WO1996007433A1 - Gene therapy drug for cancer, medicinal composition, and therapeutic method - Google Patents

Gene therapy drug for cancer, medicinal composition, and therapeutic method Download PDF

Info

Publication number
WO1996007433A1
WO1996007433A1 PCT/JP1995/001785 JP9501785W WO9607433A1 WO 1996007433 A1 WO1996007433 A1 WO 1996007433A1 JP 9501785 W JP9501785 W JP 9501785W WO 9607433 A1 WO9607433 A1 WO 9607433A1
Authority
WO
WIPO (PCT)
Prior art keywords
gene
cell
tumor
cancer
cells
Prior art date
Application number
PCT/JP1995/001785
Other languages
French (fr)
Japanese (ja)
Inventor
Hirofumi Hamada
Haruo Sugano
Original Assignee
Japanese Foundation For Cancer Research
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japanese Foundation For Cancer Research filed Critical Japanese Foundation For Cancer Research
Publication of WO1996007433A1 publication Critical patent/WO1996007433A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/0005Vertebrate antigens
    • A61K39/0011Cancer antigens
    • A61K39/001136Cytokines
    • A61K39/00114Interleukins [IL]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/19Cytokines; Lymphokines; Interferons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/0005Vertebrate antigens
    • A61K39/0011Cancer antigens
    • A61K39/001136Cytokines
    • A61K39/001139Colony stimulating factors [CSF]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/0005Vertebrate antigens
    • A61K39/0011Cancer antigens
    • A61K39/001136Cytokines
    • A61K39/001141Interferons [IFN]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/46Cellular immunotherapy
    • A61K39/461Cellular immunotherapy characterised by the cell type used
    • A61K39/4611T-cells, e.g. tumor infiltrating lymphocytes [TIL], lymphokine-activated killer cells [LAK] or regulatory T cells [Treg]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/46Cellular immunotherapy
    • A61K39/464Cellular immunotherapy characterised by the antigen targeted or presented
    • A61K39/4643Vertebrate antigens
    • A61K39/4644Cancer antigens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/46Cellular immunotherapy
    • A61K39/464Cellular immunotherapy characterised by the antigen targeted or presented
    • A61K39/4643Vertebrate antigens
    • A61K39/4644Cancer antigens
    • A61K39/464436Cytokines
    • A61K39/464441Interferons [IFN]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/04Antineoplastic agents specific for metastasis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2239/00Indexing codes associated with cellular immunotherapy of group A61K39/46
    • A61K2239/31Indexing codes associated with cellular immunotherapy of group A61K39/46 characterized by the route of administration
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2239/00Indexing codes associated with cellular immunotherapy of group A61K39/46
    • A61K2239/38Indexing codes associated with cellular immunotherapy of group A61K39/46 characterised by the dose, timing or administration schedule
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2239/00Indexing codes associated with cellular immunotherapy of group A61K39/46
    • A61K2239/46Indexing codes associated with cellular immunotherapy of group A61K39/46 characterised by the cancer treated
    • A61K2239/55Lung
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy

Definitions

  • the present invention relates to a gene therapy agent and a pharmaceutical composition for cancer, and a treatment method.
  • the present invention relates to a gene therapy agent and a pharmaceutical composition for cancer, and a method for treating cancer. More specifically, the present invention relates to a gene therapy agent for cancer, comprising an effector cell into which a cytokin gene has been introduced and a tumor vaccine having a cytokine gene introduced into a tumor cell; a preparation comprising the effector cell A gene therapy method for cancer characterized by administering a preparation containing the tumor vaccine to a cancer patient; and a pharmaceutical composition comprising a combination of the effector cell and the tumor vaccine. Cytokines exhibit antitumor effects, but are roughly classified into the following three types according to their mechanism of action.
  • tumor necrosis factor (TNF) _a, ⁇ interferon (IFN) - ⁇ , ⁇ , ⁇ , interleukin (ID-1, etc.) directly inhibits growth or damages cancer cells in vitro in vitro
  • Interleukins (such as I-2, 4, 6, 7, 8, 9, 10, 11, 12) which have an antitumor effect indirectly through a mechanism of immune effectors in the living body , 3 IL-3, I-6, granulocyte macrophage colony stimulating factor (GM-CSF :), granulocyte colony stimulating factor (G-CSF), stem cell factor (SCF)
  • GM-CSF granulocyte macrophage colony stimulating factor
  • G-CSF granulocyte colony stimulating factor
  • SCF stem cell factor
  • LAK cytotoxic T cells
  • TIL tumor-infiltrating lymphocytes
  • Retroviruses have been used to introduce cytokine genes into TILs, but the introduction efficiency is very poor. Is an obstacle.
  • the other is to introduce cytokine genes into tumor cells using a retrovirus vector or the like and use them as a tumor vaccine to induce tumor-specific immune cells in the host.
  • cytokine genes for example, Fearon et al. Transplanted a mouse colon cancer or malignant melanoma transfected with the 1L-2 gene into a syngeneic mouse and then spontaneously regressed after engraftment. The authors have reported that they acquire immune competence that is resistant to the disease (Fear on et al., Cell, 60, 397, 1990).
  • an object of the present invention is to provide a gene therapy agent for cancer that can exhibit higher antitumor activity and is also effective in suppressing cancer metastasis in order to solve the above-mentioned problems.
  • the present inventors have conducted intensive studies on the above-mentioned problems, and as a result, it was found that the combined use of a cytokine gene-introduced effector cell and a tumor vaccine in which a cytokine gene was introduced into a tumor cell resulted in efficient systemic immunity. Were found to enhance the antitumor effect and the metastasis suppressing effect, and completed the present invention.
  • the present invention provides an agent for cancer gene therapy comprising an effector cell into which a cytokine gene has been introduced and a tumor pectin having a cytokinin gene introduced into a tumor cell.
  • the present invention also relates to the simultaneous or sequential administration of a preparation containing a cytokine gene into which an effector cell has been introduced and a preparation containing a cytokine vaccine into which a cytokine gene has been introduced into a fistula cell to a cancer patient.
  • the present invention relates to a pharmaceutical composition used for gene therapy of cancer, wherein the composition is a combination of an effector cell into which a cytokine gene has been introduced and a tumor vaccine having a cytokine gene introduced into a tumor cell. And a pharmaceutically acceptable carrier
  • a pharmaceutical composition comprising:
  • gene therapy for cancer intends to treat cancer from both the antitumor effect and the metastasis inhibitory effect of cytokine genes.
  • the present invention will be described in detail.
  • the cytokine gene used in the present invention includes granulocyte macrophage colony stimulating factor (GM-CSF), interleukin (1-2, IL-3, IL_4, IL-6, IL-7, IL) -10, IL-12, IL-13, IL-15, interleukin-la (IL-1), interleukin receptor 1 antagonist (1 ⁇ 1RA), tumor necrosis factor (TNF) Lymphotoxin (LT) -15, granulocyte colony stimulating factor (G-CSF), macrophage colony stimulating factor (M-CSF), interferon (IFN) - ⁇ , macrophage migration inhibitory factor (MIF), leukemia inhibitory factor ( LIF), a gene encoding various cytokines such as T cell activation co-stimulator B7 (CD80) and B7-2 (CD86), kit 'ligand, oncostatin M, etc.
  • GM-CSF granulocyte macrophage colony stimulating factor
  • interleukin 1-2, IL-3,
  • the cytokine gene used in the present invention may be a cDNA isolated from cells using a known technique, or may be disclosed in the above-mentioned literature and the like. Although it may be chemically synthesized according to methods such as the polymerase chain reaction (PCR) based on information, humans may be used to minimize immune rejection and to increase the therapeutic effect. The origin is desirable.
  • PCR polymerase chain reaction
  • the effector cell refers to a cell population that is in charge of the final stage of destruction of a cancer cell and is directly involved in the destruction, and specifically, a tumor infiltrating lymphocyte (TIL), a lymphokine-activated killer cell ( LAK), cytotoxic T cells (CTL) and the like.
  • TIL tumor infiltrating lymphocyte
  • LAK lymphokine-activated killer cell
  • CTL cytotoxic T cells
  • the introduction of the cytokine gene into these effector cells can be performed very efficiently by using an adenovirus vector.
  • an adenovirus vector used here, any vector containing an insertion site for the cytokine gene and capable of expressing the cytokine in the introduced effector cell can be used.
  • Adexl derived from human type 5 adenovirus is preferably used.
  • tumor vaccine refers to the above-mentioned cytokine gene, which is isolated (cultured) by a retrovirus vector, introduced into tumor cells, and irradiated with X-rays. Production was stopped without inhibiting production. By administering this tumor pectin to the host, tumor-specific immune cells of the host can be induced.
  • the retroviral vector used here is not particularly limited as long as it contains an insertion site for a cytokine gene and can express cytokines in the introduced tumor cells.
  • the retrovirus vector inserted with the site force gene transfer was mixed with a plasmid having a neomycin resistance gene as a marker to select that the desired gene was introduced, and ⁇ 2, ⁇ - Am, CRIP, WCRE [Danos et al., PNAS, 85, 6460-6464 (1988)], etc., are introduced by a calcium coprecipitation method (cotransfection).
  • this is cultured in the presence of the drug G418, and by collecting cells that survive and form a colony, only cells into which the target gene has been introduced can be collected.
  • the culture supernatant of these cells was used to infect various types of fistula cells, such as N1H3T3 mouse fibroblasts and B16 mouse melanoma cells. It can be confirmed by hybridization.
  • the amount of cytokines secreted from infected cells can be measured by immunological assays such as ELISA.
  • the tumor cells into which the cytokine II gene has been introduced are usually irradiated with X-rays at a concentration of 0.0000 to 150,000 rad, and then used as a tumor vaccine.
  • the tumor cells here are melanoma cells or renal cancer cells, but other tumor cells, such as breast cancer cells, squamous cell carcinoma, adenocarcinoma, transitional cell carcinoma, sarcoma, glioma, etc. Can be used.
  • the cytokine cytokine-introduced effector cells prepared as described above and the tumor vaccine can be used as they are, but they must be combined with a pharmaceutically acceptable carrier.
  • the composition can be administered as a pharmaceutical composition in the form of a solid such as tablets, powders, granules, and pills, or in the form of a solution, suspension, gel, or the like.
  • the carrier examples include excipients or diluents such as a filler, a bulking agent, a binder, a disintegrant, and a surfactant, which are commonly used for preparing a preparation according to a use form.
  • the administration forms of the gene therapy agent include the usual intravenous, intraarterial, subcutaneous, etc. systemic administration, local injection into the tumor lesion, or into the expected metastatic site corresponding to the cancer type. Local administration such as oral administration can be performed. Further, the administration of the gene therapy agent of the present invention may be in the form of administration in combination with catheter technology, gene transfer technology, surgical operation, or the like.
  • the cytokine hepatocyte guide effector one cell and the tumor pectin prepared as described above may be simultaneously administered, or the tumor vaccine may be administered after the effector one cell is first administered.
  • the tumor vaccine may be administered first and then sequentially, or the effector cells may be administered sequentially and subsequently.
  • the dosage of the gene therapy agent of the present invention varies depending on the age, sex, symptom, administration route, number of administrations, and dosage form. In general, in adults, about 0.1 to 100% by weight of cytokine gene per day is used. A range of 100 mg is appropriate.
  • FIG. 1 shows the construction of an expression cassette to be used for the introduction of the gene.
  • FIG. 2 shows the construction of a recombinant retrovirus vector used for introducing IL-2 or GM-CSF ⁇ gene.
  • FIG 3 shows the effector cell (TIL) derived from mouse melanoma (B16F10) transfected with the cytokine gene (I2) and the murine melanoma transfected with the cytokine gene (I2 + GM-CSF).
  • TIL effector cell
  • FIG. 4 shows mouse melanoma (B16F10) -derived effector cells (TIL) transfected with the cytokine gene (IFN-a) and mouse melanoma cells transfected with the cytokine gene (GM-CSF).
  • B16F10 shows the results of the cancer metastasis inhibitory effect of Pectin.
  • Fig. 5 shows the effector cells (TIL) derived from mouse colon cancer (Colon26) transfected with the site force gene (I-2 or IFN-a) and the site force gene (I-2). The results of mouse metastatic cancer (Colon 26) inhibitory effect on cancer metastasis by pectin are shown.
  • mice 1-2, mouse GM-CSF, and mouse IFN- ⁇ were obtained by RT-PCR (Reverse transcripi ton-pol ymera.se chain react ion) using mRNA of mouse spleen lymphocyte. Prepared.
  • T1L The preparation of T1L is described in Alexander, RB et al., J. Immunol., 145, 1615-1620 (199 0), Mat is, LA et al., Methods Enzymol., 150, 342-351 (1987), Livingst one, A. et al., Methods Enzymol., 150, 325-333 (1987) Was performed as follows. Fresh B16F10 (obtained from Whitehead Institute Dr.
  • CM complete culture medium
  • CM was heat-inactivated 103 ⁇ 4 fetal serum, 2 mM L-glutamine, 5 ⁇ 10 " 5 M 2-mercaptoethanol, 100 U / ml penicillin, 100 g / ml streptomycin, 0.5 ⁇ g / ml RPMI 1640 with addition of mlhotericin B, lOmM 3- (N-morpholino) propanesulfonic acid, and 70 U / ml recombinant human IL-2 (obtained from Shionogi & Co., Ltd.) TIL, etc. Volume of anti-CD-8-conjugated immunoadsorbent beads at 1 ⁇ 10 8 / ml and incubated for 2 hours at 4 ° C.
  • the method for preparing the recombinant adenovirus was carried out by a modification of Saito. I. et al., J. Viol., 54, 711-719 (1985). That is, an expression unit consisting of a cytomegalovirus enhancer, a chicken / S-actin promoter, a mouse 1L-2 cDNA sequence prepared in Reference Example 1, and a rabbit-1 yS-globin poly (A) signal sequence.
  • Saito. I. et al., J. Viol., 54, 711-719 (1985) That is, an expression unit consisting of a cytomegalovirus enhancer, a chicken / S-actin promoter, a mouse 1L-2 cDNA sequence prepared in Reference Example 1, and a rabbit-1 yS-globin poly (A) signal sequence.
  • the recombinant virus was subsequently propagated on 293 cells, and the virus solution was stored at -80 ° C.
  • Virus stock titers were determined by plaque assay on 293 cells.
  • the culture was removed from TIL cells seeded on a 12-well culture plate, and 150 ⁇ l of the virus stock was added to each mouse. After incubation at 37 ° C for 1 hour, a growth medium was added, and TIL cells were cultured for 2 to 3 days, to obtain mouse-transduced T1L cells (TIL / -2).
  • Retroviral vector MF G (Dranoff, G. et al., Proc. Natl. Acad. Sci. USA, 90, 3539-3543, 1993) Eagl / B amHI fragment containing two LTRs (Long Terminal Repeat) (5200bp :), Eagl / Xbal fragment (10OObp :), and Reference Examples
  • plasmid and pPGKneo [H. Takeshima et al., Nature, 369, 556-559 (1994;)] were co-precipitated with WCRIPCDanos et al., Proc. Natl. Acad. Sci. USA, 85 , 6460 (1988)] in a medium containing G-418 (GIBC0, lmg / ml).
  • the high titer recombinant retrovirus-producing clones of mouse 1 and mouse GM-CSF selected in (1) were cloned into B16F10 (Whitehead Institute Dr. Glenn Dranof), a highly transgenic strain of mouse melanoma B16 (ATCC CRL 6322). obtained from f).
  • the transfected cells were maintained in Dulbecco's Eagle's medium supplemented with 10% fetal serum and 2 mM glutamine, treated with trypsin / EDTA, and treated with 10,000 rad using a HITACHI MBR-1505R X-ray generator. X-rays were irradiated.
  • Irradiated cells were washed twice with HBSS (Hank's Balanced Salt Solution), resuspended in HBSS at a concentration of 5 xiO 6 cells / ml, and immunized with tumor vaccine (B16F10 / IL-2 + GM-CSF vaccine). Obtained.
  • HBSS Human's Balanced Salt Solution
  • the method for preparing the recombinant adenovirus was performed according to a modification of Saito. I. et al., J. Viol., 54, 711-719 (1985). That is, an expression unit consisting of a cytomegalovirus enhancer, a chicken yS-actin promoter, a mouse IFN-a cDNA sequence prepared in Reference Example 1, and a rabbit- ⁇ -globin poly (A) signal sequence [ Niwa, H. et a, J.
  • the recombinant virus containing the expression cassette was confirmed by digestion with an appropriate restriction enzyme.
  • the recombinant virus was subsequently grown on 293 cells and the virus solution was stored at -80 ° C.
  • the titer of the virus stock was determined by plaque assay on 293 cells.
  • the culture solution was removed from T1L cells seeded on a 12-well culture plate, and 150 ⁇ l of the virus stock was added to each well. After incubating at 37 ° C for 1 hour, a growth medium was added, and TIL cells were cultured for 2 to 3 days to obtain mouse 1FN-7 transgenic T1L cells (T1 / IFN-7).
  • the high titer recombinant retrovirus-producing clone of mouse GM-CSF selected in (1) was introduced into B16F10 (available from Whitehead Institute Dr. Glenn Dranoff), which is a highly metastatic strain of mouse melanoma B16 (ATCC CRL 6322).
  • the transfected cells were maintained in Dulbecco's Eagle's medium supplemented with 10X fetal serum and 2 mM glutamine, treated with tribsine / EDTA, and treated with X-ray of 10, OOOrad using a HITACHI MBR-1505R X-ray generator. The line was irradiated. Irradiated cells were washed twice with HBSS and resuspended in HBSS at a concentration of 5 xiO 6 cells / ml to obtain a tumor vaccine (B16F10 / GM-CSF vaccine).
  • TIL was prepared according to Alexander, RB et al., J. Immunol., 145, 1615-1620 (1990), Matis, A. et al., Methods Bnzymol., 150, 342-351 (1987), Livingst lo One, A. et al., Methods Enzymol., 150, 325-333 (1987) was modified as described below.
  • a 6-10 week old female BALB / C mouse purchased from Charles River Japan
  • CM complete culture medium
  • TIL TIL is attached is Perez toy spoon, washed 3 times with cold CM, suspended 1 xl0 7 b eads / ml in CM, were seeded in tissue culture plates in 24 Uweru, 37 ° C, 53 ⁇ 4C0 2 below Incubated. One day after culture: The beads separated from TIL were removed by pelleting. The isolated TILs were stimulated with 2 x 10 5 irradiated (10,000 rad) tumor cells per well and 1 x 10 6 irradiated (3, OOOrad) normal spleen cells per well. In vitro stimulation was repeated every 7 to 14 days. Sample was collected TIL when it is Konfuruen bets and resuspended 2 xi0 5 cell / ml in fresh CM.
  • Example 1 In the same manner as in Example 1 (2), the mouse I-2 cDNA prepared in Reference Example 1 was introduced into the TIL prepared in (1) above, and the mouse IL-2 gene-introduced TIL cells (TIL / I-2) I got
  • Example 3 The mouse IFN-7 CDNA prepared in Reference Example 1 was introduced into T1L prepared in (1) by the same method as in (2), and the mouse IFN-7 gene-transfected TIL cells (TIL / 1FN- ⁇ ) Got.
  • the IL-2 high titer recombinant retrovirus-producing clone selected in (1) was Introduced to colon 26 colon cancer.
  • the transfected cells were maintained in RPMI1640 medium supplemented with 10% fetal serum and 2 mM glutamine, and irradiated with 10,000 rad X-rays using a HITACHI MBR-1505R X-ray genera tor. Irradiated cells were washed twice with HBSS and resuspended in HBSS at a concentration of 5 x 10 6 cells / ml to obtain a tumor vaccine (Colon26 / IL-2 vaccine).
  • mice Six to ten week old female C57BL / 6 mice (purchased from Charles River Japan) were inoculated with 4 ⁇ 10 5 mouse melanoma B16F10 cells into the tail vein to induce lung metastasis. Two days later, TIL alone or TIL / IL-2 prepared in Example 1 was administered through 6 veins of 4 xlO [E / T ratio-10: E / T was a single cell (TIL / I 2 ) Number / tumor cell (B16F10) number]. At the same time, 5 ⁇ 10 5 B16F10 / IL-2 + GM-CSF vaccines prepared in Example 2 were subcutaneously administered.
  • INDUSTRIAL APPLICABILITY According to the present invention, it is possible to exhibit high antitumor activity on animals such as humans, mice, monkeys, dogs, cats, horses, pigs, etc.
  • Useful cancer gene therapy agents and pharmaceutical compositions, and therapeutic methods are provided.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Chemical & Material Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Immunology (AREA)
  • Mycology (AREA)
  • Microbiology (AREA)
  • Oncology (AREA)
  • Cell Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Zoology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)

Abstract

A gene therapy drug for cancer containing effector cells having cytokine genes introduced thereinto and tumor vaccines comprising tumor cells having cytokine genes introduced thereinto; a method of gene therapy for cancers by administering a pharmaceutical preparation containing the effector cells and a pharmaceutical preparation containing the tumor vaccines to a patient with cancer; and a medicinal composition containing a combination of the effector cells and the tumor vaccines. The drug, composition and method produce a high antitumor effect, have the effect of inhibiting cancer metastasis, and are useful for treating micrometastatic cancer.

Description

明 細 書  Specification
癌の遺伝子治療剤および医薬組成物、 ならびに治療方法 技術分野  TECHNICAL FIELD The present invention relates to a gene therapy agent and a pharmaceutical composition for cancer, and a treatment method.
本発明は、 癌の遺伝子治療剤および医薬組成物、 ならびに治療方法に関する。 さらに詳細には、 本発明は、 サイ ト力イン遗伝子を導入したエフヱクタ一細胞と サイ トカイン遺伝子を腫瘍細胞に導入した腫瘍ワクチンを含む癌の遺伝子治療剤 、 該ェフユクタ一細胞を含有する製剤と該腫瘍ワクチンを含有する製剤を癌患者 に投与することを特徴とする癌の遺伝子治療方法、 ならびに該エフェクタ一細胞 と該腫瘍ワクチンとの組み合わせを含む医薬組成物に関する。 サイ トカインは抗腫瘍効果を発揮するが、 その作用機序により主に以下の 3つ に大別される。 すなわち、 ①腫瘍壊死因子(TNF)_a, β インターフェロン(IFN )-α, β, ァ、 インターロイキン(ID- 1などのように、 癌細胞に対して in vitro で直接的な増殖抑制ないし障害活性を示すもの、 ②インターロイキン(Iい- 2, 4, 6, 7, 8, 9, 10, 11, 12などのように生体の免疫エフヱクタ一機構を介して間接 的に抗腫瘍効果を示すもの、 ③ IL- 3、 Iい 6、 顆粒球マクロファージコロニー刺激 因子 (GM-CSF:)、 顆粒球コロニー刺激因子(G- CSF) 、 幹細胞因子(SCF) などのよう に他の制癌療法に伴う生体の副作用の防止や治療に用いられているものである。 さらに、 近年サイ トカイン遗伝子導入による癌治療も試みられている。 これら の一つはサイ トカイン遗伝子をリンパ球、 例えばリンホカイン活性化キラー細胞 The present invention relates to a gene therapy agent and a pharmaceutical composition for cancer, and a method for treating cancer. More specifically, the present invention relates to a gene therapy agent for cancer, comprising an effector cell into which a cytokin gene has been introduced and a tumor vaccine having a cytokine gene introduced into a tumor cell; a preparation comprising the effector cell A gene therapy method for cancer characterized by administering a preparation containing the tumor vaccine to a cancer patient; and a pharmaceutical composition comprising a combination of the effector cell and the tumor vaccine. Cytokines exhibit antitumor effects, but are roughly classified into the following three types according to their mechanism of action. That is, ① tumor necrosis factor (TNF) _a, β interferon (IFN) -α, β, α, interleukin (ID-1, etc.) directly inhibits growth or damages cancer cells in vitro in vitro (2) Interleukins (such as I-2, 4, 6, 7, 8, 9, 10, 11, 12) which have an antitumor effect indirectly through a mechanism of immune effectors in the living body , ③ IL-3, I-6, granulocyte macrophage colony stimulating factor (GM-CSF :), granulocyte colony stimulating factor (G-CSF), stem cell factor (SCF) It has been used in the prevention and treatment of side effects in living organisms, and in recent years, cancer treatment by introducing cytokine genes has been attempted, one of which is to transfer cytokine genes to lymphocytes such as lymphokines. Activated killer cells
(LAK)、 細胞障害性 T細胞 (CTL)、 腫瘍浸潤リ ンパ球 (TIL) などに導入し、 導入 細胞から分泌されるサイ トカインによりオートクラインあるいはパラクラインで リ ンパ球を活性化して受動免疫能を高めたり、 T1L に直接抗腫瘍性のある 1FN ま たは TNF遺伝子を導入することにより腫瘍局所での抗腫瘍性を高めようという試 みがなされている(Nishihara et al. , Cancer Res. , 48, 4730, 1988、 iyatake et al. , J. Natl. Cancer Inst., 82, 217, 1990、 Itoh et al., Jpn. J. Can cer Res., 82, 1203, 1991) 。 TIL へのサイ トカイン遗伝子導入は、 これまでレ トロウィルスが利用されているが、 導入効率が非常に悪く、 当アブローチに対す る障害となっている。 (LAK), cytotoxic T cells (CTL), tumor-infiltrating lymphocytes (TIL), etc., and passive immunization by activating lymphocytes with autocrine or paracrine by cytokines secreted from the transfected cells Attempts have been made to enhance the antitumor activity at the tumor site by enhancing the activity of T1L or by directly introducing the antitumor 1FN or TNF gene into T1L (Nishihara et al., Cancer Res. , 48, 4730, 1988, iyatake et al., J. Natl. Cancer Inst., 82, 217, 1990, Itoh et al., Jpn. J. Cancer Res., 82, 1203, 1991). Retroviruses have been used to introduce cytokine genes into TILs, but the introduction efficiency is very poor. Is an obstacle.
もう一つはレトロウィルスべクターなどにより腫瘍細胞にサイ トカイン遗伝子 を導入して腫瘍ワクチンとして用い、 宿主の腫瘍特異的免疫細胞を誘導するもの である。 例えば、 Fearonらは 1 L-2遺伝子を導入したマウス大腸癌、 悪性黒色腫を 同系マウスに移植すると生着後自然退縮し、 そのマウスは IL-2遗伝子非導入腫瘍 細胞の再移植に対して抵抗性をもつ免疫能を獲得することを報告している (Fear on et aし, Ce l l, 60, 397, 1990) 。  The other is to introduce cytokine genes into tumor cells using a retrovirus vector or the like and use them as a tumor vaccine to induce tumor-specific immune cells in the host. For example, Fearon et al. Transplanted a mouse colon cancer or malignant melanoma transfected with the 1L-2 gene into a syngeneic mouse and then spontaneously regressed after engraftment. The authors have reported that they acquire immune competence that is resistant to the disease (Fear on et al., Cell, 60, 397, 1990).
し力、しな力くら、 これらはいずれも抗腫瘍性に対して必ずしも満足のいく成績が 得られるものではなかったり、 また転移抑制効果という面からは検討がなされて おらず、 癌転移に対し有望と思われるものは現状では報告されていない。 発明の開示  Neither of these methods can provide satisfactory results for antitumor properties, nor have they been studied in terms of their metastatic effect. Nothing promising has been reported at this time. Disclosure of the invention
従って、 本発明の目的は、 上記のような問題を解決すべく、 より高い抗腫瘍活 性を発揮し得、 かつ癌転移の抑制にも有効な癌の遗伝子治療剤を提供することに あ O ο  Accordingly, an object of the present invention is to provide a gene therapy agent for cancer that can exhibit higher antitumor activity and is also effective in suppressing cancer metastasis in order to solve the above-mentioned problems. Oh O ο
本発明者らは前記のような課題について鋭意研究を行った結果、 サイ トカイン 遺伝子を導入したエフェクター細胞とサイ トカイン遗伝子を腫瘍細胞に導人した 腫瘍ワクチンを併用すれば、 効率よく全身免疫が誘導されて抗腫瘍効果と転移抑 制効果が増強されることを見出し、 本発明を完成した。  The present inventors have conducted intensive studies on the above-mentioned problems, and as a result, it was found that the combined use of a cytokine gene-introduced effector cell and a tumor vaccine in which a cytokine gene was introduced into a tumor cell resulted in efficient systemic immunity. Were found to enhance the antitumor effect and the metastasis suppressing effect, and completed the present invention.
すなわち、 本発明は、 サイ トカイン遠伝子を導入したエフェクター細胞とサイ ト力ィン遗伝子を腫瘍細胞に導入した腫瘍ヮクチンを含む癌の遺伝子治療剤を提 供" 5る。  That is, the present invention provides an agent for cancer gene therapy comprising an effector cell into which a cytokine gene has been introduced and a tumor pectin having a cytokinin gene introduced into a tumor cell. "
本発明はまた、 サイ トカイン遗伝子を導入したエフュクター細胞を含有する製 剤とサイ トカイン遗伝子を腫瘻細胞に導入した腫瘍ワクチンを含有する製剤を同 時にまたは逐次的に癌患者に投与することを特徵とする癌の遺伝子治療方法を提 供する。  The present invention also relates to the simultaneous or sequential administration of a preparation containing a cytokine gene into which an effector cell has been introduced and a preparation containing a cytokine vaccine into which a cytokine gene has been introduced into a fistula cell to a cancer patient. To provide a gene therapy method for cancer, characterized in that
さらに本発明は、 癌の遺伝子治療のために使用する医薬組成物であって、 該組 成物がサイ トカイン遺伝子を導入したエフェクター細胞とサイ トカイン遗伝子を 腫瘍細胞に導入した腫瘍ワクチンの組み合わせおよび薬学的に許容される担体か らなる医薬組成物を提供する。 Further, the present invention relates to a pharmaceutical composition used for gene therapy of cancer, wherein the composition is a combination of an effector cell into which a cytokine gene has been introduced and a tumor vaccine having a cytokine gene introduced into a tumor cell. And a pharmaceutically acceptable carrier A pharmaceutical composition comprising:
本発明にいう癌の遺伝子治療とは、 サイ トカイン遗伝子による抗腫瘍作用なら びに転移抑制作用の両面からの癌治療を企図するものである。 以下、 本発明を詳細に説明する。  The term “gene therapy for cancer” as used in the present invention intends to treat cancer from both the antitumor effect and the metastasis inhibitory effect of cytokine genes. Hereinafter, the present invention will be described in detail.
本発明において使用されるサイ トカイン遗伝子とは、 顆粒球マクロファージコ ロニー刺激因子(GM- CSF)、 インターロイキン(1い- 2, IL-3, IL_4, IL-6, IL-7, IL-10, IL-12, IL-13, IL-15、 インタ一ロイキン- la (IL- 1な) 、 インタ一ロイ キンレセプター 1 アンタゴニス卜(1ぃ 1RA)、 腫瘍壊死因子(TNF) —な、 リンホト キシン(LT)一 5、 顆粒球コロニー刺激因子(G- CSF) 、 マクロファージコロニー刺 激因子(M- CSF) 、 インターフ ロン (IFN)— ァ、 マクロファージ遊走阻止因子 ( MIF)、 白血病抑制因子 (LIF)、 T細胞活性化共刺激因子 B7 (CD80) 並びに B7-2(C D86)、 キッ ト ' リガンド、 オンコスタチン M等の各種サイ トカインをコ一ドする 遺伝子をいう。 既に種々のサイ トカイン c DNAがクローニングされている [ヒ ト GM- CSF cDNAについては Wong et al., Science, 228, 810-815 (1985)、 ヒ ト IL-2 cDNAについては Taniguchi et al., Nature, 302, 305-310 (1983)、 ヒト IFN-r cDNA については Gray et al., Nature, 298, 859-863 (1982)]。 本発 明において使用されるサイ トカイン遺伝子は、 公知の技術を用いて細胞から単離 して得られた c DNAであっても、 また上記の文献等に開示される情報よりポリ メレース連鎖反応 (P CR) 等の方法に従って化学的に合成されたものであって もよいが、 免疫的拒絶反応を最小に抑えるために、 また、 治療効果を上げるため に、 ヒ ト由来のものが望ましい。  The cytokine gene used in the present invention includes granulocyte macrophage colony stimulating factor (GM-CSF), interleukin (1-2, IL-3, IL_4, IL-6, IL-7, IL) -10, IL-12, IL-13, IL-15, interleukin-la (IL-1), interleukin receptor 1 antagonist (1 ぃ 1RA), tumor necrosis factor (TNF) Lymphotoxin (LT) -15, granulocyte colony stimulating factor (G-CSF), macrophage colony stimulating factor (M-CSF), interferon (IFN) -α, macrophage migration inhibitory factor (MIF), leukemia inhibitory factor ( LIF), a gene encoding various cytokines such as T cell activation co-stimulator B7 (CD80) and B7-2 (CD86), kit 'ligand, oncostatin M, etc. Already various cytokines cDNA has been cloned [for human GM-CSF cDNA, see Wong et al., Science, 2 28, 810-815 (1985), Taniguchi et al., Nature, 302, 305-310 (1983) for human IL-2 cDNA, and Gray et al., Nature, 298, 859 for human IFN-r cDNA. -863 (1982)] The cytokine gene used in the present invention may be a cDNA isolated from cells using a known technique, or may be disclosed in the above-mentioned literature and the like. Although it may be chemically synthesized according to methods such as the polymerase chain reaction (PCR) based on information, humans may be used to minimize immune rejection and to increase the therapeutic effect. The origin is desirable.
本発明においてエフェクター細胞とは、 癌細胞の破壊の最終段階を担当し、 破 壊に直接携わる細胞集団をいい、 具体的には腫瘍浸潤リ ンパ球(TIL) 、 リ ンホカ イン活性化キラー細胞 (LAK)、 細胞障害性 T細胞 (CTL)等をいう。  In the present invention, the effector cell refers to a cell population that is in charge of the final stage of destruction of a cancer cell and is directly involved in the destruction, and specifically, a tumor infiltrating lymphocyte (TIL), a lymphokine-activated killer cell ( LAK), cytotoxic T cells (CTL) and the like.
これらエフヱクタ一細胞へのサイ トカイン遺伝子の導入は、 アデノウイルスべ クタ一を用いることにより非常に効率良く行うことができる。 ここで使用される アデノウイルスベクターとしては、 サイ トカイン遺伝子のための挿入部位を含み 、 導入されたエフヱクタ一細胞においてサイ トカインを発現できるものであれば 特に限定されないが、 ヒ ト 5型アデノウイルス由来の Adexl [Sai to, 1. e t al. , J. Vi o l. , 54, 711-719 (1985)]が好適に使用される。 The introduction of the cytokine gene into these effector cells can be performed very efficiently by using an adenovirus vector. As the adenovirus vector used here, any vector containing an insertion site for the cytokine gene and capable of expressing the cytokine in the introduced effector cell can be used. Although not particularly limited, Adexl derived from human type 5 adenovirus [Sai to, 1. et al., J. Viol., 54, 711-719 (1985)] is preferably used.
一方、 本発明にいう腫瘍ワクチンとは、 上記のサイ トカイン遗伝子をレトロゥ ィルスべクタ一により単離 (培養) 腫瘍細胞に導入し、 これに X線照射を行って 、 サイ ト力インの産生は阻害せずに増殖のみを停止させたものである。 この腫瘍 ヮクチンを宿主に投与することにより、 宿主の腫瘍特異的免疫細胞を誘導するこ とができる。  On the other hand, the term "tumor vaccine" as used in the present invention refers to the above-mentioned cytokine gene, which is isolated (cultured) by a retrovirus vector, introduced into tumor cells, and irradiated with X-rays. Production was stopped without inhibiting production. By administering this tumor pectin to the host, tumor-specific immune cells of the host can be induced.
ここで使用されるレトロウイルスベクターは、 サイ トカイン遗伝子のための揷 入部位を含み、 導入された腫瘍細胞においてサイ トカインを発現できるものであ れば特に限定されないが、 例えば、 特表平 6-503968 号公報に開示される、 MFG 、 α -SCG, PLJ 、 pEm 等が挙げられる。 サイ ト力イン遗伝了を挿入したレトロゥ ィルスべクタ一は、 目的の遗伝子が導入されたことを選択するマーカーとしてネ ォマイシン耐性遺伝子を持つプラスミ ドとミ ックスして、 Ψ2、 Ψ - Am、 CR IP 、 WCRE [Danos et al ., PNAS, 85, 6460-6464 (1988)]等のパッケージング細胞 にカルシウム共沈殿法により導入する (コ トランスフヱクシヨン) 。 さらにこれ を薬剤 G 4 1 8の存在下で培養し、 生存してコロニーを形成してくる細胞を採取 することによって、 目的とする遺伝子の導入されている細胞のみを採取すること ができる。 次にこれらの細胞の培養上清を用いて N1H3T3マウス繊維芽細胞、 B16 マウスメラノーマ細胞など各種腫瘻細胞に感染させ、 最終的には細胞の染色体に 導入された安定な遺伝子導入細胞として、 サザンハイブリダイゼーシヨンによつ て確認することができる。 また、 感染細胞から分泌されるサイ トカインの量は、 E L I S A等の免疫学的アツセィにより測定することができる。  The retroviral vector used here is not particularly limited as long as it contains an insertion site for a cytokine gene and can express cytokines in the introduced tumor cells. MFG, α-SCG, PLJ, pEm and the like disclosed in JP-A-6-503968. The retrovirus vector inserted with the site force gene transfer was mixed with a plasmid having a neomycin resistance gene as a marker to select that the desired gene was introduced, and Ψ2, Ψ- Am, CRIP, WCRE [Danos et al., PNAS, 85, 6460-6464 (1988)], etc., are introduced by a calcium coprecipitation method (cotransfection). Further, this is cultured in the presence of the drug G418, and by collecting cells that survive and form a colony, only cells into which the target gene has been introduced can be collected. Next, the culture supernatant of these cells was used to infect various types of fistula cells, such as N1H3T3 mouse fibroblasts and B16 mouse melanoma cells. It can be confirmed by hybridization. The amount of cytokines secreted from infected cells can be measured by immunological assays such as ELISA.
次に、 サイ トカイン遗伝子が導入された腫瘍細胞を、 通常】.0,000〜150,000 ra d の X線を照射後、 これを腫瘍ワクチンとして用いる。  Next, the tumor cells into which the cytokine II gene has been introduced are usually irradiated with X-rays at a concentration of 0.0000 to 150,000 rad, and then used as a tumor vaccine.
ここでいう腫瘍細胞は、 メラノーマ細胞ないし腎癌細胞であるが、 他の腫瘍細 胞、 例えば乳癌細胞、 偏平上皮癌、 腺癌、 移行上皮癌、 肉腫、 神経膠腫 (グリオ —マ) 等も用いることができる。  The tumor cells here are melanoma cells or renal cancer cells, but other tumor cells, such as breast cancer cells, squamous cell carcinoma, adenocarcinoma, transitional cell carcinoma, sarcoma, glioma, etc. Can be used.
上記のようにしてそれぞれ調製したサイ トカイン遺伝子導入エフ クタ一細胞 と腫瘍ワクチンはそのまま用いることができるが、 医薬的に許容できる担体とと もに医薬組成物として、 例えば錠剤、 粉末剤、 顆粒剤、 丸剤等の固形剤、 または 溶液、 懸濁液、 ゲル等の形態に製剤化して投与することもできる。 The cytokine cytokine-introduced effector cells prepared as described above and the tumor vaccine can be used as they are, but they must be combined with a pharmaceutically acceptable carrier. In addition, the composition can be administered as a pharmaceutical composition in the form of a solid such as tablets, powders, granules, and pills, or in the form of a solution, suspension, gel, or the like.
上記担体としては、 使用形態に応じた製剤を調製するのに通常慣用される充填 剤、 増量剤、 結合剤、 崩壌剤、 表面活性剤等の賦形剤ないしは希釈剤等が挙げら 本発明の遺伝子治療剤の投与形態としては、 通常の静脈内、 動脈内、 皮下等の 全身投与の他に、 癌原病巣に対して、 または癌種に対応した予想転移部位に対し て、 局所注射、 経口投与等の局所投与を行うことができる。 さらに、 本発明の遗 伝子治療剤の投与にあたっては、 カテーテル技術、 遺伝子導入技術、 または外科 的手術等と組み合わせた投与形態をとることもできる。  Examples of the carrier include excipients or diluents such as a filler, a bulking agent, a binder, a disintegrant, and a surfactant, which are commonly used for preparing a preparation according to a use form. The administration forms of the gene therapy agent include the usual intravenous, intraarterial, subcutaneous, etc. systemic administration, local injection into the tumor lesion, or into the expected metastatic site corresponding to the cancer type. Local administration such as oral administration can be performed. Further, the administration of the gene therapy agent of the present invention may be in the form of administration in combination with catheter technology, gene transfer technology, surgical operation, or the like.
また、 投与方法としては、 上記のようにしてそれぞれ調製したサイ トカイン逡 伝子導人エフ クタ一細胞と腫瘍ヮクチンを同時に投与してもよく、 ェフエクタ 一細胞を先に投与してから腫瘍ワクチンを後に逐次的に投与してもよく、 あるい は、 腫瘍ワクチンを先に投与してからエフェクター細胞を後に逐次的に投与して もよい。  In addition, as an administration method, the cytokine hepatocyte guide effector one cell and the tumor pectin prepared as described above may be simultaneously administered, or the tumor vaccine may be administered after the effector one cell is first administered. The tumor vaccine may be administered first and then sequentially, or the effector cells may be administered sequentially and subsequently.
本発明の遺伝子治療剤の投与量は、 年齢、 性別、 症状、 投与経路、 投与回数、 剤型によって異なるが、 一般に、 成人では一日当たりサイ トカイン遗伝子の重量 にして、 約 0. 1〜100 mgの範囲が適当である。 図面の簡単な説明  The dosage of the gene therapy agent of the present invention varies depending on the age, sex, symptom, administration route, number of administrations, and dosage form. In general, in adults, about 0.1 to 100% by weight of cytokine gene per day is used. A range of 100 mg is appropriate. BRIEF DESCRIPTION OF THE FIGURES
第 1図は、 Iい 2遺伝子導入に用いる発現用カセッ 卜の構築を示す。  FIG. 1 shows the construction of an expression cassette to be used for the introduction of the gene.
第 2図は、 IL- 2、 または GM-CSF遗伝子導入に用いる組み換えレ トロウイルスべ クタ一の構築を示す。  FIG. 2 shows the construction of a recombinant retrovirus vector used for introducing IL-2 or GM-CSF 遗 gene.
第 3図は、 サイ トカイン遺伝子(Iい 2)を導入したマウスメラノーマ(B16F10)由 来エフヱクタ一細胞(TI L) とサイ トカイン遗伝子(Iい 2 + GM-CSF) を導入したマ ウスメラノ一マ(B16F10)ヮクチンによる癌転移抑制効果の結果を示す。  Figure 3 shows the effector cell (TIL) derived from mouse melanoma (B16F10) transfected with the cytokine gene (I2) and the murine melanoma transfected with the cytokine gene (I2 + GM-CSF). The results of the cancer metastasis inhibitory effect of Kuma (B16F10) Pectin are shown.
第 4図は、 サイ トカイン遗伝子(IFN-ァ) を導入したマウスメラノ一マ(B16F10 )由来エフ クタ一細胞(TI L) とサイ トカイン遺伝子(GM-CSF)を導入したマウス メラノ一マ(B16F10)ヮクチンによる癌転移抑制効果の結果を示す。 第 5図は、 サイ ト力イン遺伝子(Iい 2 または IFN-ァ) を導入したマウス大腸癌 (Colon26) 由来エフェクター細胞(TIL) とサイ ト力イン ¾伝子(Iい 2)を導入した マウス大腸癌(Col on26) ヮクチンによる癌転移抑制効果の結果を示す。 発明を実施するための最良の方法 Figure 4 shows mouse melanoma (B16F10) -derived effector cells (TIL) transfected with the cytokine gene (IFN-a) and mouse melanoma cells transfected with the cytokine gene (GM-CSF). (B16F10) shows the results of the cancer metastasis inhibitory effect of Pectin. Fig. 5 shows the effector cells (TIL) derived from mouse colon cancer (Colon26) transfected with the site force gene (I-2 or IFN-a) and the site force gene (I-2). The results of mouse metastatic cancer (Colon 26) inhibitory effect on cancer metastasis by pectin are shown. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明を実施例により具体的に説明する。 本発明の範囲はこれらの実施 例により限定されるものではない。  Hereinafter, the present invention will be described specifically with reference to examples. The scope of the present invention is not limited by these examples.
〔参考例 1〕  (Reference Example 1)
マウス 1い 2、 マウス GM-CSF、 及びマウス IFN-ァの cDNAは、 マウスの脾リ ンパ球 の m R N Aを用いて RT - PCR (Reverse transcri pi ton-pol ymera.se chain react i o n)法により調製した。 PCR を行うに際し、 マウス 1L- 2に対しては以下に示すブラ イマ一 #479, #480、 マウス GM-CSFに対しては以下に示すプライマー #477, #478、 マウス IFN-ァに対しては以下に示すプライマー #485, #486をそれぞれ使用した。 プライマー(#479) : CCGAATTCTAGACACC ATG TAC AGC ATG CAG CTC GCA TCC TG T G  The cDNA of mouse 1-2, mouse GM-CSF, and mouse IFN-α were obtained by RT-PCR (Reverse transcripi ton-pol ymera.se chain react ion) using mRNA of mouse spleen lymphocyte. Prepared. In performing PCR, primers # 479 and # 480 shown below for mouse 1L-2, primers # 477 and # 478 shown below for mouse GM-CSF, and mouse IFN- Used primers # 485 and # 486 shown below, respectively. Primer (# 479): CCGAATTCTAGACACC ATG TAC AGC ATG CAG CTC GCA TCC TG T G
プライマ—(#480) : C TGT CAA AGC ATC ATC TCA ACA AGC CCT CAA TAA GGATC C CC  Primer (# 480): C TGT CAA AGC ATC ATC TCA ACA AGC CCT CAA TAA GGATC C CC
プライマー(#477) : CCGAATTCTAGACACC ATG TGG CTG CAG AAT TTA CTT TTC CT G GGC  Primer (# 477): CCGAATTCTAGACACC ATG TGG CTG CAG AAT TTA CTT TTC CT G GGC
プライマー(#478) : C CCC TTT GAA TGC AAA AAA CCA AGC CAA AAA TGA GGATC C GG  Primer (# 478): C CCC TTT GAA TGC AAA AAA CCA AGC CAA AAA TGA GGATC C GG
プライマ一(#485) : CC GAA TTC TAGA CACC ATG AAC GCT ACA CAC TGC ATC TT G GC  Primer (# 485): CC GAA TTC TAGA CACC ATG AAC GCT ACA CAC TGC ATC TT G GC
プライマー(#486) : C AGG AAG CGG AAA AGG AGT CGC TGC TGA GGATCCGG  Primer (# 486): C AGG AAG CGG AAA AGG AGT CGC TGC TGA GGATCCGG
〔実施例 1〕 サイ ト力イン遺伝子導入エフェクター細胞 (TI L/Iい 2) の調製 (1) マウスメラノ一マ B16F10由来 T1L の調製 [Example 1] Preparation of site-transduced effector cells (TI L / I2) (1) Preparation of mouse melanoma B16F10-derived T1L
T1L の調製は、 Alexander, R. B. et al., J. Immunol. , 145, 1615-1620 (199 0)、 Mat is, L. A. et al. , Methods Enzymol. , 150, 342-351 (1987) 、 Livingst one, A. et al. , Methods Enzymol. , 150, 325-333 (1987)記載の方法に改良を 加えて以下のようにして行った。 6 〜10週令の雌性 C57BL/6 マウス(Charles Riv er Japanより購入) に移植したマウスメラノ一マ B16(ATCC CRL6322) の高転移株 である B16F10 (Whitehead Institute Dr. Glenn Dranoffより入手) の新鮮な腫瘍 塊を完全培養培地 (CM) 中に 4 °Cで 5 X 107cells/ml 懸濁した。 CMは、 熱不 活化した 10¾ ゥシ胎児血清、 2mM L-グルタミ ン、 5 X 10"5M 2- メルカプトエタ ノール、 100U/ml ペニシリ ン、 100 g/mlス トレプトマイシン、 0.5 ^g/ml 了 ンホテリ シン B、 lOmM 3- (N-モルホリノ) プロパンスルホン酸、 及び 70U/ml組み 換えヒ 卜 IL- 2 (塩野義製薬 (株) より入手) を添加した RPMI 1640 である。 TIL を等量の抗 CD-8- 結合免疫吸着ビーズと 1 X 108/mlで混合し、 4 °Cで 2 時間イン キュベ一卜した。 T1L が付着したビーズはペレツ トイヒし、 冷 CMで 3 回洗浄し、 CM中に 1 xi07beads/ml 懸濁し、 24ゥヱルの組織培養プレー卜に播き、 37°C、 5¾C02 下でィンキュベートした。 培養 1 日後、 TIL から分離したビーズをペレツ ト化し、 除去した。 分離した TIL にゥヱル当たり 2 X 105 個の照射(10,000rad) 腫瘍細胞、 ならびに 1 X 106 個の照射(3,000rad)正常脾細胞を用いて刺激した。 in vitro刺激を 7 曰から 14日毎に繰り返した。 コンフルェン トになったときに TI L を分取し、 新たな CM中に 2 X l05cell/ml再懸濁した。 The preparation of T1L is described in Alexander, RB et al., J. Immunol., 145, 1615-1620 (199 0), Mat is, LA et al., Methods Enzymol., 150, 342-351 (1987), Livingst one, A. et al., Methods Enzymol., 150, 325-333 (1987) Was performed as follows. Fresh B16F10 (obtained from Whitehead Institute Dr. Glenn Dranoff), a highly metastatic strain of mouse melanoma B16 (ATCC CRL6322) transplanted into female C57BL / 6 mice (purchased from Charles River Japan) of 6 to 10 weeks of age 5 x 10 7 cells / ml were suspended in complete culture medium (CM) at 4 ° C. CM was heat-inactivated 10¾ fetal serum, 2 mM L-glutamine, 5 × 10 " 5 M 2-mercaptoethanol, 100 U / ml penicillin, 100 g / ml streptomycin, 0.5 ^ g / ml RPMI 1640 with addition of mlhotericin B, lOmM 3- (N-morpholino) propanesulfonic acid, and 70 U / ml recombinant human IL-2 (obtained from Shionogi & Co., Ltd.) TIL, etc. Volume of anti-CD-8-conjugated immunoadsorbent beads at 1 × 10 8 / ml and incubated for 2 hours at 4 ° C. Beads with T1L were pelleted and washed three times with cold CM and, suspended 1 xi0 7 beads / ml in CM, were seeded in tissue culture play Bok 24 Uweru, 37 ° C, and Peretz collected by reduction Inkyubeto was. after one day incubation, the beads separated from TIL under 5¾C0 2, removed Separated TILs were irradiated at 2 x 10 5 cells per well (10,000 rad) tumor cells, and 1 x 10 6 irradiations per well (3,000 rad) Stimulated with normal splenocytes In vitro stimulation was repeated every 14 days from 7 days When confluence, TIL was collected and added to a new CM in 2 × 10 5 cells. The cells / ml were resuspended.
(2) アデノウイルスによるマウス IL- 2遠伝子の TIL への導入 (2) Adenovirus transduction of mouse IL-2 gene into TIL
組み換えアデノウイルスを調製する方法は、 Saito. I. et al., J. Viol., 54, 711-719 (1985) の変法により行った。 すなわち、 サイ トメガロウィルスェンハ ンサ一、 チキン/ S—ァクチンプロモーター、 参考例 1で調製したマウス 1L- 2の cD NA配列、 ラビッ ト一 yS—グロビンポリ (A) シグナル配列からなる発現ユニッ ト [Niwa, H. et al., J. Gene 108, 193-200 (1991)]を、 E1A, E1B, および E3遗伝 子を欠く 31kbのアデノウイルスタイプ 5 を含む 42kbコスミ ドである pAdexlvv (鐘 ケ江裕美、 原田志津子、 斉藤泉、 実験医学バイオマニュアル 4、 189-204 、 1994 、 羊土社) の Swal制限酵素部位に挿入することによって発現用コスミ ドカセッ ト を構築した (第 1図) 。 この発現用コスミ ドカセッ 卜とアデノウイルス DNA— ターミナル蛋白複合体 (DNA- TPC)を 293 細胞(ATCC CRL1573)にカルシウム共沈法 によりコ トランスフヱク 卜した。 発現カセッ 卜の入った組み換えウィルスは適当 な制限酵素による消化によって確認した。 組み換えウィルスは続いて 293 細胞で 增殖させ、 ウィルス溶液を- 80 °Cで咛蔵した。 ウィルスストックのタイターは 29 3 細胞上でのプラークアツセィによって決定した。 (1) で調製した TIL へのアデ ノウィルスの in vitro感染のために、 培養液を 12—ゥヱル培養プレートに播いた TIL 細胞から除き、 各ゥヱルにウィルスストック 150 ΐ を加えた。 37°Cで 1 時 間インキュベーショ ン後、 増殖用培地を添加し、 TIL 細胞を 2 〜3 日培養し、 マ ウス 1レ 2遺伝子導入 T1L 細胞 (TIL/ -2) を得た。 The method for preparing the recombinant adenovirus was carried out by a modification of Saito. I. et al., J. Viol., 54, 711-719 (1985). That is, an expression unit consisting of a cytomegalovirus enhancer, a chicken / S-actin promoter, a mouse 1L-2 cDNA sequence prepared in Reference Example 1, and a rabbit-1 yS-globin poly (A) signal sequence. [Niwa, H. et al., J. Gene 108, 193-200 (1991)] were converted to pAdexlvv, a 42 kb cosmid containing a 31 kb adenovirus type 5 lacking the E1A, E1B, and E3 遗 genes. Hiromi Kae, Shizuko Harada, Izumi Saito, Experimental Medicine Biomanual 4, 189-204, 1994; Yodosha) constructed a cosmid cassette for expression (Fig. 1). The cosmid cassette for expression and adenovirus DNA-terminal protein complex (DNA-TPC) were co-precipitated into 293 cells (ATCC CRL1573). Co-transfected by The recombinant virus containing the expression cassette was confirmed by digestion with an appropriate restriction enzyme. The recombinant virus was subsequently propagated on 293 cells, and the virus solution was stored at -80 ° C. Virus stock titers were determined by plaque assay on 293 cells. For in vitro infection of the adenovirus to the TIL prepared in (1), the culture was removed from TIL cells seeded on a 12-well culture plate, and 150 μl of the virus stock was added to each mouse. After incubation at 37 ° C for 1 hour, a growth medium was added, and TIL cells were cultured for 2 to 3 days, to obtain mouse-transduced T1L cells (TIL / -2).
〔実施例 2] 腫瘍ワクチン (B16F10/IL- 2 +GM- CSFワクチン) の調製 [Example 2] Preparation of tumor vaccine (B16F10 / IL-2 + GM-CSF vaccine)
(1) マウス lL-2、 マウス GM-CSF高タイ夕一組み換えレトロウイルス産生クロー ンの調製  (1) Preparation of recombinant retrovirus-producing clone of mouse IL-2 and mouse GM-CSF
レ トロウイルスベクター MF G (Dranoff, G. et al. , Proc. Natl. Acad. Sc i. USA, 90, 3539-3543, 1993)の 2 つの LTR (Long Terminal Repeat)含む Eagl/B amHIフラグメ ン ト(5200bp:)、 Eagl/Xbal フラグメ ン ト(lOOObp:)、 ならびに参考例 Retroviral vector MF G (Dranoff, G. et al., Proc. Natl. Acad. Sci. USA, 90, 3539-3543, 1993) Eagl / B amHI fragment containing two LTRs (Long Terminal Repeat) (5200bp :), Eagl / Xbal fragment (10OObp :), and Reference Examples
1で調製したマウス Iい 2、 マウス GM- CSFの各 cDNAの Xbal/BamHIフラグメン トの 3 つを T 4 DNAライゲ一スでつないでプラスミ ドに組み込んだ (第 2図) 。 得ら れたプラスミ ドと pPGKneo [H. Takeshima et al. , Nature, 369, 556-559 (1994 ;)]をカルシウム共沈殿法により WCRIPCDanos et al., Proc. Natl. Acad. Sci. USA, 85, 6460 (1988)] に導入し、 これを G- 418(GIBC0, lmg/ml)を含む培地にてThree of the Xbal / BamHI fragments of each of the mouse I and mouse GM-CSF cDNAs prepared in 1 were ligated with T4 DNA ligase and incorporated into plasmid (Fig. 2). The obtained plasmid and pPGKneo [H. Takeshima et al., Nature, 369, 556-559 (1994;)] were co-precipitated with WCRIPCDanos et al., Proc. Natl. Acad. Sci. USA, 85 , 6460 (1988)] in a medium containing G-418 (GIBC0, lmg / ml).
1週間培養し、 コロニーを形成してくる細胞を採取した。 次にこれらの細胞の培 養上清を polybrene(Sigma, 8 g/ml) 存在下、 NIH3T3マウス繊維芽細胞 (ATCC C RL 1658)に感染させた。 感染細胞のゲノム DNAを単離し、 ウィルスのタイター をサザンブロッ ト法で測定し、 組み込まれたプロウィルスのコピー数として評価 した。 N1H3T3への導入効率は通常、 1 細胞につきプロウィルスの組み込みで 1 〜 3 コピー数であった。 また、 感染細胞より分泌されるサイ トカインは、 培地 10ml を含む 10- cm ディ ッシュに 1 X106 細胞を播いた 48時間後に、 ELISA (Endogen) によりアツセィした (第 1表) 。 第 1表 cDNA タイター (コピー数) 発現量 マウス IL- 2 2.0 6350 IU/ml After culturing for one week, cells forming colonies were collected. Next, culture supernatants of these cells were infected to NIH3T3 mouse fibroblasts (ATCC CRL 1658) in the presence of polybrene (Sigma, 8 g / ml). Genomic DNA from infected cells was isolated and virus titer was determined by Southern blotting and evaluated as the copy number of the integrated provirus. The transfection efficiency into N1H3T3 was usually 1-3 copies per cell with provirus integration. Cytokines secreted from infected cells were identified by ELISA (Endogen) 48 hours after seeding 1 × 10 6 cells in a 10-cm dish containing 10 ml of medium (Table 1). Table 1 cDNA titer (copy number) Expression level Mouse IL-2 2.0 6350 IU / ml
マウス GM- CSF 2.0 13.5 ng/ml  Mouse GM-CSF 2.0 13.5 ng / ml
(2) 腫瘍ワクチン(B16F10/IL-2 + GM-SCFワクチン) の調製 (2) Preparation of tumor vaccine (B16F10 / IL-2 + GM-SCF vaccine)
(1) で選択したマウス 1レ2、 マウス GM-CSFそれぞれの高タイター組み換えレト ロウィルス産生クローンをマウスメラノ一マ B16(ATCC CRL 6322)の高転移株であ る B16F10 (Whitehead Institute Dr. Glenn Dranof fより入手) に導入した。 該遗 伝子導入細胞は、 10 ゥシ胎児血清および 2mM グルタミンを添加したダルベッコ のイーグル培地で維持し、 トリプシン/ EDTA で処理し、 HITACHI MBR-1505R X-ra y generator を用い、 10,000rad の X線を照射した。 照射細胞は HBSS(Hank' s Ba lanced Salt Solution) で 2 回洗浄し、 5 xiO6 cell/ml の濃度で HBSSに再懸濁 し、 腫瘍ワクチン (B16F10/IL-2 +GM-CSFワクチン) を得た。 The high titer recombinant retrovirus-producing clones of mouse 1 and mouse GM-CSF selected in (1) were cloned into B16F10 (Whitehead Institute Dr. Glenn Dranof), a highly transgenic strain of mouse melanoma B16 (ATCC CRL 6322). obtained from f). The transfected cells were maintained in Dulbecco's Eagle's medium supplemented with 10% fetal serum and 2 mM glutamine, treated with trypsin / EDTA, and treated with 10,000 rad using a HITACHI MBR-1505R X-ray generator. X-rays were irradiated. Irradiated cells were washed twice with HBSS (Hank's Balanced Salt Solution), resuspended in HBSS at a concentration of 5 xiO 6 cells / ml, and immunized with tumor vaccine (B16F10 / IL-2 + GM-CSF vaccine). Obtained.
〔実施例 3〕 サイ トカイン遗伝子導入エフェクター細胞 (TIL/IFN-ァ) の調製[Example 3] Preparation of cytokine II gene transfer effector cells (TIL / IFN-a)
(1) マウスメラノーマ B16F10由来 TIL の調製 (1) Preparation of TIL derived from mouse melanoma B16F10
実施例 1 (1)と同様の方法により調製した。  Prepared in the same manner as in Example 1 (1).
(2) アデノウイルスによるマウス IFN-7遺伝子の T1L への導入  (2) Introduction of mouse IFN-7 gene into T1L by adenovirus
組み換えアデノウイルスを調製する方法は、 Saito. I. et al., J. Viol., 54, 711-719 (1985) の変法により行った。 すなわち、 サイ トメガロウィルスェンハ ンサ一、 チキン yS—ァクチンプロモータ一、 参考例 1で調製したマウス IFN-ァの cDNA配列、 ラビッ ト— β—グロビンポリ ( A ) シグナル配列からなる発現ュニッ h [Niwa, H. et a , J. Gene 108, 193-200 (1991)]を、 E1A, BIB, および E3遗 伝子を欠く 31kbのアデノウイルスタイプ 5 を含む 42kbコスミ ドである pAdexlcw ( 鐘ケ江裕美、 原田志津子、 斉藤泉、 実験医学バイオマニュアル 4、 189-204、 19 94、 羊土社) の Clal制限酵素部位に挿入することによって発現用コスミ ドカセッ トを構築した (第 1図) 。 この発現用コスミ ドカセッ 卜とアデノウイルス DNA 一ターミナル蛋白複合体 (DNA- TPC)を 293 細胞(ATCC CRL1573)にカルシウム共沈 法によりコ トランスフヱク 卜した。 発現カセッ 卜の入った組み換えウィルスは適 当な制限酵素による消化によって確認した。 組み換えウィルスは続いて 293 細胞 で増殖させ、 ウィルス溶液を- 80 °Cで貯蔵した。 ウィルスストックのタイタ一は 293 細胞上でのプラークアツセィによって決定した。 (1) で調製した TIL へのァ デノウィルスの in vitro感染のために、 培養液を 12—ゥヱル培養プレートに播ぃ た T1L 細胞から除き、 各ゥヱルにウィルスストック 150 \ を加えた。 37°Cで 1 時間ィンキュベーション後、 増殖用培地を添加し、 TIL 細胞を 2〜3 日培養し、 マウス 1FN- 7遺伝子導入 T1L 細胞 (T1し/ IFN-7) を得た。 The method for preparing the recombinant adenovirus was performed according to a modification of Saito. I. et al., J. Viol., 54, 711-719 (1985). That is, an expression unit consisting of a cytomegalovirus enhancer, a chicken yS-actin promoter, a mouse IFN-a cDNA sequence prepared in Reference Example 1, and a rabbit-β-globin poly (A) signal sequence [ Niwa, H. et a, J. Gene 108, 193-200 (1991)], and pAdexlcw, a 42 kb cosmid containing 31 kb adenovirus type 5 lacking the E1A, BIB, and E3 遗 genes (Yumi Kanegae, Shizuko Harada, Izumi Saito, Biomedical Manual for Experimental Medicine 4, 189-204, 19 94, Yodosha) to construct a cosmid cassette for expression by inserting it into the Clal restriction enzyme site (Fig. 1). This cosmid cassette for expression and adenovirus DNA-terminal protein complex (DNA-TPC) were co-transfected into 293 cells (ATCC CRL1573) by a calcium coprecipitation method. The recombinant virus containing the expression cassette was confirmed by digestion with an appropriate restriction enzyme. The recombinant virus was subsequently grown on 293 cells and the virus solution was stored at -80 ° C. The titer of the virus stock was determined by plaque assay on 293 cells. For in vitro infection of the adenovirus with the TIL prepared in (1), the culture solution was removed from T1L cells seeded on a 12-well culture plate, and 150 μl of the virus stock was added to each well. After incubating at 37 ° C for 1 hour, a growth medium was added, and TIL cells were cultured for 2 to 3 days to obtain mouse 1FN-7 transgenic T1L cells (T1 / IFN-7).
〔実施例 4] 腫瘍ワクチン (B16F10/GM- CSF ワクチン) の調製 [Example 4] Preparation of tumor vaccine (B16F10 / GM-CSF vaccine)
(1)マウス GM- CSF高タイター組み換えレトロウィルス産生クローンの調製 実施例 2 (1) と同様の方法により調製した。  (1) Preparation of mouse GM-CSF high titer recombinant retrovirus-producing clone Prepared in the same manner as in Example 2 (1).
(2) 腫瘍ワクチン(B16F10/GM-SCFワクチン) の調製  (2) Preparation of tumor vaccine (B16F10 / GM-SCF vaccine)
(1) で選択したマウス GM-CSFの高タイター組み換えレトロウィルス産生クロー ンをマウスメラノーマ B16(ATCC CRL 6322)の高転移株である B16F10 (Whitehead Institute Dr. Glenn Dranoffより入手) に導入した。 該遗伝子導入細胞は、 10X ゥシ胎児血清および 2mM グルタミンを添加したダルベッコのイーグル培地で維持 し、 トリブシン/ EDTA で処理し、 HITACHI MBR-1505R X-ray generator を用い、 10, OOOrad の X線を照射した。 照射細胞は HBSSで 2 回洗浄し、 5 xiO6 cell/ml の濃度で HBSSに再懸濁し、 腫瘍ワクチン (B16F10/GM-CSF ワクチン) を得た。 The high titer recombinant retrovirus-producing clone of mouse GM-CSF selected in (1) was introduced into B16F10 (available from Whitehead Institute Dr. Glenn Dranoff), which is a highly metastatic strain of mouse melanoma B16 (ATCC CRL 6322). The transfected cells were maintained in Dulbecco's Eagle's medium supplemented with 10X fetal serum and 2 mM glutamine, treated with tribsine / EDTA, and treated with X-ray of 10, OOOrad using a HITACHI MBR-1505R X-ray generator. The line was irradiated. Irradiated cells were washed twice with HBSS and resuspended in HBSS at a concentration of 5 xiO 6 cells / ml to obtain a tumor vaccine (B16F10 / GM-CSF vaccine).
〔実施例 5〕 サイ トカイン遗伝子導入エフヱクタ一細胞 (TIL/Iい 2, TIL/IFN- 7) の調製 [Example 5] Preparation of cytokine gene transfer effector cell (TIL / I-2, TIL / IFN-7)
(1) マウス大腸癌 Colon 26由来 TIL の調製  (1) Preparation of TIL from mouse colorectal cancer Colon 26
TIL の調製は、 Alexander, R. B. et al., J. Immunol., 145, 1615-1620 (199 0)、 Matis, し A. et al., Methods Bnzymol. , 150, 342-351 (1987) 、 Livingst l o one, A. et al. , Methods Enzymol. , 150, 325-333 (1987)記載の方法に改良を 加えて以下のようにして行った。 6 〜10週令の雌性 BALB/Cマウス(Charles River Japanより購入) に移植したマウス大腸癌 Colon 26の新鮮な腫瘍塊を完全培養培 地 (CM) 中に 4 °Cで 5 X107cells/ml 懸濁した。 CMは熱不活化した 10¾ ゥシ 胎児血清、 2mM いグルタ ミ ン、 5 X10— 5M 2- メルカプトエタノール、 lOOU/ml ぺニシリ ン、 100 g/mlス トレブトマイシン、 0.5 g/ml アンホテリ シン B 、 10mM 3- (N-モルホリ ノ) プロパンスルホン酸、 及び 70U/ml組み換えヒ ト Iい 2 (塩 野義製薬 (株) より入手) を添加した RPMI 1640 である。 TIL を等量の抗 CD-8 - 結合免疫吸着ビーズと 1 Xl08/mlで混合し、 4 °Cで 2 時間インキュベートした。 TIL was prepared according to Alexander, RB et al., J. Immunol., 145, 1615-1620 (1990), Matis, A. et al., Methods Bnzymol., 150, 342-351 (1987), Livingst lo One, A. et al., Methods Enzymol., 150, 325-333 (1987) was modified as described below. A 6-10 week old female BALB / C mouse (purchased from Charles River Japan) was transplanted with a fresh tumor mass of colon cancer Colon 26 at 4 ° C in a complete culture medium (CM) at 5 × 10 7 cells / cell. ml was suspended. 10¾ © Shi calf serum CM is obtained by heat-inactivated, 2mM have glutamicum emissions, 5 X10- 5 M 2- mercaptoethanol, lOOU / ml Bae Nishiri down, 100 g / ml scan Torre but-mycin, 0.5 g / ml Anhoteri Shin B, RPMI 1640 supplemented with 10 mM 3- (N-morpholino) propanesulfonic acid and 70 U / ml recombinant human I2 (obtained from Shionogi & Co., Ltd.). TIL was mixed with an equal volume of anti-CD-8-conjugated immunosorbent beads at 1 × 10 8 / ml and incubated at 4 ° C. for 2 hours.
TIL が付着したビーズはペレツ トイ匕し、 冷 CMで 3 回洗浄し、 CM中に 1 xl07b eads/ml 懸濁し、 24ゥヱルの組織培養プレー トに播き、 37°C、 5¾C02 下でインキ ュベートした。 培養 1 日後: TIL から分離したビーズをペレツ トイヒし、 除去した 。 分離した TIL にゥヱル当たり 2 X105 個の照射(10,000rad) 腫瘍細胞、 ならび に 1 X106 個の照射(3, OOOrad)正常脾細胞を用いて刺激した。 in vitro刺激を 7 日から 14日毎に繰り返した。 コンフルェン トになったときに TIL を分取し、 新た な CM中に 2 xi05cell/ml再懸濁した。 Beads TIL is attached is Perez toy spoon, washed 3 times with cold CM, suspended 1 xl0 7 b eads / ml in CM, were seeded in tissue culture plates in 24 Uweru, 37 ° C, 5¾C0 2 below Incubated. One day after culture: The beads separated from TIL were removed by pelleting. The isolated TILs were stimulated with 2 x 10 5 irradiated (10,000 rad) tumor cells per well and 1 x 10 6 irradiated (3, OOOrad) normal spleen cells per well. In vitro stimulation was repeated every 7 to 14 days. Sample was collected TIL when it is Konfuruen bets and resuspended 2 xi0 5 cell / ml in fresh CM.
(2) アデノウイルスによるマウス Iい 2遺伝子の TIL への導入  (2) Adenovirus-mediated transduction of mouse I2 gene into TIL
実施例 1 (2) と同様の方法により上記(1) で調製した TIL へ参考例 1で調製し たマウス Iい 2cDNAを導入し、 マウス IL- 2遺伝子導入 TIL 細胞(TIL/Iい 2)を得た。  In the same manner as in Example 1 (2), the mouse I-2 cDNA prepared in Reference Example 1 was introduced into the TIL prepared in (1) above, and the mouse IL-2 gene-introduced TIL cells (TIL / I-2) I got
(3) アデノウイルスによるマウス IFN-ァ遗伝子の TIL への導入  (3) Introduction of mouse IFN-A gene into TIL by adenovirus
実施例 3 (2) と同様の方法により上記(1) で調製した T1L へ参考例 1で調製し たマウス IFN- 7 CDNAを導入し、 マウス IFN- 7遺伝子導入 TIL 細胞(TIL/1FN-ァ) を得た。  Example 3 The mouse IFN-7 CDNA prepared in Reference Example 1 was introduced into T1L prepared in (1) by the same method as in (2), and the mouse IFN-7 gene-transfected TIL cells (TIL / 1FN-α ) Got.
〔実施例 6] 腫瘍ワクチン (Colon26/IL-2ワクチン) の調製 [Example 6] Preparation of tumor vaccine (Colon26 / IL-2 vaccine)
(1)マウス IL- 2高タイター組み換えレトロウィルス産生クローンの調製  (1) Preparation of mouse IL-2 high titer recombinant retrovirus producing clone
実施例 2 (1) と同様の方法により調製した。  It was prepared in the same manner as in Example 2 (1).
(2) 腫瘍ワクチン (Colon26/IL-2ワクチン) の調製  (2) Preparation of tumor vaccine (Colon26 / IL-2 vaccine)
(1) で選択した IL-2高タイター組み換えレトロウィルス産生クローンをマウス 大腸癌 Colon26 に導入した。 該遗伝子導入細胞は、 10¾ ゥシ胎児血清および 2mM グルタミンを添加した RPMI1640培地で維持し、 HITACHI MBR-1505R X-ray genera tor を用い、 10,000rad の X線を照射した。 照射細胞は HBSSで 2 回洗浄し、 5 x 106 cell/ml の濃度で HBSSに再懸濁し、 腫瘍ワクチン (Colon26/IL-2ワクチン) を得た。 The IL-2 high titer recombinant retrovirus-producing clone selected in (1) was Introduced to colon 26 colon cancer. The transfected cells were maintained in RPMI1640 medium supplemented with 10% fetal serum and 2 mM glutamine, and irradiated with 10,000 rad X-rays using a HITACHI MBR-1505R X-ray genera tor. Irradiated cells were washed twice with HBSS and resuspended in HBSS at a concentration of 5 x 10 6 cells / ml to obtain a tumor vaccine (Colon26 / IL-2 vaccine).
〔試験例 1〕 肺転移系における効果試験 ( 1 ) [Test Example 1] Effect test in lung metastasis system (1)
6〜10週令の雌性 C57BL/6 マウス(Charles River Japanより購入) に 4 X105 個のマウスメラノーマ B16F10細胞を尾静脈に接種し、 肺転移を誘発させた。 2日 後に TIL 単独、 あるいは実施例 1にて調製した TIL/IL- 2を 4 xlO6 個静脈より投 与した [E/T ratio-10:E/T はェフユクタ一細胞(TIL/Iい 2)数/腫瘍細胞(B16F10) 数を表す] 。 同時に実施例 2にて調製した B16F10/IL-2 +GM-CSFワクチンを 5 x 105 個皮下投与した。 肺転移誘発より 1 6曰後に解剖して肺に生じた転移結節数 を数えた。 比較として TIL 単独、 あるいは TIL/IL-2投与のみでワクチン投与を行 わないものについても試験した。 結果を第 2表ならびに第 3図に示す。 Six to ten week old female C57BL / 6 mice (purchased from Charles River Japan) were inoculated with 4 × 10 5 mouse melanoma B16F10 cells into the tail vein to induce lung metastasis. Two days later, TIL alone or TIL / IL-2 prepared in Example 1 was administered through 6 veins of 4 xlO [E / T ratio-10: E / T was a single cell (TIL / I 2 ) Number / tumor cell (B16F10) number]. At the same time, 5 × 10 5 B16F10 / IL-2 + GM-CSF vaccines prepared in Example 2 were subcutaneously administered. Dissection was performed 16 days after the lung metastasis was induced, and the number of metastatic nodules in the lung was counted. For comparison, TIL alone or TIL / IL-2 alone and no vaccine were also tested. The results are shown in Table 2 and FIG.
第 2表 Table 2
Figure imgf000015_0001
Figure imgf000015_0001
TIL/IL- 2と B16F10/Iい 2 +GM-CSFヮクチンを併用して投与した群では特に顕著 な転移結節数の減少が認められ、 肺への癌転移抑制効果が最大となることが確認 できた。 In the group treated with TIL / IL-2 and B16F10 / I2 + GM-CSF Pectin in combination, a particularly remarkable decrease in the number of metastatic nodules was observed, confirming that the effect of suppressing lung cancer metastasis was maximized. did it.
〔試験例 2〕 肺転移系における効果試験 (2) [Test Example 2] Effect test in lung metastasis system (2)
6 〜10週令の雌性 C57BL/6 マウス(Charles River Japanより購入) に 3 xiO5 個のマウスメラノーマ B16F10細胞を尾静脈に接種し、 肺転移を誘発させた。 2日 後に TIL 単独、 あるいは実施例 3にて調製した TIL/IFN- 7を 4.5 X106 個静脈よ り投与した(E/T ratio=15)0 同時に実施例 4にて調製した B16F10/GM-CSF ヮクチ ンを 5 X105 個皮下投与した。 肺転移誘発より 1 6日後に解剖して肺に生じた転 移結節数を数えた。 比較として TIL 単独、 TIL/IFN-ァ投与のみでワクチン投与を 行わないもの、 あるいは B16F10/GM-CSF ワクチン投与のみについても試験した。 結果を第 3表ならびに第 4図に示す。 Six to 10-week-old female C57BL / 6 mice (purchased from Charles River Japan) were inoculated with 3 xiO 5 mouse melanoma B16F10 cells into the tail vein to induce lung metastasis. Two days later, TIL alone or 4.5 × 10 6 TIL / IFN-7 prepared in Example 3 were intravenously administered (E / T ratio = 15) 0 Simultaneously, B16F10 / GM- prepared in Example 4 5 × 10 5 CSF peptides were subcutaneously administered. Dissection was performed 16 days after the induction of lung metastasis, and the number of metastatic nodules generated in the lung was counted. For comparison, TIL alone, TIL / IFN-α alone, no vaccine, or B16F10 / GM-CSF vaccine alone were also tested. The results are shown in Table 3 and FIG.
第 3表 Table 3
Figure imgf000016_0001
Figure imgf000016_0001
T1L/IFN- rと B16F10/GM- CSF ヮクチンを併用して投与した群では特に顕著な 転移結節数の減少が認められ、 肺への癌転移抑制効果が最大となることが確認で きた。 In the group administered with T1L / IFN-r and B16F10 / GM-CSF Pectin in combination, a particularly remarkable decrease in the number of metastatic nodules was observed, confirming that the effect of suppressing lung cancer metastasis was maximized.
〔試験例 3〕 肺転移系における効果試験 (3) [Test Example 3] Effect test in lung metastasis system (3)
6 〜10週令の雌性 BALB/Cマウス(Charles River Japanより購入) に 2 x 104 個 のマウスメラノーマ大腸癌 Colon 26細胞を尾静脈に接種し、 肺転移を誘発させた 。 2曰後に TIL 単独、 あるいは実施例 5にて調製した TIL/1L- 2または TML/IFN-ァ を 1 X 106 個静脈より投与した(E/T ratio=50)。 同時に実施例 6にて調製した Co lon26/IL-2ワクチンを 5 X105 個皮下投与した。 肺転移誘発より 1 8日後に解剖 して肺に生じた転移結節数を数えた。 比較として T1L 単独、 TIL/IFN-ァ投与のみ でワクチン投与を行わないもの、 あるいは Colon26/Iい 2ワクチン投与のみについ ても試験した。 結果を第 4表ならびに第 5図に示す。 第 4表 Six to ten-week-old female BALB / C mice (purchased from Charles River Japan) were inoculated into the tail vein with 2 × 10 4 mouse melanoma colon cancer Colon 26 cells to induce lung metastasis. After that, TIL alone or TIL / 1L-2 or TML / IFN-α prepared in Example 5 was intravenously administered at 1 × 10 6 (E / T ratio = 50). At the same time, 5 × 10 5 pieces of the Colon 26 / IL-2 vaccine prepared in Example 6 were subcutaneously administered. Dissection was performed 18 days after lung metastasis was induced, and the number of metastatic nodules generated in the lung was counted. For comparison, T1L alone, TIL / IFN-α alone and no vaccine administration, or Colon26 / I or 2 vaccine administration alone were also tested. The results are shown in Table 4 and FIG. Table 4
Figure imgf000017_0001
Figure imgf000017_0001
TI L/IFN-ァと Col on26/IL- 2ワクチン、 あるいは TlL/ -2と Col on26/IL-2 ワク チンを併用して投与した群では特に顕著な転移結節数の減少が認められ、 肺への 癌転移抑制効果が最大となることが確認できた。 産業上の利用可能性 The group treated with TI L / IFN-α and Colon26 / IL-2 vaccine, or TlL / -2 and Colon26 / IL-2 vaccine, showed a particularly remarkable decrease in the number of metastatic nodules. It was confirmed that the effect of inhibiting cancer metastasis to HT was maximized. Industrial applicability
本発明によれば、 ヒ ト、 またはマウス、 サル、 ィヌ、 ネコ、 ゥマ、 ブタ等の動 物に高い抗腫瘍性を発揮し得、 かつ癌転移抑制効果がある微小転移の癌治療に有 用な癌の遺伝子治療剤および医薬組成物、 ならびに治療方法が提供される。  INDUSTRIAL APPLICABILITY According to the present invention, it is possible to exhibit high antitumor activity on animals such as humans, mice, monkeys, dogs, cats, horses, pigs, etc. Useful cancer gene therapy agents and pharmaceutical compositions, and therapeutic methods are provided.

Claims

請求の範囲 The scope of the claims
1 . サイ トカイン遺伝子を導入したエフヱクタ一細胞とサイ トカイン遗伝子を腫 瘍細胞に導入した腫瘍ヮクチンを含む癌の遺伝子治療剤。  1. A gene therapy agent for cancer containing an effector cell into which a cytokine gene has been introduced and a tumor actin into which a cytokine gene has been introduced into tumor cells.
2 . エフ クタ一細胞が癌細胞の破壊に関与するリンパ球である請求の範囲第 1 項記載の遺伝子治療剤。  2. The gene therapy agent according to claim 1, wherein the effector cell is a lymphocyte involved in cancer cell destruction.
3 . リ ンパ球が腫瘍浸潤リ ンパ球(TI L) 、 リ ンホカイン活性化キラ一細胞 (LAK) 、 または細胞障害性 T細胞 (CTL)である、 請求の範囲第 2項記載の遺伝子治療剤  3. The gene therapy agent according to claim 2, wherein the lymphocyte is a tumor-infiltrating lymphocyte (TIL), a lymphokine-activated killer cell (LAK), or a cytotoxic T cell (CTL).
4 . 腫瘍細胞がメラノーマ細胞、 肾癌細胞、 乳癌細胞、 偏平上皮癌、 腺癌、 移行 上皮癌、 肉腫、 または神経膠腫 (ダルコ一マ) である、 請求の範囲第 1項に記載 の遗伝子 療剤。 4. The method according to claim 1, wherein the tumor cell is a melanoma cell, a cancer cell, a breast cancer cell, a squamous cell carcinoma, an adenocarcinoma, a transitional cell carcinoma, a sarcoma, or a glioma (Darcoma). Gene therapy.
5 . エフヱクタ一細胞に導入するサイ トカイン遗伝子が、 インターロイキン (1 L ) - 2遗伝子である請求の範囲第 1項に記載の遺伝子治療剤。  5. The gene therapy agent according to claim 1, wherein the cytokine gene introduced into the effector cell is an interleukin (1L) -2 gene.
6 . 腫瘍細胞に導入するサイ トカイン遗伝子が、 顆粒球マクロファージコロニー 刺激因子(GM-CSF)遺伝子、 インタ一ロイキン (1 L) 一 2遺伝子の少なく とも一つ である請求の範囲第 1項に記載の遺伝子治療剤。  6. The cytokine gene to be introduced into a tumor cell is at least one of a granulocyte macrophage colony stimulating factor (GM-CSF) gene and an interleukin (1L) 12 gene. The gene therapy agent according to the above.
7 . サイ トカイン遺伝子がアデノウイルスベクターによりエフェクター細胞に導 入された請求の範囲第 1項記載の遺伝子治療剤。  7. The gene therapy agent according to claim 1, wherein the cytokine gene has been introduced into the effector cell by an adenovirus vector.
8 . サイ トカイン遗伝子がレトロウィルスベクターにより腫瘍細胞に導入された 請求の範囲第 1項記載の遗伝子治療剤。  8. The gene therapeutic agent according to claim 1, wherein the cytokine gene has been introduced into tumor cells by a retroviral vector.
9 . サイ トカイン遗伝子を導入したエフヱクタ一細胞を含有する製剤とサイ トカ ィン遗伝子を腫瘍細胞に導入した腫瘍ワクチンを含有する製剤を同時にまたは逐 次的に癌患者に投与することを特徴とする癌の遺伝子治療方法。  9. Simultaneous or sequential administration of a preparation containing an effector cell into which a cytokine gene has been introduced and a preparation containing a tumor vaccine into which a cytokine gene has been introduced into a tumor cell to a cancer patient. A method for gene therapy for cancer, which comprises:
10. ェフ クタ一細胞が癌細胞の破壊に関与するリンパ球である請求の範囲第 9 項記載の遺伝子治療方法。  10. The method according to claim 9, wherein the effector cell is a lymphocyte involved in destruction of a cancer cell.
11. リ ンパ球が腫瘍浸潤リ ンパ球(TIし) 、 リ ンホカイ ン活性化キラー細胞 (LAK) 、 または細胞障害性 T細胞 (CTいである、 請求の範囲第 10項記載の遗伝子治療方 法。  11. The gene therapy according to claim 10, wherein the lymphocyte is a tumor-infiltrating lymphocyte (TI), a lymphokine-activated killer cell (LAK), or a cytotoxic T cell (CT). Method.
12. 腫瘍細胞がメラノ一マ細胞、 肾癌細胞、 乳癌細胞、 偏平上皮癌、 腺癌、 移行 上皮癌、 肉腫、 または神経膠腫 (ダルコ一マ) である、 請求の範囲第 9項に記載 の遺伝子治療方法。 12. The tumor cells are melanoma cells, 肾 cancer cells, breast cancer cells, squamous cell carcinoma, adenocarcinoma, metastasis The gene therapy method according to claim 9, wherein the method is epithelial cancer, sarcoma, or glioma (Darcoma).
13. エフヱクタ一細胞に導入するサイ ト力イン遺伝子が、 インターロイキン (I L ) - 2遺伝子である請求の範囲第 9項に記載の遺伝子治療方法。  13. The gene therapy method according to claim 9, wherein the site force gene to be introduced into the effector cell is the interleukin (IL) -2 gene.
14. 腫瘍細胞に導入するサイ ト力イン遺伝子が、 顆粒球マクロファージコロニー 刺激因子(GM-CSF)遺伝子、 インタ一ロイキン ( ) — 2遗伝子の少なくとも一つ である請求の範囲第 9項に記載の遺伝子治療方法。  14. The method according to claim 9, wherein the site force gene to be introduced into the tumor cell is at least one of a granulocyte macrophage colony stimulating factor (GM-CSF) gene and an interleukin () -2 gene. The method for gene therapy according to the above.
15. サイ トカイン遺伝子がアデノウイルスベクターによりエフェクター細胞に導 入された請求の範囲第 9項記載の遺伝子治療方法。  15. The gene therapy method according to claim 9, wherein the cytokine gene is introduced into the effector cells by an adenovirus vector.
16. サイ トカイン遺伝子がレトロウィルスベクタ一により腫瘍細胞に導入された 請求の範囲第 9項記載の遗伝子治療方法。  16. The gene therapy method according to claim 9, wherein the cytokine gene has been introduced into tumor cells by a retroviral vector.
17. 癌の遺伝子治療のために使用する医薬組成物であって、 該組成物がサイ トカ ィン遺伝子を導入したエフェクタ一細胞とサイ ト力ィン遗伝子を腫瘍細胞に導入 した腫瘍ワクチンの組み合わせおよび薬学的に許容される担体からなる医薬組成 物。  17. A pharmaceutical composition for use in gene therapy for cancer, wherein the composition comprises an effector cell into which a cytokine gene has been introduced and a tumor vaccine comprising a cytodynamic gene introduced into a tumor cell. And a pharmaceutically acceptable carrier.
18. エフェクター細胞が癌細胞の破壊に関与するリ ンパ球である請求の範囲第 17 項記載の医薬組成物。  18. The pharmaceutical composition according to claim 17, wherein the effector cells are lymphocytes involved in cancer cell destruction.
19. リ ンパ球が腫瘍浸潤リ ンパ球(TI L) 、 リ ンホカイン活性化キラー細胞 (LAK) 、 または細胞障害性 T細胞 (CTL)である、 請求の範囲第 18項記載の医薬組成物。  19. The pharmaceutical composition according to claim 18, wherein the lymphocyte is a tumor-infiltrating lymphocyte (TIL), a lymphokine-activated killer cell (LAK), or a cytotoxic T cell (CTL).
20. 腫瘍細胞がメラノーマ細胞、 腎癌細胞、 乳癌細胞、 偏平上皮癌、 腺癌、 移行 上皮癌、 肉腫、 または神経膠腫 (ダルコ一マ) である、 請求の範囲第 Π項に記載 の医薬組成物。 20. The medicament according to claim 6, wherein the tumor cell is a melanoma cell, a renal cancer cell, a breast cancer cell, a squamous cell carcinoma, an adenocarcinoma, a transitional cell carcinoma, a sarcoma, or a glioma (Darcoma). Composition.
21. エフヱクタ一細胞に導入するサイ トカイン遗伝子が、 インターロイキン (I L ) 一 2遺伝子である請求の範囲第 17項に記載の医薬組成物。  21. The pharmaceutical composition according to claim 17, wherein the cytokine gene to be introduced into the effector cell is the interleukin (IL) 12 gene.
22. 腫瘍細胞に導入するサイ トカイン遗伝子が、 顆粒球マクロファージコロニー 刺激因子(GM-CSF)遺伝子、 インターロイキン ( ) 一 2遺伝子の少なくとも一つ である請求の範囲第 Π項に記載の医薬組成物。  22. The pharmaceutical according to claim 2, wherein the cytokine gene to be introduced into the tumor cell is at least one of a granulocyte macrophage colony stimulating factor (GM-CSF) gene and an interleukin () -12 gene. Composition.
23. サイ トカイン遗伝子がアデノウイルスベクターによりエフヱクタ一細胞に導 入された請求の範囲第 17項記載の医薬組成物。 23. Cytokine genes are transferred to effector cells by adenovirus vectors 18. The pharmaceutical composition according to claim 17, wherein said pharmaceutical composition is contained.
24. サイ トカイン遺伝子がレトロウィルスベクターにより腫瘍細胞に導入された 請求の範囲第 17項記載の医薬組成物。  24. The pharmaceutical composition according to claim 17, wherein the cytokine gene has been introduced into tumor cells by a retroviral vector.
PCT/JP1995/001785 1994-09-09 1995-09-08 Gene therapy drug for cancer, medicinal composition, and therapeutic method WO1996007433A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP6/216409 1994-09-09
JP21640994 1994-09-09
JP11838295A JP3822261B2 (en) 1994-09-09 1995-05-17 Cancer gene therapy
JP7/118382 1995-05-17

Publications (1)

Publication Number Publication Date
WO1996007433A1 true WO1996007433A1 (en) 1996-03-14

Family

ID=26456336

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1995/001785 WO1996007433A1 (en) 1994-09-09 1995-09-08 Gene therapy drug for cancer, medicinal composition, and therapeutic method

Country Status (2)

Country Link
JP (1) JP3822261B2 (en)
WO (1) WO1996007433A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999029864A1 (en) * 1997-12-09 1999-06-17 Virogenetics Corporation Recombinant vaccinia constructs expressing feline il-2, compositions and methods of use thereof
US6203787B1 (en) 1997-10-10 2001-03-20 The Regents Of The University Of California Treating tumors using implants comprising combinations of allogeneic cells
US6277368B1 (en) 1996-07-25 2001-08-21 The Regents Of The University Of California Cancer immunotherapy using autologous tumor cells combined with cells expressing a membrane cytokine
US7361332B2 (en) 1995-03-17 2008-04-22 The Regents Of The University Of California Treating tumors using implants comprising combinations of allogeneic cells
WO2018138682A1 (en) 2017-01-26 2018-08-02 Immune Therapeutics Methods and compositions useful for treating cancer

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6699468B1 (en) 1994-06-23 2004-03-02 Georgetown University Replication-competent herpes simplex virus mediates destruction of neoplastic cells
US6379674B1 (en) * 1997-08-12 2002-04-30 Georgetown University Use of herpes vectors for tumor therapy

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993007906A1 (en) * 1991-10-25 1993-04-29 San Diego Regional Cancer Center Lymphokine gene therapy of cancer
WO1993019191A1 (en) * 1992-03-16 1993-09-30 Centre National De La Recherche Scientifique Defective recombinant adenoviruses expressing cytokines for use in antitumoral treatment
WO1993021959A1 (en) * 1992-05-01 1993-11-11 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Bystander effect tumoricidal therapy
JPH06157333A (en) * 1992-11-13 1994-06-03 Ajinomoto Co Inc Antineoplastic agent

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993007906A1 (en) * 1991-10-25 1993-04-29 San Diego Regional Cancer Center Lymphokine gene therapy of cancer
WO1993019191A1 (en) * 1992-03-16 1993-09-30 Centre National De La Recherche Scientifique Defective recombinant adenoviruses expressing cytokines for use in antitumoral treatment
WO1993021959A1 (en) * 1992-05-01 1993-11-11 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Bystander effect tumoricidal therapy
JPH06157333A (en) * 1992-11-13 1994-06-03 Ajinomoto Co Inc Antineoplastic agent

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
CELL, Vol. 60, (1990), ERIC R. FEARON et al., pages 397-403. *
PROC. NATL. ACAD. SCI. U.S.A., Vol. 90, (1993), GLENN DRANOFF et al., pages 3539-3543. *
STRIDES OF MEDICINE, Vol. 167, No. 5, (1993), MINORU TAKAHASHI et al., pages 270-276. *
THE JOURNAL OF IMMUNOLOGY, Vol. 150, (1993), PATRICK HWU et al., pages 4104-4115. *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7361332B2 (en) 1995-03-17 2008-04-22 The Regents Of The University Of California Treating tumors using implants comprising combinations of allogeneic cells
US6277368B1 (en) 1996-07-25 2001-08-21 The Regents Of The University Of California Cancer immunotherapy using autologous tumor cells combined with cells expressing a membrane cytokine
US7264820B2 (en) 1996-07-25 2007-09-04 The Regents Of The University Of California Cancer immunotherapy using autologous tumor cells combined with cells expressing a membrane cytokline
US7364726B2 (en) 1996-07-25 2008-04-29 The Regents Of The University Of California Pharmaceutical composition for cancer treatment containing cells that express a membrane cytokine
US6203787B1 (en) 1997-10-10 2001-03-20 The Regents Of The University Of California Treating tumors using implants comprising combinations of allogeneic cells
WO1999029864A1 (en) * 1997-12-09 1999-06-17 Virogenetics Corporation Recombinant vaccinia constructs expressing feline il-2, compositions and methods of use thereof
WO2018138682A1 (en) 2017-01-26 2018-08-02 Immune Therapeutics Methods and compositions useful for treating cancer

Also Published As

Publication number Publication date
JP3822261B2 (en) 2006-09-13
JPH08127542A (en) 1996-05-21

Similar Documents

Publication Publication Date Title
Song et al. Regulation of T-helper-1 versus T-helper-2 activity and enhancement of tumor immunity by combined DNA-based vaccination and nonviral cytokine gene transfer
KR100911624B1 (en) Methods for Effectively Coexpressing ????? and ?????
WO1994004196A1 (en) Tumour therapy
Nakamori et al. Intensification of antitumor effect by T helper 1-dominant adoptive immunogene therapy for advanced orthotopic colon cancer
Shi et al. Granulocyte-macrophage colony-stimulating factor (GM-CSF) secreted by cDNA-transfected tumor cells induces a more potent antitumor response than exogenous GM-CSF
Ohe et al. Combination effect of vaccination with IL2 and IL4 cDNA transfected cells on the induction of a therapeutic immune response against Lewis lung carcinoma cells
Uckert et al. Retrovirus-mediated gene transfer in cancer therapy
Tüting et al. Interferon-α gene therapy for cancer: retroviral transduction of fibroblasts and particle-mediated transfection of tumor cells are both effective strategies for gene delivery in murine tumor models
Coleman et al. Nonviral interferon α gene therapy inhibits growth of established tumors by eliciting a systemic immune response
Wang et al. Gene gun–mediated oral mucosal transfer of interleukin 12 cDNA coupled with an irradiated melanoma vaccine in a hamster model: Successful treatment of oral melanoma and distant skin lesion
JP3822261B2 (en) Cancer gene therapy
CA2252470A1 (en) Treatment of human cancers with an adenovirus vector containing an interferon consensus gene
Shiau et al. Postoperative immuno-gene therapy of murine bladder tumor by in vivo administration of retroviruses expressing mouse interferon-γ
Patel et al. Generation of interleukin-2-secreting melanoma cell populations from resected metastatic tumors
CAO et al. Construction of retroviral vectors to induce strong hepatoma cell‐specific expression of cytokine genes
Han et al. Study on interleukin-18 gene transfer into human breast cancer cells to prevent tumorigenicity
Kimura et al. Loss of tumorigenicity of human pancreatic carcinoma cells engineered to produce interleukin-2 or interleukin-4 in nude mice: a potentiality for cancer gene therapy
CN111848811A (en) Protein heterodimer and application thereof
US20030018006A1 (en) In vivo electroporation-mediated cytokine/immunocytokine-based antitumoral gene
Patry et al. Immunization against a rat colon carcinoma by sodium butyrate-treated cells but not by interleukin 2-secreting cells
US7132407B2 (en) DNA vaccine containing tumor-associated gene and cytokine gene and method of preparation the same
Tahara et al. Gene Therapy for Adult Cancers: Advance in Immunologic Approaches Using Cytokines
Matsubara et al. Antitumor response of genetically engineered IL-2 expression to human esophageal carcinoma cells in mature T cell-defective condition.
TWI278320B (en) A complex immunity gene medicine composition for inhibiting tumor cell
JP2004262797A (en) Anti-tumor agent using interleukin-23 gene

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase