WO1993008635A1 - Rotary electric machine - Google Patents

Rotary electric machine Download PDF

Info

Publication number
WO1993008635A1
WO1993008635A1 PCT/JP1992/001335 JP9201335W WO9308635A1 WO 1993008635 A1 WO1993008635 A1 WO 1993008635A1 JP 9201335 W JP9201335 W JP 9201335W WO 9308635 A1 WO9308635 A1 WO 9308635A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
stator
magnetic
rotation
field
Prior art date
Application number
PCT/JP1992/001335
Other languages
French (fr)
Japanese (ja)
Inventor
Muneaki Takara
Original Assignee
Muneaki Takara
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Muneaki Takara filed Critical Muneaki Takara
Publication of WO1993008635A1 publication Critical patent/WO1993008635A1/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K25/00DC interrupter motors or generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K23/00DC commutator motors or generators having mechanical commutator; Universal AC/DC commutator motors
    • H02K23/26DC commutator motors or generators having mechanical commutator; Universal AC/DC commutator motors characterised by the armature windings
    • H02K23/36DC commutator motors or generators having mechanical commutator; Universal AC/DC commutator motors characterised by the armature windings having two or more windings; having two or more commutators; having two or more stators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Definitions

  • the present invention relates to a rotating electric machine that can be used as a motor or the like, and more particularly to a rotating electric machine based on a new operation principle that uses a magnetic MS as a driving force.
  • motors such as DC motors or brushless DC motors
  • DC motors or brushless DC motors constitute a field system with groups of both N and S poles, and the stator and rotor have a characteristic of magnetic field.
  • the rotor is rotated with the magnetic attraction acting between them as the main rai force.
  • a rotating electrical machine that uses a magnetic field to form a field system and uses the magnetic force generated between the stator and the ffig of the rotor as a force to rotate the rotor is a rotating electrical machine. Did not.
  • an object of the present invention is to provide a rotating electric motor in which a field system is constituted by a group of unipolar magnetic poles, and a magnetic repulsive force acting between magnetic poles of the same polarity of the stator and the rotor is referred to as “I force”. It is to do. Disclosure of the invention
  • a rotor and a stator are concentrically arranged with a gap interposed therebetween, and the stator has a position separated in the rotation axis direction.
  • First and second field systems which are mutually difficult, are attached to each other, and each of the first and second field systems forms a plurality of magnetic poles of the same polarity at spaced positions in the rotational direction,
  • the first and second magnetic pole groups having the i-type characteristic mutually are provided at positions corresponding to the first and second field systems of the iron core in the longitudinal direction of the core extending in the rotation axis direction.
  • Each of the first and second magnetic pole groups of the rotor includes a plurality of magnetic poles arranged at spaced positions in the rotational direction.
  • a commutation difficulty is provided to excite the rotor, which is excited so that the rotor fiber has the same polarity as the corresponding field system of the stator, and each rotor has a 3 ⁇ 4g force.
  • the rotation ⁇ ⁇ ⁇ «S or ⁇ ⁇ ⁇ S is configured so that ⁇ S of the same polarity disappears at a position before passing through the magnetic pole of the field system of the stator in the rotation direction and is generated again at a later position.
  • the rotor In this first form of rotational separation, the rotor generates the first and second magnets having the same polarity as the first and second field systems of the stator by exciting the ⁇ ? Then, a rotating force is obtained by the group MS acting on the rotor and stator 3 ⁇ 4S.
  • iS when iS is applied to the magnetic pole of the stator in the direction of rotation of the rotor, it is subject to the radiating force in the direction of rotation and 3 directions. By extinguishing and regenerating at the position after il, the force in the reverse rotation direction due to the team force is prevented.
  • the position before the separation of S the magnetic pole of the electric field in the energized state, the magnetic field generated by the iS® from the 3 ⁇ 4S of the field to be applied, is generated in the rear. It is preferable that the position is set to a position before it becomes large as compared with the magnetic repulsive force in the normal rotation direction received from a certain field 3 ⁇ 4g.
  • the position after passing through the separation is a position where a current can be applied to the fiber winding so that a large magnetic effort can be obtained in the normal rotation direction from ⁇ of the passing field group. Is preferred. The same applies to the following types of rotating electric machines.
  • the rotor and the stator are arranged concentrically across the gap, and the rotor has mutual properties at positions intersected in the rotational direction.
  • a second field system is mounted, and each of the first and second field systems forms a, of the same polarity, at an intersecting position in the rotational direction, and the first, second, and The first and second magnetic poles of the stator are mounted at positions corresponding to the field systems of
  • An energization control for exciting the fiber of the stator is provided, and the energization control is provided with the electric current, and the ⁇ of the stator corresponds to the rotor.
  • the magnetic poles of the child magnetic pole group A rotating electric machine is characterized in that it is configured so that a magnetic pole of the same polarity disappears at a position before passing through and is generated again at a position after passing.
  • the stator excites the stator to generate first and second magnetic pole groups having the same polarity as the first and second field of the rotor, respectively.
  • the rotor obtains a rotational urging force by the magnetic repulsion acting between the magnetic poles of the rotor and the stator.
  • each magnetic pole of the rotor passes through the magnetic pole of the stator in the rotation direction, it receives a magnetic force in a direction opposite to the rotation direction.
  • the rotor and the stator are concentrically arranged with a gap therebetween, and the stator has mutual properties at positions separated in the direction of the rotation axis.
  • a second field system is installed, and each of the first and second field systems forms a difficulty of the same polarity of ⁇ at a distance in the rotation direction, and the rotor has a rotation axis direction.
  • the common core extends in the longitudinal direction, and the first and second electric power generating first and second powers are attached to the core at positions corresponding to the first and second field systems.
  • Each of the first and second magnets of the rotor is made of mm mm arranged at a position separated from each other in the rotating direction, and the first electric motor of the rotor is used as a A rectifier is provided to excite the first electric power, and the rectification is Excited to be of the same polarity as the corresponding field system of the quench, and of the same polarity at a position just before the poles of the group of rotors pass through 3 ⁇ 4g of the stator's field system in the direction of rotation. To be generated again at the position after the passage,
  • a rotation is performed in which the second power is used as a generator, and the power output extracted from the second power is returned to the input side of the first power through rectification.
  • the electrical operation of the rotating electric machine of the third embodiment is the same as that of the above-described first rotating electric machine, but the second armature of the rotor is used as a generator, and The power output taken out of the wire is input to the winding of the first armature through the rectifying mechanism.
  • the rotor's magnetic pole is at 3 ⁇ 4g and ⁇ s of the stator. It can be configured so as to excite the electricity so as to achieve the characteristic.
  • the above-described energization control is performed by setting the magnetic poles of the stator before the thigh of the rotor in the direction of rotation of each of the rotors in the direction of rotation of the rotor: It can be configured to excite the magnetic pole so that the magnetic pole forms a characteristic with the magnetic pole of the rotor.
  • It can be configured to include a commutator attached to the rotation and a brush attached to the fixed ⁇ !!.
  • the energization control enzyme includes a tester for detecting the rotational position of the rotor, and a switch circuit for controlling the exciting current of the m ⁇ ? Winding of the stator in accordance with the detected position of the rotor. It can be configured to include.
  • ⁇ ⁇ means that it can be composed of salient poles that are wound around the part protruding from the crane of the heart toward the gap.
  • the relative arrangement positions of the second field system and the second group of the electric field are shifted, and the polarity of the second field system is changed when the second field system is excited by S ⁇ ?.
  • It can be configured to give a rotating force to the rotor by a magnetic attraction force between them so as to have ⁇ and ⁇ g properties. In this way, when a rotational force due to the magnetic field is generated between the first field and the first ⁇ S ⁇ of the electric field, the magnetic field is generated between the second field and the second field. Rotational force due to suction force can be generated.
  • the field system can be composed of permanent magnets or electromagnets.
  • FIG. 1 is a diagram showing the entire structure of a rotating electric machine as one example of the present invention.
  • FIG. 2 shows the electrical wiring of the device of the embodiment.
  • FIG. 3 is a diagram for explaining the operation of the embodiment device, and is a cross-sectional view of the electric-side electric machine.
  • FIG. 4 is a view for explaining the operation of the embodiment device, and is a cross-sectional view of a power-generating armature portion.
  • FIG. 5 shows a rotation target @ ⁇ as another example of the present invention.
  • FIG. 6 shows the mm-type rotation mts as yet another example of 6s of the present invention.
  • FIG. 1 is a diagram showing a complete rotation as an example of the present invention.
  • FIG. 2 is a view showing the electrical connection of the apparatus of this embodiment
  • FIG. 3 is a view of the ⁇ U side electrode in the ⁇ I example apparatus
  • FIG. 4 is a side view of the power generation side of the ⁇ ! Example apparatus.
  • FIG. 1 is a diagram showing a complete rotation as an example of the present invention.
  • FIG. 2 is a view showing the electrical connection of the apparatus of this embodiment
  • FIG. 3 is a view of the ⁇ U side electrode in the ⁇ I example apparatus
  • FIG. 4 is a side view of the power generation side of the ⁇ ! Example apparatus.
  • FIG. 1 is a diagram showing a complete rotation as an example of the present invention.
  • FIG. 2 is a view showing the electrical connection of the apparatus of this embodiment
  • FIG. 3 is a view of the ⁇ U side electrode in the ⁇ I example apparatus
  • FIG. 4 is a side view of the power generation side of the
  • the apparatus of this embodiment is of an inner-rotor type in which a rotor 2 is rotatably mounted on the inner side of a stator 1.
  • the stator 1 has a non-solid housing 10 and an inner periphery thereof.
  • Each of the field magnets 11 A to 11 C is formed of a plate-shaped permanent magnet having a circular cross section, and as shown in FIG. 3, as viewed from the cross section of the housing 10, along the inner peripheral surface thereof. They are arranged at equal angular intervals of 120 degrees in the circumferential direction. These field magnets 11 A to 11 C all face the inner rotor 2 and have the same polarity as the N pole.
  • the field magnets 12 A to 12 C are arranged at positions separated from the field magnets 11 A to 11 C by a predetermined length in the direction of the rotation axis, and each of these field magnets 12 A to 12 C It is made of a plate-shaped permanent magnet with an arc-shaped cross section. As shown in Fig. 4, when viewed from the surface of the housing 10, it is circumferentially spaced at equal angular intervals of 120 degrees along its inner peripheral surface.
  • the field magnets are arranged at the same angular position as 11A-1C. These field magnets 12 A to 12 C are directed toward the internal rotor 2, and all ⁇ ⁇ have the same polarity as the S pole.
  • the rotor 2 has a structure in which an armature is attached to one end of the rotating shaft 24.
  • 3 ⁇ 4 ⁇ is composed of two parts, ⁇ & side power ⁇ 21 and power generation side power ⁇ 22.
  • Four cylindrical fibers 35 are fixed to the other end of the rotating shaft 24, and commutators 31 to 34 are attached to the outer surfaces of the fibers 35, respectively.
  • the 2 ⁇ of the rotor 2 is formed by laminating plates.
  • the ⁇ is formed by winding a winding for power generation and a winding for power generation around a core.
  • the StS core is composed of S1 & side iron core 23M, power generation iron core 23G, and iron core 23C between the rainy people.
  • the side core portion 23M has a T-shaped protrusion ⁇ protruding in three directions at an interval of 120 ° from the center, and ⁇ ⁇ 2 1 It consists of three sides mi ⁇ F 21 A to 21 C with 0 wound.
  • the core part 23M on the shore side has salient poles having a T-shaped cross section protruding in three directions at intervals of 120 degrees from the center.
  • the field magnet i .1 A ⁇ with fixed wmmm ⁇ ⁇ of the rotor 2 is; 1 1
  • the generator-side electric power 22 is arranged in the space inside the stator so as to face C and the fixed field magnets 12 A to 12 C.
  • Each of the rectifiers 3 1 to 3 4 is composed of 12 commutator pieces arranged one after another along the circumference of the body 35, so that each commutator piece has a contact of about 30 degrees or less. Each will have a corner.
  • the arrangement angle positions of these commutator pieces as viewed from the top are the same as those of the commutators 31 to 34.
  • the commutator pieces of the commutator 31 are the number obtained by dividing the number 12 along the circumference by twice the number 3 of the salient poles described above, that is, in this case, every two pieces
  • the commutator pieces 31a are connected to each other, and the commutators 31a are connected to each other.
  • the other commutator pieces of the other commutators 32 to 34 are similarly sealed.
  • wmmwM -2 1 A to 2 lc of each mm winding 21 o are connected in series, and one end of the lead or lead 3 drawn from the Sl side electrode 21? 1 phase Connected to the commutator pieces 3 1a connected to each other, while ⁇ i on the other end drawn from the « ⁇ side power l ⁇ 21 C is connected to the interconnected commutator pieces 3 2a of the commutator 32 Is done.
  • the armature windings 220 of the power-generating armatures 22 A to 22 C are connected in series, and one end drawn from the power-generating armature 22 A is a commutator 33.
  • Brushes 41 to 44 are in sliding contact with these commutators 31 to 34, respectively.
  • the commutators 31 and 32 are connected to the battery 4 via the brushes 41 and 2.
  • the polarity of the connection to the battery 4 is positive for the brush 41 and negative for the brush 42.
  • An S pole is generated at the projection of 22 C.
  • the rotor is subjected to clockwise rotation by both the rotational urging force F 1 received by the motor-side electric power unit 21 and the rotational urging force F 1 ′ received by the power-generating armature 22. .
  • the rotation position of the rotor 2 is the position shown in (b) of FIGS. 3 and 4 (that is, the tips of the protrusions of the armatures 21 A to 21 C and 22 A to 22 C are in the rotation direction).
  • the ⁇ & side 3 ⁇ 4 »2 1 and the power generation side mt ⁇ ? 2 2 are generated in the opposite direction from the field magnets 1 1 and 1 2 in the rotation direction ⁇ 3 ⁇ 4 ⁇
  • This magnetism gradually increases with the rotation (for example, when the motor-side armature 21A rotates beyond the position (b) in Fig. 3) in the forward direction from the field magnet 11A.
  • the magnetic force in the reverse rotation direction received from the field magnet 12B is larger than the magnetic S force of the rotor 2), and the rotation of the rotor 2 is reduced until that time.
  • the armature windings 220 of the side armatures 22 A to 22 C are formed by the principle of the transformer by forming the above-described magnetic closed circuit, and the power generation side armatures 22 A to 22 C are formed by the field magnets 1. Rotation in the field magnetic flux created by 2 A to l 2 C causes induction. In other words, the power generation-side armatures 22 A to 22 C generate power, and the generated power is extracted from the power-generation-side armature windings 220.
  • the battery 3 ⁇ 4E is supplied to the S3 ⁇ 4-side armature 21, and the commutator acts to intermittently energize the rotor in accordance with the rotation angle of the rotor, thereby causing the rotor to rotate.
  • the Mm-elements 22A to 22C on the power-generating side it is also possible for the Mm-elements 22A to 22C on the power-generating side to simultaneously generate power and operate as a generator by the same action. You can.
  • the rotating electric machine of each example can obtain a power generation output, a part of the power generation output can be used for charging the battery 4 as a motor of the rotating electric machine.
  • the power output from the rn-2 is connected to the battery 4 via a backflow prevention diode or the like.
  • the power generation output can be used effectively in the direction to increase the number of rotations ⁇ . That is, the tangent side output (+) of the generator side 3 ⁇ 4 ⁇ ⁇ ? 21 is connected to the tangent side input (+) of the ESf side 3 ⁇ 4tl ⁇ 2 1 via the diode 51, and the inversion output of the winding 220 is connected. (1) is connected to the negative input (1) of i-1 via the diode 52.
  • the rotating electric machine of this embodiment increases the speed of its own rotation by the power generation output by its own rotation, and can be called a self-propelled generator (or a self-propelled SK machine).
  • difficult case
  • one of 1, 2 was used for the machine and the other was used for the generator
  • the present invention is not limited to this.
  • the winding of the armature 22 on the generator side may be removed. It is possible, and in that case, the rotating electric machine of the present invention will operate as a motor having no power generation action.
  • the power generation side 2 can also be operated as a machine.
  • the leakage armature 21 when the leakage armature 21 is energized and N is applied to its protruding part, at the same time, the power generating armature 22 is energized and the commutator 33 , 3 4 to brushes 4 3, 4 4, connect to y, terry 4. In this way, a large rotational urging force is generated not only by the side power ⁇ ? Therefore, a large torque can be generated.
  • a magnetic attraction field in place of the power generating side electric field.
  • a 33 ⁇ 4 field magnet 12 A to 12 C The configuration position is shifted by 60 ° from the case of Fig. 4 so that the generator-side power tH ⁇ 22A ⁇ 22C is compatible (that is, N pole).
  • the power generation side »2 2 is a magnetic attraction force acting between the field magnets 1 and 2 As a result, the force on the forward rotation side is also received.
  • the rotor with the armature attached was placed inside the stator in an inner ⁇ -ta shape, but such a rotor was composed of a cylindrical body and the stator was mounted inside it.
  • An outer rotor type is also possible.
  • the ⁇ having the winding is attached to the rotating ⁇ , and the field system composed of the permanent magnet is attached to the fixed ⁇ , but the arrangement relation can be reversed. That is, when the rotation StS in the above-described example is regarded as a DC motor with a brush, the present invention can also be used as a brushless DC motor.
  • a field system consisting of permanent magnets is installed on the rotor side, and the polarity of the permanent magnets facing the stator is all N poles on the electric side and all S poles on the power generation side.
  • the armature is mounted on the stator side, and the armature on the motor side generates an N pole toward the rotor when energized.
  • the rotational position of the rotor is detected by a rotational angle position detecting means such as a Hall element, and the ON / OFF of energization to the mm-side electric winding of the stator is determined by the semiconductor according to the rotational angle position of the rotor. Controlled by switch circuit.
  • the method of turning on / off the power is to stop the power supply at a position just before the permanent magnet of the rotor passes through the position of the stator armature in front of the rotation direction, and to supply power again after passing.
  • the rotor can be rotated by receiving only the magnetic force in the rotating direction without receiving the magnetic MS force in the direction of decreasing the rotation.
  • the excitation is stopped at a position before the rotor's electric field (or the field magnet) passes through the field magnet (or the armature) located in the front in the rotation direction, and is excited again after passing. Armature at the position before and after the passage.
  • the present invention is not limited to this, and it is possible to generate a strong magnetic attraction force by flowing a current in the S3 ⁇ 4i direction to the winding at positions before and after this point. ,.
  • the ⁇ ⁇ has an MS and an opposing field stone, and a strong magnetic attraction is generated between the field magnet and the field magnet. The child can be rotated more strongly.
  • FIG. 6 shows the mm-diameter of a device in which such a configuration is difficult.
  • the basic configuration of this remote device is the same as that of the embodiment of FIG. 1, but the specific wiring is different.
  • all the commutator pieces 3 1b of the fiber 31 are connected to each other, and similarly, all the commutator pieces 3 2b of the commutator 32 are short-circuited.
  • a wire drawn from the side wire ⁇ 21 C winding ⁇ 210 is connected to the group of the commutator pieces 3 1 b, and the group of the commutator pieces 3 2 b is Connect ⁇ ! Drawn from winding 210.
  • the rotating electric machine having such a configuration can generate a very large output torque.
  • this example may be combined with the above-described example in which the power-generating side power is used as a ⁇ ll machine, and a difficult example of rotating by magnetic absorption.
  • the rotor is of a dual type of the side 1 and the power generation side, but the present invention is not limited to this.
  • the field system to be fixed is composed of permanent magnets.
  • the present invention is not limited to this.
  • the field system may be configured using electromagnets.
  • the number of magnetic poles of the «side electrode» and the power generation side electrode is set to three poles.
  • the present invention is not limited to this.
  • the brushes 41 and 42 and the brushes 41 and 42 in the rotational direction have a rotation angle of 120 °.
  • New brushes here, 4 ⁇ and 4 2 ′
  • brushes 4 1 and 2 are attached to the pieces 3 1a and 3 2a, respectively.
  • the brushes 4 ⁇ and 4 2 ′ are also brought into contact with the other pieces 3 1 a and 3 2 a.
  • a large miE having a polarity opposite to the applied EE from the battery 4 was generated. This generation 3 ⁇ 4E is considered to be usable for some purpose.
  • a high-speed rotating and high-torque rotating electric machine that operates using a magnetic repulsive force acting between magnetic poles of the same polarity as a main driving force can be newly provided.
  • this rotating electric machine can obtain high-speed rotation and large torque output, it has a very large number of application fields, for example, electric motor driving motors.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

A rotary electric machine constructed on the basis of a new operational principle, which is operated by utilizing a magnetic repulsive force as its driving force. In the rotary electric machine, a rotor and a stator are provided concentrically with a gap between them. On the stator, mounted are a first and a second excitation system having different polarities at an interval in the direction of the rotary shaft of the machine. Each of the first and second excitation systems forms a plurality of like magnetic poles at intervals in the rotational direction of the machine. To the rotor, attached is an armature which extends in the longitudinal direction of the rotor and generates a first and a second magnetic pole group having different polarities in positions corresponding to the first and second field systems of the stator. Each of the first and second magnetic pole groups of the rotor comprises a plurality of magnetic poles provided at intervals in the rotational direction. Provided is a commutation mechanism for exciting the armature of the rotor. The commutation mechanism so excites the armature that the respective magnetic pole groups of the rotor have the same polarities as those of the corresponding field systems. Further, the commutation mechanism so excites the armature that the magnetic poles disappear just before they pass the magnetic poles of the field system and appear again just after they pass the magnetic poles of the field system of the stator. Since high rotating speed and large torque can be obtained in this rotary electric machine, it is applicable to a very large number of fields, e.g., to the driving motor of an electric vehicle.

Description

明 細 書 回転電機 技術分野  Description Rotary electric machine Technical field
本発明は、 モータ等として利用できる回転電機に係り、 特に、 磁 MS発力を駆 動力として■する新たな動作原理に基づく回転電機に関するものである。 技術背景  The present invention relates to a rotating electric machine that can be used as a motor or the like, and more particularly to a rotating electric machine based on a new operation principle that uses a magnetic MS as a driving force. Technology background
従^ ¾的に知られているモータ、 例えば直流モータあるいはブラシレス直流 モータなどは、 N極と s極の両極性の 群で界磁システムを構成し、 固定子と 回転子の^性の ¾®間に働く磁気の吸引力を主たる rai力にして回転子を回転 させるものである。  Conventionally known motors, such as DC motors or brushless DC motors, constitute a field system with groups of both N and S poles, and the stator and rotor have a characteristic of magnetic field. The rotor is rotated with the magnetic attraction acting between them as the main rai force.
従来の回転電機では、 報性の磁麟で界磁システムを構成し、 固定子と回転 子の ffig間に働く磁^発力を,力にして回転子を回転させるという動作原理 の回転電機はなかった。  In a conventional rotating electrical machine, a rotating electrical machine that uses a magnetic field to form a field system and uses the magnetic force generated between the stator and the ffig of the rotor as a force to rotate the rotor is a rotating electrical machine. Did not.
したがって、 本発明の目的は、 単極性の磁極群で界磁システムを構成し、 固定 子と回転子の同極性の磁極間に働く磁気の反発力を «I力として «する回転電 機を新たに することにある。 発明の開示  Accordingly, an object of the present invention is to provide a rotating electric motor in which a field system is constituted by a group of unipolar magnetic poles, and a magnetic repulsive force acting between magnetic poles of the same polarity of the stator and the rotor is referred to as “I force”. It is to do. Disclosure of the invention
上述の^ を解決するために、 本発明によれば、 第 1の形態として、 回転子と 固定子がギャップを挟んで同心状に配置され、 固定子には、 回転軸方向に離間し た位置に、 互いに難性となる第 1、 第 2の界磁システムが取り付けられ、 第 1、 第 2の界磁システムの各々は、 回転方向における離間した位置に複数の同極性の 磁極を形成し、 回転子には、 回転軸方向にその鉄心の長手方向が延び、 鉄心の第 1、 第 2の界磁システムに対応した位置に、 互いに^ i性となる第 1、 第 2の磁 極群を発生する電機子が取り付けられ、 回転子の第 1、 第 2の磁極群の各々は、 回転方向における離間した位置に配置された複数の磁極からなり、 回転子の電機 子を励磁するための整流難が設けられ、 整流難は、 を、 回転子の繊 麟が固定子の対応する界磁システムと同極性を成すように励磁し、 かつ回転子 の の各 ¾g力その回転方向にある固定子の界磁システムの磁極を通過する 手前の位置でその同極性の ¾Sを消滅させ、 後の位置で再び発生させるよう に構成されたことを とする回転 ¾«Sか ' される。 According to the present invention, as a first aspect, in order to solve the above-mentioned が, a rotor and a stator are concentrically arranged with a gap interposed therebetween, and the stator has a position separated in the rotation axis direction. First and second field systems, which are mutually difficult, are attached to each other, and each of the first and second field systems forms a plurality of magnetic poles of the same polarity at spaced positions in the rotational direction, In the rotor, the first and second magnetic pole groups having the i-type characteristic mutually are provided at positions corresponding to the first and second field systems of the iron core in the longitudinal direction of the core extending in the rotation axis direction. Each of the first and second magnetic pole groups of the rotor includes a plurality of magnetic poles arranged at spaced positions in the rotational direction. A commutation difficulty is provided to excite the rotor, which is excited so that the rotor fiber has the same polarity as the corresponding field system of the stator, and each rotor has a ¾g force. The rotation と す る «S or と す る S is configured so that 同 S of the same polarity disappears at a position before passing through the magnetic pole of the field system of the stator in the rotation direction and is generated again at a later position. '
この第 1の形態の回転離においては、回転子は、 その^?を励磁すること で、 固定子の第 1、第 2の界磁システムとそれぞれ同極性の第 1、 第 2の を発生し、 それにより回転子と固定子の ¾S に作用する班 MS発力により回転 ^力を得る。一方、 その回転子の各¾« ^その回転方向にある固定子の磁極を iS するときには、 回転方向と 3»向への班 発力を受けることになるので、 その 手前の位置でその同極性の を消滅させ、 il 後の位置で再び発生さ せることで、班 発力による逆回転方向への力を受けないようにしている。 ここで、 の離 ¾S®する手前の位置としては、 通電忧態にある電^?の 磁極が、 その iS®せんとする界磁の ¾Sから受ける^向への磁^発力が後ろ 側にある界磁の ¾gから受ける正転方向への磁^発力に比べて大となる前の位 置とすることが好ましい。 また離を通過後の位置としては、 纖子卷線に通電 することにより «»の¾§がその通過した界班の麵から正転方向への大きな 磁^努力を得ることができる位置とすることが好ましい。以下の各形態の回転 電機におとおいても同様である。  In this first form of rotational separation, the rotor generates the first and second magnets having the same polarity as the first and second field systems of the stator by exciting the ^? Then, a rotating force is obtained by the group MS acting on the rotor and stator ¾S. On the other hand, when iS is applied to the magnetic pole of the stator in the direction of rotation of the rotor, it is subject to the radiating force in the direction of rotation and 3 directions. By extinguishing and regenerating at the position after il, the force in the reverse rotation direction due to the team force is prevented. Here, as the position before the separation of S, the magnetic pole of the electric field in the energized state, the magnetic field generated by the iS® from the ¾S of the field to be applied, is generated in the rear. It is preferable that the position is set to a position before it becomes large as compared with the magnetic repulsive force in the normal rotation direction received from a certain field ¾g. In addition, the position after passing through the separation is a position where a current can be applied to the fiber winding so that a large magnetic effort can be obtained in the normal rotation direction from 麵 of the passing field group. Is preferred. The same applies to the following types of rotating electric machines.
本発明によれば、第 2の形憨として、 回転子と固定子がギヤップを挟んで同心 状に配置さ 回転子には、 回転 向に雜間した位置に、互いに 性となる . 第 1、第 2の界磁システムが取り付けられ、第 1、第 2の界磁システムの各々は、 回転方向における雜間した位置に撤の同極性の を形成し、 固定子には、 第 1、 第 2の界磁システムに対応した位置に、互いに^ g性となる第 1、 第 2の磁 を発生する電»が取り付けられ、 固定子の第 1、 第 2の磁極群の各々は、 回転方向における離間した位置に配置された撤の¾¾からなり、 固定子の纖 子を励磁するための通電制御^^設けられ、 通電制御賺は、 電^?を、 固定 子の ^が回転子の対応する界磁システムと同極性を成すように励磁し、 力、 つ回転子の界磁システムの各磁極がその回転方向にある固定子の磁極群の磁極を 通過する手前の位置でその同極性の磁極を消滅させ、 通過後の位置で再び発生さ せるように構成されたことを特徵とする回転電機が される。 According to the present invention, as a second form, the rotor and the stator are arranged concentrically across the gap, and the rotor has mutual properties at positions intersected in the rotational direction. A second field system is mounted, and each of the first and second field systems forms a, of the same polarity, at an intersecting position in the rotational direction, and the first, second, and The first and second magnetic poles of the stator are mounted at positions corresponding to the field systems of An energization control for exciting the fiber of the stator is provided, and the energization control is provided with the electric current, and the ^ of the stator corresponds to the rotor. Excited to be of the same polarity as the field system, force, and fixed each pole of the rotor's field system in its direction of rotation The magnetic poles of the child magnetic pole group A rotating electric machine is characterized in that it is configured so that a magnetic pole of the same polarity disappears at a position before passing through and is generated again at a position after passing.
この第 2の形態の回転 においては、 固定子は、 その 子を励磁すること で、 回転子の第 1、 第 2の界磁とそれぞれ同極性の第 1、 第 2の磁極群を発生し、 それにより回転子は、 回転子と固定子の磁極間に作用する磁気反発力により回転 付勢力を得る。 一方、 その回転子の各磁極がその回転方向にある固定子の磁極を 通過するときには、 回転方向と逆方向への磁 発力を受けることになるので、 その通過手前の位置でその同極性の磁極を消滅させ、 通過直後の位置で再び発生 させることで、磁^発力による逆回転方向への力を受けないようにしている。  In this second form of rotation, the stator excites the stator to generate first and second magnetic pole groups having the same polarity as the first and second field of the rotor, respectively. As a result, the rotor obtains a rotational urging force by the magnetic repulsion acting between the magnetic poles of the rotor and the stator. On the other hand, when each magnetic pole of the rotor passes through the magnetic pole of the stator in the rotation direction, it receives a magnetic force in a direction opposite to the rotation direction. By eliminating the magnetic poles and regenerating them at the position immediately after passing, they prevent the force in the reverse rotation direction due to the magnetic force.
また本発明によれば、 第 3の形態として、 回転子と固定子がギヤップを挟んで 同心状に配置され、 固定子には、 回転軸方向に離間した位置に、 互いに 性と なる第 1、 第 2の界磁システムが取り付けられ、 第 1、 第 2の界磁システムの各 々は、 回転方向における離間した位置に碰の同極性の難を形成し、 回転子に は、 回転軸方向にその共通の鉄心の長手方向が延び、 鉄心の該第 1、 第 2の界磁 システムに対応した位置に、 互いに 性となる第 1、 第 2の を発生する 第 1、 第 2の電 が取り付けられ、 回転子の第 1、 第 2の磁麟の各々は、 回 転方向における離間した位置に配置された mmの ¾®からなり、 回転子の第 1の 電 が 機として用いられてその第 1の電^を励磁するための整流 が 設けられ、 整流賺は、 第 1の電 を、 回転子の 群が固定子の対応する 界磁システムと同極性を成すように励磁し、 かつ回転子の 群の 極がその 回転方向にある固定子の界磁システムの ¾gを通過する手前の位置でその同極性 の麵を消滅させ、 通過後の位置で再び発生させるように構成され、 回転子の第 Further, according to the present invention, as a third mode, the rotor and the stator are concentrically arranged with a gap therebetween, and the stator has mutual properties at positions separated in the direction of the rotation axis. A second field system is installed, and each of the first and second field systems forms a difficulty of the same polarity of 碰 at a distance in the rotation direction, and the rotor has a rotation axis direction. The common core extends in the longitudinal direction, and the first and second electric power generating first and second powers are attached to the core at positions corresponding to the first and second field systems. Each of the first and second magnets of the rotor is made of mm mm arranged at a position separated from each other in the rotating direction, and the first electric motor of the rotor is used as a A rectifier is provided to excite the first electric power, and the rectification is Excited to be of the same polarity as the corresponding field system of the quench, and of the same polarity at a position just before the poles of the group of rotors pass through ¾g of the stator's field system in the direction of rotation. To be generated again at the position after the passage,
2の電^が発電機として用いられて第 2の電 から取り出された発電出力が 整流 を通じて第 1の電»の入力側に戻されるようになっていることを特徵 とする回転 が される。 A rotation is performed in which the second power is used as a generator, and the power output extracted from the second power is returned to the input side of the first power through rectification.
この第 3の形態の回転電機は、 その 的な動作は上述の第 1の回転電機と同 - 様であるが、 回転子の第 2の電機子が発電機として用いられ、 その電^?巻線か ら取り出された発電出力が整流機構を通じて第 1の電機子の卷線に入力されるよ うになつている。
Figure imgf000006_0001
回転子の 極がその回転方向にある固定子の磁極を通過 する手前の位動、ら固定子の ¾®を通過後の位置までの間では、 回転子の磁極が 固定子の ¾gと^ s性を成すように電^?を励磁するように構成することができ る。
The electrical operation of the rotating electric machine of the third embodiment is the same as that of the above-described first rotating electric machine, but the second armature of the rotor is used as a generator, and The power output taken out of the wire is input to the winding of the first armature through the rectifying mechanism.
Figure imgf000006_0001
Between the position of the rotor's pole before it passes through the stator's magnetic pole in the direction of rotation and the position after passing through the stator's ¾®, the rotor's magnetic pole is at ¾g and ^ s of the stator. It can be configured so as to excite the electricity so as to achieve the characteristic.
また上述の通電制御^ ίは回転子の各¾«か'その回転方向にある固定子の を腿する手前の位 、ら固定子の磁極を: ϋ後の位置までの間では、 固定子の 磁極が回転子の磁極と 性を成すように を励磁するように構成すること ができる。  In addition, the above-described energization control is performed by setting the magnetic poles of the stator before the thigh of the rotor in the direction of rotation of each of the rotors in the direction of rotation of the rotor: It can be configured to excite the magnetic pole so that the magnetic pole forms a characteristic with the magnetic pole of the rotor.
このようにすると、 上 手前の位動ヽら腿後の位置の間は、 回転子と固 定子間に正転方向の磁気吸引力が発生し、 この磁気吸引力を回転體カとして回 転子を一層強く回転させることができる。 In this way, a magnetic attraction force in the normal rotation direction is generated between the rotor and the stator between the position of the front position and the position of the back of the thigh, and the magnetic attraction force is used as the rotor as the rotor. Can be rotated more strongly.
Figure imgf000006_0002
回転 に取り付けられた整流子と固定^!!に取り付けら れたブラシを含み構成することができる。
Figure imgf000006_0002
It can be configured to include a commutator attached to the rotation and a brush attached to the fixed ^ !!.
また の通電制御酵は、 回転子の の回転位置を検出する位驗出器と、 位 出器の検出位置に応じて固定子の m^?巻線の励磁電流を制御するスィッ チ回路とを含み構成することができる。  In addition, the energization control enzyme includes a tester for detecting the rotational position of the rotor, and a switch circuit for controlling the exciting current of the m ^? Winding of the stator in accordance with the detected position of the rotor. It can be configured to include.
また ±^の は、 心の鶴からギヤップに向かって突出する部分 に 巻 を巻回した突極で構成することがでさる。  In addition, ± ^ means that it can be composed of salient poles that are wound around the part protruding from the crane of the heart toward the gap.
また ± の回転電機において、 第 2の界磁システムと電^の第 の ¾@群の 相対的配置位置をずらすと共に、 第 2の界磁システムの極性を S^?の励磁時に 第 2の ¾ ^と^ g性になるようにして両者間に数く磁気吸引力で回転子に回転 ^力を与えるように構成することができる。 このようにすれば、 第 1の界磁と 電^?の第 1の ¾S ^間で磁 発力による回転力が発生しているときに、 第 2 の界磁と の第 2の 間では磁気吸引力による回転力を発生させること ができる。  In addition, in a rotating electric machine of ±, the relative arrangement positions of the second field system and the second group of the electric field are shifted, and the polarity of the second field system is changed when the second field system is excited by S ^ ?. It can be configured to give a rotating force to the rotor by a magnetic attraction force between them so as to have ^ and ^ g properties. In this way, when a rotational force due to the magnetic field is generated between the first field and the first ^ S ^ of the electric field, the magnetic field is generated between the second field and the second field. Rotational force due to suction force can be generated.
また の界磁システムは永久磁石または電磁石で構成することができる。 図面の簡単な説明  The field system can be composed of permanent magnets or electromagnets. BRIEF DESCRIPTION OF THE FIGURES
図 1は本発明の一 »例としての回転電機の全^ ^成を示す図である < 図 2は実施例装置の電気的配線を示す。 FIG. 1 is a diagram showing the entire structure of a rotating electric machine as one example of the present invention. FIG. 2 shows the electrical wiring of the device of the embodiment.
図 3は実施例装置の動作を説明するための図であって、 電動側電機 分の横 断面図である。  FIG. 3 is a diagram for explaining the operation of the embodiment device, and is a cross-sectional view of the electric-side electric machine.
図 4は実施例装置の動作を説明するための図であって、 発電側電機子部分の横 断面図である。  FIG. 4 is a view for explaining the operation of the embodiment device, and is a cross-sectional view of a power-generating armature portion.
図 5は本発明の他の^ ¾S例としての回転 の 的 @ ^を示す。  FIG. 5 shows a rotation target @ ^ as another example of the present invention.
図 6は本発明のまた他の ¾6s例としての回転 mtsの mm的 を示す。 発明を実施するための最良の形態  FIG. 6 shows the mm-type rotation mts as yet another example of 6s of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 図面を参照して本発明の実施例を説明する。  Hereinafter, embodiments of the present invention will be described with reference to the drawings.
図 1は本発明の一 例としての回転 の全 成を示す図である。 また図 2はこの実施例装置の電気的結線を示す図、 図 3はこの^ I例装置における 側電^ U分の^面図、 図 4はこの^!例装置における発電側電«&¾分の横 断面図である。  FIG. 1 is a diagram showing a complete rotation as an example of the present invention. FIG. 2 is a view showing the electrical connection of the apparatus of this embodiment, FIG. 3 is a view of the ^ U side electrode in the ^ I example apparatus, and FIG. 4 is a side view of the power generation side of the ^! Example apparatus. FIG.
図において、 本実施例装置は固定子 1の内部側に回転子 2を回転可能に取り付 けたインナ一ロータ形のものであり、 固定子 1は非 胜体の筐体 1 0とその内周 面に沿って固定された界磁システムとしての合計 6つの界磁石 1 1 A〜1 1 C、 1 2 A〜C力、ら成る。  In the figure, the apparatus of this embodiment is of an inner-rotor type in which a rotor 2 is rotatably mounted on the inner side of a stator 1. The stator 1 has a non-solid housing 10 and an inner periphery thereof. A total of six field magnets 11 A to 11 C, 12 A to C forces, as a field system fixed along the plane.
界磁石 1 1 A〜l 1 Cの各々は、 断面円 の板状の永久磁石からなり、 図 3 に示されるように、 筐体 1 0の横断面から見て、 その内周面に沿って周方向に 1 2 0度の等角度間隔で配置されている。 これらの界磁石 1 1 A〜1 1 Cは内部の 回転子 2側を向く は全て N極の同極性となつている。  Each of the field magnets 11 A to 11 C is formed of a plate-shaped permanent magnet having a circular cross section, and as shown in FIG. 3, as viewed from the cross section of the housing 10, along the inner peripheral surface thereof. They are arranged at equal angular intervals of 120 degrees in the circumferential direction. These field magnets 11 A to 11 C all face the inner rotor 2 and have the same polarity as the N pole.
界磁石 1 1 A~ l 1 Cと回転軸方向に所定長だけ離れた位置に界磁石 1 2 A〜 1 2 Cが配置されており、 これら界磁石 1 2 A〜1 2 Cの各々も、 断面円弧形の 板状の永久磁石からなり、 図 4に示されるように、 筐体 1 0の 面から見て、 その内周面に沿って周方向に 1 2 0度の等角度間隔で、 界磁石 1 1 A〜l 1 Cと 同じ角度位置に配置されている。 これらの界磁石 1 2 A〜1 2 Cは内部の回転子 2側を向く Ϊ ^は全て S極の同極性となっている。  The field magnets 12 A to 12 C are arranged at positions separated from the field magnets 11 A to 11 C by a predetermined length in the direction of the rotation axis, and each of these field magnets 12 A to 12 C It is made of a plate-shaped permanent magnet with an arc-shaped cross section. As shown in Fig. 4, when viewed from the surface of the housing 10, it is circumferentially spaced at equal angular intervals of 120 degrees along its inner peripheral surface. The field magnets are arranged at the same angular position as 11A-1C. These field magnets 12 A to 12 C are directed toward the internal rotor 2, and all Ϊ ^ have the same polarity as the S pole.
回転子 2は回転軸 2 4の一端側に電機子を取り付けた構造となっており、 この ¾ ^は^ &側電^ 2 1と発電側電 ^2 2の二つの部分からなる。 またこの 回転軸 2 4の他端側には 4つの円柱形の纖体 3 5が固定されていて、 これらの 纖体 3 5の外周面に沿って整流子 3 1〜3 4がそれぞれ取り付けられている。 この回転子 2の ¾ ^は、 板を積層した€ ^^心に 用と発電用の 巻線をそれぞ;½回したものである。 StS ^心は S1&側鉄心部 2 3Mと発電側 鉄心部 2 3 G、 およびこの雨者間 ¾ ^する 用鉄心部 2 3 Cからなる。 The rotor 2 has a structure in which an armature is attached to one end of the rotating shaft 24. ¾ ^ is composed of two parts, ^ & side power ^ 21 and power generation side power ^ 22. Four cylindrical fibers 35 are fixed to the other end of the rotating shaft 24, and commutators 31 to 34 are attached to the outer surfaces of the fibers 35, respectively. ing. The 2 ^ of the rotor 2 is formed by laminating plates. The ^^ is formed by winding a winding for power generation and a winding for power generation around a core. The StS core is composed of S1 & side iron core 23M, power generation iron core 23G, and iron core 23C between the rainy people.
側鉄心部 2 3 Mは中心から 1 2 0度間隔の 3方向に突出した断面 T字形状 の突 δを有し、 ΜΜΜ^ 2 1はこの 3つの突極にそれぞれ電^?卷線 2 1 0 を巻回した 3つの 側 mi^F 2 1 A〜 2 1 Cからなる。  The side core portion 23M has a T-shaped protrusion δ protruding in three directions at an interval of 120 ° from the center, and ΜΜΜ ^ 2 1 It consists of three sides mi ^ F 21 A to 21 C with 0 wound.
同様に、 癸電側鉄心部 2 3Mも中心から 1 2 0度間隔の 3方向に突出した断面 T字形状の突極を有し、 発電側電機子 2 2はこの 3つの突極にそれぞれ電機子卷 線 2 2 0を卷回した 3つの発電側 ¾^?2_2 A〜2 2 Cカヽらなる。  Similarly, the core part 23M on the shore side has salient poles having a T-shaped cross section protruding in three directions at intervals of 120 degrees from the center. The three power generation sides with the child winding of 2 0 0 ¾ ^? 2_2 A ~ 22 C
ここで ¾ϋ側 ¾^?2 1 A〜2 I Cと発電側 ¾^·ί 2 2 Α〜2 2。の 面か ら見た配置角度位置はほぼ同じになるか、 あるいは発電側鎌子 2 2 A〜2 2 C の方が回転方向からみて少し後ろの位置になるようにしてある。  Here ¾ϋ side ¾ ^? 2 1 A to 2 I C and power generation side ¾ ^ · ί 22 2 Α to 22. The angle of arrangement is almost the same when viewed from the side, or the Kamashiko 22A to 22C on the power generation side is located slightly behind when viewed from the rotation direction.
この回転子 2の sm^は、 wmmm ^ ιが固定 の界磁石 i .1 A〜; 1 1 The field magnet i .1 A ~ with fixed wmmm ^ ι of the rotor 2 is; 1 1
Cと対向するように また発電側電» 2 2が固定^ の界磁石 1 2 A〜 1 2 C と対向するように固定子の内側空間に配置されている。 The generator-side electric power 22 is arranged in the space inside the stator so as to face C and the fixed field magnets 12 A to 12 C.
整^ 3 1〜3 4はそれぞれ、 体 3 5の周面に沿って互いに^^して並べ られた 1 2個の整流子片からなり、 よって各整流子片は約 3 0度弱の接触角をそ れぞれ有することになる。 これらの整流子片の «面から見た配置角度位置は整 流子 3 1〜3 4とも同じになるようにしてある。  Each of the rectifiers 3 1 to 3 4 is composed of 12 commutator pieces arranged one after another along the circumference of the body 35, so that each commutator piece has a contact of about 30 degrees or less. Each will have a corner. The arrangement angle positions of these commutator pieces as viewed from the top are the same as those of the commutators 31 to 34.
ここで整流子 3 1の整流子片は、 その円周に沿った個数 1 2個を上記 の 突極の個数 3の 2倍で除した数すなわちこの 例の場合には 2個置きごとに、 ^する整流子片 3 1 a同士を してあり、 かつそれら した整流子 3 1 a 同士を相互に接続する。他の整流子 3 2〜3 4の整流子片についても同じように 载的接繞を行う。  Here, the commutator pieces of the commutator 31 are the number obtained by dividing the number 12 along the circumference by twice the number 3 of the salient poles described above, that is, in this case, every two pieces The commutator pieces 31a are connected to each other, and the commutators 31a are connected to each other. In the same manner, the other commutator pieces of the other commutators 32 to 34 are similarly sealed.
ここで、 wmmwM -2 1 A〜2 l cの各 mm?巻線 2 1 o同士は直列に接続 されており、 S l側電^? 2 1 Aから引き出した一端側の導線か藶流子 3 1の相 互接続した整流子片 3 1 aに接続され、 一方、 «Κ側電 l ÷2 1 Cから引き出し た他端側の^ iが整流子 3 2の相互接続した整流子片 3 2 aに接続される。 Here, wmmwM -2 1 A to 2 lc of each mm winding 21 o are connected in series, and one end of the lead or lead 3 drawn from the Sl side electrode 21? 1 phase Connected to the commutator pieces 3 1a connected to each other, while ^ i on the other end drawn from the «Κ side power l ÷ 21 C is connected to the interconnected commutator pieces 3 2a of the commutator 32 Is done.
同様に、 発電側電機子 2 2 A〜 2 2 Cの各電機子巻線 2 2 0同士は直列に接続 されており、 発電側電機子 2 2 Aから引き出した一端側の が整流子 3 3の相 互接続した整流子片 3 3 aに接続され、 一方、 発電側電^? 2 2 Cから引き出し た他端側の導凝か 流子 3 の相 SJg続した整流子片 3 4 aに接繞される。  Similarly, the armature windings 220 of the power-generating armatures 22 A to 22 C are connected in series, and one end drawn from the power-generating armature 22 A is a commutator 33. Connected to the commutator piece 3 3 a connected to the other end of the commutator piece 3 4 a connected to the other end of the commutator piece 3 4 a drawn from the generator side power supply 2? Surrounded.
これらの整流子 3 1〜3 4にはブラシ 4 1〜4 4がそれぞれ摺接している。 こ のうち整流子 3 1、 3 2はブラシ 4 1、 2を介してバッテリ 4に接続される。 バッテリ 4への接続の極性は、 ブラシ 4 1が正、 ブラシ 4 2が負となっている。 このように接続することにより、 ブラシ 4 1と 4 2を通じて 側電^ 2 1 A 〜2 1 Cの巻線 2 1 0に直流電流が流れたときには、 その突極の頭部に、 固定子 側の界磁石 1 1 A〜1 1 Cと同極性の N極が誘起されるようになっている。  Brushes 41 to 44 are in sliding contact with these commutators 31 to 34, respectively. Of these, the commutators 31 and 32 are connected to the battery 4 via the brushes 41 and 2. The polarity of the connection to the battery 4 is positive for the brush 41 and negative for the brush 42. By connecting in this way, when a DC current flows through the windings 210 of the side electrodes ^ 21 A to 21 C through the brushes 41 and 42, the stator side is attached to the head of the salient pole. An N pole having the same polarity as that of the field magnet 11 A to 11 C is induced.
本実施例の回転電機の動作を図 3および図 4を参照して以下に説明する。  The operation of the rotating electric machine according to the present embodiment will be described below with reference to FIGS.
まず、 回転電機の入力に対してバッテリ 4から SE印加がない場合(すなわち 整流子 S 1、 3 2に対してバッテリ 4から の印加がなレヽ場合) 、 1»側電機 子 2 1 A〜2 1 Cの巻線 2 1 0には電流が流れず、 したがって ¾δ側電^? · 2 1 A〜2 1 Cは自ら磁束を発生しない。 これは発電側 m 子 2 2 A〜2 2 Cについ ても同様である。 よって電機子の鉄心 2 3は単なるヨークとして働くことになる。 この結果、 hm = 1では、 図 sの (a ) に騰の sで示すように、 固 定"? の界磁石 1 1 A〜l 1 Cに誘起されてその頭部に S極が現れ、 一方、 発電 側電 2 2では、 図 4の (a ) に纖の Nで示すように、 固定^ 0の界磁石 1 2 A〜 1 2 Cに誘起されてその頭部に N極が現れる。 つまり、 界磁石 1 1 A〜 1 1 C. ¾K側 m¾心 2 3 M、 i ig用鉄心 2 3 C. 発電側電¾^ ^心 2 3 G、 界磁石 1 2 A〜1 2 Cで^ ϋりする磁気閉回路が形成されている。 これにより電 動側電機子 2 1 Α〜2 1 C、 発電側電機子 2 2 A- 2 2 Cはそれぞれ、 その突極 頭部が固定 ·?^!1の界磁石 1 1 A〜 1 1 C、 界磁石 1 2 A〜 1 2 Cと中心が揃うよ うに接近した状態で静止している。  First, when no SE is applied from the battery 4 to the input of the rotating electric machine (that is, when no application is made from the battery 4 to the commutators S1, 32), the 1-side armature 21A-2 No current flows through the 1 C winding 210, so the し た が っ て δ side current ^? · 21 A to 21 C do not generate magnetic flux by themselves. This is the same for the power generation side devices 22A to 22C. Therefore, the armature core 23 acts as a simple yoke. As a result, at hm = 1, as shown by the rising s in (a) of Fig. S, the fixed "?" Field magnets 11 A to l 1 C induce S poles at their heads, On the other hand, as shown by the N in the fiber in Fig. 4 (a), the N-pole appears at the head of the generator-side power supply 22, induced by the fixed ^ 0 field magnets 12A to 12C. In other words, field magnets 11 A to 11 C. ¾K side m¾ core 23 M, iron core for iig 23 C. Power generation side ^ ^ core 23 G, field magnets 12 A to 12 C ^ As a result, the magnetic armature 21 1 to 21 C and the armature 22 A- 22 C on the power generation side have their salient pole heads fixed. The field magnets 11 A to 11 C of ^! 1 and the field magnets 12 A to 12 C are stationary and close to the center.
次に、 この状態において、 整流子 3 1と 3 2にブラシ 4 1と 4 2を通じてバッ テリ 4からそれぞれ正、 負の SEを印加すると、 図 2から分かるように、 整流子 3 1から各 側^ ?2 1 A〜2 1 Cの卷線 2 1 0を通って整流子 3 2へと直 流電流が流れ、 この直流電流は、 各 «Ιδ側電^ 2 1 A〜2 1 Cの突極頭部に N Sの磁極を させる。一方、 翻側 S^?の鉄心 2 3 Mは難用鉄心 2 3。を 介して発電側鉄心 2 3 Gに^^的に形成されているものであるから、 mm 子 2 1 A〜2 1 Cが突 S¾部に N極が発生したときには、 発電側電鮮 2 2 A〜Next, in this state, when positive and negative SEs are applied to the commutators 31 and 32 from the battery 4 through the brushes 41 and 42, respectively, as shown in FIG. From 31, a direct current flows to the commutator 32 through the winding 210 of each side ^? 21 A ~ 21 C, and this DC current is generated by each «Ιδ side current ^ 21 A ~ Attach the NS magnetic pole to the salient pole head of 21 C. On the other hand, the core 2 3 M of the transversal S ^? Is formed on the power-generating core 23 G through the wire, so that when the N-poles are generated at the S A ~
2 2 Cの突 部には S極が発生することになる。 An S pole is generated at the projection of 22 C.
この結果、 US側 ¾t ^2 1 A〜2 1 Cでは、 図 3の (a) に示すように、 固 定 の界磁石 1 1 A- 1 1 Cの N極の磁力と、 ^側電^ 2 1 A〜2 1 Cの 突 S¾部の N極の磁力とが相互に反発し合うことになり、 この磁気反発力が回転 付勞カ F 1となって、 この回転付勢力 F 1により 側電^ 2 1は時計回り方 向に回転させられる。  As a result, in the US side ¾t ^ 21A ~ 21C, as shown in Fig. 3 (a), the magnetic force of the N pole of the fixed field magnet 11A-11C and the The magnetic force of the N pole of the protrusion S¾ of 21 A to 21 C repels each other, and this magnetic repulsion becomes the rotation force F 1, and the rotation urging force F 1 causes The electric power 21 is rotated clockwise.
同様に、 発雷側 ¾i^?2 2 A〜2 2 Cでは、 図 4の (a) に示すように、 固定 の界磁石 1 2 A〜1 2 Cの S極の磁力と、 発電側 mi»2 2 A-2 2 Cの突 観部の S極の磁力とが相互に反発し合うことになり、 この磁^発力が回転付 勢力 F l, となって、 この回転付勢力 F 1 ' により発電側電^ 2 2は時計回り 方向に回転させられる。  Similarly, on the lightning side ¾i ^? 22 A ~ 22 C, as shown in Fig. 4 (a), the magnetic force of the S pole of the fixed field magnets 12 A ~ 12 C and the power generation side mi »2 2 A-2 The magnetic force of the S pole of the projecting part of 2 C repels each other, and this magnetic force becomes a rotational urging force F l, and this rotational urging force F 1 'Rotates the generator-side electricity clockwise.
これにより、 回転子は電動側電^ 2 1が受ける回転付勢力 F 1と発電側電機 子 2 2が受ける回転付勢力 F 1 ' の双方により時計回り方向への回耘カを受ける ことになる。  As a result, the rotor is subjected to clockwise rotation by both the rotational urging force F 1 received by the motor-side electric power unit 21 and the rotational urging force F 1 ′ received by the power-generating armature 22. .
一方、 回転子 2の回転位置が図 3、 図 4の (b) に示す位置(すなわち各電機 子 2 1 A〜2 1 C、 2 2 A〜2 2 Cの突 部の先端が回転方向にある界磁石の 手前まで来た位置) にくると、 ^&側 ¾»2 1と発電側 mt^? 2 2は回転方向 ΙίΠ¾·にある界磁石 1 1、 1 2から逆回転方向の磁 発力を受け、 回転に伴いこ の磁 発力が次第に大きくなるので(例えば電動側電機子 2 1 Aは図 3の ( b)の位置以上に回転すると界磁石 1 1 Aから受ける正転方向への磁^ S発力よ り界磁石 1 2 Bから受ける逆回転方向の磁^ 力の方が大きくなる)、そのま までは回転子 2は回転を減じられることになる。  On the other hand, the rotation position of the rotor 2 is the position shown in (b) of FIGS. 3 and 4 (that is, the tips of the protrusions of the armatures 21 A to 21 C and 22 A to 22 C are in the rotation direction). When it comes to a position just before a certain field magnet), the ^ & side ¾ »2 1 and the power generation side mt ^? 2 2 are generated in the opposite direction from the field magnets 1 1 and 1 2 in the rotation direction ΙίΠ¾ · This magnetism gradually increases with the rotation (for example, when the motor-side armature 21A rotates beyond the position (b) in Fig. 3) in the forward direction from the field magnet 11A. The magnetic force in the reverse rotation direction received from the field magnet 12B is larger than the magnetic S force of the rotor 2), and the rotation of the rotor 2 is reduced until that time.
そこで、 整流子 3 1、 3 2は、 回転子 2がこの図 3、 図 4の (b) の回転位置 にくると、 ブラシ 4 1、 4 2か'^^続の整流子片 3 1 b、 3 2 bと摺接するよう にしてある。 これにより 側電機子 2 1 A〜2 1 Cの各電»巻線 2 1 0には 電流が流れなくなり、 よって TO側電機子 2 1 A〜2 1 Cは単なる電^? ^lL、に よるヨークとして働くようになる。 この場合、 側電^? 2 1 A〜2 1 Cの突 画部には S極、 発電側電機子 2 2 A〜2 2 Cの突極頭部には N極が発生し、 固 定子側の界磁石 1 1、 1 2からそれぞれ吸引力を受けることになるが、 ±3 の回 転位置では、 "突極からみて回転方向の後側の界磁石からの吸弓 I力と前側か らの界磁石の吸弓 I力はほぼ同じであるため、 この吸弓【力は回転付勢力には殆どな らない。 しカヽし、 回転子 2は慣性による回転力 F 2を持っているので、 この回転 子 2は回転力 F 2により の回転位 ϋ ^ら更に時計回り方向に回転し続けるこ とになる。 Therefore, when the rotor 2 comes to the rotation position shown in FIG. 3 and FIG. 4 (b), the commutators 3 1 and 3 2 become the brushes 4 1 and 4 2 or the commutator pieces 3 1 b So that it slides on 3 2b It is. As a result, no current flows through each of the electric windings 210 of the side armatures 21 A to 21 C, and therefore, the TO armatures 21 A to 21 C are simply generated by electric currents. Work as a yoke. In this case, an S pole is generated at the salient portion of the side electrode ^? 21 A to 21 C, and an N pole is generated at the salient pole head of the generator armature 22 A to 22 C. The field magnets 1 1 and 1 2 receive the attractive force, respectively. Since the field magnet I has almost the same bow-absorbing I force, this bow-absorbing force is hardly a rotational biasing force. However, since the rotor 2 has a rotational force F 2 due to inertia, However, the rotor 2 continues to rotate further clockwise from the rotational position 回 転 due to the rotational force F 2.
このようにして 側 m^f 2 1 A〜2 1 Cと発電側電^ 2 2 A〜2 2 Cが 回転を続けて再び図 3、 図 4の (a ) に示すような 突極と界磁石 1 1の中 心が揃う位置(すなわち各電機子 2 1 A〜2 1 C, 2 2 A〜2 2 Cの突極頭部の 先端が界磁石を: iSl後の位置) にくると、 整流子 3 1、 3 2は整流子片 S 1 a、 3 2 aが再びブラシ 4 1、 4 2と摺接するようになってその電動側電植 巻線 2 1 0に電流が流れ、 それにより発生される磁^発力による回転 力 F 1を受 けて、 時計回り方向に回転させられる。  In this way, the side m ^ f 21 A ~ 21 C and the power generation side ^ 22 A ~ 22 C continue to rotate, and the salient poles and the field as shown in (a) of Figs. When the center of the magnet 11 is aligned (that is, the tip of the salient pole head of each armature 21 A to 21 C, 22 A to 22 C places the field magnet: iSl), In the commutator 3 1 and 3 2, the commutator pieces S 1 a and 3 2 a come into sliding contact with the brushes 4 1 and 4 2 again, so that a current flows through the electric-side planting winding 2 10. It is rotated clockwise by receiving the rotating force F1 generated by the generated magnetic force.
さて、 mm m- 2 1 A〜2 I cでその電^巻線への通電がオンノオフさ れてその突極中において磁束変化が発生していると、 電#¾心を共通とする発 電側電機子 2 2 A〜 2 2 Cの電機子巻線 2 2 0には、 前述した磁気閉回路の形成 によるトランスの原理により、 および発電側電機子 2 2 A〜2 2 Cが界磁石 1 2 A〜l 2 Cで作られる界磁束中を回転することにより、 誘導起 が生じること になる。 すなわち、 発電側電機子 2 2 A〜 2 2 Cでは発電が行われ、 その発電電 力が発電側電機子巻線 2 2 0から取り出されることになる。  Now, when the current to the winding is turned on / off at mm m−21 A to 2 I c and a magnetic flux change occurs in the salient pole, the power generation with the common The armature windings 220 of the side armatures 22 A to 22 C are formed by the principle of the transformer by forming the above-described magnetic closed circuit, and the power generation side armatures 22 A to 22 C are formed by the field magnets 1. Rotation in the field magnetic flux created by 2 A to l 2 C causes induction. In other words, the power generation-side armatures 22 A to 22 C generate power, and the generated power is extracted from the power-generation-side armature windings 220.
このように、 本難例の回転電機は、 バッテリ ¾Eを S¾側電機子 2 1に投入 し、 整流子の作用によって回転子の回転角に合わせた間欠通電を行うことによつ て回転子の 的回転を可能にするとともに (すなわち S¾機として動作させる とともに) 、 更に発電側 Mm子 2 2 A〜2 2 C側では、 同様な作用によって発電 を同時に行わせて発電機としても動作させることができるのである。 このように^ 例の回転電機は発電出力を得ることができるものであるから、 その発電出力の一部を回転電機の„ としてのバッテリ 4の充電に用いるこ とができる。 この場合、 バツテリ 4からの出力電流が発電側電 ? "2 2に流れ込 まないように、 rn - 2からの努電出力を逆流防止用のダイオード等を 介してバッテリ 4に耠 Sするように構成する。 Thus, in the rotating electric machine of this difficult example, the battery ¾E is supplied to the S¾-side armature 21, and the commutator acts to intermittently energize the rotor in accordance with the rotation angle of the rotor, thereby causing the rotor to rotate. In addition to enabling the motor to rotate (that is, operating as a S¾ machine), it is also possible for the Mm-elements 22A to 22C on the power-generating side to simultaneously generate power and operate as a generator by the same action. You can. As described above, since the rotating electric machine of each example can obtain a power generation output, a part of the power generation output can be used for charging the battery 4 as a motor of the rotating electric machine. In order to prevent the output current from the inverter from flowing into the power-generating-side power supply 22, the power output from the rn-2 is connected to the battery 4 via a backflow prevention diode or the like.
さらに、 図 5に示されるように、
Figure imgf000012_0001
Further, as shown in Figure 5,
Figure imgf000012_0001
2 1の入力側に直接に投入するような構成にすると、 回転離の回 ^^を増速 する方向に発電出力を有効に利用することができる。すなわち、 発電側 ¾ί^?2 1の正接側出力 (+) をダイオード 5 1を介して ESf側 ¾tl^2 1の正接側入力 (+) に接続し、 また巻線 2 2 0の負翻出力 (一) をダイオード 5 2を介して i - 1の負 側入力(一) に接繞する。 これらのダイオード 5 1、 5 If it is configured so that it is directly input to the input side of 21, the power generation output can be used effectively in the direction to increase the number of rotations ^^. That is, the tangent side output (+) of the generator side ¾ί ^? 21 is connected to the tangent side input (+) of the ESf side ¾tl ^ 2 1 via the diode 51, and the inversion output of the winding 220 is connected. (1) is connected to the negative input (1) of i-1 via the diode 52. These diodes 5 1, 5
2はバッテリ 4側から発電側 m^?2 2側に電流が逆流することを P lhする極性 に接緣する。 このような構成とした場合には、 発電出力を取り出せは り出すほ ど rn^?の磁^をますます強くして回 をますます増速することができ、 回転!^を弗常に効率よく回転させて髙速回転、大トルクを得ることができるよ うになる。 したがって、 この実施例の回転電機は自己の回転による発電出力によ り自己の回転を増速するという で、 自走式発電機(あるいは自走式 SK機) と称することがでさる。 2 is connected to the polarity of P lh indicating that the current flows backward from the battery 4 side to the power generation side m ^? 22 side. In such a configuration, the more the power output can be taken out, the more the magnetic field rn ^? Can be strengthened and the speed can be further increased. ^ Can be rotated efficiently and high speed rotation and large torque can be obtained. Therefore, the rotating electric machine of this embodiment increases the speed of its own rotation by the power generation output by its own rotation, and can be called a self-propelled generator (or a self-propelled SK machine).
本発明の難にあたっては種々の変形形態が可能である。例えば ± ^の難例
Figure imgf000012_0002
1、 2 2のうちの一方を 機用として、 また他方を発電機 用として利用したが、本発明はこれに限られるものではな 例えば発電側電機 子 2 2の巻線を取り除いてしまうことも可能であり、 その場合には、 本発明の回 転電機は発電作用を持たない ¾ll機として動作することになる。 あるいは、 ± の発電側電^? 2 2の卷線を取り除いてしまうのではなく、 発電側 2を も賴機として動作するように赚することもできる。 例えば、 漏側電機子 2 1の通電によりその突漏部に N極力 じるときには、 それと同時に発電側電機 子 2 2にも通電してその突観部に S極が生じるように整流子 3 3、 3 4をブラ シ 4 3、 4 4を介してパ、 yテリ 4に接続する。 このようにすれば、 側電^? 2 1だけでなく発電側電 »2 2でもその通電電流による大きな回転付勢力が発 生することになるので、 大きなトルクを発生することが可能となる。
Various modifications are possible for the difficulty of the present invention. For example ± ± difficult case
Figure imgf000012_0002
Although one of 1, 2 was used for the machine and the other was used for the generator, the present invention is not limited to this.For example, the winding of the armature 22 on the generator side may be removed. It is possible, and in that case, the rotating electric machine of the present invention will operate as a motor having no power generation action. Alternatively, instead of removing the windings of ± 2 on the power generation side, the power generation side 2 can also be operated as a machine. For example, when the leakage armature 21 is energized and N is applied to its protruding part, at the same time, the power generating armature 22 is energized and the commutator 33 , 3 4 to brushes 4 3, 4 4, connect to y, terry 4. In this way, a large rotational urging force is generated not only by the side power ^? Therefore, a large torque can be generated.
また、 発電側電^? " 2 2健ま磁 発場に換えて磁気吸引場を利用して作動す るように構成することもできる。例えば、 3¾側の界磁石 1 2 A〜1 2 Cの配置 位置を図 4の場合よりも 6 0 °ずらし、 発電側電 tH^2 2 A〜2 2 Cと麵性 (すなわち N極) となるように構成する。 このようにすれば、 ¾®側電機子 2 1 が界磁石 1 1間に働く磁 S発力により正転方向への付勢力を受けているときに は、 発電側電 » 2 2は界磁石 1 2間に働く磁気吸引力により同じく正転側への 力を受けることになる。 In addition, it can be configured to operate using a magnetic attraction field in place of the power generating side electric field. For example, a 3¾ field magnet 12 A to 12 C The configuration position is shifted by 60 ° from the case of Fig. 4 so that the generator-side power tH ^ 22A ~ 22C is compatible (that is, N pole). When the side armature 2 1 is receiving a biasing force in the forward direction due to the magnetic S force acting between the field magnets 11, the power generation side »2 2 is a magnetic attraction force acting between the field magnets 1 and 2 As a result, the force on the forward rotation side is also received.
iEの ¾ϋ例は、 電機子を取り付けた回転子を固定子の内側に配置するインナ —α—タ形としたが、 かかる回転子を筒状体で構成してその内側に固定子を取り 付けるアウターロータ形とすることも可能である。  In the example of the iE, the rotor with the armature attached was placed inside the stator in an inner α-ta shape, but such a rotor was composed of a cylindrical body and the stator was mounted inside it. An outer rotor type is also possible.
また の^ S例では、 巻線を有する を回転 ÷ に取り付け、 固定 ·ΉΕϋ に永久磁石からなる界磁システムを取り付けたが、 この配置関係を逆にすること もできる。 つまり、 前述の 例の回転 StSをブラシ付き直流モータとみなした 場合、 本発明はブラシレス直流モータとしても することができる。  In addition, in the example of SS, the を having the winding is attached to the rotating ÷, and the field system composed of the permanent magnet is attached to the fixed ΉΕϋ, but the arrangement relation can be reversed. That is, when the rotation StS in the above-described example is regarded as a DC motor with a brush, the present invention can also be used as a brushless DC motor.
すなわち、 回転子側に永久磁石からなる界磁システムを取り付けるようにし、 その永久磁石の固定子側を向く極性を、 電動側では全て N極、 発電側では全て S 極にする。 固定子側に電機子を取り付け、 そのうち電動側の電機子は通電時に回 転子に向かって N極を発生するようにする。 そして、 回転子の回転位置をホール 素子などの回転角度位置検出手段で検出し、 その回転子の回転角度位置に応じて 固定子の mm側電»巻線への通電のォン,オフを半導体スィッチ回路により制 御する。通電のオン/オフの仕方としては、 回転子の永久磁石が回転方向前方に ある固定子の電機子の位置を通過する手前の位置で通電を停止し、 通過後に再び 通電するようにするもので、 これにより回転子は、 回転を減ずる方向の磁 MS発 力を受けずに、 回転 する方向の磁^発力だけを受けて、 回転することがで さる。  In other words, a field system consisting of permanent magnets is installed on the rotor side, and the polarity of the permanent magnets facing the stator is all N poles on the electric side and all S poles on the power generation side. The armature is mounted on the stator side, and the armature on the motor side generates an N pole toward the rotor when energized. Then, the rotational position of the rotor is detected by a rotational angle position detecting means such as a Hall element, and the ON / OFF of energization to the mm-side electric winding of the stator is determined by the semiconductor according to the rotational angle position of the rotor. Controlled by switch circuit. The method of turning on / off the power is to stop the power supply at a position just before the permanent magnet of the rotor passes through the position of the stator armature in front of the rotation direction, and to supply power again after passing. Thus, the rotor can be rotated by receiving only the magnetic force in the rotating direction without receiving the magnetic MS force in the direction of decreasing the rotation.
以上に説明した実施例では、 回転子の電^? (または界磁石)が回転方向前方 にある界磁石(または電機子) を通過する手前の位置でその励磁を停止し、 通過 後に再び励磁するようにし、 その通過手前から通過後までの位置では、 電機子を 単なるヨークとして作用させてそのときに生じる弱レヽ磁気吸引力と回^ I性力で 回転を続けるようにした。 しかし、 本発明はこれに限られるものではなく、 この 手前から; 後までの位置では 巻線に S¾i方向の電流を流すようにし て積極的に強い磁気吸引力を発生させるようにしてもよレ、。 このようにした場合、 ¾ ^にはそれに対向する界«石と MS性の,か れることになり、界磁石と の間に強い磁気吸引力が発生し、 この磁気吸引力を回転 力として回転子を一 層強く回転させることが可能になる。 In the embodiment described above, the excitation is stopped at a position before the rotor's electric field (or the field magnet) passes through the field magnet (or the armature) located in the front in the rotation direction, and is excited again after passing. Armature at the position before and after the passage. By acting as a simple yoke, the weak magnetic force generated by the magnetic force generated at that time and the rotational force caused the rotation to continue. However, the present invention is not limited to this, and it is possible to generate a strong magnetic attraction force by flowing a current in the S¾i direction to the winding at positions before and after this point. ,. In this case, the 界 ^ has an MS and an opposing field stone, and a strong magnetic attraction is generated between the field magnet and the field magnet. The child can be rotated more strongly.
図 6にはかかる構成を 難例装置の mm的赚が示される。 この離例装 置の基本的構成は図 1の実施例のものと同様であるが、 ¾ 的配線が異なってい る。図示のように、纖子 3 1の整流子片 3 1 b同士を全て赚し、 同様に整流 子 3 2の整流子片 3 2 b同士を全て短絡する。 そして、 整流子片 3 1 bの群には 側電^ 2 1 Cの巻锒 2 1 0から引き出した 線を接続し、整流子片 3 2 b の群には翻側 S¾^2 1 Aの巻線 2 1 0から引き出した^!を接続する。  FIG. 6 shows the mm-diameter of a device in which such a configuration is difficult. The basic configuration of this remote device is the same as that of the embodiment of FIG. 1, but the specific wiring is different. As shown in the figure, all the commutator pieces 3 1b of the fiber 31 are connected to each other, and similarly, all the commutator pieces 3 2b of the commutator 32 are short-circuited. Then, a wire drawn from the side wire ^ 21 C winding 锒 210 is connected to the group of the commutator pieces 3 1 b, and the group of the commutator pieces 3 2 b is Connect ^! Drawn from winding 210.
このようにすると、 側電 2 1 A—2 1 Cが界磁石 1 1 A〜l 1 Cの通 過手前の位置を回転方向に越えたときには、 wmmw - 2 1 A〜 2 1 cの巻線 In this way, when the side voltage 21 A—21 C exceeds the position just before the field magnets 11 A to 11 C in the direction of rotation, the winding of wmmw-21 A to 21 c
2 2 2にはそれまでと^方向に電流が流 それにより ¾1δ側 1 A〜 2 1 Cの頭部には対向する界磁石 1 1 A〜: L 1 Cと^ g性の ¾Sか れ、 それら の問に磁気吸引力が饞いて、 この磁気吸引力により回転子 2は正転方向に回転付 勢される。 このような構成をした回転電機は非常に大きな出力トルクを発生する ことができる。 A current flows in the direction 2 and 2 in the ^ direction, and the field magnets 11 A to the head of the ¾1δ side 1 A to 21 C: L 1 C and ^ g ¾S, A magnetic attraction force is applied to those problems, and the rotor 2 is urged to rotate in the normal rotation direction by the magnetic attraction force. The rotating electric machine having such a configuration can generate a very large output torque.
またこの 例と前述の発電側電^?を ^ll機として用レ、かつ磁気吸弓【力で回 転させる難例とを組み合わせてもよい。  In addition, this example may be combined with the above-described example in which the power-generating side power is used as a ^ ll machine, and a difficult example of rotating by magnetic absorption.
また の 例では回転子の は 側 1と発電側€ ^2 2 の2連式としたが、 本発明はこれに限られるものではなく、例えば^側 In another example, the rotor is of a dual type of the side 1 and the power generation side, but the present invention is not limited to this.
2 1を中心にしてその雨側にそれぞれ発電側電^^ ( 2 2、 2 2 ' ) を取り付け てこれらを全て共通の電 心で結合する 3 ^の回転子とすることなども可 能であり、 このように纖を増やすと、 一層大きな出力トルクを取り出すことが できる。  It is also possible to attach a generator-side power ^^ (2, 2 2 ') to the rainy side around the center of 2 1 and use them as a 3 ^ rotor that connects them all with a common core. Yes, by increasing the fiber in this way, a larger output torque can be obtained.
また、 ±iEの難例では、 固定 に取り付ける界磁システムを永久磁石で構 成したが、 本発明はこれに限られるものではなく、 もちろんこの界磁システムを 電磁石を用いて構成してもよレ、。 Also, in the difficult case of ± iE, the field system to be fixed is composed of permanent magnets. However, the present invention is not limited to this. Of course, the field system may be configured using electromagnets.
また、 _biBの ¾ϋ例では、 «側¾ ^子と発電側電^の磁極の数をいずれも 3極としたが、 もちろん本発明はこれに限られるものではなく、 2¾¾上の @¾ により種々の形態の回転 m を^することができる。  In addition, in the example of _biB, the number of magnetic poles of the «side electrode» and the power generation side electrode is set to three poles. However, the present invention is not limited to this. A rotation m of the form
なお、 前述の図 1の実施例において、 電動側電機子 2 1への入力であるブラシ 4 1、 4 2に加えて、 それらのブラシ 4 1、 4 2と回転方向に 1 2 0 ° (あるい は一 1 2 0 ° )ずれた位置に新たなブラシ (ここでは 4 Γ 、 4 2 ' としておく ) を配設し、 ブラシ 4 1、 2がそれぞれ 流子片 3 1 a、 3 2 aに接触し ているときに、 これらの新たなブラシ 4 Γ 、 4 2 ' も他の 流子片 3 1 a、 3 2 aに接触するようにしてみたところ、 このブラシ 4 Γ 、 4 2 ' の両端に、 バッテリ 4からの印加 EEとは極性が反対の大きな miEが発生するという が 観測された。 この発生 ¾Eは何らかの用途に利用し得るものと考えられる。 産業上の利用可能性  In addition, in the embodiment of FIG. 1 described above, in addition to the brushes 41 and 42 which are the inputs to the electric armature 21, the brushes 41 and 42 and the brushes 41 and 42 in the rotational direction have a rotation angle of 120 °. New brushes (here, 4Γ and 4 2 ′) are placed at offset positions, and brushes 4 1 and 2 are attached to the pieces 3 1a and 3 2a, respectively. When these new brushes 4 、 and 4 2 ′ are in contact with each other, the brushes 4 、 and 4 2 ′ are also brought into contact with the other pieces 3 1 a and 3 2 a. In addition, it was observed that a large miE having a polarity opposite to the applied EE from the battery 4 was generated. This generation ¾E is considered to be usable for some purpose. Industrial applicability
本発明によれば、 同極性の磁極間に働く磁気の反発力を主たる駆動力として作 動する高速回転、 高トルクの回転電機を新たに することができる。  According to the present invention, a high-speed rotating and high-torque rotating electric machine that operates using a magnetic repulsive force acting between magnetic poles of the same polarity as a main driving force can be newly provided.
この回転電機は高速回転、 大トルクの出力を得ることができるものであるので、 例えば電気自動車の駆動用モータなど、 非常に多くの応用分野を持つ。  Since this rotating electric machine can obtain high-speed rotation and large torque output, it has a very large number of application fields, for example, electric motor driving motors.

Claims

請 求 の 範 囲 The scope of the claims
1. 回転子と固定子力ギヤップを挟んで同心状に配置され、 1. Concentrically arranged with the rotor and stator force gap in between,
該固定子には、 回転^ ¾"向に離間した位置に、互いに難性となる第 1、 第 2 の界磁システムが取り付けられ、 The stator is provided with mutually difficult first and second field systems at positions spaced apart in the direction of rotation ¾ ”,
1、第 2の界磁システムの各々は、回転方向における雜間した位置に の同極性の を形成し、  Each of the first and second field systems forms a of the same polarity at the interspersed position in the rotational direction,
該回転子には、回転軸方向にその鉄心の長手方向が延び、 該鉄心の該第 第 2の界磁システムに対応した位置に、互いに難性となる第 1、 第 2の ¾ ^を 生する か5 ¾り付けられ、 In the rotor, the longitudinal direction of the core extends in the direction of the rotation axis, and mutually difficult first and second ¾ ^ are generated at positions of the iron core corresponding to the second field system. Or 5
該回転子の第 1、第 2の asi^の各々は、 回転方向における離間した位置に配 置された^:の からなり、  Each of the first and second asi ^ of the rotor consists of ^:
回転子の sm?を励磁するための整流 ¾ ^^設けられ、  Rectification ¾ ^^ is provided to excite the rotor sm?
該整流植購は、 子を、 回転子の が固定子の対応する界磁システム と同 S性を成すように励磁し、 かつ回転子の ¾ ^の^ 5極がその回転方向にあ る固定子の界磁システムの する手前の位置でその同極性の を消滅 させ、:1ϋ後の位置で再び発生させるように構成されたことを とする回転電 τ. 回転子と固定子がギャップを挟んで同 に配置され、  The commutation plant energizes the rotor so that the rotor has the same S characteristic as the stator's corresponding field system, and the rotor has the 5 ^ ^ 5 pole in its direction of rotation. The same polarity disappears at a position just before the field system of the rotor, and is generated again at a position 1 mm later. Rotating electric τ. The rotor and the stator sandwich a gap. At the same time,
該回転子には、 回転^向に雜間した位置に、互いに 性となる第 1、 第 2 の界磁システムか5乗り付けられ、 The rotor is mounted with five first and second magnetic field systems having mutual nature at positions intersected in the rotation direction,
該第 1、第 2の界磁システムの各々は、 回転方向における雜間した位置に の同 S性の離を形成し、  Each of the first and second field systems forms the same S-separation at the intersecting position in the rotational direction,
該固定子には、 1、第 2の界磁システムに対応した位置に、 互いに難性 となる第 i、第 2の ¾^を発生する m»が取り仗けられ、  In the stator, at the positions corresponding to the first and second field systems, the m »generating the i-th and second ¾ ^, which are mutually difficult, are taken over,
該固定子の第 1、第 2の¾ ^の各々は、 回転方向における雜間した位置に配 置された^:の麵からなり、  Each of the first and second ¾ ^ of the stator is composed of ^: 麵 arranged at an intersecting position in the rotational direction,
固定子の を励磁するための通電制御 、'設けられ、  Energization control to excite the stator
該通電制御^^は、 ^^を、 固定子の が回転子の対応する界磁シス テムと同極性を成すように励磁し、 カヽっ回転子の界磁システムの各磁極がその回 転方向にある固定子の磁極群の磁極を通過する手前の位置でその同極性の磁極を 消滅させ、 通過後の位置で再び発生させるように構成されたことを特徵とする回 ¼電 The energization control ^^ is based on the following equation: Excitation so that it has the same polarity as the system, and the magnetic poles of the same polarity disappear at a position just before each magnetic pole of the field system of the cap rotor passes through the magnetic poles of the magnetic pole group of the stator in the rotation direction. And a regenerator at the position after the passage.
3. 回転子と固定子がギヤップを挟んで同心状に配置され、  3. The rotor and stator are arranged concentrically across the gap,
該固定子には、 回転軸方向に離間した位置に、 互いに麵性となる第 1、 第 2 の界磁システムが取り付けられ、  The stator is provided with first and second magnetic field systems which are mutually resilient at positions separated in the direction of the rotation axis,
該第 1、 第 2の界磁システムの各々は、 回転方向における離間した位置に複数 の同極性の磁極を形成し、  Each of the first and second field systems forms a plurality of magnetic poles of the same polarity at spaced positions in the rotational direction,
該回転子には、 回転軸方向にその共通の鉄心の長手方向が延び、 該鉄心の該第 1、 第 2の界磁システムに対応した位置に、 互いに^ g性となる第 1、 第 2の磁 @ ^を発生する第 1、 第 2の が取り付けられ、  In the rotor, the longitudinal direction of the common iron core extends in the direction of the rotation axis, and the first and second irons having a g property at positions corresponding to the first and second field systems are arranged on the iron core. The first and the second to generate the magnetic @ ^ are attached,
該回転子の第 1、 第 2の磁極群の各々は、 回転方向における雜間した位置に配 置された複数の磁極からなり、  Each of the first and second magnetic pole groups of the rotor is composed of a plurality of magnetic poles arranged at intersecting positions in the rotational direction,
該回転子の第 1の m»が «I機として用いられてその第 1の電^を励磁す るための整流^ 設けられ、  A first m »of the rotor is provided as a« I machine, and a rectifier is provided for exciting the first power thereof,
該整流漏は、 第 1の電機子を、 回転子の が固定子の対応する界磁シ ステムと同極性を成すように励磁し、 かつ回転子の の 極がその回転方 向にある固定子の界磁システムの を通過する手前の位置でその同極性の磁極 を消滅させ、 翻後の位置で再び発生させるように構成され、  The commutation leakage excites the first armature such that the rotor has the same polarity as the corresponding field system of the stator, and the stator of the rotor has a pole in its direction of rotation. The magnetic poles of the same polarity disappear at a position just before passing through the field system of, and are generated again at a position after the reversal,
該回転子の第 2の電 »が発 として用いられて!^ 2の電^から取り出 された発電出力が整流 S¾を通じて該第 1の電 の入力側に苠されるように構 成されたことを とする回転 。  The second power of the rotor is used as a power source, and the generated power output from the second power is supplied to the input side of the first power through the rectifier S. Rotation to be.
4. 該整流機構は該回転子の各 がその回転方向にある固定子の磁極を通 する手前の位置から該固定子の磁極を: ϋ後の位置までの間では、 該回転子の磁 極が該固定子の磁極と 性を成すように該電植 を励磁するように構成された ことを とする請求の範囲第 1項または第 3項 の回転電  4. The commutation mechanism moves the magnetic poles of the rotor from the position where each of the rotors passes through the magnetic poles of the stator in the direction of rotation to the position after the stator: 4. The rotary electric machine according to claim 1, wherein the electric poles are configured to excite the electroplant so as to form a magnetic pole with the magnetic poles of the stator.
5. 該通電制御機構は該回転子の各磁極がその回転方向にある固定子の磁極を iiiiする手前の位動ヽら該固定子の磁極を通過後の位置までの間では、 該固定子 の が該回転子の ¾Sと MS性を成すように該電^?を励磁するように構成さ れたことを とする請求の範囲第 2項言 a の回転 m= 5. The energization control mechanism controls the stator until the position after each magnetic pole of the rotor passes through the magnetic pole of the stator from the position before the magnetic pole of the stator in the direction of rotation iiii. The rotation m = of the second term a in claim 2, wherein the motor is configured to excite the electric field so as to achieve MS property with ¾S of the rotor.
6. 2の界磁システムと電^の第 2の の相対的配置位置をずらす と共に、 2の界磁システムの極性を Sti?の励磁時に該第 2の磁難と難 性になるようにして両者照に働く 吸弓〖力で回転子に回転^1力を与えるよう に構成されたことを とする請求の範囲第 1項〜第 5項のいずれかに i½>回 电 6. The relative position of the second field system and that of the second field system are shifted, and the polarity of the second field system is set to be the second magnetic difficulty and difficulty when the Sti? Is excited. 6. The method according to any one of claims 1 to 5, wherein the rotor is configured to apply a rotating force of 1 to the rotor by the bowing force acting on both sides.
7. 該整 ί»¾は、 回転 !1に取り付けられた整流子と固定 に取り付けら れたブラシを含み構成されたことを とする請求の範囲第 1項または第 3項記 載の回転跳  7. The rotary jump according to claim 1 or 3, wherein the arrangement includes a commutator attached to the rotation! 1 and a brush fixedly attached to the rotation! 1.
8. 該通電制御賺は、 回転子の ¾gの回転位置を検出する位藤出器と、 該 位離出器の検出位置に応じて該固定子の 巻線の励磁電流を制御するスィ ツチ回路とを含み構成されたことを とする請求の範囲第 2項記載の回転電機。  8. The energization control is composed of a position detector that detects the rotational position of the rotor ¾g, and a switch circuit that controls the excitation current of the winding of the stator according to the position detected by the position separator. 3. The rotating electric machine according to claim 2, wherein the rotating electric machine is configured to include:
9. 該電^は電^?^心の からギヤップに向かって突出する部分に電機 子卷線を卷回した突極で構成されたことを ^とする請求の範囲第 1項〜第 3項 のいずれかに言 の回転電  9. Claims 1 to 3 wherein the electrode is constituted by salient poles in which an armature winding is wound on a portion of the electrode projecting from the core toward the gap. To any of the
PCT/JP1992/001335 1991-10-14 1992-10-14 Rotary electric machine WO1993008635A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP29651891 1991-10-14
JP3/296518 1991-10-14
JP27942592 1992-09-24
JP4/279425 1992-09-24

Publications (1)

Publication Number Publication Date
WO1993008635A1 true WO1993008635A1 (en) 1993-04-29

Family

ID=26553328

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1992/001335 WO1993008635A1 (en) 1991-10-14 1992-10-14 Rotary electric machine

Country Status (1)

Country Link
WO (1) WO1993008635A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2753316A3 (en) * 1996-09-06 1998-03-13 Julien Gillonnier Quasi-constant output power dc motor for automotive applications
EP1106466A1 (en) * 1999-12-09 2001-06-13 Volkswagen AG Electromechanical brake system
GB2390749A (en) * 2002-07-12 2004-01-14 Norman Albert Clarke Hybrid commutated electrical machine
WO2023248095A3 (en) * 2022-06-20 2024-02-08 BASHIR, Abdul Wahid Revived repulsion magnetic configuration

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5790418A (en) * 1980-10-03 1982-06-05 Nikoritsuku Buramiiru Shaft with magnetic table
JPS62131754A (en) * 1985-12-01 1987-06-15 Shori Saito Apparatus for converting rotary kinetic force to unidirectional propulsive force
JPS62135257A (en) * 1985-12-08 1987-06-18 Shori Saito Rotational force converting device into single direction driving force

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5790418A (en) * 1980-10-03 1982-06-05 Nikoritsuku Buramiiru Shaft with magnetic table
JPS62131754A (en) * 1985-12-01 1987-06-15 Shori Saito Apparatus for converting rotary kinetic force to unidirectional propulsive force
JPS62135257A (en) * 1985-12-08 1987-06-18 Shori Saito Rotational force converting device into single direction driving force

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2753316A3 (en) * 1996-09-06 1998-03-13 Julien Gillonnier Quasi-constant output power dc motor for automotive applications
EP1106466A1 (en) * 1999-12-09 2001-06-13 Volkswagen AG Electromechanical brake system
GB2390749A (en) * 2002-07-12 2004-01-14 Norman Albert Clarke Hybrid commutated electrical machine
GB2390749B (en) * 2002-07-12 2004-06-02 Norman Albert Clarke Hybrid electrical machines
WO2023248095A3 (en) * 2022-06-20 2024-02-08 BASHIR, Abdul Wahid Revived repulsion magnetic configuration

Similar Documents

Publication Publication Date Title
JP3174334B2 (en) Rotating electric machine
JP4113586B2 (en) Electrical equipment
US7755241B2 (en) Electrical machine
US6359401B1 (en) Multi-phase bipolar brushless D.C. motor
US10432079B2 (en) Electrical energy generating brushless DC motor
EP2023468A1 (en) Electric power generator, method for generating electric power, and motor
KR20070082819A (en) High efficient motor-generator
US7843102B1 (en) Electrical machine
KR20070063055A (en) A constant-power brushless dc motor and the generator thereby
JP2009142120A (en) Rotating electric machine
TW201019576A (en) Generator
CN106655546B (en) A kind of brushless DC generator and electricity-generating method
WO1993008635A1 (en) Rotary electric machine
JP2009142130A (en) Rotating electric machine and drive device for rotating electric machine
US10923996B2 (en) DC motor-dynamo
CN103701286B (en) A kind of four cross streams starter-generators of high reliability
US9099912B2 (en) Electromagnetic coupling
JP2011147258A (en) Motor drive system
CN110880820A (en) Two-phase direct current bias current vernier reluctance motor
JPS5825024B2 (en) Brushless DC motor
JPS63305782A (en) Reactance motor
JPH11289733A (en) Bearing device and electric motor utilizing the same
JP4199218B2 (en) Electric motor
JPS5839259A (en) Dc rotary magnetic field motor
KR20060133301A (en) Bldc motor and driving circuit therein

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
NENP Non-entry into the national phase

Ref country code: CA

122 Ep: pct application non-entry in european phase