WO1995004077A1 - Method of purifying plasminogen - Google Patents

Method of purifying plasminogen Download PDF

Info

Publication number
WO1995004077A1
WO1995004077A1 PCT/JP1994/001124 JP9401124W WO9504077A1 WO 1995004077 A1 WO1995004077 A1 WO 1995004077A1 JP 9401124 W JP9401124 W JP 9401124W WO 9504077 A1 WO9504077 A1 WO 9504077A1
Authority
WO
WIPO (PCT)
Prior art keywords
plasminogen
anion exchanger
containing composition
purifying
purification
Prior art date
Application number
PCT/JP1994/001124
Other languages
French (fr)
Japanese (ja)
Inventor
Shinobu Mochizuki
Takashi Kobayashi
Original Assignee
The Green Cross Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by The Green Cross Corporation filed Critical The Green Cross Corporation
Publication of WO1995004077A1 publication Critical patent/WO1995004077A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/48Hydrolases (3) acting on peptide bonds (3.4)
    • C12N9/50Proteinases, e.g. Endopeptidases (3.4.21-3.4.25)
    • C12N9/64Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from animal tissue
    • C12N9/6421Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from animal tissue from mammals
    • C12N9/6424Serine endopeptidases (3.4.21)
    • C12N9/6435Plasmin (3.4.21.7), i.e. fibrinolysin
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y304/00Hydrolases acting on peptide bonds, i.e. peptidases (3.4)
    • C12Y304/21Serine endopeptidases (3.4.21)
    • C12Y304/21007Plasmin (3.4.21.7), i.e. fibrinolysin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides

Definitions

  • the present invention relates to a method for purifying plasminogen, and more particularly to a method for producing high-purity plasminogen from which contaminants in a plasminogen-containing composition have been removed.
  • Plasminogen is activated by perokinase, streptokinase and the like to form plasmin, which breaks down fibrin and causes fibrinolysis. It is attracting attention as a drug that can be applied clinically. In particular, the usefulness of lysyl-type plasminogen whose N-terminal is a lysyl residue is expected.
  • plasminogen has been purified by isoelectric point-acid extraction, ammonium sulfate fractionation, polyethylene glycol fractionation, etc., to obtain crude plasminogen with a specific activity of about 0.1 to 0.1 C UZnig. Methods are known.
  • an affinity chromatography method using lysine-agarose is known.
  • plasminogen is purified to a very high degree of purity, but still contains impurities. Some of these impurities have plasminogen antigenicity and cannot be removed by affinity chromatography.
  • the added volume of the sample is reduced (usually, the added sample volume is about 1 to 5 vZv% of the column volume).
  • Techniques such as increasing the length (increase the bet height) and (3) reducing the flow velocity are required.
  • it is necessary to perform a concentration operation of the sample to be added to the column beforehand.
  • the conventional ion exchange treatment is a method of once adsorbing and separating on an ion exchanger. According to this method, (1) it is necessary to optimize the conditions for adsorption and separation on the ion exchanger in detail. (2) Timely adjustment is necessary even after optimization. (3) A large amount of buffer is required for separation and elution. (4) A large amount of ion exchanger is required to adsorb the target substance. There is a problem.
  • the conventional method is time-consuming, labor-intensive, and involves problems that need to be solved in terms of cost, and is unsuitable for treating a large amount of a plasminogen-containing composition.
  • the present inventors have conducted various studies on an efficient method for purifying plasminogen in order to solve the problems in the conventional method, and as a result, have been able to remove contaminants from the plasminogen-containing composition in a short time to obtain a highly pure This has led to the establishment of a method that can obtain brassminogen in high yield and economically.
  • the present invention provides a method for purifying plasminogen, which comprises contacting a plasminogen-containing composition with an anion exchanger and collecting a non-adsorbed fraction thereof.
  • the purification is preferably carried out under the conditions of a salt concentration of 0.1 to 2 wZv%, more preferably a salt concentration of 0.4 to 0.8 wZv%, and more preferably a pH of 6 to 8 Under the conditions. That is, a preferred embodiment of the present invention is a method for purifying plasminogen, which comprises contacting a plasminogen-containing composition with an anion exchanger under the specific conditions and collecting a non-adsorbed fraction thereof.
  • the plasminogen which is the target product in the purification method of the present invention includes methionyl type (N-terminal amino acid is methionine), glutamyl type (N-terminal amino acid is Examples are glutamic acid) and lysyl type (the N-terminal amino acid is lysine). Further, a mixture thereof may be used. Preferably, it is lysyl-plus minogen.
  • the plasminogen-containing composition as a starting material in the present invention is subjected to the method of the present invention as an aqueous solution. Plasminogen is present in blood, body fluids, placenta and the like, and a plasminogen-containing composition can be prepared therefrom by a generally known method.
  • the degree of purification of the plasminogen-containing composition upon contact with the anion exchanger is not particularly limited, and the method of the present invention can be applied to any degree of purification. Therefore, contact with the anion exchanger can occur at any stage of plasminogen purification.
  • the plasminogen-containing composition as a starting material is not particularly limited as long as it contains plasminogen.For example, it is obtained from serum, plasma, ascites, placental extract, placental tissue extract, and plasma. Composition or gene set consisting of fractions n + m or II of the low-temperature alcohol fractionation method of corn and other fractions obtained by treating plasma or tissue extract by various fractionation methods A culture solution obtained by a recombinant host or tissue culture and a commercially available plasminogen preparation are exemplified.
  • the plasminogen-containing composition is subjected to fractionation operations such as ammonium sulfate fractionation, polyethylene glycol fractionation or dextran fractionation, lysine-affinity chromatography, gel Various separation operations by a filtration method or a combination thereof may be performed. Preferably, lysine affinity chromatography has been performed.
  • the plasminogen-containing composition thus obtained is subjected to the following anion exchange treatment.
  • the anion exchanger is obtained by binding a strong or weakly basic functional group to a suitable support such as cellulose, dextran, a hydrophilic polymer, silica gel synthetic resin or agarose.
  • a strongly basic functional group refers to a basic residue having an ion-exchange ability that is completely dissociated in a wide range of PH.
  • getyl (2-hydroxy) examples thereof include quaternary aminoethylene (QAE-) such as cypropyl) aminoethyl and getylmethylaminoethyl, and quaternary aminomethyl (Q-) such as trimethylaminomethyl.
  • the weakly basic functional group refers to a basic residue having an ion exchange ability whose degree of dissociation, ie, exchange capacity, is significantly changed by PH. Specifically, getylaminoethyl (DEAE ), Aminoethyl (AE), etc.
  • the anion exchanger used in the present invention is not particularly limited, but is preferably an anion exchanger formed by bonding a strongly basic functional group.
  • a strongly basic functional group are those having a trimethylaminomethyl, trimethylaminoethyl, or getyl- (2-hydroxypropyl) aminoethyl group as a functional group.
  • QAE Toyopearl 550 C (manufactured by Toso Corporation) and Q—Sepharose Fast Flow (manufactured by Pharmacia) are preferred.
  • the salt concentration in the contacting environment is 0.1 to 2%, particularly 0.4 to 0.8 wZv%, and the pH is 6 to 8 It is.
  • the buffer used is not particularly limited as long as it has a buffering capacity in the above pH range. Preferred are a Tris-HCl buffer and a phosphate buffer.
  • the concentration of the buffer used is usually 0.005 to 0.2M, preferably 0.01 to 0.05M. Further, lysine or the like of about 0.2 wv% may be blended.
  • Examples of the salt to be used include sodium chloride, potassium chloride, sodium citrate and the like, and preferably sodium chloride.
  • anion exchanger be sufficiently equilibrated under the above conditions before use.
  • the plasminogen-containing composition to be brought into contact with the anion exchanger under the above conditions is preferably prepared under the same buffer conditions as the anion exchanger.
  • the preparation method include a dialysis method using the same buffer as an external solution as the buffer used for equilibrating the anion exchanger.
  • the thus-prepared solution containing plasminogen is brought into contact with the equilibrated anion exchanger, and the treatment is carried out at a temperature of 0 to 60 '(: preferably 4 to 25 ° C).
  • the gel capacity of the anion exchanger used depends on the plasminogen-containing solution to be contacted.
  • the total amount of protein contained in the solution is preferably not less than 1 Omg.
  • plasminogen and impurities can be separated by one operation, and high-purity plasminogen can be obtained from the plasminogen-containing composition.
  • the contaminants are included in the plasminogen-containing composition before being subjected to the anion exchange treatment under the above-described conditions, and are a comprehensive concept representing substances other than the monomeric plasminogen. .
  • Specific examples include high-molecular substances having plasminogen antigenicity (plasminogen dimers and polymers, riboprotein A, etc.), riboproteins, and the like.
  • the method of the present invention is particularly effective for removing these substances. It is.
  • the plasminogen thus obtained has a specific activity of 24 CUZmg and a high recovery, and the method of the present invention is particularly effective for removing these.
  • the plasminogen-containing composition to be subjected to the anion exchanger treatment may have been subjected to an SD (Solvent Detergent) treatment before that.
  • the SD treatment can be performed according to a known method (JP-A-60-511116, JP-A-3-218322). It is also preferable to carry out the reaction in the presence of a surfactant. More preferably, as a stabilizer during the SD treatment, benzamidines (such as benzamidine, i> -ryminobenzamidine) and basic amino acids (arginine, Lysine, etc.), abrotinin or ⁇ -aminocaproic acid (EACA). As the surfactant, Tween 80, Teen 20, TritonXlO0 or the like is used.
  • the amount of stabilizing agent added is about 0.0001 to 0.1 M for benzamidines, about 0.1 to 1 M for basic amino acids, and 10 to 100% for aprotinin, and 1 to 10% for KIZmL EACA ( w / v) degree.
  • the anion exchanger treatment may be performed by any method such as a batch method, a column method, and a membrane method.
  • the column method is used.
  • a series of operations such as equilibration of the anion exchanger (gel), purification of brassinogen, regeneration of the gel, etc. can be repeatedly and efficiently performed economically with the column packed. it can.
  • the anion exchanger (gel) can be regenerated under extremely mild conditions, preferably by increasing the salt concentration, and used repeatedly for the purification of plasminogen. Plasminogen obtained by anion exchanger treatment can be subjected to further purification treatment if necessary. For example, plasminogen which is more highly purified can be obtained by subjecting it to affinity chromatography again using lysine or aprotinin as a ligand, or by dialysis.
  • the plasminogen thus purified is used as a pharmaceutical. Therefore, the plasminogen is preferably subjected to a treatment for virus inactivation. Normal processing is applied as the virus inactivation processing. Specifically, for example, a method of heating a liquid composition of brassinogen at 50 to 100 ° C for 5 to 30 hours, and a method of heating a dried composition at 50 to 100 ° C for 10 to 1 hour. Examples include a method of heating for 50 hours, a method of contacting with a surfactant, and a combination of these treatments.
  • the mixture was applied to a lysin agarose (trade name: lysine sepharose 4B) column equilibrated with 0.9wZv 0.9wZv% glycine solution (pH 7.2) added with sodium chloride. After washing with 1 M sodium chloride-added 0.9% wZv glycine solution (pH 7.2), elution was carried out with 0.9 wZv% sodium chloride-added 0.25 M lysine solution ( ⁇ 7.2) to obtain eluate 35.
  • TTB P tri-W-butyl phosphate
  • Tween 80 tri-W-butyl phosphate
  • the plasminogen-containing solution obtained in Reference Example 1 was added to each of the anion exchangers shown in Table 1 ( ⁇ 5 mm x 5 cm; 1), and ion-exchange chromatography (flow rate: 0.5 ⁇ / min. Buffer: 0.9 wZv% glycine, 0.45 w / v% NaC £, pH 7.2)
  • the unadsorbed fraction that passed through the column as it was was analyzed by gel filtration (hereinafter referred to as GPC).
  • GPC gel filtration
  • Recovery rate of plasminogen by each column treatment [Recovery rate of recovered protein mass (activity) when protein amount before treatment is 100, same hereafter. ] And (when the sample was G PC analysis, A 28. Impurities relative nm A 28. Nm ratio of the sample, the same. Or less) amount of impurities shown in Table 1.
  • Get Table 3 shows the results of measurement by GPC of the unadsorbed fraction and the adsorbed fraction eluted with the elution solution (2 OmM Tris buffer, 0.2 wZv% lysine, 1 MNa C £, PH 7.2). Show.
  • the plasminogen-containing solution obtained in Reference Example 1 is subjected to ion-exchange chromatography (flow rate: ⁇ , ⁇ ⁇ ⁇ .) Using Q-Sepharose Fast Flow ( ⁇ 5 mm x 5 cm; 1 ⁇ &; manufactured by Pharmacia). At this time, change the ⁇ 1 of the equilibration buffer (2 OmM Tris buffer, 0.2 w / v% lysine, 0.45% ⁇ 3 ⁇ ⁇ ) to 6.2, 6.7, 7.2, 7.7, 8.3, The effect of pH on gen recovery and purification was investigated.
  • Figure 1 shows the results of analysis of plasminogen treated with ion-exchange chromatography on gel filtration chromatography.
  • 1 shows the peak of the polymer substance.
  • the addition of the gel imO 1Z5 amount (0.2 to 1Z10 amount (0.1) removed the high molecular substance completely).
  • FIG. 1 is a diagram showing the results of analysis of plasminogen treated with ion exchange chromatography in Example 4 by gel filtration chromatography.
  • untreated indicates a gel filtration chromatogram of a plasminogen-containing solution that has not been subjected to ion exchange chromatography.
  • the amounts shown at the upper left of each chromatogram (1.0 m £, 0.5 md, 0.5 li, 0.1 indicate the amount of the plasminogen-containing solution added to the ion exchanger.
  • the purification method of the present invention it is possible to easily remove substances contaminating the plasminogen-containing composition, especially high molecular substances having plasminogen antigenicity.
  • a high-purity plasminogen can be obtained from a gen-containing composition in a short time, efficiently, with good yield, and economically. Therefore, it is particularly advantageous in purification from a large amount of a plasminogen-containing composition, and is extremely useful as a process for producing plasminogen on an industrial scale.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Genetics & Genomics (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Peptides Or Proteins (AREA)

Abstract

Plasminogen is purified by bringing a plasminogen-containing composition into contact with an anion exchanger and recovering the unadsorbed fraction. The contact is performed by adjusting the concentration of a salt such as sodium chloride to 0.1-2 w/v%, preferably to 0.4-0.8 w/v%, and, if desirable, adjusting the pH to 6 to 8. This method is useful to remove contaminants, in particular, a high-molecular substance having a plasminogen anti-genicity, from a plasminogen-containing composition. Further it permits plasminogen to be purified in a short time efficiently in a good yield at a low cost. Therefore this method is advantageous for preparing pure plasminogen from a large quantity of a plasminogen-containing composition and is extremely useful as a process for producing plasminogen on an industrial scale.

Description

明 細 書  Specification
プラスミノーゲンの精製方法  Purification method of plasminogen
技術分野  Technical field
本発明は、 プラスミノ一ゲンの精製方法に係り、 詳細にはプラスミノーゲン含 有組成物中の夾雑物が除去された高純度のプラスミノ一ゲンを製造する方法に関 する。  The present invention relates to a method for purifying plasminogen, and more particularly to a method for producing high-purity plasminogen from which contaminants in a plasminogen-containing composition have been removed.
背景技術  Background art
プラスミノーゲンは、 ゥロキナーゼ、 ストレブトキナ一ゼ等によって活性化さ れてブラスミンとなり、 これがフィプリンを分解して線溶現象を生起す—るので、 ゥロキナーゼゃストレブトキナ一ゼとともに血栓症の治療の他、 広く臨床応用が 可能な医薬品として注目されている。 特にその N末端がリジル残基であるリジル 型プラスミノ一ゲンの有用性が期待されている。  Plasminogen is activated by perokinase, streptokinase and the like to form plasmin, which breaks down fibrin and causes fibrinolysis. It is attracting attention as a drug that can be applied clinically. In particular, the usefulness of lysyl-type plasminogen whose N-terminal is a lysyl residue is expected.
従来、 プラスミノーゲンの精製法としては、 等電点ー酸抽出法、 硫安分画法、 ポリエチレングリコール分画法等により比活性 0, 0 1〜0. 1 C UZnig程度の粗プ ラスミノーゲンを得る方法が知られている。 この粗ブラスミノーゲンの比活性を 更に向上せしめる精製方法として、 リジン—ァガロースを用いたァフィ二ティク ロマト法が知られている。  Conventionally, plasminogen has been purified by isoelectric point-acid extraction, ammonium sulfate fractionation, polyethylene glycol fractionation, etc., to obtain crude plasminogen with a specific activity of about 0.1 to 0.1 C UZnig. Methods are known. As a purification method for further improving the specific activity of the crude plasminogen, an affinity chromatography method using lysine-agarose is known.
このリジン—ァガロース処理によると、 プラスミノーゲンはかなり高純度まで 精製されるが、 なおまだ不純物が混在する。 このような不純物の中にはプラスミ ノーゲンの抗原性を有するものが含まれ、 ァフィ二ティクロマト法では除去でき ない。  According to this lysine-agarose treatment, plasminogen is purified to a very high degree of purity, but still contains impurities. Some of these impurities have plasminogen antigenicity and cannot be removed by affinity chromatography.
そこで、 このような夾雑物を除去するために更なる精製処理として、 分子量の 差で分画するゲル濾過法、 イオン交換体に吸着させて分離 ·分画する方法等が行 われている。  Therefore, in order to remove such contaminants, as further purification treatments, a gel filtration method for fractionation based on a difference in molecular weight, and a method for separation and fractionation by adsorption to an ion exchanger have been performed.
しかしながら、 ゲル濾過法においては、 高い分離 ·精製能を得るために、 一般 に、 ①試料の添加容量を少なくする (通常、 添加試料容量はカラム体積の 1〜5 vZv %程度)、 ②カラムの長さを長くする (べット高を高くする) 、 ③流速を 遅くする等の技法が要求される。 このため、 かかるゲル濾過法によると、 前もつ てカラムに添加する試料の濃縮操作が必要となり、 また試料の添加容量に応じて ゲルが必要である、 さらには分離、 精製処理に長い時間がかかる等の点で工業的 使用においては問題があった。 However, in the gel filtration method, in order to obtain a high separation / purification ability, generally, 1) the added volume of the sample is reduced (usually, the added sample volume is about 1 to 5 vZv% of the column volume). Techniques such as increasing the length (increase the bet height) and (3) reducing the flow velocity are required. For this reason, according to such a gel filtration method, it is necessary to perform a concentration operation of the sample to be added to the column beforehand. There is a problem in industrial use in that a gel is required, and a long time is required for separation and purification.
また、 従来のイオン交換処理は、 一旦イオン交換体に吸着させて分離する方法 であり、 この方法によると、 ①イオン交換体への吸着および分離のための条件の 詳細な至適化が必要であること、 ②さらに至適化後も適時調整が必要であること、 ③分離溶出のために大量の緩衝液が必要であること、 ④目的物を吸着させるため に大量のイオン交換体が必要である等の問題がある。  In addition, the conventional ion exchange treatment is a method of once adsorbing and separating on an ion exchanger. According to this method, (1) it is necessary to optimize the conditions for adsorption and separation on the ion exchanger in detail. (2) Timely adjustment is necessary even after optimization. (3) A large amount of buffer is required for separation and elution. (4) A large amount of ion exchanger is required to adsorb the target substance. There is a problem.
このように従来法は、 時間や手間がかかり、 さらには柽済性の点で解決される べき問題を含んでおり、 大量のプラスミノ一ゲン含有組成物の処理には不適当で あつ Tこ。  As described above, the conventional method is time-consuming, labor-intensive, and involves problems that need to be solved in terms of cost, and is unsuitable for treating a large amount of a plasminogen-containing composition.
本発明の目的は、 プラスミノーゲン含有組成物中の夾雑物、 就中プラスミノー ゲン抗原性をもつ高分子物質を除去する方法を提供することである。 さらに、 本 発明の他の目的は、 短時間で、 効率よく、 かつ高い収率をもって、 かつ経済的に プラスミノ一ゲンを精製する方法を提供することである。  An object of the present invention is to provide a method for removing contaminants in a plasminogen-containing composition, in particular, a polymer substance having plasminogen antigenicity. Still another object of the present invention is to provide a method for purifying plasminogen in a short time, efficiently, with a high yield, and economically.
発明の開示  Disclosure of the invention
本発明者らは、 従来法における問題を解決すべく、 効率のよいプラスミノーゲ ンの精製方法について種々研究を重ねた結果、 プラスミノーゲン含有組成物から 短時間で夾雑物を除去し、 高純度のブラスミノーゲンを高収率に、 かつ経済的に 取得できる方法を確立するに至つた。  The present inventors have conducted various studies on an efficient method for purifying plasminogen in order to solve the problems in the conventional method, and as a result, have been able to remove contaminants from the plasminogen-containing composition in a short time to obtain a highly pure This has led to the establishment of a method that can obtain brassminogen in high yield and economically.
すなわち、 本発明は、 プラスミノーゲン含有組成物を陰イオン交換体に接触さ せ、 その未吸着画分を回収することを特徴とするブラスミノ一ゲンの精製方法で あ  That is, the present invention provides a method for purifying plasminogen, which comprises contacting a plasminogen-containing composition with an anion exchanger and collecting a non-adsorbed fraction thereof.
本発明方法において、 好ましくは上記精製を塩濃度 0. l〜2 wZv %、 より好 ましくは塩濃度 0. 4〜0. 8 wZv %の条件下で、 さらに好ましくは p H 6〜 8の 条件下で行うことである。 すなわち、 本発明の好ましい態様は、 この特定条件下 においてブラスミノーゲン含有組成物を陰イオン交換体に接触させ、 その未吸着 画分を回収することを特徵とするブラスミノ一ゲンの精製方法である。  In the method of the present invention, the purification is preferably carried out under the conditions of a salt concentration of 0.1 to 2 wZv%, more preferably a salt concentration of 0.4 to 0.8 wZv%, and more preferably a pH of 6 to 8 Under the conditions. That is, a preferred embodiment of the present invention is a method for purifying plasminogen, which comprises contacting a plasminogen-containing composition with an anion exchanger under the specific conditions and collecting a non-adsorbed fraction thereof.
本発明の精製方法における目的物であるプラスミノーゲンとしては、 メチォ二 ル型 (N末端アミノ酸がメチォニンである) 、 グルタミル型 (N末端アミノ酸が グルタミン酸である) またはリジル型 (N末端アミノ酸がリジンである) 等が例 示される。 また、 これらの混合物であってもよい。 好ましくは、 リジル—プラス ミノーゲンである。 The plasminogen which is the target product in the purification method of the present invention includes methionyl type (N-terminal amino acid is methionine), glutamyl type (N-terminal amino acid is Examples are glutamic acid) and lysyl type (the N-terminal amino acid is lysine). Further, a mixture thereof may be used. Preferably, it is lysyl-plus minogen.
本発明における出発原料であるブラスミノーゲン含有組成物は、 水溶液状態と して本発明方法に付される。 プラスミノーゲンは、 血液、 体液、 胎盤等の中に存 在し、 プラスミノーゲン含有組成物は、 これらから一般既知の方法にて調製する ことができる。  The plasminogen-containing composition as a starting material in the present invention is subjected to the method of the present invention as an aqueous solution. Plasminogen is present in blood, body fluids, placenta and the like, and a plasminogen-containing composition can be prepared therefrom by a generally known method.
陰イオン交換体との接触時におけるプラスミノーゲン含有組成物の精製度は、 特に限定されるものではなく、 任意の精製度のものに本発明方法を適用できる。 従って、 陰イオン交換体との接触はブラスミノーゲンの精製のいずれの段階にも The degree of purification of the plasminogen-containing composition upon contact with the anion exchanger is not particularly limited, and the method of the present invention can be applied to any degree of purification. Therefore, contact with the anion exchanger can occur at any stage of plasminogen purification.
3©用される。 3 © used.
出発原料であるプラスミノ一ゲン含有組成物は、 プラスミノーゲンを含有して いれば特に限定されるものではなく、 例えば、 血清、 血漿、 腹水、 胎盤抽出液、 胎盤組織抽出液、 血漿から得たコーンの低温アルコ一ル分画法の第 n + m画分あ るいは第 II画分、 その他の血漿または組織抽出液を各種分画法により処理して得 られる画分からなる組成物、 遺伝子組換え宿主または組織培養により得られる培 養液、 市販のブラスミノーゲン製剤が例示される。  The plasminogen-containing composition as a starting material is not particularly limited as long as it contains plasminogen.For example, it is obtained from serum, plasma, ascites, placental extract, placental tissue extract, and plasma. Composition or gene set consisting of fractions n + m or II of the low-temperature alcohol fractionation method of corn and other fractions obtained by treating plasma or tissue extract by various fractionation methods A culture solution obtained by a recombinant host or tissue culture and a commercially available plasminogen preparation are exemplified.
また、 上記プラスミノーゲン含有組成物は、 本発明方法を適用するに前に、 硫 安分画, ボリエチレングリコール分画もしくはデキストラン分画等の分画操作、 リジン一ァフィ二ティクロマトグラフィー、 ゲル濾過法、 またはそれらの組合せ による種々の分離操作を施したものであってもよい。 好ましくは、 リジンーァフ ィニティクロマトグラフィーを行ったものである。  Before applying the method of the present invention, the plasminogen-containing composition is subjected to fractionation operations such as ammonium sulfate fractionation, polyethylene glycol fractionation or dextran fractionation, lysine-affinity chromatography, gel Various separation operations by a filtration method or a combination thereof may be performed. Preferably, lysine affinity chromatography has been performed.
このようにして得られるプラスミノーゲン含有組成物は、 下記の陰イオン交換 処理に付される。  The plasminogen-containing composition thus obtained is subjected to the following anion exchange treatment.
陰イオン交換体は、 セルロース、 デキストラン、 親水性ポリマー、 シリカゲル 合成樹脂またはァガロース等の適当な支持体に、 強塩基性または弱塩基性の官能 基を結合させたものである。  The anion exchanger is obtained by binding a strong or weakly basic functional group to a suitable support such as cellulose, dextran, a hydrophilic polymer, silica gel synthetic resin or agarose.
強塩基性官能基とは、 広範囲の P H範囲で完全に解離しているィォン交換能を 有する塩基性の残基なるものをいい、 具体的には、 ジェチルー (2—ハイドロキ シプロピル) アミノエチル, ジェチルメチルアミノエチル等の第 4級アミノエチ ノレ (QAE— ) 、 トリメチルァミノメチル等の第 4級ァミノメチ (Q-) 等が 例示される。 また、 弱塩基性官能基とは、 解離度すなわち交換容量が PHによつ て著しく変化するイオン交換能を有する塩基性の残基なるものをいい、 具体的に は、 ジェチルアミノエチル (DEAE) , アミノエチル (AE) 等が例示される c 本発明で使用する陰イオン交換体は、 特に限定されないが、 好ましくは強塩基 性官能基を結合してなる陰イオン交換体であり、 具体的にはトリメチルァミノメ チル、 トリメチルアミノエチル、 ジェチルー (2—ハイドロキシプロピル) アミ ノエチル基を官能基とするものである。 とりわけ、 QAE— Toyopearl 5 5 0 C (ト一ソ一社製) 、 Q— Sepharose Fast Flow (フアルマシア製) が好ましい。 ブラスミノ一ゲン含有組成物を陰イオン交換体に接触させる際の好ましい条件 は、 接触させる環境の塩濃度が 0.1〜2 %、 特に 0· 4〜0.8 wZv%であ り、 また pHは 6〜8である。 また使用する緩衝液は、 上記の pH範囲に緩衝能 を有するものであれば特に限定されない。 好ましくは、 トリス塩酸緩衝液および リン酸塩緩衝液である。 使用される緩衝液の濃度は、 通常 0.00 5〜0.2M、 好 ましくは 0.0 1〜0.05Mである。 さらに、 0.2w v%程度のリジン等を配合 していてもよい。 A strongly basic functional group refers to a basic residue having an ion-exchange ability that is completely dissociated in a wide range of PH. Specifically, getyl (2-hydroxy) Examples thereof include quaternary aminoethylene (QAE-) such as cypropyl) aminoethyl and getylmethylaminoethyl, and quaternary aminomethyl (Q-) such as trimethylaminomethyl. The weakly basic functional group refers to a basic residue having an ion exchange ability whose degree of dissociation, ie, exchange capacity, is significantly changed by PH. Specifically, getylaminoethyl (DEAE ), Aminoethyl (AE), etc. c The anion exchanger used in the present invention is not particularly limited, but is preferably an anion exchanger formed by bonding a strongly basic functional group. Are those having a trimethylaminomethyl, trimethylaminoethyl, or getyl- (2-hydroxypropyl) aminoethyl group as a functional group. In particular, QAE—Toyopearl 550 C (manufactured by Toso Corporation) and Q—Sepharose Fast Flow (manufactured by Pharmacia) are preferred. Preferred conditions for contacting the brassminogen-containing composition with the anion exchanger are as follows: the salt concentration in the contacting environment is 0.1 to 2%, particularly 0.4 to 0.8 wZv%, and the pH is 6 to 8 It is. The buffer used is not particularly limited as long as it has a buffering capacity in the above pH range. Preferred are a Tris-HCl buffer and a phosphate buffer. The concentration of the buffer used is usually 0.005 to 0.2M, preferably 0.01 to 0.05M. Further, lysine or the like of about 0.2 wv% may be blended.
使用される塩としては、 塩化ナトリウム、 塩化カリウム、 クェン酸ナトリウム 等が挙げられるが、 好ましくは塩化ナトリウムである。  Examples of the salt to be used include sodium chloride, potassium chloride, sodium citrate and the like, and preferably sodium chloride.
陰イオン交換体は、 使用される前あらかじめ、 上記の条件で十分平衡化してお くことが好ましい。  It is preferable that the anion exchanger be sufficiently equilibrated under the above conditions before use.
また、 上記条件下の陰イオン交換体に接触させるプラスミノーゲン含有組成物 は、 陰イオン交換体と同一の緩衝液条件に調製されていることが好ましい。 調製 方法として、 陰イオン交換体の平衡化に用いられる緩衝液と同一の緩衝液を外液 とする透析法等が挙げられる。  The plasminogen-containing composition to be brought into contact with the anion exchanger under the above conditions is preferably prepared under the same buffer conditions as the anion exchanger. Examples of the preparation method include a dialysis method using the same buffer as an external solution as the buffer used for equilibrating the anion exchanger.
このように調製されたブラスミノーゲン含有溶液を、 平衡化された陰イオン交 換体に接触させるが、 かかる処理は 0〜6 0' (:、 好ましくは 4〜25°Cの温度で 打われ。。  The thus-prepared solution containing plasminogen is brought into contact with the equilibrated anion exchanger, and the treatment is carried out at a temperature of 0 to 60 '(: preferably 4 to 25 ° C).
使用される陰イオン交換体のゲル容量は、 接触させるブラスミノーゲン含有溶 液に含まれる総蛋白量 1 Omgあたり 以上が好ましい。 The gel capacity of the anion exchanger used depends on the plasminogen-containing solution to be contacted. The total amount of protein contained in the solution is preferably not less than 1 Omg.
この条件において、 ブラスミノ一ゲン含有組成物中に混入する夾雑物は陰ィォ ン交換体に吸着されるが、 目的のブラスミノ一ゲンは吸着されない。 従って、 本 発明の精製方法によると、 一回の操作でプラスミノーゲンと夾雑物とを分離する ことができ、 プラスミノ一ゲン含有組成物から高純度のプラスミノ一ゲンが取得 される。  Under these conditions, impurities contaminating the brassminogen-containing composition are adsorbed to the anion exchanger, but the target plasminogen is not adsorbed. Therefore, according to the purification method of the present invention, plasminogen and impurities can be separated by one operation, and high-purity plasminogen can be obtained from the plasminogen-containing composition.
夾雑物とは、 上記条件下での陰イオン交換処理に付す前のプラスミノーゲン含 有組成物に含有されるものであって、 モノマーのプラスミノーゲン以外のものを 示す包括的な概念である。 具体的には、 プラスミノーゲン抗原性を有する高分子 物質 (プラスミノーゲンのダイマーおよびポリマー、 リボプロテイン A等) およ びリボ蛋白質等が例示され、 本発明方法はこれらの除去に特に効果的である。 かくして得られるプラスミノ一ゲンは、 比活性 24 CUZmgの値を示し、 また 回収率も高く、 本発明方法はこれらの除去に特に効果的である。  The contaminants are included in the plasminogen-containing composition before being subjected to the anion exchange treatment under the above-described conditions, and are a comprehensive concept representing substances other than the monomeric plasminogen. . Specific examples include high-molecular substances having plasminogen antigenicity (plasminogen dimers and polymers, riboprotein A, etc.), riboproteins, and the like. The method of the present invention is particularly effective for removing these substances. It is. The plasminogen thus obtained has a specific activity of 24 CUZmg and a high recovery, and the method of the present invention is particularly effective for removing these.
なお、 陰イオン交換体処理に付されるブラスミノーゲン含有組成物は、 その前 に SD (Solvent Detergent ) 処理がなされているものであってもよい。  The plasminogen-containing composition to be subjected to the anion exchanger treatment may have been subjected to an SD (Solvent Detergent) treatment before that.
S D処理は、 公知の方法 (特開昭 60 - 5 1 1 1 6号公報、 特開平 3 - 21 8 322号公報) に準じて行うことができる。 また、 界面活性剤の共存下で行なわ れることが好ましく、 さらに好ましくは SD処理時に安定化剤として、 ベンズァ ミジン類 (ベンズァミジン、 i>-了ミノべンズァミジン等) 、 塩基性ァミノ酸 (ァ ルギニン、 リジン等) 、 アブロチニンあるいは ε—アミノカプロン酸 (EACA) を添加して行うことである。 界面活性剤としては、 Twe e n 80, T e en 20, Tr i t onX l O 0等が用いられる。 また、 安定化剤の添加量は、 ベン ズァミジン類で 0.000 1〜0.1 M程度、 塩基性ァミノ酸で 0.1〜 1 M程度、 ァ プロチニンで 1 0〜 1 00 K I ZmL EACAで 1〜 1 0 % (w/v) 程度が 例示される。  The SD treatment can be performed according to a known method (JP-A-60-511116, JP-A-3-218322). It is also preferable to carry out the reaction in the presence of a surfactant. More preferably, as a stabilizer during the SD treatment, benzamidines (such as benzamidine, i> -ryminobenzamidine) and basic amino acids (arginine, Lysine, etc.), abrotinin or ε-aminocaproic acid (EACA). As the surfactant, Tween 80, Teen 20, TritonXlO0 or the like is used. The amount of stabilizing agent added is about 0.0001 to 0.1 M for benzamidines, about 0.1 to 1 M for basic amino acids, and 10 to 100% for aprotinin, and 1 to 10% for KIZmL EACA ( w / v) degree.
陰イオン交換体処理は、 バッチ法, カラム法, メンブレン法等のいずれの方法 によるものであってもよい。 好ましくは、 カラム法である。 かかる方法によれば、 カラムに充塡した状態で効率よくかつ経済的に陰イオン交換体 (ゲル) の平衡化、 ブラスミノーゲンの精製、 ゲルの再生等の一連の操作を繰り返し実施することが できる。 The anion exchanger treatment may be performed by any method such as a batch method, a column method, and a membrane method. Preferably, the column method is used. According to this method, a series of operations such as equilibration of the anion exchanger (gel), purification of brassinogen, regeneration of the gel, etc. can be repeatedly and efficiently performed economically with the column packed. it can.
陰イオン交換体 (ゲル) は、 極めて温和な条件で、 好ましくは塩濃度の上昇に より再生されて、 繰り返しブラスミノーゲンの精製に用いることができる。 陰イオン交換体処理により得られるプラスミノーゲンは、 必要に応じてさらな る精製処理に付すこともできる。 例えば、 再度リジンまたはァプロチニンをリガ ンドとするァフィ二ティクロマトグラフィーに付したり、 透析等によって、 一層 高度に精製されたプラスミノーゲンを得ることができる。  The anion exchanger (gel) can be regenerated under extremely mild conditions, preferably by increasing the salt concentration, and used repeatedly for the purification of plasminogen. Plasminogen obtained by anion exchanger treatment can be subjected to further purification treatment if necessary. For example, plasminogen which is more highly purified can be obtained by subjecting it to affinity chromatography again using lysine or aprotinin as a ligand, or by dialysis.
かくして精製されたプラスミノ一ゲンは、 医薬品として用いられる。 従って、 該プラスミノーゲンはウィルス不活化のための処理が行われることが好ましい。 ウィルス不活化処理としては通常の処理が適用される。 具体的には、 例えばブラ スミノ一ゲンの液状組成物を 5 0〜1 0 0°Cで 5〜3 0時間加熱する方法、 乾燥 組成物を 5 0〜1 0 0°Cで 1 0〜1 5 0時間加熱する方法、 界面活性剤と接触さ せる方法およびこれら処理の組合せが挙げられる。  The plasminogen thus purified is used as a pharmaceutical. Therefore, the plasminogen is preferably subjected to a treatment for virus inactivation. Normal processing is applied as the virus inactivation processing. Specifically, for example, a method of heating a liquid composition of brassinogen at 50 to 100 ° C for 5 to 30 hours, and a method of heating a dried composition at 50 to 100 ° C for 10 to 1 hour. Examples include a method of heating for 50 hours, a method of contacting with a surfactant, and a combination of these treatments.
以下、 実施例により本発明をさらに具体的に説明するが、 本発明はこれら実施 例により何ら限定されるものではない。  Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to these examples.
参考例 1 Reference example 1
血漿のコーン第 I + BI画分における抽出残渣 1 0 0 gに 0.9 wZ V %塩化ナト リウム加 5 OmMトリス緩衝液 (pH8.3 ) 5 0 を添加し、 1 6時間攪拌し た。 硫酸デキストランナトリウム塩 2.5 gおよび塩化マグネシウム 1.5 gを添加 し、 3時間攪拌した。 4,000 r pm、 30分間遠心分離し、 上清画分 5 Q Qm£を 回収した。 硫安 1 2 1 gを添加し、 2時間攪拌した。 4,000 r pm、 30分間遠 心分離し、 沈澱画分 1 5 O gを回収した。 0.9wZv%塩化ナトリウム加 0.9w Zv グリシン溶液 (pH7.4 ) 30 0 を添加、 溶解した。 0.9wZv 塩化 ナトリゥム加 0.9 wZv%グリシン溶液 (pH7.2) で平衡化したリジンァガロ —ス (商品名: リジンセファロ一ス 4 B) カラムにアプライした。 1 M塩化ナト リウム加 0.9 %wZvグリシン溶液 (pH7.2) で洗浄後に 0.9 wZv%塩化ナ トリウム加 0.25Mリジン溶液 (ρΗ7· 2) で溶出し、 溶出液 35 を得た。 限外濾過膜 (商品名: ミニタン, 分画分子量 3万, ミリポア社製) を用いて濃縮 し、 0.4 5w/v%塩化ナトリウム加 0.9wZv%グリシン溶液 (ρΗ7· 2) に て p H7.2に調製した。 To 100 g of the extraction residue in the corn I + BI fraction of plasma was added 0.9 wZ V% sodium chloride-added 5 OmM Tris buffer (pH 8.3) 50, and the mixture was stirred for 16 hours. 2.5 g of dextran sulfate sodium salt and 1.5 g of magnesium chloride were added, and the mixture was stirred for 3 hours. The mixture was centrifuged at 4,000 rpm for 30 minutes, and 5 Q Qm 5 of the supernatant fraction was collected. 121 g of ammonium sulfate was added, and the mixture was stirred for 2 hours. After centrifugation at 4,000 rpm for 30 minutes, 15 Og of the precipitated fraction was recovered. 0.9 wZv% sodium chloride added 0.9 wZv glycine solution (pH 7.4) 300 was added and dissolved. The mixture was applied to a lysin agarose (trade name: lysine sepharose 4B) column equilibrated with 0.9wZv 0.9wZv% glycine solution (pH 7.2) added with sodium chloride. After washing with 1 M sodium chloride-added 0.9% wZv glycine solution (pH 7.2), elution was carried out with 0.9 wZv% sodium chloride-added 0.25 M lysine solution (ρΗ7.2) to obtain eluate 35. Concentrate using an ultrafiltration membrane (trade name: Minitan, molecular weight cut off 30,000, manufactured by Millipore), and convert to 0.45 w / v% sodium chloride / 0.9 wZv% glycine solution (ρΗ7.2). PH 7.2.
これに、 最終濃度が各々 0.3% (w/v) および 1 % (w/v) となるように トリ- W - プチルホスフヱ一ト (TNB P) および Twe e n 8 0を添加し、 3 0 で 6時間加温し、 これをプラスミノ一ゲン含有溶液とした。  To this, tri-W-butyl phosphate (TNB P) and Tween 80 were added so that the final concentrations were 0.3% (w / v) and 1% (w / v), respectively, and 30 was added. The mixture was heated for a period of time to obtain a plasminogen-containing solution.
実施例 1 Example 1
参考例 1で得られたプラスミノーゲン含有溶液を表 1に記載する陰イオン交換 体 (ø 5 mm X 5 cm; 1 にそれぞれに添加して、 イオン交換クロマトグラフィ 一 (流速: 0.5^/min. ;緩衝液: 0.9wZv%グリシン, 0.4 5 w/v%Na C £, p H 7.2 ) を行った。 カラムをそのまま通過した未吸着画分をゲル濾過法 (以下、 GPCという。 ) により分析した。 なお、 各イオン交換体は、 あらかじ め上記の緩衝液で平衡化しておいた。  The plasminogen-containing solution obtained in Reference Example 1 was added to each of the anion exchangers shown in Table 1 (ø5 mm x 5 cm; 1), and ion-exchange chromatography (flow rate: 0.5 ^ / min. Buffer: 0.9 wZv% glycine, 0.45 w / v% NaC £, pH 7.2) The unadsorbed fraction that passed through the column as it was was analyzed by gel filtration (hereinafter referred to as GPC). Each ion exchanger had been equilibrated with the above buffer in advance.
各カラム処理によるプラスミノ一ゲンの回収率 〔処理前の蛋白量を 1 0 0とし た時の回収蛋白質量 (活性) の回収率、 以下同じ。 〕 および不純物量 (試料を G PC分析した際、 試料の A28nm に対する不純物の A28nm の比、 以下同じ。 ) を表 1に示す。 Recovery rate of plasminogen by each column treatment [Recovery rate of recovered protein mass (activity) when protein amount before treatment is 100, same hereafter. ] And (when the sample was G PC analysis, A 28. Impurities relative nm A 28. Nm ratio of the sample, the same. Or less) amount of impurities shown in Table 1.
表 1  table 1
Figure imgf000009_0001
実施例 2
Figure imgf000009_0001
Example 2
O-S e p h a r o s e F a s t F l ow (05龍 x 5 cm ; 1 m ; フアル マシァ社製) および QAE— To y o p e a r l 5 5 0 C ( ø 5 mm x 5 cm; 1 nil; トーソ一社製) 、 Su p e r Q— To y o p e a r l 6 5 0 M (ø 5 nun x 5 cm ; \ nH; トーソ一社製) を用いて参考例 1で得られたプラスミノーゲンに ついてイオン交換クロマトグラフィーを行った (流速: 0.5 /min. ;平衡化お よび洗浄用緩衝液: 2 OmM トリス緩衝液, 0.2wZv%リジン, 0.4 5 wZ v%Na C p H 7.2 ;溶出用緩衝液: 2 OmM トリス緩衝液, 0.2wZv %リジン, 1 M Na C pH7.2) 。 カラムをそのまま通過した未吸着画分 および溶出用緩衝液により溶出された吸着画分をそれぞれ G P Cにより分析し、 プラスミノーゲンの回収率および不純物量を調べた。 結果を表 2に示す。 OS epharose Fast Fow (05 dragon x 5 cm; 1 m; Fuar Mashia) and QAE—To yopearl 55 0 C (ø5 mm x 5 cm; 1 nil; Toso One), Su per Q—To yopearl 65 0 M (ø 5 nun x 5 cm; \ nH Plasminogen obtained in Reference Example 1 was subjected to ion exchange chromatography (flow rate: 0.5 / min .; equilibration and washing buffer: 2 OmM Tris buffer). , 0.2 wZv% lysine, 0.45 wZv% NaC pH 7.2; Elution buffer: 2 OmM Tris buffer, 0.2 wZv% lysine, 1 M NaC pH 7.2). The unadsorbed fraction that passed through the column as it was and the adsorbed fraction eluted with the elution buffer were analyzed by GPC to determine the plasminogen recovery rate and the amount of impurities. Table 2 shows the results.
表 2  Table 2
Figure imgf000010_0001
実施例 3
Figure imgf000010_0001
Example 3
①塩濃度の影響  ① Effect of salt concentration
参考例 1で得られたプラスミノーゲン含有溶液について、 Q— Sepharose Fast Flow ( ø 5 mm X 5 cm; 1 τηβ; フアルマシア社製) を用いてイオン交換クロマトグ ラフィー (流速: 0.5 Zmin.) を行う際に、 使用する平衡化および洗浄用緩衝 液 (2 OmMトリス緩衝液, 0.2w/v%Uジン, p H 7.2 ) の塩濃度を 0, 0.1 , 0.1 5, 0.3 , 0.4, 0.4 5, 0.6, 0.75 , 0.8, 0.9 w/ v %と変化 させてプラスミノーゲンの回収率、 精製度に対する塩濃度の影響を調べた。 得ら れた未吸着画分、 および溶出用液 (2 OmMトリス緩衝液, 0.2wZv%リジン, 1 M N a C £, PH 7.2) で溶出された吸着画分を G PCで測定した結果を表 3に示す。 Perform ion-exchange chromatography (flow rate: 0.5 Zmin.) On the plasminogen-containing solution obtained in Reference Example 1 using Q-Sepharose Fast Flow (ø5 mm X 5 cm; 1 τηβ; manufactured by Pharmacia). In this case, the salt concentration of the equilibration and washing buffer used (2 OmM Tris buffer, 0.2 w / v% U-zine, pH 7.2) was adjusted to 0, 0.1, 0.1 5, 0.3, 0.4, 0.4 5, 0.6 , 0.75, 0.8, 0.9 w / v% and the effect of salt concentration on plasminogen recovery and purification were investigated. Get Table 3 shows the results of measurement by GPC of the unadsorbed fraction and the adsorbed fraction eluted with the elution solution (2 OmM Tris buffer, 0.2 wZv% lysine, 1 MNa C £, PH 7.2). Show.
表 3  Table 3
Figure imgf000011_0001
Figure imgf000011_0001
② pHの影響  ② Influence of pH
参考例 1で得られたプラスミノーゲン含有溶液について、 Q— Sepharose Fast Flow (ø 5mmx 5cm; 1 τη&;フアルマシア社製) を用いてイオン交換クロマトグ ラフィー (流速: Ο, δτ^ ιΰη.) を行う際に、 使用する平衡化緩衝液 (2 OmM トリス緩衝液, 0.2w/v%リジン, 0.4 5 ノ % 3〇 ^) の ^1を6.2, 6.7, 7.2, 7.7, 8.3と変化させてプラスミノーゲンの回収率、 精製度に対す る pHの影響を調べた。 得られた未吸着画分、 および溶出用液 (2 OmMトリス 緩衝液, 0.2wZv%リジン, 0.1M Na Ci, p H 7.2 ) で溶出された吸着 画分を G P Cで測定した結果を表 4に示す。 表 4 The plasminogen-containing solution obtained in Reference Example 1 is subjected to ion-exchange chromatography (flow rate: Ο, δτ ^ ιΰη.) Using Q-Sepharose Fast Flow (ø5 mm x 5 cm; 1 τη &; manufactured by Pharmacia). At this time, change the ^ 1 of the equilibration buffer (2 OmM Tris buffer, 0.2 w / v% lysine, 0.45% 〇 3〇 ^) to 6.2, 6.7, 7.2, 7.7, 8.3, The effect of pH on gen recovery and purification was investigated. The results of GPC measurement of the unadsorbed fraction obtained and the adsorbed fraction eluted with the elution solution (2 OmM Tris buffer, 0.2 wZv% lysine, 0.1 M Na Ci, pH 7.2) are shown in Table 4. Show. Table 4
Figure imgf000012_0001
Figure imgf000012_0001
③リジン濃度および緩衝液濃度の影響  ③Effect of lysine concentration and buffer concentration
参考例 1で得られたプラスミノ一ゲン含有溶液について、 Q— Sepharose Fast Flow (ø 5mmx 5cm; 1 id フアルマシア社製) を用いてイオン交換クロマトグ ラフィー (流速: 0.5 Zmin. ; pH7.2) を行う際に、 使用する平衡化および 洗浄用緩衝液 (0.9 wZv%グリシン, 0.4 5w/v%Na C^) のリジン濃度 およびトリス緩衝液の濃度を変化させてブラスミノーゲンの回収率、 精製度に対 する影響を調べた。 得られた未吸着画分を G P Cで測定した結果を表 5および表 6に示す。 Perform ion-exchange chromatography (flow rate: 0.5 Zmin .; pH 7.2) on the plasminogen-containing solution obtained in Reference Example 1 using Q-Sepharose Fast Flow (ø5 mm x 5 cm; 1 id Pharmacia). At this time, the lysine concentration of the equilibration and washing buffer (0.9 wZv% glycine, 0.45 w / v% NaC ^) and the concentration of Tris buffer were changed to improve the recovery and purification of plasminogen. Effects were investigated. Tables 5 and 6 show the results of measurement of the obtained unadsorbed fraction by GPC.
表 5 : リジン濃度、 トリス濃度の影響 (不純物量:%) Table 5: Effect of lysine concentration and tris concentration (impurity amount:%)
Figure imgf000013_0002
Figure imgf000013_0002
実施例 4 (高分子物質の除去効果) Example 4 (Effect of removing high molecular substances)
Q- S e p h a r o s e F a s t ? 1
Figure imgf000013_0001
; ファル マシア社製) に、 参考例 1で得られたプラスミノーゲン含有溶液を、 各々量を変 えてアプライして (1.0, 0.5, 0. 、 イオン交換クロマトグラフィーを行 い (流速: 0.5 mS min. ;平衡化緩衝液: 0.9 w/v%グリシン, 0.4 5 w/v %塩化ナトリウム, ρΗ7· 2、 溶出用緩衝液: 0.9 wZv%グリシン, 1 M塩化 ナトリウム, pH7.2) 、 得られた未吸着画分を G P Cで分析した。 結果を表 7 に示す。 表 7 :未吸着画分の G P C分析 (高分子物質量:
Q- S epharose Fast? 1
Figure imgf000013_0001
Pharmacia) and the plasminogen-containing solution obtained in Reference Example 1 was applied in different amounts (1.0, 0.5, 0.), and ion exchange chromatography was performed (flow rate: 0.5 mS). min.; Equilibration buffer: 0.9 w / v% glycine, 0.45 w / v% sodium chloride, ρΗ7.2, Elution buffer: 0.9 wZv% glycine, 1 M sodium chloride, pH 7.2) The unadsorbed fraction was analyzed by GPC and the results are shown in Table 7. Table 7: GPC analysis of unadsorbed fractions (polymer content:
Figure imgf000014_0001
Figure imgf000014_0001
図 1は、 イオン交換クロマト処理したプラスミノーゲンのゲル濾過クロマトグ ラフィ一における分析結果を示す図であり、 図中 1は高分子物質のピークを示す 図 1から明らかなように、 数%の高分子物質を含む出発試料では、 ゲル ( i mO の 1 Z 5量 ( 0. 2 〜 1 Z 1 0量 ( 0. 1 の添加で高分子物質は完全に除去 された。  Figure 1 shows the results of analysis of plasminogen treated with ion-exchange chromatography on gel filtration chromatography. In the figure, 1 shows the peak of the polymer substance. In the starting sample containing the molecular substance, the addition of the gel (imO 1Z5 amount (0.2 to 1Z10 amount (0.1) removed the high molecular substance completely).
図面の簡単な説明  BRIEF DESCRIPTION OF THE FIGURES
図 1は、 実施例 4において、 イオン交換クロマト処理したブラスミノーゲンの ゲル濾過クロマトグラフィ一における分析結果を示す図である。  FIG. 1 is a diagram showing the results of analysis of plasminogen treated with ion exchange chromatography in Example 4 by gel filtration chromatography.
図中 「未処理」 とは、 イオン交換クロマト未処理のブラスミノ一ゲン含有溶液 のゲル濾過クロマトグラムを示す。 また各クロマトグラム左上に示した量 (1. 0 m£, 0. 5 md, 0. l i , 0. 1 は、 イオン交換体に添加したプラスミノーゲン含 有溶液の添加量を示す。  In the figure, “untreated” indicates a gel filtration chromatogram of a plasminogen-containing solution that has not been subjected to ion exchange chromatography. The amounts shown at the upper left of each chromatogram (1.0 m £, 0.5 md, 0.5 li, 0.1 indicate the amount of the plasminogen-containing solution added to the ion exchanger.
産業上の利用可能性  Industrial applicability
本発明の精製方法によれば、 プラスミノーゲン含有組成物中に夾雑する物質、 就中ブラスミノーゲン抗原性を有する高分子物質を簡便に除去することができる 更に本発明方法によれば、 プラスミノ一ゲン含有組成物から高純度のブラスミ ノーゲンを短時間に効率よく、 収率よく、 かつ経済的に取得することができる。 従って、 大量のプラスミノーゲン含有組成物からの精製において特に有利であり、 工業的規模におけるブラスミノーゲンの製法として極めて有用である。  According to the purification method of the present invention, it is possible to easily remove substances contaminating the plasminogen-containing composition, especially high molecular substances having plasminogen antigenicity. A high-purity plasminogen can be obtained from a gen-containing composition in a short time, efficiently, with good yield, and economically. Therefore, it is particularly advantageous in purification from a large amount of a plasminogen-containing composition, and is extremely useful as a process for producing plasminogen on an industrial scale.

Claims

請求の範囲 The scope of the claims
1 . プラスミノーゲン含有組成物を陰イオン交換体に接触させ、 その未吸着 画分を回収することを特徴とするブラスミノーゲンの精製方法。  1. A method for purifying plasminogen, comprising contacting a plasminogen-containing composition with an anion exchanger and collecting a non-adsorbed fraction thereof.
2 . 塩濃度 0. 1〜2 %、 好ましくは 0. 4〜0. 8 %の条件下でプラスミノーゲ ン含有組成物を陰イオン交換体に接触させることを特徴する請求の範囲 1記載の プラスミノーゲンの精製方法。  2. The plasminol according to claim 1, wherein the plasminogen-containing composition is brought into contact with the anion exchanger under a salt concentration of 0.1 to 2%, preferably 0.4 to 0.8%. Gen purification method.
3 . p H 6〜 8の条件下でブラスミノ一ゲン含有組成物を陰ィォン交換体に 接触させることを特徴する請求の範囲 1記載のプラスミノ一ゲンの精製方法。  3. The method for purifying plasminogen according to claim 1, wherein the plasminogen-containing composition is brought into contact with an anion exchanger under conditions of pH 6 to 8.
4 . ブラスミノーゲンが、 リジル一ブラスミノ一ゲンであることを特徵する 請求の範囲 1記載のブラスミノ一ゲンの精製方法。  4. The method for purifying brassinogen according to claim 1, wherein the brassinogen is lysyl-brasminogen.
5 . プラスミノーゲン含有組成物が、 リジン一ァフィ二テイク口マトグラフ ィ一を行ったものであることを特徴する請求の範囲 1記載のプラスミノ一ゲンの 精製方法。  5. The method for purifying plasminogen according to claim 1, wherein the plasminogen-containing composition has been subjected to lysine affinity chromatography.
6 . 陰イオン交換体が、 トリメチルアミノメチル、 トリメチルアミノエチル、 またはジェチルー (2—ハイドロキシプロピル) アミノエチル基を結合してなる ものであることを特徵する請求の範囲 1記載のプラスミノ一ゲンの精製方法。  6. Purification of plasminogen according to claim 1, wherein the anion exchanger is formed by bonding a trimethylaminomethyl, trimethylaminoethyl, or getyl- (2-hydroxypropyl) aminoethyl group. Method.
7 . 塩が、 塩化ナトリウムであることを特徴する請求の範囲 2または 3記載 のプラスミノーゲンの精製方法。  7. The method for purifying plasminogen according to claim 2, wherein the salt is sodium chloride.
8 . プラスミノ一ゲン含有組成物が、 陰イオン交換体と同一の緩衝液条件に 調製されていることを特徴する請求の範囲 1記載のブラスミノーゲンの精製方法 c 8. Plasminogen one plasminogen-containing composition, the method of purifying brass plasminogen according to claim 1, wherein the characterized by being prepared in the anion exchanger and the same buffer conditions c
9 . プラスミノ一ゲン含有組成物をトリス塩酸緩衝液またはリン酸塩緩衝液 中で陰イオン交換体に接触させることを特徵する請求の範囲 1記載のプラスミノ —ゲンの精製方法。  9. The method for purifying plasminogen according to claim 1, wherein the plasminogen-containing composition is brought into contact with an anion exchanger in a Tris-HCl buffer or a phosphate buffer.
1 0 . 陰イオン交換体のゲル容量が、 プラスミノーゲン含有溶液に含まれる 総蛋白量 1 O mgあたり 以上であることを特徴する請求の範囲 1記載のプラス ミノーゲンの精製方法。  10. The method for purifying plasminogen according to claim 1, wherein the gel capacity of the anion exchanger is not less than 1 Omg of total protein contained in the plasminogen-containing solution.
1 1 . 陰イオン交換体処理が、 カラム法であることを特徴する請求の範囲 1 記載のブラスミノーゲンの精製方法。  11. The method for purifying plasminogen according to claim 1, wherein the anion exchanger treatment is a column method.
PCT/JP1994/001124 1993-07-29 1994-07-08 Method of purifying plasminogen WO1995004077A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP5/187896 1993-07-29
JP18789693A JPH0739375A (en) 1993-07-29 1993-07-29 Purification of plasminogen

Publications (1)

Publication Number Publication Date
WO1995004077A1 true WO1995004077A1 (en) 1995-02-09

Family

ID=16214096

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1994/001124 WO1995004077A1 (en) 1993-07-29 1994-07-08 Method of purifying plasminogen

Country Status (2)

Country Link
JP (1) JPH0739375A (en)
WO (1) WO1995004077A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1232254A4 (en) * 1999-11-13 2005-02-02 Bayer Healthcare Llc Process for the production of a reversibly inactive acidified plasmin composition
US6964764B2 (en) 1999-11-13 2005-11-15 Talecris Biotherapeutics, Inc. Method of thrombolysis by local delivery of reversibly inactivated acidified plasmin
US6969515B2 (en) 1999-11-13 2005-11-29 Talecris Biotherapeutics, Inc. Method of thrombolysis by local delivery of reversibly inactivated acidified plasmin
US7544500B2 (en) 1999-11-13 2009-06-09 Talecris Biotherapeutics, Inc. Process for the production of a reversibly inactive acidified plasmin composition
US8617863B2 (en) 2008-06-04 2013-12-31 Grifols Therapeutics Inc. Composition, method, and kit for preparing plasmin
US9206410B2 (en) 2009-03-03 2015-12-08 Grifols Therapeutics Inc. Compositions, methods and kits for preparing plasminogen and plasmin prepared therefrom
CN108138090A (en) * 2015-08-31 2018-06-08 泰华施公司 For the method and composition of stable liquid tetraacetyl ethylene diamine composition

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0297386A (en) * 1988-07-28 1990-04-09 Immuno Ag Chem Med Prod Production of lys-plasminogen

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0297386A (en) * 1988-07-28 1990-04-09 Immuno Ag Chem Med Prod Production of lys-plasminogen

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
BIOCHIMICA ET BIOPHYSICA ACTA, Vol. 221 (1970), PER WALLEN and BJORN WIMAN, "Characterization of Human Plasminogen", pages 20-30. *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1232254A4 (en) * 1999-11-13 2005-02-02 Bayer Healthcare Llc Process for the production of a reversibly inactive acidified plasmin composition
US6964764B2 (en) 1999-11-13 2005-11-15 Talecris Biotherapeutics, Inc. Method of thrombolysis by local delivery of reversibly inactivated acidified plasmin
US6969515B2 (en) 1999-11-13 2005-11-29 Talecris Biotherapeutics, Inc. Method of thrombolysis by local delivery of reversibly inactivated acidified plasmin
US7544500B2 (en) 1999-11-13 2009-06-09 Talecris Biotherapeutics, Inc. Process for the production of a reversibly inactive acidified plasmin composition
US7871608B2 (en) 1999-11-13 2011-01-18 Talecris Biotherapeutics, Inc. Reversibly inactivated acidified plasmin
US8268782B2 (en) 1999-11-13 2012-09-18 Grifols Therapeutics Inc. Composition and method for preparing plasminogen
US9879246B2 (en) 1999-11-13 2018-01-30 Grifols Therapeutics Inc. Reversibly inactivated acidified plasmin composition
US8617863B2 (en) 2008-06-04 2013-12-31 Grifols Therapeutics Inc. Composition, method, and kit for preparing plasmin
US9206410B2 (en) 2009-03-03 2015-12-08 Grifols Therapeutics Inc. Compositions, methods and kits for preparing plasminogen and plasmin prepared therefrom
CN108138090A (en) * 2015-08-31 2018-06-08 泰华施公司 For the method and composition of stable liquid tetraacetyl ethylene diamine composition

Also Published As

Publication number Publication date
JPH0739375A (en) 1995-02-10

Similar Documents

Publication Publication Date Title
RU2088590C1 (en) Method of preparing the standardized concentration of human villebrand factor and concentrate obtained by this method
JP4445202B2 (en) Method for preparing human immunoglobulin concentrates for therapeutic use
AU594325B2 (en) Method for purifying antihemophilic factor
CA2220501C (en) Novel factor ix purification methods
JPH04504720A (en) Methods for protein purification
JP4250770B2 (en) Purification of von Willebrand factor by cation exchange chromatography.
JPH082313B2 (en) Purification and activation of proteins from insoluble inclusion bodies
KR20100058520A (en) Method for purifing the factor viii and the von willebrand factor
NO167627B (en) PROCEDURE FOR CLEANING FACTOR VIII: C.
JPS6262153B2 (en)
CZ277939B6 (en) Process for preparing stable concentrate of a complex factor viii-von willebrand factor exhibiting high specific activity
JPH0698019B2 (en) Protein purification
JP4660048B2 (en) Separation of fibrinogen from plasma protease
JPH0545600B2 (en)
WO1995004077A1 (en) Method of purifying plasminogen
JP3471379B2 (en) Method for preparing human antithrombin-III
CN106928344A (en) Method for being reduced from the solution containing clotting factor and/or remove FXI and FXIa
US5919909A (en) Process for the preparation of factor IX from biological sources
NO178882B (en) Method for Separation of Vitamin K-Dependent Blood Coagulant Factors
WO1995011966A1 (en) Human activated protein c preparation and process for producing the same
ES2552337T3 (en) Procedures for plasminogen preparation
WO1999020655A1 (en) Method for purifying thrombin substrates and/or inhibitors or method for eliminating the same
JPS5810522A (en) Purification of antithrombin 3 by deactivated thrombin gel
JP7230115B2 (en) Post-translationally modified α-thrombin
KR0168415B1 (en) Process for preparing a concentrate of blood coagulation factor ñà- willebrand factor complex from total plaza

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: CA