, Inc. Anticorps anti-ccl17
US9266967B2 (en) 2007-12-21 2016-02-23 Hoffmann-La Roche, Inc. Bivalent, bispecific antibodies
US9382323B2 (en) 2009-04-02 2016-07-05 Roche Glycart Ag Multispecific antibodies comprising full length antibodies and single chain fab fragments
WO2017024146A1 (fr) 2015-08-05 2017-02-09 Janssen Biotech, Inc. Anticorps anti-cd154 et procédés d'utilisation correspondant
US9676845B2 (en) 2009-06-16 2017-06-13 Hoffmann-La Roche, Inc. Bispecific antigen binding proteins
WO2017106684A2 (fr) 2015-12-17 2017-06-22 Janssen Biotech, Inc. Anticorps se liant spécifiquement à hla-dr et leurs utilisations
US9688758B2 (en) 2012-02-10 2017-06-27 Genentech, Inc. Single-chain antibodies and other heteromultimers
US9879095B2 (en) 2010-08-24 2018-01-30 Hoffman-La Roche Inc. Bispecific antibodies comprising a disulfide stabilized-Fv fragment
US9890204B2 (en) 2009-04-07 2018-02-13 Hoffmann-La Roche Inc. Trivalent, bispecific antibodies
US9902770B2 (en) 2013-03-15 2018-02-27 Janssen Biotech, Inc. Interferon alpha and omega antibody antagonists
US9982036B2 (en) 2011-02-28 2018-05-29 Hoffmann-La Roche Inc. Dual FC antigen binding proteins
US9994646B2 (en) 2009-09-16 2018-06-12 Genentech, Inc. Coiled coil and/or tether containing protein complexes and uses thereof
US10106612B2 (en) 2012-06-27 2018-10-23 Hoffmann-La Roche Inc. Method for selection and production of tailor-made highly selective and multi-specific targeting entities containing at least two different binding entities and uses thereof
US10106600B2 (en) 2010-03-26 2018-10-23 Roche Glycart Ag Bispecific antibodies
US10138293B2 (en) 2007-12-21 2018-11-27 Hoffmann-La Roche, Inc. Bivalent, bispecific antibodies
US10208113B2 (en) 2014-06-23 2019-02-19 Janssen Biotech, Inc. Interferon α and ω antibody antagonists
US10323099B2 (en) 2013-10-11 2019-06-18 Hoffmann-La Roche Inc. Multispecific domain exchanged common variable light chain antibodies
EP3597219A1 (fr) 2012-04-30 2020-01-22 Janssen Biotech, Inc. Antagonistes de st2l et procédés d'utilisation
US10611825B2 (en) 2011-02-28 2020-04-07 Hoffmann La-Roche Inc. Monovalent antigen binding proteins
US10633457B2 (en) 2014-12-03 2020-04-28 Hoffmann-La Roche Inc. Multispecific antibodies
IL274870A (en) * 2011-03-28 2020-07-30 Sanofi Sa Antibody-like binding proteins have a double variable region that has a cross-linking region orientation
US10973920B2 (en) 2014-06-30 2021-04-13 Glykos Finland Oy Saccharide derivative of a toxic payload and antibody conjugates thereof
US11008389B2 (en) 2011-03-16 2021-05-18 Sanofi Uses of a dual V region antibody-like protein
US11421022B2 (en) 2012-06-27 2022-08-23 Hoffmann-La Roche Inc. Method for making antibody Fc-region conjugates comprising at least one binding entity that specifically binds to a target and uses thereof
US11572415B2 (en) 2015-10-13 2023-02-07 Affimed Gmbh Multivalent FV antibodies
US11618790B2 (en) 2010-12-23 2023-04-04 Hoffmann-La Roche Inc. Polypeptide-polynucleotide-complex and its use in targeted effector moiety delivery
US11993642B2 (en) 2009-04-07 2024-05-28 Hoffmann-La Roche Inc. Trivalent, bispecific antibodies

Families Citing this family (202)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0739981A1 (fr) * 1995-04-25 1996-10-30 Vrije Universiteit Brussel Fragments variables d'immunoglobulines-utilisation thérapeutique ou vétérinaire
US6136311A (en) 1996-05-06 2000-10-24 Cornell Research Foundation, Inc. Treatment and diagnosis of cancer
US20020159437A1 (en) * 2001-04-27 2002-10-31 Foster Michael S. Method and system for network configuration discovery in a network manager
GB0115841D0 (en) * 2001-06-28 2001-08-22 Medical Res Council Ligand
ATE477280T1 (de) * 2001-06-28 2010-08-15 Domantis Ltd Doppelspezifischer ligand und dessen verwendung
AU2002335808B2 (en) * 2001-10-15 2009-08-27 Ibc Pharmaceuticals Affinity enhancement agents
RU2004122702A (ru) * 2001-12-26 2005-04-20 Иммуномедикс, Инк. (Us) Способы получения полиспецифичных, поливалентных средств из vh и vl доменов
US20050069549A1 (en) 2002-01-14 2005-03-31 William Herman Targeted ligands
JP2006512895A (ja) * 2002-06-28 2006-04-20 ドマンティス リミテッド リガンド
US9321832B2 (en) * 2002-06-28 2016-04-26 Domantis Limited Ligand
US9701754B1 (en) 2002-10-23 2017-07-11 City Of Hope Covalent disulfide-linked diabodies and uses thereof
EP1578801A2 (fr) * 2002-12-27 2005-09-28 Domantis Limited Anticorps a domaine unique ayant une double specificite pour un ligand et son recepteur
WO2004094613A2 (fr) * 2003-04-22 2004-11-04 Ibc Pharmaceuticals Complexe proteinique polyvalent
WO2005026325A2 (fr) * 2003-09-10 2005-03-24 Surromed, Inc, Ciblage bivalent de surfaces cellulaires
US20090215992A1 (en) * 2005-08-19 2009-08-27 Chengbin Wu Dual variable domain immunoglobulin and uses thereof
US7612181B2 (en) * 2005-08-19 2009-11-03 Abbott Laboratories Dual variable domain immunoglobulin and uses thereof
MX2008005405A (es) * 2005-10-28 2008-09-11 Florida Internat University Bo Anticuerpos quimericos equinos: humanos.
CA2632866A1 (fr) * 2005-12-01 2007-06-07 Domantis Limited Formats d'anticorps a domaine non competitif qui lient le recepteur type 1 d'interleukine 1
EP2674440B1 (fr) 2005-12-16 2019-07-03 IBC Pharmaceuticals, Inc. Ensembles bioactifs à base d'immunoglobuline multivalent
ES2363891T3 (es) 2006-03-20 2011-08-18 The Regents Of The University Of California Anticuerpos contra el antígeno de células troncales de la próstata (psca) modificados genéticamente para el direccionamiento al cáncer.
US8629250B2 (en) 2007-02-02 2014-01-14 Amgen Inc. Hepcidin, hepcidin antagonists and methods of use
EA200901301A1 (ru) 2007-06-06 2010-06-30 Домантис Лимитед Полипептиды, вариабельные домены антител и антагонисты
WO2009032949A2 (fr) 2007-09-04 2009-03-12 The Regents Of The University Of California Anticorps d'antigène de cellule souche anti-prostate (psca) à haute affinité pour un ciblage et une détection de cancer
NZ597023A (en) * 2007-11-13 2013-07-26 Boehringer Ingelheim Int Monoclonal antibodies that bind to hGM-CSF and medical compositions comprising same
CA2709354C (fr) 2007-12-21 2014-06-17 Amgen Inc. Anticorps anti-amyloide et utilisations de ceux-ci
ES2796085T3 (es) 2008-01-15 2020-11-25 Univ Leland Stanford Junior Marcadores de células madre de leucemia mieloide aguda
EP2574628B1 (fr) 2008-01-25 2015-05-20 Amgen Inc. Anticorps de ferroportine et procédés d'utilisation
US9029508B2 (en) * 2008-04-29 2015-05-12 Abbvie Inc. Dual variable domain immunoglobulins and uses thereof
WO2009139822A1 (fr) 2008-05-01 2009-11-19 Amgen Inc. Anticorps anti-hepcidine et méthodes d’utilisation associées
EP3002299A1 (fr) 2008-06-03 2016-04-06 AbbVie Inc. Immunoglobulines à deux domaines variables et leurs utilisations
CN102112494A (zh) 2008-06-03 2011-06-29 雅培制药有限公司 双重可变结构域免疫球蛋白及其用途
JP5674654B2 (ja) * 2008-07-08 2015-02-25 アッヴィ・インコーポレイテッド プロスタグランジンe2二重可変ドメイン免疫グロブリンおよびその使用
EP2398504B1 (fr) 2009-02-17 2018-11-28 Cornell Research Foundation, Inc. Procédés et kits pour le diagnostic d'un cancer et la prédiction d'une valeur thérapeutique
MX347295B (es) 2009-03-20 2017-04-20 Amgen Inc Inmunoglobulinas portadoras y usos de las mismas.
JP5758888B2 (ja) * 2009-07-06 2015-08-05 エフ.ホフマン−ラ ロシュ アーゲーF. Hoffmann−La Roche Aktiengesellschaft 二重特異性ジゴキシゲニン結合抗体
EP2473524A4 (fr) * 2009-09-01 2013-05-22 Abbott Lab Immunoglobulines à double domaine variable et leurs utilisations
EP2475682B1 (fr) * 2009-09-10 2018-01-31 UCB Biopharma SPRL Anticorps multivalents
PL2477648T3 (pl) 2009-09-15 2022-11-07 The Board Of Trustees Of The Leland Stanford Junior University Synergistyczna terapia anty-cd47 dla nowotworów hematologicznych
KR20140015139A (ko) 2009-10-15 2014-02-06 애브비 인코포레이티드 이원 가변 도메인 면역글로불린 및 이의 용도
UY32979A (es) 2009-10-28 2011-02-28 Abbott Lab Inmunoglobulinas con dominio variable dual y usos de las mismas
SG10201912571XA (en) 2009-11-02 2020-02-27 Univ Washington Therapeutic nuclease compositions and methods
US20120231006A1 (en) 2009-11-20 2012-09-13 Amgen Inc. Anti-orai1 antigen binding proteins and uses thereof
WO2011069019A2 (fr) 2009-12-02 2011-06-09 David Ho Minobodies j591 et cys-diabodies pour le ciblage de l'antigène membranaire spécifique de la prostate humaine (psma), et procédés d'utilisation
MX2012006406A (es) * 2009-12-04 2012-07-25 Genentech Inc Anticuerpos multiespecificos, analogos de anticuerpo, composiciones y metodos.
ES2717883T3 (es) * 2010-03-25 2019-06-26 Ucb Biopharma Sprl Moléculas de DVD-LG estabilizadas con disulfuro
CN103298834A (zh) 2010-08-03 2013-09-11 Abbvie公司 双重可变结构域免疫球蛋白及其用途
BR112013004581A2 (pt) 2010-08-26 2017-06-27 Abbvie Inc imunoglobulinas de domínio variável dual e seus usos
WO2012040518A2 (fr) 2010-09-22 2012-03-29 Amgen Inc. Immunoglobulines porteuses et leur utilisation
EP2702077A2 (fr) 2011-04-27 2014-03-05 AbbVie Inc. Procédé de contrôle du profil de galactosylation de protéines exprimées de manière recombinante
NZ616989A (en) 2011-04-29 2016-03-31 Univ Washington Therapeutic nuclease compositions and methods
UY34317A (es) 2011-09-12 2013-02-28 Genzyme Corp Anticuerpo antireceptor de célula T (alfa)/ß
AR089529A1 (es) 2011-12-30 2014-08-27 Abbvie Inc Proteinas de union especificas duales dirigidas contra il-13 y/o il-17
US9181572B2 (en) 2012-04-20 2015-11-10 Abbvie, Inc. Methods to modulate lysine variant distribution
WO2013158279A1 (fr) 2012-04-20 2013-10-24 Abbvie Inc. Procédés de purification de protéines pour réduire des espèces acides
US9067990B2 (en) 2013-03-14 2015-06-30 Abbvie, Inc. Protein purification using displacement chromatography
US9512214B2 (en) 2012-09-02 2016-12-06 Abbvie, Inc. Methods to control protein heterogeneity
PT2895513T (pt) 2012-09-12 2018-10-08 Genzyme Corp Polipéptidos contendo fc com glicosilação alterada e função efetora reduzida
US9790268B2 (en) 2012-09-12 2017-10-17 Genzyme Corporation Fc containing polypeptides with altered glycosylation and reduced effector function
PE20151179A1 (es) 2012-11-01 2015-09-12 Abbvie Inc Inmunoglobulinas de dominio variable dual anti-vegf/dll4 y usos de las mismas
IL275376B2 (en) 2013-03-11 2024-01-01 Genzyme Corp Polypeptides with hyperglycosidic bonds
CA2905010A1 (fr) 2013-03-12 2014-09-18 Abbvie Inc. Anticorps humains qui se lient au tnf-alpha et leurs procedes de preparation
US9499614B2 (en) 2013-03-14 2016-11-22 Abbvie Inc. Methods for modulating protein glycosylation profiles of recombinant protein therapeutics using monosaccharides and oligosaccharides
US9017687B1 (en) 2013-10-18 2015-04-28 Abbvie, Inc. Low acidic species compositions and methods for producing and using the same using displacement chromatography
BR112015023797A2 (pt) 2013-03-15 2017-10-24 Abbvie Inc proteínas de ligação de especificidade dupla dirigidas contra il-1b e/ou il-17
EP3049442A4 (fr) 2013-09-26 2017-06-28 Costim Pharmaceuticals Inc. Méthodes de traitement de cancers hématologiques
WO2015051293A2 (fr) 2013-10-04 2015-04-09 Abbvie, Inc. Utilisation d'ions métalliques pour moduler les profils de glycosylation des protéines dans le cas de protéines recombinées
US9181337B2 (en) 2013-10-18 2015-11-10 Abbvie, Inc. Modulated lysine variant species compositions and methods for producing and using the same
US9085618B2 (en) 2013-10-18 2015-07-21 Abbvie, Inc. Low acidic species compositions and methods for producing and using the same
US10988745B2 (en) 2013-10-31 2021-04-27 Resolve Therapeutics, Llc Therapeutic nuclease-albumin fusions and methods
US20150139988A1 (en) 2013-11-15 2015-05-21 Abbvie, Inc. Glycoengineered binding protein compositions
CN106456748A (zh) 2014-01-08 2017-02-22 小利兰·斯坦福大学托管委员会 小细胞肺癌的靶向疗法
JOP20200094A1 (ar) 2014-01-24 2017-06-16 Dana Farber Cancer Inst Inc جزيئات جسم مضاد لـ pd-1 واستخداماتها
JOP20200096A1 (ar) 2014-01-31 2017-06-16 Children’S Medical Center Corp جزيئات جسم مضاد لـ tim-3 واستخداماتها
CU24481B1 (es) 2014-03-14 2020-03-04 Immutep Sas Moléculas de anticuerpo que se unen a lag-3
US20170335281A1 (en) 2014-03-15 2017-11-23 Novartis Ag Treatment of cancer using chimeric antigen receptor
CN116333148A (zh) 2014-03-19 2023-06-27 建新公司 靶向模块的位点特异性糖工程化
AU2015266958A1 (en) 2014-05-28 2016-12-08 Agenus Inc. Anti-GITR antibodies and methods of use thereof
TWI745962B (zh) 2014-06-27 2021-11-11 法商賽諾菲公司 測定投予至人類個體之包括雙-v-區類抗體蛋白或其片段的劑量是否在人類個體中與il-4或il-13特異性結合之方法
BR112016030740A2 (pt) 2014-07-01 2018-02-20 Pfizer Inc. diacorpos heterodiméricos biespecíficos e seus usos
JP2017528433A (ja) 2014-07-21 2017-09-28 ノバルティス アーゲー 低い免疫増強用量のmTOR阻害剤とCARの組み合わせ
AU2015292755B2 (en) 2014-07-21 2020-11-12 Novartis Ag Treatment of cancer using a CD33 chimeric antigen receptor
US11542488B2 (en) 2014-07-21 2023-01-03 Novartis Ag Sortase synthesized chimeric antigen receptors
EP3172237A2 (fr) 2014-07-21 2017-05-31 Novartis AG Traitement du cancer au moyen d'un récepteur d'antigène chimérique anti-bcma humanisé
EP3174546B1 (fr) 2014-07-31 2019-10-30 Novartis AG Sous-ensemble optimisé de lymphocytes t contenant un récepteur d'antigène chimère
US10851149B2 (en) 2014-08-14 2020-12-01 The Trustees Of The University Of Pennsylvania Treatment of cancer using GFR α-4 chimeric antigen receptor
MY189028A (en) 2014-08-19 2022-01-20 Novartis Ag Anti-cd123 chimeric antigen receptor (car) for use in cancer treatment
AU2015317608B2 (en) 2014-09-17 2021-03-11 Novartis Ag Targeting cytotoxic cells with chimeric receptors for adoptive immunotherapy
CA2964123C (fr) 2014-10-09 2023-09-05 Genzyme Corporation Conjugues medicament-anticorps modifies par glycane
TWI716362B (zh) 2014-10-14 2021-01-21 瑞士商諾華公司 針對pd-l1之抗體分子及其用途
US20180334490A1 (en) 2014-12-03 2018-11-22 Qilong H. Wu Methods for b cell preconditioning in car therapy
EP3546567A1 (fr) 2014-12-06 2019-10-02 GEMoaB Monoclonals GmbH Cellules souches pluri-ou multipotentes génétiquement modifiées et leurs utilisations
WO2016094273A1 (fr) 2014-12-08 2016-06-16 Dana-Farber Cancer Institute, Inc. Procédés de régulation à la hausse des réponses immunitaires à l'aide de combinaisons d'agents anti-rgmb et d'agents anti-pd-1
WO2016094881A2 (fr) 2014-12-11 2016-06-16 Abbvie Inc. Protéines de liaison à lrp-8
ES2862701T3 (es) 2014-12-22 2021-10-07 Univ Rockefeller Anticuerpos agonistas anti-MERTK y usos de los mismos
CA2979976A1 (fr) 2015-03-17 2016-09-22 Memorial Sloan Kettering Cancer Center Anticorps anti-muc16 et utilisations
SG11201708191XA (en) 2015-04-08 2017-11-29 Novartis Ag Cd20 therapies, cd22 therapies, and combination therapies with a cd19 chimeric antigen receptor (car) - expressing cell
EP3286211A1 (fr) 2015-04-23 2018-02-28 Novartis AG Traitement du cancer à l'aide de protéine récepteur antigénique chimérique et un inhibiteur de protéine kinase
SI3303394T1 (sl) 2015-05-29 2020-10-30 Agenus Inc. Protitelesa proti-CTLA-4 in postopki njihove uporabe
TW201710286A (zh) 2015-06-15 2017-03-16 艾伯維有限公司 抗vegf、pdgf及/或其受體之結合蛋白
PT3317301T (pt) 2015-07-29 2021-07-09 Novartis Ag Terapias de associação compreendendo moléculas de anticorpo contra lag-3
US20180207273A1 (en) 2015-07-29 2018-07-26 Novartis Ag Combination therapies comprising antibody molecules to tim-3
KR20180050321A (ko) 2015-08-07 2018-05-14 이미지냅 인코포레이티드 분자를 표적화하기 위한 항원 결합 구조체
KR102434314B1 (ko) 2015-09-01 2022-08-19 아게누스 인코포레이티드 항-pd-1 항체 및 이를 이용하는 방법
EP3362074B1 (fr) 2015-10-16 2023-08-09 President and Fellows of Harvard College Modulation de pd-1 des lymphocytes t régulateurs pour réguler les réponses immunitaires effectrices des lymphocytes t
CA3007421A1 (fr) 2015-12-17 2017-06-22 Novartis Ag Combinaison d'un inhibiteur de c-met avec une molecule d'anticorps dirigee contre pd-1 et ses utilisations
JP2019503349A (ja) 2015-12-17 2019-02-07 ノバルティス アーゲー Pd−1に対する抗体分子およびその使用
EP3851457A1 (fr) 2016-01-21 2021-07-21 Novartis AG Molécules multispécifiques ciblant cll-1
US20200281973A1 (en) 2016-03-04 2020-09-10 Novartis Ag Cells expressing multiple chimeric antigen receptor (car) molecules and uses therefore
EP3433365B1 (fr) 2016-03-21 2023-08-02 Dana-Farber Cancer Institute, Inc. Régulateurs de l'expression génique spécifiques à l'état d'épuisement des lymphocytes t et leurs utilisations
US11549099B2 (en) 2016-03-23 2023-01-10 Novartis Ag Cell secreted minibodies and uses thereof
SI3443096T1 (sl) 2016-04-15 2023-07-31 Novartis Ag Sestavki in postopki za selektivno izražanje himerni antigenskih receptorjev
CN109476751B (zh) 2016-05-27 2024-04-19 艾吉纳斯公司 抗tim-3抗体及其使用方法
WO2017210617A2 (fr) 2016-06-02 2017-12-07 Porter, David, L. Régimes thérapeutiques pour cellules exprimant un récepteur antigénique chimérique (car)
CA3030099A1 (fr) 2016-07-08 2018-01-11 Staten Biotechnology B.V. Anticorps anti-apoc3 et leurs methodes d'utilisation
WO2018013918A2 (fr) 2016-07-15 2018-01-18 Novartis Ag Traitement et prévention du syndrome de libération de cytokine à l'aide d'un récepteur d'antigène chimérique en combinaison avec un inhibiteur de kinase
KR20230100748A (ko) 2016-07-28 2023-07-05 노파르티스 아게 키메라 항원 수용체 및 pd-1 억제제의 조합 요법
US20190161542A1 (en) 2016-08-01 2019-05-30 Novartis Ag Treatment of cancer using a chimeric antigen receptor in combination with an inhibitor of a pro-m2 macrophage molecule
CN110225927B (zh) 2016-10-07 2024-01-12 诺华股份有限公司 用于治疗癌症的嵌合抗原受体
WO2018071500A1 (fr) 2016-10-11 2018-04-19 Agenus Inc. Anticorps anti-lag-3 et leurs procédés d'utilisation
WO2018083538A1 (fr) 2016-11-07 2018-05-11 Neuracle Scienc3 Co., Ltd. Anticorps anti- famille avec similarité de séquence 19, élément a5 et leur procédé d'utilisation
HRP20231579T1 (hr) 2016-12-07 2024-03-15 Agenus Inc. Anti-ctla-4 antitijela i postupci njihove upotrebe
ES2912408T3 (es) 2017-01-26 2022-05-25 Novartis Ag Composiciones de CD28 y métodos para terapia con receptores quiméricos para antígenos
US11266745B2 (en) 2017-02-08 2022-03-08 Imaginab, Inc. Extension sequences for diabodies
WO2018151841A1 (fr) 2017-02-17 2018-08-23 Sanofi Molécules de liaison multispécifiques ayant une spécificité vis-à-vis du dystroglycane et de la laminine-2
KR102654105B1 (ko) 2017-02-17 2024-04-04 사노피 디스트로글리칸 및 라미닌-2에 대한 특이성을 갖는 다중특이적 결합 분자
EP3589647A1 (fr) 2017-02-28 2020-01-08 Novartis AG Compositions d'inhibiteur shp et utilisations pour une thérapie de récepteur d'antigène chimère
WO2018183182A1 (fr) 2017-03-27 2018-10-04 Celgene Corporation Procédés et compositions pour la réduction d'immunogénicité
CA3059366A1 (fr) 2017-04-13 2018-10-18 Agenus Inc. Anticorps anti-cd137 et procedes d'utilisation correspondants
AU2018255938A1 (en) 2017-04-21 2019-10-31 Staten Biotechnology B.V. Anti-ApoC3 antibodies and methods of use thereof
EP3615068A1 (fr) 2017-04-28 2020-03-04 Novartis AG Agent ciblant le bcma et polythérapie incluant un inhibiteur de gamma-sécrétase
US20200055948A1 (en) 2017-04-28 2020-02-20 Novartis Ag Cells expressing a bcma-targeting chimeric antigen receptor, and combination therapy with a gamma secretase inhibitor
DK3618863T3 (da) 2017-05-01 2023-08-21 Agenus Inc Anti-tigit-antistoffer og fremgangsmåder til anvendelse deraf
EA202090104A1 (ru) 2017-06-22 2020-04-09 Новартис Аг Молекулы антител к cd73 и пути их применения
AU2018292618A1 (en) 2017-06-27 2019-12-19 Novartis Ag Dosage regimens for anti-TIM-3 antibodies and uses thereof
WO2019005756A1 (fr) 2017-06-28 2019-01-03 The Rockefeller University Conjugués anticorps agoniste anti-mertk-médicament
NZ760841A (en) 2017-07-11 2024-02-23 Compass Therapeutics Llc Agonist antibodies that bind human cd137 and uses thereof
CN111163798A (zh) 2017-07-20 2020-05-15 诺华股份有限公司 用于抗lag-3抗体的给药方案及其用途
US11718679B2 (en) 2017-10-31 2023-08-08 Compass Therapeutics Llc CD137 antibodies and PD-1 antagonists and uses thereof
MX2020004512A (es) 2017-10-31 2020-08-13 Anticuerpos anti apolipoproteina c-iii (anti-apoc3) y metodos de uso de los mismos.
WO2019099838A1 (fr) 2017-11-16 2019-05-23 Novartis Ag Polythérapies
EP3713961A2 (fr) 2017-11-20 2020-09-30 Compass Therapeutics LLC Anticorps cd137 et anticorps ciblant un antigène tumoral et leurs utilisations
AU2019212638A1 (en) 2018-01-26 2020-09-17 Genzyme Corporation Fc variants with enhanced binding to FcRn and prolonged half-life
AU2019215031A1 (en) 2018-01-31 2020-08-20 Novartis Ag Combination therapy using a chimeric antigen receptor
US20210147547A1 (en) 2018-04-13 2021-05-20 Novartis Ag Dosage Regimens For Anti-Pd-L1 Antibodies And Uses Thereof
US20210047405A1 (en) 2018-04-27 2021-02-18 Novartis Ag Car t cell therapies with enhanced efficacy
AU2019265888A1 (en) 2018-05-10 2020-11-26 Neuracle Science Co., Ltd. Anti-family with sequence similarity 19, member A5 antibodies and method of use thereof
JP2021525243A (ja) 2018-05-21 2021-09-24 コンパス セラピューティクス リミテッド ライアビリティ カンパニー Nk細胞による標的細胞の殺傷を増進するための組成物および方法
WO2019226658A1 (fr) 2018-05-21 2019-11-28 Compass Therapeutics Llc Compositions multispécifiques de liaison à l'antigène et procédés d'utilisation
WO2019227003A1 (fr) 2018-05-25 2019-11-28 Novartis Ag Polythérapie comprenant des thérapies par récepteur antigénique chimérique (car)
US20210214459A1 (en) 2018-05-31 2021-07-15 Novartis Ag Antibody molecules to cd73 and uses thereof
JP7438988B2 (ja) 2018-06-13 2024-02-27 ノバルティス アーゲー Bcmaキメラ抗原受容体及びその使用
PE20210418A1 (es) 2018-06-19 2021-03-08 Atarga Llc Moleculas de anticuerpo de componente de complemento 5 y sus usos
WO2020003210A1 (fr) 2018-06-29 2020-01-02 Kangwon National University University-Industry Cooperation Foundation Anticorps anti-l1cam et leurs utilisations
AR116109A1 (es) 2018-07-10 2021-03-31 Novartis Ag Derivados de 3-(5-amino-1-oxoisoindolin-2-il)piperidina-2,6-diona y usos de los mismos
WO2020021465A1 (fr) 2018-07-25 2020-01-30 Advanced Accelerator Applications (Italy) S.R.L. Procédé de traitement de tumeurs neuroendocrines
JP2022504287A (ja) 2018-10-03 2022-01-13 スターテン・バイオテクノロジー・ベー・フェー ヒト及びカニクイザルapoc3に特異的な抗体、並びにその使用の方法
AU2019379576A1 (en) 2018-11-13 2021-06-03 Compass Therapeutics Llc Multispecific binding constructs against checkpoint molecules and uses thereof
CA3123511A1 (fr) 2018-12-20 2020-06-25 Novartis Ag Schema posologique et combinaison pharmaceutique comprenant des derives de 3-(1-oxoisoindoline-2-yl) piperidine-2,6-dione
CN113194952A (zh) 2018-12-20 2021-07-30 诺华股份有限公司 Hdm2-p53相互作用抑制剂和bcl2抑制剂的组合及其治疗癌症的用途
PE20211295A1 (es) * 2018-12-21 2021-07-20 23Andme Inc Anticuerpos anti il-36 y procedimientos de uso de estos
US11965030B2 (en) 2018-12-24 2024-04-23 Sanofi Multispecific binding proteins with mutant fab domains
US10871640B2 (en) 2019-02-15 2020-12-22 Perkinelmer Cellular Technologies Germany Gmbh Methods and systems for automated imaging of three-dimensional objects
CA3123519A1 (fr) 2019-02-15 2020-08-20 Novartis Ag Derives de 3-(1-oxoisoindoline-2-yl)piperidine-2,6-dione substitues et leurs utilisations
WO2020165833A1 (fr) 2019-02-15 2020-08-20 Novartis Ag Dérivés de 3-(1-oxo-5-(pipéridin-4-yl)isoindolin-2-yl)pipéridine-2,6-dione et leurs utilisations
WO2020172553A1 (fr) 2019-02-22 2020-08-27 Novartis Ag Polythérapies à base de récepteurs d'antigènes chimériques egfrviii et d'inhibiteurs de pd -1
MA55080A (fr) 2019-02-26 2022-01-05 Inspirna Inc Anticorps anti-mertk à affinité élevée et utilisations associées
EP3946593A1 (fr) 2019-03-29 2022-02-09 Atarga, LLC Anticorps anti-fgf23
EP3976181A1 (fr) 2019-05-24 2022-04-06 Sanofi Méthodes de traitement de la sclérodermie généralisée
WO2021011673A2 (fr) 2019-07-16 2021-01-21 Ming Jin Neutralisation d'anticorps anti-amyloïde bêta pour le traitement de la maladie d'alzheimer
BR112022001255A2 (pt) 2019-07-25 2022-06-14 Genzyme Corp Métodos de tratamento de distúrbios mediados por anticorpos com antagonistas de fcrn
JP2022545741A (ja) 2019-08-30 2022-10-28 アジェナス インコーポレイテッド 抗cd96抗体およびその使用方法
EP4048285A1 (fr) 2019-10-21 2022-08-31 Novartis AG Inhibiteurs de tim-3 et leurs utilisations
CN114786679A (zh) 2019-10-21 2022-07-22 诺华股份有限公司 具有维奈托克和tim-3抑制剂的组合疗法
WO2021108661A2 (fr) 2019-11-26 2021-06-03 Novartis Ag Récepteurs antigéniques chimériques et leurs utilisations
CN115175937A (zh) 2019-12-20 2022-10-11 诺华股份有限公司 用于治疗骨髓纤维化和骨髓增生异常综合征的抗TIM-3抗体MBG453和抗TGF-β抗体NIS793与或不与地西他滨或抗PD-1抗体斯巴达珠单抗的组合
CN115298322A (zh) 2020-01-17 2022-11-04 贝克顿迪金森公司 用于单细胞分泌组学的方法和组合物
IL293752A (en) 2020-01-17 2022-08-01 Novartis Ag A combination containing a tim-3 inhibitor and a substance that causes hypomethylation for use in the treatment of myeloplastic syndrome or chronic myelomonocytic leukemia
WO2021173995A2 (fr) 2020-02-27 2021-09-02 Novartis Ag Procédés de production de cellules exprimant un récepteur antigénique chimérique
WO2021174034A1 (fr) 2020-02-28 2021-09-02 Genzyme Corporation Polypeptides de liaison modifiés pour conjugaison optimisée de médicament
JP2023531676A (ja) 2020-06-23 2023-07-25 ノバルティス アーゲー 3-(1-オキソイソインドリン-2-イル)ピぺリジン-2,6-ジオン誘導体を含む投与レジメン
US11524998B2 (en) 2020-07-16 2022-12-13 Novartis Ag Anti-betacellulin antibodies, fragments thereof, and multi-specific binding molecules
WO2022026592A2 (fr) 2020-07-28 2022-02-03 Celltas Bio, Inc. Molécules d'anticorps contre le coronavirus et leurs utilisations
WO2022029573A1 (fr) 2020-08-03 2022-02-10 Novartis Ag Dérivés de 3-(1-oxoisoindolin-2-yl)pipéridine-2,6-dione substitués par hétéroaryle et leurs utilisations
AU2021328375A1 (en) 2020-08-18 2023-04-13 Cephalon Llc Anti-PAR-2 antibodies and methods of use thereof
WO2022043558A1 (fr) 2020-08-31 2022-03-03 Advanced Accelerator Applications International Sa Méthode de traitement de cancers exprimant le psma
EP4204021A1 (fr) 2020-08-31 2023-07-05 Advanced Accelerator Applications International S.A. Méthode de traitement de cancers exprimant le psma
EP4240765A2 (fr) 2020-11-06 2023-09-13 Novartis AG Variants fc d'anticorps
CN116635062A (zh) 2020-11-13 2023-08-22 诺华股份有限公司 使用表达嵌合抗原受体(car)的细胞的组合疗法
US20240141060A1 (en) 2021-01-29 2024-05-02 Novartis Ag Dosage regimes for anti-cd73 and anti-entpd2 antibodies and uses thereof
JP2024514530A (ja) 2021-04-02 2024-04-02 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア 切断型cdcp1に対する抗体およびその使用
TW202304979A (zh) 2021-04-07 2023-02-01 瑞士商諾華公司 抗TGFβ抗體及其他治療劑用於治療增殖性疾病之用途
AR125874A1 (es) 2021-05-18 2023-08-23 Novartis Ag Terapias de combinación
EP4347640A1 (fr) 2021-05-27 2024-04-10 Sanofi Variant fc à affinité améliorée vis-à-vis de récepteurs fc et stabilité thermique améliorée
AU2022293999A1 (en) 2021-06-14 2023-11-30 argenx BV Anti-il-9 antibodies and methods of use thereof
CA3229014A1 (fr) 2021-08-18 2023-02-23 Yi Luo Anticorps bispecifique et son utilisation
WO2023044483A2 (fr) 2021-09-20 2023-03-23 Voyager Therapeutics, Inc. Compositions et procédés pour le traitement du cancer positif her2
WO2023092004A1 (fr) 2021-11-17 2023-05-25 Voyager Therapeutics, Inc. Compositions et méthodes pour le traitement de troubles liés à tau
US20230383010A1 (en) 2022-02-07 2023-11-30 Visterra, Inc. Anti-idiotype antibody molecules and uses thereof
WO2023220695A2 (fr) 2022-05-13 2023-11-16 Voyager Therapeutics, Inc. Compositions et procédés pour le traitement du cancer her2 positif
WO2023227790A1 (fr) 2022-05-27 2023-11-30 Sanofi Agents d'activation de cellules tueuses naturelles (nk) se liant aux variants nkp46 et bcma avec ingénierie de fc
WO2024030976A2 (fr) 2022-08-03 2024-02-08 Voyager Therapeutics, Inc. Compositions et procédés permettant le franchissement de la barrière hémato-encéphalique
US20240166750A1 (en) 2022-10-25 2024-05-23 Ablynx N.V. GLYCOENGINEERED Fc VARIANT POLYPEPTIDES WITH ENHANCED EFFECTOR FUNCTION

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993011161A1 (fr) * 1991-11-25 1993-06-10 Enzon, Inc. Proteines multivalentes de fixation aux antigenes
WO1994013804A1 (fr) * 1992-12-04 1994-06-23 Medical Research Council Proteines de liaison multivalentes et multispecifiques, leur fabrication et leur utilisation
WO1994013806A1 (fr) * 1992-12-11 1994-06-23 The Dow Chemical Company Anticorps monocatenaires multivalents

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993011161A1 (fr) * 1991-11-25 1993-06-10 Enzon, Inc. Proteines multivalentes de fixation aux antigenes
WO1994013804A1 (fr) * 1992-12-04 1994-06-23 Medical Research Council Proteines de liaison multivalentes et multispecifiques, leur fabrication et leur utilisation
WO1994013806A1 (fr) * 1992-12-11 1994-06-23 The Dow Chemical Company Anticorps monocatenaires multivalents

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
M. VERHOEYEN ET AL.: "Antibody fragments for controlled delivery of therapeutic agents.", BIOCHEMICAL SOCIETY TRANSACTIONS, vol. 23, no. 4, 18 July 1995 (1995-07-18) - 21 July 1995 (1995-07-21), LONDON, GB, pages 1067 - 1073, XP000565752 *
P. HOLLIGER ET AL.: ""Diabodies": Small bivalent and bispecific antibody fragments.", PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE USA, vol. 90, no. 14, 15 July 1993 (1993-07-15), WASHINGTON, DC, USA, pages 6444 - 6448, XP002021302 *
W. MALLENDER ET AL.: "Construction, expression, and activity of a bivalent bispecific single-chain antibody.", THE JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 269, no. 1, 7 January 1994 (1994-01-07), BALTIMORE, MD, USA, pages 199 - 206, XP002021303 *

Cited By (88)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8012754B2 (en) 1995-04-20 2011-09-06 Genentech, Inc. Antibody compositions
US6066719A (en) * 1995-04-20 2000-05-23 Genetech, Inc. Antibody fragments
US6214984B1 (en) 1995-04-20 2001-04-10 Genentech, Inc. Isolated nucleic acid encoding, and methods for preparing, antibody fragments
US7038017B2 (en) 1995-04-20 2006-05-02 Genentech, Inc. Antibody purification
WO1997038102A1 (fr) * 1996-04-04 1997-10-16 Unilever Plc Proteine, polyvalente et a specificites multiples, de fixation sur un antigene
US6239259B1 (en) 1996-04-04 2001-05-29 Unilever Patent Holdings B.V. Multivalent and multispecific antigen-binding protein
US6824782B2 (en) 1997-04-30 2004-11-30 Enzon, Inc. Polyalkylene oxide-modified single chain polypeptides
US7632504B2 (en) 1997-04-30 2009-12-15 Enzon, Inc. Polyalkylene oxide-modified single chain polypeptides
US7150872B2 (en) 1997-04-30 2006-12-19 Enzon, Inc. Polyalkylene oxide-modified single chain polypeptides
US6872393B2 (en) 1997-04-30 2005-03-29 Enzon, Inc. Polyalkylene oxide-modified single chain polypeptides
US6692942B2 (en) 1998-10-20 2004-02-17 Enzon, Inc. Single-chain polypeptides for targeted delivery of nucleic acids
US6764853B2 (en) 1998-10-20 2004-07-20 Enzon Pharmaceuticals, Inc. Method for targeted delivery of nucleic acids
US6333396B1 (en) 1998-10-20 2001-12-25 Enzon, Inc. Method for targeted delivery of nucleic acids
EP1002861A1 (fr) * 1998-10-26 2000-05-24 Unilever Plc Protéines se liant aux antigènes comprenant un liant conférant une flexibilité conformationnelle limitée
WO2000024884A3 (fr) * 1998-10-27 2000-08-03 Unilever Plc Proteines de fixation d'antigene
WO2000024884A2 (fr) * 1998-10-27 2000-05-04 Unilever Plc Proteines de fixation d'antigene
US6277806B1 (en) 1998-12-11 2001-08-21 Unilever Home & Personal Care Usa, Division Of Conopco, Inc. Bleaching enzymes and detergent compositions comprising them
WO2000036094A1 (fr) * 1998-12-11 2000-06-22 Unilever N.V. Enzymes de blanchiment et compositions detergentes les renfermant
US8722859B2 (en) 2000-04-11 2014-05-13 Genentech, Inc. Multivalent antibodies and uses therefor
US9493579B2 (en) 2000-04-11 2016-11-15 Genentech, Inc. Multivalent antibodies and uses therefor
EP2857516A1 (fr) 2000-04-11 2015-04-08 Genentech, Inc. Anticorps multivalents et leurs utilisations
EP2070947A1 (fr) 2003-12-05 2009-06-17 multimmune GmbH Anticorps anti-Hsp70 thérapeutiques et de diagnostic
JP2009504191A (ja) * 2005-08-19 2009-02-05 アボット・ラボラトリーズ 二重可変ドメイン免疫グロブリン及びその使用
JP2012228248A (ja) * 2005-08-19 2012-11-22 Abbott Lab 二重可変ドメイン免疫グロブリン及びその使用
US10759871B2 (en) 2007-10-15 2020-09-01 Sanofi Antibodies that bind IL-4 and/or IL-13 and their uses
EP2050764A1 (fr) * 2007-10-15 2009-04-22 sanofi-aventis Nouveau format d'anticorps bispécifique polyvalent
EP2573118A1 (fr) * 2007-10-15 2013-03-27 Sanofi Anticorps liant IL-4 et/ou d'IL-13 et leurs utilisations
EP2573117A1 (fr) * 2007-10-15 2013-03-27 Sanofi Anticorps liant IL-4 et/ou d'IL-13 et leurs utilisations
EP2573115A1 (fr) * 2007-10-15 2013-03-27 Sanofi Anticorps liant IL-4 et/ou d'IL-13 et leurs utilisations
EP2573119A1 (fr) * 2007-10-15 2013-03-27 Sanofi Anticorps liant IL-4 et/ou d'IL-13 et leurs utilisations
EP2574626A1 (fr) * 2007-10-15 2013-04-03 Sanofi Anticorps liant IL-4 et/ou d'IL-13 et leurs utilisations
EP3686220A1 (fr) * 2007-10-15 2020-07-29 Sanofi Anticorps liant il-4 et/ou il-13 et leurs utilisations
US9732162B2 (en) 2007-10-15 2017-08-15 Sanofi Antibodies that bind IL-4 and/or IL-13 and their uses
US11453727B2 (en) 2007-10-15 2022-09-27 Sanofi Antibodies that bind IL-4 and/or IL-13 and their uses
US9738728B2 (en) 2007-10-15 2017-08-22 Sanofi Antibodies that bind IL-4 and/or IL-13 and their uses
EP2573116A1 (fr) * 2007-10-15 2013-03-27 Sanofi Anticorps liant IL-4 et/ou d'IL-13 et leurs utilisations
US10138293B2 (en) 2007-12-21 2018-11-27 Hoffmann-La Roche, Inc. Bivalent, bispecific antibodies
US9266967B2 (en) 2007-12-21 2016-02-23 Hoffmann-La Roche, Inc. Bivalent, bispecific antibodies
US10927163B2 (en) 2007-12-21 2021-02-23 Hoffmann-La Roche, Inc. Bivalent, bispecific antibodies
US9382323B2 (en) 2009-04-02 2016-07-05 Roche Glycart Ag Multispecific antibodies comprising full length antibodies and single chain fab fragments
US9890204B2 (en) 2009-04-07 2018-02-13 Hoffmann-La Roche Inc. Trivalent, bispecific antibodies
US11993642B2 (en) 2009-04-07 2024-05-28 Hoffmann-La Roche Inc. Trivalent, bispecific antibodies
US9676845B2 (en) 2009-06-16 2017-06-13 Hoffmann-La Roche, Inc. Bispecific antigen binding proteins
US10640555B2 (en) 2009-06-16 2020-05-05 Hoffmann-La Roche Inc. Bispecific antigen binding proteins
US11673945B2 (en) 2009-06-16 2023-06-13 Hoffmann-La Roche Inc. Bispecific antigen binding proteins
US9994646B2 (en) 2009-09-16 2018-06-12 Genentech, Inc. Coiled coil and/or tether containing protein complexes and uses thereof
US10106600B2 (en) 2010-03-26 2018-10-23 Roche Glycart Ag Bispecific antibodies
US9879095B2 (en) 2010-08-24 2018-01-30 Hoffman-La Roche Inc. Bispecific antibodies comprising a disulfide stabilized-Fv fragment
CN102168058A (zh) * 2010-11-30 2011-08-31 湖南师范大学 一种抗肿瘤靶向工程菌和菌剂及其制备方法
CN102168058B (zh) * 2010-11-30 2013-01-16 湖南师范大学 一种抗肿瘤靶向工程菌和菌剂及其制备方法
US11618790B2 (en) 2010-12-23 2023-04-04 Hoffmann-La Roche Inc. Polypeptide-polynucleotide-complex and its use in targeted effector moiety delivery
US10793621B2 (en) 2011-02-28 2020-10-06 Hoffmann-La Roche Inc. Nucleic acid encoding dual Fc antigen binding proteins
US9982036B2 (en) 2011-02-28 2018-05-29 Hoffmann-La Roche Inc. Dual FC antigen binding proteins
US10611825B2 (en) 2011-02-28 2020-04-07 Hoffmann La-Roche Inc. Monovalent antigen binding proteins
US11008389B2 (en) 2011-03-16 2021-05-18 Sanofi Uses of a dual V region antibody-like protein
EP3805262A1 (fr) * 2011-03-28 2021-04-14 Sanofi Deux protéines de liaison de type anticorps de région variable ayant une orientation de région de liaison de croisement
IL274870B2 (en) * 2011-03-28 2023-05-01 Sanofi Sa Antibody-like binding proteins have a double variable region that has a cross-linking region orientation
EP3112380A1 (fr) * 2011-03-28 2017-01-04 Sanofi Deux protéines de liaison de type anticorps de région variable ayant une orientation de région de liaison de croisement
US9221917B2 (en) 2011-03-28 2015-12-29 Sanofi Dual variable region antibody-like binding proteins having cross-over binding region orientation
EP3199547A1 (fr) * 2011-03-28 2017-08-02 Sanofi Deux protéines de liaison de type anticorps de région variable ayant une orientation de région de liaison de croisement
US9181349B2 (en) 2011-03-28 2015-11-10 Sanofi Dual variable region antibody-like binding proteins having cross-over binding region orientation
IL274870A (en) * 2011-03-28 2020-07-30 Sanofi Sa Antibody-like binding proteins have a double variable region that has a cross-linking region orientation
WO2012135345A1 (fr) * 2011-03-28 2012-10-04 Sanofi Protéines de liaison à des anticorps-like à double région variable ayant une orientation croisée de région de liaison
RU2695880C2 (ru) * 2011-03-28 2019-07-29 Санофи Антитело-подобные связывающие белки с двойными вариабельными областями, имеющие ориентацию связывающих областей крест-накрест
US9688758B2 (en) 2012-02-10 2017-06-27 Genentech, Inc. Single-chain antibodies and other heteromultimers
EP3597219A1 (fr) 2012-04-30 2020-01-22 Janssen Biotech, Inc. Antagonistes de st2l et procédés d'utilisation
US11421022B2 (en) 2012-06-27 2022-08-23 Hoffmann-La Roche Inc. Method for making antibody Fc-region conjugates comprising at least one binding entity that specifically binds to a target and uses thereof
US11407836B2 (en) 2012-06-27 2022-08-09 Hoffmann-La Roche Inc. Method for selection and production of tailor-made highly selective and multi-specific targeting entities containing at least two different binding entities and uses thereof
US10106612B2 (en) 2012-06-27 2018-10-23 Hoffmann-La Roche Inc. Method for selection and production of tailor-made highly selective and multi-specific targeting entities containing at least two different binding entities and uses thereof
WO2014100490A1 (fr) * 2012-12-19 2014-06-26 Adimab, Llc Analogues d'anticorps multivalents, et leurs procédés de préparation et d'utilisation
US10155809B2 (en) 2013-03-15 2018-12-18 Janssen Biotech, Inc. Interferon alpha and omega antibody antagonists
US9902770B2 (en) 2013-03-15 2018-02-27 Janssen Biotech, Inc. Interferon alpha and omega antibody antagonists
US10323099B2 (en) 2013-10-11 2019-06-18 Hoffmann-La Roche Inc. Multispecific domain exchanged common variable light chain antibodies
EP3466445A1 (fr) 2013-11-06 2019-04-10 Janssen Biotech, Inc. Anticorps anti-ccl17
US9944697B2 (en) 2013-11-06 2018-04-17 Jansson Biotech, Inc. Anti-CCL17 antibodies
US11414484B2 (en) 2013-11-06 2022-08-16 Janssen Biotech, Inc. Anti-CCL17 antibodies
US10829549B2 (en) 2013-11-06 2020-11-10 Jannsen Biotech, Inc. Anti-CCL17 antibodies
WO2015069865A1 (fr) 2013-11-06 2015-05-14 Janssen Biotech, Inc. Anticorps anti-ccl17
US10358491B2 (en) 2014-06-23 2019-07-23 Janssen Biotech, Inc. Interferon alpha and omega antibody antagonists
US10208113B2 (en) 2014-06-23 2019-02-19 Janssen Biotech, Inc. Interferon α and ω antibody antagonists
US10759854B2 (en) 2014-06-23 2020-09-01 Janssen Biotech, Inc. Interferon alpha and omega antibody antagonists
US10973920B2 (en) 2014-06-30 2021-04-13 Glykos Finland Oy Saccharide derivative of a toxic payload and antibody conjugates thereof
US10633457B2 (en) 2014-12-03 2020-04-28 Hoffmann-La Roche Inc. Multispecific antibodies
WO2017024146A1 (fr) 2015-08-05 2017-02-09 Janssen Biotech, Inc. Anticorps anti-cd154 et procédés d'utilisation correspondant
US11421037B2 (en) 2015-08-05 2022-08-23 Janssen Biotech, Inc. Nucleic acids encoding anti-CD154 antibodies
US10669343B2 (en) 2015-08-05 2020-06-02 Janssen Biotech, Inc. Anti-CD154 antibodies and methods of using them
US11572415B2 (en) 2015-10-13 2023-02-07 Affimed Gmbh Multivalent FV antibodies
WO2017106684A2 (fr) 2015-12-17 2017-06-22 Janssen Biotech, Inc. Anticorps se liant spécifiquement à hla-dr et leurs utilisations

Also Published As

Publication number Publication date
BR9606706A (pt) 1999-04-06
CN1173878A (zh) 1998-02-18
US5989830A (en) 1999-11-23
EP0799244A1 (fr) 1997-10-08
AU6873396A (en) 1997-05-07

Similar Documents

Publication Publication Date Title
WO1997014719A1 (fr) Analogue de fragment d'anticorps bifonctionnel ou bivalent
EP0894135B1 (fr) Proteine, polyvalente et a specificites multiples, de fixation sur un antigene
US5482858A (en) Polypeptide linkers for production of biosynthetic proteins
EP0623679B1 (fr) Protéines multifonctionneles à cible prédéterminée
US10385137B2 (en) Production of antibody formats and immunological applications of said formats
Dooley et al. Selection and characterization of naturally occurring single-domain (IgNAR) antibody fragments from immunized sharks by phage display
AU694723B2 (en) Humanized antibodies to Fc receptors for immunoglobulin G on human mononuclear phagocytes
US5132405A (en) Biosynthetic antibody binding sites
US5091513A (en) Biosynthetic antibody binding sites
US20040058400A1 (en) Multivalent and multispecific binding proteins, their manufacture and use
JPH08504100A (ja) 多価および多重特異性の結合タンパク質、それらの製造および使用
Kurucz et al. A bacterially expressed single-chain Fv construct from the 2B4 T-cell receptor.
CA2315944A1 (fr) Molecules bifonctionnelles
Anand et al. Synthesis and expression in Escherichia coli of cistronic DNA encoding an antibody fragment specific for a Salmonella serotype B O-antigen
Alfthan et al. Efficient secretion of murine Fab fragments by Escherichia coli is determined by the first constant domain of the heavy chain
Bregegere et al. Bifunctional hybrids between the variable domains of an immunoglobulin and the maltose-binding protein of Escherichia coli: production, purification and antigen binding
He et al. Characterization of a progesterone-binding, three-domain antibody fragment (VH/K) expressed in Escherichia coli.
Lake et al. Molecular cloning, expression and mutagenesis of an anti-insulin single chain Fv (scFv)
WO2005121178A2 (fr) Chromatographie d'immunoaffinite au moyen de marques epitopes pour des anticorps monoclonaux sensibles au polyol
Devlin et al. Production of a paraquat-specific murine single chain Fv fragment
Åkerström et al. On the interaction between single chain Fv antibodies and bacterial immunoglobulin-binding proteins
JPH06277092A (ja) 複合ハイブリッド蛋白質、その調製方法、その診断薬としての、治療用の薬剤としての又はメディカルイメージングにおいて使用できる試薬としての応用
CA1341615C (fr) Proteines multifonctions a cible definie
AU620568B2 (en) The expression of antibody fragments in protease deficient bacterial host cells
AU748007B2 (en) Bifunctional molecules

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 96191802.0

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AT AU AZ BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE HU IL IS JP KE KG KP KR KZ LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK TJ TM TR TT UA UG US UZ VN AM AZ BY KG KZ MD RU TJ TM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): KE LS MW SD SZ UG AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM

WWE Wipo information: entry into national phase

Ref document number: 1996929260

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 08860174

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1996929260

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWW Wipo information: withdrawn in national office

Ref document number: 1996929260

Country of ref document: EP