WO1995017964A1 - A reaction chamber and a method for generating a gaseous sample based on the use thereof - Google Patents

A reaction chamber and a method for generating a gaseous sample based on the use thereof Download PDF

Info

Publication number
WO1995017964A1
WO1995017964A1 PCT/FI1994/000565 FI9400565W WO9517964A1 WO 1995017964 A1 WO1995017964 A1 WO 1995017964A1 FI 9400565 W FI9400565 W FI 9400565W WO 9517964 A1 WO9517964 A1 WO 9517964A1
Authority
WO
WIPO (PCT)
Prior art keywords
reaction chamber
plunger
reaction
valve
vessel
Prior art date
Application number
PCT/FI1994/000565
Other languages
French (fr)
Inventor
Paul Ek
Original Assignee
Paul Ek
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Paul Ek filed Critical Paul Ek
Priority to US08/663,046 priority Critical patent/US5741710A/en
Priority to AU12446/95A priority patent/AU1244695A/en
Priority to EP95903361A priority patent/EP0764051B1/en
Priority to DE69414608T priority patent/DE69414608T2/en
Publication of WO1995017964A1 publication Critical patent/WO1995017964A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/0011Sample conditioning
    • G01N33/0013Sample conditioning by a chemical reaction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T436/00Chemistry: analytical and immunological testing
    • Y10T436/25Chemistry: analytical and immunological testing including sample preparation
    • Y10T436/25875Gaseous sample or with change of physical state

Definitions

  • a reaction chamber and a method for generating a gaseous sample based on the use thereof are provided.
  • the invention relates to a novel reaction chamber particularly for analytical use.
  • the invention relates also to a novel assay method based on the use of the said reaction chamber.
  • a reaction chamber For the quantitative assay of a component in a sample a reaction chamber is used into which the sample and one or more reactants, usually in liquid or gaseous state, are introduced.
  • the component to be assayed is reacted in the reaction chamber with the reactant(s), and one or, usually, several reaction products are formed in liquid or gaseous state.
  • One of the reaction products is representative of the component to be assayed and shall be quantitated with a suitable detector. In certain cases the entire reaction mixture can be introduced into the detector, which records the component to be assayed.
  • the component to be assayed has to be separated from the reaction mixture before feeding it into the detector for measurement, because other reaction products may interfere with the accuracy of the quantitation of the component to be assayed or load the detector unnecessarily.
  • the component to be assayed is in gaseous state while the other reaction products are liquid it is important that the liquid components be separated from the gaseous component to be assayed, as liquids interfere with the functioning of instruments for the detection of gases.
  • Modern analytical instruments are required to offer, in addition to high accuracy, also high throughput, i.e. they must be capable of performing a great number of analyses per unit time. Rapid emptying of the reaction vessel is also important to save time. Emptying must also be as complete as possible in order to avoid contamination of fresh samples and reactants .
  • Reaction chambers for analytical use are nowadays usually vessels having a specified volume, said vessels being emptied and possibly cleaned after the completion of the reaction, before being refilled with a new sample and reactant for the next determination.
  • Complete emptying is difficult especially when the component to be assayed is in gaseous state.
  • the gas to be assayed is usually displaced from the reaction vessel by means of an inert gas, which then, as a carrier gas, carries the gaseous analyte into the detector.
  • This type of reaction was described e.g. by Hayrynen H et al . , Atomic Spectroscopy, Vol. 6, No. 4, pp. 88-90 (1985). This manner of emptying is, however, fraught with several difficulties.
  • the carrier gas mixes rather completely with the gas to be determined, which means that complete removal of the analyte gas from the reaction vessel takes a long time.
  • the analyte gas to be introduced into the detector will be considerably diluted, which contributes to the reduction of the accuracy of the assay.
  • other reaction products which are usually in liquid state, are carried with the gas stream as droplets, and will load the detector.
  • the objective of this invention is to resolve and remove the problem described above and to design a novel reaction chamber, from which reaction products can be rapidly removed, and which can be rapidly refilled with new sample and reactants.
  • the analyte in the reaction mixture can also be efficiently separated from other reaction products whenever the analyte is distributed in a phase separate from the one in which the other reaction products are found.
  • the invention thus relates to a reaction chamber comprising a cylindrical vessel having in one end at least one inlet or outlet tube or a lead-through fitted with a valve, for the liquid or gaseous component.
  • the invention is characterized by the other end of the cylindrical vessel being open and by the reaction chamber further comprising a plunger performing a reciprocating movement within the cylindrical vessel in axial direction through the open end of the vessel.
  • the invention is further characterized by the plunger sealing against the inner wall of the cylindrical vessel and having at least one substantially axially directed channel fitted with a valve or connected to a tubing fitted with a valve.
  • the invention relates also to a quantitative assay method for an element generating a gas or a gaseous hydride, in which method a sample containing the element together with sodium borohydride and an acid is fed into the reaction chamber and reacted.
  • the gas mixture evolved in the reaction is displaced from the reaction chamber and fed into a plasma spectrometer for the quantitation of the element.
  • the method is characterized by performing the reaction in a reaction chamber according to Claim 1, into which chamber the sample, sodium borohydride and acid are introduced by aspiration or pumping by driving the plunger outwards in the vessel, and from which chamber the gas mixture evolved in the reaction is displaced by driving the plunger inwards in the vessel. Finally liquid reaction products are removed from the reaction chamber by further continuing the inward movement of the plunger.
  • the inlet or outlet tube is connected to a multi-channel valve which is used to feed the sample and one or more reagents successively into the reaction chamber.
  • the plunger has several channels, substantially in axial direction, which are connected to a tube fitted with a valve.
  • tubes or lead- throughs fitted with a valve are fixed in one end of the vessel .
  • Figure 1 shows the reaction chamber in axial cross-section
  • Figure 2 shows the reaction chamber in axial cross-section according to another embodiment
  • Figure 3 shows the bottom of the plunger of the reaction chamber of Fig. 2 and the tubes with associated valves connected to the channels of the plunger
  • Figure 4 shows the reaction chamber in axial cross-section according to a third embodiment
  • Fig. 1 shows the reaction chamber 10 in cross-section.
  • the reaction chamber comprises a cylindrical vessel 11, having at one end 12 an inlet or outlet tube 20, fitted with a valve 25, for the gaseous or liquid component.
  • the other end 13 of the vessel 11 is open.
  • the plunger 14 can be driven inside the cylindrical vessel 11 in axial direction in a reciprocating movement, through the open end 13.
  • the plunger tightens against the inner wall of the cylindrical vessel.
  • Channel 15 runs through the plunger substantially in direction of the axis of the plunger.
  • Channel 15 is connected to tube 40 fitted with valve 45.
  • valve 45 could be located directly in channel 15 inside the plunger.
  • valve 25 associated with inlet or outlet tube 20 is a multi-channel valve.
  • the multi-channel valve 25 can be used to feed sample A and one or more reagents B, C, D, E, F one after another into the reaction chamber through tubes 26 - 31.
  • valve 45 is closed and the plunger 14 is forced outwards in relation to the vessel 11 by means of a suitable drive mechanism, e.g. an electric motor or a pneumatic cylinder. Vacuum is generated in the space 16 between plunger 14 and vessel 11.
  • a suitable drive mechanism e.g. an electric motor or a pneumatic cylinder.
  • Vacuum is generated in the space 16 between plunger 14 and vessel 11.
  • the components A, B, C. ' .. can be fed into the reaction chamber. If a gas is evolved in the reaction the plunger is driven outwards from the vessel during the reaction.
  • valve 25 can be opened after the reaction is completed and the gaseous analyte can be channelled to the measuring detector through said valve.
  • the gaseous component is displaced from the chamber by driving the plunger inwards in vessel 11. After the gas has been removed completely valve 25 is closed and valve 45 opened. By driving the plunger further inwards in vessel 11 unreacted components and the liquid components (so-called wastes) formed in the reaction can be removed.
  • the end 14a of the plunger 14 which enters the vessel 11 is slightly funnel-shaped.
  • the reaction chamber is operated in vertical position like in the figure the removal of liquid compounds is facilitated by this shape.
  • Another advantage is that a certain space is still left between the end 14a of the plunger and the end 11a of the vessel 11 when the plunger has been pushed all the way into the vessel 11.
  • This allows the use of a magnetic mixer in the reaction space 16, which is useful in many reactions in order to achieve complete mixing of the sample and the reagents.
  • the magnetic mixer conforms to the reciprocating movement of the plunger.
  • Fig. 2 shows another embodiment of the reaction chamber in longitudinal cross-section.
  • Several channels 15a, 15b, 15c etc. run through the plunger.
  • Fig. 3 shows the bottom 17 of the plunger of the reaction chamber of Fig. 2.
  • the tubes 40a, 40b, 40c... fitted with valves 45a, 45b, 45c... have been connected to the channels 15a, 15b/ 15c etc. ending in the bottom 17.
  • the end 14a of the plunger is again slightly funnel-shaped.
  • the embodiment according to Fig. 2 allows the simultaneous introduction of several compounds into the reaction chamber.
  • the sample A and the reagents C - E can be introduced simultaneously through tubes 40a respectively 40c - 40e by driving the plunger 14 outwards from the vessel 11 while maintaining the valves 45a respectively 45c - 45e open and the valves 25 and 45b closed. If less compounds are required to be introduced as to take all the tubes 40c - e, the valves 45 of the tubes not in use will be closed. Tube 40b and its valve 45b are reserved for the removal of liquid compounds (wastes). After the introduction of the compounds all valves 45 are closed. After the completion of the reaction the gaseous analyte is removed through tube 20 by opening the valve 25 and driving the plunger inwards in the vessel 11. After the removal of the gas valve 25 is closed while valves 45a and 45c - e are still kept closed. By opening valve 45b and driving the plunger further inwards in the vessel 11 liquid reaction products and unreacted compounds are emptied from the reaction chamber
  • valves 45 have been connected to tubes 40 outside the plunger. This arrangement has the disadvantage of leaving a rather large dead volume in tubes 40 and channels 15. To avoid this, the valves 45 may be alternatively located inside the plunger directly in the channels 15.
  • the sample and reagents can be introduced by aspiration or by pumping them into the reaction chamber. Pumping is the preferred alternative, if high accuracy of feeding is required.
  • Figs. 2 and 3 have the further advantage, in addition to the rapid introduction of compounds, of reserving the tube 20 entirely for the transport of the gaseous component. The risk of contamination by liquid components is then avoided.
  • the reaction chamber can also be rinsed with e.g. argon gas or distilled water after emptying and before refilling.
  • the purge with argon gas can be performed e.g. in the following way: The plunger is retracted outwards while valve 25 is kept open towards the inlet tube of argon, and other valves are shut. Then the vessel is emptied via valve 45b by driving the plunger inwards in the vessel 11 while the other valves are shut.
  • one of the channels connected to valve 25 must be reserved for the inlet of distilled water.
  • Fig. 4 shows an alternative reaction chamber, in which the sample and reagents can be fed simultaneously through tubes 20a - c fitted with valves 25a - c located at the end 11a of vessel 11.
  • the end 11a has been shaped to conform to the funnel-like end of plunger 14a when the plunger is completely driven inside the vessel 11. This shape is advantageous for a complete emptying.
  • the reaction chamber comprises preferably also a drive mechanism to move the plunger and a control unit comprising all components necessary for the control of the drive mechanism and the valves .
  • the control unit comprises preferably also a processor to control the drive mechanism and the valves .
  • reaction chamber described above is particularly well suited to situations in which gaseous reaction products are formed, because handling of such reaction mixtures is particularly difficult, and no useful designs are available for the separation of the gas and liquid phases .
  • the reaction chamber according to the invention is also applicable to reactions in which no gaseous but, instead, only liquid reaction products are formed.
  • the rapid addition of sample and reagents into the reaction chamber and the rapid and complete removal of reaction products are characteristics which make the reaction chamber according to the invention considerably superior to devices of prior art.
  • reaction chamber is, of course, not limited to situations in which a chemical reaction between the different components takes place. It is applicable as well to different physical unitary operations such as absorption, extraction and mixing. Extraction, like a reaction producing gaseous reaction products, is a two-phase system with one phase being considerably lighter than the other phase. The operational schemes of extraction and gas treatment are thus largely comparable.
  • this reaction chamber can be used to transfer analytes easily into the medium most suitable for the detection method.
  • reaction shall be interpreted as covering both chemical reactions and physical binding processes .
  • reaction chamber In two-phase treatments like gas-forming reactions and extraction it is preferable to use the reaction chamber in a vertical position. In other kinds of reactions the reaction chamber may be used in any position.
  • the reaction chamber according to the invention has enabled a new type of quantitative assay method for elements which become gaseous under the effect of sodium borohydride, e.g. for those which are able to form a gaseous hydride in acidic conditions under the effect of sodium borohydride.
  • Elements forming hydrides are typically bismuth, germanium, selenium, antimony, arsenic, lead, tin and tellurium. According to a known method these elements are usually assayed by dispersing pneumatically a liquid sample containing the element to be determined to form an aerosol, which is then introduced into the plasma of a spectrometer, in which the elements contained in the sample are atomized, excited and ionized.
  • the accumulated hydride gas is removed in a continuous process from the reactor by means of an inert carrier gas and carried into a plasma spectrometer used as a detector.
  • This method has, however, some disadvantages, e.g. high consumption of reagents and inferior stability when the gas is fed into the plasma.
  • the method according to the invention is also suitable for the determination of mercury.
  • Mercury does not produce a hydride; instead, it becomes itself gaseous under the effect of sodium borohydride.
  • Mercury can be determined with the same reagents used in the reactions to form a hydride.
  • Sodium borohydride is known to reduce Hg( I ) and Hg(II) ions to metallic Hg(0) , which is gaseous already at room temperature. After the reduction gaseous mercury can be introduced, like gaseous hydrides, e.g. by means of a capillary column, in the middle of the plasma, and the emission signal can be measured spectrometrically.
  • the sample containing the element to be determined and the reagent solutions are introduced into the reaction chamber either successively from the above, according to Fig. 1, or simultaneously according to Fig.2 or Fig. 4, respectively, through the channels 15 of the plunger of the reaction chamber or, respectively, the tubes 20 fixed at the end 11a of the vessel.
  • the element (mercury) becomes gaseous or a gaseous hydride of the element and hydrogen gas are produced.
  • the gaseous mixture is displaced from the reaction chamber after the completion of the reaction by one of the methods described above.
  • the entire gaseous mixture, into which the element to be determined has been trasferred completely, is fed into the middle of the plasma of the spectrometer. After the gas mixture has been removed from the reaction chamber, liquid waste is also removed by one of the methods described above. Especially good results are obtained by feeding the gas in the middle of the plasma by means of a quartz capillary tube.
  • the invention relates also to a method for introducing samples in the middle of the plasma in DCP (Direct Current Plasma) or ICP (Inductively Coupled Plasma) atomic emission spectrometers or in ICP-MS (Inductively Coupled Plasma) mass spectrometer.
  • the method is based on replacing the conventional sample introduction system (pneumatic nebulizer) of the spectrometer with a thin capillary tube (inner diameter 0.1 to 0.5 mm), through which the gaseous or liquid sample to be analyzed or a mixture containing the sample is forced by pressure.
  • the capillary tube is preferably of quartz. Due to the high melting point of quartz the tip of the capillary can be taken quite close to the excitation zone of the plasma.
  • Decomposition of the gas or liquid is avoided and it can be centered within a very narrow zone in the middle of the plasma.
  • T 5000 K
  • the vaporized liquid is forced by pressure in the middle of the plasma, in which the elements contained in the sample are excited.
  • the dead volume in the tube is also very small.
  • the dead volume is only 3.9 ⁇ l. This allows the use of extremely small sample volumes, and in practice a volume of 10 - 50 ⁇ l is sufficient. It may be mentioned for comparison that conventional techniques usually require 2 - 5 ml .
  • This method of sample introduction also guarantees efficient use of the sample, since it allows the introduction of 100% of the elements of the sample in the middle of the excitation zone of the plasma.
  • reaction chamber By combining the reaction chamber according to the invention with the capillary tube introduction method e.g. metals present in an aqueous phase can be analyzed with high precision in the following way: An extraction is performed in the reaction chamber, in which the metal complexes or compounds are extracted from the heavy aqueous phase into the lighter phase, which consists of a suitable organic solvent.
  • the metal concentration of the organic phase can be determined by displacing the organic phase from the reaction chamber and feeding it into the plasma of a spectrometer through a thin quartz capillary tube.
  • the emission of metal ions is measured with the spectrometer, which records the metal concentration of the extracted solution.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Abstract

The invention relates to a reaction chamber (10), which comprises a cylindrical vessel (11), with, at one end (12), at least one inlet or outlet tube or lead-through (20) fitted with a valve (25) for a liquid or gaseous component. The other end (13) of the vessel is open. The reaction chamber further comprises a plunger (14), which performs a reciprocating movement within the cylindrical vessel in axial direction through the open end (13) of the vessel. The plunger tightens against the inner wall of the cylindrical vessel, and has at least one channel (15), in substantially axial direction, fitted with a valve (45) or connected to a tube (40) fitted with a valve. The invention relates also to an assay method based on the use of the said reaction chamber.

Description

A reaction chamber and a method for generating a gaseous sample based on the use thereof.
The invention relates to a novel reaction chamber particularly for analytical use. The invention relates also to a novel assay method based on the use of the said reaction chamber.
For the quantitative assay of a component in a sample a reaction chamber is used into which the sample and one or more reactants, usually in liquid or gaseous state, are introduced. The component to be assayed is reacted in the reaction chamber with the reactant(s), and one or, usually, several reaction products are formed in liquid or gaseous state. One of the reaction products is representative of the component to be assayed and shall be quantitated with a suitable detector. In certain cases the entire reaction mixture can be introduced into the detector, which records the component to be assayed. In most cases, however, the component to be assayed has to be separated from the reaction mixture before feeding it into the detector for measurement, because other reaction products may interfere with the accuracy of the quantitation of the component to be assayed or load the detector unnecessarily. Especially in those situations in which the component to be assayed is in gaseous state while the other reaction products are liquid it is important that the liquid components be separated from the gaseous component to be assayed, as liquids interfere with the functioning of instruments for the detection of gases.
Modern analytical instruments are required to offer, in addition to high accuracy, also high throughput, i.e. they must be capable of performing a great number of analyses per unit time. Rapid emptying of the reaction vessel is also important to save time. Emptying must also be as complete as possible in order to avoid contamination of fresh samples and reactants .
Reaction chambers for analytical use are nowadays usually vessels having a specified volume, said vessels being emptied and possibly cleaned after the completion of the reaction, before being refilled with a new sample and reactant for the next determination. Complete emptying is difficult especially when the component to be assayed is in gaseous state. The gas to be assayed is usually displaced from the reaction vessel by means of an inert gas, which then, as a carrier gas, carries the gaseous analyte into the detector. This type of reaction was described e.g. by Hayrynen H et al . , Atomic Spectroscopy, Vol. 6, No. 4, pp. 88-90 (1985). This manner of emptying is, however, fraught with several difficulties. The carrier gas mixes rather completely with the gas to be determined, which means that complete removal of the analyte gas from the reaction vessel takes a long time. The analyte gas to be introduced into the detector will be considerably diluted, which contributes to the reduction of the accuracy of the assay. In addition, other reaction products, which are usually in liquid state, are carried with the gas stream as droplets, and will load the detector.
The objective of this invention is to resolve and remove the problem described above and to design a novel reaction chamber, from which reaction products can be rapidly removed, and which can be rapidly refilled with new sample and reactants. The analyte in the reaction mixture can also be efficiently separated from other reaction products whenever the analyte is distributed in a phase separate from the one in which the other reaction products are found.
The invention thus relates to a reaction chamber comprising a cylindrical vessel having in one end at least one inlet or outlet tube or a lead-through fitted with a valve, for the liquid or gaseous component. The invention is characterized by the other end of the cylindrical vessel being open and by the reaction chamber further comprising a plunger performing a reciprocating movement within the cylindrical vessel in axial direction through the open end of the vessel. The invention is further characterized by the plunger sealing against the inner wall of the cylindrical vessel and having at least one substantially axially directed channel fitted with a valve or connected to a tubing fitted with a valve.
The invention relates also to a quantitative assay method for an element generating a gas or a gaseous hydride, in which method a sample containing the element together with sodium borohydride and an acid is fed into the reaction chamber and reacted. The gas mixture evolved in the reaction is displaced from the reaction chamber and fed into a plasma spectrometer for the quantitation of the element. The method is characterized by performing the reaction in a reaction chamber according to Claim 1, into which chamber the sample, sodium borohydride and acid are introduced by aspiration or pumping by driving the plunger outwards in the vessel, and from which chamber the gas mixture evolved in the reaction is displaced by driving the plunger inwards in the vessel. Finally liquid reaction products are removed from the reaction chamber by further continuing the inward movement of the plunger.
According to one embodiment the inlet or outlet tube is connected to a multi-channel valve which is used to feed the sample and one or more reagents successively into the reaction chamber.
According to another embodiment the plunger has several channels, substantially in axial direction, which are connected to a tube fitted with a valve.
According to a third embodiment several tubes or lead- throughs fitted with a valve are fixed in one end of the vessel .
The invention will be illustrated by reference to the appended drawings , in which
Figure 1 shows the reaction chamber in axial cross-section
Figure 2 shows the reaction chamber in axial cross-section according to another embodiment
Figure 3 shows the bottom of the plunger of the reaction chamber of Fig. 2 and the tubes with associated valves connected to the channels of the plunger
Figure 4 shows the reaction chamber in axial cross-section according to a third embodiment
Fig. 1 shows the reaction chamber 10 in cross-section. The reaction chamber comprises a cylindrical vessel 11, having at one end 12 an inlet or outlet tube 20, fitted with a valve 25, for the gaseous or liquid component. The other end 13 of the vessel 11 is open. The plunger 14 can be driven inside the cylindrical vessel 11 in axial direction in a reciprocating movement, through the open end 13. The plunger tightens against the inner wall of the cylindrical vessel. Channel 15 runs through the plunger substantially in direction of the axis of the plunger. Channel 15 is connected to tube 40 fitted with valve 45. Alternatively valve 45 could be located directly in channel 15 inside the plunger. In the embodiment of Fig. 1 valve 25 associated with inlet or outlet tube 20 is a multi-channel valve. The multi-channel valve 25 can be used to feed sample A and one or more reagents B, C, D, E, F one after another into the reaction chamber through tubes 26 - 31.
The operation of the reaction chamber according to Fig. 1 can be described as follows. Valve 45 is closed and the plunger 14 is forced outwards in relation to the vessel 11 by means of a suitable drive mechanism, e.g. an electric motor or a pneumatic cylinder. Vacuum is generated in the space 16 between plunger 14 and vessel 11. By opening successively the multi-channel valve 25 to inlet tubes 26, 27, 28... the components A, B, C. '.. can be fed into the reaction chamber. If a gas is evolved in the reaction the plunger is driven outwards from the vessel during the reaction. If the analyte is a gaseous component evolved in the reaction valve 25 can be opened after the reaction is completed and the gaseous analyte can be channelled to the measuring detector through said valve. The gaseous component is displaced from the chamber by driving the plunger inwards in vessel 11. After the gas has been removed completely valve 25 is closed and valve 45 opened. By driving the plunger further inwards in vessel 11 unreacted components and the liquid components (so-called wastes) formed in the reaction can be removed.
It can be seen in Fig. 1 that the end 14a of the plunger 14 which enters the vessel 11 is slightly funnel-shaped. When the reaction chamber is operated in vertical position like in the figure the removal of liquid compounds is facilitated by this shape. Another advantage is that a certain space is still left between the end 14a of the plunger and the end 11a of the vessel 11 when the plunger has been pushed all the way into the vessel 11. This allows the use of a magnetic mixer in the reaction space 16, which is useful in many reactions in order to achieve complete mixing of the sample and the reagents. The magnetic mixer conforms to the reciprocating movement of the plunger.
Fig. 2 shows another embodiment of the reaction chamber in longitudinal cross-section. Several channels 15a, 15b, 15c etc. run through the plunger. Fig. 3 shows the bottom 17 of the plunger of the reaction chamber of Fig. 2. The tubes 40a, 40b, 40c... fitted with valves 45a, 45b, 45c... have been connected to the channels 15a, 15b/ 15c etc. ending in the bottom 17. The end 14a of the plunger is again slightly funnel-shaped.
The embodiment according to Fig. 2 allows the simultaneous introduction of several compounds into the reaction chamber. The sample A and the reagents C - E can be introduced simultaneously through tubes 40a respectively 40c - 40e by driving the plunger 14 outwards from the vessel 11 while maintaining the valves 45a respectively 45c - 45e open and the valves 25 and 45b closed. If less compounds are required to be introduced as to take all the tubes 40c - e, the valves 45 of the tubes not in use will be closed. Tube 40b and its valve 45b are reserved for the removal of liquid compounds (wastes). After the introduction of the compounds all valves 45 are closed. After the completion of the reaction the gaseous analyte is removed through tube 20 by opening the valve 25 and driving the plunger inwards in the vessel 11. After the removal of the gas valve 25 is closed while valves 45a and 45c - e are still kept closed. By opening valve 45b and driving the plunger further inwards in the vessel 11 liquid reaction products and unreacted compounds are emptied from the reaction chamber.
In the designs of Figs. 2 and 3 the valves 45 have been connected to tubes 40 outside the plunger. This arrangement has the disadvantage of leaving a rather large dead volume in tubes 40 and channels 15. To avoid this, the valves 45 may be alternatively located inside the plunger directly in the channels 15.
The sample and reagents can be introduced by aspiration or by pumping them into the reaction chamber. Pumping is the preferred alternative, if high accuracy of feeding is required.
The designs of Figs. 2 and 3 have the further advantage, in addition to the rapid introduction of compounds, of reserving the tube 20 entirely for the transport of the gaseous component. The risk of contamination by liquid components is then avoided.
To eliminate contamination, the reaction chamber can also be rinsed with e.g. argon gas or distilled water after emptying and before refilling. The purge with argon gas can be performed e.g. in the following way: The plunger is retracted outwards while valve 25 is kept open towards the inlet tube of argon, and other valves are shut. Then the vessel is emptied via valve 45b by driving the plunger inwards in the vessel 11 while the other valves are shut.
If distilled water is used for rinsing, one of the channels connected to valve 25 must be reserved for the inlet of distilled water.
Fig. 4 shows an alternative reaction chamber, in which the sample and reagents can be fed simultaneously through tubes 20a - c fitted with valves 25a - c located at the end 11a of vessel 11. In this figure the end 11a has been shaped to conform to the funnel-like end of plunger 14a when the plunger is completely driven inside the vessel 11. This shape is advantageous for a complete emptying.
The reaction chamber comprises preferably also a drive mechanism to move the plunger and a control unit comprising all components necessary for the control of the drive mechanism and the valves . The control unit comprises preferably also a processor to control the drive mechanism and the valves .
The reaction chamber described above is particularly well suited to situations in which gaseous reaction products are formed, because handling of such reaction mixtures is particularly difficult, and no useful designs are available for the separation of the gas and liquid phases . The reaction chamber according to the invention is also applicable to reactions in which no gaseous but, instead, only liquid reaction products are formed. The rapid addition of sample and reagents into the reaction chamber and the rapid and complete removal of reaction products are characteristics which make the reaction chamber according to the invention considerably superior to devices of prior art.
The use of a reaction chamber according to this invention is, of course, not limited to situations in which a chemical reaction between the different components takes place. It is applicable as well to different physical unitary operations such as absorption, extraction and mixing. Extraction, like a reaction producing gaseous reaction products, is a two-phase system with one phase being considerably lighter than the other phase. The operational schemes of extraction and gas treatment are thus largely comparable. When the reaction chamber is used in absorption processes, e.g. when components in a gas phase are to be transferred into a liquid phase, this reaction chamber can be used to transfer analytes easily into the medium most suitable for the detection method.
In the claims on the reaction chamber, to be presented in the following section, the word "reaction" shall be interpreted as covering both chemical reactions and physical binding processes .
In two-phase treatments like gas-forming reactions and extraction it is preferable to use the reaction chamber in a vertical position. In other kinds of reactions the reaction chamber may be used in any position.
The reaction chamber according to the invention has enabled a new type of quantitative assay method for elements which become gaseous under the effect of sodium borohydride, e.g. for those which are able to form a gaseous hydride in acidic conditions under the effect of sodium borohydride. Elements forming hydrides are typically bismuth, germanium, selenium, antimony, arsenic, lead, tin and tellurium. According to a known method these elements are usually assayed by dispersing pneumatically a liquid sample containing the element to be determined to form an aerosol, which is then introduced into the plasma of a spectrometer, in which the elements contained in the sample are atomized, excited and ionized. This method is useful in the determination of high concentrations of elements, but it is far too inaccurate in the determination of low element concentrations. The reason for this is that only 1% of the element in the sample is recovered from the nozzle of the nebulizer while 99% is lost from the system through other routes. Only part of the amount delivered from the nozzle of the nebulizer reaches the excitement region of the plasma. To remedy this, a continuous process has been developed (Ek, P S* Hulden, S-G, Talanta, Vol. 34, No. 5, pp. 495 - 502, 1987), in which the elements are reacted with sodium borohydride in acidic solution to produce a gaseous hydride. The accumulated hydride gas is removed in a continuous process from the reactor by means of an inert carrier gas and carried into a plasma spectrometer used as a detector. This method has, however, some disadvantages, e.g. high consumption of reagents and inferior stability when the gas is fed into the plasma.
The method according to the invention is also suitable for the determination of mercury. Mercury, however, does not produce a hydride; instead, it becomes itself gaseous under the effect of sodium borohydride. Mercury can be determined with the same reagents used in the reactions to form a hydride. Sodium borohydride is known to reduce Hg( I ) and Hg(II) ions to metallic Hg(0) , which is gaseous already at room temperature. After the reduction gaseous mercury can be introduced, like gaseous hydrides, e.g. by means of a capillary column, in the middle of the plasma, and the emission signal can be measured spectrometrically.
In the method according to the invention the sample containing the element to be determined and the reagent solutions (5M HC1 and 1% NaBH ) are introduced into the reaction chamber either successively from the above, according to Fig. 1, or simultaneously according to Fig.2 or Fig. 4, respectively, through the channels 15 of the plunger of the reaction chamber or, respectively, the tubes 20 fixed at the end 11a of the vessel. In this reaction the element (mercury) becomes gaseous or a gaseous hydride of the element and hydrogen gas are produced. The gaseous mixture is displaced from the reaction chamber after the completion of the reaction by one of the methods described above. The entire gaseous mixture, into which the element to be determined has been trasferred completely, is fed into the middle of the plasma of the spectrometer. After the gas mixture has been removed from the reaction chamber, liquid waste is also removed by one of the methods described above. Especially good results are obtained by feeding the gas in the middle of the plasma by means of a quartz capillary tube.
In the reaction described above, in which sodium borohydride is used, it is advantageous to employ the reaction chamber of Fig. 2, into which the components are introduced from below. In this way an excessively strong surface reaction of sodium borohydride is avoided.
The invention relates also to a method for introducing samples in the middle of the plasma in DCP (Direct Current Plasma) or ICP (Inductively Coupled Plasma) atomic emission spectrometers or in ICP-MS (Inductively Coupled Plasma) mass spectrometer. The method is based on replacing the conventional sample introduction system (pneumatic nebulizer) of the spectrometer with a thin capillary tube (inner diameter 0.1 to 0.5 mm), through which the gaseous or liquid sample to be analyzed or a mixture containing the sample is forced by pressure. The capillary tube is preferably of quartz. Due to the high melting point of quartz the tip of the capillary can be taken quite close to the excitation zone of the plasma. Decomposition of the gas or liquid is avoided and it can be centered within a very narrow zone in the middle of the plasma. If the component to be analyzed is liquid the thermal energy of the plasma (T = 5000 K) can be exploited to vaporize the liquid at the tip of the capillary. The vaporized liquid is forced by pressure in the middle of the plasma, in which the elements contained in the sample are excited. Because the inner diameter of the capillary tube is small the dead volume in the tube is also very small. For a length of 50 cm of the capillary tube and a diameter of 0.1 mm, the dead volume is only 3.9 μl. This allows the use of extremely small sample volumes, and in practice a volume of 10 - 50 μl is sufficient. It may be mentioned for comparison that conventional techniques usually require 2 - 5 ml . This method of sample introduction also guarantees efficient use of the sample, since it allows the introduction of 100% of the elements of the sample in the middle of the excitation zone of the plasma.
By combining the reaction chamber according to the invention with the capillary tube introduction method e.g. metals present in an aqueous phase can be analyzed with high precision in the following way: An extraction is performed in the reaction chamber, in which the metal complexes or compounds are extracted from the heavy aqueous phase into the lighter phase, which consists of a suitable organic solvent. The metal concentration of the organic phase can be determined by displacing the organic phase from the reaction chamber and feeding it into the plasma of a spectrometer through a thin quartz capillary tube. The thermal radiation (T = 5000 K) of the plasma vaporizes the organic phase at the tip of the tube, the metal complex is taken into the plasma and the metal is excited. The emission of metal ions is measured with the spectrometer, which records the metal concentration of the extracted solution.
Those versed in the art will appreciate that many different variations and adaptations of the present invention fall within the scope of the claims to be presented below.

Claims

1. A reaction chamber (10) comprising a cylindrical vessel (11) with, at one end (12), at least one inlet or outlet tube or lead-through (20) fitted with a valve (25), for a liquid or gaseous component, characterized by
- the cylindrical vessel having one open end (13), and the reaction chamber further comprising
- a plunger (14), performing a reciprocating movement within the cylindrical vessel in axial direction through the open end (13), and by
- the plunger tightening against the inner wall of the cylindrical vessel, and by
- the plunger having one channel (15), in substantially axial direction, fitted with a valve (45) or connected to a tube (40) fitted with a valve (45).
2. The reaction chamber according to Claim 1, characterized by the inlet or outlet tube (20) being connected to a multi-channel valve (25) used to introduce sample (A) and one or more reagents (B, C, D, E, F) successively into the reaction chamber.
3. The reaction chamber according to Claim 1 or 2, characterized by the plunger having several channels (15a, 15b, 15c...), in substantially axial direction, all fitted with a valve (45a, 45b, 45c...) or connected to a tube (40a, 40b, 40c... ) fitted with a valve (45a, 45b, 45c... ).
4. The reaction chamber according to Claim 1, characterized by the end (11a) of the vessel (11) being fitted with several tubes or lead-throughs (20a - c) fitted with valves (25a - c) .
5. The reaction chamber according to Claim 1, 2, 3 or 4 , characterized by a drive mechanism for the plunger and a control unit comprising the controls and components necessary for the control of the drive mechanism and the valves .
6. The reaction chamber according to Claim 5, characterized by the control unit also comprising a programmable processor for the control of the drive mechanism and the valves .
7. A quantitative assay method for the determination of an element generating a gas or a gaseous hydride, in which method the sample containing the element, sodium borohydride and an acid are introduced into the reaction chamber and reacted, and the gas mixture evolved in the reaction is displaced from the reaction chamber and introduced into a plasma spectrometer for the element to be quantitated, characterized by performing the reaction in a reaction chamber according to Claim 1 , into which the sample, sodium borohydride and acid are introduced by aspiration or pumping by driving the plunger (14) outwards in the vessel (11), and from which reaction chamber the gas mixture evolved in the reaction is displaced by driving the plunger (14) inwards in the vessel (11), and from which reaction chamber liquid reaction products are finally removed by continuing the inward movement of the plunger.
8. The method according to Claim 7, characterized by adding the sample, sodium borohydride and acid simultaneously into the reaction chamber through the channels (15a, 15d, 15c) in the plunger, by displacing the gas mixture evolved in the reaction through tube (20), and by finally removing liquid waste through one of the channels (15b), which should not be used to introduce other components .
9. The method according to Claim 7 or 8 , characterized by controlling the movement of the plunger and the position of the valves (25, 45) by means of a programmable processor,
10. The method according to any one of the Claims 7 - 9, characterized by the element being bismuth, germanium, arsenic, selenium, antimony, lead, tin, tellurium or mercury.
PCT/FI1994/000565 1993-12-31 1994-12-15 A reaction chamber and a method for generating a gaseous sample based on the use thereof WO1995017964A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US08/663,046 US5741710A (en) 1993-12-31 1994-12-15 Reaction chamber and a method for generating a gaseous sample based on the use thereof
AU12446/95A AU1244695A (en) 1993-12-31 1994-12-15 A reaction chamber and a method for generating a gaseous sample based on the use thereof
EP95903361A EP0764051B1 (en) 1993-12-31 1994-12-15 A reaction chamber and a method for generating a gaseous sample based on the use thereof
DE69414608T DE69414608T2 (en) 1993-12-31 1994-12-15 REACTION TUBE AND METHOD FOR PRODUCING A GASEOUS SAMPLE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FI935952A FI93174C (en) 1993-12-31 1993-12-31 Reaction chamber and a new method of analysis based on its use
FI935952 1993-12-31

Publications (1)

Publication Number Publication Date
WO1995017964A1 true WO1995017964A1 (en) 1995-07-06

Family

ID=8539222

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FI1994/000565 WO1995017964A1 (en) 1993-12-31 1994-12-15 A reaction chamber and a method for generating a gaseous sample based on the use thereof

Country Status (7)

Country Link
US (1) US5741710A (en)
EP (1) EP0764051B1 (en)
AU (1) AU1244695A (en)
CA (1) CA2178756A1 (en)
DE (1) DE69414608T2 (en)
FI (1) FI93174C (en)
WO (1) WO1995017964A1 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9801281D0 (en) * 1997-01-30 1998-03-18 Mitsubishi Materials Corp Hydride formation analytical apparatus
US7473401B1 (en) * 1997-12-04 2009-01-06 Mds Analytical Technologies (Us) Inc. Fluidic extraction of microdissected samples
AU2001259241A1 (en) * 2000-04-26 2001-11-07 Arcturus Engineering, Inc. Laser capture microdissection (lcm) extraction device and device carrier and method for post-lcm fluid processing
US20040002166A1 (en) * 2002-06-27 2004-01-01 Wiederin Daniel R. Remote analysis using aerosol sample transport
DE10324646A1 (en) * 2003-05-28 2004-12-16 Leica Microsystems Nussloch Gmbh Cleaning and / or disinfection device for a cryostat
CA2552457C (en) * 2004-01-12 2010-01-26 Kenneth Doyle Oglesby High pressure slurry piston pump
US20090004063A1 (en) * 2007-06-29 2009-01-01 Symyx Technologies, Inc. Apparatus and method for actuating a syringe
WO2009076429A2 (en) 2007-12-10 2009-06-18 Medrad, Inc. Continuous fluid delivery system and method
US8056251B1 (en) 2009-09-21 2011-11-15 Regency Technologies Llc Top plate alignment template device
JP2014527881A (en) 2011-09-21 2014-10-23 ベイヤー メディカル ケア インク. Continuous multi-fluid pump device, drive and actuation system and method
CA2973257C (en) 2015-01-09 2023-09-19 Bayer Healthcare Llc Multiple fluid delivery system with multi-use disposable set and features thereof
CN108474761B (en) * 2015-12-24 2020-07-17 株式会社岛津制作所 ICP mass spectrometer
CN114367144A (en) * 2022-01-25 2022-04-19 中国科学院海洋研究所 In-situ multi-channel water enrichment, filtration and fixation device and method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4268478A (en) * 1976-06-18 1981-05-19 Bodenseewerk Perkin-Elmer & Co. Gmbh Method and apparatus for generating and transferring a gaseous test sample
US4740356A (en) * 1983-06-10 1988-04-26 The Perkin-Elmer Corporation Device for producing a gaseous measuring sample for atomic absorption spectroscopy
US4837374A (en) * 1987-06-01 1989-06-06 Brown James R Microreactor for analyzing thin solid samples

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3514210A (en) * 1968-01-15 1970-05-26 Jiri Hrdina Device for programmed drawing off of gas bubbles from a measuring cell separator and the liquid from the extinction cell space
IL49703A (en) * 1976-06-02 1980-10-26 Bron Dan Pump for variable dosing
DE2729744C2 (en) * 1977-07-01 1984-05-10 Bodenseewerk Perkin-Elmer & Co GmbH, 7770 Überlingen Device for the automatic generation of a gaseous test sample
JPS5513840A (en) * 1978-07-14 1980-01-31 Fujikura Ltd Producer for sample gas for atomic absorption analysis
US4906580A (en) * 1989-01-25 1990-03-06 Radian Corporation Saturation monitor and process

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4268478A (en) * 1976-06-18 1981-05-19 Bodenseewerk Perkin-Elmer & Co. Gmbh Method and apparatus for generating and transferring a gaseous test sample
US4740356A (en) * 1983-06-10 1988-04-26 The Perkin-Elmer Corporation Device for producing a gaseous measuring sample for atomic absorption spectroscopy
US4837374A (en) * 1987-06-01 1989-06-06 Brown James R Microreactor for analyzing thin solid samples

Also Published As

Publication number Publication date
FI93174B (en) 1994-11-30
CA2178756A1 (en) 1995-07-06
DE69414608D1 (en) 1998-12-17
US5741710A (en) 1998-04-21
FI93174C (en) 1995-03-10
FI935952A0 (en) 1993-12-31
DE69414608T2 (en) 1999-06-17
EP0764051A1 (en) 1997-03-26
AU1244695A (en) 1995-07-17
EP0764051B1 (en) 1998-11-11

Similar Documents

Publication Publication Date Title
EP0764051B1 (en) A reaction chamber and a method for generating a gaseous sample based on the use thereof
Moor et al. A novel introduction system for hydride generation-inductively coupled plasma mass spectrometry: determination of selenium in biological materials
Koyanagi et al. An inductively coupled plasma/selected-ion flow tube mass spectrometric study of the chemical resolution of isobaric interferences Presented at the 2000 Winter Conference on Plasma Spectrochemistry, Fort Lauderdale, FL, USA, January 10–15, 2000.
US6806468B2 (en) Capillary ion delivery device and method for mass spectroscopy
Sturgeon et al. The ETV as a thermochemical reactor for ICP-MS sample introduction
Hattendorf et al. Strategies for method development for an inductively coupled plasma mass spectrometer with bandpass reaction cell. Approaches with different reaction gases for the determination of selenium
Cañabate et al. Analysis of whole blood by ICP-MS equipped with a high temperature total sample consumption system
Matusiewicz et al. Simultaneous determination of As, Bi, Sb, Se and Sn by microwave induced plasma spectrometry using a quadruple-mode microflow ultrasonic nebulizer for in situ hydride generation with internal standardization
Asfaw et al. Ultrasonic nebulization with an infrared heated pre-evaporation tube for sample introduction in ICP-OES: application to geological and environmental samples
US5939648A (en) System and method of introducing a sample for analytical atomic spectrometry allowing concomitant analysis of mercury
Grant et al. Mechanism of the silver-catalysed heterogeneous epoxidation of ethylene
Broekaert et al. Recent trends in atomic spectrometry with microwave-induced plasmas
Pagliano et al. GC-MS exploration of photochemically generated species of Os, W and Ru from reductive and oxidative media
Smichowski et al. Chemical vapour generation of transition metal volatile species for analytical purposes: Determination of Zn by inductively coupled plasma-optical emission spectrometry
Matusiewicz et al. Simultaneous determination of hydride forming elements (As, Bi, Ge, Sb, Se) and Hg in biological and environmental reference materials by electrothermal vaporization–microwave induced plasma-optical emission spectrometry with their in situ trapping in a graphite furnace
Matusiewicz et al. Method development for simultaneous multi-element determination of transition (Au, Ag) and noble (Pd, Pt, Rh) metal volatile species by microwave induced plasma spectrometry using a triple-mode microflow ultrasonic nebulizer and in situ chemical vapor generation
Asfaw et al. A new demountable hydrofluoric acid resistant triple mode sample introduction system for ICP-AES and ICP-MS
Elsayed et al. Optimisation of operating parameters for simultaneous multi-element determination of antimony, arsenic, bismuth and selenium by hydride generation, graphite atomiser sequestration atomic absorption spectrometry
Marrero et al. Evaluation of vapor generation for the determination of nickel by inductively coupled plasma-atomic emission spectrometry
Brown et al. Hydride generation ICP-MS (HG-ICP-MS) for the ultra lowlevel determination of mercury in biota
US6891605B2 (en) Multimode sample introduction system
Krivan et al. Determination of Impurities in Boron Nitride Powder by SlurrySampling Electrothermal Atomic Absorption Spectrometry
Tölg Problems, limitations, and future trends in the analytical characterization of high-purity materials
Marcus Collisional dissociation in plasma source mass spectrometry: A potential alternative to chemical reactions for isobar removal
Uggerud et al. Determination of arsenic by inductively coupled plasma mass spectrometry–comparison of sample introduction techniques

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU CA CN US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2178756

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 08663046

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1995903361

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1995903361

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1995903361

Country of ref document: EP