USH816H - Stibine filter and antimonial lead acid batteries - Google Patents

Stibine filter and antimonial lead acid batteries Download PDF

Info

Publication number
USH816H
USH816H US06/880,524 US88052486A USH816H US H816 H USH816 H US H816H US 88052486 A US88052486 A US 88052486A US H816 H USH816 H US H816H
Authority
US
United States
Prior art keywords
stibine
filter
acid batteries
activated charcoal
lead
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US06/880,524
Inventor
James H. Carder
Anh H. Le
Chester M. Dacres
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
US Department of Navy
Original Assignee
US Department of Navy
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by US Department of Navy filed Critical US Department of Navy
Priority to US06/880,524 priority Critical patent/USH816H/en
Assigned to UNITED STATES OF AMERICA, AS REPRESENTED BY THE SECRETARY OF THE NAVY, THE reassignment UNITED STATES OF AMERICA, AS REPRESENTED BY THE SECRETARY OF THE NAVY, THE ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: CARDER, JAMES H., DACRES, CHESTER M., LE, ANH H.
Application granted granted Critical
Publication of USH816H publication Critical patent/USH816H/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/52Removing gases inside the secondary cell, e.g. by absorption
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/308Detachable arrangements, e.g. detachable vent plugs or plug systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/383Flame arresting or ignition-preventing means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/394Gas-pervious parts or elements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • This invention relates to storage cells and more particularly to stibine filters antimonial lead acid storage cells.
  • stibine antimony hydride, SbH 3
  • Stibine is a very toxic antimony compound.
  • the physiological effect of stibine is similar to that of arsine (AsH 3 ) It attacks the central nervous systems and the red blood cells.
  • Symptoms of stibine poisoning are headache, weakness, slow respiration, and depressed body temperature and blood pressure. After absorption into the red blood cells, some of the antimony is transferred to the tissue of various organs. It is found that the antimony concentration is higher in the liver than other organs. As a result of this toxicity, National Institute for Occupational Safety and Health in 1976 established the limit for stibine at 0.1 ppm for an 8-hour exposure period.
  • Stibine removal would be particularly critical in submarines where large numbers of large, high capacity antimonial lead-acid batteries would be used in a closed environment. Only if effective means of stibine removal are provided can the advantages of the antimonial lead-acid cells be realized there.
  • Prior art methods of removing stibine from battery exhaust gases include the use of a granular bed of alumina or a mixture of alumina and lead dioxide on alumina (U.S. Pat. No. 3,102,059) heavy metal manganites (U.S. Pat. No. 4,048,387) and hot copper (U.S. Pat. No. 2,615,062). These methods are used to prevent stibine from poisoning catalysts used to recombine oxygen and hydrogen into water. They are used mainly in small storage batteries operating in open environments such as automobile batteries. These techniques do not provide the capacity or effectiveness which is needed for submarine batteries.
  • an object of this invention is to provide a more effective method of removing stibine from gases generated during the charging of antimonial lead-acid batteries.
  • Another object is to provide a new high capacity, long life method of filtering stibine from antimonial lead-acid battery vent gases.
  • a further object of this invention is to provide a easy method to maintain stibine filtering system for antimonial lead-acid batteries.
  • Still another object of this invention is to provide a stibine filtering system for antimonial lead-acid batteries which uses only common, inexpensive, chemically inert materials.
  • FIG. 1 is a vertical cross-sectional view of a stibine filter
  • FIG. 2 is a vertical cross-sectional view showing the position of the stibine filter in relation to the flash arrester and the battery casing;
  • FIG. 3 is a bar graph presenting comparative data on stibine content in gases generated in antimonial lead-acid batteries. FIG. 3 is discussed in the experimental section.
  • the stibine filter may comprise a circular cover 30 fitted onto a cylindrical outer casing 10 with a cylindrical partition or insert 16 defining a cylindrical lower, entry chamber 24, an annular transfer chamber 26, and upper, filtration chamber 28.
  • a cylindrical wall 18 forming the lowest portion of insert 16 separates the entry chamber 24 from the transfer chamber 26.
  • the remainder of insert 16 separates the filtration chamber 28 from the transfer chamber 26 and the entry chamber 24.
  • a plurality of holes 14 in the bottom of the outer casing 10 provide passages for the flow of gases evolved in the interior of the battery 42 into the entry chamber 24.
  • a plurality of holes 20 in the cylindrical wall 18 provide passages for the flow of gases from the entry chamber 24 into the annular transfer chamber 26.
  • a plurality of channels 22 provide means for the gases to flow from the annular transfer chamber 26 downward into the lower portion of the filtration chamber 28.
  • the filtration chamber 28 contains activated charcoal powder which removes the stibine from the gas mixture.
  • the channels 22 slant downward from the transfer chamber 26 to the filtration chamber 28 to prevent the activated charcoal from leaking out.
  • the stibine is removed as the gas mixture flows up through the activated charcoal in the filtration chamber 28.
  • the stibine free gases exit from the top of the filtration chamber 28 through a plurality of holes 32 in the cover 30.
  • the cover 30 has a recess 36 which contains a fiber glass matte 38 and a removable lid 34 which covers the recess 36.
  • threads 56 located on the outside of the bottom of the flash arrester 48 screw into corresponding threads 58 in a vent hole in the top of the battery case 60.
  • a plexiglass cover 50 is placed over the flash arrester 48 leaving a space 52 in between.
  • gases generated in the interior 42 of the battery pass through the filter (as shown in FIG. 1) and then through the flash arrester 48 and out of hole 62 in the top of the plexiglass cover 50 into the outer environment 44.
  • the active carbon powder is replaced. This can be done while the batteries remain in operation by using a spare flash arrester and filter.
  • the plexiglass cover 50 is removed.
  • the flash arrester 48 is then unscrewed (threads 56 and 58) and removed from the battery case 60.
  • the filter which is screwed (threads 12 and 54) into the flash arrester 48 also is removed.
  • the reverse procedure is used to install the replacement flash arrester and fresh filter.
  • the casing 10 of the used filter is unscrewed (threads 12 and 54) and removed from the flash arrester 48.
  • cover 30 is removed, exposing the filtration chamber 28 and the active charcoal powder it contains.
  • the activated charcoal powder may simply be replaced or the filter may be broken down further for cleaning.
  • Lid 34 may be removed from the cover 30, and insert 16 may be removed from the outer casing 10. After cleaning, reassembly, and refilling with fresh activated charcoal powder, the filter is screwed back into the flash arrester 48. The procedure is repeated to replace the next filter.
  • the filter parts are preferably made of polypropylene because it is strong, chemically inert, and easy to machine and process into the desired shapes. Other materials possessing these characteristics may also be used.
  • Carbon powders such as activated charcoal may be used.
  • the size of the carbon powder particles is not critical, however, the finer powders provide more surface area and therefore are more effective. Particle sizes of -14 mesh (less than 1.40 mm) are preferred, with -30 mesh (less than 0.600 mm) being more preferred and with -60 mesh (less than 0.250 mm) being still more preferred.
  • the cells were subjected to test regimes simulating battery use in submersible ship nuclear (SSN), submersible ship ballistic nuclear (SSBN), and ship nuclear (SN) applications.
  • SSN submersible ship nuclear
  • SSBN submersible ship ballistic nuclear
  • SN ship nuclear
  • FIG. 3 presents a summary of stibine measurements taken for each of the nine test cells during cycling. Each sample measured the stibine in gases generated in a cell for an approximately two hour period. For each of the nine test cells samples were taken in the interior of the cell (I), as the output of the flash arrester of the cell (F), and as the output of the cell with the flash arrester removed (NF). A solution of 0.1N AgNO 3 was used to trap the stibine. Gas analyses were performed by inductively coupled plasma (ICP) spectrometry. The limitation of this technique for stibine concentration was 0.1 mg per 100 ml solution or one part per million (PPM).
  • ICP inductively coupled plasma
  • the abscissa gives the test cycle during which a given two hour sampling was taken and the ordinate gives the concentration of the trapped stibine in mg/100 ml. Each 0.1 mg/100 ml corresponds to 1 ppm of stibine.
  • Standard life cycle tests were applied to cells of the same design as those used in the SSN, SSBN, and SN tests (Pb, 1.48 wt % Cd, 1.45 wt % Sb). Charcoal was used on the underside of the flash arrester of the circuit #4 (which has the highest cycle life) in an attempt to test its effectiveness in trapping stibine. Sixty (60) grams and one hundred twenty (120) grams of 30-mesh and 14-mesh charcoal respectively were found to be effective in filtering out the stibine for a period of five hours in the cell voltages of 2.35V and 2.55V.
  • Stibine diffuses through the flash arrester, absorbs onto the charcoal and decomposes into antimony and hydrogen. Spot test was performed on the activated charcoal showing the positive test for antimony. As the amount of stibine increases to the maximum of 90,000 ppm for eight (8) grams of 30-mesh charcoal, the surface of the activated charcoal will be saturated with antimony and will no longer be effective in absorbing stibine.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Secondary Cells (AREA)

Abstract

Stibine is removed from gases generated in antimonial lead-acid batteries by using a filter having carbon powder (especially activated charcoal) as the active agent.

Description

BACKGROUND OF THE INVENTION
This invention relates to storage cells and more particularly to stibine filters antimonial lead acid storage cells.
It has long been known that the addition of small amounts of antimony to lead produces lead electrode having greatly improved mechanical properties. This substantially increases the life of lead-acid batteries.
Unfortunately, stibine (antimony hydride, SbH3) can be generated in significant amounts in a lead-acid battery containing a lead-antimony alloy positive grid in over-charge conditions. Stibine is a very toxic antimony compound. The physiological effect of stibine is similar to that of arsine (AsH3) It attacks the central nervous systems and the red blood cells. Symptoms of stibine poisoning are headache, weakness, slow respiration, and depressed body temperature and blood pressure. After absorption into the red blood cells, some of the antimony is transferred to the tissue of various organs. It is found that the antimony concentration is higher in the liver than other organs. As a result of this toxicity, National Institute for Occupational Safety and Health in 1976 established the limit for stibine at 0.1 ppm for an 8-hour exposure period.
Stibine removal would be particularly critical in submarines where large numbers of large, high capacity antimonial lead-acid batteries would be used in a closed environment. Only if effective means of stibine removal are provided can the advantages of the antimonial lead-acid cells be realized there.
Prior art methods of removing stibine from battery exhaust gases include the use of a granular bed of alumina or a mixture of alumina and lead dioxide on alumina (U.S. Pat. No. 3,102,059) heavy metal manganites (U.S. Pat. No. 4,048,387) and hot copper (U.S. Pat. No. 2,615,062). These methods are used to prevent stibine from poisoning catalysts used to recombine oxygen and hydrogen into water. They are used mainly in small storage batteries operating in open environments such as automobile batteries. These techniques do not provide the capacity or effectiveness which is needed for submarine batteries.
It would be desirable to provide an effective, long life filter for removing stibine from gases generated in large antimonial lead-acid batteries. It would also be desirable at a low cost, easily handled, safe material be used as the filtering agent.
SUMMARY OF THE INVENTION
Accordingly, an object of this invention is to provide a more effective method of removing stibine from gases generated during the charging of antimonial lead-acid batteries.
Another object, is to provide a new high capacity, long life method of filtering stibine from antimonial lead-acid battery vent gases.
A further object of this invention is to provide a easy method to maintain stibine filtering system for antimonial lead-acid batteries.
Still another object of this invention is to provide a stibine filtering system for antimonial lead-acid batteries which uses only common, inexpensive, chemically inert materials.
These and other objects of this invention are provided by providing means for filtering gases generated in antimonial lead-acid batteries through carbon powder (e.g., activated charcoal).
BRIEF DESCRIPTION OF THE DRAWINGS
A more complete understanding of the invention and many of the attendant advantages thereof will be readily appreciated as the same becomes better understood by reference to the following detailed description when considered in connection with the accompanying drawings wherein:
FIG. 1 is a vertical cross-sectional view of a stibine filter;
FIG. 2 is a vertical cross-sectional view showing the position of the stibine filter in relation to the flash arrester and the battery casing; and
FIG. 3 is a bar graph presenting comparative data on stibine content in gases generated in antimonial lead-acid batteries. FIG. 3 is discussed in the experimental section.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT
Briefly, referring to FIG. 1, the stibine filter may comprise a circular cover 30 fitted onto a cylindrical outer casing 10 with a cylindrical partition or insert 16 defining a cylindrical lower, entry chamber 24, an annular transfer chamber 26, and upper, filtration chamber 28. A cylindrical wall 18 forming the lowest portion of insert 16 separates the entry chamber 24 from the transfer chamber 26. The remainder of insert 16 separates the filtration chamber 28 from the transfer chamber 26 and the entry chamber 24. A plurality of holes 14 in the bottom of the outer casing 10 provide passages for the flow of gases evolved in the interior of the battery 42 into the entry chamber 24. A plurality of holes 20 in the cylindrical wall 18 provide passages for the flow of gases from the entry chamber 24 into the annular transfer chamber 26. A plurality of channels 22 provide means for the gases to flow from the annular transfer chamber 26 downward into the lower portion of the filtration chamber 28. The filtration chamber 28 contains activated charcoal powder which removes the stibine from the gas mixture. The channels 22 slant downward from the transfer chamber 26 to the filtration chamber 28 to prevent the activated charcoal from leaking out. The stibine is removed as the gas mixture flows up through the activated charcoal in the filtration chamber 28. The stibine free gases exit from the top of the filtration chamber 28 through a plurality of holes 32 in the cover 30. As shown in FIG. 1, the cover 30 has a recess 36 which contains a fiber glass matte 38 and a removable lid 34 which covers the recess 36. After the treated gases exit through the holes 32 in the cover 30, they flow through the glass matte 38 and out of the recess 36 through a hole 40 in the lid 34 into the environment or next stage of treatment. Finally, screw threads 12 on the outside of casing 10 allow the filter to be fitted into flash arresters as shown in FIG. 2.
Referring to FIG. 2, threads 56 located on the outside of the bottom of the flash arrester 48 screw into corresponding threads 58 in a vent hole in the top of the battery case 60. A plexiglass cover 50 is placed over the flash arrester 48 leaving a space 52 in between. In operation, gases generated in the interior 42 of the battery pass through the filter (as shown in FIG. 1) and then through the flash arrester 48 and out of hole 62 in the top of the plexiglass cover 50 into the outer environment 44.
Periodically (e.g., every 60+ days) the active carbon powder is replaced. This can be done while the batteries remain in operation by using a spare flash arrester and filter. First, the plexiglass cover 50 is removed. The flash arrester 48 is then unscrewed (threads 56 and 58) and removed from the battery case 60. The filter, which is screwed (threads 12 and 54) into the flash arrester 48 also is removed. The reverse procedure is used to install the replacement flash arrester and fresh filter. The casing 10 of the used filter is unscrewed (threads 12 and 54) and removed from the flash arrester 48.
Referring again to FIG. 1, cover 30 is removed, exposing the filtration chamber 28 and the active charcoal powder it contains. The activated charcoal powder may simply be replaced or the filter may be broken down further for cleaning. Lid 34 may be removed from the cover 30, and insert 16 may be removed from the outer casing 10. After cleaning, reassembly, and refilling with fresh activated charcoal powder, the filter is screwed back into the flash arrester 48. The procedure is repeated to replace the next filter.
The filter parts (cover 30, removable lid 34, outer casing 10, and insert 16) are preferably made of polypropylene because it is strong, chemically inert, and easy to machine and process into the desired shapes. Other materials possessing these characteristics may also be used.
Carbon powders such as activated charcoal may be used. The size of the carbon powder particles is not critical, however, the finer powders provide more surface area and therefore are more effective. Particle sizes of -14 mesh (less than 1.40 mm) are preferred, with -30 mesh (less than 0.600 mm) being more preferred and with -60 mesh (less than 0.250 mm) being still more preferred.
Having generally described the invention the following examples are set forth for purposes of illustration. It will be understood that the invention is not limited to these examples, but is susceptible to different modifications that will be recognized by one of ordinary skill in the art.
EXPERIMENTAL
Standard U.S. Navy lead-acid cells were modified by replacing the positive lead (Pb) grids with lead (Pb) grids containing antimony (Sb) and cadmium (Cd). The description of the cells used in the tests is as follows:
______________________________________                                    
Cell                                                                      
Dimension         1 × 1 × 4 feet                              
Weight            1,000 Kg                                                
Positive grid     Pb/1.48% Cd/1.45% Sb                                    
Negative grid     Pf/0.042% Ca/0.346% Sn                                  
Max. Discharge current                                                    
                  C = 5250 Amperes                                        
Float voltage     2.330 PVC                                               
                  (volt per cell)                                         
______________________________________                                    
The cells were subjected to test regimes simulating battery use in submersible ship nuclear (SSN), submersible ship ballistic nuclear (SSBN), and ship nuclear (SN) applications. For each of the three regimes (SSN, SSBN, SN) three cells were cycled, each at a different voltage: 2.35V, 2.45V, 2.55V.
FIG. 3 presents a summary of stibine measurements taken for each of the nine test cells during cycling. Each sample measured the stibine in gases generated in a cell for an approximately two hour period. For each of the nine test cells samples were taken in the interior of the cell (I), as the output of the flash arrester of the cell (F), and as the output of the cell with the flash arrester removed (NF). A solution of 0.1N AgNO3 was used to trap the stibine. Gas analyses were performed by inductively coupled plasma (ICP) spectrometry. The limitation of this technique for stibine concentration was 0.1 mg per 100 ml solution or one part per million (PPM).
In FIG. 3 the abscissa gives the test cycle during which a given two hour sampling was taken and the ordinate gives the concentration of the trapped stibine in mg/100 ml. Each 0.1 mg/100 ml corresponds to 1 ppm of stibine.
The similarity of stibine amounts between flash arrester conditions and non flash arrester conditions shows the ineffectiveness of the alumina flash arrester in trapping stibine. The difference of stibine amounts found inside the battery and flash arrester or non flash arrester shows the instability of stibine. From the FIG. 3, it can be seen that the charge and discharge routine has a strong effect on the stibine generation from the lead antimony batteries. Stibine generation increased in the order of SSBN SN Modified SSN.
TESTS USING CHARCOAL FILTERS
Standard life cycle tests (SLT) were applied to cells of the same design as those used in the SSN, SSBN, and SN tests (Pb, 1.48 wt % Cd, 1.45 wt % Sb). Charcoal was used on the underside of the flash arrester of the circuit #4 (which has the highest cycle life) in an attempt to test its effectiveness in trapping stibine. Sixty (60) grams and one hundred twenty (120) grams of 30-mesh and 14-mesh charcoal respectively were found to be effective in filtering out the stibine for a period of five hours in the cell voltages of 2.35V and 2.55V.
FROM CHEMICAL MIXTURES
Several tests were also done at White Oak Laboratory to study the effectiveness of charcoal. For a period of twenty five hours, sixty (60) grams of 30-mesh charcoal was used effectively in trapping stibine which was generated from a chemical mixture (sodium borohydride, potassium hydroxide, tartaric acid and potassium antimony tartrate). Due to the change of the flash arrester to a smaller size, a second series of stibine tests was also done on the new flash arrester (3). Eight (8) grams of 30-mesh charcoal was used. The maximum concentration of stibine to absorb into 8 grams of 30-mesh charcoal was obtained at 90,000 ppm. The following are the chemical reactions:
(1) Sodium borohydride oxidizes potassium antimony tartrate in alkaline solution (potassium hydroxide) producing SbO+ ions.
(2) Sbo+ ion will convert to the stibine from the addition of sulfuric acid.
(3) Stibine diffuses through the flash arrester, absorbs onto the charcoal and decomposes into antimony and hydrogen. Spot test was performed on the activated charcoal showing the positive test for antimony. As the amount of stibine increases to the maximum of 90,000 ppm for eight (8) grams of 30-mesh charcoal, the surface of the activated charcoal will be saturated with antimony and will no longer be effective in absorbing stibine.
Obviously, numerous modifications and variations of the present invention are possible in light of the above teachings. It is therefore to be understood that, within the scope of the appended claims, the invention may be practiced otherwise than as specifically described.

Claims (4)

What is claimed as new and desired to be secured by Letters Patents of the United States is:
1. A process for removing stibine from the gases generated by antimonial lead-acid batteries comprising filtering the gases through activated charcoal which causes the stibine to decompose into antimony metal which is deposited on the charcoal and hydrogen gas which is carried away in the exiting gases.
2. The process of claim 1 wherein -14 mesh activated charcoal powder is used.
3. The process of claim 2 wherein -30 mesh activated charcoal powder is used.
4. The process of claim 3 wherein -60 mesh activated charcoal powder is used.
US06/880,524 1986-06-03 1986-06-03 Stibine filter and antimonial lead acid batteries Abandoned USH816H (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US06/880,524 USH816H (en) 1986-06-03 1986-06-03 Stibine filter and antimonial lead acid batteries

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US06/880,524 USH816H (en) 1986-06-03 1986-06-03 Stibine filter and antimonial lead acid batteries

Publications (1)

Publication Number Publication Date
USH816H true USH816H (en) 1990-09-04

Family

ID=25376464

Family Applications (1)

Application Number Title Priority Date Filing Date
US06/880,524 Abandoned USH816H (en) 1986-06-03 1986-06-03 Stibine filter and antimonial lead acid batteries

Country Status (1)

Country Link
US (1) USH816H (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9312522B2 (en) 2012-10-18 2016-04-12 Ambri Inc. Electrochemical energy storage devices
US9502737B2 (en) 2013-05-23 2016-11-22 Ambri Inc. Voltage-enhanced energy storage devices
US9520618B2 (en) 2013-02-12 2016-12-13 Ambri Inc. Electrochemical energy storage devices
US9735450B2 (en) 2012-10-18 2017-08-15 Ambri Inc. Electrochemical energy storage devices
US10181800B1 (en) 2015-03-02 2019-01-15 Ambri Inc. Power conversion systems for energy storage devices
US10270139B1 (en) 2013-03-14 2019-04-23 Ambri Inc. Systems and methods for recycling electrochemical energy storage devices
US10541451B2 (en) 2012-10-18 2020-01-21 Ambri Inc. Electrochemical energy storage devices
US10608212B2 (en) 2012-10-16 2020-03-31 Ambri Inc. Electrochemical energy storage devices and housings
US10637015B2 (en) 2015-03-05 2020-04-28 Ambri Inc. Ceramic materials and seals for high temperature reactive material devices
US11211641B2 (en) 2012-10-18 2021-12-28 Ambri Inc. Electrochemical energy storage devices
US11387497B2 (en) 2012-10-18 2022-07-12 Ambri Inc. Electrochemical energy storage devices
US11411254B2 (en) 2017-04-07 2022-08-09 Ambri Inc. Molten salt battery with solid metal cathode
US11721841B2 (en) 2012-10-18 2023-08-08 Ambri Inc. Electrochemical energy storage devices
US11909004B2 (en) 2013-10-16 2024-02-20 Ambri Inc. Electrochemical energy storage devices
US11929466B2 (en) 2016-09-07 2024-03-12 Ambri Inc. Electrochemical energy storage devices

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2615062A (en) 1949-05-03 1952-10-21 Palmer H Craig Storage battery cap with gas recombining means
US3038954A (en) 1960-01-20 1962-06-12 John N Pattison Battery cap
US3102059A (en) 1961-02-20 1963-08-27 Miranda Corp Catalytic device for electric accumulators
GB1405980A (en) 1972-08-10 1975-09-10 Fulmen Catalytic gas recombination device for a storage cell
US3944403A (en) 1973-02-28 1976-03-16 Siebe Gorman & Company Limited Adsorptive devices
US4048387A (en) 1972-08-02 1977-09-13 Accumulatorenwerk Hoppecke-Carl Zoellner & Sohn Substance and device for the absorption of catalyst poisoning gases out of the oxyhydrogen gas produced by lead-acid storage batteries
US4133660A (en) 1978-01-12 1979-01-09 Foster Wheeler Energy Corporation Adsorber for removing pollutants from gases having uniform adsorption capability
US4559066A (en) 1981-11-16 1985-12-17 Process Scientific Innovations Limited Filters for purification of gases

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2615062A (en) 1949-05-03 1952-10-21 Palmer H Craig Storage battery cap with gas recombining means
US3038954A (en) 1960-01-20 1962-06-12 John N Pattison Battery cap
US3102059A (en) 1961-02-20 1963-08-27 Miranda Corp Catalytic device for electric accumulators
US4048387A (en) 1972-08-02 1977-09-13 Accumulatorenwerk Hoppecke-Carl Zoellner & Sohn Substance and device for the absorption of catalyst poisoning gases out of the oxyhydrogen gas produced by lead-acid storage batteries
GB1405980A (en) 1972-08-10 1975-09-10 Fulmen Catalytic gas recombination device for a storage cell
US3944403A (en) 1973-02-28 1976-03-16 Siebe Gorman & Company Limited Adsorptive devices
US4133660A (en) 1978-01-12 1979-01-09 Foster Wheeler Energy Corporation Adsorber for removing pollutants from gases having uniform adsorption capability
US4559066A (en) 1981-11-16 1985-12-17 Process Scientific Innovations Limited Filters for purification of gases

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Karabanov et al., abstracted in Chemical Abstracts, vol. 84, #127060; (19. )
Karabanov et al., Zh. Fiz Khim., vol. 50, No. 1, pp. 180-182, (1976).
Merck Index, Windholz et al., Ed., Rahway, N.J., pp. 102, 1260, (1983), 10th Edition.

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10608212B2 (en) 2012-10-16 2020-03-31 Ambri Inc. Electrochemical energy storage devices and housings
US9825265B2 (en) 2012-10-18 2017-11-21 Ambri Inc. Electrochemical energy storage devices
US11721841B2 (en) 2012-10-18 2023-08-08 Ambri Inc. Electrochemical energy storage devices
US11611112B2 (en) 2012-10-18 2023-03-21 Ambri Inc. Electrochemical energy storage devices
US9735450B2 (en) 2012-10-18 2017-08-15 Ambri Inc. Electrochemical energy storage devices
US9312522B2 (en) 2012-10-18 2016-04-12 Ambri Inc. Electrochemical energy storage devices
US11387497B2 (en) 2012-10-18 2022-07-12 Ambri Inc. Electrochemical energy storage devices
US11211641B2 (en) 2012-10-18 2021-12-28 Ambri Inc. Electrochemical energy storage devices
US11196091B2 (en) 2012-10-18 2021-12-07 Ambri Inc. Electrochemical energy storage devices
US10541451B2 (en) 2012-10-18 2020-01-21 Ambri Inc. Electrochemical energy storage devices
US9728814B2 (en) 2013-02-12 2017-08-08 Ambri Inc. Electrochemical energy storage devices
US9520618B2 (en) 2013-02-12 2016-12-13 Ambri Inc. Electrochemical energy storage devices
US10270139B1 (en) 2013-03-14 2019-04-23 Ambri Inc. Systems and methods for recycling electrochemical energy storage devices
US9559386B2 (en) 2013-05-23 2017-01-31 Ambri Inc. Voltage-enhanced energy storage devices
US10297870B2 (en) 2013-05-23 2019-05-21 Ambri Inc. Voltage-enhanced energy storage devices
US9502737B2 (en) 2013-05-23 2016-11-22 Ambri Inc. Voltage-enhanced energy storage devices
US11909004B2 (en) 2013-10-16 2024-02-20 Ambri Inc. Electrochemical energy storage devices
US10181800B1 (en) 2015-03-02 2019-01-15 Ambri Inc. Power conversion systems for energy storage devices
US10566662B1 (en) 2015-03-02 2020-02-18 Ambri Inc. Power conversion systems for energy storage devices
US11289759B2 (en) 2015-03-05 2022-03-29 Ambri, Inc. Ceramic materials and seals for high temperature reactive material devices
US11840487B2 (en) 2015-03-05 2023-12-12 Ambri, Inc. Ceramic materials and seals for high temperature reactive material devices
US10637015B2 (en) 2015-03-05 2020-04-28 Ambri Inc. Ceramic materials and seals for high temperature reactive material devices
US11929466B2 (en) 2016-09-07 2024-03-12 Ambri Inc. Electrochemical energy storage devices
US11411254B2 (en) 2017-04-07 2022-08-09 Ambri Inc. Molten salt battery with solid metal cathode

Similar Documents

Publication Publication Date Title
USH816H (en) Stibine filter and antimonial lead acid batteries
Drillet et al. Influence of CO 2 on the stability of bifunctional oxygen electrodes for rechargeable zinc/air batteries and study of different CO 2 filter materials
RU2075139C1 (en) Sealed galvanic one-time or re-usable element
US20100203397A1 (en) Electrochemical energy store
ES2124109A1 (en) Electrochemical cell
DE102012216323B4 (en) Metal-oxygen battery
DE2050683B2 (en) Device for combining hydrogen and oxygen in a closed accumulator which contains a catalyst device consisting of a carrier and a catalyst
US3630785A (en) Anode with a two layered separator
US3741813A (en) Battery having gas pervious liquid impervious member sealed over holein top
US4098961A (en) Water activatable, lead-acid storage battery and method for manufacturing same
JPS61161656A (en) Vent plug for storage battery
GB820604A (en) Improvements in gas-depolarized primary galvanic cells and batteries
CN1269237C (en) Use of catalysts in stand by valve-regulated lead acid cells
RU2058627C1 (en) Alkaline cell
CA1149863A (en) Long-life galvanic primary cell
DE1496291B2 (en) Rechargeable gas-tight, closed galvanic element with an auxiliary electrode that is electrically connected to the positive electrode and catalyzes hydrogen ions
DE3841245A1 (en) ELECTRIC ACCUMULATOR AND METHOD FOR THE PRODUCTION THEREOF
US2669595A (en) Alkaline battery
US4139423A (en) Sintered negative plate
US3468714A (en) Battery comprising a carbon anode containing a radioactive catalyst
CN217691238U (en) Hydrogen fuel cell tail gas collecting and conveying device
JP2022046834A (en) Alkaline battery
Yan et al. Electrochemical characteristics of LaNi4. 7Al0. 3 alloy activated by alkaline solution containing hydrazine
DE1496291C (en) Rechargeable gas-tight, closed galvanic element with an auxiliary electrode that is electrically connected to the positive electrode and catalyzes hydrogen ions
JPS6039970Y2 (en) battery

Legal Events

Date Code Title Description
AS Assignment

Owner name: UNITED STATES OF AMERICA, AS REPRESENTED BY THE SE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNORS:CARDER, JAMES H.;LE, ANH H.;DACRES, CHESTER M.;REEL/FRAME:004574/0704

Effective date: 19860701

STCF Information on status: patent grant

Free format text: PATENTED CASE