USH437H - Laser medium for dye lasers - Google Patents

Laser medium for dye lasers Download PDF

Info

Publication number
USH437H
USH437H US07/062,289 US6228987A USH437H US H437 H USH437 H US H437H US 6228987 A US6228987 A US 6228987A US H437 H USH437 H US H437H
Authority
US
United States
Prior art keywords
particles
quartz
dye
voids
dye solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US07/062,289
Inventor
Raymond W. Conrad
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
US Department of Army
Original Assignee
US Department of Army
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by US Department of Army filed Critical US Department of Army
Priority to US07/062,289 priority Critical patent/USH437H/en
Assigned to UNITED STATES OF AMERICA, THE, AS REPRESENTED BY THE SECRETARY OF THE ARMY reassignment UNITED STATES OF AMERICA, THE, AS REPRESENTED BY THE SECRETARY OF THE ARMY ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: CONRAD, RAYMOND W.
Application granted granted Critical
Publication of USH437H publication Critical patent/USH437H/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/168Solid materials using an organic dye dispersed in a solid matrix

Definitions

  • the single FIGURE of the drawing illustrates a host material of aggregate particles with voids between the various particles that are filled with a lasing dye solution.
  • the material With the dye in the voids formed between the particles of the quartz material, the material can be transported to and from a laser cavity using pumping or fluidized bed transport techniques.
  • the dye solution after being used can be quickly replaced by simple dilution and rinsing of the material forming the voids and placing additional dye solution in the voids to prepare the material for another lasing application.
  • the laser dye lifetime in the lasing medium is realized by constraining by a myriad of very small volumes of the dye so that a dynamic equilibrium between decomposition and recombination can be established. That is, the products of the decomposition reaction must be maintained in close proximity and not allowed to diffuse away so that the probability of a photo-initiated recombination is high. In prior work, this was done by preparing a quartz matrix with microscopic pores, and allowing the dye solution to diffuse into the pores. The refractive index of the dye solution was adjusted so as to be equal to that of the quartz to thus reduce scattering of the light.
  • This invention improves on the referenced prior art by using a polydisperse mixture of quartz or other suitable material particles with a very small average dimension so that the polydisperse mixture forms a myriad of very tiny interstitial voids between the particles which voids are filled with the dye solution.
  • the dye solution is thus contained in the voids just as in the case of the pores of the microporous quartz material.
  • the permeable aggragate mixture of applicant's invention can be pored, pumped, or otherwise transported for the purpose of heat exchange or dye replacement.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)

Abstract

A polydisperse aggregate of very small solid particles that form voids therebetween with a lasing dye solution in said voids to form a laser host medium is disclosed.

Description

DEDICATORY CLAUSE
The invention described herein may be manufactured, used, and licensed by or for the government for governmental purposes without the payment to me of any royalties thereon.
BACKGROUND OF THE INVENTION
In the past, researchers have reported on a type of dye laser that uses a microcomposition matrix quartz medium. Researchers usually refer to this material as microporous quartz. Lasing has been observed when this material was filled with a dye solution of Rhodamine 6G and pumped with a frequency doubled neodyium or copper vapor laser. The most notable characterists of this laser is the enormous increase of the dye lifetime. This was attributed to the dye solution being trapped in the pores of the permeable microporous quartz with the result that the decomposed dye and its decomposition products were constrained to a very localized environment in which pumped photons could promote the recombination of the decomposed dye with its decompostion products to form the original dye. However, the dye eventually decomposes or heats to a temperature where lasing no longer can occur. Replacing the dye unfortunately takes a very long time since it takes considerable time to allow the dye to migrate into the micropores of the quartz. Therefore, there is a need for a way in which the dye can be readily replaced in a short time.
Accordingly, it is an object of this invention to provide a polydisperse aggregate of very small solid particles to form a laser host that has characteristics superior to previous microporous media.
Another object of this invention is to provide a laser host medium which combines the advantages of the permeable microporous medium with the very desirable capability of rapidly replacing the dye and even the ability to transport the lasing medium to effect heat exchange.
Other objects and advantages of this invention will be obvious to those skilled in this art.
SUMMARY OF THE INVENTION
In accordance with this invention, a new laser medium for dye lasers is provided that includes a host material composed of an aggregate of very small polydisperse particles of a material that has appropriate thermal, mechanical and optical properties, such as quartz and in which the material has interstitial voids therebetween that are filled with a lasing dye solution.
BRIEF DESCRIPTION OF THE DRAWINGS
The single FIGURE of the drawing illustrates a host material of aggregate particles with voids between the various particles that are filled with a lasing dye solution.
DESCRIPTION OF THE PREFERRED EMBODIMENT
Referring now to the drawing, a host material 1 of quartz or other suitable material particle is provided and this material is an aggregate of very small, polydisperse particles which form a random assemblage of voids 3 between the particles which voids are filled with lasing dye solution 5 such as Rhodamine 6G. This dye solution has a refractive index equal to that of material 1. Material 1 is preferably quartz and of variable size ranges from about 1 micron to about 15 microns. The particles can be other than of random size. They can be spherical particles or other shaped particles to define the voids between the particles for the lasing dye solution. Other solid material having appropriate thermal, mechanical and optical properties can be substituted for the quartz. With the dye in the voids formed between the particles of the quartz material, the material can be transported to and from a laser cavity using pumping or fluidized bed transport techniques. The dye solution after being used can be quickly replaced by simple dilution and rinsing of the material forming the voids and placing additional dye solution in the voids to prepare the material for another lasing application.
The laser dye lifetime in the lasing medium is realized by constraining by a myriad of very small volumes of the dye so that a dynamic equilibrium between decomposition and recombination can be established. That is, the products of the decomposition reaction must be maintained in close proximity and not allowed to diffuse away so that the probability of a photo-initiated recombination is high. In prior work, this was done by preparing a quartz matrix with microscopic pores, and allowing the dye solution to diffuse into the pores. The refractive index of the dye solution was adjusted so as to be equal to that of the quartz to thus reduce scattering of the light.
This invention improves on the referenced prior art by using a polydisperse mixture of quartz or other suitable material particles with a very small average dimension so that the polydisperse mixture forms a myriad of very tiny interstitial voids between the particles which voids are filled with the dye solution. The dye solution is thus contained in the voids just as in the case of the pores of the microporous quartz material. However, the permeable aggragate mixture of applicant's invention can be pored, pumped, or otherwise transported for the purpose of heat exchange or dye replacement.

Claims (4)

I claim:
1. A laser host medium comprising an aggregate of very small polydisperse particles of quartz or other solid material having appropriate thermal, mechanical and optical properties for laser material, said particles having sizes from about 1 micron to about 15 microns, said particles defining interstitical voids between the particles and a lasing dye solution filling said voids.
2. A laser host medium as set forth in claim 1, wherein said particles are made of quartz and said lasing dye solution is Rhodamine 6G.
3. A laser host medium as set forth in claim 1, wherein said particles are of random shapes.
4. A laser host material as set forth in claim 3, wherein said particles are of different sizes, said particles are made of quartz, and said lasing dye solution is Rhodamine 6G.
US07/062,289 1987-06-15 1987-06-15 Laser medium for dye lasers Abandoned USH437H (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US07/062,289 USH437H (en) 1987-06-15 1987-06-15 Laser medium for dye lasers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US07/062,289 USH437H (en) 1987-06-15 1987-06-15 Laser medium for dye lasers

Publications (1)

Publication Number Publication Date
USH437H true USH437H (en) 1988-02-02

Family

ID=22041511

Family Applications (1)

Application Number Title Priority Date Filing Date
US07/062,289 Abandoned USH437H (en) 1987-06-15 1987-06-15 Laser medium for dye lasers

Country Status (1)

Country Link
US (1) USH437H (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5087388A (en) * 1990-02-26 1992-02-11 Research Corporation Technologies, Inc. Cartridge for extending the lifetime of dyes in dye lasers
US5434878A (en) * 1994-03-18 1995-07-18 Brown University Research Foundation Optical gain medium having doped nanocrystals of semiconductors and also optical scatterers
US5448582A (en) * 1994-03-18 1995-09-05 Brown University Research Foundation Optical sources having a strongly scattering gain medium providing laser-like action

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
G. N. Dul'nev, et al. Sov. Tech. Phys. Lett 4 (9), Sep. 1978, paper entit "Tunable Solid-State Laser with a Microcomposition Matrix Active Medium."

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5087388A (en) * 1990-02-26 1992-02-11 Research Corporation Technologies, Inc. Cartridge for extending the lifetime of dyes in dye lasers
US5434878A (en) * 1994-03-18 1995-07-18 Brown University Research Foundation Optical gain medium having doped nanocrystals of semiconductors and also optical scatterers
US5448582A (en) * 1994-03-18 1995-09-05 Brown University Research Foundation Optical sources having a strongly scattering gain medium providing laser-like action
US5625456A (en) * 1994-03-18 1997-04-29 Brown University Research Foundation Optical sources having a strongly scattering gain medium providing laser-like action
US5825790A (en) * 1994-03-18 1998-10-20 Brown University Research Foundation Optical sources having a strongly scattering gain medium providing laser-like action
US5943354A (en) * 1994-03-18 1999-08-24 Brown University Research Foundation Optical sources having a strongly scattering gain medium providing laser-like action

Similar Documents

Publication Publication Date Title
US5356667A (en) Laser dye impregnated silica sol-gel monoliths
Rigrod Saturation effects in high‐gain lasers
Staliunas Laser Ginzburg-Landau equation and laser hydrodynamics
Cao Random lasers: development, features and applications
GB1433242A (en) Microspheres
US5313485A (en) Luminescent light source for laser pumping and laser system containing same
US3626318A (en) Tandem oscillator disc amplifier with trivalent neodymium input disc and trivalent neodymium plus ytterbium output discs
USH437H (en) Laser medium for dye lasers
CN109825021B (en) Polymer film containing tellurium alkene, and preparation method and application thereof
US3577098A (en) Thermally compensated laser
US20060227842A1 (en) Scalable spherical laser
US3569860A (en) Laser structure comprising a plurality of laser material segments for high power dissipation
KR100330641B1 (en) Explosive fragmentation process
Anan'Ev et al. Solid laser with a high spatial coherence of radiation
Horváth Beyond the beam: A history of multidimensional lasers
US3727570A (en) Drag reduction method
CN115229186A (en) Preparation method of porous nickel or nickel alloy with controllable pores
US6888862B2 (en) Dye-doped polymer nanoparticle gain medium
US20130250988A1 (en) Active laser medium including nanoparticles, laser apparatus including the active laser medium, and method of manufacturing nanoparticles
Monte et al. Synthesis and characterisation of CdS nanoparticles in mesoporous copolymer template
Hench Sol-gel silica for precision and multifunctional optics
JPH0397639A (en) Combined material containing dispersed fine particles and production thereof
JP6090954B2 (en) Laser oscillation element made of colloidal crystal gel and method for manufacturing the same
Titterton Solid-state dye lasers
Titterton Performance of plastic dye lasers in the UK

Legal Events

Date Code Title Description
STCF Information on status: patent grant

Free format text: PATENTED CASE

AS Assignment

Owner name: UNITED STATES OF AMERICA, THE, AS REPRESENTED BY T

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:CONRAD, RAYMOND W.;REEL/FRAME:004815/0726

Effective date: 19870520