USH360H - Slurry filled obscuration payload - Google Patents

Slurry filled obscuration payload Download PDF

Info

Publication number
USH360H
USH360H US07/028,156 US2815687A USH360H US H360 H USH360 H US H360H US 2815687 A US2815687 A US 2815687A US H360 H USH360 H US H360H
Authority
US
United States
Prior art keywords
canister
butane
iso
slurry
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US07/028,156
Inventor
Stanley P. Shukis
Clayton J. Schneider, Jr.
Edward A. Gasiecki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
US Department of Army
Original Assignee
US Department of Army
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by US Department of Army filed Critical US Department of Army
Priority to US07/028,156 priority Critical patent/USH360H/en
Assigned to GOVERNMENT OF THE UNITED STATES, THE, AS REPRESENTED BY THE SECRETARY OF THE ARMY reassignment GOVERNMENT OF THE UNITED STATES, THE, AS REPRESENTED BY THE SECRETARY OF THE ARMY ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: SHUKIS, STANLEY P.
Assigned to CALSPAN ADVANCED TECHNOLOGY CENTER reassignment CALSPAN ADVANCED TECHNOLOGY CENTER ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: GASIECKI, EDWARD A., SCHNEIDER, CLAYTON J. JR.
Assigned to UNITED STATES GOVERNMENT, AS REPRESENTED BY THE SECRETARY OF THE ARMY reassignment UNITED STATES GOVERNMENT, AS REPRESENTED BY THE SECRETARY OF THE ARMY ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: CALSPAN ADVANCED TECHNOLOGY CENTER
Application granted granted Critical
Publication of USH360H publication Critical patent/USH360H/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B12/00Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material
    • F42B12/02Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the warhead or the intended effect
    • F42B12/36Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the warhead or the intended effect for dispensing materials; for producing chemical or physical reaction; for signalling ; for transmitting information
    • F42B12/46Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the warhead or the intended effect for dispensing materials; for producing chemical or physical reaction; for signalling ; for transmitting information for dispensing gases, vapours, powders or chemically-reactive substances
    • F42B12/48Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the warhead or the intended effect for dispensing materials; for producing chemical or physical reaction; for signalling ; for transmitting information for dispensing gases, vapours, powders or chemically-reactive substances smoke-producing, e.g. infrared clouds
    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06DMEANS FOR GENERATING SMOKE OR MIST; GAS-ATTACK COMPOSITIONS; GENERATION OF GAS FOR BLASTING OR PROPULSION (CHEMICAL PART)
    • C06D3/00Generation of smoke or mist (chemical part)

Definitions

  • the present invention relates to smoke obscuration payloads and munitions and, more particularly, to a low boiling hydrocarbon slurried obscuration payload positioned in the annular space surrounding a central burster.
  • Canning technology and particularly the aerosol canning technology may be adapted to the munition filling and loading manufacturing process further increasing the desireability of the present invention.
  • Smoke obscuration payloads contained in the M76 grenade are well known in the munitions art. Such payloads are generally dispensed by a burster or detonator.
  • the burster may be centrally located and is commonly used in conjunction with a dry, particulate chemical. When detonated, the burster disseminates the particulate system.
  • Particulate systems include micron size particles of brass or aluminum flakes, or other finely divided particulate. These materials are currently used as fill materials, in a flaked form, or a pelletized form and can be packed as powders to various densities as the payload.
  • the device and the payload formulation currently in use may be characterized as less than optimal. This is particularly true in regard to the infra-red signature attenuation capabilities associated with munitions payloads of this type and to the low material yield achieved during detonation.
  • an improved obscuration payload consisting of a slurry fill.
  • the slurry is formulated from known dry particulate material such as brass or aluminum particulates and a highly volatile hydrocarbon liquid.
  • the volatile liquid fills the interstitial voids in the otherwise dry system.
  • the slurry system thus enhances the coupling between the explosive discharge of the burster and the minute particles in the fill, thereby greatly minimizing the agglomeration of the particles, reducing the energy input for aerosolization in forming the resultant obscuration cloud.
  • the canister in which the payload material is contained may be provided in the form of an aerosol-type can body having a modified aerosol-can dome.
  • the device may thereby contain non-volatile as well as volatile liquid fills under pressure.
  • an improved formulated payload for a munition which includes a canister holding a predetermined amount of a slurry.
  • the slurry includes a particulate component and a volatile liquid.
  • the canister is provided in the form of a modified aerosol-type canister whether the fill is in a slurry or dry form.
  • FIG. 1 is a schematic cross-section of a smoke grenade, showing the central burster, slurry filled device in an aerosol-type canister without a launching mechanism present in a complete grenade.
  • FIG. 2 is a cross-sectional view taken along lines A--A of FIG. 1 illustrating the annular slurry and the central burster tube.
  • the slurry filled obscuration device 10 of the present invention includes a thin walled canister 1.
  • the canister may take various forms and may be provided in numerous sizes.
  • canister may be formed from an aerosol-type can.
  • the conventional aerosol canning technology is used to join an aerosol-type can dome 2 to the canister 1.
  • a conventional can seal 3 insures that the contents are maintained under pressure.
  • a burster tube 4 descends from the dome 2 and contains an explosive charge 5.
  • the initiator may be a Dupont No. 8 electric cap or the like.
  • the burster is soldered or otherwise crimp sealed 6 to the dome in any convenient manner.
  • Within the canister and around the burster tube a slurry 7 is contained under pressure.
  • An ullage is provided to allow for expansion of tne liquid and its vapors.
  • the slurry is composed of at least one of the known particulate obscuration munition media and volatile liquid having a low boiling point.
  • the particulate component may be in the form of flakes, granulated pellets or fine powders.
  • the liquid component of the slurry is selected for its ability to optimize coupling of the burster containing explosive charge to the payload fill system and for its ability to enhance the eventual break up or dispersion of the system.
  • a low surface tension liquid is preferred to maximize the dispersion by reducing the normally substantial interparticulate bonding within the payload.
  • a low density liquid minimizes the gravimetic penalty imposed by adding material to fill the voids.
  • the preferred volatile liquids are iso-butane and n-butane.
  • Aerosol technology provides for a thin walled container which is light in weight and inexpensive to produce in large quantities.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Botany (AREA)
  • Pest Control & Pesticides (AREA)
  • Plant Pathology (AREA)
  • Organic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Containers And Packaging Bodies Having A Special Means To Remove Contents (AREA)

Abstract

An improved device for a smoke obscuration munition includes a thin-wallederosol can body. A sealed central burster tube is affixed to and extends into the sealed payload within the device. The payload consists of a slurry contained in the annular space outside the burster which includes a highly volatile, low density, low surface tension hydrocarbon liquid and a obscuration agent as the payload.

Description

FIELD OF THE INVENTION
The present invention relates to smoke obscuration payloads and munitions and, more particularly, to a low boiling hydrocarbon slurried obscuration payload positioned in the annular space surrounding a central burster. Canning technology and particularly the aerosol canning technology may be adapted to the munition filling and loading manufacturing process further increasing the desireability of the present invention.
BACKGROUND OF THE INVENTION
Smoke obscuration payloads contained in the M76 grenade are well known in the munitions art. Such payloads are generally dispensed by a burster or detonator. The burster may be centrally located and is commonly used in conjunction with a dry, particulate chemical. When detonated, the burster disseminates the particulate system. Particulate systems include micron size particles of brass or aluminum flakes, or other finely divided particulate. These materials are currently used as fill materials, in a flaked form, or a pelletized form and can be packed as powders to various densities as the payload.
While adequate for the purpose intended, the device and the payload formulation currently in use may be characterized as less than optimal. This is particularly true in regard to the infra-red signature attenuation capabilities associated with munitions payloads of this type and to the low material yield achieved during detonation.
SUMMARY OF THE INVENTION
Accordingly, these and other shortcomings of the prior art are eliminated by an improved obscuration payload consisting of a slurry fill. The slurry is formulated from known dry particulate material such as brass or aluminum particulates and a highly volatile hydrocarbon liquid. The volatile liquid fills the interstitial voids in the otherwise dry system. The slurry system thus enhances the coupling between the explosive discharge of the burster and the minute particles in the fill, thereby greatly minimizing the agglomeration of the particles, reducing the energy input for aerosolization in forming the resultant obscuration cloud.
As the volatile liquid component of the payload must be kept under pressure, the canister in which the payload material is contained may be provided in the form of an aerosol-type can body having a modified aerosol-can dome. The device may thereby contain non-volatile as well as volatile liquid fills under pressure.
It is an object of the present invention to provide an obscuration payload that will create a cloud completely obscuring the infra-red signature and be kept aloft for a longer period as a result of yielding finer particulate and minimizing agglomeration.
It is another object of the present invention to provide a means whereby the explosive energy of the burster detonation is more effectively coupled to the prime payload component.
In accordance with the teachings of the present invention, there is herein disclosed a preferred embodiment, constituting an improved formulated payload for a munition which includes a canister holding a predetermined amount of a slurry. The slurry includes a particulate component and a volatile liquid. The canister is provided in the form of a modified aerosol-type canister whether the fill is in a slurry or dry form.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a schematic cross-section of a smoke grenade, showing the central burster, slurry filled device in an aerosol-type canister without a launching mechanism present in a complete grenade.
FIG. 2 is a cross-sectional view taken along lines A--A of FIG. 1 illustrating the annular slurry and the central burster tube.
DESCRIPTION OF THE PREFERRED EMBODIMENT
With reference now to FIGS. 1 and 2, the slurry filled obscuration device 10 of the present invention includes a thin walled canister 1. The canister may take various forms and may be provided in numerous sizes. canister may be formed from an aerosol-type can. The conventional aerosol canning technology is used to join an aerosol-type can dome 2 to the canister 1. A conventional can seal 3 insures that the contents are maintained under pressure. A burster tube 4 descends from the dome 2 and contains an explosive charge 5. The initiator may be a Dupont No. 8 electric cap or the like. The burster is soldered or otherwise crimp sealed 6 to the dome in any convenient manner. Within the canister and around the burster tube, a slurry 7 is contained under pressure. An ullage is provided to allow for expansion of tne liquid and its vapors.
The slurry is composed of at least one of the known particulate obscuration munition media and volatile liquid having a low boiling point. The particulate component may be in the form of flakes, granulated pellets or fine powders. The liquid component of the slurry is selected for its ability to optimize coupling of the burster containing explosive charge to the payload fill system and for its ability to enhance the eventual break up or dispersion of the system. A low surface tension liquid is preferred to maximize the dispersion by reducing the normally substantial interparticulate bonding within the payload. A low density liquid minimizes the gravimetic penalty imposed by adding material to fill the voids. The preferred volatile liquids are iso-butane and n-butane. Other liquids having usable, albeit less-effective characteristics are C2 Cl3 F3 (trichloro, trifluoroethane), C2 Cl2 F4 and n-hexane, in a rapidly descending order of utility. It is believed that the low surface tension of these volatile liquids provides for lower cohesive forces within the bulk of the slurrying liquid and therefore reduce the energy required for dispersal. Lower surface tension also is thought to reduce agglomeration tendencies by better wetting the particles in the slurry.
Volatile liquid type slurries must be effectively contained to prevent both liquid and vapor losses. Adapting aerosol can technology to these munitions payloads is an ideal solution to the containment requirements of volatile slurries. In addition, aerosol technology provides for a thin walled container which is light in weight and inexpensive to produce in large quantities.
Obviously, many modifications may be made without departing from the basic spirit of the present invention. Accordingly, within the scope of the appended claims, the invention may be practiced other than specifically disclosed herein.

Claims (20)

What is claimed is:
1. A smoke obscuration device comprising a pressurizeable canister holding a predetermined amount of a slurry, the slurry including a particulate payload material and a volatile liquid under pressure.
2. The device of claim 1, wherein the canister has formed therein a burster tube comprising a sealed central longitudinal chamber extending substantially the length of the canister and having within a means of dispersing through detonation the substantially annular slurried payload contained within the canister.
3. The device of claim 2, wherein the canister is of fragmentation insult and further comprises a thin walled aerosol can body sealed to an aerosol can dome top.
4. The device of claim 3, wherein the highly volatile liquid has a low surface tension and low density to minimize gravimetric penalty by filling the voids of the particulate.
5. The device of claim 4, wherein the highly volatile liquid is selected from the group consisting of iso-butane, C2 Cl2 F4, C2 Cl3 F3, and n-hexane.
6. The device of claim 5, wherein the highly volatile liquid is iso-butane.
7. A method of producing an obscuration device comprising the steps of selecting a liquid medium, mixing said liquid medium with a particulate obscuration material to form a slurry, and placing the slurry into the canister and sealing the canister.
8. The method of claim 7, wherein the liquid medium has a high volatility, a low density and a low surface tension.
9. The method of claim 8, wherein the liquid medium is selected from the group consisting of iso-butane, and n-hexane.
10. The method of claim 9 wherein the liquid medium is iso-butane.
11. The method of claim 7 wherein the sealed canister is a thin walled aerosol-type can.
12. The method of claim 11, wherein the canister has formed therein a burster comprising a sealed longitudinal chamber extending substantially the length of the canister and having within a means of detonating the substantially annular slurried payload contained within the canister.
13. The method of claim 12 wherein the means of detonating the device is an electric blasting cap connected to the burster.
14. A method of producing an obscurative smoke cloud comprising the steps of forming a pressurizeable canister, filling the canister with a slurried obscuring agent, sealing the canister and detonating the canister.
15. The method of claim 14 wherein the canister includes a central burster tube containing the means of detonation, said canister formed from thin-walled metal using aerosol can manufacturing technology.
16. The method of claim 15 wherein the slurried obscuring agent has a liquid component and a solid component, the liquid component having low density and high volatility.
17. The method of claim 16 wherein the liquid component is selected from the group consisting of iso-butane and n-butane.
18. The method of claim 17 wherein the liquid component is iso-butane.
19. A method of producing an obscurative smoke cloud comprising the detonation of a device having therein a slurried obscuring agent, wherein the slurry has a liquid component which has low density and low surface tension and is selected from the group consisting of iso-butane, and n-butane.
20. The method of claim 19 wherein the device is in the form of a thin-walled metal canister, formed using aerosol canning technology.
US07/028,156 1987-03-19 1987-03-19 Slurry filled obscuration payload Abandoned USH360H (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US07/028,156 USH360H (en) 1987-03-19 1987-03-19 Slurry filled obscuration payload

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US07/028,156 USH360H (en) 1987-03-19 1987-03-19 Slurry filled obscuration payload

Publications (1)

Publication Number Publication Date
USH360H true USH360H (en) 1987-11-03

Family

ID=21841881

Family Applications (1)

Application Number Title Priority Date Filing Date
US07/028,156 Abandoned USH360H (en) 1987-03-19 1987-03-19 Slurry filled obscuration payload

Country Status (1)

Country Link
US (1) USH360H (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4998479A (en) * 1988-06-15 1991-03-12 Perham William J Smoke generating device with rechargable cartridge
FR2669625A1 (en) * 1990-11-22 1992-05-29 Giat Ind Sa EFFECTIVE MASKING MATERIAL IN THE INFRA RED DOMAIN.
WO2003051460A1 (en) 2001-12-18 2003-06-26 Wen Sheree H Antiviral and antibacterial respirator mask
CN114858010A (en) * 2022-05-23 2022-08-05 中国人民解放军陆军工程大学 Interference bomb device for improving smoke screen dispersion effect

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4998479A (en) * 1988-06-15 1991-03-12 Perham William J Smoke generating device with rechargable cartridge
FR2669625A1 (en) * 1990-11-22 1992-05-29 Giat Ind Sa EFFECTIVE MASKING MATERIAL IN THE INFRA RED DOMAIN.
WO1992009544A1 (en) * 1990-11-22 1992-06-11 Giat Industries Masking material effective in the infrared
US5340395A (en) * 1990-11-22 1994-08-23 Giat Industries Material for efficient masking in the infrared region
WO2003051460A1 (en) 2001-12-18 2003-06-26 Wen Sheree H Antiviral and antibacterial respirator mask
CN114858010A (en) * 2022-05-23 2022-08-05 中国人民解放军陆军工程大学 Interference bomb device for improving smoke screen dispersion effect

Similar Documents

Publication Publication Date Title
US5212343A (en) Water reactive method with delayed explosion
US5889228A (en) Detonator with loosely packed ignition charge and method of assembly
US5499582A (en) Projectile
US4157928A (en) Method for fuel air explosive
USH360H (en) Slurry filled obscuration payload
US4006687A (en) Safe detonator device
EP0745574B1 (en) Process for the production of a pyrotechnic or explosive device
US3718512A (en) Porous particles containing dispersed organic liquid and gaseous components
US5232053A (en) Explosion suppression system
US3117521A (en) Non-hazardous dispersing systems for liquids and volatile solids
US4074629A (en) Blasting agent and method
US3808595A (en) Chaff dispensing system
US4920852A (en) Portable, self-contained explosives system
US2459267A (en) Self-contained emergency signaling device adapted to be operated automatically after being launched
US4063508A (en) Munition dispersion by interstitial propelling charges
US4170941A (en) Igniter for a block of propellant powder
US3773168A (en) Pressurized-gas vessel and method of making same
US3713383A (en) Dispersal technique for cw bw agents
US6960267B1 (en) Multi-component liquid explosive composition and method
US3596603A (en) Method of dispersing bw/cw or other materials
US3832950A (en) Inverted bottle arming technique
US3512480A (en) Directional dispensing grenade with externally open,integrally formed and internally closed,propellant-charge well
US6405627B1 (en) Simple kit and method for humanitarian demining operations and explosive ordinance disposal
US3656435A (en) Directional dispensing grenade with externally open, integrally-formed and internally closed, propellant-charge well and internal frusto-conical material discharge guiding surface
US3712219A (en) Aerial dispersal of chemicals

Legal Events

Date Code Title Description
AS Assignment

Owner name: UNITED STATES GOVERNMENT, AS REPRESENTED BY THE SE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:CALSPAN ADVANCED TECHNOLOGY CENTER;REEL/FRAME:004744/0536

Effective date: 19860925

STCF Information on status: patent grant

Free format text: PATENTED CASE