WO1984003976A1 - Fire sensor apparatus - Google Patents

Fire sensor apparatus Download PDF

Info

Publication number
WO1984003976A1
WO1984003976A1 PCT/JP1984/000146 JP8400146W WO8403976A1 WO 1984003976 A1 WO1984003976 A1 WO 1984003976A1 JP 8400146 W JP8400146 W JP 8400146W WO 8403976 A1 WO8403976 A1 WO 8403976A1
Authority
WO
WIPO (PCT)
Prior art keywords
fire
value
accumulated data
data
sensitivity
Prior art date
Application number
PCT/JP1984/000146
Other languages
French (fr)
Japanese (ja)
Inventor
Yoshiaki Okayama
Original Assignee
Nohmi Bosai Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nohmi Bosai Kogyo Co Ltd filed Critical Nohmi Bosai Kogyo Co Ltd
Priority to DE8484901398T priority Critical patent/DE3484620D1/en
Publication of WO1984003976A1 publication Critical patent/WO1984003976A1/en

Links

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B17/00Fire alarms; Alarms responsive to explosion

Definitions

  • the present invention relates to a fire detection device, in particular, a fire detection computer having a built-in computer for a fire mouth, and a fire detection level changes in response to a change in environmental conditions at an installation site, and a fire is always detected with an appropriate fire detection sensitivity.
  • the environmental conditions of the place where the fire detector is installed vary depending on time of day, day of the week or season. Considering this in a room in an office, when people enter and leave during the day and dust floats in the room, there is no person at night, so there is no dust inside the room. It is hardly floating, and even during the same day, the amount of floating-dust is naturally higher in times of high traffic such as going to work, leaving the office, and lunch than at other times.
  • the air conditioner operates during the daytime and the room temperature is around ° C, but at night the air conditioner is stopped and the room temperature rises to around 30 ° C.
  • the room temperature is around 0 ° C due to the operation of the heating system in the daytime, but it drops to a low level at night due to the shutdown of the heating system. 7 to such a room. If a constant-temperature fire detector operating at C is installed, the room temperature should rise and fall around 0 during the summer nights before the fire detector operates, while ⁇ during the winter-season. Requires a rise of around 0 ° C.
  • conventional fire detectors with fixed fire detection sensitivity have a relative fire detection sensitivity that varies from time to time due to environmental conditions that change depending on the time zone, day of the week, and season of the installation location. It changes and it is not always possible to detect fires with a certain sensitivity, which may result in false alarms, late reports or unreported reports. The same applies to fire detectors that capture light, gas, and the like generated during a fire other than smoke and heat. Also, some conventional fire detectors have a measurement level of ⁇ to J and are used for switching. In this case, attach a timer device to the receiver, for example, during the daytime.
  • the sensitivity is automatically switched by a command signal from the receiver so that the same sensitivity is always obtained, but the same level of sensitivity is always set.
  • the environment in which the equipment is installed is various, and even if the sensitivity is set in advance, the sensitivity level may not always be the best, such as changing the use purpose of the installation location, changing the partition of the room, or the seasonal environment. If a large change is made, there are many problems such as correcting the setting of the sensitivity level each time.
  • the present invention calculates the CPU in response to changes in the environmental conditions at the installation site, changes the fire detection level, and can always detect fire with appropriate fire detection sensitivity. The aim is to obtain a fire detection device that can be used.
  • the fire detection device of the present invention has a built-in micro computer, and the micro computer periodically detects the physical quantity of a phenomenon similar to a fire phenomenon which is a noise component. Measured and stored as cumulative data, and based on the past stored data, the current expected environmental noise amount, for example, noise component, for each time zone or day time zone In this method, the sensitivity is determined to match the average value of this noise component, and the fire detection level is changed for each time zone so as to eliminate fluctuations in the fire detection sensitivity.
  • Fig. 1 shows the basic configuration of the fire detector of the present invention. Since the configuration of the fire detector itself can be used arbitrarily in the block diagram, it can be used arbitrarily, so it is omitted in the figure, and the sensor part / and the amplifier for amplifying the output appropriately are described.
  • / is a sensor that generates analog output by detecting a fire phenomenon such as heat, smoke, light or gas, or a change in temperature change dust similar to a fire phenomenon.
  • 2 2 is an amplifier that amplifies the output of the amplifier appropriately
  • the A-to-D converter which converts a pull-hold analog signal into a digital signal and reads it to the CPU, is the clock section, and ⁇ is the CPU, which is the heart of the micro computer. , ⁇ ⁇ ? Is the / / ⁇ memory, / is
  • the first memory and the second memory are configured by ROM, and the control program is stored in the first memory.
  • the fire discrimination level when no noise component is present is stored in the second ⁇ 2 memory 7, the fire discrimination level when no noise component is present is stored.
  • the temporary reference level at the start is stored as the standard value.
  • the data storage time and the reference value change time are stored in the memory.
  • the memory f and the memory No. are composed of RAM and used as temporary storage memory, respectively, and the memory J is the memory for storing the reference value which is the fire discrimination level.
  • the memory is shown in Fig.
  • ⁇ ⁇ OY.PI It shall be used as a memory for storing data by day and hour.
  • Fig. 2 is a flow chart showing the operation explanation of Fig. 2 and the power supply voltage from the receiver or repeater through the power line or signal / power line to the fire detector.
  • the fire detector with the built-in micro computer starts its function.
  • the CPU starts its operation in the steps shown in Fig. 2 under the control program of the / th memory, and CPUi "is the / th step s / and the Jth memory. And the contents of the second memory, and set the initial values of the registers in the CPU.
  • step S «2 of the second 2
  • the standard value is read from the second ⁇ 7 memory, and this standard value is stored in the ⁇ th memory for the standard value.
  • the reference value As a result, the initial reference value of the fire detector, that is, the initial fire detection level is determined. If this fire detector is a smoke type and the sensor part / is an ionization type or a scattered light type, for example, the smoke becomes / 0 when dust is in the air.
  • the standard value is set to / ⁇ so that the fire detector sometimes determines a fire o
  • step SJ of the?> The CPU reads the output data of the sensor /, so that the CPU outputs the holding instruction to the sample hold circuit ⁇ 2.
  • CPUir is A-! )
  • a conversion instruction is output to the converter J, whereby the A-D converter J is a sample horned circuit. 2 converts the analog output signal of the sensor unit / that is held to a digital signal, and outputs a conversion end signal to the CPU when the conversion is completed.
  • the CPU reads the output data of the sensor unit / converted from the AD converter J to the digital signal.
  • the CPU reads the reference value from the J-th memory, compares the reference value with the output data read in the previous J-th step S, and determines whether it is a fire. If the data is equal to or greater than the reference value, it is determined that a fire has occurred and the process proceeds to step ⁇ s, and if the data is a reference value, the status is determined to be normal and the process proceeds to step S *. I do. .
  • the CP or the signal transmission circuit / h when going to the first step, the CP or the signal transmission circuit / h outputs a fire signal transmission command to the signal transmission circuit / h, and the signal transmission circuit / h outputs the fire signal to the receiver or repeater, etc. ⁇
  • the CPU When shifting to the first step S ⁇ , the CPU reads the day of the week, time, etc. from the clock section, and the time is set to the second. 2 It is determined whether or not it matches the data storage time stored in the memory 7 .
  • CP ⁇ is a scan STEP S of the ⁇
  • the output data of the sensor unit read in the first step SJ is stored at a predetermined position in the memory ⁇ ⁇ based on the read day and time data. Note that it is the first memory?
  • An example of storage in the memory is as shown in Fig. J. Is configured to be able to store weekly data every 2 hours on each day of the week, and if the current time is Monday at J hour, the data in the sensor section / It is stored in the / week part of the storage area at the time of J, and if all of this storage area from / week to week is filled at this time, the data of the week is cleared / weekly. The data for week J from the eyesight is shifted to / week, and the latest data is stored in / wk. The data is updated.
  • the CPU reads the day and time from the clock section, and determines whether or not the time has reached the reference value change time stored in the second memory 7.
  • Judge. In the second memory 7, for example, an even number time every two hours is stored as the reference value change time. In other words, the sensitivity is switched in an even number of hours, and ⁇ ⁇ is calculated based on the data at / hour, and ⁇ ⁇ is calculated based on the data at J hour.
  • step S ⁇ C ⁇ C stores the past accumulated data corresponding to the day and time read in step S f in step ⁇ . Mori? Read from and calculate a new reference value. For example, if it's Monday, is it the second memory? Storage time on Monday
  • W1PO Reads the past week's data from, and calculates the weekly average from the next K data read. This average value can be obtained by simple average calculation or weighted average calculation as needed, and the calculation result becomes the average value of the noise component in the past week. Next, a standard value is read from the second memory 7 , and an average value is added to the standard value to obtain a reference value for determining a fire in that time zone.
  • step S / of step / CPU i "stores the above-mentioned reference value obtained in step s? Of the previous step into memory s as a new reference value and stores the same as the new reference value.
  • step s J Operate in such a loop ⁇ o
  • This fire detector stops when the power supply from the power supply line or the signal / power supply line stops, and the CPU stops operating.
  • the first value stored in the memory S as the reference value is the standard value (for example, / 0 ⁇ ) which is the fire detection level when the noise is.
  • an initial setting value for example, / 3 ⁇
  • this initial setting value may be stored in the J-th memory.
  • the sensor section / is a temperature sensor, for example, 70 is set as the initial set value.
  • C for example, i "c can be selected as a standard value.
  • the data storage time and the reference value change time are the same as ⁇
  • average values include simple averages and weighted averages.
  • the average value may be calculated from data excluding the minimum and maximum values from the accumulated data for calculating the average value, or the simple average or weighted average value is obtained by subtracting the minimum value from the maximum value.
  • the value may be an average value by adding a value twice as much as the value.It is a constant.) ⁇
  • Fig. 2 is a block diagram of another embodiment.
  • the CPU sequentially switches the input of the multiplexer / ⁇ , and converts this analog signal to a digital signal by the ⁇ -D converter J
  • the unit reads the output from the sensor unit /
  • the output of the section / end is amplified through an amplifier and is
  • the analog signal is converted to a digital signal by the A-D converter J via the multiplexer / that switches the set value of.
  • a conversion end signal is output to the CPU.
  • C receives the digital signal of A-D converter J as data and puts it into memory RAM for temporary storage.
  • the CPU is RAM / RAM? Use / 0 memory of / and / ROM /.
  • the CPU reads the current time and day of the week from the clock section, and reads data as data from the address corresponding to the current time and day of the memory HAM for accumulated data. If there is no accumulated data in the data, set the initial reference value more digitally. Send it as a signal to the rater /.
  • the data // is given as a signal from the CPU to the digital data converter 0 data / 2.
  • Output of the converter for also maintaining a constant value while processing the C PU are latches, it compares the magnitude of the digital data le co down Ha 0 Correlator / Interview number here.
  • A If the data of the D converter J is larger than the data calculated by CP //, the output of the digital controller I «2 is higher than the output of H.
  • the level becomes L, whereby the latch circuit / J operates and holds the level L.
  • the latch circuit / J can be considered as a switching circuit, and the buzzer / can be considered as a receiver. In this case, the buzzer / 1 sounds and the abnormality is notified.
  • CPTJ determines whether or not it is the time to aggregate the data in the time zone, and if it is the aggregation time, averages the data in RAM?
  • the data 7 is read, and the data at a predetermined address in the RAM containing the past accumulated data corresponding to the current day of the week and the time is read, and the data s and the data 7 are read as, for example, /: «Perform weighted averaging at a rate of 2 and store as new accumulated data in the corresponding address of RAMf only if this result does not exceed the lower limit set value stored in RAM J o Exceeded If you have
  • FIG. 2 shows the memory map of CPTJ in Figure 1.
  • Fig. 5 shows the main flow chart of the software used.
  • Figures a to g show the subroutine flowchart.
  • Figure a shows an example of an initial setting program
  • Figure 3 ⁇ 4 shows an example of a sensor input reading program
  • Figure c shows an example of a time reading program
  • Figure d shows an example of a time reading program.
  • Figure e is an example of a fire operation program
  • Figure e is an example of a fire recovery program
  • Figure f is an example of a setting sensitivity calculation program
  • Figure g is an example of a past cumulative data rewriting program.
  • Fig. 3 shows an example of the lapse of time at the set level
  • Fig. 3A shows the conventional sensor
  • Fig. 4 shows the case of the embodiment shown in Fig.
  • the past accumulated data of the installed environmental noise is stored, and the current setting sensitivity is determined based on the stored cumulative noise. If the noise level is high, the sensitivity is reduced if the noise level is high, and the sensitivity is increased if the noise level is low. In this way, appropriate fire detection sensitivity can always be maintained.
  • Fig. 2 is a flowchart for explaining the operation of Fig. / Fig. J is a block diagram of Fig. memory ? Is a simplified diagram showing the storage location of the storage device, Fig. Is a configuration diagram of another embodiment, Fig. Is a memory map of C ⁇ in Fig., And Fig. Is a main software used.
  • off b featurization tray, Fig. 7 a ⁇ g are each subroutine full b featurization tray, the ⁇ Figure a, b the time set level in the invention of the prior art and this ⁇
  • ⁇ ⁇ O is a diagram showing an example
  • / is the sensor section
  • ⁇ 2 is the sample hold circuit
  • Is A-D converter is ⁇ meter, is CPU, PU, 7 are ROM
  • Rater / J latch, RAM / ⁇ RAM9, R0M / memory.

Landscapes

  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Fire Alarms (AREA)
  • Fire-Detection Mechanisms (AREA)

Abstract

A fire sensor apparatus is provided with a fire sensor which has a built-in microcomputer and in which fire detection levels can be varied according to changes in environmental conditions (noise level) in the area in which it is installed. A signal from a sensor (1) is digitized in an A-D converter (3) and is input to a comparator (12). A CPU (5) determines the current time from a clock (4) and removes from a memory accumulated data on operating leveland noise level at the corresponding time in the past. The CPU (5) sets an operating level for the time concerned by executing a predetermined calculation, and compares this operating level with the signal from the sensor (1). An abnormal state is indicated at (14) or the accumulated data is renewed, according to the result of the comparison. Thus it is possible to set an appropriate operating level according to changes in noise level, and fire detection can be effected with a suitable detection sensitivity.

Description

明 細 書  Specification
火災感知装置 Fire detector
この発明は火災感知装置に係り特に火災感知器にマ ィ ク 口 コ ン ピュータを内蔵させて設置場所の環境条件 の変化に対応して火災検出 レベルが変化 し常に適切な 火災検出感度で火災を検出でき るよ うに したものであ o 火災感知器が設置される場所の環境条件は時間帯、 曜 日あるいは季節によって異なる。 これを或る事務所 の部屋で考えてみる と、 日 中は人の出入りがあって室 内には塵埃が浮遊 しているのに対 し、 夜間は人が不在 であるので室内には塵埃はほとんど浮遊していない し、 同 じ一日でも 出勤、 退社、 昼食時等人の出入り の多い 時間はそれ以外の時間に比べて当然浮遊-塵埃の量もよ り多 く なる 。 また、 月曜 日から土曜 日に至る勤務時間 帯は通勤領域では浮遊塵埃が多 く 存在するのに対 し、 日曜日は行楽地を除いて人の出入りが少ないので浮遊 塵埃の量は大幅に減少する 。 このよ う な通勤領域の場 所に従来のよ う に例えば / 0 の煙濃度で動作する ィ オ ン化式あるいは散乱光式などの煙式火災感知器を設 置する と、 こ の火災感知器は夜間あるいは 日 曜 日には 浮遊塵埃がほとんど存在 しないのでほぼ / 0 の濃度 の煙で動作するのに対 し、 月曜 日から土曜 日にかけて 一 OMPI の 日中では浮遊廛埃が大量に存在し、 この浮遊廛埃の 量は数 の煙濃度に相当するので、 火災感知器は / りThe present invention relates to a fire detection device, in particular, a fire detection computer having a built-in computer for a fire mouth, and a fire detection level changes in response to a change in environmental conditions at an installation site, and a fire is always detected with an appropriate fire detection sensitivity. O The environmental conditions of the place where the fire detector is installed vary depending on time of day, day of the week or season. Considering this in a room in an office, when people enter and leave during the day and dust floats in the room, there is no person at night, so there is no dust inside the room. It is hardly floating, and even during the same day, the amount of floating-dust is naturally higher in times of high traffic such as going to work, leaving the office, and lunch than at other times. Also, during the working hours from Monday to Saturday, there is a lot of suspended dust in the commuting area, but on Sundays the amount of suspended dust is greatly reduced because there are few people entering and leaving the resort area. . If a smoke type fire detector such as an ionization type or a scattered light type operating at a smoke density of / 0 is installed in a place in such a commuting area as in the past, this fire detection is performed. The vessel operates almost smokeless at / 0 concentration because there is almost no airborne dust at night or on Sundays, whereas one OMPI runs from Monday to Saturday. In the daytime, a large amount of floating dust is present, and the amount of this floating dust corresponds to a number of smoke concentrations.
^ —数 の濃度の煙で実際に動作する こ ととなり 、 日 US 中と夜間とでは火災感知器が動作する煙濃度が異なる こ と となる 。 ^ —It will actually operate with smoke of a certain concentration, and the smoke concentration at which the fire detector operates will differ between during the day and at night.
また室温を季節的に考える と、 夏期では 日 中は冷房 装置の運転で室温は °C前後であるのに対し、 夜間 には冷房装置が停止され室温は 3 0 °C前後に高ま り 、 冬期では 日 中は暖房装置の運転で室温は 0 °C前後で あるのに対し、 夜間には暖房装置の停止によ り ク で近 く まで低下する。 このよ うな室に 7 ク 。 Cで動作する定 温式火災感知器を設置した場合、 この火災感知器が動 作する までに夏期の夜間では室温が 0 で前後上昇す ればよいのに対し、 冬—期の夜間では Ί 0 °C前後の上昇 を要する。  Considering the room temperature seasonally, in summer, the air conditioner operates during the daytime and the room temperature is around ° C, but at night the air conditioner is stopped and the room temperature rises to around 30 ° C. In winter, the room temperature is around 0 ° C due to the operation of the heating system in the daytime, but it drops to a low level at night due to the shutdown of the heating system. 7 to such a room. If a constant-temperature fire detector operating at C is installed, the room temperature should rise and fall around 0 during the summer nights before the fire detector operates, while Ί during the winter-season. Requires a rise of around 0 ° C.
このよ う に、 従来の火災検出感度が固定されている 火災感知器は、 その設置場所の時間帯、 曜日、 季節に よって変化する環境条件のため、 その相対的な火災検 出感度は時々刻々変化し常に一定の感度で火災を検 ffi する ことができず、 その結杲、 誤報や遅報あるいは失 報を生じる こ ととなる。 なお、 煙や熱以外の火災時に 生じる光やガスなどを捕捉する火災感知器についても 同様である 。 又従来の火災感知器では 《 乃至 J程度の 測定レ ベルをも ち切換え使用する ものもあるが、 この 場合受信機にタ イ マ装置をつけておいて例えば日 中  In this way, conventional fire detectors with fixed fire detection sensitivity have a relative fire detection sensitivity that varies from time to time due to environmental conditions that change depending on the time zone, day of the week, and season of the installation location. It changes and it is not always possible to detect fires with a certain sensitivity, which may result in false alarms, late reports or unreported reports. The same applies to fire detectors that capture light, gas, and the like generated during a fire other than smoke and heat. Also, some conventional fire detectors have a measurement level of 乃至 to J and are used for switching. In this case, attach a timer device to the receiver, for example, during the daytime.
_ Οί¾ΡΙ 夜間のよ う に予めスケジュールされた時間帯にあわせ ておき、 受信機からの指令信号によ り 感度を 自動的に 切り換えて常に同 じ感度をもたせよ う とする ものもあ るが、 火災感知器の設置される環境は種々雑多で予め 感度を設定 してもその感度 レベルが最良とはかならず しもならず、 設置場所の使用 目的の変更や室の区隔の 変更等或は季節等環境の大きな変化が行われれば、 そ のつど感度 レベル の設定の修正を行う等問題は非常に 多い。 このよ う な点を考慮 して、 この発明は、 設置場 所の環境条件の変化に対応 して C P Uで計算して火災検 出 レベルが変化 し、 常に適切な火災検出感度で火災を 検出でき る火災感知装置をえよ う とする ものである。 _ Οί¾ΡΙ In some cases, such as at night, the sensitivity is automatically switched by a command signal from the receiver so that the same sensitivity is always obtained, but the same level of sensitivity is always set. The environment in which the equipment is installed is various, and even if the sensitivity is set in advance, the sensitivity level may not always be the best, such as changing the use purpose of the installation location, changing the partition of the room, or the seasonal environment. If a large change is made, there are many problems such as correcting the setting of the sensitivity level each time. In view of these points, the present invention calculates the CPU in response to changes in the environmental conditions at the installation site, changes the fire detection level, and can always detect fire with appropriate fire detection sensitivity. The aim is to obtain a fire detection device that can be used.
このため、 この発明の火災感知装置は マイ ク ロ コ ン ピュー タを内蔵 し、 このマイ ク ロ コ ン ピュータ によつ て定期的にノ ィ ズ成分である火災現象に類似 した現象 の物理量を測定 して累積データ と して記憶.し、 この過 去の記憶データ にも とづいて時間帯別あるいは曜 日の 時間帯別に現在の予想される環境ノ イ ズ量、 例えば、 ノ イ ズ成分の平均を求め、 このノ イ ズ成分の平均値に 見合う設定感度を決定 して時間帯別に火災検出 レベル を変化させ、 火災検出感度の変動をな く すよ う に した ものであ る 。  For this reason, the fire detection device of the present invention has a built-in micro computer, and the micro computer periodically detects the physical quantity of a phenomenon similar to a fire phenomenon which is a noise component. Measured and stored as cumulative data, and based on the past stored data, the current expected environmental noise amount, for example, noise component, for each time zone or day time zone In this method, the sensitivity is determined to match the average value of this noise component, and the fire detection level is changed for each time zone so as to eliminate fluctuations in the fire detection sensitivity.
次にこの発明を図の実施例について具体的に説明す る o  Next, the present invention will be specifically described with reference to the embodiment shown in the drawings.
先ず第 / 図はこの発明の火災感知器の基本的な構成 を示すプロ ッ ク 図で火災感知器そのものの構成につい ては既に市販のものを任意に使用できる で図では省 略しそのセ ン サ部 / ならびに出力を適宜増幅する増幅 器パを記載するものとする 。 図で / は熱、 煙、 光ある いはガスなどの火災現象或は火災現象と類似の温度変 化ゃ廛埃変化を検出 してアナロ グ出力を生じるセ ン サ 部、 バはセ ン サの出力を適宜増幅する増幅器、 =2は増 幅器 の出力値であるアナ ロ グ出力を所定時間間隔毎、 例えば 《2秒毎にサ ン プルホール ドするサ ンプルホ一ノレ ド回路、 J はサン プルホ ール ド したアナ ロ グ信号をデ ジタ ル信号に変換して C P U に読みと らせる A — D変 換器、 は時計部、 ^はマ イ ク ロ コ ン ピュータの心臓 部である C P U、 έ 〜 ?は第 / 〜第 メ モ リ 、 / は First, Fig. 1 shows the basic configuration of the fire detector of the present invention. Since the configuration of the fire detector itself can be used arbitrarily in the block diagram, it can be used arbitrarily, so it is omitted in the figure, and the sensor part / and the amplifier for amplifying the output appropriately are described. To In the figure, / is a sensor that generates analog output by detecting a fire phenomenon such as heat, smoke, light or gas, or a change in temperature change dust similar to a fire phenomenon. = 2 is an amplifier that amplifies the output of the amplifier appropriately, = 2 is a sample-hold circuit that samples and holds the analog output, which is the output value of the amplifier, at predetermined time intervals, for example, << every 2 seconds. The A-to-D converter, which converts a pull-hold analog signal into a digital signal and reads it to the CPU, is the clock section, and ^ is the CPU, which is the heart of the micro computer. , Έ ~? Is the / / ~ memory, / is
C P U jr よりの制御によ り火災信号を出力する信号送出 回路である 。 こ こ で一実施例と しての つの メ モ リ の 割り 当てについて説明する と第 / メ モ リ と第 メ モ リ は R O Mで構成 し、 第 / メ モ リ には制御プロ グラ ムを記憶させ、 第 《2 メ モ リ 7にはノ イ ズ成分が存在し ない時の火災判別 レべルっま り ス タ ー ト 時の仮の基準 レベルを標準値と して記憶させる とと もにデータ記憶 時刻や基準値変更時刻を記憶させる ものとする 。 又第 This is a signal sending circuit that outputs a fire signal under the control of CPUjr. Here, the assignment of one memory as one embodiment will be described. The first memory and the second memory are configured by ROM, and the control program is stored in the first memory. In the second 《2 memory 7, the fire discrimination level when no noise component is present is stored.The temporary reference level at the start is stored as the standard value. The data storage time and the reference value change time are stored in the memory. Again
メ モ リ f と第 メ モ リ とは R A Mで構成し夫々 一時 的なス ト ア用メ モ リ と して用い、 第 J メモ リ S は火災 判別 レベルである基準値格納用メ モ リ と して用い、 第 メ モ リ ヲ は第 J 図で夫々の格納位置を示すよ うに曙  The memory f and the memory No. are composed of RAM and used as temporary storage memory, respectively, and the memory J is the memory for storing the reference value which is the fire discrimination level. The memory is shown in Fig.
レ Ά OY.PI 日別、 時間別のデータ格納用 メ モ リ と して使用する も のとする。 レ Ά OY.PI It shall be used as a memory for storing data by day and hour.
次に、 第 =2 図は第 / 図の動作説明を示すフ ロ ー チ ヤ ー ト で、 火災感知器に電源線あるいは信号兼電源線を 通 じて受信機や中継器などから電源電圧が供給される と、 マイ ク ロ コ ン ピュータを内蔵する火災感知器はそ の機能を開始する。  Next, Fig. 2 is a flow chart showing the operation explanation of Fig. 2 and the power supply voltage from the receiver or repeater through the power line or signal / power line to the fire detector. When supplied, the fire detector with the built-in micro computer starts its function.
CPU は第 / メ モ リ の制御プ ロ グ ラ ムによ り第 《2 図のステップで動作を開始する もので、 CPUi" は第 / のス テ ッ プ s / で、 第 J メ モ リ と第 メ モ リ ヲ の内 容をク リ ァする と と も に、 CPU 内の レ ジ ス タなどの 初期値を設定する 。  The CPU starts its operation in the steps shown in Fig. 2 under the control program of the / th memory, and CPUi "is the / th step s / and the Jth memory. And the contents of the second memory, and set the initial values of the registers in the CPU.
次に、 第 =2のス テ ッ プ S «2 で、 第 《2 メ モ リ 7から標 準値を読み出 し、 こ の標準値を基準値用の第 ^ メ モ リ に格納 して基準値にする 。 これによ り火災感知器の 初期の基準値つま り初期の火災検出 レベルが定ま る 。 なお、 こ の火災感知器が煙式でそのセ ン サ部 / がィ ォ ン化式あるいは散乱光式で構成されている場合には、 例えば塵埃が ク の状態で煙が / 0 となった時に火 災感知器が火災と判断するよ う に標準値は、 / ^ に 設定されている o Next, in step S «2 of the second = 2, the standard value is read from the second << 7 memory, and this standard value is stored in the ^ th memory for the standard value. Set to the reference value. As a result, the initial reference value of the fire detector, that is, the initial fire detection level is determined. If this fire detector is a smoke type and the sensor part / is an ionization type or a scattered light type, for example, the smoke becomes / 0 when dust is in the air. The standard value is set to / ^ so that the fire detector sometimes determines a fire o
更に 、 第 >? の ス テ ッ プ S J で、 CPU は セ ン サ / の 出力データの読込を行な う もので、 このため CPU は サ ン プル ホ ール ド回路 《2 に保持命令を出力 し、 サ ン プ ノレホ ール ド回路 =2 は こ の保持命令によ り セ ン サ部 / の
Figure imgf000007_0001
出力をサンプ リ ングしてホール ドし、 ホール ドが完了 する と保持信号を CPひ に出力する。 ついで、 CPUir は A —!)変換器 J に変換命令を出力 し、 これによ り A — D変換器 J は、 サンプルホーノレ ド回路 。2 がホー ル ド しているセ ン サ部 / のアナロ グ出力信号をデジ タ ル信 号に変換し、 変換が終了する と CPU に変換終了信号 を出力する。 変換終了信号の入力によ り CPU は A - D 変換器 Jからデジ タル信号に変換されたセ ン サ部 / の 出力データを読込む。 '
Further, in step SJ of the?>, The CPU reads the output data of the sensor /, so that the CPU outputs the holding instruction to the sample hold circuit << 2. In addition, the sample hold circuit = 2 is supplied to the sensor section /
Figure imgf000007_0001
The output is sampled and held, and when the hold is completed, a hold signal is output to CP. CPUir is A-! ) A conversion instruction is output to the converter J, whereby the A-D converter J is a sample horned circuit. 2 converts the analog output signal of the sensor unit / that is held to a digital signal, and outputs a conversion end signal to the CPU when the conversion is completed. By the input of the conversion end signal, the CPU reads the output data of the sensor unit / converted from the AD converter J to the digital signal. '
更に進んで第 のステップ S で、 CPU は第 J メ モ リ よ り基準値を読込み、 この基準値と先の第 J の ステップ S で読込んだ出力データ との比較を行ない 火災かどうかを判断し、 デー タ≥基準値であれば火災 状態と して第 ^のス テ ッ プ s に移行し、 データ く基 準値であれば正常状態と判断して第 έ のステッ プ S έ に移行する。 .  Further, in the first step S, the CPU reads the reference value from the J-th memory, compares the reference value with the output data read in the previous J-th step S, and determines whether it is a fire. If the data is equal to or greater than the reference value, it is determined that a fire has occurred and the process proceeds to step ^ s, and if the data is a reference value, the status is determined to be normal and the process proceeds to step S *. I do. .
か く て第 のステップに移行する場合は CPひ は信 号送出回路 / ク に火災信号送出命令を出力 し、 信号送 出回路 / ク は火災信号を受信機や中継器などに出力す る ο  Thus, when going to the first step, the CP or the signal transmission circuit / h outputs a fire signal transmission command to the signal transmission circuit / h, and the signal transmission circuit / h outputs the fire signal to the receiver or repeater, etc.ο
又第 のス テ ッ プ S έ に移行する場合は、 CPU は 時計部 よ り 曜日、 時刻等を読込み、 その時刻が第。2 メ モ リ 7 に記憶されているデータ記憶時刻と一致する か否か.を判別する 。 たまたまその時刻と一致すれば第 7 のス テ ッ プ S 7 で、 C P ϋ は第 έ の ス テ ッ プ S で When shifting to the first step S έ, the CPU reads the day of the week, time, etc. from the clock section, and the time is set to the second. 2 It is determined whether or not it matches the data storage time stored in the memory 7 . Happened nest STEP S 7 of the seventh if they match and that time, CP ϋ is a scan STEP S of the έ
- OMPI - 読込んだ曜 日ならびに時刻のデータによ り 、 第 の ス テツプ S J で読込んだセ ンサ部 / の出力データを第 メ モ リ ヲ の所定位置に格納する 。 なお第 メ モ リ ? へ の記憶例は第 J 図に示す通り で、 この第 メ モ リ ? は 各曜 日 の =2 時間毎に 週間分のデータが格納でき るよ うに構成されていて、 現時点が月曜 日の J 時である と する と、 セ ン サ部 / のデー タは月曜 日 の J 時の記憶領 域の / 週目の部分に格納され、 この時にこ の記憶領域 の / 週目から 週目 まで全部がう まっている と 週目 のデータが、 ク リ アされて /週目力 ら J 週目 のデータ が / 週すっシ フ ト され最新データが / 週.目の部分に格 納されてデータの更新が行なわれる。 -OMPI- The output data of the sensor unit read in the first step SJ is stored at a predetermined position in the memory に よ based on the read day and time data. Note that it is the first memory? An example of storage in the memory is as shown in Fig. J. Is configured to be able to store weekly data every 2 hours on each day of the week, and if the current time is Monday at J hour, the data in the sensor section / It is stored in the / week part of the storage area at the time of J, and if all of this storage area from / week to week is filled at this time, the data of the week is cleared / weekly. The data for week J from the eyesight is shifted to / week, and the latest data is stored in / wk. The data is updated.
引 き読き第 のステッ プ S で、 C P U は時計部 から曜 日 、 時刻を読み込み、 その時刻が第 《2 メ モ リ 7 に記憶されている基準値変更時刻に達 しているか否か を判別する 。 なお第 =2 メ モ リ 7 には基準値変更時刻と して例.えば =2 時間毎の偶数時刻が記憶されている 。 つ ま り感度の切換えを偶数時間で行い ^ 〜 時は / 時の データをも とに して計算 し、 〜 時は J 時のデー タ をも とに して計算している 。  In the reading step S, the CPU reads the day and time from the clock section, and determines whether or not the time has reached the reference value change time stored in the second memory 7. Judge. In the second memory 7, for example, an even number time every two hours is stored as the reference value change time. In other words, the sensitivity is switched in an even number of hours, and ^ ~ is calculated based on the data at / hour, and ~ ~ is calculated based on the data at J hour.
か く て基準値変更時刻に達 していれば第 テ の ステ ツ プ S ヲ で、 C Ρ ϋ は第 のステップ S f で読込んだ曜 日、 時刻に対応する過去の累積データを第 メ モ リ ? から読出 し新しい基準値を計算する 。 例えば月 曜 日 の 時であれば第 メ モ リ ? の月 曜 日の 時の記憶領域  Thus, if the reference value change time has been reached, in step S テ, C Ρ C stores the past accumulated data corresponding to the day and time read in step S f in step ヲ. Mori? Read from and calculate a new reference value. For example, if it's Monday, is it the second memory? Storage time on Monday
Ο ΡΓ Ο ΡΓ
W1PO , から過去の 週間分のデータを読出 し、 次に読 Kした 週間分のデータから 週間の平均値を計算する。 こ の平均値は必要に応 じ単純平均計算や加重平均計算で 求める こ とができ、 この計算結果が過去 週間のノィ ズ成分の平均値となる 。 次に第 =2 メ モ リ 7 より標準値 を読込み、 この標準値に平均値を加えてその時間帯の 火災を判別すべき基準値を求める。 W1PO, Reads the past week's data from, and calculates the weekly average from the next K data read. This average value can be obtained by simple average calculation or weighted average calculation as needed, and the calculation result becomes the average value of the noise component in the past week. Next, a standard value is read from the second memory 7 , and an average value is added to the standard value to obtain a reference value for determining a fire in that time zone.
最後に第 / ク のステッ プ S / で、 C P U i" は先の第 ヲ のステップ s ? で求めた前述の基準値を第 メ モ リ s に格鈉して新しい基準値と して先の第 ステップ s J にも ど してやる。 こ う い うループで作動させるの · o  Finally, in step S / of step /, CPU i "stores the above-mentioned reference value obtained in step s? Of the previous step into memory s as a new reference value and stores the same as the new reference value. Return to step s J. Operate in such a loop · o
なおこの火災感知器は、 電源線あるいは信号兼電源 線からの電源供給が停止した時には C P U が動作を停 止して機能が停止する 。  The function of this fire detector stops when the power supply from the power supply line or the signal / power supply line stops, and the CPU stops operating.
また前述の説明において、 基準値と して第 メ モ リ S に最初に格納する値をノ ィ ズ分が の時の火災検出 レベルである標準値 ( 例えば / 0 ^ ) と したが、 標準 値とは異なるあらかじめノ ィ ズ分を見込んだ初期設定 値 ( 例えば / 3. ^ ) を定めておき 、 こ の初期設定値を 第 J メ モ リ に格納するよ う に してもよい。 またセ ン サ部 /が温度センサである場合には、 初期設定値と し て例えば 7 0 。C 、 標準値と して例えば i" ク °cを選ぶこ とができ る。 In the above description, the first value stored in the memory S as the reference value is the standard value (for example, / 0 ^) which is the fire detection level when the noise is. Alternatively, an initial setting value (for example, / 3 ^) that anticipates noise may be determined in advance, and this initial setting value may be stored in the J-th memory. When the sensor section / is a temperature sensor, for example, 70 is set as the initial set value. C, for example, i "c can be selected as a standard value.
又、 データの記憶時刻と基準値変更時刻は同時刻と ϋ The data storage time and the reference value change time are the same as 時刻
(3MPI しても よい o (3MPI O
更に、 平均値と しては、 単純平均、 加重平均のほか.  In addition, average values include simple averages and weighted averages.
平均値を求めるための累積データの う ち最小値と最大 値のデータを除外したデータによって平均値を求めて も よ く 、 また単純平均または加重平均の値に最大値か ら最小値を引いた値の 倍の値を加えて平均値と して もよい は定数で > ク ) ο 次に第 図は他の実施 例構成図で第 / 図相当部分は同一符号で示す ο この場 合火災感知器は電源が投入される と ROM/ に記憶され ている制御プ ロ グ ラ ムによ り動作を開始し、 まず火災 感知器と しての設定感度を RAMに記憶させる。 すなわ ち、 上限設定値、 初期基準設定値、 下限設定値は抵抗  The average value may be calculated from data excluding the minimum and maximum values from the accumulated data for calculating the average value, or the simple average or weighted average value is obtained by subtracting the minimum value from the maximum value. The value may be an average value by adding a value twice as much as the value.It is a constant.) Ο Next, Fig. 2 is a block diagram of another embodiment. When the power is turned on, the device starts operation by the control program stored in ROM /, and first stores the sensitivity set as a fire detector in RAM. That is, the upper limit set value, initial reference set value, and lower limit set value are
/ の分割電圧によって作られているため、 CPU は マルチプ レ ク サ / έ の入力を順次切換え、 このアナ 口 グ信号を Α — D変換器 J によってデジ タ ル信号に変換  Because of the divided voltage of /, the CPU sequentially switches the input of the multiplexer / έ, and converts this analog signal to a digital signal by the Α-D converter J
し各々 RAM/、 RAM»2、 RAM Jに記'慮させる 。  Make RAM /, RAM »2, and RAM J each take note.
又、 過去の累積データが入っている RAM の記憶内 容をすべてク リ ア し過去の累積データの最大値、 最小  Also clears all the memory contents of the RAM containing the past accumulated data, and sets the maximum and minimum values of the past accumulated data.
値並びに平均値の入ってい る RAM 、 RAM 、 Ι ΑΜάの記 憶内容も ク リ アする 。 Also clear the RAM containing the value and the average value, the RAM, and the contents of the memory.
これらのメ モ リ のセ ッ ト と ク リ アが終了 したら感知  Detected when these memories have been set and cleared.
器は所定のィ ン タ ーパルでセ ン サ部 / よ りの出力読み The unit reads the output from the sensor unit /
取りを開始するのである。 更に説明を続ける と セ ン サ Start picking. To continue the explanation, the sensor
部 / よ りの出力は増幅器を通 して増幅されサ ン プルホ The output of the section / end is amplified through an amplifier and is
一ル ド回路 =2 で出力値が保持される 。 この出力を前述 The output value is held when one circuit = 2. This output is
' ' ^ ijj . 0 . の設定値を切換えるマルチプレクサ / を介して A — D変換器 J によ り アナ ロ グ信号からデジ タル信号に変 換する 。 変換が終了したら C PU に変換終了信号を出 す。 C は A — D変換器 J のデジ タル信号をデータ と して受け取り 、 一時保存用のメ モ リ RAM ? に入れる。 尚、 この場合は C PU は RAM / 〜 RAM? の RAM ?個と /個の ROM / の / 0 メ モ リ を使う ものとする 。 C PU は現時刻、 曜日を時計部 から読み取り、 累 データ 用の メ モ リ HAM の現時刻、 曜 日 に対応する ァ ド レス よりデータをデータ と して読み取る。 データ に累 積データのない場合は よ り初期基準設定値をデ ジ タ ル コ ンハ。 レ ータ / へ信号と して送る 。 データ f に累積データがある場合、 RAM / 、 RAM J より勣作レ ベルの上限値、 下限値を各々データ / 、 データ J と し て読み取る 。 また、 RAM 、 RAM よ り環境のノ イ ズ レベルの最大値と最小値を各々データ 、 データ と して読み取る 。 そ してデータ 二データ の場合は '' ^ ijj. 0. The analog signal is converted to a digital signal by the A-D converter J via the multiplexer / that switches the set value of. When conversion is completed, a conversion end signal is output to the CPU. C receives the digital signal of A-D converter J as data and puts it into memory RAM for temporary storage. In this case, the CPU is RAM / RAM? Use / 0 memory of / and / ROM /. The CPU reads the current time and day of the week from the clock section, and reads data as data from the address corresponding to the current time and day of the memory HAM for accumulated data. If there is no accumulated data in the data, set the initial reference value more digitally. Send it as a signal to the rater /. If data f has accumulated data, the upper and lower limits of the operation level are read as data / and data J from RAM / and RAM J, respectively. The maximum value and the minimum value of the noise level of the environment are read as data and data from the RAM. And in the case of data two data
よ り初期基準設定値をデジ タルコ ンパ レータ  Digital comparator
/ へ信号と して送る 。 またデータ デー タ の場 合は、 まず累積した環境ノ イ ズの最大値 ( データ ) と最小値 ( デー タ ) とによる最大ノ イ ズ幅に対する 動作レベルの上限値 ( データ / ) と下限値 (データ ) とによって決まる動作レべル—許容幅との比を Send to / as a signal. In the case of data, first, the upper limit (data /) and lower limit (data /) of the maximum noise width based on the maximum (data) and minimum (data) of the accumulated environmental noise. Data) and the ratio of the operating level to the allowable width
',デ一 々 / —デー ハ  ', One by one
( 、ー 」 A により計算する 。 この結果を データ / 0 とする 。 次に RAM«2、 RAM よ り初期基準設 (Calculate using A, A. The result is assumed to be data / 0. Next, RAM «2, initial setting from RAM
O PI 定値と過去累積データの平均値を各々デー タ とデー タ と して読み取り 、 データ 。2 + ^ Xデータ / X (データ 一データ )の計算式で現在の設定動作レ.ベルを求める。 この結果をデータ , / とする 。 なお ?は定数(クく ) である。 これによ り過去の累積データよ り予想される 環境ノ ィ ズによって現在の動作レ ベルが得られる 。 O PI The fixed value and the average value of the past accumulated data are read as data and data, respectively, and the data is read. Calculate the current setting operation level using the formula of 2 + ^ X data / X (data one data). The result is designated as data, /. Note that? Is a constant. As a result, the current operation level can be obtained by the environmental noise predicted from the past accumulated data.
そこで、 CPU よ りデータ / / をデジ タ ノレ コ ン ノヽ0 レ ータ / «2へ信号と して与える。 一方 A — !)変換器 の 出力は ラ ッ チされて C PU が処理 している間も一定値 を保持するため、 こ こ でデジ タ ル コ ン ハ0レータ / ュ 数の大小を比較する 。 A — D変換器 J のデー タの方が C Pひ よ りの計算出力であるデー タ / / よ り 大の場合、 デジ タ ノレ コ ン ノヾレータ I «2 の出力は レべノレ H よ り レべ ノレ L とな り 、 それによ り ラ ッチ回路 / J が働き.レ ベ ル Lを保持する 。 尚、 ラ ッチ回路 / J はス イ ッ チ ン グ回 路、 ブザー / は受信機と考えても よ く .、 こ こ では ブ ザ一 / を鳴ら してその異常を知らせる。 CPU はデ ジ タ ノレ コ ン ノヽ0 レ ー タ / <2 の出力力 S レべノレ H よ り レべノレ Lに変わったため、 動作レ ベルを超えたものと判断 し、 データの平均化や累積デー タ の処理は行なわないがセ ン サ部 / よ りのデータの読み取りは継続する。 リ セッ ト スイ ッチ RSW力 Sオ ンになる と ラ ッチ回路 / J を リ セ ッ ト してラ ッチを解除する 。 なお、 A — D変換器 の 出力が感度 レ ベル以下になる とデジ タ ノレ コ ン パ レー タ / <2 の出力は レベル Hに復帰するため、 0 Pひ は通常 の メ モ リ 内の処理を開始する。 Therefore, the data // is given as a signal from the CPU to the digital data converter 0 data / 2. On the other hand A! ) Output of the converter for also maintaining a constant value while processing the C PU are latches, it compares the magnitude of the digital data le co down Ha 0 Correlator / Interview number here. A — If the data of the D converter J is larger than the data calculated by CP //, the output of the digital controller I «2 is higher than the output of H. The level becomes L, whereby the latch circuit / J operates and holds the level L. The latch circuit / J can be considered as a switching circuit, and the buzzer / can be considered as a receiver. In this case, the buzzer / 1 sounds and the abnormality is notified. Since the CPU has changed from a digital output to a data 0 / output power of <2, the output level has changed from S level H to level L, it is judged that the operation level has been exceeded, and data averaging and Does not process accumulated data, but continues reading data from / to the sensor. Reset switch RSW force When S is turned on, reset the latch circuit / J and release the latch. Note that when the output of the A-D converter falls below the sensitivity level, the output of the digital / nanocomparator / <2 returns to level H. Starts processing in memory at.
デジ タル コ ン ノヽ。 レ ータ / ユカ レべノレ Hのまま変化な い場合、 CPTJ " は動作レベルに達していないと判断し, 現在のデータが入っている RAM? のデータを平垮甩メ モ リ である RAM 7 に入れ、 時計部 よ り も らつたデー タから C Uj- は時間帯のデータの集計をする時刻であ るかどうかを判断し、 集計時刻である と、 RAM? のデ ータを平均してデータ 7 と し、 現時点の曜日、 時刻に 相当する過去の累積データの入っている RAM の所定 のア ド レスのデー タを読み取り 、 こ のデ一 タ s と デー タ 7を例えば / : «2 の割合で加重平均を行い、 この結 杲が RAM J に記憶されている下限設定値を超えていな い場合のみ、 RAMf の該当するァ ド レスに新しい累積 データ と して記憶させる o 超えている場合は、  Digital connection. If the data remains unchanged, the CPTJ "determines that the operation level has not been reached, and replaces the data in the RAM? 7, and from the data received from the clock section, C Uj- determines whether or not it is the time to aggregate the data in the time zone, and if it is the aggregation time, averages the data in RAM? Then, the data 7 is read, and the data at a predetermined address in the RAM containing the past accumulated data corresponding to the current day of the week and the time is read, and the data s and the data 7 are read as, for example, /: «Perform weighted averaging at a rate of 2 and store as new accumulated data in the corresponding address of RAMf only if this result does not exceed the lower limit set value stored in RAM J o Exceeded If you have
のデータを記憶させる。 Is stored.
そして、 RAMS の全データを調べて、 最大値、 最小 値を RAM 、 RAM に各々記憶させる 。 尚、 ROM / は制 御プロ グラ ムや初期設定値、 データ集計時刻等を記憶 している 。 こ の様にすれば時間が経過するごとに過去 の累積データの内容が変わり 、 環境ノ イ ズの最大値、 最小値が変動するために感知器の設置されている環境 に応 じ、 曜日、 時間帯ごとに感度レ ベルを適切に変更 する こ とが可能となる 。 尚、 第 図は第 図における CPTJ の メ モ リ マップを示している。 又、 第 έ 図は使 用される ソ フ ト ウ ェアのメ イ ン フ ロ ーチャ ー ト 、 第 7  Then, all data in the RAMS are checked, and the maximum value and the minimum value are stored in the RAM and the RAM, respectively. The ROM / stores the control program, the initial set values, the data aggregation time, and the like. In this way, the content of the past accumulated data changes with the passage of time, and the maximum and minimum values of the environmental noise fluctuate, so that depending on the environment in which the sensor is installed, The sensitivity level can be appropriately changed for each time zone. Figure 2 shows the memory map of CPTJ in Figure 1. Fig. 5 shows the main flow chart of the software used.
O PIO PI
1PO 図 a 〜 gはサブルーチンのフ ロ ーチャー ト で、 同図 a は初期設定プロ グラ ム例、 図 ¾はセ ン サ入力読込プロ グラ ム例、 図 c は時刻読込プロ グラ ム例、 図 dは火災 動作プロ グラ ム例、 図 e は火災復旧プロ グラ ム例、 図 f は設定感度計算プロ グラ ム例、 図 gは過去累積デー タ書換えプロ グラ ム例である 。 最後に、 第 図は設定 レベルの時間経過例で図 aは従来感知器、 図 は第 図の実施例の場合を示している o 1PO Figures a to g show the subroutine flowchart. Figure a shows an example of an initial setting program, Figure ¾ shows an example of a sensor input reading program, Figure c shows an example of a time reading program, and Figure d shows an example of a time reading program. Figure e is an example of a fire operation program, Figure e is an example of a fire recovery program, Figure f is an example of a setting sensitivity calculation program, and Figure g is an example of a past cumulative data rewriting program. Finally, Fig. 3 shows an example of the lapse of time at the set level, Fig. 3A shows the conventional sensor, and Fig. 4 shows the case of the embodiment shown in Fig.
以上によ り この発明による火災感知器では設置され た環境ノ ィ ズの過去の累積データを記憶させておいて これにも とづいて現時点の設定感度を決定するので環 境ノ ィ ズが時刻によ り変動した場合、 ノ ィ ズレべルが 高ければ感度を鈍 く しノ イ ズレベルが低ければ感度を 高 く して自 己感度を自動調整するため季節や周囲温度 によ る影響を除去して常に適切な火災検出感度を維持 する こ とができ る 。  As described above, in the fire detector according to the present invention, the past accumulated data of the installed environmental noise is stored, and the current setting sensitivity is determined based on the stored cumulative noise. If the noise level is high, the sensitivity is reduced if the noise level is high, and the sensitivity is increased if the noise level is low. In this way, appropriate fire detection sensitivity can always be maintained.
図面の簡単な説明 BRIEF DESCRIPTION OF THE FIGURES
第 / 図は、 この発明の火災感知器の基本的な構成を 示すブロ ッ ク図、 第 》2 図は第 / 図の動作説明用 フ ロ ー チャー ト 、 第 J 図は第 / 図の第 メ モ リ ? の格納位置 を示す簡略図.、 第 図は他の実施例構成図、 第 図は 第 図における C Ρ ϋ のメ モ リ マップ、 第 図は使用 される ソ フ ト ウ ェ アの メ イ ン フ ロ ーチャー ト 例、 第 7 図 a 〜 gは夫々サブルーチン フ ロ ーチャー ト 例、 第 ^ 図 a, b は従来と こ の発明における設定 レベルの時間絰 Fig. / Fig. Is a block diagram showing the basic configuration of the fire detector of the present invention. Fig. 2 is a flowchart for explaining the operation of Fig. / Fig. J is a block diagram of Fig. memory ? Is a simplified diagram showing the storage location of the storage device, Fig. Is a configuration diagram of another embodiment, Fig. Is a memory map of C Ρ in Fig., And Fig. Is a main software used. off b featurization tray, Fig. 7 a ~ g are each subroutine full b featurization tray, the ^ Figure a, b the time set level in the invention of the prior art and this絰
Ο ΡΙ 過例を示す線図である o Ο ΡΙ O is a diagram showing an example;
図で / はセ ン サ部、 《2 はサ ン プルホール ド回路、 J  In the figure, / is the sensor section, 《2 is the sample hold circuit, J
は A — D変換器、 は^計部、 は C PU、 έ , 7 は ROM Is A-D converter, is ^ meter, is CPU, PU, 7 are ROM
S , ? は RAM、 / ク は信号送出回路、 / は分割電圧用 抵抗、 / はマルチプ レ ク サ、 / c2 はデジ タ ル コ ンノ、。  S,? Are RAM, / is signal transmission circuit, / is divided voltage resistor, / is multiplexer, / c2 is digital connector.
レー タ 、 / J ίま ラ ッチ、 RAM / 〜 RAM 9 、 R 0 M / ま メ モ リ 。 Rater, / J latch, RAM / ~ RAM9, R0M / memory.
― ΟΛ1ΡΪ 一― ΟΛ1ΡΪ ichi
、U , U

Claims

請 求 の 範 囲  The scope of the claims
/ 煙 * 熱 《 光等の火災現象の物理量をデジ タ ル電気 信号に変換する物理量測定手段と、 前記測定物理量を 記憶させる手段並びにこれによ り過去の累積データを 作成する手段と、 前記過去の累積データにも とづいて 現時点の設定感度を決定する手段と、 前記決定せる設 定感度と現在の入力 した物理量とを比較判別する手段 と、 前記比較判別 した結果によ り 出力する手段とを備 える こ とによ り設置場所の環境条件の変化に対応 して 火災検出 レベルが変化 し常に一定の火災感度で火災を 検出でき るよ うに したこ とを特徵とする火災感知装置。  / Smoke * heat << physical quantity measuring means for converting physical quantities of fire phenomena such as light into digital electric signals, means for storing the measured physical quantities, and means for creating past cumulative data using the same, and Means for determining the current setting sensitivity based on the accumulated data of the above, means for comparing and discriminating the setting sensitivity to be determined and the current input physical quantity, and means for outputting based on the result of the comparison discrimination. A fire detection device that features a fire detection level that changes in response to changes in the environmental conditions at the installation site, and that can always detect fire with constant fire sensitivity.
2. 測定物理量を記憶する手段は前記測定物理量を時 計部を介在させて曜日別、 時間別に情報と して読込む 手段を含む請求の範囲第 / 項記載の火災感知装置。  2. The fire detecting device according to claim 1, wherein the means for storing the measured physical quantity includes means for reading the measured physical quantity as information by day of the week and hour by means of a clock section.
«?· 過去の累積データ にも とづいて現時点の設定感度 を決定する手段は過去の累積データ よ り単純平均計算 や加重平均計算で平均値のよ う に現在の予想される環 境条件に従った物理量を求める手段を含む請求の範囲 第 /項記載の火災感知装置。  «? · The means of determining the current setting sensitivity based on past accumulated data is based on the current expected environmental conditions, such as the average value, based on simple average calculation or weighted average calculation based on past accumulated data. The fire detecting device according to claim 11, further comprising means for determining a physical quantity according to the fire detecting device.
V: 火災現象に類似した現象の測定物理量つま り ノ ィ ズ成分が存在しない時の火災判別 レ ベルを標準値と し、 又これに対し火災と判断する ノ ィ ズ成分の火災検出 レ ベルを基準値と して設定 し過去の累積データに も とづ く 時間帯別或いは曜 日の時間帯別に前記ノ ィ ズ成分の 平均値を求め、 前記標準値に前記ノ イ ズ成分の平均値 を加えてその時間帯の火災を判別すべき基準値と して 設定感度を決定する請求の範囲第 / 項或は第 J項のい ずれか記載の火災感知装置。 V: Measured physical quantity of a phenomenon similar to a fire phenomenon, that is, the fire discrimination level when no noise component is present as the standard value, and the fire detection level of the noise component that is judged to be a fire in contrast to this. Set as a reference value and calculate the average value of the noise component for each time zone or day time zone based on past accumulated data, and calculate the average value of the noise component as the standard value The fire detection device according to any one of claims / J or J, wherein the set sensitivity is determined as a reference value for judging a fire in the time zone by adding the following.
s. 過去の累積データにも とづいて ¾1時点の設定感度 を決定する手段は、 動作レベルの上限設定値と下限設 定値と上限 · 下限値間の基準設定値とを与える手段と, 環境ノィ ズの累積データ よ り累積データの最大値と最 小値並びに平均値を求める手段と、 前記各手段よ り得 られる上限設定値 A、 基準設定値 B、 下限設定値 C 、 累積データ最大値 D、 累積データ平均値 E 、 累積デー タ最小値 F並びに環境ノ ィ ズの累積データのう ち現時 点に対応する累積データ X とから 、  s. The means for determining the set sensitivity at 時点 1 based on the past accumulated data are the means for providing the upper limit set value and the lower limit set value of the operation level, the reference set value between the upper limit and the lower limit value, and the environmental noise. Means for calculating the maximum value, minimum value, and average value of the accumulated data from the accumulated data of the size, and the upper limit set value A, the reference set value B, the lower limit set value C, and the accumulated data maximum value D obtained by each of the above means. , The accumulated data average value E, the accumulated data minimum value F, and the accumulated data X corresponding to the current time among the accumulated data of the environmental noise.
B + ' ~ ) ( X - E ) (但し^は定数) の演算を行なって現時点の設定感度を求める手段とを 含む請求の範囲第 /項記載の火災感知装置 o B + '~) (X-E) (where ^ is a constant), and means for obtaining the current set sensitivity.
PCT/JP1984/000146 1983-03-31 1984-03-29 Fire sensor apparatus WO1984003976A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE8484901398T DE3484620D1 (en) 1983-03-31 1984-03-29 FIRE DETECTOR.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58053900A JPH0610837B2 (en) 1983-03-31 1983-03-31 Fire detector

Publications (1)

Publication Number Publication Date
WO1984003976A1 true WO1984003976A1 (en) 1984-10-11

Family

ID=12955591

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1984/000146 WO1984003976A1 (en) 1983-03-31 1984-03-29 Fire sensor apparatus

Country Status (4)

Country Link
EP (1) EP0148949B1 (en)
JP (1) JPH0610837B2 (en)
DE (1) DE3484620D1 (en)
WO (1) WO1984003976A1 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61109196A (en) * 1984-11-02 1986-05-27 ニツタン株式会社 Detector for disaster prevention
JPS62295199A (en) * 1986-06-13 1987-12-22 日本フエンオ−ル株式会社 Sensor
JPS63159484U (en) * 1987-04-03 1988-10-19
JPS647198A (en) * 1987-06-30 1989-01-11 Nittan Co Ltd Environmental abnormality warning device
JPH0195395A (en) * 1987-10-08 1989-04-13 Nohmi Bosai Kogyo Co Ltd Fire alarm system
JP2577009B2 (en) * 1987-10-22 1997-01-29 能美防災株式会社 Fire alarm
JP2690317B2 (en) * 1988-03-18 1997-12-10 能美防災株式会社 Fire alarm
JP2831655B2 (en) * 1988-07-14 1998-12-02 能美防災株式会社 Differential fire alarm
IT1237262B (en) * 1989-12-20 1993-05-27 Selenia Ind Elettroniche FIRE FIGHTING SYSTEM PREVALENTLY DESIGNED FOR THE PROTECTION OF FORESTS.
US5734335A (en) * 1989-12-20 1998-03-31 Finmeccanica S.P.A. Forest surveillance and monitoring system for the early detection and reporting of forest fires
FR2708121B1 (en) * 1993-07-21 1995-10-13 Sicli Automatismes Device for detecting a characteristic directly or indirectly linked to the fire.
US5868729A (en) * 1994-04-29 1999-02-09 Pelfrey; Robert J. Surgical prosthesis insertion device
JP3184429B2 (en) * 1995-06-30 2001-07-09 ホーチキ株式会社 Terminal sensing device for disaster prevention monitoring system
JP4676253B2 (en) * 2005-05-31 2011-04-27 理研計器株式会社 Gas detector
JP2012074086A (en) * 2012-01-16 2012-04-12 Osaka Gas Co Ltd Alarm device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50123299A (en) * 1974-03-15 1975-09-27
JPS56132690A (en) * 1980-03-19 1981-10-17 Hochiki Co Fire detector
JPS5927395A (en) * 1982-08-05 1984-02-13 ニツタン株式会社 Alarm

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS586996B2 (en) * 1977-02-15 1983-02-07 国際技術開発株式会社 Flame detection method
JPS5631625A (en) * 1979-08-24 1981-03-31 Hochiki Corp Smoke detector of photoelectronic type
JPS56133548A (en) * 1980-03-25 1981-10-19 Shigeo Kobayashi Fan device for air exhaust

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50123299A (en) * 1974-03-15 1975-09-27
JPS56132690A (en) * 1980-03-19 1981-10-17 Hochiki Co Fire detector
JPS5927395A (en) * 1982-08-05 1984-02-13 ニツタン株式会社 Alarm

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0148949A4 *

Also Published As

Publication number Publication date
EP0148949A1 (en) 1985-07-24
EP0148949A4 (en) 1988-02-23
DE3484620D1 (en) 1991-06-27
JPS59180694A (en) 1984-10-13
JPH0610837B2 (en) 1994-02-09
EP0148949B1 (en) 1991-05-22

Similar Documents

Publication Publication Date Title
WO1984003976A1 (en) Fire sensor apparatus
CA2262657C (en) Ventilation controlling apparatus
US8016205B2 (en) Thermostat with replaceable carbon monoxide sensor module
US10234388B2 (en) System for determining abnormality in a monitored area
US5155468A (en) Alarm condition detecting method and apparatus
US6526801B2 (en) Method of compensating for drift in gas sensing equipment
JPS61247918A (en) Output correcting device for analog sensor
US5347474A (en) Self-calibration of an NDIR gas sensor
JPH0441394B2 (en)
KR101466426B1 (en) Fire distinguishing device
JPH0573781A (en) Fire sensor
JP2507114B2 (en) Carbon dioxide concentration detector
JP2839407B2 (en) Carbon dioxide concentration detector
JP2565910B2 (en) Fire alarm
JP2622118B2 (en) Fire alarm
JPH09161169A (en) Fire alarm device
JPS6180498A (en) Automatic fire alam equipment
JP2566242B2 (en) Fire alarm
JP2566243B2 (en) Fire alarm
JPS63317899A (en) Fire alarm device
JP2505220B2 (en) Fire alarm
JP3168743B2 (en) Fire detection system
JPH0444795B2 (en)
JP2593170B2 (en) Fire alarm
JPH0224797A (en) Differential type fire alarm device

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 1984901398

Country of ref document: EP

AL Designated countries for regional patents

Designated state(s): BE CH DE FR GB

WWP Wipo information: published in national office

Ref document number: 1984901398

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1984901398

Country of ref document: EP