USH1043H - Bis-hydroxy diamides and methods therefor - Google Patents

Bis-hydroxy diamides and methods therefor Download PDF

Info

Publication number
USH1043H
USH1043H US07/465,666 US46566690A USH1043H US H1043 H USH1043 H US H1043H US 46566690 A US46566690 A US 46566690A US H1043 H USH1043 H US H1043H
Authority
US
United States
Prior art keywords
hydroxy
diamides
acid
bis
carbon atoms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US07/465,666
Inventor
George P. Speranza
Jiang-Jen Lin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huntsman Corp
Original Assignee
Texaco Chemical Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Texaco Chemical Co filed Critical Texaco Chemical Co
Assigned to TEXACO CHEMICAL COMPANY reassignment TEXACO CHEMICAL COMPANY ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: LIN, JIANG-JEN, SPERANZA, GEORGE P.
Priority to US07/465,666 priority Critical patent/USH1043H/en
Priority to EP19900314427 priority patent/EP0437981B1/en
Priority to DE69014582T priority patent/DE69014582D1/en
Priority to CA002033584A priority patent/CA2033584A1/en
Priority to JP1499091A priority patent/JPH05105750A/en
Publication of USH1043H publication Critical patent/USH1043H/en
Application granted granted Critical
Assigned to UNITED STATES TRUST COMPANY OF NEW YORK (AS COLLATERAL AGENT) reassignment UNITED STATES TRUST COMPANY OF NEW YORK (AS COLLATERAL AGENT) SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HUNTSMAN CORPORATION (FORMERLY TEXACO CHEMICAL COMPANY)
Assigned to TEXACO INC. reassignment TEXACO INC. SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HUNTSMAN CORPORATION ( FORMERLY TEXACO CHEMICAL COMPANY )
Assigned to HUNTSMAN CORPORATION reassignment HUNTSMAN CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: TEXACO CHEMICAL COMPANY
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/44Polyester-amides

Definitions

  • the invention relates to by-products from the manufacture of polyoxyalkyleneamines, and, in one aspect, more particularly relates to bis-hydroxy amides prepared by the reaction of such by-products with carboxylic acids.
  • Triethylene and tetraethylene glycol diamines may be continuously produced from glycols catalytically.
  • the triethylene glycol diamine and tetraethylene glycol diamine products are known under the trade names JEFFAMINE® EDR-148 Amine and JEFFAMINE® EDR-192 Amine, respectively, as made by Texaco Chemical Co. These materials are useful as intermediates in the preparation of hydrophilic nylon resins, and as epoxy curing agents.
  • JEFFAMINE® EDR-148 Amine and JEFFAMINE® EDR-192 Amine are useful as intermediates in the preparation of hydrophilic nylon resins, and as epoxy curing agents.
  • a crystalline polyamide which has improved tensile strength and which has a heat deflection temperature in excess of 240° C. when filled is formed from dicarboxylic acid compounds comprising compounds of terephthalic acid and isophthalic acid in a molar ratio of at least 80:20 to about 99:1 and diamines comprising hexamethylene diamine and trimethylhexamethylene diamine in a molar ratio of about 98:2 to about 60:40, according to U.S. Pat. No. 4,617,342.
  • Hot melt adhesives are also related to these kinds of materials.
  • U.S. Pat. No. 4,656,242 describes that poly(ester-amide) polymers made from an acid component and a substantially equivalent amount of an amine and a diol component are suitable as hot melt adhesives for holding plastics.
  • the acid component has 10-80 equivalent percent of a dimer acid having about 36 carbon atoms and 40-90 equivalent percent of a linear dicarboxylic acid.
  • the amine and diol component has from 40-90 equivalent percent of an organic diamine and 10-60 equivalent percent of a diol.
  • 4,611,051 which teaches poly(ester-amide) hot-melt adhesives prepared from condensation of a mixture of polymeric fatty acids and 1,18-octadecanedicarboxylic acid, and a substantially equivalent proportion of a mixture of a polyamine and a polyol.
  • Suitable polyamines include ethylenediamine, 1,3-propanediamine, 1,4-butanediamine, 1,6-hexamethylene-diamine, piperazine, and 4,4'-methylene-bis-(cyclohexylamine).
  • Appropriate diols are ethylene glycol, 1,3-propanediol, 1,4-butanediol, 1,6-hexamethylenediol, cyclohexane-methanol, polyethylene glycol and polybutylene glycol.
  • polyesteramides are prepared by condensing (A) dimerized fatty acids having 16 to 44 carbon atoms, (B) a diamine having a formula of NH 2 --R--NH 2 where R is an aliphatic hydrocarbyl having 3 to 36 carbon atoms and (C) aminoethoxy-ethanol and at least one dicarboxylic acid having the formula R"OOC--R'--COOR" where R' is a hydrocarbyl of 4 to 12 carbon atoms and R" is H or alkyl having 1 to 8 carbon atoms.
  • R' is a hydrocarbyl of 4 to 12 carbon atoms and R" is H or alkyl having 1 to 8 carbon atoms.
  • U.S. Pat. No. 4,397,991 describes similar products.
  • the polyesteramides are used as adhesives which combine good elongation, quick setting times and good low temperature flexibility.
  • Another object of the invention to provide a method for making these novel materials that is very simple.
  • novel bis-hydroxy diamides having the formula: ##STR2## where R is an alkylene moiety having from 3 to 34 carbon atoms or an arylene moiety having from 6 to 34 carbon atoms and where x ranges from 3 to 6.
  • polyethylene glycol monoamines that are produced as by-products in the production of JEFFAMINE® EDR amines, by-products such as triethylene glycol monoamine and tetra-ethylene glycol monoamine, as well as materials such as diethylene glycol monoamine, may be advantageously reacted with dicarboxylic acids to form novel bis-hydroxy diamides.
  • novel bis-hydroxy diamides are useful to make mixed polyamide-esters and polyurethanes, as is seen in companion patent application Ser. No. 07/465,290, filed of even date, incorporated by reference herein.
  • novel bis-hydroxy diamides of this invention may be made according to the reaction that may be schematically diagrammed as: ##STR3## where (I) are the polyethylene glycol monoamine by-products or other materials where x ranges from 2 to 6, preferably 2 to 5 and most preferably from 3 to 4. When x is 2, the compound is diethylene glycol monoamine. When x is 3 and 4, the compounds are triethylene glycol monoamine and tetraethylene glycol monoamine, respectively.
  • Compound (II) is the dicarboxylic acid and R may be an alkylene moiety having from 3 to 34 carbon atoms in one embodiment, in one aspect from 4 to 20 carbon atoms, and in a further aspect from 4 to 9, or an alkylene moiety having from 6 to 34 carbon atoms.
  • the dicarboxylic acid may be selected from the group consisting of adipic acid, terephthalic acid, isophthalic acid, t-butyl isophthalic acid, 1,1,3-trimethyl-5-carboxy-3-(p-carboxyphenyl) indane also known as phenylindane dicarboxylic acid or PIDA and mixtures thereof.
  • the dicarboxylic acid may be "dimer” acid which is mainly a C-36 dicarboxylic acid. This product is prepared by dimerizing unsaturated fatty acids. The esters of these acids may also be used.
  • the novel bis-hydroxy diamides are represented as compound (III) where R and x have the meanings given above.
  • the bis-hydroxy diamides may be made by contacting at least two moles of the polyethylene glycol monoamine for every mole of dicarboxylic acid in the presence of heat, from approximately 180° to about 250° C. as a narrower range, where a broad temperature range for this reaction is from about 160° to about 280° C.
  • the molar ratio of monoamine to dibasic acid is about 2:1.
  • No catalyst is required for this reaction, although one may be yet discovered that might prove beneficial.
  • the reaction may also be conducted at atmospheric pressure. The reaction is quite selective yielding the bis-hydroxy diamides in nearly quantitative yield.
  • the products are light-colored solids or liquids, depending on the starting materials. The products and methods of this invention will be described in more detail with reference to the following examples.
  • the saponification number was 15.41 mg. KOH/g. which was determined by refluxing with alcoholic sodium hydroxide. This indicates only 5.4% of the product reacted with potassium hydroxide--or from another point of view this amide is hard to hydrolyze--in fact, all of the hydrolysis took place at an ester linkage, since NMR showed an ester to hydroxyl linkage ratio of about 1.1 to 32.3. Thus, the reaction was not 100% amide, but was selective in the order of 95%. There was no unreacted amine.
  • the weight average molecular weight was 407 and the number average molecular weight was 407 by Gel Permeation Chromatography (GPC); the theoretical molecular weight was 408. These results prove the selectivity involved.
  • Table I illustrates that the product properties depend on the starting materials.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polyamides (AREA)

Abstract

Novel bis-hydroxy diamides having the formula: ##STR1## where R is an alkyl or aryl moiety having from 3 to 10 carbon atoms and where x ranges from 1 to 6 may be produced by reacting dicarboxylic acids with polyethylene glycol monoamines. Suitable dicarboxylic acids include adipic acid, terephthalic acid, isophthalic acid, t-butyl isophthalic acid, 1,1,3-trimethyl-5-carboxy-3-(p-carboxyphenyl)indane, and mixtures thereof. Suitable monoamines include diethylene glycol monoamine, also known as Diglycolamine® amine (DGA); triethylene glycol monoamine (TEGMA) and tetraethylene glycol monoamine (T4 EGMA), among others. The resulting bis-hydroxy diamides are useful to make hydroxy-terminated polyamides and as fuel additive corrosion inhibitors. The diamides have unusual solubility properties.

Description

CROSS-REFERENCES TO RELATED APPLICATIONS
This application is related to U.S. patent application Ser. No. 07/465,290, filed of even date, now U.S. Pat. No. 5,082,924 relating to mixed polyamide-esters made from the novel bis-hydroxy diamides of the subject application; and U.S. patent application Ser. No. 07/465,682, filed of even date, now U.S. Pat. No. 4,996,315 relating to the synthesis of cyclic compounds from polyethylene glycol monoamines and dibasic acids.
FIELD OF THE INVENTION
The invention relates to by-products from the manufacture of polyoxyalkyleneamines, and, in one aspect, more particularly relates to bis-hydroxy amides prepared by the reaction of such by-products with carboxylic acids.
BACKGROUND OF THE INVENTION
Triethylene and tetraethylene glycol diamines may be continuously produced from glycols catalytically. The triethylene glycol diamine and tetraethylene glycol diamine products are known under the trade names JEFFAMINE® EDR-148 Amine and JEFFAMINE® EDR-192 Amine, respectively, as made by Texaco Chemical Co. These materials are useful as intermediates in the preparation of hydrophilic nylon resins, and as epoxy curing agents. However, in the production of polyethylene glycol diamines, due to moderate conversions, there are also produced significant quantities of by-products, bottoms products or residues, and it would be beneficial if uses for these materials, such as triethylene glycol monoamine and tetraethylene glycol monoamine, could be discovered.
It is, of course, known to react materials having active hydrogens with compounds having carboxylic acid groups. For example, U.S. Pat. No. 4,123,422 teach amide modified saturated polyester polyols where the polyester polyol backbone is made from a polyhydric alcohol having 2 to 15 carbon atoms and a polybasic carboxylic acid having 4 to 14 carbon atoms. After the backbone is formed, it is modified with a primary or secondary amine of the formula N(H)(R)a (Cy H2y OH)b, where R is a hydrogen or an alkyl group of 1 to 4 carbon atoms, y is 2 or 3, a is 0 or 1, b is 1 or 2, and the sum of a+b is 2. These amine modified saturated polyester polyols are useful in two-package urethane coating systems. A crystalline polyamide which has improved tensile strength and which has a heat deflection temperature in excess of 240° C. when filled is formed from dicarboxylic acid compounds comprising compounds of terephthalic acid and isophthalic acid in a molar ratio of at least 80:20 to about 99:1 and diamines comprising hexamethylene diamine and trimethylhexamethylene diamine in a molar ratio of about 98:2 to about 60:40, according to U.S. Pat. No. 4,617,342.
Hot melt adhesives are also related to these kinds of materials. For example, U.S. Pat. No. 4,656,242 describes that poly(ester-amide) polymers made from an acid component and a substantially equivalent amount of an amine and a diol component are suitable as hot melt adhesives for holding plastics. The acid component has 10-80 equivalent percent of a dimer acid having about 36 carbon atoms and 40-90 equivalent percent of a linear dicarboxylic acid. The amine and diol component has from 40-90 equivalent percent of an organic diamine and 10-60 equivalent percent of a diol. Also of interest is U.S. Pat. No. 4,611,051 which teaches poly(ester-amide) hot-melt adhesives prepared from condensation of a mixture of polymeric fatty acids and 1,18-octadecanedicarboxylic acid, and a substantially equivalent proportion of a mixture of a polyamine and a polyol. Suitable polyamines include ethylenediamine, 1,3-propanediamine, 1,4-butanediamine, 1,6-hexamethylene-diamine, piperazine, and 4,4'-methylene-bis-(cyclohexylamine). Appropriate diols are ethylene glycol, 1,3-propanediol, 1,4-butanediol, 1,6-hexamethylenediol, cyclohexane-methanol, polyethylene glycol and polybutylene glycol.
In U.S. Pat. No. 4,373,085 polyesteramides are prepared by condensing (A) dimerized fatty acids having 16 to 44 carbon atoms, (B) a diamine having a formula of NH2 --R--NH2 where R is an aliphatic hydrocarbyl having 3 to 36 carbon atoms and (C) aminoethoxy-ethanol and at least one dicarboxylic acid having the formula R"OOC--R'--COOR" where R' is a hydrocarbyl of 4 to 12 carbon atoms and R" is H or alkyl having 1 to 8 carbon atoms. U.S. Pat. No. 4,397,991 describes similar products. The polyesteramides are used as adhesives which combine good elongation, quick setting times and good low temperature flexibility.
A good, general background article about these amide materials is J. R. Flesher, Jr., "Polyether Block Amide: High-Performance TPE," Modern Plastics, September, 1987 pp. 100-110, where the family of engineering-grade thermoplastic elastomers based on block copolymers of polyethers and polyamides is discussed.
SUMMARY OF THE INVENTION
Accordingly, it is an object of the present invention to provide a process for the production of novel materials made from by-products of polyethylene glycol diamine production.
It is another object of the present invention to provide novel materials which will have uses in the production of mixed polyamide-esters and polyurethanes by reaction with polyisocyanates.
Another object of the invention to provide a method for making these novel materials that is very simple.
In carrying out these and other objects of the invention, there is provided, in one form, novel bis-hydroxy diamides having the formula: ##STR2## where R is an alkylene moiety having from 3 to 34 carbon atoms or an arylene moiety having from 6 to 34 carbon atoms and where x ranges from 3 to 6.
DETAILED DESCRIPTION OF THE INVENTION
It has been discovered that the polyethylene glycol monoamines that are produced as by-products in the production of JEFFAMINE® EDR amines, by-products such as triethylene glycol monoamine and tetra-ethylene glycol monoamine, as well as materials such as diethylene glycol monoamine, may be advantageously reacted with dicarboxylic acids to form novel bis-hydroxy diamides. These novel bis-hydroxy diamides are useful to make mixed polyamide-esters and polyurethanes, as is seen in companion patent application Ser. No. 07/465,290, filed of even date, incorporated by reference herein.
The novel bis-hydroxy diamides of this invention may be made according to the reaction that may be schematically diagrammed as: ##STR3## where (I) are the polyethylene glycol monoamine by-products or other materials where x ranges from 2 to 6, preferably 2 to 5 and most preferably from 3 to 4. When x is 2, the compound is diethylene glycol monoamine. When x is 3 and 4, the compounds are triethylene glycol monoamine and tetraethylene glycol monoamine, respectively.
Compound (II) is the dicarboxylic acid and R may be an alkylene moiety having from 3 to 34 carbon atoms in one embodiment, in one aspect from 4 to 20 carbon atoms, and in a further aspect from 4 to 9, or an alkylene moiety having from 6 to 34 carbon atoms. In another aspect of the invention, the dicarboxylic acid may be selected from the group consisting of adipic acid, terephthalic acid, isophthalic acid, t-butyl isophthalic acid, 1,1,3-trimethyl-5-carboxy-3-(p-carboxyphenyl) indane also known as phenylindane dicarboxylic acid or PIDA and mixtures thereof. In yet another aspect, the dicarboxylic acid may be "dimer" acid which is mainly a C-36 dicarboxylic acid. This product is prepared by dimerizing unsaturated fatty acids. The esters of these acids may also be used.
The novel bis-hydroxy diamides are represented as compound (III) where R and x have the meanings given above. The bis-hydroxy diamides may be made by contacting at least two moles of the polyethylene glycol monoamine for every mole of dicarboxylic acid in the presence of heat, from approximately 180° to about 250° C. as a narrower range, where a broad temperature range for this reaction is from about 160° to about 280° C. Preferably, the molar ratio of monoamine to dibasic acid is about 2:1. No catalyst is required for this reaction, although one may be yet discovered that might prove beneficial. The reaction may also be conducted at atmospheric pressure. The reaction is quite selective yielding the bis-hydroxy diamides in nearly quantitative yield. The products are light-colored solids or liquids, depending on the starting materials. The products and methods of this invention will be described in more detail with reference to the following examples.
EXAMPLE 1 Reaction of Adipic Acid with Two Moles of Triethylene Glycol Monoamine
To a 500 ml 3-necked flask equipped with a stirrer, thermometer and Dean-Stark trap was added 73 g. of adipic acid (0.5 moles) and 150 g. of triethylene glycol monoamine (1 mole). The contents were heated at 192°-195° C. for about one hour after which 14 ml of water was collected. After an additional three hours at 200° C., a total of 15.4 ml of water was collected. The product was heated an additional hour at 200° C. and 30 mm. The off-white solid weighed 203.5 g, was water soluble and melted at 34° C. The total acetylatables was 4.92 meq/g. which gives a molecular weight of 406 (actual 408). The saponification number was 15.41 mg. KOH/g. which was determined by refluxing with alcoholic sodium hydroxide. This indicates only 5.4% of the product reacted with potassium hydroxide--or from another point of view this amide is hard to hydrolyze--in fact, all of the hydrolysis took place at an ester linkage, since NMR showed an ester to hydroxyl linkage ratio of about 1.1 to 32.3. Thus, the reaction was not 100% amide, but was selective in the order of 95%. There was no unreacted amine. The weight average molecular weight was 407 and the number average molecular weight was 407 by Gel Permeation Chromatography (GPC); the theoretical molecular weight was 408. These results prove the selectivity involved.
EXAMPLE 2 Reaction of Adipic Acid with Two Moles of Tetraethylene Glycol Monoamine
To a 500 ml, 3-necked flask equipped with a stirrer, thermometer and Dean-Stark trap was added 73 g. of adipic acid and 193 g. of T4 EGMA. The contents were heated for three hours at 185°-193° C. after which 14 ml of water was collected. The product was heated at 193° C. for one hour under full aspirator vacuum. The product weighed 245.1 g. and was a water soluble wax that melted at about 30° C. The NMR spectra showed the hydroxyl to ester peak to be 23:1 and there was no amine in the product. The product appeared fairly pure, both by NMR and GPC. The weight average molecular weight by GPC was 509 and the number average was 507 (theoretical=496).
Additional examples were conducted in a similar fashion, and the reactants and product properties are summarized in Table I. Table I illustrates that the product properties depend on the starting materials.
                                  TABLE I                                 
__________________________________________________________________________
Diols with Amide Linkages                                                 
                  Properties                                              
            Hydroxy-                                                      
                  Hydroxyl No.                                            
Ex.                                                                       
   Carboxylic Acid                                                        
            amine meq/g.                                                  
                      (Theory)                                            
__________________________________________________________________________
2  Adipic acid                                                            
            DGA   5.9 (6.0)                                               
                           Solid, creamy, light                           
                           brown, opaque                                  
3  Terephthalic acid                                                      
            DGA   2.5 (5.5)                                               
                           Solid, brown, hard,                            
                           transparent                                    
4  Isophthalic acid                                                       
            DGA   3.6 (5.5)                                               
                           Solid, soft, brown,                            
   t-Butyl IPA             transparent                                    
5  PIDA     DGA   3.4 (4.0)                                               
                           Solid, glass-like,                             
                           transparent, brown,                            
                           brittle                                        
6  NDC      DGA   --  --   Solid, hard, black                             
7  Adipic acid                                                            
            TEGMA 4.9 (4.9)                                               
                           --                                             
8  Terephthalic acid                                                      
            TEGMA 4.5 (4.7)                                               
                           Solid, creamy white                            
   Isophthalic acid                                                       
   t-Butyl IPA                                                            
9  PIDA     TEGMA 2.8 (3.4)                                               
                           Solid, hard,                                   
   NDC                     transparent, brown                             
   Trimesic acid                                                          
10 Adipic acid                                                            
            T4EGMA                                                        
                  --  --   Solid, creamy, white                           
11 Terephthalic acid                                                      
            T4EGMA                                                        
                   3.70                                                   
                       (3.88)                                             
                           Liquid, brown,                                 
                           transparent                                    
12 Isophthalic acid                                                       
            T4EGMA                                                        
                   3.55                                                   
                       (3.75)                                             
                           Liquid, brown,                                 
                           transparent                                    
13 t-Butyl IPA                                                            
            T4EGMA                                                        
                   3.30                                                   
                       (3.47)                                             
                           Liquid, brown,                                 
                           transparent                                    
14 PIDA     T4EGMA                                                        
                   2.84                                                   
                       (2.94)                                             
                           Semisolid, brown,                              
   NDC                     elastomeric                                    
__________________________________________________________________________
Note that the reactions of NH2 (CH2 CH2 O)x --H proceed well with aliphatic dibasic acids when x is 2, 3 or 4. When x is 2, the reaction with aromatic dicarboxylic acids is not as selective as the reactions of those compounds where x is 3 or 4. These results relate to reactions where two moles of polyethylene glycol monoamine were allowed to react with one mole of the dibasic acid. Some polymeric material is obtained, especially in the case of aromatic dicarboxylic acids, when higher reaction temperatures are required. To prepare the products of this invention more selectively, a higher ratio of polyethylene glycol monoamine to dibasic acid is suggested. Dialkyl and diaryl esters may be used instead of the corresponding dibasic acids. This fact may be noteworthy in the case of 2,6-naphthalene dicarboxylic acid where the commercial grade of the dimethyl ester is much better than the dicarboxylic acid.
The reaction of carboxylic acid with monoethanolamine is beset with ester and oxazoline formation when the reaction is heated to excess: ##STR4##
See J. American Chemical Soc., Vol. 57, p. 1079 (1935). The reaction of diethylene glycol monoamine with fatty acids is a promising commercial application (see Texaco Chemical Company data sheet "Amides From Diglycolamine® Agent", 1981). The reaction of triethylene glycol monoamine with tall fatty acids involves less by-products than the corresponding reaction with monoethanolamine. The reaction of adipic acid with monoethanolamine in an attempt to prepare polyesters yielded a brittle, brown unattractive solid. Of interest in the present investigation is the preparation of bis-dihydroxydiamides which can be used to make attractive polyesters from DGA, TEGMA, T4 EGMA, T5 EGMA, etc. These products have attractive uses as adhesives, as fuel additives and as corrosion inhibitors. The bis-hydroxy amides of the present invention are also useful as chain extenders in polyurethanes, especially in water absorbing polyurethanes.
Another advantage of these products in which at least two moles of glycol amine are allowed to react with a dibasic acid is that little, if any, cyclic products are obtained. For example, if glutaric, adipic or pimelic acid is allowed to react with triethylene glycol monoamine, some "crown" like products are obtained. The reaction using adipic acid and triethylene glycol monoamine proceeds to a certain extent as shown below: ##STR5##
Many modifications may be made in the process of this invention without departing from the spirit and scope thereof which are defined only in the appended claims. For example, one skilled in the art may discover that particular reaction conditions or acids, which may not be explicitly recited therein, but which are nevertheless anticipated, would give desirable results.
______________________________________                                    
GLOSSARY                                                                  
______________________________________                                    
DGA     Diethylene glycol monoamine (DEGMA) or                            
        Diglycolamine ® Agent made by                                 
        Texaco Chemical Company.                                          
IPA     Isophthalic acid.                                                 
NDC     Naphthalene dicarboxylic acid - esters of this acid are           
        preferred because of their relatively higher purity.              
TEGMA   Triethylene glycol monoamine.                                     
T.sub.4 EGMA                                                              
        Tetraethylene glycol monoamine.                                   
T.sub.5 EGMA                                                              
        Pentaethylene glycol monoamine.                                   
______________________________________                                    

Claims (3)

We claim:
1. Novel bis-hydroxy diamides having the formula: ##STR6## where R is an alkylene moiety having from 3 to 34 carbon atoms or an arylene moiety having from 6 to 34 carbon atoms, and where x ranges from 3 to 6.
2. The novel bis-hydroxy diamines of claim 1 where R is an alkyl or aryl moiety having from 4 to 20 carbon atoms and where x ranges from 3 to 5.
3. The novel bis-hydroxy diamines of claim 1 where R is an alkyl or aryl moiety having from 4 to 9 carbon atoms and where x ranges from 3 to 4.
US07/465,666 1990-01-16 1990-01-16 Bis-hydroxy diamides and methods therefor Abandoned USH1043H (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US07/465,666 USH1043H (en) 1990-01-16 1990-01-16 Bis-hydroxy diamides and methods therefor
EP19900314427 EP0437981B1 (en) 1990-01-16 1990-12-28 Polyamide-esters, processes for the manufacture thereof and intermediates therefor
DE69014582T DE69014582D1 (en) 1990-01-16 1990-12-28 Polyamide esters, processes for their preparation and interconnections therefor.
CA002033584A CA2033584A1 (en) 1990-01-16 1991-01-03 Bis-hydroxy diamides and methods therefor
JP1499091A JPH05105750A (en) 1990-01-16 1991-01-16 Polyamideester, process for manufacturing same and its intermediate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US07/465,666 USH1043H (en) 1990-01-16 1990-01-16 Bis-hydroxy diamides and methods therefor

Publications (1)

Publication Number Publication Date
USH1043H true USH1043H (en) 1992-04-07

Family

ID=23848687

Family Applications (1)

Application Number Title Priority Date Filing Date
US07/465,666 Abandoned USH1043H (en) 1990-01-16 1990-01-16 Bis-hydroxy diamides and methods therefor

Country Status (2)

Country Link
US (1) USH1043H (en)
CA (1) CA2033584A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040231556A1 (en) * 2002-12-26 2004-11-25 Canon Kabushiki Kaisha Anticurling agent, ink jet ink, method for ink jet recording and method for reducing curling
CN113201319A (en) * 2015-11-20 2021-08-03 瀚森公司 Chemical product for surface protection

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4123422A (en) 1977-11-25 1978-10-31 Ppg Industries, Inc. Amide modified saturated polyester polyols and method of making
US4373085A (en) 1980-09-03 1983-02-08 Schering Aktiengesellschaft Polyesteramide adhesives
US4397991A (en) 1981-04-24 1983-08-09 Schering Aktiengesellschaft Polyesteramide adhesives and sealing compounds
US4611051A (en) 1985-12-31 1986-09-09 Union Camp Corporation Novel poly(ester-amide) hot-melt adhesives
US4617342A (en) 1983-02-16 1986-10-14 Amoco Corporation Crystalline copolyamide from terephthalic acid, isophthalic acid and C.sub.6
US4656242A (en) 1985-06-07 1987-04-07 Henkel Corporation Poly(ester-amide) compositions

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4123422A (en) 1977-11-25 1978-10-31 Ppg Industries, Inc. Amide modified saturated polyester polyols and method of making
US4373085A (en) 1980-09-03 1983-02-08 Schering Aktiengesellschaft Polyesteramide adhesives
US4397991A (en) 1981-04-24 1983-08-09 Schering Aktiengesellschaft Polyesteramide adhesives and sealing compounds
US4617342A (en) 1983-02-16 1986-10-14 Amoco Corporation Crystalline copolyamide from terephthalic acid, isophthalic acid and C.sub.6
US4656242A (en) 1985-06-07 1987-04-07 Henkel Corporation Poly(ester-amide) compositions
US4611051A (en) 1985-12-31 1986-09-09 Union Camp Corporation Novel poly(ester-amide) hot-melt adhesives

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
Aoso et al., Chemical Abstracts 110:222613f (1989).
Fuji Photo Film Co., Chemical Abstracts 99:124243v (1983).
H. Wenker, "The Synthesis of Δ2 -Oxazolines and Δ2 -Thiazolines from N-Acyl-2-Aminoethands," J.A.C.S., vol. 57, Jun. 1935, pp. 1079-1080.
Habermeier et al., Chemical Abstracts 92:59762c (1980).
J. R. Flesher, Jr., "Polyether Block Amide: High-Performance TPE," Modern Plastics, Sep. 1987, pp. 100-110.
Osdena et al., Chemical Abstracts 65:12204g (1966).
Texaco Chemical Company Data Sheet, "Amides from Diglycolamine® Agent," 1981.
Yangol et al., Chemical Abstracts 75:49618v (1971).

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040231556A1 (en) * 2002-12-26 2004-11-25 Canon Kabushiki Kaisha Anticurling agent, ink jet ink, method for ink jet recording and method for reducing curling
US6966944B2 (en) * 2002-12-26 2005-11-22 Canon Kabushiki Kaisha Anticurling agent, ink jet ink, method for ink jet recording and method for reducing curling
CN113201319A (en) * 2015-11-20 2021-08-03 瀚森公司 Chemical product for surface protection

Also Published As

Publication number Publication date
CA2033584A1 (en) 1991-07-17

Similar Documents

Publication Publication Date Title
US5053484A (en) Polyether amide from mixture of polyether diamine
Meier Plant‐oil‐based polyamides and polyurethanes: Toward sustainable nitrogen‐containing thermoplastic materials
KR960015342B1 (en) Process of polyamide preparation
CA2038632A1 (en) Polyether amides and methods therefor
EP0180148B1 (en) Modified thermoplastic copolyetherimide ester elastomers
US5118785A (en) Preparation of polyether amide from tetraethylene glycol diamine and terephthalic acid
JP2916192B2 (en) Polyamide with elasticity
US5091572A (en) Amine terminated polyamides
US5340889A (en) Liquification of bis-carbonates of bis-glycidyl ethers
US5128441A (en) Block polyamido condensation products
JPH05331118A (en) New diamino diester and its production
USH1043H (en) Bis-hydroxy diamides and methods therefor
EP0437981B1 (en) Polyamide-esters, processes for the manufacture thereof and intermediates therefor
EP0301716A2 (en) Polyamidopolyamines
US6812324B2 (en) Method for preparing nylon 6 copolymer containing sulfonate comonomers
US5391826A (en) Amidopolyamines derived from amino-carboxylic acid
US5138097A (en) Amine terminated polyamides
US5239048A (en) Aromatic polyoxyalkylene amidoamines
US5082924A (en) Polyamide-ester from polyethylene glycol monoamine and catalytic process therefor
US5097070A (en) High molecular weight trifunctional polyoxyethylene amines
US4503197A (en) Water soluble polyethylene terephthalate derivatives
KR19980064301A (en) The functional group terminal polymer containing a sulfonate group through sulfonation of an ethylenically unsaturated polymer
US3919142A (en) Liquid polyamide epoxy resin hardener
US5686556A (en) Process for the preparation of an α-amino ω-ester monoamide and process for the manufacture of a polyamide
Brindell et al. Polymer applications of some terephthalaldehyde derivatives

Legal Events

Date Code Title Description
AS Assignment

Owner name: TEXACO CHEMICAL COMPANY, NEW YORK

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNORS:SPERANZA, GEORGE P.;LIN, JIANG-JEN;REEL/FRAME:005218/0472;SIGNING DATES FROM 19891214 TO 19891227

STCF Information on status: patent grant

Free format text: PATENTED CASE

AS Assignment

Owner name: UNITED STATES TRUST COMPANY OF NEW YORK (AS COLL

Free format text: SECURITY INTEREST;ASSIGNOR:HUNTSMAN CORPORATION (FORMERLY TEXACO CHEMICAL COMPANY);REEL/FRAME:006994/0001

Effective date: 19940421

AS Assignment

Owner name: TEXACO INC., NEW YORK

Free format text: SECURITY INTEREST;ASSIGNOR:HUNTSMAN CORPORATION ( FORMERLY TEXACO CHEMICAL COMPANY );REEL/FRAME:006993/0014

Effective date: 19940421

AS Assignment

Owner name: HUNTSMAN CORPORATION, UTAH

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:TEXACO CHEMICAL COMPANY;REEL/FRAME:007064/0807

Effective date: 19940421