WO1996025518A1 - Probe for use in nucleic acid analysis and detecting method - Google Patents

Probe for use in nucleic acid analysis and detecting method Download PDF

Info

Publication number
WO1996025518A1
WO1996025518A1 PCT/JP1996/000297 JP9600297W WO9625518A1 WO 1996025518 A1 WO1996025518 A1 WO 1996025518A1 JP 9600297 W JP9600297 W JP 9600297W WO 9625518 A1 WO9625518 A1 WO 9625518A1
Authority
WO
WIPO (PCT)
Prior art keywords
probe
nucleic acid
group
acid analysis
fluorescence
Prior art date
Application number
PCT/JP1996/000297
Other languages
French (fr)
Japanese (ja)
Inventor
Masayuki Masuko
Katsuyoshi Ebata
Original Assignee
The Society For Techno-Innovation Of Agriculture, Foresty And Fisheries
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by The Society For Techno-Innovation Of Agriculture, Foresty And Fisheries filed Critical The Society For Techno-Innovation Of Agriculture, Foresty And Fisheries
Priority to AT96901985T priority Critical patent/ATE253127T1/en
Priority to DE69630517T priority patent/DE69630517T2/en
Priority to AU46338/96A priority patent/AU694313B2/en
Priority to EP96901985A priority patent/EP0810291B1/en
Priority to JP52482296A priority patent/JP3992079B2/en
Publication of WO1996025518A1 publication Critical patent/WO1996025518A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6816Hybridisation assays characterised by the detection means
    • C12Q1/6818Hybridisation assays characterised by the detection means involving interaction of two or more labels, e.g. resonant energy transfer
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA

Definitions

  • An object of the present invention is to provide a probe for nucleic acid analysis having high sensitivity and high selective nucleotide sequence recognition without using radioisotopes, and a detection method using the same.
  • nucleic acid hybridization In genetic engineering, the technique called nucleic acid hybridization, which is used to detect specific genes and nucleic acids from cells and viruses, depends on the purpose, target gene, and detection method. Many methods have been developed and used.
  • Non-radioactive labeling methods include labeling of fluorescent substances, labeling of enzymes, and the like, and methods of observing phenomena based on the interaction between label groups.
  • a complementary polynucleotide is used as a probe for detecting one kind of nucleic acid with respect to a target nucleic acid (target or target polynucleotide).
  • the probe must be used in excess of the target to perform hybridization, and the probe polynucleotide for nucleic acid detection needs to be removed by washing or the like before detection, resulting in complicated operation. And lack of agility.
  • it does not use radioisotopes, but has practical sensitivity (detection limit) performance and high recognition (recognition of a single base difference) performance, and after hybridization as described above. It has been particularly desired to develop a detection method that utilizes a phenomenon that can be directly measured without the need to wash and remove excess probe.
  • USP5,332,659 is an example of the use of the phenomenon based on the excimer formation of two chromophores.
  • this method one kind of probe for detecting a polynucleotide, which is preliminarily provided with two or more fluorescent labels in a single strand, is used, and the change in excimer light intensity that occurs when hybridization with the target nucleic acid is performed.
  • a method for detecting the target nucleic acid by observation is disclosed.
  • the purpose of the present invention is to reduce the number of misrecognitions or to provide recognition with a single base difference (point mutation recognition). It is apparent that it is more preferable to use one set of two or more kinds of probes for one target than one kind of probe. Disclosure of the invention
  • each label group provided on the target is determined by measuring the phenomenon.
  • Methods for detecting nucleic acids are known.
  • a pair of energy donors (D) / Axceptors (A) are used as label groups, each of which is attached to a separate oligonucleotide. It is also known that the same energy transfer is used, but one of them is enzymatically labeled. That is, EP0229943A2 discloses a labeling method based on D / A.
  • EP0070685B1 is unsuitable for hybridizations that often require thermal treatment because they are labeled with an enzyme that is not thermally stable in nature.
  • the energy donor is not in the probe but is a luminescent substance such as luminol mixed in the measurement solution as a substrate for the enzyme. These are not sensitive enough to identify the position between the enzyme and xuebu because they diffuse in solution, and are unsuitable for the hybridization method that requires accurate recognition of a single base difference. .
  • the present invention provides a non-radioactive, hybridization-based probe for nucleic acid detection, which is highly sensitive and can recognize a difference of one base. It is. Furthermore, after the hybridization operation, the complex that has hybridized with the probe can be specifically detected as it is without washing away the excessively coexisting probe. That is, the configuration of the probe according to the present invention is an oligonucleotide probe consisting of one or more sets of two or more oligonucleotides that hybridize completely complementary to a continuous specific base sequence portion of the target nucleic acid. Labeled at the 5 'or 3' end with a chromophore group that has an appropriate spatial arrangement so that when each probe hybridizes with the target nucleic acid, an excimer can be formed. .
  • the structure of the above-mentioned probe according to the present invention is not at all expected from a conventionally known method as described below, and further, is not expected at all in the effect based on the structure. That is, for the purpose of recognizing even a single base difference, a set of two or more labeled probes is used, and the phenomenon of the label groups to be detected is the Extremely effective despite the presence of As a result, excimer fluorescence is induced, and the fluorescence is easily observed.
  • a single chromophore on another probe adopts a spatial arrangement such that it efficiently forms the excimer-fluorescence with the chromophore on the adjacent probe for the first time by hybridizing with the target nucleic acid. Based on this, it is completely unpredictable that the target nucleic acid will be detectable with extremely high recognizability.
  • a target nucleic acid In the detection of a target nucleic acid based on a conventionally known hybridization method, when the number of the target nucleic acid is one, and particularly when the target nucleic acid is long, a pseudo-nucleotide having a certain degree of complementarity with the target nucleic acid is used.
  • the nucleic acid can be hybridized (False Hybridization in FIG. 1), resulting in false recognition.
  • One way to avoid this general problem is to label each probe as a set of two or more probes instead of single-stranded ( Figure 2), so that both are correctly targeted nucleic acids. It is to utilize the fact that a specific phenomenon occurs between two labeling groups only in the case of hybridization (True Hybridization in Figure 2).
  • the available labeling groups can be selected as broadly as possible. Is desirable. Further, at the same time, those that prevent the labeling group from hybridizing with the target nucleic acid cannot be used, and the labeling group is not hybridized with the nucleic acid base-pairing side based on hydrophobic interaction or the like at the time of hybridization. You must also avoid car navigation. Conventionally known embodiments in which two or more labeling groups are provided in the middle of a single-stranded probe make it considerably difficult to create a molecular design that satisfies these conditions. On the contrary, in the probe according to the present invention comprising a separate set of a plurality of probes, the restriction can be relaxed.
  • the unhybridized probe itself inherently causes a phenomenon to be measured, and the degree of the change varies depending on the hybridization. Is the basis of detection. Therefore, in order to reduce the above-mentioned noise, it is desirable that a specific phenomenon can be observed only when the target nucleic acid is correctly hybridized, and specific fluorescence based on simultaneous hybridization of one set of plural probes is required.
  • the method of emitting is preferable in this respect.
  • hybridization is performed for each probe, and impurities and impurities are not hybridized. 9 It is also possible to remove one target nucleic acid, mixed probe, etc. by washing treatment or the like, and further reduce the background to the minimum.
  • FIG. 1 is a diagram showing hybridization when a single-stranded nucleic acid detection probe is used, in which a true target nucleic acid and a false target nucleic acid are each hybridized. It is a figure showing a situation of erroneous recognition which may occur at the time of zoning.
  • FIG. 2 is a diagram showing hybridization when a set of two types of nucleic acid detection probes according to the present invention are used.Even if one of the false target nucleic acids is hybridized, erroneous recognition may occur.
  • FIG. 2 is a diagram showing hybridization when a set of two types of nucleic acid detection probes according to the present invention are used.Even if one of the false target nucleic acids is hybridized, erroneous recognition may occur.
  • FIG. 3 shows an embodiment in which an extremely long target nucleic acid is detected using one or more sets of three nucleic acid detection probes in order to reduce the possibility of misrecognition.
  • FIG. 4 is a diagram showing changes in the fluorescence spectrum of mixed solutions of various concentrations of the target oligonucleotide and two types of nucleic acid detection probes.
  • FIG. 5 is a diagram showing a change in relative excimer fluorescence intensity (at 495 nm) in a fluorescence spectrum of a mixed solution of a target oligonucleotide having a seed concentration and two kinds of nucleic acid detection probes.
  • FIG. 6 is a diagram showing the effect of the length of the linker. Effect of pyrenealkyl iodoacet amide- introduced 16-mer probe on excimer formation.
  • PIA N- (l-pyrene) iodoacetamide
  • PMIA N- (l-pyrenemethyl) iodoacetamide
  • PEIA N- (1-pyreneethyl) iodoacetamide
  • PPIA N- (1-pyrenepropyl) iodoacetamide are shown.
  • FIG. 7 shows that it is acceptable to detect a target or a so-to-nucleic acid having a base that does not hybridize between two probes due to point mutation using the probe according to the present invention. It is. Pyrenemethyl iodoacetamide-introduced 16-mer and pyrene butyric acid hydrazide-introduced 16-mer were used. The 32-mer evening sequence is continuous.
  • FIG. 8 shows that excimer fluorescence is significantly reduced when there are bases that do not form base pairs between the two probes, indicating that the present invention can be used to detect point-mutated nucleic acids. It shows.
  • FIG. 9 is a view showing the structure of (Compound 4).
  • FIG. 1 is a diagram showing the structure of (Compound 5).
  • FIG. 11 is a diagram showing the structure of (Compound 6).
  • the nucleic acid analysis probe according to the present invention is a nucleic acid analysis probe 1 and a nucleic acid analysis probe 2 for detecting a polynucleotide having q base sequences, the first nucleic acid analysis probe
  • the base sequence of 1 is a complementary base sequence to r base sequences (r is an integer of 1 or more and (q-1) or less) continuous from the 5 'end of the polynucleotide
  • the probe 1 Has a coloring group molecule from the 5 ′ end of the polynucleotide via a chain-substituting group
  • the base sequence of the second nucleic acid analysis probe 2 is (r) from the 5 ′ end of the polynucleotide having q base sequences.
  • This one set of probes does not need to be two probes, but may be composed of more than two sets. Even in this case, one set of two probes has a basic configuration, and the operation and effect based on this configuration are the same. Therefore, in the following, a description will be given by taking one probe and two probes as an example.
  • nucleic acid analysis probes 1 and 2 according to the present invention are hybridized with the target polynucleotide, a longer wavelength than the fluorescence generated by the color forming group of the probe 1 or the color forming group of the probe 2 is used. It is characterized by having fluorescence on the side.
  • the probe for nucleic acid analysis according to the present invention when the above-mentioned fluorescence is hybridized with the above-described nucleic acid analysis probes 1 and 2 according to the present invention and the target polynucleotide, the probe 1 An excimer-monofluorescence due to excimer formation between the coloring group and the coloring group of the probe 2.
  • the probe for nucleic acid analysis according to the present invention includes pyrene, naphthalene, anthracene, perylene, stilbene, benzene, toluene, and phenylene as the above-mentioned coloring groups.
  • Thracene Diphenirane Thracene, Benzbilene, Benzian Thracene, Tetracene, Fenanthrene, Penyusen, Trifferenylene and Chrysene.
  • the probe for nucleic acid analysis according to the present invention is characterized in that the coloring group is pyrene.
  • the probe for nucleic acid analysis includes a length of the above-mentioned chain-like substituent binding the 5 ′ terminal nucleotide of the probe for nucleic acid analysis 1 and the above-mentioned coloring group, and a nucleotide of the 3 ′ terminal of the above probe 2 for nucleic acid analysis. And a length of the chain substituent binding the color-forming group to 3 ⁇ or more and 20 ⁇ or less.
  • the nucleic acid analysis probe according to the present invention includes a length of the chain substituent that binds the 5 ′ terminal nucleotide of the nucleic acid analysis probe 1 and the chromophore,
  • the length of the chain substituent that binds the nucleotide and the color-forming group is not less than 5 angstroms and not more than 20 angstroms.
  • the probe for nucleic acid analysis according to the present invention is characterized in that the 5 ′ terminal nucleotide of the nucleic acid analysis probe 1 and the linear substituent that binds the chromogenic group, or the 3 ′ terminal nucleotide of the nucleic acid analysis probe 2 and the chromogenic the chain substituents attached to the group is chromogenic Kiichi (CH n- (X) k- ( CH 2) characterized in that it is a m-Y- (5 'substituent represented by terminal nucleotide)
  • CONH, NHCO, COO, OCO, 0, S, ⁇ are selected from the group consisting of
  • is selected from the group consisting of 0, S, NH, (POS,
  • n or m represents an integer from 0 to 5
  • k represents 0 or 1.
  • the nucleic acid detection method is a method for detecting a polynucleotide having q base sequences by hybridization with two kinds of nucleic acid analysis probes 1 and two nucleic acid analysis probes 2.
  • a nucleotide and the polynucleic acid Has a complementary nucleotide sequence to r consecutive nucleotides (wherein represents an integer of 1 or more and (q-1) or less) from the 5 'end of leotide, and further from the 5' terminal nucleotide of probe 1
  • the above-mentioned fluorescence may be obtained by, when the above-mentioned nucleic acid analysis probe 1 and probe 2 and the polynucleotide are hybridized, the coloring group of the above-mentioned probe 1; Characterized by excimer fluorescence due to excimer formation with a color-forming group.
  • the color-forming group may be pyrene, anthracene, naphthalene, perylene, stilbene, benzene, toluene, phenylanthracene, diphenylanthracene, ben'sopylene, benzuanthracene, tetracene, fenane. It is characterized by being selected from the group consisting of Tren, Pentacene, Trifuenylene and Chrysene.
  • the nucleic acid detection method according to the present invention is characterized in that the coloring group is biylene.
  • the nucleic acid detection method comprises: a length of the chain substituent that binds the 5′-terminal nucleotide of the nucleic acid analysis probe 1 to the chromophore; and a 3′-terminal nucleotide of the nucleic acid analysis probe 2.
  • a length of the chain-like substituent connecting the above-mentioned coloring group to the color-forming group is not less than 3 ⁇ and not more than 20 ⁇ .
  • the method for detecting nucleic acid comprises the step of:
  • the length of the chain substituent that binds leotide to the color-forming group and the length of the chain substituent that bonds the 3′-terminal nucleotide of the probe 2 for nucleic acid analysis to the color-forming group are 5 ⁇ or more. It is characterized by being less than 20 angstroms.
  • the nucleic acid detection method according to the present invention may further comprise: the above-mentioned chain-like substituent binding the 5′-terminal nucleotide of the above-mentioned nucleic acid analysis probe 1 and the above-mentioned coloring group; And the above-mentioned chain-like substituent that binds to the above-mentioned coloring group is a substituent represented by a coloring group 1 (CH 2 ) n- (X) k— (CH,) m— Y— (5 ′ terminal nucleotide) It is characterized by the following.
  • X is selected from the group consisting of CONH, NHCO, COO, 0C0, 0, S, NH
  • Y is selected from the group consisting of 0, S, NH
  • n or m is 0 to 5 Represents an integer up to and k represents 0 or 1.
  • the nucleic acid detection probe according to the present invention is a polynucleotide, and the target polynucleotide is hybridized with two types of nucleic acid detection probes 1 and 2 according to the present invention. It strictly recognizes the nucleotide sequence.
  • the two types of probe polynucleotides according to the present invention have excimer (or excibrex) -forming chromophores such as pyrene at the 5 ′ and 3 ′, respectively, and the target polynucleotide and the target polynucleotide
  • the complementary hybridization of the polynucleotides of the probe according to the present invention causes the color-forming group molecules to take a spatially close positional relationship, and with the decrease in fluorescence inherent to the monomer of the color-forming group. The fluorescence shifted to the long wavelength side can be observed.
  • identification and detection of the target polynucleotide can be performed by measuring the above-mentioned shifted fluorescence, excimer, or exciplex fluorescence. Alternatively, this can be achieved by measuring the decrease in monomer-fluorescence.
  • Target nucleic acid target nucleic acid, target polynucleotide
  • the target nucleic acid that can be detected using the nucleic acid detection probe according to the present invention is not particularly limited, and can be hybridized by a generally known method, for example, DNA, RNA (tRNA, mRNA, rRNA).
  • RNA RNA
  • a synthetic oligonucleotide a synthetic polynucleotide, a synthetic deoxyoligonucleotide, a synthetic deoxypolynucleotide, or a heteropolymer of deoxyribonucleotide and liponucleotide.
  • a known base sequence determination method can be used (for example, the Sanger method (dideoxy-mediated chain-termination method for DNA sequencing)).
  • the polynucleotide as a probe for nucleic acid analysis according to the present invention is one in which one set of two types of polynucleotides completely complementarily hybridizes to a specific portion of the polynucleotide to be detected.
  • the two types of polynucleotides related to the present invention have a nucleotide sequence in which probe 1 and probe 2 completely complementarily hybridize with the nucleotide sequence of the target polynucleotide.
  • Each has a base sequence so as to have It is possible to determine the number of base sequences of any number of probes 1 from the 5 'end of a specific portion of the target nucleic acid, and the base sequence of probe 2 is automatically determined accordingly.
  • the preferable number of bases has a range, and therefore, the number of base sequences of the probe 2 or the probe 1 is preferably both 8 or more.
  • the method for synthesizing the nucleotide sequence necessary for the probe 1 or 2 is not particularly limited, and a general nucleotide modification method (for example, Handbook of Fluorescent Probes and Research Chemicals, 5th ed, 1992-1994, by RPHaugland, Molecular Probes, Inc) or an automated synthesis method (for example, the method described in Oligogon ucleotides and Analogues A Practical Approach, ed by F. Eckstein, IRL Press). is there. It is also possible to introduce a plastid into a natural oligonucleotide before use.
  • a general nucleotide modification method for example, Handbook of Fluorescent Probes and Research Chemicals, 5th ed, 1992-1994, by RPHaugland, Molecular Probes, Inc
  • an automated synthesis method for example, the method described in Oligogon ucleotides and Analogues A Practical Approach, ed by F. Eckstein, IRL Press. It is also possible to introduce a
  • the resulting polynucleotide can be purified, for example, by reversed-phase high-performance liquid chromatography.
  • polynucleotides of these two types of probes according to the present invention may have a chain of an appropriate length in order to provide a labeling group (color-forming group molecule, chromophore, fluorophore) at the 5 ′ or 3 ′ end.
  • the probe is linked to the probe base sequence via a substituent (linker).
  • the two chromophore molecules from each of the probe polynucleotides are spatially arranged so as to allow a closer position to the linker. . Therefore, the length from the 5 ′ or 3 ′ end to the coloring group is extremely small in the present invention. It can be adjusted according to the type and length of the linker. In particular, it is clear from the findings of the inventors that the length of the linker greatly affects the detection sensitivity in the present invention.
  • FIG. 6 shows that excimer formation based on birene-pyrene is greatly affected by the length of the linker.
  • the length of the linker is a measure for optimization, and the length of the linear substituent (linker) is defined as the length of the C-C from the probe polynucleotide to the chromogenic group molecule. , C-1 0, CN, N—N, C—S, P—0, etc. When all the single covalent bonds are of the same length (1.4 ⁇ ), this is calculated from the number of bonds. Means
  • a bienyl group as a color-forming group, it is preferably located in a space at least 3 angstroms away from the 5 'or 3' carbon, and more preferably from 5 angstroms to 20 angstroms. Was found to be good.
  • the length is preferably about 3 ⁇ or more, and more preferably 20 ⁇ or less. More preferably, it is 5 angstrom or more and 15 angstrom or less. More specifically, according to the findings of the present inventors, it was found by actual measurement of excimer fluorescence that the range of 5 to 10 angstroms is a preferable range when the virenyl group is a coloring group. That is, the present invention does not include the case where a bienylmethyl group is bonded to the 5 ′ or 3 ′ carbon by an ether bond (4.2 angstrom).
  • the type of the linker and the synthesis method are not particularly limited as long as the linker having the above length can be obtained.
  • a methylene group, an amide group, an ester group, an ether group, a thiophosphate, or a combination thereof can be suitably used. It is an easy choice for a person skilled in the art to determine an appropriate linker-binding mode in consideration of chemical stability, thermal stability, suitability as a labeling group, and the like.
  • the coloring group (or labeling group) usable in the present invention means a group containing a chromophore in at least a part thereof, and is not particularly limited as long as it easily forms an excimer or an exciplex.
  • Various kinds of coloring groups can be introduced by a general synthesis method.
  • the chromophores include pyrene, naphthylene, anthracene, perylene, stilbene, benzene, toluene, phenylanthracene, diphenylanthracene, benzene, pentapyrene, benzuanthracene, tetracene, phenanthrene, pengysen, triffeenylene, It is selected from the group consisting of chrysene, and aromatic chromophores can be suitably used, and more preferably, a chromophore having a pyrene skeleton can be used.
  • the coloring groups of the two types of probes are the same. That is, it is not a so-called donor: acceptor type in the present invention.
  • the long wavelength shifted fluorescence according to the present invention is therefore not of the electron transfer type. That is, in the present invention, excimer or exciplex fluorescence due to excimer or exciplex formation by the same chromophore molecule can be observed, and two types based on the hybridization described above are used. Since the color-forming groups are spatially close to each other and generate the above-mentioned fluorescence, only those which have been correctly hybridized to the target nucleic acid can be detected. Therefore, even when the probe according to the present invention coexists, it is possible to detect only hybridized ones without interference from the fluorescence derived from the chromogenic monomer itself. Become.
  • the method for hybridizing with the target polynucleotide using the polynucleotides of the two nucleic acid detection probes according to the present invention is not particularly limited.
  • hybridization can be suitably performed.
  • the reaction may be carried out at a higher temperature (for example, at a temperature lower by 10 ° C. than the melting temperature), followed by annealing to return to room temperature, thereby performing hybridization.
  • identification or quantification of a target polynucleotide can be performed after hybridization without washing or other means.
  • the detection method is not particularly limited as long as it is a means for measuring the fluorescence after hybridization.
  • a commercially available fluorometer Thus, the measurement can be suitably performed.
  • the excimer fluorescence shifted to the longer wavelength side (the beak wavelength is about 5 (0 nm) can be measured.
  • the excimer beak is not observed at all before the hybridization. Therefore, the quantification of the hybridized target is quite easy, and by preparing an accurate calibration curve, the target nucleic acid concentration can be calibrated by measuring the fluorescence intensity as shown in Fig. 5. it can.
  • FIG. 6 shows that detection of at least several nM is possible.
  • the analytical probe according to the present invention may be used in excess, and the above operation may be performed without any interference with the fluorescence based on the chromophore of the excess probe that has not been hybridized. It is possible.
  • the principle of the detection according to the present invention is that, as described above, the two probes correctly hybridize to the target nucleic acid, thereby generating strong excimer fluorescence, and measuring the target nucleic acid to measure the target nucleic acid. It is for detection and quantification. Therefore, even if there is a nucleobase that cannot form a base pair between the two probe ends to which the labeling group is bonded, use a designed probe by excluding that portion from the base sequence of the probe. Accordingly, the present invention can be used for a highly sensitive and selective detection method for an evening-get nucleic acid, ie, a point-mutated nucleic acid, which differs only in their base sequences.
  • a liponucleotide was used for the 3′-terminal nucleotide of probe 2 (compound 3) described below, and deoxyribonucleotide was used for all others.
  • the oligonucleotide 32 -mer chosen as the model to be detected has the following sequence: 5′-AGAGGGCACGGATACCGCGAGGTGGAGCGAAT-3 ′ (compound 1).
  • a nucleotide having a nucleotide sequence complementary to the 16 nucleotide sequences from the 5 'end of the subject was used as a probe 1 for nucleic acid detection: 3'-TCTCCCGTGCCTATGG-5' (compound 2).
  • nucleotide having a complementary nucleotide sequence to the 17th to 32nd nucleotide sequence from the 5 'end of the oligo nucleotide 32 -mer (compound 1) was used as a nucleic acid detection probe 2: 3' -(C) GCTCCACCTCGCTTA-5 '(compound 3) (however, only (C) is a ribonucleotide). All of these were synthesized using an automatic synthesizer manufactured by Millipore Limited in accordance with the solid phase phosphoramidite synthesis (SO LID STATE PHOSPHORAMIDITE TECHNIQUE) method.
  • oligonucleotides 32 -mer (compound 1) and two kinds of oligonucleotides 16 -mer (compound 2) and (compound 3) obtained therefrom were subjected to reversed-phase high-performance liquid chromatography (column : PepRPCTM 4m HR5 / 5 manufactured by Pharmacia Fine Chemicals, gradient elution solvent system acetonitrile / 0.1M ammonium acetate mixed solvent, detection wavelength 260 nm).
  • nucleic acid detection probe 1 (3'-TCTCCCGTGCCTATGG-5') (compound 2) -The oligonucleotide of probe 1 (compound 2) obtained above (molecular weight 4904.2 1, extinction coefficient £ l39.9mmol— 'liter ⁇ cm-) (Czworkowski. J., et. Al., Biochemistry, 30, p. 4821, 1991) and introduced in the following procedure.
  • a pyrene group was added to the oligonucleotide (compound 3) (molecular weight 4849.18, extinction coefficient e 136.4 mm 1 ⁇ liter ⁇ cm-1) of probe 2 obtained above, and the method of Reins, Cantor, et al. (Koenig, P , Reins, SA, Cantor, CR (1977) Pyrene Derivatives as Fluore scent Probes of Conformation Near the 3 'Termini of Polyribonucleotides ",
  • Biopolymers 16, 2231-2242) was modified and introduced as follows.
  • the following method was also used to introduce a pyrene coloring group at the 3 'end of the nucleic acid detection probe 2 (compound 3).
  • the method of BPGottikh et al. (Gottikh, BP, Krayev sky, AA, Tarussova, NB, Tsilevich, T., Tetrahedron, 26, 4419-4433 (1970)) was used with some modifications. .
  • this method is called CDI (carbonyldiimidazol) method.
  • (i) Prepare a 1.2M CDI solution in DMF.
  • the fluorescent spectrum was measured under the basic hybridization conditions described above. As shown in Fig. 4, the characteristic fluorescence of the pyrene monomer was observed around 400 ran, and at the same time, a broad fluorescence band was observed around 500 nm. This band with a wavelength around 500 nm is observed only when the above three types of oligonucleotides are present, and resembles the fluorescence spectrum of a conventionally known bilen excimer. Thus, it is thought to be due to excimer monofluorescence caused by the bimer dimer (Birks, JB Chri stophorous, LG (1963)), Spectrochim. Acta 19, 401-41
  • the fluorescence band at 495 nm is due to excimer fluorescence, its intensity should be accompanied by a decrease in the fluorescence of birene itself. Accordingingly, the intensity ratio of the two fluorescence bands described above will change due to the change in the concentration of the target oligonucleotide. It was found to change complementarily (Fig. 4).
  • Figure 5 shows the fluorescence around 500 nm when various concentrations of the target oligonucleotide were added to a mixture of equal amounts of the probe (compound 4) and (compound 5) for detecting excess nucleic acid. It shows the relative intensity of the band.
  • Figure 6 shows the fluorescence spectrum obtained when the equimolar pyrenebutyric acid-introduced 16-mer probe and the yrenealkyl iodoacetamide-introduced 16-mer were hybridized to the target nucleic acid 32-iner. It shows.
  • pyrenealkyl iodoacetamide as used herein means that the linker portion of pyrenemethyl iodoacetamide (ie, the alkyl chain portion) has a different length. However, the synthesis method is exactly the same as for pyrenemethyl iodoacetamide.
  • the optimal length of the linker is 11.4 ⁇ from the C at the 5 'end of Deoxyribose.
  • the shortest PIA is 9.8 Angstrom and the longest PPIA is 12.6 Angstrom.
  • the present inventors have studied a hybridization in which the above-described two probes according to the present invention are not completely continuous with the target nucleic acid.
  • Fig. 7 when hybrids are formed, if the distance between two probes is 1-2 nucleotides from the target nucleic acid (Fig. 8), excimer formation is significantly suppressed. It was confirmed. That is, it is understood that the necessity that two probes are continuously arranged for the target nucleic acid is important for excimer formation.
  • a probe for detecting a nucleic acid which is non-radioactive and is based on hybridization, and which is highly sensitive and capable of recognizing a difference of one base. After the operation, the complex hybridized with the probe can be specifically detected without washing and removing the probe coexisting in excess.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biophysics (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biomedical Technology (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Plant Pathology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

A probe for detecting nonradioactive nucleic acids by the hybridization technique, and a highly sensitive and highly selective method for the detection. The probe comprises a set of two or more oligonucleotide probes that can hybridize perfectly complementarily with the specific portion of the sequence of the consecutive bases of the target nucleic acid, each oligonucleotide probe being labeled at the 5' or 3' end thereof with a chromophoric group having a suitable spatial arrangement so that adjacent chromophoric groups can yield an excimer or the like when each probe hybridizes with the target nucleic acid. More specifically, although the probe of the invention comprises a set of two or more labeled probes and the labeling groups to be detected are present each on a different probe, the labeling groups take such a spatial arrangement that the two chromophoric groups present on the two probes which have come to exist adjacent to each other only after the hybridization with the target nucleic acid induce unique phenomena such as excimer fluorescence, thereby enabling the target nucleic acid to be detected with a high recognizability. Thus the probe of the invention enables the erroneous recognition which has been problematic heretofore to be reduced remarkably and the types of utilizable labeling groups to be varied widely. Further it is possible to improve the detection sensitivity remarkably because it is possible to reduce the background noise remarkably. In addition, it is possible to discriminate a number of (single-base variation) nucleic acids that are different from one another in only one base present at a specific position to be detected, which has been difficult heretofore.

Description

明細書 核酸分析用プローブおよび検出方法 技 分野  Description Probe for nucleic acid analysis and detection method
放射性同位体を使用しない、 高感度、 高選択的塩基配列認識性を有する核酸分 析用プローブとそれを用いた検出方法を提供するものである。 背景技術  An object of the present invention is to provide a probe for nucleic acid analysis having high sensitivity and high selective nucleotide sequence recognition without using radioisotopes, and a detection method using the same. Background art
遺伝子工学において、 細胞やウィルスから特定の遺伝子や核酸を検出する目的 で用いられている核酸ハイプリダイゼーシヨン法と呼ばれている技術は、 その目 的や対象とする遺伝子、 また検出方法などにより多くの方法が開発され利用され ている。  In genetic engineering, the technique called nucleic acid hybridization, which is used to detect specific genes and nucleic acids from cells and viruses, depends on the purpose, target gene, and detection method. Many methods have been developed and used.
特にハイプリダイズした目的物を同定し、 さらに定量する方法についても種々 の方法が開発されている。 一般的に、 この検出法においては、 被検出核酸とハイ ブリダィズするポリヌクレオチドを核酸検出用プローブとして用い、 かつ、 その 一部分をラベルすることが必要となる。 例えば、 最も高感度な検出法のひとつで あり、 よく用いられている方法として放射性同位体を用いる方法がある。 また、 非放射性ラベル化法としては蛍光物質のラベル化、 酵素のラベル化等があり、 さ らにラベル基どうしの相互作用に基づく現象を観測する方法もある。  In particular, various methods have been developed for identifying and further quantifying the hybridized target substance. Generally, in this detection method, it is necessary to use a polynucleotide that hybridizes with the nucleic acid to be detected as a nucleic acid detection probe and to label a part thereof. For example, it is one of the most sensitive detection methods, and a commonly used method is to use a radioisotope. Non-radioactive labeling methods include labeling of fluorescent substances, labeling of enzymes, and the like, and methods of observing phenomena based on the interaction between label groups.
前記従来のハイブリダィゼ一シヨン法においては、 目的核酸 (ターゲッ ト、 ま たはターゲッ トポリヌクレオチド) に対し、 一種類の核酸検出用プローブとして の相補的ポリフクレオチドであって、 前記の方法でラベルされたものをターゲッ 卜に比べて過剰に使用してハイブリダイセ一シヨンを行わせ、 検出の前にこれら 過剰な核酸検出用プローブポリヌクレオチドを洗浄等により除去する必要があり、 その結果、 操作が煩雑になり、 迅速性に欠けることになる。 最近の傾向として、 放射性同位体を使用しないが実用的な感度 (検出限界) 性 能と、 かつ高い認識 ( 1塩基の差を認識可能とする) 性能とを有し、 上記のよう にハイブリダィズ後の過剰のプロ一ブを洗浄除去する必要もなくそのまま測定可 能な現象を利用する検出法の開発が特に望まれている。 In the above-mentioned conventional hybridization method, a complementary polynucleotide is used as a probe for detecting one kind of nucleic acid with respect to a target nucleic acid (target or target polynucleotide). The probe must be used in excess of the target to perform hybridization, and the probe polynucleotide for nucleic acid detection needs to be removed by washing or the like before detection, resulting in complicated operation. And lack of agility. As a recent trend, it does not use radioisotopes, but has practical sensitivity (detection limit) performance and high recognition (recognition of a single base difference) performance, and after hybridization as described above. It has been particularly desired to develop a detection method that utilizes a phenomenon that can be directly measured without the need to wash and remove excess probe.
この目的を部分的にも達成するために、 すでにいくつかの方法が知られている 過剰プローブの除去操作を必要としないで検出を可能とする方法であって、 検出 するべき現象として、 ラベル基としての 2つの色素団のエキシマ一形成に基づく 現象を利用した例として、 USP5,332,659がある。 この中では、 1本鎖中に 2以上 の蛍光ラベル化をあらかじめ設けた 1種類のポリヌクレオチド検出用プローブを 用い、 これがターゲッ 卜の核酸とハイプリダイゼ一シヨンする時に起こるエキシ マー笙光の強度変化を観測することにより該タ一ゲッ ト核酸を検出する方法が開 示されている。  In order to partially attain this object, several methods are already known, which enable detection without the need for an operation for removing excess probe. USP5,332,659 is an example of the use of the phenomenon based on the excimer formation of two chromophores. In this method, one kind of probe for detecting a polynucleotide, which is preliminarily provided with two or more fluorescent labels in a single strand, is used, and the change in excimer light intensity that occurs when hybridization with the target nucleic acid is performed. A method for detecting the target nucleic acid by observation is disclosed.
さらに、 オリゴヌクレオチドをプローブとするハイプリダイゼ一シヨンにより 長い目的核酸を検出する場合、 本発明の目的である誤認識をより少なく、 または 1塩基差の高い認識性 (ポイントミューテーシヨン認識) をもたらすためには、 1種のプローブよりは 1組の 2種以上の複数のプローブをひとつのターゲッ 卜に 対して用いる方が好ましいことは明らかである。 発明の開示  Furthermore, when a long target nucleic acid is detected by hybridization using an oligonucleotide as a probe, the purpose of the present invention is to reduce the number of misrecognitions or to provide recognition with a single base difference (point mutation recognition). It is apparent that it is more preferable to use one set of two or more kinds of probes for one target than one kind of probe. Disclosure of the invention
この観点に基づき、 複数、 例えば 2本のポリヌクレオィ ド検出用プローブにそ れそれ設けられたラベル基同士が、 ターゲッ卜の核酸とハイプリダイゼ一ション する時に生じる現象を測定することにより該夕一ゲッ ト核酸を検出する方法が知 られている。 ラベル基としては、 1組のエネルギードナ一 (D ) /ァクセプ夕ー ( A ) を用い、 各々は別個のオリゴヌクレオチドに結合している。 また、 同じェ ネルギー移動を利用しているが、 一方が酵素ラベル化されているものも知られて いる。 すなわち、 EP0229943A2では、 D /Aに基づくラベル化方法が開示されて いるが、 D /A間のエネルギー移動に基づくスペクトル変化は、 本質的に D— A 間の位置にそれほど敏感でなく、 かつ、 ドナ一とァクセブターの蛍光スペクトル の重なりが大きく、 1塩基の差を正確に認識することは極めて難しい方法である さらに EP0070685B1では、 本質的に熱的に安定でない酵素でラベル化されている ために、 しばしば熱的処理を必要とするハイプリダイゼーシヨンには不向きであ る。 また、 この方法においてはエネルギードナ一はプローブ中にはなく、 酵素の 基質として測定溶液中に混在させたルミノール等の発光物質である。 これらは溶 液中で拡散するために該酵素とァクセブ夕一間の位置を特定できるほど敏感では なく、 1塩基の差を正確に認識することが要求されるハイプリダイゼ一シヨン法 には不向きである。 本発明は、 上記の従来方法の問題点に鑑み、 非放射性であり、 ハイブリダィゼ ーシヨンに基づく核酸検出用プローブであって、 高感度で、 しかも 1塩基の差を 認識可能とする方法を提供するものである。 さらに、 該ハイブリダィゼ一シヨン 操作後、 過剰に共存する該ブローブを洗浄除去することなく、 そのまま該プロ一 ブとハイプリダイズしたコンプレックスを特異的に検出可能とするものである。 すなわち、 本発明に係る前記プローブの構成は、 目的核酸の連続する特定の塩 基配列部分と完全に相補的にハイプリダイズする 1組の 2個以上からなるオリゴ ヌクレオチドブローブであって、 各プローブの 5 ' または 3 '末端に、 各プロ一 ブが該目的核酸とハイプリダイズした際に、 エキシマ一を形成可能となるように 適当な空間的配置をとる発色団基でラベル化されたものである。 Based on this viewpoint, by measuring the phenomenon that occurs when a plurality of, for example, two polynucleotide detection probes are hybridized with a target nucleic acid, each label group provided on the target is determined by measuring the phenomenon. Methods for detecting nucleic acids are known. A pair of energy donors (D) / Axceptors (A) are used as label groups, each of which is attached to a separate oligonucleotide. It is also known that the same energy transfer is used, but one of them is enzymatically labeled. That is, EP0229943A2 discloses a labeling method based on D / A. However, the spectrum change due to the energy transfer between D / A is essentially not so sensitive to the position between D and A, and the fluorescence spectra of donor and executor overlap so much that the difference of one base Accurate recognition is extremely difficult.In addition, EP0070685B1 is unsuitable for hybridizations that often require thermal treatment because they are labeled with an enzyme that is not thermally stable in nature. You. In this method, the energy donor is not in the probe but is a luminescent substance such as luminol mixed in the measurement solution as a substrate for the enzyme. These are not sensitive enough to identify the position between the enzyme and xuebu because they diffuse in solution, and are unsuitable for the hybridization method that requires accurate recognition of a single base difference. . In view of the above problems of the conventional method, the present invention provides a non-radioactive, hybridization-based probe for nucleic acid detection, which is highly sensitive and can recognize a difference of one base. It is. Furthermore, after the hybridization operation, the complex that has hybridized with the probe can be specifically detected as it is without washing away the excessively coexisting probe. That is, the configuration of the probe according to the present invention is an oligonucleotide probe consisting of one or more sets of two or more oligonucleotides that hybridize completely complementary to a continuous specific base sequence portion of the target nucleic acid. Labeled at the 5 'or 3' end with a chromophore group that has an appropriate spatial arrangement so that when each probe hybridizes with the target nucleic acid, an excimer can be formed. .
本発明に係る上記ブローブの構成は、 以下に述べるように従来公知の方法から は全く予想されず、 さらに、 該構成に基づく効果においても全く予想されないも のである。 すなわち、 1塩基の差をも認識可能とする目的で、 1組の 2個以上の 複数のラベル化プローブからなるものであり、 しかも検出するべき該ラベル基同 士の現象は、 該ラベル基同士が別々のプローブに存在するにも拘らず、 極めて効 果的にエキシマ一蛍光を誘起し、 よって、 その蛍光は容易に観測されることにな る。 いいかえると、 もともと別のプローブ上の単一の発色団が、 目的核酸とのハ イブリダイズにより初めて隣接するプローブ上の発色団と該エキシマ一蛍光を効 率的に形成するような空間配置をとり、 これに基づき目的核酸が極めて高い認識 性をもって検出可能となることはまったく予想出来ないものである。 The structure of the above-mentioned probe according to the present invention is not at all expected from a conventionally known method as described below, and further, is not expected at all in the effect based on the structure. That is, for the purpose of recognizing even a single base difference, a set of two or more labeled probes is used, and the phenomenon of the label groups to be detected is the Extremely effective despite the presence of As a result, excimer fluorescence is induced, and the fluorescence is easily observed. In other words, originally, a single chromophore on another probe adopts a spatial arrangement such that it efficiently forms the excimer-fluorescence with the chromophore on the adjacent probe for the first time by hybridizing with the target nucleic acid. Based on this, it is completely unpredictable that the target nucleic acid will be detectable with extremely high recognizability.
以下本発明の構成と、 それに基づく本発明の効果について説明する。  Hereinafter, the configuration of the present invention and the effects of the present invention based thereon will be described.
( 1 ) 誤認識の問題 (1) False recognition problem
従来公知のハイブリダィゼ一シヨン法に基づく目的核酸の検出において、 該プ ローブが 1本の場合で、 特に、 目的核酸が長い場合 においては、 ターゲッ ト核 酸と部分的にある程度の相補性がある偽の核酸にもハイプリダイゼ一シヨンが可 能となり (図 1の False Hybridization (False ハイブリダィゼ一シヨン) ) 、 従って誤認識を生じる結果となる。 この一般的な問題を避ける 1つの方法として は、 プローブを 1本鎖ではなく、 1組の 2つ以上の複数のプローブをそれそれラ ベル化し (図 2 ) 、 2つとも正しくターゲッ ト核酸にハイブリダィゼーシヨンす る場合 (図 2の True Hybridization (True ハイブリダィゼーシヨン) ) にのみ 2つのラベル化基間に特異的現象が生じることを利用することである。 すなわち 誤認識の場^においては、 この特異的現象が生じない (図 2の False Hybridizat ion (False ハイブリダィゼ一シヨン) ) 。 この方法は、 必ずしも 2本のプロ一 ブに限定されるわけではなく, 必要な場合には、 それ以上の数のプローブを同時 に使用することも可能である (図 3 ) 。 この場合においては、 それそれのラベル 化基間から生じる特異的現象をすベて同時に観測できる場合にのみ正しく認識し ていることとなり、 誤認識を著しく減少させることが可能である。  In the detection of a target nucleic acid based on a conventionally known hybridization method, when the number of the target nucleic acid is one, and particularly when the target nucleic acid is long, a pseudo-nucleotide having a certain degree of complementarity with the target nucleic acid is used. The nucleic acid can be hybridized (False Hybridization in FIG. 1), resulting in false recognition. One way to avoid this general problem is to label each probe as a set of two or more probes instead of single-stranded (Figure 2), so that both are correctly targeted nucleic acids. It is to utilize the fact that a specific phenomenon occurs between two labeling groups only in the case of hybridization (True Hybridization in Figure 2). That is, in the case of false recognition, this specific phenomenon does not occur (False Hybridization in Fig. 2). This method is not necessarily limited to two probes, and it is possible to use more probes simultaneously if necessary (Fig. 3). In this case, the recognition is correctly performed only when all the specific phenomena generated between the respective labeling groups can be simultaneously observed, and it is possible to significantly reduce false recognition.
( 2 ) ラベル化基の選択可能性 (2) Selectability of labeling group
さらに、 利用され得るラベル化基については、 できるだけ広い種類を選択でき ることが望ましい。 さらに、 同時に該ラベル化基が、 ターゲッ ト核酸とハイプリ ダイゼ一シヨンすることを妨げるものは利用できないし、 ラベル化基が、 ハイブ リダイゼーションの際、 疎水性相互作用等に基づき核酸塩基対形成側にィンター カーレイシヨンすることも避けなければならない。 従来公知である 2つ以上のラ ベル化基を 1本鎖のプローブ中間部分に設ける態様はこれらの条件を満足させる 分子デザインを作ることはかなり困難になる。 それに反して、 別々の 1組の複数 のプローブからなる本発明に係るプローブおいては、 該制限は緩和され得る。 す なわち、 各プローブの末端にラベル化基を 1つ付加的に設けるだけでよいため、 従来公知の多様な結合様式が利用でき、 さらに、 測定するべき特異的現象を広く 選択することが可能であり、 あらかじめ該現象の測定のために最適化学構造をデ ザインすることも可能となる。 例えばリンカ一の化学構造の選択可能性、 リンカ 一の長さの最適化可能性、 ラベル化基の化学的安定性、 温度安定性、 保存性等を かなり自由に選択できる。 In addition, the available labeling groups can be selected as broadly as possible. Is desirable. Further, at the same time, those that prevent the labeling group from hybridizing with the target nucleic acid cannot be used, and the labeling group is not hybridized with the nucleic acid base-pairing side based on hydrophobic interaction or the like at the time of hybridization. You must also avoid car navigation. Conventionally known embodiments in which two or more labeling groups are provided in the middle of a single-stranded probe make it considerably difficult to create a molecular design that satisfies these conditions. On the contrary, in the probe according to the present invention comprising a separate set of a plurality of probes, the restriction can be relaxed. In other words, since only one additional labeling group needs to be provided at the end of each probe, a variety of binding modes known in the art can be used, and a wide range of specific phenomena to be measured can be selected. It is also possible to design an optimum chemical structure in advance for measuring the phenomenon. For example, the possibility of selecting the chemical structure of the linker, the possibility of optimizing the length of the linker, the chemical stability of the labeling group, the temperature stability, the storage stability, etc. can be freely selected.
( 3 ) 検出感度 (3) Detection sensitivity
さらに、 一般的にハイブリダィゼーシヨン法に要求されることとしては、 検出 感度を上げるために、 バックグラウンドノイズを出来る限り減少させることが必 要である。 ラベル体を持つ 1種のプローブを用いる場合、 ハイブリダィゼーショ ンしていないプローブ自体も測定されるべき現象を本来的(inherently)に生じて おり、 ハイブリダィゼ一シヨンによりその程度が変化することを検出の基礎とし ているものである。 従って、 上記ノイズを減少させるためには、 ターゲット核酸 と正しくハイプリダイゼ一シヨンする場合にのみ特異的現象が観測され得ること が望ましく、 1組複数本のプローブの同時ハイブリダィゼ一シヨンに基づく特異 的蛍光を発する方法はこの点で好ましいといえる。  In addition, as a general requirement of the hybridization method, it is necessary to reduce background noise as much as possible in order to increase detection sensitivity. When one type of probe with a label is used, the unhybridized probe itself inherently causes a phenomenon to be measured, and the degree of the change varies depending on the hybridization. Is the basis of detection. Therefore, in order to reduce the above-mentioned noise, it is desirable that a specific phenomenon can be observed only when the target nucleic acid is correctly hybridized, and specific fluorescence based on simultaneous hybridization of one set of plural probes is required. The method of emitting is preferable in this respect.
さらに 1組の複数本のプローブに基づく方法においては、 1つのプローブ毎に ハイブリダィゼーシヨンを行い、 不純物、 ハイブリダィゼーシヨンしていない夕 9 一ゲッ ト核酸、 混在プローブ等を洗浄処理等により除去しさらにバックグラウン ドを極限まで下げることも可能である。 Further, in the method based on one set of multiple probes, hybridization is performed for each probe, and impurities and impurities are not hybridized. 9 It is also possible to remove one target nucleic acid, mixed probe, etc. by washing treatment or the like, and further reduce the background to the minimum.
( 4 ) 1塩基の差の認識性 (4) Recognition of single base difference
また、 検出対象の特定の位置の 1塩基のみが異なる ( 1塩基変異) 核酸を区別 したい場合、 1本鎖によるプローブでは、 選択的に検出することは難しい。 それ に反して、 この変異した核酸塩基をはさむように 1組 2本のプローブをハイプリ ダイゼ一シヨンさせ、 隣接する末端ラベル基が接近した場合にのみ特異現象を生 じる方法では、 1塩基の差異を検出することが可能となる。 数オングストローム ォーダ一で特異的現象の形成が決定されることが知られているエキシマ一蛍光は この特異現象として好適であり、 エキシマ一蛍光現象を利用することでこの 1塩 基程度の空間的な差 (数オングストローム) を鋭敏に認識することが可能となる 一方、 エネルギー移動現象 (A/D ) を利用する場合や酵素反応および化学発 光を利用する場合においては、 空問的に認識可能な範囲は上記のエキシマーに比 較してけた違いに大きく、 数十から数百オングストロームの範囲にもおよぶ。 従って、 本発明の目的の 1つである、 1塩基の差を認識できる検出方法におい ては、 エキシマー形成を利用することが最も好ましいものである。 以上から、 1組の 2本のプローブであって、 それそれにラベル化基を設け、 正 しくハイプリダイゼ一シヨンする場合にのみ、 特異的現象を生じ得る構成を有す るプローブを用いる方法が、 従来法の有するいくつかの問題点を大きく改善する ことは明らかである。 図面の簡単な説明  Further, when it is desired to distinguish nucleic acids that differ only in one base at a specific position to be detected (single base mutation), it is difficult to selectively detect with a single-stranded probe. On the other hand, a method in which one probe and two probes are hybridized so as to sandwich the mutated nucleobase, and a specific phenomenon occurs only when adjacent terminal label groups come close to each other, is a method in which a single base is used. The difference can be detected. Excimer-fluorescence, which is known to determine the formation of a specific phenomenon on the order of several angstroms, is suitable as this specific phenomenon. By using the excimer-fluorescence phenomenon, the spatial The difference (several angstroms) can be recognized sharply. On the other hand, when using the energy transfer phenomenon (A / D) or when using enzymatic reactions and chemical luminescence, it is possible to recognize the difference The range is far greater than the excimer described above, ranging from tens to hundreds of angstroms. Therefore, in one of the objects of the present invention, in a detection method capable of recognizing a single base difference, it is most preferable to use excimer formation. From the above, a method using a pair of two probes, which are provided with a labeling group and have a configuration capable of causing a specific phenomenon only when correctly hybridizing, has been conventionally used. It is clear that some problems of the law can be greatly improved. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 1本鎖の核酸検出用プローブを用いた場合のハイプリダイゼーシヨン を示す図であり、 真のターゲッ ト核酸と偽のターゲッ ト核酸それそれハイブリダ ィゼーシヨンする際に生じ得る誤認識の様子を示す図である。 FIG. 1 is a diagram showing hybridization when a single-stranded nucleic acid detection probe is used, in which a true target nucleic acid and a false target nucleic acid are each hybridized. It is a figure showing a situation of erroneous recognition which may occur at the time of zoning.
図 2は、 本発明に係る 1組 2種類の核酸検出用プローブを用いた場合のハイブ リダィゼーシヨンを示す図であり、 偽の夕ーゲッ ト核酸にその 1本がハイブリダ ィゼーシヨンしても誤認識を生じないことを示す図である。  FIG. 2 is a diagram showing hybridization when a set of two types of nucleic acid detection probes according to the present invention are used.Even if one of the false target nucleic acids is hybridized, erroneous recognition may occur. FIG.
図 3は、 非常に長いターゲッ ト核酸を、 誤認識の可能性を小さくするために 3 種類以上の 1組の核酸検出用プローブを用いて検出する態様を示すものである。 図 4は、 種々の濃度の目的オリゴヌクレオチドと、 2種類の核酸検出プローブ との混合溶液の蛍光スベク トルの変化を示す図である。  FIG. 3 shows an embodiment in which an extremely long target nucleic acid is detected using one or more sets of three nucleic acid detection probes in order to reduce the possibility of misrecognition. FIG. 4 is a diagram showing changes in the fluorescence spectrum of mixed solutions of various concentrations of the target oligonucleotide and two types of nucleic acid detection probes.
図 5は、 種クの濃度の目的オリゴヌクレオチドと、 2種類の核酸検出プローブ との混合溶液の蛍光スぺクトルにおける相対的なエキシマー蛍光強度 (495nmで の)の変化を示す図である。  FIG. 5 is a diagram showing a change in relative excimer fluorescence intensity (at 495 nm) in a fluorescence spectrum of a mixed solution of a target oligonucleotide having a seed concentration and two kinds of nucleic acid detection probes.
図 6は、 リンカ一の長さが及ぼす影響を示す図である。 pyrenealkyl iodoacet amide- introduced 16-mer probeのエキシマー形成に及ぼす影響。 ここで、 PIA, N-( l-pyrene) iodoacetamide; PMIA, N-( l-pyrenemethyl )iodoacetamide; PEIA, N-( 1-pyreneethyl )iodoacetamide; PPIA, N-( 1-pyrenepropyl )iodoacetamideを 示す。  FIG. 6 is a diagram showing the effect of the length of the linker. Effect of pyrenealkyl iodoacet amide- introduced 16-mer probe on excimer formation. Here, PIA, N- (l-pyrene) iodoacetamide; PMIA, N- (l-pyrenemethyl) iodoacetamide; PEIA, N- (1-pyreneethyl) iodoacetamide; PPIA, N- (1-pyrenepropyl) iodoacetamide are shown.
図 7は、 点変異したことにより 2つのプローブ間にハイブリダィゼ一シヨンし ない塩基があるターゲ、ソ ト核酸を、 本発明に係るプローブを用いて検出すること が可肯 έであることを示すものである。 Pyrenemethyl iodoacetamide- introduced 16-mer と pyrene butyric acid hydrazide- introduced 16-merを用いた。 32-mer 夕一ゲッ トは配列が連続している。  FIG. 7 shows that it is acceptable to detect a target or a so-to-nucleic acid having a base that does not hybridize between two probes due to point mutation using the probe according to the present invention. It is. Pyrenemethyl iodoacetamide-introduced 16-mer and pyrene butyric acid hydrazide-introduced 16-mer were used. The 32-mer evening sequence is continuous.
図 8は、 2つのプローブの間に、 塩基対を形成しない塩基がある場合にはェキ シマー蛍光が著しく減少することを示し、 本発明が、 点変異核酸の検出に使用可 能であることを示すものである。  FIG. 8 shows that excimer fluorescence is significantly reduced when there are bases that do not form base pairs between the two probes, indicating that the present invention can be used to detect point-mutated nucleic acids. It shows.
図 9は、 (化合物 4 ) の構造を示す図である。  FIG. 9 is a view showing the structure of (Compound 4).
図 1 りは、 (化合物 5 ) の構造を示す図である。 図 1 1は、 (化合物 6 ) の構造を示す図である。 発明を実施するための最良の形態 FIG. 1 is a diagram showing the structure of (Compound 5). FIG. 11 is a diagram showing the structure of (Compound 6). BEST MODE FOR CARRYING OUT THE INVENTION
本発明に係る核酸分析用プローブは、 q個の塩基配列を有するポリヌクレオチ ドを検出するための 2種類の核酸分析用プローブ 1および核酸分析用プローブ 2 であって、 第 1の核酸分析用プローブ 1の塩基配列が、 該ポリヌクレオチドの 5 '末端から連続した r個 (rは 1以上 (q— 1 ) 以下の整数を表わす) の塩基配 列に対する相補的塩基配列であり、 さらに上記プローブ 1の 5 '末端から鎖状置 換基を介して発色基分子を有し、 さらに第 2の核酸分析用プローブ 2の塩基配列 が、 q個の塩基配列を有するポリヌクレオチドの 5 '末端から ( r + l ) 番目と q番目の間の塩基配列に対する相補的塩基配列であり、 さらに上記核酸分析用ブ ローブ 2の 3 末端から鎖状置換基を介して発色基分子を有しているものである。 この 1組のプローブは 2本プローブである必要はなく、 それ以上の複数個の組か らなるものでもよい。 この場合でも、 1組 2本のプローブが基本的構成であり、 この構成に基づく作用および効果はおなじである。 従って以下においては、 1組 2本のプローブを例として説明する。  The nucleic acid analysis probe according to the present invention is a nucleic acid analysis probe 1 and a nucleic acid analysis probe 2 for detecting a polynucleotide having q base sequences, the first nucleic acid analysis probe The base sequence of 1 is a complementary base sequence to r base sequences (r is an integer of 1 or more and (q-1) or less) continuous from the 5 'end of the polynucleotide, and the probe 1 Has a coloring group molecule from the 5 ′ end of the polynucleotide via a chain-substituting group, and the base sequence of the second nucleic acid analysis probe 2 is (r) from the 5 ′ end of the polynucleotide having q base sequences. + l) a base sequence complementary to the base sequence between the q-th and q-th bases, and further having a coloring group molecule from the 3 end of the nucleic acid analysis probe 2 via a linear substituent. . This one set of probes does not need to be two probes, but may be composed of more than two sets. Even in this case, one set of two probes has a basic configuration, and the operation and effect based on this configuration are the same. Therefore, in the following, a description will be given by taking one probe and two probes as an example.
本発明に係る上記核酸分析用プローブ 1およびプローブ 2と目的とするポリヌ クレオチドとがハイプリダイゼーシヨンする際に、 上記プローブ 1の発色基また は、 上記プローブ 2の発色基による蛍光よりも長波長側に蛍光を有することを特 徴とするものである。  When the nucleic acid analysis probes 1 and 2 according to the present invention are hybridized with the target polynucleotide, a longer wavelength than the fluorescence generated by the color forming group of the probe 1 or the color forming group of the probe 2 is used. It is characterized by having fluorescence on the side.
さらに本発明に係る核酸分析用プローブは、 上述した蛍光が、 本発明に係る上 記核酸分析用プローブ 1およびプローブ 2と、 目的のポリヌクレオチドとがハイ ブリダィゼ一シヨンの際に、 上記プローブ 1の発色基と、 上記プローブ 2の発色 基とのエキシマー形成によるエキシマ一蛍光であることを特徴とするものである。 さらに本発明に係る核酸分析用プローブは上記発色基としてピレン、 ナフタレ ン、 アン トラセン、 ペリレン、 スチルベン、 ベンゼン、 トルエン、 フエ二ルアン トラセン、 ジフエ二ルアン トラセン、 ベンツビレン、 ベンヅアン トラセン、 テ ト ラセン、 フエナントレン、 ペン夕セン、 ト リフエ二レン、 クリセンからなる群よ り選ばれることを特徴とするものである。 Further, in the probe for nucleic acid analysis according to the present invention, when the above-mentioned fluorescence is hybridized with the above-described nucleic acid analysis probes 1 and 2 according to the present invention and the target polynucleotide, the probe 1 An excimer-monofluorescence due to excimer formation between the coloring group and the coloring group of the probe 2. Further, the probe for nucleic acid analysis according to the present invention includes pyrene, naphthalene, anthracene, perylene, stilbene, benzene, toluene, and phenylene as the above-mentioned coloring groups. It is characterized by being selected from the group consisting of Thracene, Diphenirane Thracene, Benzbilene, Benzian Thracene, Tetracene, Fenanthrene, Penyusen, Trifferenylene and Chrysene.
また本発明に係る核酸分析用プローブは上記発色基がピレンであることを特徴 とするものである。  The probe for nucleic acid analysis according to the present invention is characterized in that the coloring group is pyrene.
さらに本発明に係る核酸分析用プローブは、 核酸分析用プローブ 1の 5 '末端 ヌクレオチドと上記発色基を結合する上記鎖状置換基の長さ、 および上記核酸分 析用プローブ 2の 3 '末端ヌクレオチドと上記発色基を結合する上記鎖状置換基 の長さが、 3オングストロ一ム以上であって 20オングストローム以下であるこ とを特徴とするものである。  Further, the probe for nucleic acid analysis according to the present invention includes a length of the above-mentioned chain-like substituent binding the 5 ′ terminal nucleotide of the probe for nucleic acid analysis 1 and the above-mentioned coloring group, and a nucleotide of the 3 ′ terminal of the above probe 2 for nucleic acid analysis. And a length of the chain substituent binding the color-forming group to 3 Å or more and 20 Å or less.
また本発明に係る核酸分析用プローブは、 上記核酸分析用プローブ 1の 5 '末 端ヌクレオチドと上記発色基を結合する上記鎖状置換基の長さ、 および上記核酸 分析用プローブ 2の 3 '末端ヌクレオチドと上記発色基を結合する上記鎖状置換 基の長さが、 5オングストローム以上であって 20オングストローム以下である ことを特徴とするものである。  In addition, the nucleic acid analysis probe according to the present invention includes a length of the chain substituent that binds the 5 ′ terminal nucleotide of the nucleic acid analysis probe 1 and the chromophore, The length of the chain substituent that binds the nucleotide and the color-forming group is not less than 5 angstroms and not more than 20 angstroms.
さらに本発明に係る核酸分析用プローブは上記核酸分析用プローブ 1の 5 '末 端ヌクレオチドと上記発色基を結合する上記鎖状置換基、 または上記核酸分析用 プローブ 2の 3 ' 末端ヌクレオチドと上記発色基を結合する上記鎖状置換基が、 発色基一 (CH n— (X) k- (CH2) m— Y— (5 '末端ヌクレオチド) で表される置換基であることを特徴とするものである。 ここで は、 CONH, NHCO, COO, OCO, 0, S, ΝΗ、 からなる群より選ばれ、 Υは 0, S, NH、 (PO Sからなる群より選ばれるものであり、 さらに nまたは mは 0 から 5までの整数を表し、 kは 0または 1を表すものである。 Furthermore, the probe for nucleic acid analysis according to the present invention is characterized in that the 5 ′ terminal nucleotide of the nucleic acid analysis probe 1 and the linear substituent that binds the chromogenic group, or the 3 ′ terminal nucleotide of the nucleic acid analysis probe 2 and the chromogenic the chain substituents attached to the group is chromogenic Kiichi (CH n- (X) k- ( CH 2) characterized in that it is a m-Y- (5 'substituent represented by terminal nucleotide) Here, CONH, NHCO, COO, OCO, 0, S, ΝΗ, are selected from the group consisting of, Υ is selected from the group consisting of 0, S, NH, (POS, Further, n or m represents an integer from 0 to 5, and k represents 0 or 1.
また本発明に係る核酸検出方法は、 q個の塩基配列を有するポリヌクレオチド を、 2種類の核 ¾分析用プローブ 1および核酸分析用プローブ 2とのハイブリダ ィゼーシヨンにより検出する方法であって、 該ポリヌクレオチドと、 該ポリヌク レオチドの 5 '末端から連続した r個 ( は1以上 (q— 1 ) 以下の整数を表わ す) の塩基配列に対する相補的塩基配列を有し、 さらに上記プローブ 1の 5 '末 端ヌクレオチドから鎖状置換基を介して発色基分子を有する第 1の核酸分析用プ ローブ 1と、 該ポリヌクレオチドの 5 '末端から (r + 1 ) 番目と q番目の間の 塩基配列に対する相補的塩基配列を有し、 さらに上記核酸分析用プローブ 2の 3 '末端ヌクレオチドから鎖状置換基を介して発色基分子を有する第 2の核酸分析 用プローブ 2とを混合するステップと、 上記混合によるハイプリダイゼ一シヨン の際に、 上記プローブ 1の発色基または、 上記プローブ 2の発色基による蛍光よ りも長波長側の蛍)1 άを測定するステップを有することを特徴とするものである。 さらに本発明に係る核酸検出方法は、 上記の蛍光が、 上記核酸分析用プローブ 1およびプローブ 2と、 該ポリヌクレオチドとがハイプリダイゼーシヨンの際に、 上記プローブ 1の発色基と、 上記プローブ 2の発色基とのエキシマー形成による エキシマー蛍光であることを特徴とするものである。 Further, the nucleic acid detection method according to the present invention is a method for detecting a polynucleotide having q base sequences by hybridization with two kinds of nucleic acid analysis probes 1 and two nucleic acid analysis probes 2. A nucleotide and the polynucleic acid Has a complementary nucleotide sequence to r consecutive nucleotides (wherein represents an integer of 1 or more and (q-1) or less) from the 5 'end of leotide, and further from the 5' terminal nucleotide of probe 1 A first nucleic acid analysis probe 1 having a coloring group molecule via a linear substituent, and a complementary nucleotide sequence to a nucleotide sequence between (r + 1) th and qth from the 5 'end of the polynucleotide Further mixing a 3 ′ terminal nucleotide of the nucleic acid analysis probe 2 with a second nucleic acid analysis probe 2 having a coloring group molecule via a linear substituent from the 3 ′ terminal nucleotide; and In this case, the method further comprises a step of measuring the fluorescence ( 1 ) on the longer wavelength side than the fluorescence by the coloring group of the probe 1 or the coloring group of the probe 2. Further, in the method for detecting nucleic acid according to the present invention, the above-mentioned fluorescence may be obtained by, when the above-mentioned nucleic acid analysis probe 1 and probe 2 and the polynucleotide are hybridized, the coloring group of the above-mentioned probe 1; Characterized by excimer fluorescence due to excimer formation with a color-forming group.
さらに本発明に係る核酸検出方法は、 上記発色基がピレン、 アントラセン、 ナ フタレン、 ペリレン、 スチルベン、 ベンゼン、 トルエン、 フエ二ルアントラセン、 ジフエ二ルアン トラセン、 ベン'ソピレン、 ベンツアン トラセン、 テトラセン、 フ ェナン トレン、 ペンタセン、 トリフエ二レン、 クリセンからなる群より選ばれる ことを特徴とするものである。  Further, in the nucleic acid detection method according to the present invention, the color-forming group may be pyrene, anthracene, naphthalene, perylene, stilbene, benzene, toluene, phenylanthracene, diphenylanthracene, ben'sopylene, benzuanthracene, tetracene, fenane. It is characterized by being selected from the group consisting of Tren, Pentacene, Trifuenylene and Chrysene.
さらに本発明に係る核酸検出方法は、 上記発色基がビレンであることを特徴と するものである。  Further, the nucleic acid detection method according to the present invention is characterized in that the coloring group is biylene.
さらに本発明に係る核酸検出方法は、 上記核酸分析用プローブ 1の 5 '末端ヌ クレオチドと上記発色基を結合する上記鎖状置換基の長さ、 および上記核酸分析 用プローブ 2の 3 '末端ヌクレオチドと上記発色基を結合する上記鎖状置換基の 長さが、 3オングストローム以上であって 2 0オングストローム以下であること を特徴とするものである。  Further, the nucleic acid detection method according to the present invention comprises: a length of the chain substituent that binds the 5′-terminal nucleotide of the nucleic acid analysis probe 1 to the chromophore; and a 3′-terminal nucleotide of the nucleic acid analysis probe 2. And a length of the chain-like substituent connecting the above-mentioned coloring group to the color-forming group is not less than 3 Å and not more than 20 Å.
また本発明に係る核酸検出方法は、 上記核酸分析用プローブ 1の 5 '末端ヌク レオチドと上記発色基を結合する上記鎖状置換基の長さ、 および上記核酸分析用 プローブ 2の 3 '末端ヌクレオチドと上記発色基を結合する上記鎖状置換基の長 さが、 5オングストローム以上であって 20オングストローム以下であることを 特徴とするものである。 Further, the method for detecting nucleic acid according to the present invention comprises the step of: The length of the chain substituent that binds leotide to the color-forming group and the length of the chain substituent that bonds the 3′-terminal nucleotide of the probe 2 for nucleic acid analysis to the color-forming group are 5 Å or more. It is characterized by being less than 20 angstroms.
さらに本発明に係る核酸検出方法は、 上記核酸分析用プローブ 1の 5 '末端ヌ クレオチドと上記発色基を結合する上記鎖状置換基、 または上記核酸分析用プ口 ーブ 2の 3 '末端ヌクレオチドと上記発色基を結合する上記鎖状置換基が、 発色基一 (CH2) n- (X) k— (CH,) m— Y— (5 '末端ヌクレオチド) で表される置換基であることを特徴とするものである。 ここで Xは、 CONH, NH CO, COO, 0C0, 0, S, N Hからなる群より選ばれ、 Yは 0, S, NHからなる群より選ばれるものを表し、 nまたは mは 0から 5までの整数を表 し、 kは 0または 1を表す。 Further, the nucleic acid detection method according to the present invention may further comprise: the above-mentioned chain-like substituent binding the 5′-terminal nucleotide of the above-mentioned nucleic acid analysis probe 1 and the above-mentioned coloring group; And the above-mentioned chain-like substituent that binds to the above-mentioned coloring group is a substituent represented by a coloring group 1 (CH 2 ) n- (X) k— (CH,) m— Y— (5 ′ terminal nucleotide) It is characterized by the following. Where X is selected from the group consisting of CONH, NHCO, COO, 0C0, 0, S, NH, Y is selected from the group consisting of 0, S, NH, and n or m is 0 to 5 Represents an integer up to and k represents 0 or 1.
より詳しくは、 本発明に係る核酸検出用プロ一ブはポリヌクレオチドであって、 検出目的のポリヌクレオチドを 2種類の本発明に係る核酸検出用プローブ 1およ び 2でハイブリダィゼ一シヨンすることにより塩基配列を厳密に認識するもので ある。  More specifically, the nucleic acid detection probe according to the present invention is a polynucleotide, and the target polynucleotide is hybridized with two types of nucleic acid detection probes 1 and 2 according to the present invention. It strictly recognizes the nucleotide sequence.
さらに本発明に係る 2種類のプローブポリヌクレオチドは 5 'および 3 'にそ れそれピレン等のエキシマ一 (またはェクサイブレックス) 形成可能な発色基分 子を有するものであり、 目的ポリヌクレオチドと本発明に係るプローブのポリヌ クレオチドが相補的にハイブリダィゼ一シヨンすることにより、 上記発色基分子 が空間的に近接した位置関係をとることとなり、 発色基の単量体に固有な蛍光の 減少に伴って長波長側にシフ 卜した蛍光が観測可能となる。  Furthermore, the two types of probe polynucleotides according to the present invention have excimer (or excibrex) -forming chromophores such as pyrene at the 5 ′ and 3 ′, respectively, and the target polynucleotide and the target polynucleotide The complementary hybridization of the polynucleotides of the probe according to the present invention causes the color-forming group molecules to take a spatially close positional relationship, and with the decrease in fluorescence inherent to the monomer of the color-forming group. The fluorescence shifted to the long wavelength side can be observed.
さらに 2つの発色基が空間的に都合のよい位置関係となる場合には強いエキシ マ一、 またはェキサイプレックス形成が可能となり、 発色基の単量体に固有な蛍 光の著しい減少に伴って長波長側にシフ トした強いエキシマーまたはェクサイプ レックス蛍光が観測可能となる。 そこで目的のポリヌクレオチドの同定および検出は、 上記長波長側にシフトし た蛍光またはエキシマー、 またはェクサイブレックス蛍光を測定することにより 可能となる。 または、 モノマ一蛍光の減少を測定することにより可能となる。 以下本発明においての好ましい実施の態様について説明する。 Furthermore, if the two chromophores are in a spatially favorable positional relationship, a strong excimer or exciplex can be formed, accompanied by a significant decrease in the fluorescence inherent to the chromophore monomers. Strong excimer or exciplex fluorescence shifted to the longer wavelength side can be observed. Thus, identification and detection of the target polynucleotide can be performed by measuring the above-mentioned shifted fluorescence, excimer, or exciplex fluorescence. Alternatively, this can be achieved by measuring the decrease in monomer-fluorescence. Hereinafter, preferred embodiments of the present invention will be described.
(目的核酸 (ターゲッ ト核酸、 目的ポリヌクレオチド) ) (Target nucleic acid (target nucleic acid, target polynucleotide))
本発明に係る核酸検出用プローブを用いて検出可能な目的核酸については、 特 に制限なく、 通常公知の方法によりハイブリダィゼーシヨンしうる、 例えば、 D N A , R N A ( t R N A , mR N A , r R N A ) , 合成オリゴヌクレオチド、 合 成ポリヌクレオチド、 合成デォキシオリゴヌクレオチド、 合成デォキシポリヌク レオチド等またはデォキシリボヌクレオチドとリポヌクレオチドのヘテロポリマ —等が好適に可能である。 さらに該目的核酸の塩基配列は特定部分があらかじめ 知られていることが必要であり、 この塩基配列情報に基づき、 該核酸に完全に相 補性のあるプローブを用意し、 ハイプリダイズすることになる。  The target nucleic acid that can be detected using the nucleic acid detection probe according to the present invention is not particularly limited, and can be hybridized by a generally known method, for example, DNA, RNA (tRNA, mRNA, rRNA). RNA), a synthetic oligonucleotide, a synthetic polynucleotide, a synthetic deoxyoligonucleotide, a synthetic deoxypolynucleotide, or a heteropolymer of deoxyribonucleotide and liponucleotide. Furthermore, it is necessary that the specific portion of the nucleotide sequence of the target nucleic acid is known in advance, and based on this nucleotide sequence information, a probe that is completely complementary to the nucleic acid is prepared and hybridized. .
前記目的のために、 ターゲット核酸の塩基配列を知る方法としては、 公知の塩 基配列決定方法が使用できる (例えば、 サンガー法(dideoxy-mediated chain - te rmi nation method for DNA sequencing) 。  For the purpose, as a method for knowing the base sequence of the target nucleic acid, a known base sequence determination method can be used (for example, the Sanger method (dideoxy-mediated chain-termination method for DNA sequencing)).
(核酸検出用プローブ) (Probe for nucleic acid detection)
本発明に係る核酸分析用プローブとしてのポリヌクレオチドは、 2種類のポリ ヌクレオチド 1組で検出目的たるポリヌクレオチドの特定部分に完全に相補的に ハイプリダイゼーシヨンするものである。  The polynucleotide as a probe for nucleic acid analysis according to the present invention is one in which one set of two types of polynucleotides completely complementarily hybridizes to a specific portion of the polynucleotide to be detected.
すなわち、 本発明に ί系る 2種類のポリヌクレオチドは、 図 2に示されるように プローブ 1とプローブ 2がその目的となるポリヌクレオチドの塩基配列と完全に 相補的にハイプリダイゼーシヨンする塩基配列を有するようにそれぞれの塩基配 列を有するものである。 目的核酸の特定部分の 5 '末端から任意の数のプローブ 1の塩基配列数を決め ることが可能であり、 プローブ 2の塩基配列は従って自動的に決められることに なる。 That is, as shown in FIG. 2, the two types of polynucleotides related to the present invention have a nucleotide sequence in which probe 1 and probe 2 completely complementarily hybridize with the nucleotide sequence of the target polynucleotide. Each has a base sequence so as to have It is possible to determine the number of base sequences of any number of probes 1 from the 5 'end of a specific portion of the target nucleic acid, and the base sequence of probe 2 is automatically determined accordingly.
しかしながらどちらか一方のプローブの塩基数はあまりに短い場合には、 十分 な相補的塩基配列の認識が困難となる。 従って好ましい塩基数には、 範囲があり、 プローブ 2またはプローブ 1の塩基配列の数はそれゆえ、 ともに 8個以上である ことが望ましい。  However, if the number of bases of either probe is too short, it will be difficult to recognize a sufficient complementary base sequence. Therefore, the preferable number of bases has a range, and therefore, the number of base sequences of the probe 2 or the probe 1 is preferably both 8 or more.
さらに、 本発明においては、 プローブ 1または 2に必要な塩基配列の合成法に ついては特に制限されず、 一般のヌクレオチド修飾法 (例えば、 Handbook of Fl uorescent Probes and Research Chemicals, 5th ed, 1992 - 1994, by R.P.Haugla nd, Molecular Probes, Incに記載の方法) 、 または自動合成法 (例えば、 Ol igon ucleotides and Analogues A Practical Approach, ed by F. Eckstein, IRL Pre ssに記載の方法) 等が使用可能である。 また天然のオリゴヌクレオチドに色素体 を導入してから用いることも可能である。  Furthermore, in the present invention, the method for synthesizing the nucleotide sequence necessary for the probe 1 or 2 is not particularly limited, and a general nucleotide modification method (for example, Handbook of Fluorescent Probes and Research Chemicals, 5th ed, 1992-1994, by RPHaugland, Molecular Probes, Inc) or an automated synthesis method (for example, the method described in Oligogon ucleotides and Analogues A Practical Approach, ed by F. Eckstein, IRL Press). is there. It is also possible to introduce a plastid into a natural oligonucleotide before use.
得られるポリヌクレオチドの精製は例えば逆相高速液体クロマトグラフ法等に より可能である。  The resulting polynucleotide can be purified, for example, by reversed-phase high-performance liquid chromatography.
(鎖状置換基 (リン力一) ) (Chain substituent (phosphorus))
さらに、 本発明に係るこれらの 2種類のプローブとしてのポリヌクレオチドは 5 ' または 3 '末端部分にラベル化基 (発色基分子、 クロモフォ、 発蛍光団) を 設けるために、 適当な長さの鎖状置換基 (リンカ一) を介して前記プローブ塩基 配列部分と結合されている。  In addition, the polynucleotides of these two types of probes according to the present invention may have a chain of an appropriate length in order to provide a labeling group (color-forming group molecule, chromophore, fluorophore) at the 5 ′ or 3 ′ end. The probe is linked to the probe base sequence via a substituent (linker).
これら 2つのプローブポリヌクレオチドが目的のポリヌクレオチドにハイブリ ダイゼーシヨンする際に、 空間的にそれそれのプローブポリヌクレオチドからの 2つの発色基分子がリンカ一により近接した位置が可能となるように配置される。 従って、 5 ' または 3 '末端から発色基までの長さは、 本発明においては、 極 めて重要であり、 リンカ一の種類、 長さにより調節が可能である。 特に、 本発明 においてはリンカ一の長さが検出感度におおきく影響することが発明者等の知見 により明らかである。 図 6には、 リンカ一の長さに依存して、 ビレン一ピレンに 基づくエキシマー形成が大きく影響されることが示されている。 従って本発明に おいては、 リンカ一の長さは最適化のための目安であって、 鎖状置換基 (リンカ 一) の長さとは、 プローブのポリヌクレオチドから発色基分子までの C一 C, C 一 0, C-N, N— N、 C— S、 P— 0、 等の一重共有結合をすベて同じ長さ ( 1. 4オングス トローム) とした場合に、 結合の数から積算したものを意味す る。 When these two probe polynucleotides hybridize to the target polynucleotide, the two chromophore molecules from each of the probe polynucleotides are spatially arranged so as to allow a closer position to the linker. . Therefore, the length from the 5 ′ or 3 ′ end to the coloring group is extremely small in the present invention. It can be adjusted according to the type and length of the linker. In particular, it is clear from the findings of the inventors that the length of the linker greatly affects the detection sensitivity in the present invention. FIG. 6 shows that excimer formation based on birene-pyrene is greatly affected by the length of the linker. Therefore, in the present invention, the length of the linker is a measure for optimization, and the length of the linear substituent (linker) is defined as the length of the C-C from the probe polynucleotide to the chromogenic group molecule. , C-1 0, CN, N—N, C—S, P—0, etc. When all the single covalent bonds are of the same length (1.4 Å), this is calculated from the number of bonds. Means
例えば、 5 '末端ヌクレオチドの 5 '炭素から、 以下の鎖状置換基 (リンカ一) (5 ' -C) — 0— P— S_CH 一 C0NH— CH'—発色基分子  For example, from the 5 'carbon of the 5' terminal nucleotide, the following chain substituent (linker) (5'-C) — 0—P—S_CH—C0NH—CH′—chromophore molecule
で発色基と結合した場合は、 1. 4x 8 = 1 1. 2オングス トロームとなるもの である。 When it is combined with a chromophore, the result is 1.4 x 8 = 11.2 angstroms.
また、 例えば、 3 '末端ヌクレオチドの 3 '炭素から、 以下の鎖状置換基 (リ ン力一) (3 ' -C) 一 NH— NH-CO— CH2— CH2— CH2— CH2—発色 基分子で発色基と結合した場合は、 1· 4x 8= 1 1. 2オングス トロームとな るものである Further, for example, 3 carbon '3' terminal nucleotide, the following chain substituent (Li down force one) (3 '-C) one NH- NH-CO- CH2- CH2- CH 2 - CH2- chromophore When combined with a chromophoric group in the molecule, the result is 1.4x8 = 11.2 Angstrom
すでに図 6で示されたように発色基分子が空間的に相互に接近し、 分子間の相 互作用が認められるためには、 上記のリンカ一があまり短くても、 あまり長くて も効果的な空間配置を取りにくいと考えられる。  As shown in Fig. 6, in order for the color-forming group molecules to be spatially close to each other and the interaction between the molecules to be recognized, it is effective if the linker is too short or too long. It is thought that it is difficult to take a proper spatial arrangement.
例えば本発明者等の知見によれば、 発色基としてビレニル基の場合、 5 ' また は 3 '炭素から少なくとも 3オングストローム離れた空間に位置することが好ま しく、 さらに 5オングストローム以上 20オングストローム以下であることが好 ましいことが見いだされた。  For example, according to the findings of the present inventors, in the case of a bienyl group as a color-forming group, it is preferably located in a space at least 3 angstroms away from the 5 'or 3' carbon, and more preferably from 5 angstroms to 20 angstroms. Was found to be good.
さらに、 上記鎖状置換基 (リンカ一) が 3オングストローム以下の場合は、 発 色基同士の近接は立体的に不可能となり、 この場合はエキシマ一等の形成、 ェキ シマ一蛍光等は実質上起こりえないと考えられる。 Further, when the above-mentioned chain substituent (linker) is 3 Å or less, the proximity of the color-forming groups becomes sterically impossible. In this case, the formation of excimer and the like is not possible. It is considered that shimmering fluorescence or the like cannot substantially occur.
また C P K分子模型による検討も有効であり、 上記の長さとしては約 3オング ストローム以上であることが好ましく、 さらに 2 0オングストローム以下である ことが好ましいことが推定される。 さらに好ましくは 5オングス トロ一ム以上、 1 5オングス トローム以下である。 より詳しくは、 実際本発明者等の知見によれ ば、 ビレニル基が発色基の場合 5〜 1 0オングストロームが好適な範囲であるこ とを、 エキシマ一蛍光を実測して見いだした。 すなわち本発明においては、 5 ' または 3 '炭素にビレニルメチル基をエーテル結合により結合した場合 (4 . 2 オングス トローム) は含まれない。  It is also effective to study using a C PK molecular model, and it is presumed that the length is preferably about 3 Å or more, and more preferably 20 Å or less. More preferably, it is 5 angstrom or more and 15 angstrom or less. More specifically, according to the findings of the present inventors, it was found by actual measurement of excimer fluorescence that the range of 5 to 10 angstroms is a preferable range when the virenyl group is a coloring group. That is, the present invention does not include the case where a bienylmethyl group is bonded to the 5 ′ or 3 ′ carbon by an ether bond (4.2 angstrom).
本発明においては、 上記の長さのリンカ一が得られる限り、 リンカ一の種類、 合成法は特に制限されない。 たとえばメチレン基、 アミ ド基、 エステル基、 エー テル基、 チォリン酸エステル、 またはそれらの組合わせが好適に使用可能である。 化学安定性、 熱的安定性、 ラベル化基としての好適性等を総合して適当なリンカ 一結合様式を決定するのは、 当業者にとって容易な選択事項である。  In the present invention, the type of the linker and the synthesis method are not particularly limited as long as the linker having the above length can be obtained. For example, a methylene group, an amide group, an ester group, an ether group, a thiophosphate, or a combination thereof can be suitably used. It is an easy choice for a person skilled in the art to determine an appropriate linker-binding mode in consideration of chemical stability, thermal stability, suitability as a labeling group, and the like.
(発色基、 ラベル化基、 クロモフォア、 発蛍光団) (Color-forming group, labeling group, chromophore, fluorophore)
本発明において使用可能な発色基 (またはラベル化基) とは少なくともその一 部に発色団を含むものを意味し、 望ましくはエキシマーまたはェクサイプレック スを形成しやすいものであれば特に制限されない。 一般的な合成方法により、 種 々の種類の発色基が導入可能である。  The coloring group (or labeling group) usable in the present invention means a group containing a chromophore in at least a part thereof, and is not particularly limited as long as it easily forms an excimer or an exciplex. Various kinds of coloring groups can be introduced by a general synthesis method.
特に発色団としてはピレン、 ナフ夕レン、 アントラセン、 ペリレン、 スチルベ ン、 ベンゼン、 トルエン、 フエ二ルアン トラセン、 ジフエ二ルアン トラセン、 ベ ンヅピレン、 ベンヅアン トラセン、 テトラセン、 フエナントレン、 ペン夕セン、 トリフエ二レン、 クリセンからなる群より選ばれることを特徴とするもので芳香 族性の発色団が好適に使用可能であり、 さらに好ましくはピレン骨格を有する発 色基が使用可能である。 本発明において好ましくは 2種類のプローブの発色基は同一である。 すなわち、 本発明においてはいわゆるドナー:ァクセプター型ではない。 In particular, the chromophores include pyrene, naphthylene, anthracene, perylene, stilbene, benzene, toluene, phenylanthracene, diphenylanthracene, benzene, pentapyrene, benzuanthracene, tetracene, phenanthrene, pengysen, triffeenylene, It is selected from the group consisting of chrysene, and aromatic chromophores can be suitably used, and more preferably, a chromophore having a pyrene skeleton can be used. In the present invention, preferably, the coloring groups of the two types of probes are the same. That is, it is not a so-called donor: acceptor type in the present invention.
後に説明するように本発明にかかる長波長にシフトした蛍光は従って電子移動 型のものではない。 すなわち、 本発明においては、 同一発色基分子によるエキシ マーまたはェクサイプレヅクス形成によるエキシマーまたはェクサイプレックス 蛍光を観測可能とするものであり、 上で説明したハイプリダイゼ一シヨンに基づ く 2つの発色基が空間的に接近して上記の蛍光を生じるものであり、 従って正し くターゲヅ ト核酸にハイプリダイゼ一シヨンしたもののみが検出可能となる。 従って, たとえ過剰の本発明に係るプローブが共存する場合であっても、 発色 基単量体自体に由来する蛍光に干渉されることなく、 ハイプリダイゼ一シヨンし たもののみを検出することが可能となる。  As will be explained later, the long wavelength shifted fluorescence according to the present invention is therefore not of the electron transfer type. That is, in the present invention, excimer or exciplex fluorescence due to excimer or exciplex formation by the same chromophore molecule can be observed, and two types based on the hybridization described above are used. Since the color-forming groups are spatially close to each other and generate the above-mentioned fluorescence, only those which have been correctly hybridized to the target nucleic acid can be detected. Therefore, even when the probe according to the present invention coexists, it is possible to detect only hybridized ones without interference from the fluorescence derived from the chromogenic monomer itself. Become.
(ハイプリダイゼ一シヨン) (Hyperdaidise)
本発明に係る 2つの核酸検出ブローブのポリヌクレオチドを用いて、 目的ポリ ヌクレオチドとハイプリダイゼーシヨンさせる方法は特に制限されない。  The method for hybridizing with the target polynucleotide using the polynucleotides of the two nucleic acid detection probes according to the present invention is not particularly limited.
通常のハイブリダィゼーシヨンの条件を好適に使用できる (例えば、 Molecula r Cloning A Laboratory manual 2nd. ed, J. sambrook et al . , Cold Spring Ha rbor Laboratory Press, 1989に記載の方法)。  Conventional hybridization conditions can be suitably used (for example, the method described in Molecular Cloning A Laboratory manual 2nd. Ed, J. sambrook et al., Cold Spring Harbor Laboratory Press, 1989).
例えば、 2 5 °Cにおいて、 2つのプローブとターゲット核酸とを溶液中で混合 することにより、 好適にハイブリダィゼーシヨンさせることが可能である。 他に は、 さらに高温 (例えば、 融解温度より 1 0 °C低い温度) で反応させて、 その後、 ァニールさせて室温に戻すことでハイプリダイゼ一シヨンさせてもよい。  For example, by mixing two probes and a target nucleic acid in a solution at 25 ° C., hybridization can be suitably performed. Alternatively, the reaction may be carried out at a higher temperature (for example, at a temperature lower by 10 ° C. than the melting temperature), followed by annealing to return to room temperature, thereby performing hybridization.
さらに、 本発明においては、 ハイブリダィゼーシヨン後に、 洗浄その他の手段 を使用することなく、 的ポリヌクレオチドの同定または定量が可能である。 検出方法としては、 本明においては、 ハイブリダィゼ一シヨンさせた後の蛍光 を測定するための手段であれば、 特に制限されない。 例えば、 市販の蛍光光度計 により、 好適に測定可能である。 Furthermore, in the present invention, identification or quantification of a target polynucleotide can be performed after hybridization without washing or other means. In the present invention, the detection method is not particularly limited as long as it is a means for measuring the fluorescence after hybridization. For example, a commercially available fluorometer Thus, the measurement can be suitably performed.
図 4等に示されるように、 発色基自体 (この場合はビレン) の蛍光 (ビーク波 長は 3 8 O nm )の他に、 長波長側にシフ トしたエキシマ一蛍光 (ビーク波長は約 5 0 0 n m) が測定可能となる。 もちろんハイブリダィゼーシヨンする前におい てはこのエキシマ—ビークは全く観測されない。 従って、 ハイブリダィゼーショ ンしたターゲットの定量は全く容易であり、 正確な検量線を作製することにより、 図 5にしめされるごとく、 蛍光強度を測定することにより、 ターゲッ ト核酸濃度 を検量できる。 通常の蛍光光度計を使用した図 5の実験データは、 本発明の検出 限界を示すものでなく、 蛍光光度計の感度向上により、 さらに高感度に検出する ことが可能であり、 当業者にとって、 この測定系の最適化は容易に選択可能な事 項である。 しかしながら、 図 6からは少なくとも数 n M程度の検出が可能である ことが示される。  As shown in Fig. 4 etc., in addition to the fluorescence of the chromophore itself (in this case, bilen) (beak wavelength is 38 O nm), the excimer fluorescence shifted to the longer wavelength side (the beak wavelength is about 5 (0 nm) can be measured. Of course, the excimer beak is not observed at all before the hybridization. Therefore, the quantification of the hybridized target is quite easy, and by preparing an accurate calibration curve, the target nucleic acid concentration can be calibrated by measuring the fluorescence intensity as shown in Fig. 5. it can. The experimental data of FIG. 5 using a normal fluorometer does not indicate the detection limit of the present invention, and it is possible to detect with higher sensitivity by improving the sensitivity of the fluorometer. Optimization of this measurement system is a matter that can be easily selected. However, FIG. 6 shows that detection of at least several nM is possible.
特に、 この本発明に係る分析用プローブは過剰に使用してもよく、 ハイブリダ ィズしていない過剰のプローブの発色基に基づく蛍光には全く干渉されずに、 上 記の操作をおこなうことが可能である。  In particular, the analytical probe according to the present invention may be used in excess, and the above operation may be performed without any interference with the fluorescence based on the chromophore of the excess probe that has not been hybridized. It is possible.
(点変異核酸の険出) (Rapid extraction of point-mutated nucleic acids)
本発明に係る検出の原理は、 上で説明したように、 2つのプローブが正しく夕 ーゲッ ト核酸にハイブリダィゼ一シヨンすることにより、 強いエキシマ一蛍光が 生じ、 それを測定することによりターゲッ ト核酸を検出定量するものである。 従 つて、 ラベル化基が結合している 2つのプローブ末端の間には、 塩基対を形成し えない核酸塩基が存在してもその部分をプローブの塩基配列から除いてデザィン したプローブを用いることにより、 それらの塩基配列のみが異なる夕一ゲッ ト核 酸、 すなわち点変異核酸の高感度高選択的検出方法に使用可能となるものである。 この可能性は、 図 7において示されているように、 2つのプローブの間に 1また は 2個程度の核酸塩基が存在すると, 本発明では, エキシマー蛍光の著しい減少 を起こし, その結果から点変異の同定を観測することが可能になる (図 8 ) 。 以下実施例に従って本発明を詳しく説明する。 しかしながら、 本発明はこの実 施例に制限されるものではない。 As described above, the principle of the detection according to the present invention is that, as described above, the two probes correctly hybridize to the target nucleic acid, thereby generating strong excimer fluorescence, and measuring the target nucleic acid to measure the target nucleic acid. It is for detection and quantification. Therefore, even if there is a nucleobase that cannot form a base pair between the two probe ends to which the labeling group is bonded, use a designed probe by excluding that portion from the base sequence of the probe. Accordingly, the present invention can be used for a highly sensitive and selective detection method for an evening-get nucleic acid, ie, a point-mutated nucleic acid, which differs only in their base sequences. This possibility is shown by the fact that the presence of one or two nucleobases between two probes, as shown in FIG. Then, it becomes possible to observe the identification of the point mutation from the result (Fig. 8). Hereinafter, the present invention will be described in detail with reference to Examples. However, the invention is not limited to this embodiment.
以下で説明するプローブ 2 (化合物 3 ) の 3 '末端ヌクレオチドについてはリ ポヌクレオチドを使用したが、 その他はすべてデォキシリボヌクレオチドを使用 した。  A liponucleotide was used for the 3′-terminal nucleotide of probe 2 (compound 3) described below, and deoxyribonucleotide was used for all others.
(ォリゴヌクレオチドの合成) (Synthesis of Oligonucleotides)
検出対象モデルとして選んだォリゴヌクレオチド 3 2 -merは次のような配列を 有する : 5 ' -AGAGGGCACGGATACCGCGAGGTGGAGCGAAT-3 ' (化合物 1 ) 。 この対象の 5 '末端から 1 6個までの塩基配列に対し相補的塩基配列をもつヌクレオチドを 核酸検出用プローブ 1として用いた : 3 ' -TCTCCCGTGCCTATGG-5 ' (化合物 2 ) 。 さらにォリゴヌクレオチド 3 2 -mer (化合物 1 ) の 5 '末端より 1 7番目から 3 2番目までの塩基配列に対し相補的塩基配列をもつヌクレオチドを核酸検出用プ ローブ 2として用いた : 3 ' -(C)GCTCCACCTCGCTTA- 5 ' (化合物 3 ) (ただし、 (C) のみリボヌクレオチド) 。 これらは何れも、 固相フォスフオラミダイ ド合成(SO LID STATE PHOSPHORAMIDITE TECHNIQUE )法に従ってミ リポアリミッテド社製自動 合成機を使用して合成した。  The oligonucleotide 32 -mer chosen as the model to be detected has the following sequence: 5′-AGAGGGCACGGATACCGCGAGGTGGAGCGAAT-3 ′ (compound 1). A nucleotide having a nucleotide sequence complementary to the 16 nucleotide sequences from the 5 'end of the subject was used as a probe 1 for nucleic acid detection: 3'-TCTCCCGTGCCTATGG-5' (compound 2). Further, a nucleotide having a complementary nucleotide sequence to the 17th to 32nd nucleotide sequence from the 5 'end of the oligo nucleotide 32 -mer (compound 1) was used as a nucleic acid detection probe 2: 3' -(C) GCTCCACCTCGCTTA-5 '(compound 3) (however, only (C) is a ribonucleotide). All of these were synthesized using an automatic synthesizer manufactured by Millipore Limited in accordance with the solid phase phosphoramidite synthesis (SO LID STATE PHOSPHORAMIDITE TECHNIQUE) method.
そこで得られた、 オリゴヌクレオチド 3 2 -mer (化合物 1 ) および 2種類のプ 口一ブオリゴヌクレオチド 1 6 -mer (化合物 2 ) 、 (化合物 3 ) は、 それそれ逆 相高速液体クロマトグラフィー (カラム : PepRPCTM 4m HR5/5 Fharmacia Fine C hemicals社製、 溶出溶媒系ァセトニトリル/ 0.1Mアンモニゥムアセテート混合溶 媒のグラジェント、 検出波長 2 6 0 nm) により分離精製した。  The oligonucleotides 32 -mer (compound 1) and two kinds of oligonucleotides 16 -mer (compound 2) and (compound 3) obtained therefrom were subjected to reversed-phase high-performance liquid chromatography (column : PepRPCTM 4m HR5 / 5 manufactured by Pharmacia Fine Chemicals, gradient elution solvent system acetonitrile / 0.1M ammonium acetate mixed solvent, detection wavelength 260 nm).
さらに、 それぞれをゲルろ過により脱塩し、 凍結乾燥によって濃縮乾固した。  Furthermore, each was desalted by gel filtration and concentrated to dryness by freeze-drying.
(核酸検出用プローブ 1 ( 3 ' -TCTCCCGTGCCTATGG-5 ' ) (化合物 2 ) の 5 '末端 へのビレン発色基の導入) - 上記で得られたプローブ 1 (化合物 2) のオリゴヌクレオチド (分子量 4904.2 1,吸光係数 £l39.9mmol— ' · liter · cm—リ にビレン基を Czworkowski等の方法 (Czworkowski . J. , et. al. , Biochemistry, 30, 4821ページ、 1991) に準じて以下 の手順で導入した。 (5 'end of nucleic acid detection probe 1 (3'-TCTCCCGTGCCTATGG-5') (compound 2) -The oligonucleotide of probe 1 (compound 2) obtained above (molecular weight 4904.2 1, extinction coefficient £ l39.9mmol— 'liter · cm-) (Czworkowski. J., et. Al., Biochemistry, 30, p. 4821, 1991) and introduced in the following procedure.
すなわち、  That is,
(i) 2mの (化合物 2) に、 20mM MgCl2と 0.2M KC1を含む 140mM Tris-HCl(pH7. 6)からなる溶液 2.5mlと、 水 2.135mlと、 500mMヂチオスレィ トール 0.05ml と、 lOOmMアデノシン一 5 '— 0— (3 '—チオトリフォスフェイ ト) (リチウム塩、 ベ一リンガーマンハイム社) 0.5mlと、 T4ポリヌクレオチド力イネ一ス溶液 (pol ynucleotide kinase solution,タカラ社) 0.04ml とを混合し、 遮光して 36°C で 3時間放置する。 (i) 2 ml of (compound 2), 2.5 ml of a solution of 20 mM MgCl 2 and 140 mM Tris-HCl (pH 7.6) containing 0.2 M KC1, 2.135 ml of water, 0.05 ml of 500 mM thiothreitol, and lOOmM adenosine one 5 '- 0- (3' - thio triforine scan Fei g) (lithium salt, base one Ringer Mannheim) 0.5 ml and, T 4 polynucleotide force rice Ichisu solution (pol ynucleotide kinase solution, Takara) 0.04 ml And leave at 36 ° C for 3 hours protected from light.
(ii) さらに 2.5mlの 2M NaClと 2.5mlの水を添加後、 体積比で 1 : 1のクロロホ ルム /メ夕ノール混合液を加え遠心分離を行い水相を回収した。  (ii) Further, after adding 2.5 ml of 2M NaCl and 2.5 ml of water, a mixed solution of chloroform and methanol at a volume ratio of 1: 1 was added, followed by centrifugation to collect an aqueous phase.
(iii) 得られた水相に 10mlのクロロフオルムを添加し、 遠心分離後水相を回収 した。 エタノールにより沈殿させデォキシオリゴヌクレオチドを濃縮し、 0.5m M NaClと 10mMメルカプトエタノールを含む 25mM HEPES/NaOH(pH7.4)で平衡化した セフアデヅクス G— 25(Sephadex G-25,フアルマシアフアインケミカルス社) カラムを用いて溶媒の交換を行った。  (iii) 10 ml of chloroform was added to the obtained aqueous phase, and the aqueous phase was recovered after centrifugation. The deoxyoligonucleotide was precipitated by ethanol, concentrated, and equilibrated with 25 mM HEPES / NaOH (pH 7.4) containing 0.5 mM NaCl and 10 mM mercaptoethanol (Sephadex G-25, Pharmaciafu). The solvent was exchanged using a column (Ein Chemicals).
(iv) ェタノール沈殿操作と遠心濃縮操作によってデォキシォリゴヌクレオチド を乾固させた後、 以下の溶媒を順次添加する。 すなわち、 50mM ビシン(Bicine)/ K0H(pH8.4) 4mlと,ジメチルフオルムアミ ド(dimethylformainide,DMF) 5mlと, N - (卜ピレニルメチル) ヨウ化ァセ トアミ ド (N-(l-pyrenylmethyl)iodoacetamide, モレキュラープローブ社) の DMF溶液 1 · 0mlを加え室温で 4時間攪拌した。  (iv) After deoxyoligonucleotides are dried by ethanol precipitation and centrifugal concentration, the following solvents are added sequentially. That is, 4 ml of 50 mM bicine / K0H (pH 8.4), 5 ml of dimethylformamide (DMF), and N- (topyrenylmethyl) iodide acetate (N- (l-pyrenylmethyl) 1.0 ml of a DMF solution of iodoacetamide (Molecular Probes) was added and stirred at room temperature for 4 hours.
(V) 過剰の反応液をエタノール沈殿操作により除き、 遠心濃縮により (化合物 4) を得た。 図 9に (化合物 4) の構造を示す。 (vi) さらに精製するために OD S逆相高速液体クロマトグラフィーを用いた。 カラムは、 TSKgel OligoDNA RP (東ソ一) カラム(21.5画【15cm)を使用した。 (V) Excess reaction solution was removed by ethanol precipitation, and (compound 4) was obtained by centrifugal concentration. Figure 9 shows the structure of (Compound 4). (vi) ODS reverse phase high performance liquid chromatography was used for further purification. The column used was a TSKgel OligoDNA RP (Tosoichi) column (21.5 pictures, 15 cm).
溶出には、 ァセトニトリルと 0.1M酢酸アンモニゥムの混合液を用い、 次の様 な濃度勾配で溶出した (溶出速度は lml/min、 温度は室温) 。 5 : 95で最初 5 分間の後、 175分間で 5 : 95から 40 : 60へグラジェント。  For elution, a mixture of acetonitrile and 0.1 M ammonium acetate was eluted with the following concentration gradient (elution rate: lml / min, temperature: room temperature). After 5 minutes at 5:95 for the first 5 minutes, a gradient from 5:95 to 40:60 in 175 minutes.
(vii) 得られたサンプルを室温で遠心濃縮し、 最終品は、 3.0mM EDTAと 0.1M Na CIを含む 0.01M Tris-HCl緩衝液 (pH7.5)に溶解し、 一 85 °Cで凍結保存した。  (vii) Centrifuge the obtained sample at room temperature, dissolve the final product in 0.01M Tris-HCl buffer (pH7.5) containing 3.0mM EDTA and 0.1M NaCI, and freeze at 185 ° C. saved.
(核酸検出用プローブ 2 (3' -(OGCTCCACCTCGCTTA-5 ' ) (化合物 3) の 3 '末 端へのピレン発色基の導入一その 1 ) (Introduction of pyrene chromophore to 3 'end of nucleic acid detection probe 2 (3'-(OGCTCCACCTCGCTTA-5 ') (Compound 3) Part 1)
上記で得られたプローブ 2のオリゴヌクレオチド (化合物 3) (分子量 4849.1 8,吸光係数 e 136.4mmo卜 1 · liter · cm-1) にピレン基を、 Re ins, Cantor等の方 法 (Koenig,P. , Reins, S.A. ,Cantor,C.R. (1977) Pyrene Derivatives as Fluore scent Probes of Conformation Near the 3 ' Termini of Polyribonucleotides" , A pyrene group was added to the oligonucleotide (compound 3) (molecular weight 4849.18, extinction coefficient e 136.4 mm 1 · liter · cm-1) of probe 2 obtained above, and the method of Reins, Cantor, et al. (Koenig, P , Reins, SA, Cantor, CR (1977) Pyrene Derivatives as Fluore scent Probes of Conformation Near the 3 'Termini of Polyribonucleotides ",
Biopolymers 16, 2231-2242)を改良して以下のように導入した。 Biopolymers 16, 2231-2242) was modified and introduced as follows.
(i) 45.5〃gのオリゴヌクレオチド (化合物 3) を 0.5mlの 0.05Mアセテート緩衝 液 (pH5.6)に溶解する。  (i) Dissolve 45.5 μg of the oligonucleotide (compound 3) in 0.5 ml of 0.05 M acetate buffer (pH 5.6).
(ii) HOmg NaI04と 7.5M尿素を含む 0.05M酢酸緩衝液 (ρΗ5·6)を 2.0ml 添加し、 室温で、 遮光して 45分間放置する。  (ii) Add 2.0 ml of 0.05M acetate buffer (ρΗ5.6) containing HOmg NaI04 and 7.5M urea, and leave it at room temperature for 45 minutes in the dark.
(iii) さらに KC1 を 0.5ml 添加し、 4°Cに放置し過剰の NaI04 を沈殿させる。 (iii) Add 0.5 ml of KC1 and leave at 4 ° C to precipitate excess NaI04.
( iv ) 遠心分離で沈殿を除いた後、 ェタノ一ル沈殿操作によってオリゴヌクレオ チドを沈殿させる。 (iv) After removing the precipitate by centrifugation, the oligonucleotide is precipitated by ethanol precipitation.
(V) 沈殿を 3mM EDTA を含む 0.05M酢酸緩衝液 (pH5.6)の少量に溶解した後、 同 一緩衝液で平衡化したセフアデックス G— 25カラムで脱塩操作を行った。  (V) The precipitate was dissolved in a small amount of 0.05 M acetate buffer (pH 5.6) containing 3 mM EDTA, and then desalted using a Sephadex G-25 column equilibrated with the same buffer.
(vi) 280nmの吸光度を目安にオリゴヌクレオチド分画を集め、 エタノール沈殿 操作を用いて濃縮する。 (vii) 沈殿に3.01111の0.05>1ァセテート緩衝液 ( 115.6)を添加し、 さらに 3mgの 1 ービレン酪酸ヒドラジド(1-pyrenebutyric acid hydrazide)を溶解させたジメチ ルスルフォキシド(DMSO) 3.0mlを添加し、 37 °Cで遮光して 2時間放置した。 (vi) Collect the oligonucleotide fractions based on the absorbance at 280 nm and concentrate them using an ethanol precipitation procedure. (vii) To the precipitate, added 0.05> 1 acetate buffer (115.6) of 3.01111, and further added 3.0 ml of dimethylsulfoxide (DMSO) in which 3 mg of 1-pyrenebutyric acid hydrazide was dissolved. The mixture was left for 2 hours in the light shielded at ° C.
(viii) さらに 0.3ml の 2M KC1 を添加した後、 過剰のエタノールを添加して オリゴヌクレオチドを沈殿させた。  (viii) After addition of 0.3 ml of 2M KC1, an excess of ethanol was added to precipitate the oligonucleotide.
(ix) 遠心分離後、 沈殿に 3.0mM EDTAナトリウム塩と 0.1M KC1を含む 0.01M Tris- HCl(pH7.5 )緩衝液 1.0mlを添加し沈殿を再溶解させた。  (ix) After centrifugation, 1.0 ml of a 0.01 M Tris-HCl (pH 7.5) buffer containing 3.0 mM EDTA sodium salt and 0.1 M KC1 was added to the precipitate to redissolve the precipitate.
(X) 最後に、 NaBH3CN (sodium cyanoborohydride)を添カロし、 還元反応を室温 下で 1時間行った。 添加量は、 プローブに対して約 320倍モルであった。  (X) Finally, NaBH3CN (sodium cyanoborohydride) was added, and the reduction reaction was performed at room temperature for 1 hour. The amount of addition was about 320 times the molar amount of the probe.
(xi) その後エタノール沈殿操作を数回繰り返し、 遠心分離後の上澄のビレンに 由来する蛍光が完全になくなることを確認した後、 最終沈殿を遠心エバポレイシ ヨンにより乾燥固化させ (化合物 5) を得た。 図 10に (化合物 5) の構造を示 す。  (xi) After that, the ethanol precipitation operation was repeated several times, and after confirming that the fluorescence derived from the birene in the supernatant after centrifugation was completely eliminated, the final precipitate was dried and solidified by centrifugation to obtain (Compound 5). Was. Figure 10 shows the structure of (Compound 5).
(xii) 精製は、 0DS 逆相高速液体クロマトグラフィにより行った。 カラムは TS Kgel OligoDNA RP (東ソ一社製) (21.5mmxl5cm)を使用した。 溶媒はァセトニト リルと 0.1M 酢酸アンモニゥムの混合溶液によるグラジェントを用いた。  (xii) Purification was performed by 0DS reversed-phase high-performance liquid chromatography. The column used was TS Kgel OligoDNA RP (manufactured by Tosoh I) (21.5 mm x 5 cm). The solvent used was a gradient of a mixed solution of acetonitrile and 0.1 M ammonium acetate.
(xiii) 得られた (化合物 5) は室温で遠心濃縮し、 3.0mM EDTA ナトリウム塩 と 0.1M NaClを含む 0.01M Tris-HCl緩衝液 (pH7.6)に溶解し、 一 85 °Cで凍結保存 した。  (xiii) The obtained (compound 5) is concentrated by centrifugation at room temperature, dissolved in a 0.01 M Tris-HCl buffer (pH 7.6) containing 3.0 mM EDTA sodium salt and 0.1 M NaCl, and frozen at 85 ° C. saved.
(核酸検出用プローブ 2 (3 ' -(OGCTCCACCTCGCTTA-5 ' ) (化合物 3) の 3 '末 端へのピレン発色基の導入一その 2 ) (Introduction of a pyrene coloring group at the 3 'end of nucleic acid detection probe 2 (3'-(OGCTCCACCTCGCTTA-5 ') (Compound 3) Part 2)
また、 核酸検出用プローブ 2 (化合物 3) の 3 '末端へのピレン発色基の導入 には、 次の方法も用いた。 本法は、 B.P.Gottikh等の方法 (Gottikh,B.P.,Krayev sky,A.A., Tarussova,N.B. , Ts i lev ich,T.し, Tetrahedron, 26, 4419-4433(1970)) を一部変更して使用した。 ここでは本法を CDI(carbonyldiimidazol)法と呼ぶ。 (i) DMF中 1.2Mの CDI溶液を調製する。 The following method was also used to introduce a pyrene coloring group at the 3 'end of the nucleic acid detection probe 2 (compound 3). In this method, the method of BPGottikh et al. (Gottikh, BP, Krayev sky, AA, Tarussova, NB, Tsilevich, T., Tetrahedron, 26, 4419-4433 (1970)) was used with some modifications. . Here, this method is called CDI (carbonyldiimidazol) method. (i) Prepare a 1.2M CDI solution in DMF.
(ii)この溶液 0.1mlに 0.1mlの 0.4M 1-Pyrenebutanoic acidの D M F溶液を添加し、 室温下にて、 約 30分反応させる。 (ii) To 0.1 ml of this solution, add 0.1 ml of 0.4 M 1-Pyrenebutanoic acid DMF solution and react at room temperature for about 30 minutes.
^)40011111001/0.5101濃度の16-1116 水溶液を上記溶液に添加し、 室温下、 暗黒条 件にて 3時間ィンキュベ一卜する。  ^) Add a 16-1116 aqueous solution with a concentration of 40011111001 / 0.5101 to the above solution and incubate at room temperature under dark conditions for 3 hours.
(iv)遠心エバポレータを用いて溶媒を除く。  (iv) Remove the solvent using a centrifugal evaporator.
(V)この残渣を水、 クロ口ホルムを順次添加し、 溶媒抽出を行う。  (V) To this residue, water and chloroform are sequentially added, and solvent extraction is performed.
( vi )水分画を取得し、 再度クロ口ホルムを添加して溶媒抽出を行う。  (vi) Obtain a water fraction, add form again, and perform solvent extraction.
(vii)取得した水分画の溶媒を遠心エバポレー夕を用いて除去する。  (vii) The solvent of the obtained water fraction is removed using a centrifugal evaporator.
(viii)精製は、 少量の水を添加し、 これを OD S逆相高速液体クロマトグラフを 用いて行った。 カラムは、 TSKgel OligoDNA RP (東ソ一) カラム(21.5mmxl5cm) を使用した。 溶出にはァセトニトリルと 0.1M酢酸アンモニゥムの混合液を用い、 次の濃度勾配で溶出した (溶出速度は lml/min、 温度は室温) 。 5:95で最初 5分 間の後、 175分間で 5 :95から 40 :60へグラジェン卜。  (viii) Purification was performed by adding a small amount of water and using an ODS reverse-phase high-performance liquid chromatograph. As the column, a TSKgel OligoDNA RP (Tosoichi) column (21.5 mm × 5 cm) was used. A mixture of acetonitrile and 0.1 M ammonium acetate was eluted with the following concentration gradient (elution rate: lml / min, temperature: room temperature). After 5 minutes at 5:95, gradient from 5:95 to 40:60 in 175 minutes.
(ix)得られた標品(Pyrenebutanoic acid- introduced 16-mer) (化合物 6) は、 0. IMphosphate buffer (pH7) に溶解させて、 - 85°Cにて保存する。 図 1 1に (化合 物 6) の構造を示す。  (ix) The obtained sample (Pyrenebutanoic acid-introduced 16-mer) (compound 6) is dissolved in IM phosphate buffer (pH7) and stored at -85 ° C. Figure 11 shows the structure of (Compound 6).
(基本ハイプリダイゼーシヨン操作) (Basic hybrid operation)
20¾ (体積比) ジメチルフオルムアミ ド(DMF)と 0.2M NaClを含む lOmMリン酸緩 衝液 (PH7.0)に、 目的のオリゴヌクレオチド (化合物 1) 、 プロ一ブオリゴヌク レオチド (化合物 4) および (化合物 5) をそれそれ約 66nMを混合し、 25°Cで ハイブリダィゼ一シヨンを行った。 なお、 この溶液の温度に対する核酸の吸光度 (A260),つまり深色効果をモニタすることにより、 ハイプリダイゼーシヨンは温 度 25°C以下であれば完全に相補塩基対を形成していることを見いだした。 (エキシマ一形成の確認) 20% (volume ratio) In lOmM phosphate buffer solution (PH7.0) containing dimethylformamide (DMF) and 0.2M NaCl, the target oligonucleotide (compound 1), probe oligonucleotide (compound 4) and ( Compound 5) was mixed with about 66 nM each and hybridized at 25 ° C. By monitoring the absorbance (A260) of the nucleic acid with respect to the temperature of this solution, that is, the deep color effect, it was confirmed that the hybridisation completely formed complementary base pairs at a temperature of 25 ° C or less. I found it. (Confirmation of excimer formation)
上記基本ハイプリダイゼ一シヨン条件下で蛍光スぺクトルを測定した。 図 4に 示されているように、 ピレンモノマーに特徴的な蛍光が 400 ran 附近に観測され、 同時に 500 nm 附近にブロードな蛍光帯が観測された。 この 500 nm 附近のプロ 一ドな蛍光帯は、 上記 3種類のォリゴヌクレオチドが存在する場合にのみ観測さ れること、 及び、 従来から知られているビレンエキシマーの蛍光スペク トルに類 似することなどから、 ビレンの 2量体に起因するエキシマ一蛍光によるものと考 えられる (Birks,J. B. Chri stophorous, L. G. ( 1963 ) , Spectrochim. Acta 19,401-41 The fluorescent spectrum was measured under the basic hybridization conditions described above. As shown in Fig. 4, the characteristic fluorescence of the pyrene monomer was observed around 400 ran, and at the same time, a broad fluorescence band was observed around 500 nm. This band with a wavelength around 500 nm is observed only when the above three types of oligonucleotides are present, and resembles the fluorescence spectrum of a conventionally known bilen excimer. Thus, it is thought to be due to excimer monofluorescence caused by the bimer dimer (Birks, JB Chri stophorous, LG (1963)), Spectrochim. Acta 19, 401-41
0) o 0) o
以上の 495nm の蛍光帯がエキシマー蛍光に起因するならばその強度はビレン 自体の蛍光の減少を伴うはずであり、 実際目的ォリゴヌクレオチドの濃度変化に より、 上記の 2つの蛍光帯の強度比が相補的に変化することが見いだされた (図 4 ) 。  If the fluorescence band at 495 nm is due to excimer fluorescence, its intensity should be accompanied by a decrease in the fluorescence of birene itself.Accordingly, the intensity ratio of the two fluorescence bands described above will change due to the change in the concentration of the target oligonucleotide. It was found to change complementarily (Fig. 4).
以上の結果から、 500nm附近の蛍光帯はエキシマー蛍光であると結論づけられ た。  From the above results, it was concluded that the fluorescence band near 500 nm was excimer fluorescence.
(夕一ゲッ ト核酸の定量分析の可能性) (Possibility of quantitative analysis of evening nucleic acid)
図 5は、 過剰の核酸検出用のプローブ (化合物 4 ) と (化合物 5 ) の等量混合 物溶液中に、 種々の濃度の目的の夕ーゲッ トオリゴヌクレオチドを添加した場合 の 500 nm 附近の蛍光帯の相対強度を示したものであり、 このような検量線を用 いることにより、 目的のォリゴヌクレオチドを定量することが可能となる。  Figure 5 shows the fluorescence around 500 nm when various concentrations of the target oligonucleotide were added to a mixture of equal amounts of the probe (compound 4) and (compound 5) for detecting excess nucleic acid. It shows the relative intensity of the band. By using such a calibration curve, it is possible to quantify the target oligonucleotide.
(リンカーの長さに基づくエキシマー蛍光強度依存性) (Excimer fluorescence intensity dependence based on linker length)
図 6は対象となるターゲッ ト核酸たる 32-iner に対して等モルの pyrenebutyri c acid-introduced 16-mer プローブと yrenealkyl iodoacetamide -introduced 16-mer をハイブリダイゼーシヨンさせた時の蛍光スぺク トルを示すものである。 ここでいう pyrenealkyl iodoacetamideとは、 pyrenemethyl iodoacetamideのリ ンカ一部分 (つまり、 アルキル鎖部分) の長さが違うものである。 ただし、 合成 方法は pyrenemethyl iodoacetamideの場合と全く同じである。 Figure 6 shows the fluorescence spectrum obtained when the equimolar pyrenebutyric acid-introduced 16-mer probe and the yrenealkyl iodoacetamide-introduced 16-mer were hybridized to the target nucleic acid 32-iner. It shows. The term "pyrenealkyl iodoacetamide" as used herein means that the linker portion of pyrenemethyl iodoacetamide (ie, the alkyl chain portion) has a different length. However, the synthesis method is exactly the same as for pyrenemethyl iodoacetamide.
図 6から明らかなように、 ひとつのプローブが同一 (この場合、 pyrene butan oic acid- introduced 16-mer)でも、 もうひとつのプローブのリンカ一部分の長 さを 1メチレン鎖分変化させただけで有意にエキシマー蛍光の量子収率に影響が でる。 この実験条件下では、 pyrenemethyl iodoacetamide- introduced 16 - merが 最も高い量子収率を示し、 リンカーがそれより長くても短くても良くないことが 分 «  As is evident from Fig. 6, even if one probe is the same (in this case, pyrene butan oic acid-introduced 16-mer), it is significant only by changing the length of the linker part of the other probe by one methylene chain. In addition, the quantum yield of excimer fluorescence is affected. Under these experimental conditions, pyrenemethyl iodoacetamide-introduced 16-mer showed the highest quantum yield, and the linker could be longer or shorter.
このことは、 Deoxyribose 5 '末端の Cから 11.4オングストロームがリンカ 一の長さの最適値と推定される。 最も短い PIA の場合で 9.8 オングストロ一ム、 最も長い PPIA で 12.6オングストロ一ムである。  This suggests that the optimal length of the linker is 11.4 Å from the C at the 5 'end of Deoxyribose. The shortest PIA is 9.8 Angstrom and the longest PPIA is 12.6 Angstrom.
(点変異ターゲッ ト核酸検出) (Detection of point mutation target nucleic acid)
さらに、 本発明者等は、 以上に説明した本発明に係る 2つのプローブが、 対象 核酸に対して完全に連続していない場合のハイプリダイゼ一シヨンについて検討 を行った。 すなわち、 図 7に示されるように、 ハイブリッ ド形成時、 2つのプロ ーブの間隔が対象核酸に対して 1〜 2ヌクレオチド空いてしまうと (図 8 ) ェキ シマ一形成が著しく抑制されることを確認した。 すなわち、 対象核酸に対し 2つ のプローブが連続して配列している必要がエキシマー形成には重要であることが 分かる。  Furthermore, the present inventors have studied a hybridization in which the above-described two probes according to the present invention are not completely continuous with the target nucleic acid. In other words, as shown in Fig. 7, when hybrids are formed, if the distance between two probes is 1-2 nucleotides from the target nucleic acid (Fig. 8), excimer formation is significantly suppressed. It was confirmed. That is, it is understood that the necessity that two probes are continuously arranged for the target nucleic acid is important for excimer formation.
この事実は、 点変異した部分を真ん中に置くように 2つのプローブをデザィン してハィブリダイゼーションを行わせることで野生型と点変異型遺伝子を均一溶 液中で区別して同定できることを意味している。  This fact means that wild-type and point-mutated genes can be distinguished and identified in a homogeneous solution by designing two probes and performing hybridization so that the point-mutated portion is located in the middle. .
ここでは、 前に述べた 32-mer のちようど真ん中に thimine deoxyribonucleot ideを 1〜 2個付加したもの (つまり 33 と 34m e r ) を対象としている。 これ によって、 ハイブリダィゼーシヨン形成時に互いに隣接する末端 (ひとつのプロHere, we focus on one or two thimine deoxyribonucleotides added in the middle of the 32-mer described earlier (that is, 33 and 34 mer). this Due to this, the ends adjacent to each other (one professional
—ブの 5 '末端ともうひとつの 3 '末端) 間の距離が大きくなると考えられる (図 8参照) 。 そして、 その結果、 エキシマー形成に最適な立体配座がとれなく なると考えられる。 産業上の利用可能性 The distance between the 5 'end of the probe and the other 3' end is likely to increase (see Figure 8). As a result, it is thought that the optimal conformation for excimer formation cannot be obtained. Industrial applicability
従って本発明により、 非放射性であり、 ハイブリダィゼーシヨンに基づく核酸 検出用プローブであって、 高感度で、 しかも 1塩基の差を認識可能とする方法が 提供され、 さらに、 該ハイブリダィゼ一シヨン操作後、 過剰に共存する該プロ一 ブを洗浄除去することなく、 そのまま該プローブとハイブリダィズしたコンプレ ックスを特異的に検出可能とするものである。  Therefore, according to the present invention, there is provided a probe for detecting a nucleic acid which is non-radioactive and is based on hybridization, and which is highly sensitive and capable of recognizing a difference of one base. After the operation, the complex hybridized with the probe can be specifically detected without washing and removing the probe coexisting in excess.

Claims

請求の範囲 The scope of the claims
1 . q個の塩基配列を有する夕ーゲッ 卜ポリヌクレオチドを検出するための第 1の核酸分析用プローブ 1または第 2の核酸分析用プローブ 2であって、 第 1の核酸分析用プローブ 1の塩基配列が、 前記夕ーゲットポリヌクレオチド の 5 ' 末端から連続した r個 (rは 1以上 (q—l ) 以下の整数を表わす) の塩 基配列に対する相補的塩基配列であり、 さらに該プローブ 1の 5 '末端には鎖状 置換基を介して発色基を有し、 1. The first nucleic acid analysis probe 1 or the second nucleic acid analysis probe 2 for detecting a evening polynucleotide having q base sequences, the base of the first nucleic acid analysis probe 1 The sequence is a complementary nucleotide sequence to r consecutive nucleotide sequences (r is an integer of 1 or more and (q-l) or less) continuous from the 5 'end of the above-mentioned polynucleotide. At the 5 'end has a coloring group via a chain substituent,
第 2の核酸分析用プローブ 2の塩基配列が、 前記タ一ゲットポリヌクレオチド の 5 '末端より (Γ + l ) 番目と q番目の間の塩基配列に対する相補的塩基配列 であり、 さらに該核酸分析用プローブ 2の 3 '末端から鎖状置換基を介して発色 基を有し、  The base sequence of the second nucleic acid analysis probe 2 is a base sequence complementary to the base sequence between (Γ + l) th and qth from the 5 ′ end of the target polynucleotide, and Has a coloring group from the 3 ′ end of the probe 2 via a chain substituent,
前記プローブ 1およびプローブ 2と前記ターゲットポリヌクレオチドとのハイ プリダイゼーシヨンの際に、 前記プローブ 1またはプローブ 2の発色基に基づく 蛍光よりも長波長の蛍光を発することを特徴とする核酸分析用プローブ。  A nucleic acid for nucleic acid analysis, which emits fluorescence having a longer wavelength than fluorescence based on a coloring group of the probe 1 or probe 2 during hybridization of the probe 1 and the probe 2 with the target polynucleotide. probe.
2 . 前記長波長の蛍光が、 前記プローブ 1の発色基と、 前記プローブ 2の発色 基とのェクサイブレックス形成に基づくェクサイブレックス蛍光であることを特 徴とする請求項 1に記載の核酸分析用プローブ。  2. The nucleic acid according to claim 1, wherein the long-wavelength fluorescence is exciplex fluorescence based on exciplex formation of a color-forming group of the probe 1 and a color-forming group of the probe 2. Analytical probe.
3 . 前記長波長の蛍光が、 前期プローブ 1の発色基と、 前期プローブ 2の発色 基とのエキシマー形成に基づくエキシマー蛍光であることを特徴とする請求項 1 に記載の核酸分析用プローブ。  3. The probe for nucleic acid analysis according to claim 1, wherein the long-wavelength fluorescence is excimer fluorescence based on excimer formation between the coloring group of the probe 1 and the coloring group of the probe 2.
4 . 前記プローブ 1またはプローブ 2に結合されている発色基がピレン、 ナフ タレン、 アン トラセン、 ペリレン、 スチルベン、 ベンゼン、 トルエン、 フエニル アン トラセン、 ジフエ二ルアン トラセン、 ベンヅピレン、 ベンツアン トラセン、 テトラセン、 フエナン トレン、 ペンタセン、 ト リフエ二レン、 ク リセンからなる 群より選ばれる少なくとも 1つの発色基であることを特徴とする請求項 1から 3 に記載の核酸分析用ブローブ。 4. The coloring group bonded to the probe 1 or probe 2 is pyrene, naphthalene, anthracene, perylene, stilbene, benzene, toluene, phenylanthracene, diphenylanthracene, benzopyrene, benzuanthracene, tetracene, phenanthrene. And at least one coloring group selected from the group consisting of pentacene, trifluorocene, and chrysene. The probe for nucleic acid analysis according to 1.
5. 前記発色基がピレンであることを特徴とする請求項 4に記載の核酸分析用 プローブ。  5. The probe according to claim 4, wherein the coloring group is pyrene.
6. 前記プローブ 1またはプローブ 2に結合される前記鎖状置換基の長さが、 3オングストローム以上であって 20オングストローム以下であることを特徴と する請求項 1から 3に記載の核酸分析用プローブ。  6. The probe for nucleic acid analysis according to claim 1, wherein the length of the chain substituent bonded to the probe 1 or the probe 2 is 3 Å or more and 20 Å or less. .
7 前記鎖状置換基の長さが、 5オングストローム以上であって 20オングスト ローム以下であることを特徴とする請求項 6に記載の核酸分析用プローブ。  7. The probe for nucleic acid analysis according to claim 6, wherein the length of the chain substituent is not less than 5 angstroms and not more than 20 angstroms.
8 前記核酸分析用プローブ 1に結合された前記鎖状置換基、 または前記核酸分 析用プローブ 2に結合された前記鎖状置換基が、  8 The linear substituent bonded to the nucleic acid analysis probe 1 or the linear substituent bonded to the nucleic acid analysis probe 2 is
発色基一 (CH2) n- (X) k- (CH2) ,„一 Y— (5 '末端ヌクレオチド) で表される置換基 ( は、 CONH, NHCO, COO, 0C0, 0, S, H からなる群より選ばれ、 Yは 0, S, NH、 (PO ) Sからなる群より選ばれ、 nまたは mは 0から 5までの整数を表し、 kは 0または 1を表す) であることを 特徴とする請求項 1から 3に記載の核酸分析用プローブ。 The substituent represented by the coloring group 1 (CH 2 ) n- (X) k- (CH 2 ), „Y— (5 ′ terminal nucleotide) is represented by CONH, NHCO, COO, 0C0, 0, S, Selected from the group consisting of H, Y is selected from the group consisting of 0, S, NH, (PO) S, n or m represents an integer from 0 to 5, and k represents 0 or 1. 4. The probe for nucleic acid analysis according to claim 1, wherein:
9 q個の塩基配列を有するターゲッ トポリヌクレオチドを、 第 1の核酸分析用 プローブ 1および第 2の核酸分析用プローブ 2とのハイプリダイゼ一シヨンに基 づいて検出する方法であって ;  A method for detecting a target polynucleotide having 9 q base sequences based on hybridization with a first nucleic acid analysis probe 1 and a second nucleic acid analysis probe 2;
該夕一ゲヅ トポリヌクレオチドと、  The evening gate polynucleotide;
該夕一ゲッ トポリヌクレオチドの 5 '末端ヌクレオチドから連続した r個 (r は 1以上 (q— 1) 以下の整数を表わす) の塩基配列に対する相補的塩基配列を 有し、 さらに前記プローブ 1の 5 '末端ヌクレオチドから鎖状置換基を介して発 色基を有する第 1の核酸分析用プローブ 1と、  The probe 1 has a complementary nucleotide sequence to r consecutive nucleotides (r is an integer of 1 or more and (q-1) or less) from the 5 ′ terminal nucleotide of the evening-get polynucleotide, and further comprises the probe 1 A first nucleic acid analysis probe 1 having a coloring group from the 5 'terminal nucleotide via a linear substituent,
該タ一ゲッ 卜ポリヌクレオチドの 5 '末端ヌクレオチドから r番目と q番目の 間の塩基配列に対する相補的塩基配列に対する相補的塩基配列を有し、 さらに前 記核酸分析用プローブ 2の 3 '末端から鎖状置換基を介して発色基を有する第 2 の核酸分析用プローブ 2とを混合するステップと ; The target polynucleotide has a complementary base sequence to the base sequence between the r-th and q-th base nucleotides from the 5′-end nucleotide of the target polynucleotide, and further has a base sequence from the 3 ′ end of the nucleic acid analysis probe 2 described above. Second having a coloring group via a chain substituent Mixing with the nucleic acid analysis probe 2 of the above;
前記混合によるハイブリダィゼ一シヨンに際して、 前記プローブ 1の発色基また は、 前記プローブ 2の発色基による蛍光よりも長波長側の蛍光を測定するステツ プと、 A step of measuring fluorescence on a longer wavelength side than fluorescence by the coloring group of the probe 1 or the coloring group of the probe 2 during the hybridization by the mixing;
を少なくとも含むことを特徴とするターゲットポリヌクレオチド検出方法。 A method for detecting a target polynucleotide, comprising at least:
1 0 前記の長波長側の蛍光が、 前記核酸分析用プローブ 1およびプローブ 2と、 該夕一ゲッ トポリヌクレオチドとがハイブリダィゼ一シヨンの際に、 前記プロ一 ブ 1の発色基と、 前記プローブ 2の発色基とがェクサイプレックス形成によるェ クサイブレックス蛍光であることを特徴とする請求項 9に記載の検出方法。  10 When the long-wavelength-side fluorescence is hybridized with the nucleic acid analysis probes 1 and 2, and the overnight polynucleotide, the color-forming group of the probe 1 and the probe 10. The detection method according to claim 9, wherein the second coloring group is exciplex fluorescence generated by exciplex formation.
1 1 前記の長波長側の蛍光が、 前記核酸分析用プローブ 1およびプローブ 2と、 該夕ーゲッ トポリヌクレオチドとがハイプリダイゼ一シヨンの際に、 前記プロ一 ブ 1の発色基と、 前記プローブ 2の発色基とがエキシマー形成によるエキシマ一 蛍光であることを特徴とする請求項 9に記載の検出方法。  11 1 When the fluorescence on the long wavelength side is used for hybridization of the nucleic acid analysis probes 1 and 2 and the target polynucleotide, the color-forming group of the probe 1 and the probe 2 10. The detection method according to claim 9, wherein the color-forming group is excimer fluorescence due to excimer formation.
1 2 上記発色基がピレン、 ナフ夕レン、 アン トラセン、 ペリレン、 スチルベン、 ベンゼン、 トルエン、 フエ二ルアン トラセン、 ジフエ二ルアントラセン、 ベンヅ ビレン、 ベンツアン トラセン、 テトラセン、 フエナン トレン、 ペン夕セン、 ト リ フエ二レン、 クリセンからなる群より選ばれることを特徴とする請求項 9から 1 1に記載の検出方法。  1 2 The above coloring groups are pyrene, naphthylene, anthracene, perylene, stilbene, benzene, toluene, phenylanthracene, diphenylanthracene, benzovirene, benzuanthracene, tetracene, phenanthrene, penycene, triene 12. The detection method according to claim 9, wherein the detection method is selected from the group consisting of phenylene and chrysene.
1 3 上記発色基がピレンであることを特徴とする請求項 1 2に記載の検出方法。 1 4 前記プローブ 1および前記プローブ 2に結合された鎖状置換基の長さが、 3オングストローム以上であって 2 0オングストローム以下であることを特徴と する請求項 9から 1 1に記載の検出方法。  13. The detection method according to claim 12, wherein the coloring group is pyrene. 14.The detection method according to claim 9, wherein the length of the chain substituent bonded to the probe 1 and the probe 2 is 3 Å or more and 20 Å or less. .
1 5 前記鎖状置換基の長さが、 5オングストローム以上であって 2 0オングス トローム以下であることを特徴とする請求項 1 4に記載の検出方法。  15. The detection method according to claim 14, wherein the length of the chain substituent is not less than 5 angstroms and not more than 20 angstroms.
1 6 前記核酸分析用プローブ 1の前記上記鎖状置換基が、  16 The above-mentioned chain substituent of the nucleic acid analysis probe 1 is
発色基一 (C H 2 ) ,— (X ) k- ( C H 2) m- Y - ( 5 '末端ヌクレオチド) で表される置換基 (Xは、 CONH, NHCO, COO, OC〇, 〇, S, NH からなる群より選ばれ、 Yは 0, S, NH、 (PO ) Sからなる群より選ばれ、 nまたは mは 0から 5までの整数を表し, kは 0または 1を表す) であることを 特徴とする請求項 9から 1 1に記載の検出方法。 Chromophore (CH 2 ), — (X) k- (CH 2 ) m -Y-(5 'terminal nucleotide) (X is selected from the group consisting of CONH, NHCO, COO, OC〇, 〇, S, NH, Y is selected from the group consisting of 0, S, NH, (PO) S, 12. The detection method according to claim 9, wherein n or m represents an integer from 0 to 5, and k represents 0 or 1.).
PCT/JP1996/000297 1995-02-17 1996-02-13 Probe for use in nucleic acid analysis and detecting method WO1996025518A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
AT96901985T ATE253127T1 (en) 1995-02-17 1996-02-13 PROBE FOR USE IN THE ANALYSIS OF NUCLEIC ACIDS AND METHOD OF DETECTION BASED ON EXCIMER FLUORESCENCE
DE69630517T DE69630517T2 (en) 1995-02-17 1996-02-13 Probe for use in nucleic acid analysis and detection methods based on excimer fluorescence
AU46338/96A AU694313B2 (en) 1995-02-17 1996-02-13 Probe for use in nucleic acid analysis and detecting method
EP96901985A EP0810291B1 (en) 1995-02-17 1996-02-13 Probe for use in nucleic acid analysis and detecting method based on excimer fluorescence
JP52482296A JP3992079B2 (en) 1995-02-17 1996-02-13 Nucleic acid analysis probe and detection method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP7/29581 1995-02-17
JP2958195 1995-02-17
JP27908995 1995-10-26
JP7/279089 1995-10-26

Publications (1)

Publication Number Publication Date
WO1996025518A1 true WO1996025518A1 (en) 1996-08-22

Family

ID=26367802

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1996/000297 WO1996025518A1 (en) 1995-02-17 1996-02-13 Probe for use in nucleic acid analysis and detecting method

Country Status (2)

Country Link
AU (1) AU694313B2 (en)
WO (1) WO1996025518A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998013524A1 (en) * 1996-09-27 1998-04-02 Laboratory Of Molecular Biophotonics Probes for detecting polynucleotides and detection method
WO1998048048A2 (en) * 1997-04-21 1998-10-29 Cambridge University Technical Services Ltd. Dna mutation mapping by multiple energy transfer interactions
EP0903411A2 (en) * 1997-09-18 1999-03-24 Hitachi Software Engineering Co., Ltd. Fluorescent material labeled-probe and method for detecting hybridization
WO2000037674A1 (en) * 1998-12-19 2000-06-29 The Victoria University Of Manchester Nucleic acid sequencing method
WO2017146145A1 (en) * 2016-02-26 2017-08-31 株式会社同仁化学研究所 Ph responsive fluorescent compound, composition for detecting mitophagy using same, and method for detecting mitophagy within cells

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114480594B (en) * 2021-12-23 2023-05-16 郑州华之源医学检验实验室有限公司 Method for detecting multiple single nucleotide polymorphisms, kit and application thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62157570A (en) * 1985-12-23 1987-07-13 シンジーン・インコーポレイテッド Spectroscopical method for detecting target one-chain polynucleotide configuration
WO1993009128A1 (en) * 1991-11-07 1993-05-13 Nanotronics, Inc. Hybridization of polynucleotides conjugated with chromophores and fluorophores to generate donor-to-donor energy transfer system
JPH05211872A (en) * 1990-01-25 1993-08-24 F Hoffmann La Roche Ag Energy converting system
US5332659A (en) * 1992-04-09 1994-07-26 The United States Of America As Represented By The Secretary Of The Navy Light emission-or absorbance-based binding assays for polynucleic acids
US5466578A (en) * 1992-04-09 1995-11-14 The United States Of America As Represented By The Secretary Of The Navy Surfactant-enhanced light emission- or absorbance-based binding assays for polynucleic acids

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62157570A (en) * 1985-12-23 1987-07-13 シンジーン・インコーポレイテッド Spectroscopical method for detecting target one-chain polynucleotide configuration
JPH05211872A (en) * 1990-01-25 1993-08-24 F Hoffmann La Roche Ag Energy converting system
WO1993009128A1 (en) * 1991-11-07 1993-05-13 Nanotronics, Inc. Hybridization of polynucleotides conjugated with chromophores and fluorophores to generate donor-to-donor energy transfer system
US5332659A (en) * 1992-04-09 1994-07-26 The United States Of America As Represented By The Secretary Of The Navy Light emission-or absorbance-based binding assays for polynucleic acids
US5466578A (en) * 1992-04-09 1995-11-14 The United States Of America As Represented By The Secretary Of The Navy Surfactant-enhanced light emission- or absorbance-based binding assays for polynucleic acids

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0810291A4 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998013524A1 (en) * 1996-09-27 1998-04-02 Laboratory Of Molecular Biophotonics Probes for detecting polynucleotides and detection method
US6284462B1 (en) 1996-09-27 2001-09-04 Laboratory Of Molecular Biophotonics Probes and methods for polynucleotide detection
WO1998048048A2 (en) * 1997-04-21 1998-10-29 Cambridge University Technical Services Ltd. Dna mutation mapping by multiple energy transfer interactions
WO1998048048A3 (en) * 1997-04-21 1999-01-21 Univ Cambridge Tech Dna mutation mapping by multiple energy transfer interactions
EP0903411A2 (en) * 1997-09-18 1999-03-24 Hitachi Software Engineering Co., Ltd. Fluorescent material labeled-probe and method for detecting hybridization
EP0903411A3 (en) * 1997-09-18 2002-08-07 Hitachi Software Engineering Co., Ltd. Fluorescent material labeled-probe and method for detecting hybridization
WO2000037674A1 (en) * 1998-12-19 2000-06-29 The Victoria University Of Manchester Nucleic acid sequencing method
WO2017146145A1 (en) * 2016-02-26 2017-08-31 株式会社同仁化学研究所 Ph responsive fluorescent compound, composition for detecting mitophagy using same, and method for detecting mitophagy within cells
JPWO2017146145A1 (en) * 2016-02-26 2019-01-31 株式会社同仁化学研究所 pH-responsive fluorescent compound, composition for detecting mitophagy using the same, and method for detecting mitophagy in cells
US10787473B2 (en) 2016-02-26 2020-09-29 Dojindo Laboratories PH responsive fluorescent compound, composition for detecting mitophagy using same, and method for detecting mitophagy within cells

Also Published As

Publication number Publication date
AU694313B2 (en) 1998-07-16
AU4633896A (en) 1996-09-04

Similar Documents

Publication Publication Date Title
KR100522361B1 (en) Nucleic Acid Detection Method Using G-Quartet
US6117973A (en) PNA monomers with electron donor or acceptor
US5705346A (en) Method for detecting a target nucleic acid by using an interaction of two kinds of reagents
Okamoto ECHO probes: a concept of fluorescence control for practical nucleic acid sensing
US6329144B1 (en) Probe for analysis of target nucleic acids
EP0684239B1 (en) A method for detecting a target substance in a sample, utilizing pyrylium compound
US20120126175A1 (en) Oligonucleotide derivative, labeling agent and use for labeling agent
PT1242620E (en) Fluorescent intensity assay for duplex and triplex nucleic acid hybridization in solution utilizing fluorescent intercalators
CA2664649A1 (en) Compositions and methods for biodetection by nucleic acid-templated chemistry
JP3992079B2 (en) Nucleic acid analysis probe and detection method
US6284462B1 (en) Probes and methods for polynucleotide detection
US20070042412A1 (en) Detection of biologically active compounds
WO1996025518A1 (en) Probe for use in nucleic acid analysis and detecting method
EP1669464B1 (en) Dna detection method using molecular beacon with the use of monomer fluorescence/excimer fluorescence switching of fluorescent molecule
EP0968309B1 (en) Method for determining a nucleic acid
Aparin et al. 1-Phenylethynylpyrene (PEPy) as a novel blue-emitting dye for qPCR assay
US20050042618A1 (en) Fluorescent resonance energy transfer probes
JP5920763B2 (en) Fluorescently labeled oligonucleotide derivatives and uses thereof
US7964355B2 (en) Assays based on detection of photobleaching reaction products from dye catalytic complex
Lee et al. Molecular Beacons With and Without Quenchers
Novopashina et al. 2′-Bis-pyrene modified oligonucleotides: sensitive fluorescent probes of nucleic acids structure
US20060263782A1 (en) Exciplexes
Yang Molecular engineering of nucleic acid probes for intracellular imaging and bioanalysis
Altevogt Feasibility study for a new assay for NF-κB [NF-kappa-B] and DNA-supported catalysis
JP2002281978A (en) Method for non-label detection of target dna using dna probe array

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU CA JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2213240

Country of ref document: CA

Ref country code: CA

Ref document number: 2213240

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 1996901985

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1996901985

Country of ref document: EP

ENP Entry into the national phase

Ref country code: US

Ref document number: 1998 894860

Date of ref document: 19980205

Kind code of ref document: A

Format of ref document f/p: F

WWG Wipo information: grant in national office

Ref document number: 1996901985

Country of ref document: EP