WO1990006540A1 - Procede et dispositif de fabrication d'une piece solide tridimensionnelle par phototransformation d'un liquide organique - Google Patents

Procede et dispositif de fabrication d'une piece solide tridimensionnelle par phototransformation d'un liquide organique Download PDF

Info

Publication number
WO1990006540A1
WO1990006540A1 PCT/FR1989/000602 FR8900602W WO9006540A1 WO 1990006540 A1 WO1990006540 A1 WO 1990006540A1 FR 8900602 W FR8900602 W FR 8900602W WO 9006540 A1 WO9006540 A1 WO 9006540A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
light beam
organic liquid
fluid
volume
Prior art date
Application number
PCT/FR1989/000602
Other languages
English (en)
Inventor
Jean-Claude Andre
Miguel Cabrera
Philippe Karrer
Original Assignee
Centre National De La Recherche Scientifique (Cnrs)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre National De La Recherche Scientifique (Cnrs) filed Critical Centre National De La Recherche Scientifique (Cnrs)
Publication of WO1990006540A1 publication Critical patent/WO1990006540A1/fr

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/704162.5D lithography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/12Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electromagnetic waves
    • B01J19/121Coherent waves, e.g. laser beams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/124Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
    • B29C64/129Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask
    • B29C64/135Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask the energy source being concentrated, e.g. scanning lasers or focused light sources
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/0037Production of three-dimensional images
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0037Other properties
    • B29K2995/0072Roughness, e.g. anti-slip
    • B29K2995/0073Roughness, e.g. anti-slip smooth

Definitions

  • the invention relates to a method and a device for manufacturing a three-dimensional solid part by phototransformation of an organic liquid by means of a light beam, in particular a laser beam.
  • a light beam in particular a laser beam.
  • Processes and devices of this type are already known, based on the single-photon absorption of light by photoinitiators of polymerization or crosslinking contained in the organic liquid.
  • the monophotonic absorption follows in principle the law of BEER-LAMBERT, which makes it possible to form in a plane, by solidification of the organic liquid, a shape corresponding to the displacement on the free surface of the liquid of the point of impact of a light beam , such as a laser beam, focused on this free surface.
  • a light beam such as a laser beam
  • the geometrical characteristics of the part to be produced are recorded in the memory of an information processing system, the volume of which is for example broken down into successive parallel sections from a bottom surface, and the movement of the point of action of the laser beam on the free surface of the organic liquid is controlled so as to make it sweep a surface corresponding to a slice of volume of the part.
  • a new layer of liquid of specified thickness must be deposited on this layer, then form the next layer of the part by displacement of the point of action of the beam. laser.
  • the organic liquid is generally more or less viscous or pasty, which may not facilitate rapid deposition of these layers.
  • the object of the present invention is in particular to avoid this drawback.
  • It relates to a method and a device for manufacturing a three-dimensional solid part by phototransformation of an organic liquid by means of a light beam, in particular a laser beam, which do not require successive deposits of thin layers of organic liquid. It therefore proposes a method of the aforementioned type, consisting of breaking down the volume of the part to be produced into successive parallel slices from a bottom surface, and moving the point of action of the light beam on the liquid of so as to sweep it, in successive planes or levels of liquid parallel from a bottom surface, surfaces corresponding to said slices of volume of the part to construct it by superposition of solid strata in the organic liquid, characterized in that it consists in forming on the path of the light beam a neutral volume of material, crossed by the light beam and comprising a real or virtual interface with the liquid in which the point of action of the light beam on the liquid is located , and to move this neutral volume with respect to the liquid to form said solid layers and build the three-dimensional part.
  • this neutral light is a volume of fluid, gaseous or liquid, immiscible with the organic liquid and having a density less than or equal to that of the liquid.
  • this neutral volume is delimited by an inverted bell or tank, the preferably vertical walls of which plunge into the organic liquid and which is partially filled with the aforementioned fluid, the process then consisting in moving the point impact of the light beam on the fluid-liquid interface in said bell or inverted tank, to form a solid layer, and to move said interface vertically, to form the next layer. This can be done by vertically moving the bell or tank turned over or varying the quantity and / or the pressure of fluid in this bell or tank turned over.
  • this method comprises forming, in the li ⁇ quide, a supra fluid bubble at the outlet end of a medium such as an optical fiber, transmission light bleam.
  • the aforementioned neutral volume is a volume of the organic liquid, formed between a lens for focusing the light beam and an area where the beam is sufficiently concentrated or focused to cause phototransformation of the organic liquid.
  • the organic liquid absorbs little light radiation, so that its phototransformation can be initiated effectively only at the point of focus of the light beam. It is therefore possible, under these conditions, to produce a three-dimensional solid part by displacement in the organic liquid of a focusing lens associated with the end of an optical fiber for transmitting the light beam.
  • the method consists in solidifying, by the action of the light beam, a small thickness of organic liquid on a surface corresponding to the external surface of the part to be produced.
  • the invention also provides a device for manufacturing a three-dimensional solid part by phototransformation of an organic liquid, in particular by carrying out the aforementioned method, this device comprising a light source, such as a laser generator, a reservoir of organic liquid. polymerizable or crosslinkable under the action of the light beam emitted by the source, means of optical transmission of the beam and means of displacement of the point of action of the beam, under the control of an information processing system in which summer recorded data relating to the shape of the part to be manufactured, and being characterized in that it comprises means for forming a neutral volume of material on the path of the light beam, having an interface with the organic liquid in which the point of action of the beam on the liquid, and means for moving said interface and therefore the point of action of the light beam relative to the liquid.
  • a light source such as a laser generator
  • this device comprises an inverted tank or bell whose edges are immersed in the organic liquid and which contains a fluid immiscible with this liquid and of lower or equal density, said tank or bell having a bottom transparent to the light beam, means for moving the light beam through the transparent background along two perpendicular horizontal axes, and means for moving the tank along a vertical axis.
  • This device also comprises means for adjusting the quantity and / or the fluid pressure inside said tank or bell.
  • this device comprises a means, such as an optical fiber, for transmitting the light beam, and means for forming at the outlet end of said fiber a bubble of fluid immiscible with organic liquid and of equal or lower density.
  • the device comprises a means, such as an optical fiber, for transmitting the light beam and a focusing lens mounted at the output end of this optical fiber.
  • Means for moving this optical fiber in three perpendicular directions are provided.
  • FIG. 1 schematically represent a device for manufacturing a solid three-dimensional part, according to a first embodiment of the invention
  • FIG. 2 diagrammatically represents means of rapid displacement of the point of action of the beam luminous on the surface of the organic liquid
  • FIG. 3 is a partial schematic view of an alternative embodiment of the device of the invention
  • FIGS. 4 and 5 show two embodiments of this device.
  • FIG. 1 schematically representing a first embodiment of a device according to the invention, for the manufacture of a three-dimensional part by phototransformation of an organic liquid by means of a light beam.
  • the device essentially comprises a tank 10 filled with a suitable organic liquid 12 by means of a pump 14 associated with a reservoir 16 of organic liquid and connected to the tank 12 by a conduit
  • a pump 20 associated with a tank 22 of rinsing liquid is connected to the tank 10 by the conduit 18 and makes it possible to clean the tank after use.
  • Valves are provided on the conduit 18 to isolate the tank 10 from the pumps 14 and 20.
  • a bell or inverted vessel 24, for example circular, square or rectangular section, is immersed in the liquid 12 and contains a volume V of a gas, such as air, or of a liquid, immiscible with the organic liquid 12 and having a density less than or equal to that of this liquid.
  • a gas such as air
  • the free surface 26 liquid in the bell 24 may be at a level below that of the free surface 28 of this liquid in the rest of the tank 10, or at the same level, or even at a higher level.
  • the bell 24 is therefore mounted movable in vertical translation on guide means not shown, and is moved by motor means 30, such as an electric motor, associated with mechanical means for transmitting movement, for example of the gear type or worm gear.
  • a pump 32 associated with a closing valve 34 makes it possible to adjust the pressure or the quantity of fluid, for example air or nitrogen, in the bell 24.
  • a light source for example a laser generator 36, is advantageously associated with an optical system 38 for transmitting and focusing the laser beam 40, which at the outlet of the system 38, is oriented vertically and passes through the bottom 42 of the bell 24.
  • this bottom is made of at least one material partially transparent to the laser beam used.
  • the optical system 38 is itself associated with means 46 making it possible to move the laser beam and / or the system 38 in a horizontal plane, along two perpendicular horizontal axes, and may include means for adjusting the convergence of the laser beam 40.
  • An information processing system 48 comprising at least memories and a microprocessor, controls the operation of the device, and in particular the pumps 14 and 20 and their associated valves, the motor means 30 for vertical movement of the bell 24 , the pump 32 and the closing valve 34, the laser generator 36 and the optical transmission and focusing system 38, and the means 46 for moving the laser beam.
  • This device works as follows
  • the geometrical characteristics of the part to be produced are recorded in the memory of the computer system 48, which is programmed for example so as to be able to reconstruct the part by successive slices of volume or horizontal strata from a lower surface determined so as to that the part to be constructed is in a stable equilibrium position when it rests by this surface on a support.
  • the tank 10 is filled with organic liquid 12, the bell 24 is partially immersed in this liquid while being filled with a fluid such as air, the pressure of which is adjusted so that the free surface 26 of the organic liquid in the bell 24 is at the height provided with respect to the bottom 50 of the tank 10.
  • the computer system 48 then makes it possible to control the laser generator 36 and the means for moving and focusing the laser beam 40 to form, on the bottom 50 of the tank 10 or on a support placed on the bottom of this tank, a solid layer corresponding to a first volume slice of the part to be produced. To make the next layer, it suffices to vertically raise the bell 24 over the desired distance and / or to adjust the fluid pressure in the bell 24.
  • FIG 2 schematically re ⁇ shows a possible embodiment of the means 38 for transmitting the laser beam.
  • These means essentially comprise two mirrors 54 and 56, one of which is mounted for rotation around a vertical axis 58 and the other of which is rotatably mounted about a horizontal axis 60, the two mirrors 54, 56 being positioned so that the laser beam 40 is reflected successively by the mirror 54, then by the mirror 56 to finally arrive on the free surface 26 of the organic liquid.
  • the rotation of the first mirror 54 around the axis 58 makes it possible to move the point of impact of the laser beam along the x axis
  • the rotation of the second mirror 56 around the horizontal axis 60 makes it possible to move this point d impact along the y axis.
  • the combined rotations of these two mirrors therefore make it possible to move the point of impact of the laser beam on the free surface 26 along any desired trajectory, very quickly, with low inertia, and therefore with high precision and possibilities of significant acceleration.
  • an optical system 60 can be placed on the path of the laser beam, for example upstream of the mirrors 54 and 56, to focus the laser beam and correct the variation in the distance between the point of impact of the laser beam on the free surface 26 and the axes of rotation of the mirrors 58 and 60.
  • this optical system 60 may consist of one or more lenses 62 equivalent to a lens fixed relative to the mirrors and with a large focal distance, making it possible to have a large depth of field for the position of the point d impact of the laser beam on the free surface 26.
  • FIG. 1 Schematically shown in fi ⁇ Figures 3-5 the essential features of other embodiments of the invention. These embodiments differ from that of FIG. 1 in that the neutral volume through which the laser beam passes and forming an interface with the organic liquid is of very small volume. Under these conditions, this neutral volume V can be formed at the end of a vertical tube associated with means 68 making it possible to move it along two perpendicular horizontal axes and a vertical axis.
  • This tube 66 contains a means 70 for transmitting the laser beam, for example an optical fiber, the end of which opens into the neutral volume V and is oriented vertically.
  • the neutral volume V formed at the lower end of the tube 66 is a bubble 72 of gas or liquid immiscible with the organic liquid and having a density less than or equal, which is brought to the lower end of the tube 66 by one or more conduits 74, with a substantially continuous flow, the lower end of the tube 66 being able to be shaped so as to partially retain the bubble 72.
  • the laser beam 40 transmitted by the optical fiber 70 passes through this bubble 72 and acts on the organic liquid, at the bubble-liquid interface.
  • the lower end of the tube 66 carries a lens 76 for focusing the laser beam 40.
  • the liquid organic used is relatively insensitive to laser radiation, which triggers the polymerization or crosslinking of this liquid only if it is focused, in other words if the energy density per unit area is high enough.
  • the neutral volume V is formed by a volume of organic liquid, crossed by the laser beam 40, between the focusing lens 76 and the focal point of the laser beam.
  • the radiation used and the phototransformable organic liquid are of course adapted to each other. It is possible to use laser generators which emit in the visible range, the ultraviolet or the infrared, but preferably in the ultraviolet, which is the absorption range of most polymerization initiators.
  • the latter can be initiators of radical polymerization, such as benzoin and its derivatives, acetophenone and its derivatives, thioxanthone and its derivatives, quinones, peroxides, sulfur compounds, nitrogen compounds, metal compounds, phosphorus compounds, etc. It is also possible to use cationic polymerization initiators such as the triarylsulfonium and diaryliodonium salts for example. Some of these initiators can be excited in the visible range, with a possible addition of sensitizers which make it possible to increase the efficiency of the initiation of the reaction, or even in the infrared range. The following can be used as sensitizers: benzophenone and its derivatives, amino benzoates, anthracene, perylene, phenothiazine.
  • the organic liquids which can be used can be single-functional monomers or multi-functional monomers. Unifunctional monomers poly erect by reactions in straight chains under the effect of radiation, while polyfunctional monomers polymerize smelled by reaction with connections or by crosslinking.
  • a polyfunctional monomer When a polyfunctional monomer is used, the higher the intensity of the laser radiation, the higher the hardness of the solidified material.
  • the monomers which polymerize by opening cycles can give solid parts with very low shrinkage. It is possible, for example, to use cycloaliphatic epoxides derived from cyclohexene oxide, or else derivatives from the family of spiroorthocarbonates, bicyclic orthoesters or else spiroorthocarbonates.
  • the laser generators used are discontinuous or continuous generators, such as excimer lasers, triplet or quadruple YAG lasers, argon or krypton ionized lasers, helium-cadmium lasers, or metallic vapor lasers.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)

Abstract

Fabrication d'une pièce tridimensionnelle par focalisation d'un faisceau laser (40) sur la surface libre (26) d'un liquide organique dans une cloche ou cuve retournée (24) déplaçable en translation verticale et associée à des moyens (30, 34) de réglage de la quantité ou de la pression d'un fluide neutre dans la cloche (24), pour faire varier la position de la surface libre (26) et réaliser une pièce solide (52) par solidification de strates successives depuis une surface de fond (50). L'invention s'applique notamment à la fabrication de modèles tridimensionnels.

Description

PROCEDE ET DISPOSITIF DE FABRICATION D'UNE PIECE SOLIDE TRIDIMENSIONNELLE PAR PHOTOTRANSFORMATION D'UN LIQUIDE
ORGANIQUE
L'invention concerne un procédé et un disposi¬ tif de fabrication d'une pièce solide tridimensionnelle par phototransformation d'un liquide organique au moyen d'un faisceau lumineux, en particulier d'un faisceau laser. On connaît déjà des procédés et dispositifs de ce type, fondés sur l'absorption monophotonique de la lu¬ mière par des photoamorceurs de polymérisation ou de réticulation contenus dans le liquide organique. L'absorption monophotonique suit en principe la loi de BEER-LAMBERT, ce qui permet de former dans un plan, par solidification du liquide organique, une forme correspondant au déplacement sur la surface libre du liquide du point d'impact d'un faisceau lumineux, tel qu'un faisceau laser, focalisé sur cette surface libre. En procédant par couches successives superposées, on peut donc former une pièce solide tridimensionnelle.
Dans les procédés et dispositifs connus, on enregistre en mémoire d'un système de traitement de l'information les caractéristiques géométriques de la pièce à réaliser, dont le volume est par exemple décomposé en tranches parallèles successives à partir d'une surface de fond, et on commande le déplacement du point d' action du faisceau laser sur la surface libre du liquide organique de façon à lui faire balayer une surface correspondant à une tranche de volume de la pièce. Lorsqu'une strate solide a été ainsi réalisée sur la surface libre du liquide organique, il faut déposer une nouvelle couche de liquide d'épaisseur déterminée sur cette strate, puis former la strate suivante de la pièce par déplacement du point d'action du faisceau laser.
Pour obtenir une bonne précision dimensionnelle de la pièce réalisée, il faut déposer successivement un nombre important de couches minces de liquide organique, ce qui peut conduire à des temps de réalisation très longs. De plus, le liquide organique est en général plus ou moins visqueux ou pâteux, ce qui peut ne pas faciliter un dépôt rapide de ces couches.
La présente invention a notamment pour but d'éviter cet inconvénient.
Elle a pour objet un procédé et un dispositif de fabrication d'une pièce solide tridimensionnelle par phototransformation d'un liquide organique au moyen d'un faisceau lumineux, en particulier d'un faisceau laser, qui ne fassent pas appel à des dépôts successifs de couches minces superposées de liquide organique. Elle propose pour cela un procédé du type pré¬ cité, consistant à décomposer le volume de la pièce à réaliser en tranches parallèles successives à partir d'une surface de fond, et à déplacer le point d'action du faisceau lumineux sur le liquide de façon à lui faire balayer, dans des plans ou niveaux de liquide successifs parallèles à partir d'une surface de fond, des surfaces correspondant auxdites tranches de volume de la pièce pour construire celle-ci par superposition de strates solides dans le liquide organique, caractérisé en ce qu'il consiste à former sur le trajet du faisceau lumineux un volume neutre de matière, traversé par le faisceau lumineux et comportant une interface réelle ou virtuelle avec le liquide dans laquelle se situe le point d'action du faisceau lumineux sur le liquide, et à déplacer ce volume neutre par rapport au liquide pour former lesdites strates solides et construire la pièce tridimensionnelle.
Comme le faisceau lumineux agit sur le liquide organique à l'interface entre ce liquide et le volume neutre précité, il suffit de déplacer cette interface dans le liquide organique pour former des strates solides successives dans le liquide, ce qui est beaucoup plus rapide que le dépôt de couches d'épaisseur contrôlée d'un liquide organique visqueux ou pâteux. Il en résulte un gain de temps considérable pour la fabrication d'une pièce solide tridimensionnelle.
Selon un premier aspect de l'invention, ce vo¬ lume neutre est un volume de fluide, gazeux ou liquide, non miscible avec le liquide organique et ayant une densité inférieure ou égale à celle du liquide. Selon un premier mode de réalisation de l'invention, ce volume neutre est délimité par une cloche ou cuve retournée, dont les parois préférentiellement verticales plongent dans le liquide organique et qui est remplie partiellement du fluide précité, le procédé consistant alors à déplacer le point d'impact du faisceau lumineux sur l'interface fluide-liquide dans ladite cloche ou cuve retournée, pour former une strate solide, et à déplacer ladite interface verticalement, pour former la strate suivante. On peut pour cela déplacer verticalement la cloche ou cuve retournée ou faire varier la quantité et/ou la pression de fluide dans cette cloche ou cuve re¬ tournée.
Selon un autre mode de réalisation de l'invention, ce procédé consiste à former, au sein du li¬ quide, une bulle du fluide précité à l'extrémité de sortie d'un moyen, tel qu'une fibre optique, de transmission du faisceau lumineux.
Pour cela, on peut par exemple amener un cou- rant continu de fluide à l'extrémité de la fibre optique, sous une surface de maintien d'un volume déterminé de fluide autour de l'extrémité de cette fibre optique.
On peut alors réaliser une pièce tridimension¬ nelle par solidification du liquide organique, en déplaçant l'extrémité de la fibre optique dans un volume donné de liquide organique. Selon un autre aspect de l'invention, le volume neutre précité est un volume du liquide organique, formé entre en une lentille de focalisation du faisceau lumineux et une zone où le faisceau est suffisamment concentré ou focalisé pour provoquer la phototransformation du liquide organique.
Il suffit pour cela que le liquide organique absorbe peu le rayonnement lumineux, de telle sorte que sa phototransformation ne puisse être amorcée de façon efficace qu'au point de focalisation du faisceau lumineux. On peut donc, dans ces conditions, fabriquer une pièce solide tridimensionnelle par déplacement dans le liquide organique d'une lentille de focalisation associée à l'extrémité d'une fibre optique de transmission du faisceau lumineux.
Selon un troisième aspect de l'invention, le procédé consiste à solidifier, par action du faisceau lumineux, une faible épaisseur de liquide organique sur une surface correspondant à la surface extérieure de la pièce à réaliser.
Dans certaines conditions, il est en effet possible de ne fabriquer qu'une enveloppe de la pièce à réaliser, pour obtenir une pièce creuse, et non pleine, ce qui réduit de façon très importante le temps de fabrication.
L'invention propose également un dispositif de fabrication d'une pièce solide tridimensionnelle par phototransformation d'un liquide organique, en particulier par exécution du procédé précité, ce dispositif comprenant une source lumineuse, telle qu'un générateur laser, un réservoir de liquide organique polymerisable ou réticulable sous l'action du faisceau lumineux émis par la source, des moyens de transmission optique du faisceau et des moyens de déplacement du point d'action du faisceau, sous commande d'un système de traitement de l'information dans lequel ont été enregistrées des données relatives à la forme de la pièce à fabriquer, et étant caractérisé en ce qu'il comprend des moyens pour former un volume neutre de matière sur le trajet du faisceau lumineux, présentant une interface avec le liquide organique dans laquelle se trouve le point d'action du faisceau sur le liquide, et des moyens pour déplacer ladite interface et donc le point d'action du faisceau lumineux par rapport au liquide.
Dans une première forme de réalisation, ce dispositif comprend une cuve ou cloche retournée dont les bords sont plongés dans le liquide organique et qui contient un fluide non miscible avec ce liquide et de densité inférieure ou égale, ladite cuve ou cloche ayant un fond transparent au faisceau lumineux, des moyens de déplacement du faisceau lumineux à travers le fond transparent selon deux axes horizontaux perpendiculaires, et des moyens de déplacement de la cuve selon un axe vertical.
Ce dispositif comprend également des moyens de réglage de la quantité et/ou de la pression de fluide à l'intérieur de ladite cuve ou cloche.
Selon un autre mode . de réalisation de l'invention, ce dispositif comprend un moyen, tel qu'une fibre optique, de transmission du faisceau lumineux, et des moyens pour former à l'extrémité de sortie de ladite fibre une bulle de fluide non miscible au liquide organique et de densité égale ou inférieure.
Selon encore une autre forme de réalisation, le dispositif comprend un moyen, tel qu'une fibre optique, de transmission du faisceau lumineux et une lentille de focalisation montée à l'extrémité de sortie de cette fibre optique. Des moyens de déplacement de cette fibre optique dans trois directions perpendiculaires sont prévus. Dans la description qui suit, faite à titre d'exemple, on se réfère aux dessins annexés, dans lesquels: la figure 1 représente schématiquentent un dis¬ positif de fabrication d'une pièce solide tridimension¬ nelle, selon un premier mode de réalisation de l'invention, la figure 2 représente schématiquement des moyens de déplacement rapide du point d'action du faisceau lumineux sur la surface du liquide organique, la figure 3 est une vue schématique partielle d'une variante de réalisation du dispositif de 1'invention, les figures 4 et 5 représentent deux formes de réalisation de ce dispositif.
On se réfère tout d'abord à la figure 1, représentant schématiquement un premier mode de réalisation d'un dispositif selon l'invention, pour la fabrication d'une pièce tridimensionnelle par phototransformation d'un liquide organique au moyen d'un faisceau lumineux. Le dispositif comprend essentiellement une cuve 10 remplie d'un liquide organique approprié 12 au moyen d'une pompe 14 associée à un réservoir 16 de liquide organique et reliée à la cuve 12 par un conduit
18. Une pompe 20 associée à un réservoir 22 de liquide de rinçage, est reliée à la cuve 10 par le conduit 18 et permet de nettoyer la cuve après utilisation. Des vannes, non représentées, sont prévues sur le conduit 18 pour isoler la cuve 10 des pompes 14 et 20.
Une cloche ou cuve retournée 24, à section par exemple circulaire, carrée ou rectangulaire, est plongée dans le liquide 12 et contient un volume V d'un gaz, tel que de l'air, ou d'un liquide, non miscible avec le liquide organique 12 et ayant une densité inférieure ou égale à celle -de ce liquide. En fonction de la quantité et/ou de la pression du fluide dans la cloche 24 et de la position verticale de cette cloche, la surface libre 26 du liquide dans la cloche 24 peut être à un niveau inférieur à celui de la surface libre 28 de ce liquide dans le reste de la cuve 10, ou bien au même niveau, ou encore à un niveau supérieur. La cloche 24 est donc montée mobile en translation verticale sur des moyens de guidage non représentés, et est déplacée par des moyens moteurs 30, tels qu'un moteur électrique, associés à des moyens mécaniques de transmission de mouvement par exemple du type à engrenages ou à vis sans fin.
Par ailleurs, une pompe 32 associée à une vanne de fermeture 34 permet de régler la pression ou la quantité de fluide, par exemple d'air ou d'azote, dans la cloche 24. Une source lumineuse, par exemple un générateur laser 36, est associée avantageusement à un système optique 38 de transmission et de focalisation du faisceau laser 40, qui en sortie du système 38, est orienté verticalement et traverse le fond 42 de la cloche 24. Bien entendu, ce fond est réalisé en une matière au moins partiellement transparente au faisceau laser utilisé.
Le système optique 38 est lui-même associé à des moyens 46 permettant de déplacer le faisceau laser et/ou le système 38 dans un plan horizontal, selon deux axes horizontaux perpendiculaires, et peut comprendre des moyens pour régler la convergence du faisceau laser 40.
Un système 48 de traitement de l'information, comprenant au moins des mémoires et un micro-processeur, commande le fonctionnement du dispositif, et notamment les pompes 14 et 20 et leurs vannes associées, les moyens moteurs 30 de déplacement vertical de la cloche 24, la pompe 32 et la vanne de fermeture 34, le générateur laser 36 et le système optique de transmission et de focalisation 38, et les moyens 46 de déplacement du faisceau laser. Ce dispositif fonctionne de la façon suivante
• les caractéristiques géométriques de la pièce à réaliser sont enregistrées dans la mémoire du système informatique 48, qui est programmé par exemple de façon à pouvoir reconstruire la pièce par tranches de volume ou strates horizontales successives à partir d'une surface inférieure déterminée de façon à ce que la pièce à construire soit dans une position d'équilibre stable lorsqu'elle repose par cette surface sur un support.
La cuve 10 est remplie de liquide organique 12, la cloche 24 est immergée partiellement dans ce liquide en étant remplie d'un fluide tel que l'air, dont la pression est réglée pour que la surface libre 26 du liquide organique dans la cloche 24 se trouve à la hauteur prévue par rapport au fond 50 de la cuve 10.
Le système informatique 48 permet alors de commander le générateur laser 36 et les moyens de déplacement et de focalisation du faisceau laser 40 pour former, sur le fond 50 de la cuve 10 ou sur un support posé sur le fond de cette cuve, une strate solide correspondant à une première tranche de volume de la pièce à réaliser. Pour réaliser la strate suivante, il suffit de remonter verticalement la cloche 24 sur la distance voulue et/ou de régler la pression de fluide dans la cloche 24.
On peut ainsi réaliser une pièce solide 52 par phototransformation du liquide organique à sa surface libre 26 dans la cloche 24, plus rapidement que s'il fallait déposer une à une des couches successives de li¬ quide organique d'épaisseur déterminée.
On se réfère maintenant à la figure 2, qui re¬ présente schématiquement un mode de réalisation possible des moyens 38 de transmission du faisceau laser. Ces moyens comprennent essentiellement deux miroirs 54 et 56, dont l'un est monté à rotation autour d'un axe vertical 58 et dont l'autre est monté à rotation autour d'un axe horizontal 60, les deux miroirs 54, 56 étant positionnés de telle sorte que le faisceau laser 40 est réfléchi successivement par le miroir 54, puis par le miroir 56 pour arriver finalement sur la surface libre 26 du liquide organique. La rotation du premier miroir 54 autour de l'axe 58 permet de déplacer le point d'impact du faisceau laser selon l'axe x, tandis que la rotation du second miroir 56 autour de l'axe horizontal 60 permet de déplacer ce point d'impact selon l'axe y. Les rotations combinées de ces deux miroirs permettent donc de déplacer le point d'impact du faisceau laser sur la surface libre 26 selon toute trajectoire désirée, de façon très rapide, avec une inertie faible, et donc avec une précision élevée et des possibilités d'accélération importantes.
Par ailleurs, un système optique 60 peut être placé sur le trajet du faisceau laser, par exemple en amont des miroirs 54 et 56, pour focaliser le faisceau laser et corriger la variation de la distance entre le point d'impact du faisceau laser sur la surface libre 26 et les axes de rotation des miroirs 58 et 60.
Selon les cas, ce système optique 60 peut être constitué d'une ou de plusieurs lentilles 62 équivalentes à une lentille fixe par rapport aux miroirs et de grande distance focale, permettant .d'avoir une grande profondeur de champ pour la position du point d'impact du faisceau laser sur la surface libre 26.
En variante, on peut placer, après les miroirs 54 et 56, une ou plusieurs lentilles équivalentes à une lentille anamorphique fixe, qui donne une focalisation constante en plan image du point d' impact du faisceau laser sur la surface libre 26.
On pourrait également utiliser des lentilles déplaçables sur l'axe optique avec un mouvement asservi à celui des miroirs 54 et 56. Le déplacement du point d'impact du faisceau laser sur de petites distances est ainsi assuré par les rotations combinées des miroirs 54 et 56, qui peuvent être elles-mêmes superposées à un déplacement d'ensemble du système 38 dans un plan parallèle à la surface libre 26, grâce aux moyens moteurs 46 de la figure 1.
On a représenté schématiquement dans les fi¬ gures 3 à 5 les caractéristiques essentielles d'autres modes de réalisation de l'invention. Ces modes de réalisation diffèrent de celui de la figure 1 en ce que le volume neutre traversé par le faisceau laser et formant une interface avec le liquide organique, est de très faible volume. Dans ces conditions, ce volume neutre V peut être formé à l'extrémité d'un tube vertical associé à des moyens 68 permettant de le déplacer le long de deux axes horizontaux perpendiculaires et d'un axe vertical. Ce tube 66 contient un moyen 70 de transmission du faisceau laser, par exemple une fibre optique, dont l'extrémité débouche dans le volume neutre V et est orientée verticalement.
Dans une première forme de réalisation repré¬ sentée en " figure 4, le volume neutre V formé à l'extrémité inférieure du tube 66 est une bulle 72 de gaz ou de liquide non miscible avec le liquide organique et ayant une densité inférieure ou égale, qui est amené à l'extrémité inférieure du tube 66 par un ou plusieurs conduits 74, avec un débit sensiblement continu, l'extrémité inférieure du tube 66 pouvant être conformée de façon à retenir partiellement la bulle 72.
Le faisceau laser 40 transmis par la fibre op¬ tique 70 traverse cette bulle 72 et agit sur le liquide organique, à l'interface bulle-liquide.
Dana la variante de réalisation de la figure 5, l'extrémité inférieure du tube 66 porte une lentille 76 de focalisation du faisceau laser 40. Le liquide organique utilisé est relativement peu sensible au rayonnement laser, qui ne déclenche la polymérisation ou la réticulation de ce liquide que s'il est focalisé, en d'autres termes si la densité d'énergie par unité de surface est suffisamment importante. Dans ce cas, le volume neutre V est formé par un volume de liquide organique, traversé par le faisceau laser 40, entre la lentille de focalisation 76 et le point de focalisation du faisceau laser. Le rayonnement utilisé et le liquide organique phototransformable sont bien entendu adaptés l'un à l'autre. On peut utiliser des générateurs lasers qui émettent dans le domaine visible, l'ultra-violet ou l'infrarouge, mais de préférence dans l'ultra-violet, qui est le domaine d'absorption de la plupart des amorceurs de polymérisation. Ces derniers peuvent être des amorceurs de polymérisation radicalaire, telle que la benzoïne et ses dérivés, l'acétophénone et ses dérivés, le thioxanthone et ses dérivés, les quinones, les peroxydes, les composés soufrés, les composés azotés, les composés métalliques, les composés phosphores, etc.. On peut également utiliser des amorceurs de polymérisation cationique tels que les sels de triarylsulfonium et diaryliodonium par exemple. Certains de ces amorceurs peuvent être excités dans le domaine visible, avec une addition éventuelle de sensibilisateurs qui permettent d'augmenter l'efficacité de l'amorçage de la réaction, ou même dans le domaine infrarouge. On peut utiliser comme sensibilisateurs : la benzophénone et ses dérivés, les amino-benzoates, l'anthracène, le pérylène, la phéno- thiazine.
Les liquides organiques utilisables peuvent être des monomères unifonctionnels ou des monomères poly- fonctionnels. Les monomères unifonctionnels poly érisent par réactions en chaînes droites sous l'effet du rayonne¬ ment, tandis que les monomères polyfonctionnels polyméri- sent par réaction avec branchements ou par réticulation.
Lorsqu'on utilise un monomère polyfonctionnel, plus l'intensité du rayonnement laser est importante, plus la dureté du matériau solidifié est élevée. Pour les réactions radicalaires, on peut utiliser par exemple des monomères acryliques, éthacryliques, vinyliques et allyliques, et des oligomères de la famille des polyesters insaturés, des polyesters acryliques, des diols acrylates, des époxyacrylates, des polyéthers acrylates, des polybutadiènes diacrylates, des polyuréthanes diacrylates, des thiols, ou encore des vinylcinnamates.
Les monomères qui polymérisent par ouverture de cycles peuvent donner des pièces solides ayant des retraits très faibles. On peut par exemple utiliser des époxydes cycloaliphatiques dérivés de l'oxyde de cyclohexène, ou bien des dérivés de la famille des spiroorthocarbonates, des orthoesters bicycliques ou encore des spiroorthocarbonates. Les générateurs lasers utilisés sont des géné¬ rateurs discontinus ou continus, tels que des lasers à excimères, des lasers YAG triplés ou quadruplés, des lasers à argon ou à krypton ionisés, des lasers hélium- cadmium, ou des lasers à vapeurs métalliques.

Claims

REVENDICATIONS
1) Procédé de fabrication d'une pièce solide tridimensionnelle par phototransformation de liquide organique au moyen d'un faisceau lumineux, en particulier d'un faisceau laser, consistant à décomposer le volume de la pièce en tranches parallèles successives à partir d'une surface de fond, et à déplacer le point d'action du faisceau lumineux sur le liquide de façon à lui faire balayer, dans des plans ou niveaux de liquide successifs parallèles à partir d'une surface de fond, des surfaces correspondant auxdites tranches de volume de la pièce, pour construire celles-ci par superposition de strates solides dans le liquide organique, caractérisé en ce qu'il consiste à former, sur le trajet du faisceau lumineux (40), un volume neutre V de matière, traversé par ledit faisceau et comportant une interface réelle ou virtuelle (26,72) avec le liquide (12), dans laquelle se situe le point d'action du faisceau lumineux sur le liquide, et à déplacer ce volume neutre V par rapport au liquide pour former lesdites strates solides et construire la pièce tridimensionnelle (52) .
2) Procédé selon la revendication 1, caracté¬ risé en ce que ledit volume neutre V est un volume de fluide, gazeux ou liquide, non miscible avec le liquide organique et ayant une densité inférieure ou égale à celle de ce liquide.
3) Procédé selon la revendication 2, caracté¬ risé en ce qu'il consiste à délimiter ledit volume V par une cloche ou cuve retournée (24) dont les parois plongent dans le liquide organique (12) et qui est remplie partiellement du fluide précité, à déplacer le point d'impact du faisceau lumineux (40) sur l'interface
(26) du fluide-liquide dans ladite cloche ou cuve retournée (24), et à déplacer verticalement ladite interface (26) . 4) Procédé selon la revendication 3, caracté¬ risé en ce qu' il consiste à déplacer verticalement ladite cloche ou cuve retournée (24) , et/ou à faire varier la quantité et/ou la pression de fluide dans cette cloche ou cuve retournée (24), pour faire varier la position verti¬ cale de l'interface (26) .
5) Procédé selon la revendication 2, caracté¬ risé en ce qu'il consiste à former, au sein du liquide (12), une bulle (72) dudit fluide à l'extrémité de sortie d'un moyen, tel qu'une fibre optique (70), de transmission du faisceau lumineux (40) .
6) Procédé selon la revendication 5, caracté¬ risé en ce qu' il consiste à amener un courant continu de fluide à l'extrémité de ladite fibre optique (70), sous une surface de maintien d'un volume de fluide autour de l'extrémité de la fibre optique (70) .
7) Procédé selon la revendication 1, caracté¬ risé en ce que le volume neutre V est un volume du liquide organique (12) précité, formé entre une lentille (76) de focalisation du faisceau lumineux et une zone où le faisceau est suffisamment concentré ou focalisé pour provoquer la phototransformation du liquide organique.
8) Procédé selon l'une des revendications pré¬ cédentes, caractérisé en ce qu'il consiste à solidifier, par action du faisceau lumineux (40), une faible épaisseur de liquide organique sur une surface correspondant à la surface extérieure de la pièce (52) à réaliser.
9) Dispositif de fabrication d'une pièce solide tridimensionnelle par phototransformation d'un liquide organique, en particulier par exécution du procédé selon l'une des revendications 1 à 8, comprenant une source lumineuse, telle en particulier qu'un générateur laser (36) , un réservoir (10) de liquide organique polymerisable ou réticulable sous l'action du faisceau lumineux émis par la source (36) , des moyens (38) de transmission optique du faisceau et des moyens (46) de déplacement du point d'action du faisceau, sous commande d'un système (48) de traitement de l'information dans lequel ont été enregistrées des données relatives à la forme de la pièce à fabriquer, caractérisé en ce qu'il comprend des moyens pour former un volume neutre V de matière sur le trajet du faisceau lumineux (40) , présentant une interface (26,72) avec le liquide organique dans laquelle se trouve le point d'action du faisceau sur le liquide, et des moyens (30,32,34,68) pour déplacer ladite interface et donc le point d'action du faisceau lumineux (40) par rapport au liquide organique.
10) Dispositif selon la revendication 9, caractérisé en ce qu'il comprend une cuve ou cloche retournée (24) dont les bords sont plongés dans le liquide organique (12) et qui contient un fluide non miscible avec le liquide et de densité inférieure ou égale, ladite cuve ou cloche (24) ayant un fond (42) transparent au faisceau lumineux, des moyens (38,46) de déplacement du faisceau lumineux à travers le fond transparent de la cuve selon deux axes horizontaux perpendiculaires, et des moyens (30) de déplacement de la cuve selon un axe vertical.
11) Dispositif selon la revendication 9, caractérisé en ce qu'il comprend également des moyens
(32,34) de réglage de la quantité et/ou de la pression de fluide à l'intérieur de ladite cloche (24).
12) Dispositif selon la revendication 9, caractérisé en ce qu'il comprend un moyen, tel qu'une fibre optique (70) , de transmission du faisceau lumineux et des moyens (74) pour former, à l'extrémité de sortie de ladite fibre, une bulle (72) de fluide non miscible au liquide organique et de densité inférieure ou égale.
13) Dispositif selon la revendication 12, ca- ractérisé en ce qu'il comprend des moyens (74) pour amener un débit sensiblement continu du fluide sous une surface gauche entourant ladite extrémité de la fibre optique et délimitant partiellement la cuve (72) .
14) Dispositif selon la revendication 9, caractérisé en ce qu'il comprend un moyen, tel qu'une fibre optique (70) , de transmission du faisceau lumineux et une lentille (76) de focalisation montée à l'extrémité de sortie de ladite fibre optique.
15) Dispositif selon l'une des revendications 12 à 14, caractérisé en ce qu'il comprend des moyens (68) de déplacement de ladite fibre optique (70) dans trois directions perpendiculaires.
PCT/FR1989/000602 1988-12-05 1989-11-23 Procede et dispositif de fabrication d'une piece solide tridimensionnelle par phototransformation d'un liquide organique WO1990006540A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR88/15887 1988-12-05
FR8815887A FR2639948B1 (fr) 1988-12-05 1988-12-05 Procede et dispositif de fabrication d'une piece solide tridimensionnelle par phototransformation d'un liquide organique

Publications (1)

Publication Number Publication Date
WO1990006540A1 true WO1990006540A1 (fr) 1990-06-14

Family

ID=9372562

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR1989/000602 WO1990006540A1 (fr) 1988-12-05 1989-11-23 Procede et dispositif de fabrication d'une piece solide tridimensionnelle par phototransformation d'un liquide organique

Country Status (2)

Country Link
FR (1) FR2639948B1 (fr)
WO (1) WO1990006540A1 (fr)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0616881A1 (fr) * 1993-03-22 1994-09-28 Sony Corporation Procédé de moulage optique et appareil de moulage optique
WO1996008360A1 (fr) * 1994-09-16 1996-03-21 Eos Gmbh Electro Optical Systems Procede de fabrication d'un objet tridimensionnel
CN102649314A (zh) * 2011-02-25 2012-08-29 光刻设备有限公司 用于向光敏物质中空间分辨地输入电磁辐射的强度图案的方法和装置及其应用
US20130056910A1 (en) * 2010-05-11 2013-03-07 Fraunhofer-Gesellschaft Zur Foederung Der Angewandten Forschung E. V. Device and method for producing three-dimensional structures

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2659971B1 (fr) * 1990-03-20 1992-07-10 Dassault Avions Procede de production d'objets a trois dimensions par photo-transformation et appareillage de mise en óoeuvre d'un tel procede.
WO2019002902A1 (fr) * 2017-06-30 2019-01-03 Nikon Corporation Procédé pour fabriquer un article fait d'un matériau polymérisé

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2567668A1 (fr) * 1984-07-16 1986-01-17 Cilas Alcatel Dispositif pour realiser un modele de piece industrielle
EP0171069A2 (fr) * 1984-08-08 1986-02-12 3D SYSTEMS, INC. (a California corporation) Procédé et appareil stéréolithographique pour la fabrication d'objets en trois dimensions
US4752498A (en) * 1987-03-02 1988-06-21 Fudim Efrem V Method and apparatus for production of three-dimensional objects by photosolidification

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61116320A (ja) * 1984-11-09 1986-06-03 Fujitsu Ltd 立体形状形成装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2567668A1 (fr) * 1984-07-16 1986-01-17 Cilas Alcatel Dispositif pour realiser un modele de piece industrielle
EP0171069A2 (fr) * 1984-08-08 1986-02-12 3D SYSTEMS, INC. (a California corporation) Procédé et appareil stéréolithographique pour la fabrication d'objets en trois dimensions
US4752498A (en) * 1987-03-02 1988-06-21 Fudim Efrem V Method and apparatus for production of three-dimensional objects by photosolidification

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0616881A1 (fr) * 1993-03-22 1994-09-28 Sony Corporation Procédé de moulage optique et appareil de moulage optique
US5525051A (en) * 1993-03-22 1996-06-11 Sony Corporation Optical molding apparatus
US5609814A (en) * 1993-03-22 1997-03-11 Sony Corporation Optical molding process
WO1996008360A1 (fr) * 1994-09-16 1996-03-21 Eos Gmbh Electro Optical Systems Procede de fabrication d'un objet tridimensionnel
CN1065178C (zh) * 1994-09-16 2001-05-02 Eos有限公司 一种三维物件的制造方法
US20130056910A1 (en) * 2010-05-11 2013-03-07 Fraunhofer-Gesellschaft Zur Foederung Der Angewandten Forschung E. V. Device and method for producing three-dimensional structures
US20170282453A1 (en) * 2010-05-11 2017-10-05 Multiphoton Optics Gmbh Device and method for creating three-dimensional structures
US10836105B2 (en) * 2010-05-11 2020-11-17 Multiphoton Optics Gmbh Device and method for creating three-dimensional structures
CN102649314A (zh) * 2011-02-25 2012-08-29 光刻设备有限公司 用于向光敏物质中空间分辨地输入电磁辐射的强度图案的方法和装置及其应用
EP2492085A1 (fr) * 2011-02-25 2012-08-29 Nanoscribe GmbH Procédé et dispositif d'introduction à résolution spatiale d'un motif d'intensité à partir d'un rayonnement électromagnétique dans une substance photosensible ainsi qu'applications associées
CN102649314B (zh) * 2011-02-25 2016-01-20 光刻设备有限公司 用于向光敏物质中空间分辨地输入电磁辐射的强度图案的方法和装置及其应用
US9302430B2 (en) 2011-02-25 2016-04-05 Nanoscribe Gmbh Method and device for a spatially resolved introduction of an intensity pattern comprising electro-magnetic radiation into a photosensitive substance as well as applications thereof

Also Published As

Publication number Publication date
FR2639948A1 (fr) 1990-06-08
FR2639948B1 (fr) 1991-03-22

Similar Documents

Publication Publication Date Title
EP2576127B1 (fr) Procédé de gravure d'au moins une rainure formant des amorces de rupture à l'aide d'un dispositif laser à fibre optique
EP0876870B1 (fr) Appareil et procédé de traitement par laser de la paroi de cylindre d'un moteur à combustion interne
US4801352A (en) Flowing gas seal enclosure for processing workpiece surface with controlled gas environment and intense laser irradiation
LU80792A1 (fr) Dispsitif et procede pour effectuer des perforations a la surface des cylindres de laminoirs
FR2583334A1 (fr) Procede et dispositif pour realiser un modele de piece industrielle
CN1300667A (zh) 利用可光固化液体形成三维层状产品的方法和装置
US6727460B2 (en) System for high-speed production of high quality laser-induced damage images inside transparent materials
WO2016097620A1 (fr) Procédé d'impression d'éléments biologiques par laser et dispositif pour sa mise en oeuvre
FR2583333A1 (fr) Procede pour realiser un modele de piece industrielle et dispositif de mise en oeuvre de ce procede
WO1990006540A1 (fr) Procede et dispositif de fabrication d'une piece solide tridimensionnelle par phototransformation d'un liquide organique
US6841340B2 (en) Optical fabricating method and apparatus
FR2567668A1 (fr) Dispositif pour realiser un modele de piece industrielle
JP2017177162A (ja) レーザピーニング加工装置及びレーザピーニング加工方法
CA2296744A1 (fr) Dispositif et procede de decoupe a distance etendue par laser, en mode impulsionnel
WO1999004305A1 (fr) Optique diffractive a synthese d'ouverture et a focale variable et dispositif de decoupe laser incorporant une telle optique
CN108549124A (zh) 一种采用脉冲激光加工全息金光栅的装置及方法
WO2002084367A2 (fr) Ensemble modifiable de trous microscopiques
EP0429368A1 (fr) Dispositif de focalisation d'un faisceau lumineux permettant d'obtenir une tache focale de forme allongée
JP2009082938A (ja) レーザ光線加工装置
WO1989012244A2 (fr) Dispositif de transfert de rayonnement du laser sur une fibre optique
FR2566691A1 (fr) Procede d'usinage d'un reseau de prefragmentation et generateur d'eclats pour charge militaire explosive
FR2631727A1 (fr) Procede et dispositif de production de modeles de pieces industrielles par action de la lumiere
FR2654538A1 (fr) Procede et dispositif pour realiser un modele de piece industrielle par polymerisation d'un liquide monomere.
FR2692067A1 (fr) Procédé de réalisation de pièces par transformation de matière grâce à l'action de la lumière et dispositif de mise en Óoeuvre de ce procédé.
FR2578691A1 (fr) Generateur laser a puissance ajustable

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE ES FR GB IT LU NL SE