WO1995001126A1 - Apparatus for monitoring ultrasonic surgical ablation - Google Patents

Apparatus for monitoring ultrasonic surgical ablation Download PDF

Info

Publication number
WO1995001126A1
WO1995001126A1 PCT/GB1994/001404 GB9401404W WO9501126A1 WO 1995001126 A1 WO1995001126 A1 WO 1995001126A1 GB 9401404 W GB9401404 W GB 9401404W WO 9501126 A1 WO9501126 A1 WO 9501126A1
Authority
WO
WIPO (PCT)
Prior art keywords
monitoring
region
ablating
tissue
ablation
Prior art date
Application number
PCT/GB1994/001404
Other languages
French (fr)
Inventor
Christopher Rowland HILL
Gail Reinette TER HAAR
Original Assignee
Institute Of Cancer Research: Royal Cancer Hospital
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute Of Cancer Research: Royal Cancer Hospital filed Critical Institute Of Cancer Research: Royal Cancer Hospital
Publication of WO1995001126A1 publication Critical patent/WO1995001126A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/08Detecting organic movements or changes, e.g. tumours, cysts, swellings
    • A61B8/0858Detecting organic movements or changes, e.g. tumours, cysts, swellings involving measuring tissue layers, e.g. skin, interfaces
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/08Detecting organic movements or changes, e.g. tumours, cysts, swellings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N7/00Ultrasound therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00017Electrical control of surgical instruments
    • A61B2017/00022Sensing or detecting at the treatment site
    • A61B2017/00106Sensing or detecting at the treatment site ultrasonic
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/22Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for
    • A61B17/22004Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for using mechanical vibrations, e.g. ultrasonic shock waves
    • A61B2017/22005Effects, e.g. on tissue
    • A61B2017/22007Cavitation or pseudocavitation, i.e. creation of gas bubbles generating a secondary shock wave when collapsing
    • A61B2017/22008Cavitation or pseudocavitation, i.e. creation of gas bubbles generating a secondary shock wave when collapsing used or promoted

Definitions

  • the present invention relates to apparatus for monitoring the ablation of tissue during surgery, to determine whether or not all the target tissue, or even that target tissue has been ablated.
  • Ablated regions of tissue, or ablative lesions can sometimes be visualised by means of ultrasonic B-scan (pulse-echo) imaging procedures.
  • a surgeon looks at the produced image and makes a subjective judgment on whether or not he has made a sufficient lesion. This is not, however, a reliable method of making such a determination since limitations of the imager and/or the human eye mean that it is not always possible to detect from these images whether or not changes have occurred, and further these images do not necessarily represent the changes that have occurred in the tissue. Frequently, it is not possible to make the right judgment this way and a patient may have to be recalled later for further surgery.
  • the present invention is a result of an investigation into this feature and a search for other potentially useful and available ultrasonic signals that would complement the simple echo amplitude signals used in conventional imaging.
  • apparatus for monitoring surgical ablations comprising means for monitoring backscattering and/or attenuation coefficients of a candidate ablation region and a posterior region adjacent thereto.
  • the coefficient monitoring means further comprises means for monitoring backscattering and/or attenuation coefficient of an adjacent region anterior to said candidate region.
  • this apparatus is combined with ablating means, possibly in the form of a lesioning transducer, for near immediate feedback.
  • a method of monitoring an ablation of a candidate region of tissue comprising the step of: monitoring backscattering and/or attenuation coefficients of the candidate region and a posterior region adjacent thereto.
  • the method may also comprise the step of monitoring backscattering and/or attenuation coefficients of an adjacent region anterior said candidate region, and/or the step of comparing monitored coefficients for the same region or regions from before and after a period of ablation.
  • the present invention makes use of the fact that the absorption co-efficient of tissue changes when it is ablated and a lesion forms.
  • Figure 1 shows the configuration geometry of a lesioning transducer and imaging transducer relative to tissue volumes, together with a schematic representation of the control circuitry, according to one embodiment of the present invention
  • Figures 2a and 2b show a series of transmitted and received signal sequences in the transducers of Figure 1.
  • Figure 1 illustrates a configuration of two associated ultrasonic transducer assemblies, a strongly focused lesioning transducer (2) and a weakly focused imaging transducer (4) , in an array (1) , and is generally similar to arrangements used in some forms of commercial extracorporeal ultrasonic lithotriptors.
  • the lesioning transducer (2) is controlled by a treatment processor (7) . This in turn is controlled by the display/controls (9) which the surgeon uses to control the process.
  • the imaging transducer (4) is controlled by an imaging processor (6) which again is controlled by the surgeon using the display/controls (9) .
  • a memory (8) is used to store images and pulse echoes received by the imaging transducer (4) .
  • the focus of the array (1) is shifted by a motor (3) .
  • the lesioning transducer (2) is generally arranged to be co-axial and confocal with the imaging transducer (4) and brings energy to a focus within the lesioning region (14) of a tissue (10) . Additionally the imaging transducer (4) emits a pencil-like beam of pulses that irradiate the lesioning region (14) as well as an adjacent anterior region (12) and an adjacent posterior region (16) in the same order as those regions are encountered by the pulses, that is first the anterior region (12) , then the lesioning region (14) and finally the posterior region (16) . In this arrangement the same transducer receives pulse echoes from those regions in the same time sequence order.
  • Ultrasonic radiation of different frequencies may be used according to the depth of surgery. Just below the skin a frequency of around 7 MHz may be used. On the other hand, with deep surgery, frequencies of around 1 to 3 MHz may be more appropriate.
  • the effect of the strongly focused ultrasonic radiation is to heat up the tissue. This may result in the "cooking" of tissue in the lesioning volume (14) .
  • the reflective characteristics of such affected tissue change and this effect can be detected quickly.
  • ultrasonic radiation can also result in the stimulation of a phenomenon known as cavitation in a target volume. Cavitation is caused by the breakdown of the tissue or liquid and the lowering of local pressure. It occurs when the ultrasound radiation boils liquids within the fluids and vapour expands to form microscopic bubbles within the tissue. These can vibrate at characteristic frequencies and result in characteristic acoustic emission in all directions. This can also be received by either or both of the two transducers (2,4) .
  • Figures 2a and 2b show an example of a time sequence of signals transmitted and received by the different transducers.
  • Figure 2a shows two lines of signals. The first indicates the signals transmitted by the lesioning transducer (2) and the second indicates those it receives.
  • Figure 2b shows the signals transmitted and received by the imaging transducer (4) .
  • an imaging pulse (20) is transmitted by the imaging transducer (4) before any lesioning radiation is transmitted by the lesioning transducer (2) .
  • This first imaging pulse (20) results in three pulse-echoes (22,24,26) received by the imaging transducer (4) from the three tissue regions (12,14,16) shown in Figure 1.
  • These first received pulse- echoes (22,24,26) are stored in the memory (8) to be used to provide a datum to decide the effect of subsequent lesioning.
  • lesioning irradiation (28) is transmitted by the lesioning transducer (2) as controlled by the surgeon, or possibly automatically; and focused on a particular volume (14) of the tissue (10) .
  • a further imaging pulse (34) is transmitted from the imaging transducer (4) , again either as determined by the surgeon or automatically, which results in a new set of pulse echoes (36, 38, 40) in which the amplitudes of at least some of the echo pulses will have changed. These echoes too can be stored in the memory.
  • continuous power may be applied, for example for 1 to 2 seconds, and during that time at, for instance, 1/10 second intervals, there may be 10 ⁇ s of imaging.
  • the image plane which provides the echoes is a plane in the direction the ultrasound is sent.
  • a sweeping motion (either by rotation and/or translation) can be used.
  • Comparisons can then be made in the imaging processor (6) between the amplitudes of received signals to determine whether the changes indicate sufficient ablation in the lesioned volume (14) . All these signals and this whole sequence may be repeated if the comparison shows that further ablation is required.
  • Ablation of tissue results in changes in its attenuation coefficients.
  • the attenuation of ultrasound includes a combination of power absorption and backscattering, with absorption accounting for up to 90% of it.
  • the amplitudes of backscattered signals (38,24) from the target lesioning volume (14) , before and after lesioning, or the amplitudes of the ratios between the signals (38/36, 24/22) from the target lesioning volume (14) and the anterior volume (12) before and after lesioning, are compared. These indicate changes resulting from the lesioning process which show themselves in the alteration of the tissue echogenicity, or back scattering co-efficient.
  • comparisons of the amplitudes of signals (40,26) from the posterior volume (16) or of the amplitudes of the ratios between the signals (40/36, 26/22) from the posterior volume (16) and the anterior volume (12) , before and after lesioning indicate changes which show in an alteration in the attenuation coefficient of the target lesioning volume (14).
  • the anterior tissue volume (12) closest to the imaging transducer, is, by definition unaffected by the lesioning process and thus the amplitude of the signal echoed back from it will not be affected by that process. Therefore the signals (22,36) from the anterior region (12) are, in principle, identical to each other and may be used as a baseline. Thu ⁇ , in principle and within the limits of measurement accuracy, the position of the anterior limit of observable lesioning damage is given as the maximum distance from, in this case, the imaging transducer (2) for which the before and after echo signals (22,36) remain equal.
  • All or any of these signals may be displayed on a monitor in the display (9) , as they are shown in Figures 2a and 2b, or may be displayed for the surgeon as relative amplitudes or in any other desired form. It is therefore possible for the surgeon to see the results of the lesioning process almost immediately after it has occurred and before moving on to the next area of tissue which needs ablating. The surgeon may control all the aspects of the imaging and lesioning. And thus the imaging may be interleaved with the lesioning vintil the results are as required.
  • the position controller can be instructed by the imaging processor (6) instead.
  • imaging transducer There may be more than one imaging transducer and/or different transducers may transmit and receive the imaging and echo pulses for imaging. Further, a separate transducer may be introduced to provide specific reception of a characteristic component of the cavitation-related acoustic emission and may be tuned to the frequency of that emission, that is, for example, 0.5 times the driving frequency. Also, there is no need for the imaging and lesioning transducers to be coaxial.
  • the imaging transducer may be arranged to scan either a plane or a volume containing the axis of the lesioning transducer (2) , in which case the sets of data or some combination of them, derived from the above procedures may be displayed as two-dimensional or three-dimensional maps of tissue alteration features, for example as overlays on conventional pulse-echo image maps of tissue anatomy.

Abstract

Apparatus for monitoring ablations in tissue during surgery. Pulses of ultrasound are emitted from an imaging transducer (4) which receives echoes back from the ablated tissue (14) and tissue (12, 16) adjacent to it. The received signals are then monitored to determine whether or not they indicate changes in the tissue which result from lesioning of that tissue. By this a surgeon may know whether or not to move on to other areas of tissue to ablate them.

Description

"APPARATUS FOR ONITORING ULTRASONIC SURGICAL ABLATION"
The present invention relates to apparatus for monitoring the ablation of tissue during surgery, to determine whether or not all the target tissue, or even that target tissue has been ablated.
It has been known for some time that strongly focused beams of ultrasound at a frequency of about 1 MHz can be used to ablate, that is destroy, selected volumes of living human or animal tissue at some depth in the body, apparently without damage to the overlying tissues. This characteristic is now being investigated for surgical applications.
Ablated regions of tissue, or ablative lesions, can sometimes be visualised by means of ultrasonic B-scan (pulse-echo) imaging procedures. Using this method, a surgeon looks at the produced image and makes a subjective judgment on whether or not he has made a sufficient lesion. This is not, however, a reliable method of making such a determination since limitations of the imager and/or the human eye mean that it is not always possible to detect from these images whether or not changes have occurred, and further these images do not necessarily represent the changes that have occurred in the tissue. Frequently, it is not possible to make the right judgment this way and a patient may have to be recalled later for further surgery.
It was unclear what specific changes in tissue properties, related to the ablation process, give rise to detectable changes in ultrasonic echo properties of the tissue. The present invention is a result of an investigation into this feature and a search for other potentially useful and available ultrasonic signals that would complement the simple echo amplitude signals used in conventional imaging.
It is an aim of the present invention to provide apparatus which is able to overcome disadvantages of the prior art and to provide non-invasive and near instantaneous information on both the occurrence and location of tissue alteration resulting, preferably, from focused ultrasonic surgery.
Further it is an aim that the information should be presented in a more readily comprehensible form than that provided solely by studying an image of an area of tissue by eye, and instead, or as well, it should be of a quantative nature.
According to one aspect of the present invention there is provided apparatus for monitoring surgical ablations comprising means for monitoring backscattering and/or attenuation coefficients of a candidate ablation region and a posterior region adjacent thereto.
Preferably, the coefficient monitoring means further comprises means for monitoring backscattering and/or attenuation coefficient of an adjacent region anterior to said candidate region.
Preferably this apparatus is combined with ablating means, possibly in the form of a lesioning transducer, for near immediate feedback.
According to another aspect of the present invention, there is provided a method of monitoring an ablation of a candidate region of tissue, said method comprising the step of: monitoring backscattering and/or attenuation coefficients of the candidate region and a posterior region adjacent thereto.
The method may also comprise the step of monitoring backscattering and/or attenuation coefficients of an adjacent region anterior said candidate region, and/or the step of comparing monitored coefficients for the same region or regions from before and after a period of ablation.
The present invention makes use of the fact that the absorption co-efficient of tissue changes when it is ablated and a lesion forms.
The present invention will be further described, by way of non-limitative example, with reference to the accompanying drawings, in which:-
Figure 1 shows the configuration geometry of a lesioning transducer and imaging transducer relative to tissue volumes, together with a schematic representation of the control circuitry, according to one embodiment of the present invention; and
Figures 2a and 2b show a series of transmitted and received signal sequences in the transducers of Figure 1.
Figure 1 illustrates a configuration of two associated ultrasonic transducer assemblies, a strongly focused lesioning transducer (2) and a weakly focused imaging transducer (4) , in an array (1) , and is generally similar to arrangements used in some forms of commercial extracorporeal ultrasonic lithotriptors. The lesioning transducer (2) is controlled by a treatment processor (7) . This in turn is controlled by the display/controls (9) which the surgeon uses to control the process. The imaging transducer (4) is controlled by an imaging processor (6) which again is controlled by the surgeon using the display/controls (9) . A memory (8) is used to store images and pulse echoes received by the imaging transducer (4) . The focus of the array (1) is shifted by a motor (3) . This is controlled by the position controller (5) which reacts in response to signals from the imaging processor (6) and the display/controls (9) . The lesioning transducer (2) is generally arranged to be co-axial and confocal with the imaging transducer (4) and brings energy to a focus within the lesioning region (14) of a tissue (10) . Additionally the imaging transducer (4) emits a pencil-like beam of pulses that irradiate the lesioning region (14) as well as an adjacent anterior region (12) and an adjacent posterior region (16) in the same order as those regions are encountered by the pulses, that is first the anterior region (12) , then the lesioning region (14) and finally the posterior region (16) . In this arrangement the same transducer receives pulse echoes from those regions in the same time sequence order.
Ultrasonic radiation of different frequencies may be used according to the depth of surgery. Just below the skin a frequency of around 7 MHz may be used. On the other hand, with deep surgery, frequencies of around 1 to 3 MHz may be more appropriate.
The effect of the strongly focused ultrasonic radiation is to heat up the tissue. This may result in the "cooking" of tissue in the lesioning volume (14) . The reflective characteristics of such affected tissue change and this effect can be detected quickly. With deep surgery, and especially around frequencies of 1.5 to 2 MHz, ultrasonic radiation can also result in the stimulation of a phenomenon known as cavitation in a target volume. Cavitation is caused by the breakdown of the tissue or liquid and the lowering of local pressure. It occurs when the ultrasound radiation boils liquids within the fluids and vapour expands to form microscopic bubbles within the tissue. These can vibrate at characteristic frequencies and result in characteristic acoustic emission in all directions. This can also be received by either or both of the two transducers (2,4) .
Figures 2a and 2b show an example of a time sequence of signals transmitted and received by the different transducers. Figure 2a shows two lines of signals. The first indicates the signals transmitted by the lesioning transducer (2) and the second indicates those it receives. Similarly Figure 2b shows the signals transmitted and received by the imaging transducer (4) .
By the operation of the controls (9) , or by an automatic operation in the imaging processor (6) an imaging pulse (20) is transmitted by the imaging transducer (4) before any lesioning radiation is transmitted by the lesioning transducer (2) . This first imaging pulse (20) results in three pulse-echoes (22,24,26) received by the imaging transducer (4) from the three tissue regions (12,14,16) shown in Figure 1. These first received pulse- echoes (22,24,26) are stored in the memory (8) to be used to provide a datum to decide the effect of subsequent lesioning. Subsequently lesioning irradiation (28) is transmitted by the lesioning transducer (2) as controlled by the surgeon, or possibly automatically; and focused on a particular volume (14) of the tissue (10) . This causes changes in the physiology of the tissue in that volume (14) and may eventually stimulate cavitation. If cavitation occurs then it results in an acoustic emission which is received by both the transducers (2,4) and which can be stored in the memory (8). Either the signals (30,32) as are, or selected frequency components of these signals can be indicative of the occurrence of cavitation. The emissions can be displayed on the display (9) and if these signals are noticed they can be used as an indication that lesioning has been effected. Alternatively the processors can determine whether the signals indicate lesioning.
At some point after the lesioning radiation has been transmitted, and possibly after cavitation emissions have been detected, a further imaging pulse (34) is transmitted from the imaging transducer (4) , again either as determined by the surgeon or automatically, which results in a new set of pulse echoes (36, 38, 40) in which the amplitudes of at least some of the echo pulses will have changed. These echoes too can be stored in the memory.
Alternatively, continuous power may be applied, for example for 1 to 2 seconds, and during that time at, for instance, 1/10 second intervals, there may be 10 μs of imaging.
The image plane which provides the echoes is a plane in the direction the ultrasound is sent. To build up a three-dimensional image a sweeping motion (either by rotation and/or translation) can be used.
Comparisons can then be made in the imaging processor (6) between the amplitudes of received signals to determine whether the changes indicate sufficient ablation in the lesioned volume (14) . All these signals and this whole sequence may be repeated if the comparison shows that further ablation is required. Ablation of tissue results in changes in its attenuation coefficients. The attenuation of ultrasound includes a combination of power absorption and backscattering, with absorption accounting for up to 90% of it.
The amplitudes of backscattered signals (38,24) from the target lesioning volume (14) , before and after lesioning, or the amplitudes of the ratios between the signals (38/36, 24/22) from the target lesioning volume (14) and the anterior volume (12) before and after lesioning, are compared. These indicate changes resulting from the lesioning process which show themselves in the alteration of the tissue echogenicity, or back scattering co-efficient. Correspondingly, comparisons of the amplitudes of signals (40,26) from the posterior volume (16) or of the amplitudes of the ratios between the signals (40/36, 26/22) from the posterior volume (16) and the anterior volume (12) , before and after lesioning, indicate changes which show in an alteration in the attenuation coefficient of the target lesioning volume (14).
In this procedure the anterior tissue volume (12) , closest to the imaging transducer, is, by definition unaffected by the lesioning process and thus the amplitude of the signal echoed back from it will not be affected by that process. Therefore the signals (22,36) from the anterior region (12) are, in principle, identical to each other and may be used as a baseline. Thuε, in principle and within the limits of measurement accuracy, the position of the anterior limit of observable lesioning damage is given as the maximum distance from, in this case, the imaging transducer (2) for which the before and after echo signals (22,36) remain equal. All or any of these signals may be displayed on a monitor in the display (9) , as they are shown in Figures 2a and 2b, or may be displayed for the surgeon as relative amplitudes or in any other desired form. It is therefore possible for the surgeon to see the results of the lesioning process almost immediately after it has occurred and before moving on to the next area of tissue which needs ablating. The surgeon may control all the aspects of the imaging and lesioning. And thus the imaging may be interleaved with the lesioning vintil the results are as required.
Normally the surgeon, having decided that an area is sufficiently ablated will control the array (1) to focus on a new target volume using the controls. However, if the deciding process is automatic, the position controller can be instructed by the imaging processor (6) instead.
The signals exemplified in Figures 2a and 2b may be replaced with others or may be repeated in various permutations.
There may be more than one imaging transducer and/or different transducers may transmit and receive the imaging and echo pulses for imaging. Further, a separate transducer may be introduced to provide specific reception of a characteristic component of the cavitation-related acoustic emission and may be tuned to the frequency of that emission, that is, for example, 0.5 times the driving frequency. Also, there is no need for the imaging and lesioning transducers to be coaxial. The imaging transducer may be arranged to scan either a plane or a volume containing the axis of the lesioning transducer (2) , in which case the sets of data or some combination of them, derived from the above procedures may be displayed as two-dimensional or three-dimensional maps of tissue alteration features, for example as overlays on conventional pulse-echo image maps of tissue anatomy.

Claims

C L A M S
1. Apparatus for monitoring surgical ablations comprising means (4) for monitoring backscattering and/or attenuation coefficients of a candidate ablation region (14) and a posterior region (16) adjacent thereto.
2. Apparatus according to claim 1, wherein said coefficient monitoring means further comprise means (4) for monitoring backscattering and/or attenuation coefficients of an adjacent region (12) anterior to said candidate region (14) .
3. Apparatus according to claim 1 or 2, wherein said backscattering and/or attenuation coefficients monitoring means (4) comprise means (6) to emit pulses towards said regions (12,14,16) and means (4,6) to receive pulse-echoes back therefrom.
4. Apparatus according to claim 3, wherein said pulse emitting and pulse-echo receiving means comprise weakly focused imaging transducers (4) .
5. Apparatus according to claim 3 or 4, wherein said pulses are pulses of ultrasound and said coefficients are ultrasound coefficients.
6. Apparatus according to any one of the preceding claims, further comprising means (2,7) for ablating said candidate ablation region (14) .
7. Apparatus according to claims 4 and 6, wherein said ablating means (2) and imaging transducers (4) are confocal and coaxial.
8. Apparatus according to claim 6 or 7, wherein said ablation means (2) emits beams of ultrasound.
9. Apparatus according to claim 6, 7 or 8, wherein said ablating means comprises a strongly focused lesioning transducer (2) .
10. Apparatus according to claims 3, 4 or 5 and 6, 7, 8 or 9, wherein said emitted pulses are interleaved with ablating emissions from said ablating means.
11. Apparatus according to any one of the preceding claims, further comprising means (4,6) for monitoring the occurrence of cavitation within the candidate ablation region.
12. Apparatus according to claim 11, wherein said coefficient monitoring means (4,6) include said cavitation occurrence monitoring means (4,6).
13. Apparatus according to any one of the preceding claims, further comprising display means (9) for displaying outputs from said coefficient monitoring and/or cavitation occurrence monitoring means (6,8).
14. A method of monitoring an ablation of a candidate region of tissue, said method comprising the step of:
monitoring backscattering and/or attenuation coefficients of the candidate region (14) and a posterior region (16) adjacent thereto.
15. A method according to claim 14, further comprising the step of monitoring backscattering and/or attenuation coefficients of an adjacent region (12) anterior said candidate region (14) .
16. A method according to claim 14 or 15, further comprising the step of comparing monitored coefficients for the same region or regions from before and after a period of ablation.
17. A method according to any one of claims 14 to 16, further comprising the step of ablating said candidate region (14) .
18. A method according to claims 16 and 17, wherein said comparing step is repeated at intervals during said ablating step.
19. A method according to claim 16 and 17, wherein said comparing and ablating steps are repeated and interleaved.
20. A method according to any one of claims 14 to 19, further comprising the step of monitoring the occurrence of cavitation within said candidate region.
PCT/GB1994/001404 1993-06-29 1994-06-29 Apparatus for monitoring ultrasonic surgical ablation WO1995001126A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB9313346.0 1993-06-29
GB9313346A GB2279742A (en) 1993-06-29 1993-06-29 Apparatus for monitoring ultrasonic surgical ablation

Publications (1)

Publication Number Publication Date
WO1995001126A1 true WO1995001126A1 (en) 1995-01-12

Family

ID=10737951

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/GB1994/001404 WO1995001126A1 (en) 1993-06-29 1994-06-29 Apparatus for monitoring ultrasonic surgical ablation

Country Status (2)

Country Link
GB (1) GB2279742A (en)
WO (1) WO1995001126A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995029737A1 (en) * 1994-05-03 1995-11-09 Board Of Regents, The University Of Texas System Apparatus and method for noninvasive doppler ultrasound-guided real-time control of tissue damage in thermal therapy
EP2349482A2 (en) * 2008-10-24 2011-08-03 Mirabilis Medica Inc. Method and apparatus for feedback control of hifu treatments
CN102858252A (en) * 2010-04-28 2013-01-02 皇家飞利浦电子股份有限公司 Property determining apparatus for determining a property of an object

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9611801D0 (en) * 1996-06-06 1996-08-07 Univ Bristol Apparatus for and method of detecting a reflector with a medium
FR2778574B1 (en) * 1998-05-13 2000-12-08 Technomed Medical Systems METHOD FOR MEASURING THE EFFECT OF TREATMENT ON TISSUE
CA2476873A1 (en) * 2002-02-20 2003-08-28 Liposonix, Inc. Ultrasonic treatment and imaging of adipose tissue
US8216161B2 (en) 2008-08-06 2012-07-10 Mirabilis Medica Inc. Optimization and feedback control of HIFU power deposition through the frequency analysis of backscattered HIFU signals
WO2010017419A2 (en) * 2008-08-06 2010-02-11 Mirabilis Medica Inc. Optimization and feedback control of hifu power deposition through the analysis of detected signal characteristics
US9248318B2 (en) 2008-08-06 2016-02-02 Mirabilis Medica Inc. Optimization and feedback control of HIFU power deposition through the analysis of detected signal characteristics

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0091768A2 (en) * 1982-04-07 1983-10-19 Fujitsu Limited Measuring characteristics of living tissues by ultrasonic waves
EP0194897A2 (en) * 1985-03-15 1986-09-17 Kabushiki Kaisha Toshiba Ultrasound therapy system
GB2187840A (en) * 1986-03-11 1987-09-16 Wolf Gmbh Richard Method and apparatus for detecting cavitations during medical application of high sonic energy
FR2608913A1 (en) * 1986-12-26 1988-07-01 Toshiba Kk ULTRASONOTHERAPHY APPARATUS PROVIDED WITH AN ULTRASONOSCOPY DEVICE, PARTICULARLY FOR DESTROYING CALCULATIONS
EP0383288A1 (en) * 1989-02-16 1990-08-22 Fujitsu Limited Ultrasound diagnostic equipment for characterising tissue by analysis of backscatter
EP0424245A2 (en) * 1989-10-17 1991-04-24 UNITED STATES GOVERNMENT, as represented by THE NATIONAL AERONAUTICS AND SPACE ADMINISTRATION Method and apparatus for characterizing reflected ultrasonic pulses
FR2685211A1 (en) * 1991-12-20 1993-06-25 Technomed Int Sa Ultrasound therapy apparatus emitting ultrasonic waves producing thermal effects and cavitation effects

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6080442A (en) * 1983-10-06 1985-05-08 テルモ株式会社 Ultrasonic measuring method and apparatus
US4763661A (en) * 1986-02-11 1988-08-16 Stanford University Filtered ultrasonic wave method and apparatus for detecting diseased tissue
US4803994A (en) * 1987-08-12 1989-02-14 General Electric Company Backscatter data collection technique for ultrasound
US4887605A (en) * 1988-02-18 1989-12-19 Angelsen Bjorn A J Laser catheter delivery system for controlled atheroma ablation combining laser angioplasty and intra-arterial ultrasonic imagining

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0091768A2 (en) * 1982-04-07 1983-10-19 Fujitsu Limited Measuring characteristics of living tissues by ultrasonic waves
EP0194897A2 (en) * 1985-03-15 1986-09-17 Kabushiki Kaisha Toshiba Ultrasound therapy system
GB2187840A (en) * 1986-03-11 1987-09-16 Wolf Gmbh Richard Method and apparatus for detecting cavitations during medical application of high sonic energy
FR2608913A1 (en) * 1986-12-26 1988-07-01 Toshiba Kk ULTRASONOTHERAPHY APPARATUS PROVIDED WITH AN ULTRASONOSCOPY DEVICE, PARTICULARLY FOR DESTROYING CALCULATIONS
EP0383288A1 (en) * 1989-02-16 1990-08-22 Fujitsu Limited Ultrasound diagnostic equipment for characterising tissue by analysis of backscatter
EP0424245A2 (en) * 1989-10-17 1991-04-24 UNITED STATES GOVERNMENT, as represented by THE NATIONAL AERONAUTICS AND SPACE ADMINISTRATION Method and apparatus for characterizing reflected ultrasonic pulses
FR2685211A1 (en) * 1991-12-20 1993-06-25 Technomed Int Sa Ultrasound therapy apparatus emitting ultrasonic waves producing thermal effects and cavitation effects

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
E.S.EBBINI ET AL.: "Cancer Treatment with High Intensity Focused Ultrasound: A Combined Therapy/Imaging System for Precision Noninvasive Lesion Formation", PROCEEDINGS OF THE ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, vol. 14, 29 October 1992 (1992-10-29), PARIS (FR), pages 352 - 353 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995029737A1 (en) * 1994-05-03 1995-11-09 Board Of Regents, The University Of Texas System Apparatus and method for noninvasive doppler ultrasound-guided real-time control of tissue damage in thermal therapy
EP2349482A2 (en) * 2008-10-24 2011-08-03 Mirabilis Medica Inc. Method and apparatus for feedback control of hifu treatments
EP2349482A4 (en) * 2008-10-24 2013-01-16 Mirabilis Medica Inc Method and apparatus for feedback control of hifu treatments
US8480600B2 (en) 2008-10-24 2013-07-09 Mirabilis Medica Inc. Method and apparatus for feedback control of HIFU treatments
CN102858252A (en) * 2010-04-28 2013-01-02 皇家飞利浦电子股份有限公司 Property determining apparatus for determining a property of an object
US10335192B2 (en) 2010-04-28 2019-07-02 Koninklijke Philips N.V. Apparatus for determining a property of an object using ultrasound scatter

Also Published As

Publication number Publication date
GB9313346D0 (en) 1993-08-11
GB2279742A (en) 1995-01-11

Similar Documents

Publication Publication Date Title
EP0734742B1 (en) Ultrasound therapeutic apparatus
US6334846B1 (en) Ultrasound therapeutic apparatus
US6066096A (en) Imaging probes and catheters for volumetric intraluminal ultrasound imaging and related systems
JP5462167B2 (en) System and method for tissue change monitoring during HIFU treatment
US5993389A (en) Devices for providing acoustic hemostasis
CA2253664C (en) Methods and devices for providing acoustic hemostasis
KR100932472B1 (en) Ultrasound Diagnostic System for Detecting Lesions
US9566042B2 (en) Method for ultrasound imaging of a biopsy needle or the like during an ultrasound imaging examination
US6106517A (en) Surgical instrument with ultrasound pulse generator
US8376946B2 (en) Method and apparatus for combined diagnostic and therapeutic ultrasound system incorporating noninvasive thermometry, ablation control and automation
JP3300419B2 (en) Thrombolysis treatment device
US20080188749A1 (en) Three Dimensional Imaging for Guiding Interventional Medical Devices in a Body Volume
JP2014516723A (en) Ablation probe with ultrasound imaging capability
JP2007512111A (en) Method of monitoring medical treatment using pulse echo ultrasound
JP4913736B2 (en) Ultrasonic therapy device
WO2014186903A1 (en) Ultrasonic array for bone sonography
WO1995001126A1 (en) Apparatus for monitoring ultrasonic surgical ablation
WO2003028556A1 (en) Ultrasonic diagnosing device and ultrsonic diagnosing method
CN113332620A (en) Ultrasonic medical equipment
US10238369B2 (en) Real time ultrasound thermal dose monitoring system for tumor ablation therapy
WO2015186651A1 (en) Ultrasound therapeutic device and ultrasound therapeutic system
CN113117260B (en) Focused ultrasound device and focused ultrasound device control method
Fahey et al. ARFI imaging of thermal lesions in ex vivo and in vivo soft tissues
EP3226773B1 (en) Systems for lesion formation feedback
JP2000254137A (en) Ultrasonic treatment device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase