WO1997004207A1 - Device for providing shade for construction elements as a function of the temperature - Google Patents

Device for providing shade for construction elements as a function of the temperature Download PDF

Info

Publication number
WO1997004207A1
WO1997004207A1 PCT/EP1996/003194 EP9603194W WO9704207A1 WO 1997004207 A1 WO1997004207 A1 WO 1997004207A1 EP 9603194 W EP9603194 W EP 9603194W WO 9704207 A1 WO9704207 A1 WO 9704207A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
temperature
double layer
film
windows
Prior art date
Application number
PCT/EP1996/003194
Other languages
German (de)
French (fr)
Inventor
Harry Wirth
Original Assignee
Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. filed Critical Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V.
Publication of WO1997004207A1 publication Critical patent/WO1997004207A1/en

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B9/00Screening or protective devices for wall or similar openings, with or without operating or securing mechanisms; Closures of similar construction
    • E06B9/24Screens or other constructions affording protection against light, especially against sunshine; Similar screens for privacy or appearance; Slat blinds
    • E06B9/26Lamellar or like blinds, e.g. venetian blinds
    • E06B9/38Other details
    • E06B9/386Details of lamellae
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B9/00Screening or protective devices for wall or similar openings, with or without operating or securing mechanisms; Closures of similar construction
    • E06B9/24Screens or other constructions affording protection against light, especially against sunshine; Similar screens for privacy or appearance; Slat blinds
    • E06B9/26Lamellar or like blinds, e.g. venetian blinds
    • E06B9/264Combinations of lamellar blinds with roller shutters, screen windows, windows, or double panes; Lamellar blinds with special devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S40/00Safety or protection arrangements of solar heat collectors; Preventing malfunction of solar heat collectors
    • F24S40/50Preventing overheating or overpressure
    • F24S40/52Preventing overheating or overpressure by modifying the heat collection, e.g. by defocusing or by changing the position of heat-receiving elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S50/00Arrangements for controlling solar heat collectors
    • F24S50/80Arrangements for controlling solar heat collectors for controlling collection or absorption of solar radiation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/20Solar thermal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers

Definitions

  • the invention relates to a device for temperature-dependent shading of components, e.g. Solar collectors and parts of buildings, TWD facades, windows or window elements; one achieves overheating protection in the event of excessive solar radiation.
  • components e.g. Solar collectors and parts of buildings, TWD facades, windows or window elements
  • a second application is that of daylight control for window elements. Another application is the insulation of solar collectors.
  • Shading systems are used in facades and windows. An overview of this offers e.g. the article "Shading Devices on Buildings - Optical and Thermal Effects” by A. Raicu, H.R. Wilson and V. Wittwer from the “Innovative Lighting Technology in Architecture” series of the East Bavarian Technology Transfer Institute (OTTi). Tab. 1 shows a classification of conceivable measures.
  • Static shading systems reduce the total yield considerably or have a very low switching stroke.
  • Dynamic systems on a mechanical basis are expensive to purchase and maintain; they also harbor a high risk of failure.
  • Switchable layers electrorochromic, thermochromic, thermotropic
  • Switchable layers are still in the R&D phase; a number of questions and problems relating to efficiency, switching stroke, long-term stability and series production are still unsolved.
  • Diffuse light e.g. offering an overcast sky should enter the room as freely as possible.
  • Direct sunlight should be largely reflected, especially in the warm season, and in part should ensure glare-free room lighting.
  • the object of the invention is to provide a device for shading solar collectors, parts of buildings, windows or window elements or for To create light control for window elements that does not require external energy, reacts automatically and is easy to implement. According to the invention, this object is achieved by claim 1. Advantageous configurations of the device are characterized in the subclaims.
  • the intended large-area switching effect is achieved through the collective switching process of many neighboring TLS elements.
  • a TLS element consists of a thermally active double layer and an optical component.
  • the thermally active double layer (Fig. 1) consists of two plastic layers (1 and 2), e.g. a combination of uniaxially stretched polyamide film (1) and a normal (i.e. unstretched or 2-axis stretched) film of the same material (2).
  • the two layers stick together. Whether the double layer is transparent, reflective or absorbent depends on the overall design of the switching element (see ⁇ 4).
  • Uniaxially stretched plastics (1) have the property of increasing their constant elasticity in the stretching direction when heated (because of the temperature-dependent entropy elasticity) and thus shrinking in one direction.
  • the isotropic layer (2) reacts only weakly to the heating.
  • the double layer shows a voltage transversely to the surface, which changes the cylindrical curvature (principle of the bimetal thermometer).
  • Fig. 1 shows the principle of thermoelastic deformation, the normal state at the top and the overheated state at the bottom.
  • a deformation over a length in the range 1-3 cm which is sufficient for the application can be achieved particularly advantageously by an extreme "mismatch" of the coefficients of linear expansion of the two materials.
  • the same high "mismatch” were also present in the transverse direction (as in the classic bimetallic element), this geometry would not result in the desired curvature, but in an uncontrollable shrinkage.
  • the optical component is deformed or moved by the deformation of the thermally active double layer.
  • Deformation is achieved when the thermally active double layer (Fig. 1) is given an additional reflective or absorbent coating.
  • Movement is achieved when the thermally active double layer has an extension that does not deform itself, but changes its orientation due to the deformation of the double layer.
  • This extension can be an extension of the layer (1) or the layer (2) from Fig. 1, or consist of another plastic or metal.
  • the extension is reflective or absorbent coated or formed. However, it is advantageous if the entire surface curves in one direction, as shown in Fig. 1.
  • the geometry and arrangement of the TLS element is such that the overall system absorbs less sunlight when heated than when it is cold.
  • Fig. 2 shows a self-regulating sun protection system. Rectangular profiles 4 with strings 5 form the carrier.
  • the strips 6 are aluminum foils, the thickness and modulus of elasticity of which are selected so that they can maintain a horizontal rest position (Fig. 2a), but at the same time get into the shape without leaving the elastic stretching range (Fig. 2b ) let it bend.
  • Uniaxially stretched plastic foils are laminated on the underside of the aluminum foils. These contract when the temperature increases in the stretching direction and deform the aluminum foil elastically (Fig. 2b). In the stretching direction, these plastic films show a modulus of elasticity that is many times higher than in the transverse direction or in the unstretched state; the tendency to creep is also reduced dramatically.
  • the aluminum foil can be held in the curved shape for a long time.
  • the stretched film shows a different thermal expansion than the aluminum film; since the modulus of elasticity and creep resistance in the transverse direction are much smaller than in In the longitudinal direction, the stretched film adapts to the thermal expansion of the aluminum film in the transverse direction and the deformation of the laminate proceeds as desired.
  • the laminate cools down to such an extent that it deforms in the opposite direction (Fig. 2c).
  • the aluminum foil thus reduces the heat radiation exchange between the interior and the cold outer pane and thus improves the k-value of the arrangement.
  • the pane 3 is the outer pane of a window or collector and the supports 4, 5 with the double membrane 1, 2 are located in the space between the outer pane and the inner pane, not shown.
  • the reflective TLS elements can also be attached in front of the absorber itself.
  • the absorber When used in the window area (e.g. overhead glazing), the absorber is replaced by a second glass pane, in the case of the building facade the wall is arranged instead of the absorber or e.g. a transparent thermal insulation wall in front of the facade.
  • the TLS element When used as automatic daylight control (Fig. 3), the TLS element is equipped with an optically active layer, which partly reflects and partially absorbed.
  • the elements In the normal state (no direct sunlight), the elements allow a large part of the incoming light to pass through (Fig. 3a). However, if the sun is shining, the partial absorption of the optically active layer leads to heating of the element. As a result, the element changes into the heated state; the new shape (Fig. 3b or Fig. 3c) reflects partly on the ceiling, which creates an advantageous light distribution in the room, and partly on the outside, giving off excess energy.
  • an attachment to the front or rear pane of the double glazing can have advantageous effects. Attachment at the front can lead to thermal coupling to the variable outside temperature, rear fastening couples to the (approximately) constant inside temperature.
  • the TLS elements are produced as long, narrow elements (for example as strips, the length of which extends over the entire window width, but whose slat widths are less than 1 mm and the mutual distance of which is less than 2 mm), it is also increasingly possible to see through and therefore an application for windows at eye level.
  • a further improvement in transparency can be achieved by reducing the contrast, for example by only partially reflecting or absorbing the strips (e.g. 30-80%) and transmitting the rest of the light.
  • An arrangement of the TLS elements transversely to the direction of natural convection, as shown in Fig. 3, can contribute to reducing the k value, for example in the interior of double windows or of solar collectors. 5.
  • the uniaxial stretched layer can be provided as a film or fiber; many standard thermoplastic plastics such as polyethylene or polypropylene can be stretched.
  • many standard thermoplastic plastics such as polyethylene or polypropylene can be stretched.
  • the bond with the second layer can e.g. through coextrusion, gluing or simple adhesive adhesion (e.g. in the case of paints).
  • the optically active component can be produced by a reflective aluminum coating (e.g. vapor deposition). A milky film is also sufficient for non-critical applications. If the optically active component is to absorb, a dark color is used.
  • Adhesion to the pane is achieved with glue, or with light manufacturing of the elements by (independent) adhesion, or as shown in Fig. 2.
  • the extent of the thermal deformation and the switching point can be set within wide limits by the degree of stretching of the anisotropic layer.
  • the shape of the element in the normal state can be determined by thermoforming.
  • Insulated elements as well as elongated strips of approx. 1 - 5 cm can be used as geometry. By appropriately orienting the layers, the shape change for special applications can be extended to two dimensions, comparable to opening a flower (see Fig. 5). Such an arrangement increases the optical switching stroke. If the TLS element e.g. is designed to be reflective, it will produce a small shadow surface in normal operation and a large shadow surface in the overheated state. The ratio of these two areas is the optical switching stroke.
  • the essential feature of the invention is therefore the use of anisotropic materials.
  • uniaxially stretched polymer films are ideal as the inner film: in stretching they are hard (high modulus of elasticity) and have large, negative expansion coefficients.
  • eg aluminum foils small, positive coefficients
  • a high "mismatch" results.
  • the device can also be used according to claim 9 to isolate components or solar collectors, the latter e.g. at night or wind, and components in winter.
  • the double layer must then generally be arranged turned through 180 °, so that the insulation is moved away from the surface to be insulated when the temperature is increased.

Landscapes

  • Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Civil Engineering (AREA)
  • Laminated Bodies (AREA)
  • Blinds (AREA)

Abstract

The invention concerns a device for providing, depending on the ambient temperature, shade for construction elements such as solar collectors and parts of buildings, e.g. transparent thermal-insulation facades, windows or parts of windows, and/or for guiding light through parts of windows. The device has a double layer (1, 2, 3) which moves in at least one direction when the temperature rises and an optical layer (4) which is moved by the double layer in front of the construction element to be shaded, at least part of the optical layer being transparent or reflecting or absorbing and the area of the optical layer being as large as the construction element to be shaded.

Description

BESCHREIBUNG DESCRIPTION
Einrichtung zur temperaturabhängigen Verschattung von BauelementenDevice for temperature-dependent shading of components
1 . Technisches Anwendungsgebiet1 . Technical application area
Die Erfindung betrifft eine Einrichtung zur temperaturabhängigen Verschattung von Bauelementen, z.B. Solarkollektoren und Gebäudeteilen, TWD-Fassaden, Fen¬ ster oder Fensterelementen; man erreicht damit einen Uberhitzungsschutz bei zu hoher Sonneneinstrahlung.The invention relates to a device for temperature-dependent shading of components, e.g. Solar collectors and parts of buildings, TWD facades, windows or window elements; one achieves overheating protection in the event of excessive solar radiation.
Eine zweite Anwendung ist die der Tageslicht-Lenkung für Fensterelemente. Eine weitere Anwendung ist die Isolierung von Solarkollektoren.A second application is that of daylight control for window elements. Another application is the insulation of solar collectors.
2. Stand der Technik und aktuelle Probleme2. State of the art and current problems
Das energetische Potential der Sonne als Wärme- und Lichtquelle hat zur Entwick¬ lung von thermischen Komponenten wie Solarkollektoren und Hausfassaden mit transparenter Wärmedämmung (TWD) angeregt, sowie den Trend zur "gläsernen Architektur" eingeläutet, mit großzügig dimensionierten Spezialfenstem oder Tageslichtelementen. Mittlerweile sind die erreichten Wirkungsgrade so gut, daß es für Zeiten hoher Einstrahlung spezieller Vorrichtungen bedarf, um hohe Tempe¬ raturen und möglichen Schaden am System abzuwenden. 2.1 ÜBERHITZUNGThe energetic potential of the sun as a source of heat and light has stimulated the development of thermal components such as solar collectors and house facades with transparent thermal insulation (TWD), as well as ushering in the trend towards "glass architecture" with generously dimensioned special windows or daylight elements. In the meantime, the efficiencies achieved are so good that, at times when there is a high level of irradiation, special devices are required in order to avert high temperatures and possible damage to the system. 2.1 OVERHEATING
Zur Zeit gibt es keine geeignete Vorrichtung zum Schutz von Solarkollektoren ge¬ gen Überhitzung; deshalb dürfen im gesamten Aufbau nur hochtemperatur-be- ständige und damit teure Materialien verwendet werden (Metall, Glas, Holz). Mit der Verfügbarkeit einer geeigneten Technik rückt die Serienfertigung von Kollekto¬ ren aus Kunststoff in greifbare Nähe, verbunden mit einem erheblichen Preisverfall pro m^ installierte Fläche.There is currently no suitable device for protecting solar collectors against overheating; therefore only high temperature-resistant and therefore expensive materials (metal, glass, wood) may be used in the entire structure. With the availability of a suitable technology, the series production of plastic collectors is within reach, combined with a considerable drop in prices per square meter of installed space.
In Fassaden und Fenstern kommen Verschattungssysteme zum Einsatz. Eine Über¬ sicht diesbezüglich bietet z.B. der Beitrag "Verschattungsvorrichtungen an Gebäu¬ den - optische und thermische Auswirkungen" von A. Raicu, H.R. Wilson und V. Wittwer aus der Reihe "Innovative Lichttechnik in der Architektur" des Ostbayeri¬ schen Technologie Transfer Instituts (OTTi). Tab. 1 zeigt eine Klassifizierung denkbarer Maßnahmen.Shading systems are used in facades and windows. An overview of this offers e.g. the article "Shading Devices on Buildings - Optical and Thermal Effects" by A. Raicu, H.R. Wilson and V. Wittwer from the "Innovative Lighting Technology in Architecture" series of the East Bavarian Technology Transfer Institute (OTTi). Tab. 1 shows a classification of conceivable measures.
Statische Verschattungssysteme reduzieren den Gesamtertrag in erheblichem Maße oder haben sehr geringen Schalthub. Dynamische Systeme auf mechani¬ scher Basis sind teuer in Anschaffung und Wartung; auch bergen sie ein hohes Ausfallsrisiko. Schaltbare Schichten (elektrochrom, thermochrom, thermotrop) be¬ finden sich noch in der F&E Phase; eine Reihe von Fragen und Problemen im Zu¬ sammenhang mit Wirkungsgrad, Schalthub, Langzeitstabilität und Serienfertigung sind noch ungelöst. Static shading systems reduce the total yield considerably or have a very low switching stroke. Dynamic systems on a mechanical basis are expensive to purchase and maintain; they also harbor a high risk of failure. Switchable layers (electrochromic, thermochromic, thermotropic) are still in the R&D phase; a number of questions and problems relating to efficiency, switching stroke, long-term stability and series production are still unsolved.
VerschattungssystemeShading systems
STATISCH DYNAMISCHSTATICALLY DYNAMIC
Schaltwirkung durch Schaltwirkung durch systemexterne Veränderung systeminterne VeränderungSwitching effect through switching effect due to change outside the system
selbständig fremdgesteuertindependently controlled externally
JalousienBlinds
Dachüberhang Vegetation Rollos unbewegliche Lamellen thermotrope Schicht bewegliche LamellenRoof overhang Vegetation Roller blinds immobile slats thermotropic layer movable slats
Spiegelprofile TLS elektrochrome SchichtMirror profiles TLS electrochromic layer
FlüssigkristalleLiquid crystals
Tab. 1 : Übersicht VerschattungsmaßnahmenTab. 1: Overview of shading measures
2.2 LICHTLENKUNG2.2 CONTROL OF LIGHT
Im Fensterbereich ist reine Verschattung oftmals unerwünscht. Diffuses Licht, wie es z.B. ein bedeckter Himmel anbietet, soll möglichst ungehindert in den Raum. Direktes Sonnenlicht hingegen soll, besonders in der warmen Jahreszeit, zum großen Teil reflektiert werden, zum Teil für eine blendungsfreie Raumbeleuchtung sorgen.Pure shading is often undesirable in the window area. Diffuse light, e.g. offering an overcast sky should enter the room as freely as possible. Direct sunlight, on the other hand, should be largely reflected, especially in the warm season, and in part should ensure glare-free room lighting.
Die Nachfrage für aktive lichtlenkende Fensterelemente ist groß, aber die gegen¬ wärtig verfügbaren Produkte können immer nur einen Teil der Anforderungen erfül¬ len. Elektrisch verstellbare Lamellen sind aufwendig, einfache infrarot-aktiv beschichtete Scheiben können nicht auf unterschiedliche Einstrahlungsbedingun¬ gen reagieren.The demand for active light-directing window elements is great, but the products currently available can only ever meet part of the requirements. Electrically adjustable slats are complex, simple infrared-active coated panes cannot react to different irradiation conditions.
Aufgabe der Erfindung ist es, eine Einrichtung zur Verschattung von Solarkollekto¬ ren, Gebäudeteilen, Fenstern oder Fensterelementen oder zur Lichtlenkung für Fensterelemente zu schaffen, die ohne Fremdenergie auskommt, automatisch reagiert und einfach zu realisieren ist. Erfindungsgemäß wird diese Aufgabe durch Anspruch 1 gelöst. Vorteilhafte Ausgestaltungen der Einrichtung sind in den Unteransprüchen gekennzeichnet.The object of the invention is to provide a device for shading solar collectors, parts of buildings, windows or window elements or for To create light control for window elements that does not require external energy, reacts automatically and is easy to implement. According to the invention, this object is achieved by claim 1. Advantageous configurations of the device are characterized in the subclaims.
3. Aufbau des Thermo-Lichtschalters (TLS)3. Structure of the thermal light switch (TLS)
Der beabsichtigte großflächige Schalteffekt wird erzielt durch den kollektiven Schaltvorgang vieler benachbarter TLS-Elemente.The intended large-area switching effect is achieved through the collective switching process of many neighboring TLS elements.
Ein TLS-Element besteht aus einer thermisch aktiven Doppelschicht und einer opti¬ schen Komponente.A TLS element consists of a thermally active double layer and an optical component.
Die thermisch aktive Doppelschicht (Abb. 1 ) besteht aus zwei Kunststoffschichten (1 und 2), z.B. eine Kombination von einachsig gereckter Polyamidfolie (1 ) und einer normalen, (d.h. ungereckten oder 2-achsig gereckten) Folie gleichen Materials (2). Die beiden Schichten haften fest aneinander. Ob die Doppelschicht transpa¬ rent, reflektierend oder absorbierend ausgeführt wird, hängt von der Gesamt-Kon- zeption des Schaltelements ab (siehe dazu §4).The thermally active double layer (Fig. 1) consists of two plastic layers (1 and 2), e.g. a combination of uniaxially stretched polyamide film (1) and a normal (i.e. unstretched or 2-axis stretched) film of the same material (2). The two layers stick together. Whether the double layer is transparent, reflective or absorbent depends on the overall design of the switching element (see §4).
Einachsig gereckte Kunststoffe (1 ) haben die Eigenschaft, ihre Elastizitätskonstan¬ te in der Reckrichtung bei Erwärmung zu vergrößern (wegen der temperaturab¬ hängigen Entropieelastizität) und somit in einer Richtung zu schrumpfen. Die isotrope Schicht (2) reagiert nur schwach auf die Erwärmung. Somit zeigt die Dop¬ pelschicht bei Temperaturänderung eine Spannung quer zur Oberfläche, die die zylindrische Krümmung ändert (Prinzip des Bimetallthermometers). In dieser An¬ ordnung reicht eine schwache und damit voll reversible Längenkontraktion der Schicht (1 ), um die Form des Elements in hohem Maße zu verändern. Abb. 1 zeigt das Prinzip der thermoelastischen Verformung, oben der normale, unten der über¬ hitzte Zustand. Eine für die Anwendung ausreichende Verformung auf einer Länge im Bereich 1 - 3 cm ist besonders vorteilhaft durch einen extremen "mismatch" der Längenausdeh¬ nungskoeffizienten der beiden Materialien zu erreichen. Würde aber der gleiche, hohe "mismatch" auch in Querrichtung vorliegen (wie beim klassischen Bimetall- Element), dann käme es bei dieser Geometrie nicht zu der gewünschten Krüm¬ mung, sondern zu einer unkontrollierbaren Verschrumpelung.Uniaxially stretched plastics (1) have the property of increasing their constant elasticity in the stretching direction when heated (because of the temperature-dependent entropy elasticity) and thus shrinking in one direction. The isotropic layer (2) reacts only weakly to the heating. Thus, when the temperature changes, the double layer shows a voltage transversely to the surface, which changes the cylindrical curvature (principle of the bimetal thermometer). In this arrangement, a weak and thus fully reversible length contraction of the layer (1) is sufficient to change the shape of the element to a large extent. Fig. 1 shows the principle of thermoelastic deformation, the normal state at the top and the overheated state at the bottom. A deformation over a length in the range 1-3 cm which is sufficient for the application can be achieved particularly advantageously by an extreme "mismatch" of the coefficients of linear expansion of the two materials. However, if the same high "mismatch" were also present in the transverse direction (as in the classic bimetallic element), this geometry would not result in the desired curvature, but in an uncontrollable shrinkage.
Durch die Verformung der thermisch aktiven Doppelschicht wird die optische Komponente verformt oder bewegt. Verformung wird erreicht, wenn die thermisch aktive Doppelschicht (Abb. 1 ) eine zusätzliche reflektierende oder absorbierende Beschichtung erhält. Bewegung wird erreicht, wenn die thermisch aktive Doppelschicht einen Fortsatz hat, der sich selbst nicht verformt, aber durch die Verformung der Doppelschicht seine Ausrichtung ändert. Dieser Fortsatz kann ein Fortsatz der Schicht (1 ) oder der Schicht (2) aus Abb. 1 sein, oder aus einem an¬ deren Kunststoff oder Metall bestehen. Der Fortsatz ist reflektierend oder absorbie¬ rend beschichtet oder ausgebildet. Vorteilhaft ist aber, wenn sich die gesamte Fläche in eine Richtung krümmt, wie in Abb. 1 dargestellt.The optical component is deformed or moved by the deformation of the thermally active double layer. Deformation is achieved when the thermally active double layer (Fig. 1) is given an additional reflective or absorbent coating. Movement is achieved when the thermally active double layer has an extension that does not deform itself, but changes its orientation due to the deformation of the double layer. This extension can be an extension of the layer (1) or the layer (2) from Fig. 1, or consist of another plastic or metal. The extension is reflective or absorbent coated or formed. However, it is advantageous if the entire surface curves in one direction, as shown in Fig. 1.
Geometrie und Anordnung des TLS-Elements ist derart, daß das Gesamtsystem im erhitzten Zustand weniger Sonnenlicht absorbiert als im kalten Zustand.The geometry and arrangement of the TLS element is such that the overall system absorbs less sunlight when heated than when it is cold.
In Abb. 2 ist ein selbstregulierendes Sonnenschutz-System dargestellt. Recht¬ eckige Profile 4 bilden mit Schnüren 5 den Träger. Die Streifen 6 sind Aluminium¬ folien, der Stärke und E-Modul so gewählt sind, daß sie eine waagrechte Ruhestel¬ lung einhalten können (Abb. 2a), sich aber gleichzeitig ohne Verlassen des elasti¬ schen Dehnbereichs in die Form (Abb. 2b) biegen lassen. Auf der Unterseite der Alu-Folien sind einachsig gereckte Folien aus Kunststoff auflaminiert. Diese kon¬ trahieren bei Erhöhung der Temperatur in Reckrichtung und verformen die Alufolie elastisch (Abb. 2b). In Reckrichtung zeigen diese Kunststoff-Folien ein E-Modul, das um ein Vielfaches höher ist als in Querrichtung bzw. im ungereckten Zustand; auch verringert sich die Kriechneigung dramatisch. Mit diesen Voraussetzungen kann die Alu-Folie für längere Zeit in der gekrümmten Form festgehalten werden. In Querrichtung zeigt die gereckte Folie eine andere Wärmeausdehnung als die Alu- Folie; da aber E-Modul und Kriechfestigkeit in Querrichtung viel kleiner als in Längsrichtung sind, paßt sich die gereckte Folie der Temperaturausdehnung der Alufolie in Querrichtung an und die Verformung des Laminats verläuft wie ge¬ wünscht.Fig. 2 shows a self-regulating sun protection system. Rectangular profiles 4 with strings 5 form the carrier. The strips 6 are aluminum foils, the thickness and modulus of elasticity of which are selected so that they can maintain a horizontal rest position (Fig. 2a), but at the same time get into the shape without leaving the elastic stretching range (Fig. 2b ) let it bend. Uniaxially stretched plastic foils are laminated on the underside of the aluminum foils. These contract when the temperature increases in the stretching direction and deform the aluminum foil elastically (Fig. 2b). In the stretching direction, these plastic films show a modulus of elasticity that is many times higher than in the transverse direction or in the unstretched state; the tendency to creep is also reduced dramatically. With these requirements, the aluminum foil can be held in the curved shape for a long time. In the transverse direction, the stretched film shows a different thermal expansion than the aluminum film; since the modulus of elasticity and creep resistance in the transverse direction are much smaller than in In the longitudinal direction, the stretched film adapts to the thermal expansion of the aluminum film in the transverse direction and the deformation of the laminate proceeds as desired.
Durch die Verformung bei erhöhter Temperatur kann Sonnenlicht im Überhitzungs- fall von der Anwendung ferngehalten werden. Die Anordnung von Folie und Trä¬ gerprofil gewährleistet, daß die Lichtumlenkung nur einer einzigen Reflexion be¬ darf. Dies ist wichtig wegen der zwar geringfügigen, aber unvermeidlichen Ab¬ sorption und Eigenerwärmung der Folie.Due to the deformation at elevated temperature, sunlight can be kept away from the application in the event of overheating. The arrangement of the film and the carrier profile ensures that the light deflection requires only a single reflection. This is important because of the slight but inevitable absorption and self-heating of the film.
Bei fehlender Einstrahlung und tiefen Außentemperaturen (Winter, nachts) kühlt das Laminat so weit ab, daß eine Verformung in Gegenrichtung stattfindet (Abb. 2c). Die Alu-Folie reduziert damit den Wärmestrahlungsaustausch zwischen Innen¬ raum und der kalten Außenscheibe und verbessert damit den k-Wert der Anord¬ nung.In the absence of insolation and low outside temperatures (winter, at night), the laminate cools down to such an extent that it deforms in the opposite direction (Fig. 2c). The aluminum foil thus reduces the heat radiation exchange between the interior and the cold outer pane and thus improves the k-value of the arrangement.
Vorteilhafterweise ist die Scheibe 3 die Außenscheibe eines Fensters bzw. Kollek¬ tors und die Träger 4, 5 mit den Doppelmembran 1 , 2 befinden sich im Zwischen¬ raum zwischen der Außenscheibe und der nicht dargestellten Innenscheibe.Advantageously, the pane 3 is the outer pane of a window or collector and the supports 4, 5 with the double membrane 1, 2 are located in the space between the outer pane and the inner pane, not shown.
4. Eigenschaften des Thermo-Lichtschalters4. Properties of the thermal light switch
Die reflektierenden TLS-Elemente können im Falle des Kollektors auch vor dem Absorber selbst befestigt werden.In the case of the collector, the reflective TLS elements can also be attached in front of the absorber itself.
Bei Anwendung im Fensterbereich (etwa Überkopfverglasung) ist der Absorber durch eine zweite Glasscheibe ersetzt, im Falle der Gebäudefassade ist statt dem Absorber die Wand angeordnet oder z.B. eine transparente Wärmedämmwand vor der Fassade.When used in the window area (e.g. overhead glazing), the absorber is replaced by a second glass pane, in the case of the building facade the wall is arranged instead of the absorber or e.g. a transparent thermal insulation wall in front of the facade.
Bei Anwendung als automatische Tageslicht-Lenkung (Abb. 3 ) ist das TLS-Ele- ment mit einer optisch aktiven Schicht ausgestattet, die teilweise reflektiert und teilweise absorbiert. Im normalen Zustand (keine direkte Sonneneinstrahlung) las¬ sen die Elemente einen Großteil des eintreffenden Lichtes passieren (Abb. 3a). Falls aber die Sonne scheint, führt die teilweise Absorption der optisch aktiven Schicht zu einer Erwärmung des Elements. Als Folge geht das Element in den er¬ hitzten Zustand über; die neue Form (Abb. 3b bzw. Abb. 3c) reflektiert teilweise an die Zimmerdecke, wodurch eine vorteilhaften Lichtverteilung im Raum erzeugt wird, und teilweise nach außen, wodurch überschüssige Energie abgegeben wird.When used as automatic daylight control (Fig. 3), the TLS element is equipped with an optically active layer, which partly reflects and partially absorbed. In the normal state (no direct sunlight), the elements allow a large part of the incoming light to pass through (Fig. 3a). However, if the sun is shining, the partial absorption of the optically active layer leads to heating of the element. As a result, the element changes into the heated state; the new shape (Fig. 3b or Fig. 3c) reflects partly on the ceiling, which creates an advantageous light distribution in the room, and partly on the outside, giving off excess energy.
Je nach Zielsetzung kann eine Anbringung an der front- oder der rückseitigen Scheibe der Doppelverglasung vorteilhafte Effekte zeigen. Frontseitige Anbringung kann zur thermischen Kopplung an die variable Außentemperatur führen, rücksei¬ tige Befestigung koppelt an die (annähernd) konstante Innentemperatur.Depending on the objective, an attachment to the front or rear pane of the double glazing can have advantageous effects. Attachment at the front can lead to thermal coupling to the variable outside temperature, rear fastening couples to the (approximately) constant inside temperature.
Wenn die TLS-Elemente als lange schmale Elemente hergestellt werden (z.B. als Streifen, deren Länge zwar über die gesamte Fensterbreite reicht, deren Lamellen¬ breiten aber unter 1 mm liegen und deren gegenseitiger Abstand unter 2 mm liegt), ist zunehmend auch Durchsicht möglich, und damit ein Einsatz bei Fenstern in Augenhöhe. Je kleiner die Breite, umso weniger wird die gerade Durchsicht durch die Streifen (Abb. 3a) gestört; im Idealfall sind sie auch für einen Beobachter in Fensternähe nur noch als Linien sichtbar. Eine weitere Verbesserung der Durchsicht kann durch eine Reduzierung des Kontrastes erreicht werden, etwa in¬ dem die Streifen nur teilweise reflektierend oder absorbierend (z.B. 30 - 80%) und dafür den Rest des Lichtes transmittieren.If the TLS elements are produced as long, narrow elements (for example as strips, the length of which extends over the entire window width, but whose slat widths are less than 1 mm and the mutual distance of which is less than 2 mm), it is also increasingly possible to see through and therefore an application for windows at eye level. The smaller the width, the less the straight view through the strips is disturbed (Fig. 3a); ideally, they are only visible as lines to an observer near the window. A further improvement in transparency can be achieved by reducing the contrast, for example by only partially reflecting or absorbing the strips (e.g. 30-80%) and transmitting the rest of the light.
Eine Anordnung der TLS-Elemente quer zur Richtung der natürlichen Konvektion, wie in Abb. 3 dargestellt, kann einen Beitrag zur Verringerung des k-Wertes lei¬ sten, z.B. im Inneren von Doppelfenstern oder von Solarkollektoren. 5. Herstellung des Thermo-LichtschaltersAn arrangement of the TLS elements transversely to the direction of natural convection, as shown in Fig. 3, can contribute to reducing the k value, for example in the interior of double windows or of solar collectors. 5. Manufacture of the thermal light switch
Die einachsige gereckte Schicht kann als Folie oder Faser bereitgestellt werden; viele thermoplastischen Standard-Kunststoffe wie Polyethylen oder Polypropylen lassen sich recken. Z.B. sind einachsig gereckte Folien aus Polyamid (15 //m dick) oder Polypropylen (40 μm dick) Stand der Technik. Der Verbund mit der zweiten Schicht kann z.B. durch Koextrusion, Verklebung oder einfache adhäsive Haftung (z.B. bei Lacken) gewährleistet werden.The uniaxial stretched layer can be provided as a film or fiber; many standard thermoplastic plastics such as polyethylene or polypropylene can be stretched. For example, are uniaxially stretched films made of polyamide (15 // m thick) or polypropylene (40 μm thick) state of the art. The bond with the second layer can e.g. through coextrusion, gluing or simple adhesive adhesion (e.g. in the case of paints).
Die optisch aktive Komponente kann durch eine spiegelnde Aluminium-Beschich¬ tung (z.B. Bedampfung) erzeugt werden. Für unkritische Anwendungen reicht auch eine milchige Folie. Wenn die optisch aktive Komponente absorbieren soll, wird ei¬ ne dunkle Färbung gebraucht.The optically active component can be produced by a reflective aluminum coating (e.g. vapor deposition). A milky film is also sufficient for non-critical applications. If the optically active component is to absorb, a dark color is used.
Die Haftung an der Scheibe wird durch Kleber erzielt, oder bei leichter Fertigung der Elemente durch (selbständige) Adhäsion, oder wie in Abb. 2 dargestellt.Adhesion to the pane is achieved with glue, or with light manufacturing of the elements by (independent) adhesion, or as shown in Fig. 2.
Das Ausmaß der thermischen Verformung sowie der Schaltpunkt kann durch den Grad der Reckung der anisotropen Schicht in weiten Grenzen eingestellt werden.The extent of the thermal deformation and the switching point can be set within wide limits by the degree of stretching of the anisotropic layer.
Die Form des Elements im Normalzustand kann durch Warmformen festgelegt wer¬ den.The shape of the element in the normal state can be determined by thermoforming.
Als Geometrie kommen isolierte Elemente wie auch längliche Streifen von ca. 1 - 5 cm in Frage. Durch entsprechende Orientierung der Schichten kann die Formände¬ rung für spezielle Anwendungen auf zwei Dimensionen ausgedehnt werden, ver¬ gleichbar mit dem Öffnen einer Blüte (s. Abb. 5). Eine solche Anordnung ver¬ größert den optischen Schalthub. Wenn das TLS-Element z.B. reflektierend ausge¬ führt ist, wird es im Normalbetrieb eine kleine, im überhitzen Zustand eine große Schattenfläche erzeugen. Das Verhältnis dieser beiden Flächen ist der optische Schalthub.Insulated elements as well as elongated strips of approx. 1 - 5 cm can be used as geometry. By appropriately orienting the layers, the shape change for special applications can be extended to two dimensions, comparable to opening a flower (see Fig. 5). Such an arrangement increases the optical switching stroke. If the TLS element e.g. is designed to be reflective, it will produce a small shadow surface in normal operation and a large shadow surface in the overheated state. The ratio of these two areas is the optical switching stroke.
Wesentliches Merkmal der Erfindung ist deshalb der Einsatz anisotroper Materia¬ lien. Ideal sind z.B. einachsig gereckte Polymerfolien als innere Folie: in Reckrich- tung sind sie hart (hohes E-Modul) und haben große, negative Ausdehnungskoeffi¬ zienten. In Kombination mit z.B. Aluminiumfolien (kleine, positive Koeffizienten) ergibt sich ein hoher "mismatch".The essential feature of the invention is therefore the use of anisotropic materials. For example, uniaxially stretched polymer films are ideal as the inner film: in stretching they are hard (high modulus of elasticity) and have large, negative expansion coefficients. In combination with eg aluminum foils (small, positive coefficients), a high "mismatch" results.
In Querrichtunq haben sie positive Ausdehnungskoeffizienten und sind "weich", so daß sie (wie erforderlich) spannungsfrei der Ausdehnung der äußeren Folie folgen können und es zu keiner Querverformung kommt.In the transverse direction they have positive coefficients of expansion and are "soft" so that they can (as required) follow the expansion of the outer film without tension and there is no transverse deformation.
6. Ausführungsbeispiel6th embodiment
Elemente der in Abb. 1 skizzierten Art wurden durch Kombination einer marktübli¬ chen selbstklebenden, reflexbeschichteten Folie mit einer einachsig gereckten Polyamidfolie hergestellt. Sie zeigten bei Temperaturänderung eine reversible Formänderung gemäß Voraussage. (Das zuletzt entwickelte Modell zeigte nach keinem der Versuche irreversible Verformung; sie tritt erst bei sehr hohen Tempe¬ raturen auf, z.B. > 100°C, wenn das Material zu erweichen beginnt.)Elements of the type outlined in Fig. 1 were produced by combining a commercially available self-adhesive, reflective-coated film with a uniaxially stretched polyamide film. When the temperature changed, they showed a reversible change in shape as predicted. (The last developed model showed no irreversible deformation after any of the tests; it only occurs at very high temperatures, e.g.> 100 ° C, when the material begins to soften.)
Die Einrichtung kann gemäß Anspruch 9 auch verwendet werden, Bauteile oder Solarkollektoren zu isolieren, letztere z.B. bei Nacht oder Wind, und Bauteile im Winter. Die Doppelschicht muß dann in der Regel um 180° gewendet angeordnet sein, sodaß bei erhöhter Temperatureinwirkung die Isolierung von der zu isolieren¬ den Fläche wegbewegt wird. The device can also be used according to claim 9 to isolate components or solar collectors, the latter e.g. at night or wind, and components in winter. The double layer must then generally be arranged turned through 180 °, so that the insulation is moved away from the surface to be insulated when the temperature is increased.

Claims

Patentansprüche claims
1. Einrichtung zur temperaturabhängigen Verschattung von Bauelementen, z.B. Solarkollektoren und Gebäudeteilen, TWD-Fassaden, Fenstern oder Fenster¬ elementen, und/oder zur Lichtlenkung durch Fensterelemente,1. Device for temperature-dependent shading of components, e.g. Solar collectors and building parts, TWD facades, windows or window elements, and / or for directing light through window elements,
dadurch gekennzeichnet,characterized,
daß eine infolge höherer Temperatur in mindestens eine Richtung beweg¬ bare Doppelschicht (1, 2) und eine mittels derselben vor das zu verschat¬ tende Bauelement (3) bewegbare optische Schicht vorgesehen ist, die min¬ destens teilweise entweder transparent oder reflektierend oder absorbierend ausgebildet ist und eine ebenso große Fläche aufweist wie das zu ver¬ schattende Bauelement, wobei die Doppelschicht (1,2) aus einer einachsig gereckten Kunststoffolie (1) und einer ungereckten oder zweiachsig ge¬ reckten Folie (2) des gleichen oder eines ähnlichen Materials ist, z.B. Po¬ lyamid, oder die Folie (2) aus einer spiegelnden Metallfolie oder einer Isolier¬ schicht besteht.that a double layer (1, 2) which can be moved in at least one direction as a result of the higher temperature and an optical layer which can be moved by means of the same in front of the component (3) to be shaded is provided, which is at least partially designed to be either transparent or reflective or absorbent and has the same area as the component to be shaded, the double layer (1, 2) consisting of a uniaxially stretched plastic film (1) and an unstretched or biaxially stretched film (2) of the same or a similar material , e.g. Polyamide, or the film (2) consists of a reflective metal film or an insulating layer.
2. Einrichtung nach Anspruch 1 ,2. Device according to claim 1,
dadurch gekennzeichnet,characterized,
daß auf der Schicht (1) selbst die optische Schicht (4) angeordnet, z.B. ge¬ klebt, aufgedampft oder durch Adhäsion aufgebracht ist. that the optical layer (4) itself is arranged on the layer (1), for example glued, vapor-deposited or applied by adhesion.
3. Einrichtung nach Anspruch 1 ,3. Device according to claim 1,
dadurch g e kennzeichnet ,characterized ,
daß die optische Schicht ein Fortsatz einer der beiden Schichten (1, 2,) ist oder aus einem anderen Material.that the optical layer is an extension of one of the two layers (1, 2,) or of another material.
4. Einrichtung nach Anspruch 2,4. Device according to claim 2,
dadurch g ekennzeichnet,characterized,
daß die Doppelschicht (1, 2) sich unter Temperatureinwirkung einrollt und/oder horizontal oder vertikal vor das zu verschattende Element (3) be¬ wegbar ist.that the double layer (1, 2) curls under the influence of temperature and / or can be moved horizontally or vertically in front of the element (3) to be shaded.
5. Einrichtung nach Anspruch 1 - 4,5. Device according to claim 1-4,
dadurch g e kennzeichnet ,characterized ,
daß die Doppelschicht etwa so lang wie die Breite des Bauelementes (3) ausgebildet ist, aber nur eine eigene Breite von 1 bis 5 cm beträgt.that the double layer is approximately as long as the width of the component (3), but is only a width of 1 to 5 cm.
6. Einrichtung nach Anspruch 5,6. Device according to claim 5,
dad urch gekennz ei chnet,characterized,
die Breite nur bis zu 2 mm beträgt. the width is only up to 2 mm.
7. Einrichtung nach Anspruch 1 -6,7. Device according to claim 1-6,
dadurch gekennzeichnet,characterized,
daß mehrere Einrichtungen in horizontaler oder vertikaler oder in Arrayan- ordnung vorgesehen sind.that several devices are provided in a horizontal or vertical or in an array arrangement.
8. Einrichtung nach Anspruch 1,8. Device according to claim 1,
dadurch gekennzeichnet,characterized,
daß bei Verwendung in Solarkollektoren als zweite Schicht (2) eine isolie¬ rende Schicht vorgesehen ist und die Doppelschicht (1,2) derart angeord¬ net ist, daß bei Temperatureinwirkung die Doppelschicht von dem zu isolie¬ renden Element wegbewegt wird und ohne Temperatureinwirkung auf dem zu isolierenden Element zu liegen kommt.that when used in solar collectors, an insulating layer is provided as the second layer (2) and the double layer (1, 2) is arranged in such a way that, when exposed to temperature, the double layer is moved away from the element to be insulated and without the effect of temperature the element to be isolated comes to rest.
Verwendung einer Einrichtung nach den Ansprüchen 1 -8 zur Konvektions- unterdrückung in Solarkollektoren oder in dem Zwischenraum von Doppel¬ fenstern. Use of a device according to claims 1-8 for convection suppression in solar collectors or in the space between double windows.
PCT/EP1996/003194 1995-07-21 1996-07-19 Device for providing shade for construction elements as a function of the temperature WO1997004207A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19526761 1995-07-21
DE19526761.3 1995-07-21

Publications (1)

Publication Number Publication Date
WO1997004207A1 true WO1997004207A1 (en) 1997-02-06

Family

ID=7767488

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1996/003194 WO1997004207A1 (en) 1995-07-21 1996-07-19 Device for providing shade for construction elements as a function of the temperature

Country Status (2)

Country Link
DE (1) DE19629237C2 (en)
WO (1) WO1997004207A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2847614A1 (en) * 2002-11-25 2004-05-28 Gilbert Brenaut Blind strip for screening sunlight, has pair of laminates, joined together side by side to adhesive base by rubber belting to couple metal/hygroscopic cellulose layer with variable form
KR20130081210A (en) 2010-03-31 2013-07-16 가부시키가이샤 메이지 White chocolate-impregnated food and method for producing same
US9109812B2 (en) 2008-08-25 2015-08-18 Hunter Douglas Inc. Solar heating cells and support apparatus therefor
US9366080B2 (en) 2008-11-18 2016-06-14 Hunter Douglas Inc. Slatted roller blind
US9416587B2 (en) 2010-06-08 2016-08-16 Hunter Douglas, Inc. Unitary assembly for an architectural fenestration, providing dynamic solar heat gain control
US9458663B2 (en) 2010-04-16 2016-10-04 Hunter Douglas Inc. Process and system for manufacturing a roller blind
US9540874B2 (en) 2011-04-15 2017-01-10 Hunter Douglas Inc. Covering for architectural opening including cell structures biased to open
US9702186B2 (en) 2005-03-16 2017-07-11 Hunter Douglas Inc. Single-Track stacking panel covering for an architectural opening
US10648229B2 (en) 2016-06-30 2020-05-12 Hunter Douglas Inc. Architectural covering and method of manufacturing
US11118396B2 (en) 2016-10-28 2021-09-14 Hunter Douglas Inc. Covering for architectural features, and related systems, methods of operation, and manufacture

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19737944A1 (en) * 1997-08-30 1999-03-04 Wilfrid Balk Solar facade for automatic air conditioning in room
DE19817432C1 (en) * 1998-04-20 1999-08-26 Fraunhofer Ges Forschung Temperature sensitive shade apparatus for preventing sunlight falling directly on facades or objects
DK176229B1 (en) * 2002-06-18 2007-03-26 Photosolar Aps Optical element for shielding light
DE102004002157B3 (en) * 2004-01-15 2005-08-25 Eckelt Glas Gmbh Window with slats
DE102005054365A1 (en) * 2005-11-15 2007-05-16 Durlum Leuchten Cover of solar cells
DE102008037249B4 (en) * 2008-08-09 2013-11-14 Robert Bosch Gmbh Solar collector with absorber with flexible absorber elements
DE102016012554B4 (en) 2016-10-20 2021-09-23 Martin Huber Patent UG (haftungsbeschränkt) Heat engine with several double-layer components
DE102018109338B4 (en) 2018-04-19 2022-08-18 Martin Huber Patent UG (haftungsbeschränkt) Heat engine with an endless belt, endless belt and method for manufacturing an endless belt
DE102020105109A1 (en) 2020-02-27 2021-09-02 Helmut-Schmidt-Universität Thermal solid-state actuator

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1021312A (en) * 1961-08-18 1966-03-02 Laing Nikolaus Means for controlling the intensity of radiation incident upon a surface, or the intensity of radiation emanating from a surface
GB1091588A (en) * 1964-09-22 1967-11-22 Toyo Boseki Articles formed from synthetic resin
FR2308778A1 (en) * 1975-04-23 1976-11-19 Ici Ltd STORE AND ITS MANUFACTURING PROCESS
DE2709207A1 (en) * 1977-03-03 1978-09-07 Freudenberg Carl Fa Thermosensitive blind e.g. for greenhouse or car radiator - comprises steel foil laminated to closed cell foamed polyethylene foil, the laminate having slat openings
CA1082095A (en) * 1978-05-08 1980-07-22 Bennett, Charles P. Venetian blind construction
FR2506913A1 (en) * 1981-05-27 1982-12-03 Chausson Usines Sa Variable reflector for solar collector - has blades responding to temperature change and heat absorbers matching incident ray direction
EP0369080A1 (en) * 1988-11-18 1990-05-23 Roll-Screens, Inc. Multilayer plastic sheets and processes for the preparation thereof

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1021312A (en) * 1961-08-18 1966-03-02 Laing Nikolaus Means for controlling the intensity of radiation incident upon a surface, or the intensity of radiation emanating from a surface
GB1091588A (en) * 1964-09-22 1967-11-22 Toyo Boseki Articles formed from synthetic resin
FR2308778A1 (en) * 1975-04-23 1976-11-19 Ici Ltd STORE AND ITS MANUFACTURING PROCESS
DE2709207A1 (en) * 1977-03-03 1978-09-07 Freudenberg Carl Fa Thermosensitive blind e.g. for greenhouse or car radiator - comprises steel foil laminated to closed cell foamed polyethylene foil, the laminate having slat openings
CA1082095A (en) * 1978-05-08 1980-07-22 Bennett, Charles P. Venetian blind construction
FR2506913A1 (en) * 1981-05-27 1982-12-03 Chausson Usines Sa Variable reflector for solar collector - has blades responding to temperature change and heat absorbers matching incident ray direction
EP0369080A1 (en) * 1988-11-18 1990-05-23 Roll-Screens, Inc. Multilayer plastic sheets and processes for the preparation thereof

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2847614A1 (en) * 2002-11-25 2004-05-28 Gilbert Brenaut Blind strip for screening sunlight, has pair of laminates, joined together side by side to adhesive base by rubber belting to couple metal/hygroscopic cellulose layer with variable form
US9702186B2 (en) 2005-03-16 2017-07-11 Hunter Douglas Inc. Single-Track stacking panel covering for an architectural opening
US10689903B2 (en) 2005-03-16 2020-06-23 Hunter Douglas Inc. Single-track stacking panel covering for an architectural opening
US9109812B2 (en) 2008-08-25 2015-08-18 Hunter Douglas Inc. Solar heating cells and support apparatus therefor
US9366080B2 (en) 2008-11-18 2016-06-14 Hunter Douglas Inc. Slatted roller blind
US11299930B2 (en) 2008-11-18 2022-04-12 Hunter Douglas Inc. Slatted roller blind
US10145172B2 (en) 2008-11-18 2018-12-04 Hunter Douglas Inc. Slatted roller blind
KR20130081210A (en) 2010-03-31 2013-07-16 가부시키가이샤 메이지 White chocolate-impregnated food and method for producing same
US10391719B2 (en) 2010-04-16 2019-08-27 Hunter Douglas Inc. Process and system for manufacturing a roller blind
US9458663B2 (en) 2010-04-16 2016-10-04 Hunter Douglas Inc. Process and system for manufacturing a roller blind
US9416587B2 (en) 2010-06-08 2016-08-16 Hunter Douglas, Inc. Unitary assembly for an architectural fenestration, providing dynamic solar heat gain control
US9995083B2 (en) 2011-04-15 2018-06-12 Hunter Douglas Inc. Covering for architectural opening including thermoformable slat vanes
US10030444B2 (en) 2011-04-15 2018-07-24 Hunter Douglas Inc. Covering for architectural opening including cell structures biased to open
US10724297B2 (en) 2011-04-15 2020-07-28 Hunter Douglas Inc. Covering for architectural opening including cell structures biased to open
US10724296B2 (en) 2011-04-15 2020-07-28 Hunter Douglas Inc. Covering for architectural opening including thermoformable slat vanes
US9540874B2 (en) 2011-04-15 2017-01-10 Hunter Douglas Inc. Covering for architectural opening including cell structures biased to open
US10648229B2 (en) 2016-06-30 2020-05-12 Hunter Douglas Inc. Architectural covering and method of manufacturing
US11608678B2 (en) 2016-06-30 2023-03-21 Hunter Douglas, Inc. Architectural covering and method of manufacturing
US11118396B2 (en) 2016-10-28 2021-09-14 Hunter Douglas Inc. Covering for architectural features, and related systems, methods of operation, and manufacture

Also Published As

Publication number Publication date
DE19629237A1 (en) 1997-02-20
DE19629237C2 (en) 2001-07-19

Similar Documents

Publication Publication Date Title
DE19629237C2 (en) Device for temperature-dependent shading of components
EP1248932B1 (en) Construction element for buildings that accumulates latent heat
EP2923235B1 (en) Energy-efficient film
Casini Smart windows for energy efficiency of buildings
US5525430A (en) Electrically activated thermochromic optical shutters
CA2756602C (en) Thermally switched reflective optical shutter
JP5485170B2 (en) Absorption-type window shutter with temperature response switching
DE102005006329B4 (en) solar system
US6094306A (en) Energy efficient window
DE102012006231B4 (en) Layer arrangement for regulating light transmission
US20120118514A1 (en) Energy control device for windows and the like
WO1980002712A1 (en) Plant for the automatic control of the incident solar flux
NO129198B (en)
DE102007013331A1 (en) Sunshield for office buildings, at glass facades, has an outer opaque layer and an inner layer with light passage openings and a dielectric layer between them
US5497762A (en) Device for collecting solar energy and transferring it to a reception body to be heated
JPH0431833A (en) Solar radiation control window
DE4002518A1 (en) Cladding over heating of building - has outermost covering over transparent insulation, an air gap layer whose transparency depends on temp. and absorber background
US4890900A (en) Solar corrugation with shield
Casini Smart windows for energy efficiency of buildings
EP0800035B1 (en) Shading system for glazing to block direct sunlight from predefined orientations
DE19614787A1 (en) Building air-conditioning system with solar radiation concentrators
DE4444104C1 (en) Thermal protection with passive use of solar energy
KR101595516B1 (en) Heat shield film having solar control function and manufacturing method of the same
US20140196395A1 (en) Angle-selective irradiation insulation on a building envelope
WO2012101237A2 (en) Device and method for concentrating incident light

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase