US9884643B2 - Friction compensation control apparatus and method of MDPS system - Google Patents

Friction compensation control apparatus and method of MDPS system Download PDF

Info

Publication number
US9884643B2
US9884643B2 US14/796,947 US201514796947A US9884643B2 US 9884643 B2 US9884643 B2 US 9884643B2 US 201514796947 A US201514796947 A US 201514796947A US 9884643 B2 US9884643 B2 US 9884643B2
Authority
US
United States
Prior art keywords
torque
friction compensation
damping
mdps
control unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active, expires
Application number
US14/796,947
Other versions
US20160059884A1 (en
Inventor
Eun Kyung GU
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hyundai Mobis Co Ltd
Original Assignee
Hyundai Mobis Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hyundai Mobis Co Ltd filed Critical Hyundai Mobis Co Ltd
Assigned to HYUNDAI MOBIS CO., LTD. reassignment HYUNDAI MOBIS CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: GU, EUN KYUNG
Publication of US20160059884A1 publication Critical patent/US20160059884A1/en
Application granted granted Critical
Publication of US9884643B2 publication Critical patent/US9884643B2/en
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0457Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
    • B62D5/046Controlling the motor
    • B62D5/0463Controlling the motor calculating assisting torque from the motor based on driver input
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0457Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
    • B62D5/046Controlling the motor
    • B62D5/0466Controlling the motor for returning the steering wheel to neutral position

Definitions

  • the present disclosure relates to a friction compensation control apparatus and method of a motor driven power steering (MDPS) system.
  • MDPS motor driven power steering
  • the MDPS system controls a motor to apply light and comfortable steering feeling during low-speed operation of a vehicle, and controls the motor to apply heavy and safe steering feeling during high-speed operation of the vehicle. During an emergency situation, the MDPS system controls the motor to rapidly perform steering, thereby providing an optimal steering environment to a driver.
  • Embodiments of the present invention are directed to a friction compensation control apparatus and method of an MDPS system, which adjusts a friction compensation torque according to a damping torque in a middle/high-speed region, thereby improving damping control performance.
  • embodiments of the present invention are directed to a friction compensation control apparatus and method of an MDPS system, which performs friction compensation control at a friction compensation period and performs damping control at a damping control period, thereby securing on-center steering feeling, vehicle recoverability, torque build-up, and hand-free stability.
  • a friction compensation control apparatus of an MDPS system may include: a damping control unit configured to detect a damping torque of the MDPS system; and a friction compensation control module configured to detect a friction compensation torque using a column torque, a motor speed, and a vehicle speed, and adjust the detected friction compensation torque according to the magnitude of the damping torque.
  • the friction compensation control module may include: a friction compensation torque detection unit configured to detect a friction compensation torque using a column torque and a steering angle; and a gain adjusting unit configured to adjust a gain of the friction compensation torque detected through the friction compensation torque detection unit according to the damping torque, and decouple a damping control period from a friction compensation period.
  • the friction compensation control module may decrease the gain of the friction compensation torque according to the damping torque.
  • the friction compensation control module may decrease the friction compensation torque in proportion to the damping torque when the damping torque increases, and increase the decreased friction compensation torque in proportion to the damping torque when the damping torque decreases after reaching the maximum value.
  • the friction compensation control apparatus may further include: a torque control unit configured to output a torque command by reflecting a gear ratio of an MDPS motor into a steering torque detected through a torque sensor; an active restoration control unit configured to detect a restoration torque based on a steering angle sensed through a steering angle sensor, and output the detected restoration torque; and a torque command output unit configured to generate an MDPS motor torque command using one or more of the torque command provided from the torque control unit, the damping torque provided from the damping control unit, the restoration torque provided from the active restoration control unit, and the friction compensation torque provided from the friction compensation control module, and output the generated MDPS motor torque to the MDPS motor.
  • a torque control unit configured to output a torque command by reflecting a gear ratio of an MDPS motor into a steering torque detected through a torque sensor
  • an active restoration control unit configured to detect a restoration torque based on a steering angle sensed through a steering angle sensor, and output the detected restoration torque
  • a torque command output unit configured to generate an MDPS motor torque command using one or more of
  • a friction compensation control method of an MDPS system may include: detecting a damping torque of the MDPS system; detecting a friction compensation torque using a column torque, a motor speed, and a vehicle speed; and adjusting the detected friction compensation torque according to the magnitude of the damping torque.
  • the adjusting of the detected friction compensation torque may include decoupling a damping control period from a friction compensation period by adjusting a gain of the friction compensation torque according to the damping torque.
  • the adjusting of the detected friction compensation torque may include decreasing the gain of the friction compensation torque according to the damping torque when the damping torque is equal to or more than a preset value.
  • the adjusting of the detected friction compensation torque may include decreasing the friction compensation torque in proportion to the damping torque when the damping torque increases, and increasing the decreased friction compensation torque in proportion to the damping torque when the damping torque decreases after reaching the maximum value.
  • the friction compensation control method may further include generating an MDPS motor torque command using one or more of a torque command provided from a torque control unit, the damping torque, a restoration torque provided from an active restoration control unit, and the friction compensation torque, and outputting the generated MDPS motor toque to an MDPS motor.
  • FIG. 1 is a block configuration diagram of an MDPS system in accordance with an embodiment of the present invention.
  • FIG. 2 is a block configuration diagram of a friction compensation control apparatus of the MDPS in accordance with the embodiment of the present invention.
  • FIG. 3 is a diagram illustrating the changes of torques in a typical MDPS system.
  • FIG. 4 is a diagram illustrating the changes of torques in the MDPS system in accordance with the embodiment of the present invention.
  • FIG. 5 is a flowchart illustrating a friction compensation control method of an MDPS system in accordance with an embodiment of the present invention.
  • the friction of the vehicle may be divided into friction of the MDPS system, friction of a steering gear box, friction of a steering system, and friction of a tire.
  • the friction of the vehicle is also compensated for in order to improve the operation performance of the vehicle.
  • the zero point of a steering torque coincides with the zero point of a steering angle.
  • a friction compensation torque and a damping control torque may overlap each other to degrade the damping control performance.
  • on-center steering feeling, vehicle recoverability, torque build-up, and hand-free stability may be degraded.
  • FIG. 1 is a block configuration diagram of an MDPS system in accordance with an embodiment of the present invention.
  • FIG. 2 is a block configuration diagram of a friction compensation control apparatus of the MDPS in accordance with the embodiment of the present invention.
  • FIG. 3 is a diagram illustrating the changes of torques in a typical MDPS system.
  • FIG. 4 is a diagram illustrating the changes of torques in the MDPS system in accordance with the embodiment of the present invention.
  • the MDPS system for a vehicle in accordance with the embodiment of the present invention may include a torque control unit 10 , a damping control unit 20 , an active restoration control unit 30 , a friction compensation control module 40 , and a torque command output unit 50 .
  • Output values of the torque control unit 10 , the damping control unit 20 , and the active restoration control unit 30 may be combined in parallel by the torque command output unit 50 , and used to output a torque command of an MDPS motor through the torque command output unit 50 .
  • the torque control unit 10 may reflect a gear ratio of the MDPS motor into a steering torque sensed through a torque sensor of a steering wheel, and detect a steering torque command.
  • the damping control unit 20 may detect a damping torque through the steering direction and steering angle of the vehicle, sensed through a steering angle sensor, a vehicle speed sensed through a vehicle speed sensor, and a steering torque sensed through a steering sensor.
  • the active restoration control unit 30 may detect a restoration torque based on the steering angle sensed through the steering angle sensor.
  • the torque control unit 10 , the damping control unit 20 , and the active restoration control unit 30 may not be limited to the above-described embodiment, but configured through a publicly known algorithm.
  • the algorithm is not necessarily limited to a specific algorithm. Therefore, the torque control unit 10 , the damping control unit 20 , and the active restoration control unit 30 may be employed in various manners by those skilled in the art.
  • the friction compensation control module 40 may adjust a friction compensation torque using the damping torque outputted from the damping control unit 20 . Through this operation, the friction compensation control module 40 may prevent the degradation of the damping control performance, which may occur when a friction compensation control period and a damping control section overlap each other in a middle/high-speed region.
  • the friction compensation control module 40 may include a friction compensation torque detection unit 41 and a gain adjusting unit 42 .
  • the friction compensation torque detection unit 41 may detect a friction compensation torque using a column torque, a motor speed, and a vehicle speed.
  • the friction compensation torque detection unit 41 may calculate a steering torque caused by a backlash between a tire and a mechanical part of the vehicle and a phase difference of the steering angle, using the column torque, the steering angle, the vehicle speed, and the speed of the MDPS motor.
  • the column torque and the steering angle may be detected through the torque sensor and the steering angle sensor.
  • the friction compensation torque detection unit 41 may add the phase difference of the steering angle to the steering angle and calculate a compensation steering angle of which the phase is compensated for. Then, the friction compensation torque detection unit 41 may detect a friction compensation torque mapped to the calculated compensation steering angle from a friction compensation map.
  • the friction compensation map may be previously mapped through an experiment depending on a vehicle.
  • the friction compensation torque detection unit 41 may not be limited to the above-described embodiment, but configured through a publicly known algorithm.
  • the algorithm is not necessarily limited to a specific algorithm.
  • the friction compensation torque detection unit 41 may be employed in various manners by those skilled in the art.
  • the friction compensation torque detection unit 41 may input the detected friction compensation torque to the gain adjusting unit 42 .
  • the gain adjusting unit 42 may adjust the gain of the friction compensation torque detected through the friction compensation torque detection unit 41 according to the damping torque received from the damping control unit 20 . That is, the gain adjusting unit 42 may receive the friction compensation torque and the damping torque from the friction compensation torque detection unit 41 and the damping control unit 20 , respectively, and decouple a damping control period from a friction compensation period by adjusting the friction compensation torque according to the damping torque. In this case, the gain adjusting unit 42 may reduce the friction compensation torque by tuning the gain of the friction compensation torque to 1 according to the damping torque at a period in which the damping torque is equal to or more than a preset value.
  • the gain adjusting unit 42 may decrease the friction compensation torque in proportion to the damping torque when the damping torque increases, and increase the decreased friction compensation torque in proportion to the damping torque when the damping torque decreases after reaching the maximum value.
  • the preset value may indicate a friction compensation torque having a magnitude at which damping performance can be degraded by the friction compensation torque.
  • the gain adjusting unit 42 may adjust the friction compensation torque using a decoupling gain according to the damping torque, thereby preventing the degradation of the damping performance by the friction compensation torque.
  • FIG. 3 is a diagram illustrating a friction compensation torque of a typical MDPS system.
  • the direction of the friction compensation torque of this MDPS system is set to the opposite direction of a damping torque.
  • the damping control performance may be degraded by the friction compensation torque.
  • FIG. 4 is a diagram illustrating a friction compensation torque of the MDPS system in accordance with the embodiment of the present invention.
  • the friction compensation torque adjusted by the friction compensation control module 40 has a smaller value than the friction compensation torque of the typical MDPS system, while the direction thereof is set to the opposite direction of a damping torque.
  • the MDPS system can prevent the degradation of the damping performance by the friction compensation torque.
  • the gain adjusting unit 42 may input the adjusted friction compensation torque to the torque command output unit 50 .
  • the torque command output unit 50 may detect an MDPS motor torque command using any one of the torque command of the torque control unit 10 , the damping torque of the damping control unit 20 , the restoration torque of the active restoration control unit 30 , and the friction compensation torque of the friction compensation control module 40 , and input the detected MDPS motor torque command to the MDPS motor.
  • the MDPS motor may be operated to generate a proper auxiliary torque according to the MDPS motor torque command inputted from the torque command output unit 50 , thereby providing an optimal steering environment to a driver.
  • FIG. 5 is a flowchart illustrating a friction compensation control method of an MDPS system in accordance with an embodiment of the present invention.
  • the torque control unit 10 may detect a torque command by reflecting a gear ratio of the MDPS motor using a steering torque detected through the torque sensor of the steering wheel, and input the detected torque command to the torque command output unit 50 .
  • the active restoration control unit 30 may detect a restoration torque based on the steering angle sensed through the steering angle sensor, and input the detected restoration torque to the torque command output unit 50 .
  • the damping control unit 20 may detect a damping torque through the steering direction and steering angle of the steering wheel, a vehicle speed, and the steering torque at step S 10 , and input the detected damping torque to the torque command output unit 50 and the friction compensation control module 40 .
  • the friction compensation torque detection unit 41 of the friction compensation control module 40 may detect a friction compensation torque using a column torque, a motor speed, and the vehicle speed at step S 20 .
  • the friction compensation torque detection unit 41 may calculate a steering torque caused by a backlash between a tire and a mechanical part of the vehicle and a phase difference of the steering angle, using the column torque, the steering angle, the vehicle speed, and the speed of the MDPS motor, add the phase difference to the steering angle so as to calculate a compensation steering angle of which the phase is compensated for, detect a friction compensation torque mapped to the calculate compensation steering angle from the friction compensation map, and input the detected friction compensation torque to the gain adjusting unit 42 .
  • the gain adjusting unit 42 of the friction compensation control module 40 may adjust the gain of the friction compensation torque according to the damping torque received from the damping control unit 20 at step S 30 .
  • the gain adjusting unit 42 may reduce the friction compensation torque in order to prevent an overlap between the damping control period and the friction compensation control period.
  • the gain adjusting unit 42 may decrease the friction compensation torque in proportion to the damping torque. Then, when the damping torque decreases after reaching the maximum value, the gain adjusting unit 42 may increase the decreased friction compensation torque in proportion to the damping torque.
  • the gain adjusting unit 42 may input the adjusted friction compensation torque to the torque command output unit 50 .
  • the torque command output unit 50 may detect an MDPS motor torque command using one or more of the torque command of the torque control unit 10 , the damping torque of the damping control unit 20 , the restoration torque of the active restoration control unit 30 , and the friction compensation torque of the friction compensation control module 40 .
  • the torque command output unit 50 may input the detected MDPS motor torque command to the MDPS motor, and the MDPS motor may be operated according to the MDPS motor torque command inputted from the torque command output unit 50 .
  • the friction compensation control apparatus and method can improve the damping control performance by adjusting a friction compensation torque according to a damping torque in a middle/high-speed region, and secure on-center steering feeling, vehicle recoverability, torque build-up, and hand-free stability.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)

Abstract

A friction compensation control apparatus of a motor driven power steering (MDPS) system may include: a damping control unit configured to detect a damping torque of the MDPS system; and a friction compensation control module configured to detect a friction compensation torque using a column torque, a motor speed, and a vehicle speed, and adjust the detected friction compensation torque according to the magnitude of the damping torque.

Description

CROSS-REFERENCES TO RELATED APPLICATIONS
The present application claims priority to Korean application number 10-2014-0115992, filed on Sep. 2, 2014, which is incorporated by reference in its entirety.
BACKGROUND
The present disclosure relates to a friction compensation control apparatus and method of a motor driven power steering (MDPS) system.
The MDPS system controls a motor to apply light and comfortable steering feeling during low-speed operation of a vehicle, and controls the motor to apply heavy and safe steering feeling during high-speed operation of the vehicle. During an emergency situation, the MDPS system controls the motor to rapidly perform steering, thereby providing an optimal steering environment to a driver.
The related technology is disclosed in Korean Patent Laid-open Publication No. 10-2013-0139081 published on Dec. 20, 2013.
SUMMARY
Embodiments of the present invention are directed to a friction compensation control apparatus and method of an MDPS system, which adjusts a friction compensation torque according to a damping torque in a middle/high-speed region, thereby improving damping control performance.
Also, embodiments of the present invention are directed to a friction compensation control apparatus and method of an MDPS system, which performs friction compensation control at a friction compensation period and performs damping control at a damping control period, thereby securing on-center steering feeling, vehicle recoverability, torque build-up, and hand-free stability.
In one embodiment, a friction compensation control apparatus of an MDPS system may include: a damping control unit configured to detect a damping torque of the MDPS system; and a friction compensation control module configured to detect a friction compensation torque using a column torque, a motor speed, and a vehicle speed, and adjust the detected friction compensation torque according to the magnitude of the damping torque.
The friction compensation control module may include: a friction compensation torque detection unit configured to detect a friction compensation torque using a column torque and a steering angle; and a gain adjusting unit configured to adjust a gain of the friction compensation torque detected through the friction compensation torque detection unit according to the damping torque, and decouple a damping control period from a friction compensation period.
When the damping torque is equal to or more than a preset value, the friction compensation control module may decrease the gain of the friction compensation torque according to the damping torque.
The friction compensation control module may decrease the friction compensation torque in proportion to the damping torque when the damping torque increases, and increase the decreased friction compensation torque in proportion to the damping torque when the damping torque decreases after reaching the maximum value.
The friction compensation control apparatus may further include: a torque control unit configured to output a torque command by reflecting a gear ratio of an MDPS motor into a steering torque detected through a torque sensor; an active restoration control unit configured to detect a restoration torque based on a steering angle sensed through a steering angle sensor, and output the detected restoration torque; and a torque command output unit configured to generate an MDPS motor torque command using one or more of the torque command provided from the torque control unit, the damping torque provided from the damping control unit, the restoration torque provided from the active restoration control unit, and the friction compensation torque provided from the friction compensation control module, and output the generated MDPS motor torque to the MDPS motor.
In another embodiment, a friction compensation control method of an MDPS system may include: detecting a damping torque of the MDPS system; detecting a friction compensation torque using a column torque, a motor speed, and a vehicle speed; and adjusting the detected friction compensation torque according to the magnitude of the damping torque.
The adjusting of the detected friction compensation torque may include decoupling a damping control period from a friction compensation period by adjusting a gain of the friction compensation torque according to the damping torque.
The adjusting of the detected friction compensation torque may include decreasing the gain of the friction compensation torque according to the damping torque when the damping torque is equal to or more than a preset value.
The adjusting of the detected friction compensation torque may include decreasing the friction compensation torque in proportion to the damping torque when the damping torque increases, and increasing the decreased friction compensation torque in proportion to the damping torque when the damping torque decreases after reaching the maximum value.
The friction compensation control method may further include generating an MDPS motor torque command using one or more of a torque command provided from a torque control unit, the damping torque, a restoration torque provided from an active restoration control unit, and the friction compensation torque, and outputting the generated MDPS motor toque to an MDPS motor.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a block configuration diagram of an MDPS system in accordance with an embodiment of the present invention.
FIG. 2 is a block configuration diagram of a friction compensation control apparatus of the MDPS in accordance with the embodiment of the present invention.
FIG. 3 is a diagram illustrating the changes of torques in a typical MDPS system.
FIG. 4 is a diagram illustrating the changes of torques in the MDPS system in accordance with the embodiment of the present invention.
FIG. 5 is a flowchart illustrating a friction compensation control method of an MDPS system in accordance with an embodiment of the present invention.
DESCRIPTION OF EMBODIMENTS
Embodiments of the invention will hereinafter be described in detail with reference to the accompanying drawings. It should be noted that the drawings are not to precise scale and may be exaggerated in thickness of lines or sizes of components for descriptive convenience and clarity only. Furthermore, the terms as used herein are defined by taking functions of the invention into account and can be changed according to the custom or intention of users or operators. Therefore, definition of the terms should be made according to the overall disclosures set forth herein.
When an MDPS system controls the motor to perform power steering, compensation for friction is properly performed to improve the operation performance of the vehicle. The friction of the vehicle may be divided into friction of the MDPS system, friction of a steering gear box, friction of a steering system, and friction of a tire.
From the view point of the MDPS system, it is important to compensate for the friction of the MDPS system. However, the friction of the vehicle is also compensated for in order to improve the operation performance of the vehicle. When the vehicle straightly travels at a predetermined speed or more, the zero point of a steering torque coincides with the zero point of a steering angle.
In a middle/high-speed region, a friction compensation torque and a damping control torque may overlap each other to degrade the damping control performance. As a result, on-center steering feeling, vehicle recoverability, torque build-up, and hand-free stability may be degraded.
FIG. 1 is a block configuration diagram of an MDPS system in accordance with an embodiment of the present invention. FIG. 2 is a block configuration diagram of a friction compensation control apparatus of the MDPS in accordance with the embodiment of the present invention. FIG. 3 is a diagram illustrating the changes of torques in a typical MDPS system. FIG. 4 is a diagram illustrating the changes of torques in the MDPS system in accordance with the embodiment of the present invention.
Referring to FIG. 1, the MDPS system for a vehicle in accordance with the embodiment of the present invention may include a torque control unit 10, a damping control unit 20, an active restoration control unit 30, a friction compensation control module 40, and a torque command output unit 50.
Output values of the torque control unit 10, the damping control unit 20, and the active restoration control unit 30 may be combined in parallel by the torque command output unit 50, and used to output a torque command of an MDPS motor through the torque command output unit 50.
The torque control unit 10 may reflect a gear ratio of the MDPS motor into a steering torque sensed through a torque sensor of a steering wheel, and detect a steering torque command.
The damping control unit 20 may detect a damping torque through the steering direction and steering angle of the vehicle, sensed through a steering angle sensor, a vehicle speed sensed through a vehicle speed sensor, and a steering torque sensed through a steering sensor.
The active restoration control unit 30 may detect a restoration torque based on the steering angle sensed through the steering angle sensor.
For reference, the torque control unit 10, the damping control unit 20, and the active restoration control unit 30 may not be limited to the above-described embodiment, but configured through a publicly known algorithm. In this case, the algorithm is not necessarily limited to a specific algorithm. Therefore, the torque control unit 10, the damping control unit 20, and the active restoration control unit 30 may be employed in various manners by those skilled in the art.
The friction compensation control module 40 may adjust a friction compensation torque using the damping torque outputted from the damping control unit 20. Through this operation, the friction compensation control module 40 may prevent the degradation of the damping control performance, which may occur when a friction compensation control period and a damping control section overlap each other in a middle/high-speed region.
Referring to FIG. 2, the friction compensation control module 40 may include a friction compensation torque detection unit 41 and a gain adjusting unit 42.
The friction compensation torque detection unit 41 may detect a friction compensation torque using a column torque, a motor speed, and a vehicle speed.
In this case, the friction compensation torque detection unit 41 may calculate a steering torque caused by a backlash between a tire and a mechanical part of the vehicle and a phase difference of the steering angle, using the column torque, the steering angle, the vehicle speed, and the speed of the MDPS motor. The column torque and the steering angle may be detected through the torque sensor and the steering angle sensor.
The friction compensation torque detection unit 41 may add the phase difference of the steering angle to the steering angle and calculate a compensation steering angle of which the phase is compensated for. Then, the friction compensation torque detection unit 41 may detect a friction compensation torque mapped to the calculated compensation steering angle from a friction compensation map. The friction compensation map may be previously mapped through an experiment depending on a vehicle.
The friction compensation torque detection unit 41 may not be limited to the above-described embodiment, but configured through a publicly known algorithm. The algorithm is not necessarily limited to a specific algorithm. Thus, the friction compensation torque detection unit 41 may be employed in various manners by those skilled in the art.
The friction compensation torque detection unit 41 may input the detected friction compensation torque to the gain adjusting unit 42.
The gain adjusting unit 42 may adjust the gain of the friction compensation torque detected through the friction compensation torque detection unit 41 according to the damping torque received from the damping control unit 20. That is, the gain adjusting unit 42 may receive the friction compensation torque and the damping torque from the friction compensation torque detection unit 41 and the damping control unit 20, respectively, and decouple a damping control period from a friction compensation period by adjusting the friction compensation torque according to the damping torque. In this case, the gain adjusting unit 42 may reduce the friction compensation torque by tuning the gain of the friction compensation torque to 1 according to the damping torque at a period in which the damping torque is equal to or more than a preset value. The gain adjusting unit 42 may decrease the friction compensation torque in proportion to the damping torque when the damping torque increases, and increase the decreased friction compensation torque in proportion to the damping torque when the damping torque decreases after reaching the maximum value. The preset value may indicate a friction compensation torque having a magnitude at which damping performance can be degraded by the friction compensation torque.
That is, the gain adjusting unit 42 may adjust the friction compensation torque using a decoupling gain according to the damping torque, thereby preventing the degradation of the damping performance by the friction compensation torque.
FIG. 3 is a diagram illustrating a friction compensation torque of a typical MDPS system. Referring to FIG. 3, the direction of the friction compensation torque of this MDPS system is set to the opposite direction of a damping torque. In this case, the damping control performance may be degraded by the friction compensation torque.
FIG. 4 is a diagram illustrating a friction compensation torque of the MDPS system in accordance with the embodiment of the present invention. Referring to FIG. 4, the friction compensation torque adjusted by the friction compensation control module 40 has a smaller value than the friction compensation torque of the typical MDPS system, while the direction thereof is set to the opposite direction of a damping torque. Thus, the MDPS system can prevent the degradation of the damping performance by the friction compensation torque.
The gain adjusting unit 42 may input the adjusted friction compensation torque to the torque command output unit 50.
In this case, the torque command output unit 50 may detect an MDPS motor torque command using any one of the torque command of the torque control unit 10, the damping torque of the damping control unit 20, the restoration torque of the active restoration control unit 30, and the friction compensation torque of the friction compensation control module 40, and input the detected MDPS motor torque command to the MDPS motor.
The MDPS motor may be operated to generate a proper auxiliary torque according to the MDPS motor torque command inputted from the torque command output unit 50, thereby providing an optimal steering environment to a driver.
Hereafter, a friction compensation control method in accordance with an embodiment of the present invention will be described in detail with reference to FIG. 5.
FIG. 5 is a flowchart illustrating a friction compensation control method of an MDPS system in accordance with an embodiment of the present invention.
Referring to FIG. 5, the torque control unit 10 may detect a torque command by reflecting a gear ratio of the MDPS motor using a steering torque detected through the torque sensor of the steering wheel, and input the detected torque command to the torque command output unit 50.
The active restoration control unit 30 may detect a restoration torque based on the steering angle sensed through the steering angle sensor, and input the detected restoration torque to the torque command output unit 50.
In particular, the damping control unit 20 may detect a damping torque through the steering direction and steering angle of the steering wheel, a vehicle speed, and the steering torque at step S10, and input the detected damping torque to the torque command output unit 50 and the friction compensation control module 40.
Then, the friction compensation torque detection unit 41 of the friction compensation control module 40 may detect a friction compensation torque using a column torque, a motor speed, and the vehicle speed at step S20.
In this case, the friction compensation torque detection unit 41 may calculate a steering torque caused by a backlash between a tire and a mechanical part of the vehicle and a phase difference of the steering angle, using the column torque, the steering angle, the vehicle speed, and the speed of the MDPS motor, add the phase difference to the steering angle so as to calculate a compensation steering angle of which the phase is compensated for, detect a friction compensation torque mapped to the calculate compensation steering angle from the friction compensation map, and input the detected friction compensation torque to the gain adjusting unit 42.
Therefore, the gain adjusting unit 42 of the friction compensation control module 40 may adjust the gain of the friction compensation torque according to the damping torque received from the damping control unit 20 at step S30. In this case, the gain adjusting unit 42 may reduce the friction compensation torque in order to prevent an overlap between the damping control period and the friction compensation control period. When the damping torque increases as illustrated in FIG. 4, the gain adjusting unit 42 may decrease the friction compensation torque in proportion to the damping torque. Then, when the damping torque decreases after reaching the maximum value, the gain adjusting unit 42 may increase the decreased friction compensation torque in proportion to the damping torque.
Then, the gain adjusting unit 42 may input the adjusted friction compensation torque to the torque command output unit 50.
As the torque command of the torque control unit 10, the damping torque of the damping control unit 20, the restoration torque of the active restoration control unit 30, and the friction compensation torque limited by the damping torque are inputted, the torque command output unit 50 may detect an MDPS motor torque command using one or more of the torque command of the torque control unit 10, the damping torque of the damping control unit 20, the restoration torque of the active restoration control unit 30, and the friction compensation torque of the friction compensation control module 40.
Then, the torque command output unit 50 may input the detected MDPS motor torque command to the MDPS motor, and the MDPS motor may be operated according to the MDPS motor torque command inputted from the torque command output unit 50.
In accordance with the embodiments of the present invention, the friction compensation control apparatus and method can improve the damping control performance by adjusting a friction compensation torque according to a damping torque in a middle/high-speed region, and secure on-center steering feeling, vehicle recoverability, torque build-up, and hand-free stability.
Although embodiments of the invention have been disclosed for illustrative purposes, those skilled in the art will appreciate that various modifications, additions and substitutions are possible, without departing from the scope and spirit of the invention as defined in the accompanying claims.

Claims (8)

What is claimed is:
1. A friction compensation control apparatus of a motor driven power steering (MDPS) system, comprising:
a damping control unit configured to detect a damping torque of the MDPS system; and
a friction compensation control module configured to detect a friction compensation torque using a column torque, a motor speed, and a vehicle speed, and adjust the detected friction compensation torque according to the magnitude of the damping torque,
wherein the friction compensation control module comprises:
a friction compensation torque detection unit configured to detect a friction compensation torque using a column torque and a steering angle; and
a gain adjusting unit configured to adjust a gain of the friction compensation torque detected through the friction compensation torque detection unit according to the damping torque, and decouple a damping control period from a friction compensation period.
2. The friction compensation control apparatus of claim 1, wherein when the damping torque is equal to or more than a preset value, the friction compensation control module decreases the gain of the friction compensation torque according to the damping torque.
3. The friction compensation control apparatus of claim 1, wherein the friction compensation control module decreases the friction compensation torque in proportion to the damping torque when the damping torque increases, and increases the decreased friction compensation torque in proportion to the damping torque when the damping torque decreases after reaching the maximum value.
4. The friction compensation control apparatus of claim 1, further comprising:
a torque control unit configured to output a torque command by reflecting a gear ratio of an MDPS motor into a steering torque detected through a torque sensor;
an active restoration control unit configured to detect a restoration torque based on a steering angle sensed through a steering angle sensor, and output the detected restoration torque; and
a torque command output unit configured to generate an MDPS motor torque command using one or more of the torque command provided from the torque control unit, the damping torque provided from the damping control unit, the restoration torque provided from the active restoration control unit, and the friction compensation torque provided from the friction compensation control module, and output the generated MDPS motor torque to the MDPS motor.
5. A friction compensation control method of an MDPS system, comprising:
detecting a damping torque of the MDPS system;
detecting a friction compensation torque using a column torque, a motor speed, and a vehicle speed; and
adjusting the detected friction compensation torque according to the magnitude of the damping torque,
wherein the adjusting of the detected friction compensation torque comprises decoupling a damping control period from a friction compensation period by adjusting a gain of the friction compensation torque according to the damping torque.
6. A friction compensation control method of a motor driven power steering (MDPS) system the method comprising:
detecting a damping torque of the MDPS system;
detecting a friction compensation torque using a column torque, a motor speed, and a vehicle speed; and
adjusting the detected friction compensation torque according to the magnitude of the damping torque,
wherein the adjusting of the detected friction compensation torque comprises decreasing a gain of the friction compensation torque according to the damping torque when the damping torque is equal to or more than a preset value.
7. The method of claim 6, wherein the adjusting of the detected friction compensation torque comprises decreasing the friction compensation torque in proportion to the damping torque when the damping torque increases, and increasing the decreased friction compensation torque in proportion to the damping torque when the damping torque decreases after reaching the maximum value.
8. The method of claim 6, further comprising generating an MDPS motor torque command using one or more of a torque command provided from a torque control unit, the damping torque, a restoration torque provided from an active restoration control unit, and the friction compensation torque, and outputting the generated MDPS motor toque to an MDPS motor.
US14/796,947 2014-09-02 2015-07-10 Friction compensation control apparatus and method of MDPS system Active 2036-01-17 US9884643B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2014-0115992 2014-09-02
KR1020140115992A KR102172576B1 (en) 2014-09-02 2014-09-02 Priction compenstion apparatus and method of mdps system

Publications (2)

Publication Number Publication Date
US20160059884A1 US20160059884A1 (en) 2016-03-03
US9884643B2 true US9884643B2 (en) 2018-02-06

Family

ID=55401593

Family Applications (1)

Application Number Title Priority Date Filing Date
US14/796,947 Active 2036-01-17 US9884643B2 (en) 2014-09-02 2015-07-10 Friction compensation control apparatus and method of MDPS system

Country Status (3)

Country Link
US (1) US9884643B2 (en)
KR (1) KR102172576B1 (en)
CN (1) CN105383555B (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102307258B1 (en) * 2015-11-20 2021-10-01 현대모비스 주식회사 Steering return control apparatus of motor driven power steering and method thereof
KR102440664B1 (en) * 2016-04-07 2022-09-05 현대자동차주식회사 Feedback control method of motor driving power steering system
US10053143B2 (en) 2016-11-07 2018-08-21 Ford Global Technologies, Llc Systems and methods for improving torque feel in column EPAS
KR102228161B1 (en) 2017-01-02 2021-03-17 현대모비스 주식회사 Apparatus for controlling damping of electric power steering system
DE102017110549A1 (en) * 2017-05-15 2018-11-15 Trw Automotive Gmbh Method for detecting hands on the steering wheel
KR102598947B1 (en) 2018-05-04 2023-11-06 현대자동차주식회사 Fuel cell system and method for controlling therof
KR102049923B1 (en) * 2018-08-27 2019-11-28 현대모비스 주식회사 Apparatus for controlling motor driven power steering system
KR102156259B1 (en) * 2020-01-08 2020-09-15 이래에이엠에스 주식회사 Electric power steering system
CN111762260B (en) * 2020-06-22 2021-11-19 北京汽车股份有限公司 Power-assisted steering system redundancy control system and method based on calibrated vehicle speed and vehicle
CN112061229A (en) * 2020-08-06 2020-12-11 上海拓为汽车技术有限公司 Friction compensation method of electric power steering system

Citations (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5740040A (en) * 1994-12-21 1998-04-14 Mitsubishi Denki Kabushiki Kaisha Electric power steering apparatus with enhanced road feel
US20020026267A1 (en) * 1998-09-30 2002-02-28 Takayuki Kifuku Electric power steering system
US20020060538A1 (en) * 2000-11-17 2002-05-23 Nsk Ltd. Control unit for electric power steering apparatus
US20020116105A1 (en) * 2000-05-24 2002-08-22 Hui Chen Controller for motor power steering system
US6450287B1 (en) * 1999-08-19 2002-09-17 Mitsubishi Denki Kabushiki Kaisha Electric power steering controller and control method thereof
US20030074120A1 (en) * 2001-10-11 2003-04-17 Kleinau Julie A. Method and apparatus for motor velocity measurement compensation in electric power steering damping
US20060069481A1 (en) * 2004-09-27 2006-03-30 Nissan Motor Co., Ltd. Vehicular steering control apparatus
US20060076916A1 (en) * 2004-10-02 2006-04-13 Arnulf Heilig Position-dependent friction compensation for steering systems
US20070265751A1 (en) * 2004-10-14 2007-11-15 Toyota Jidosha Kabushiki Kaisha Control Device of Electric Power Steering Device for Vehicles in Which Steered Wheels Are Driven
US20080189014A1 (en) * 2005-11-02 2008-08-07 Mitsubishi Electric Corp. Vehicular steering apparatus
US20090055049A1 (en) * 2005-02-24 2009-02-26 Nsk Ltd. Control apparatus of electric power steering apparatus
US7523806B2 (en) * 2005-09-20 2009-04-28 Delphi Technologies, Inc Method and system for improved active damping of steering systems
US20100168963A1 (en) * 2006-05-08 2010-07-01 Nsk Ltd. Control system for electronic power steering
US20100268421A1 (en) * 2009-04-17 2010-10-21 Hyundai Mobis Co., Ltd. Method of returning steering wheel using motor
US20120209475A1 (en) * 2011-02-16 2012-08-16 Steering Solutions Ip Holding Corporation Electric Power Steering Control Methods And Systems Using Hysteresis Compensation
US20120232759A1 (en) * 2009-11-20 2012-09-13 Honda Motor Co., Ltd Electric power steering device
US8423245B2 (en) * 2007-03-12 2013-04-16 Mitsubishi Electric Corporation Electric power steering control apparatus
US20130261894A1 (en) * 2010-11-18 2013-10-03 Nsk Ltd. Electric Power Steering Apparatus
US8612094B2 (en) * 2008-03-12 2013-12-17 Steering Solutions Ip Holding Corporation Systems and methods involving velocity dependent damping
KR20130139081A (en) 2012-06-12 2013-12-20 현대자동차주식회사 Apparatus for compensating friction in mdps system and method thereof
US20150046040A1 (en) * 2013-08-08 2015-02-12 Hyundai Mobis Co., Ltd. Apparatus and method for driving motor driven power steering
US20150066306A1 (en) * 2013-08-29 2015-03-05 Jtekt Corporation Electric power steering system
US20150066299A1 (en) * 2013-08-27 2015-03-05 Hyundai Mobis Co., Ltd. Apparatus and method for stabilizing steering feel in motor-driven power steering
US20150112551A1 (en) * 2013-10-22 2015-04-23 Hyundai Mobis Co., Ltd. Friction compensation logic of motor driven power steering and method thereof
US9150244B2 (en) * 2009-04-07 2015-10-06 Steering Solutions Ip Holding Corporation Friction estimation and detection for an electric power steering system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3599613B2 (en) * 1999-09-14 2004-12-08 三菱電機株式会社 Electric power steering apparatus and control method thereof
JP2006056473A (en) * 2004-08-23 2006-03-02 Mazda Motor Corp Electric power steering device
CN103442969B (en) * 2011-03-29 2016-02-17 株式会社捷太格特 Electronic power assist steering equipment

Patent Citations (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5740040A (en) * 1994-12-21 1998-04-14 Mitsubishi Denki Kabushiki Kaisha Electric power steering apparatus with enhanced road feel
US20020026267A1 (en) * 1998-09-30 2002-02-28 Takayuki Kifuku Electric power steering system
US6450287B1 (en) * 1999-08-19 2002-09-17 Mitsubishi Denki Kabushiki Kaisha Electric power steering controller and control method thereof
US20020116105A1 (en) * 2000-05-24 2002-08-22 Hui Chen Controller for motor power steering system
US20020060538A1 (en) * 2000-11-17 2002-05-23 Nsk Ltd. Control unit for electric power steering apparatus
US20030074120A1 (en) * 2001-10-11 2003-04-17 Kleinau Julie A. Method and apparatus for motor velocity measurement compensation in electric power steering damping
US20060069481A1 (en) * 2004-09-27 2006-03-30 Nissan Motor Co., Ltd. Vehicular steering control apparatus
US20060076916A1 (en) * 2004-10-02 2006-04-13 Arnulf Heilig Position-dependent friction compensation for steering systems
US20070265751A1 (en) * 2004-10-14 2007-11-15 Toyota Jidosha Kabushiki Kaisha Control Device of Electric Power Steering Device for Vehicles in Which Steered Wheels Are Driven
US20090055049A1 (en) * 2005-02-24 2009-02-26 Nsk Ltd. Control apparatus of electric power steering apparatus
US7523806B2 (en) * 2005-09-20 2009-04-28 Delphi Technologies, Inc Method and system for improved active damping of steering systems
US20080189014A1 (en) * 2005-11-02 2008-08-07 Mitsubishi Electric Corp. Vehicular steering apparatus
US20100168963A1 (en) * 2006-05-08 2010-07-01 Nsk Ltd. Control system for electronic power steering
US8423245B2 (en) * 2007-03-12 2013-04-16 Mitsubishi Electric Corporation Electric power steering control apparatus
US8612094B2 (en) * 2008-03-12 2013-12-17 Steering Solutions Ip Holding Corporation Systems and methods involving velocity dependent damping
US9150244B2 (en) * 2009-04-07 2015-10-06 Steering Solutions Ip Holding Corporation Friction estimation and detection for an electric power steering system
US20100268421A1 (en) * 2009-04-17 2010-10-21 Hyundai Mobis Co., Ltd. Method of returning steering wheel using motor
US20120232759A1 (en) * 2009-11-20 2012-09-13 Honda Motor Co., Ltd Electric power steering device
US20130261894A1 (en) * 2010-11-18 2013-10-03 Nsk Ltd. Electric Power Steering Apparatus
US20120209475A1 (en) * 2011-02-16 2012-08-16 Steering Solutions Ip Holding Corporation Electric Power Steering Control Methods And Systems Using Hysteresis Compensation
KR20130139081A (en) 2012-06-12 2013-12-20 현대자동차주식회사 Apparatus for compensating friction in mdps system and method thereof
US20150046040A1 (en) * 2013-08-08 2015-02-12 Hyundai Mobis Co., Ltd. Apparatus and method for driving motor driven power steering
US20150066299A1 (en) * 2013-08-27 2015-03-05 Hyundai Mobis Co., Ltd. Apparatus and method for stabilizing steering feel in motor-driven power steering
US20150066306A1 (en) * 2013-08-29 2015-03-05 Jtekt Corporation Electric power steering system
US20150112551A1 (en) * 2013-10-22 2015-04-23 Hyundai Mobis Co., Ltd. Friction compensation logic of motor driven power steering and method thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Machine Translation of Korean Publication 20130139081, published Dec. 20, 2013. *

Also Published As

Publication number Publication date
US20160059884A1 (en) 2016-03-03
KR20160027663A (en) 2016-03-10
CN105383555B (en) 2018-01-23
CN105383555A (en) 2016-03-09
KR102172576B1 (en) 2020-11-02

Similar Documents

Publication Publication Date Title
US9884643B2 (en) Friction compensation control apparatus and method of MDPS system
US9944315B2 (en) Apparatus and method for controlling steering return of motor driven power steering system
KR102341111B1 (en) Motor driven power steering system and control method thereof
US9452774B2 (en) Compensation control apparatus of motor driven power steering system
JP6022117B2 (en) Electric power steering device
US10246123B2 (en) Steering control apparatus and steering control method
US10549778B2 (en) Motor driven power steering system and method for determining neutral position thereof
US11820443B2 (en) Apparatus and method for controlling motor driven power steering
US10207738B2 (en) Apparatus and method for compensating for steering angle signal and motor angle signal of MDPS system
US10618549B2 (en) Damping control apparatus and method of motor driven power steering system
CN109305214B (en) Vibration damping apparatus and method for motor-driven power steering mechanism
US9821842B2 (en) Rear wheel steering system and control method thereof
KR102376065B1 (en) Motor driven power steering system control method
US11097771B2 (en) Motor-driven power steering apparatus and control method thereof
US9216762B2 (en) Apparatus and method for driving motor driven power steering
US11034381B2 (en) Apparatus and method of controlling motor-driven power steering system
US20190193778A1 (en) Torque compensating apparatus and method for motor driven power steering system
JP5040730B2 (en) Control device for electric power steering device
KR102049922B1 (en) Apparatus for driving of motor drive power steering and method thereof
KR20170111105A (en) Apparatus and method of feedback control for mdps system
KR20160092226A (en) Feedback control method for an motor-driven power steering using a rack force sensing
US20220169303A1 (en) Apparatus and method for controlling steering of electric power steering system
KR20170080405A (en) Control apparatus and method for electric power steering
KR20040056522A (en) Motor output control apparatus in eps system
KR20150011728A (en) Method for operating motor driven power steering apparatus

Legal Events

Date Code Title Description
AS Assignment

Owner name: HYUNDAI MOBIS CO., LTD., KOREA, REPUBLIC OF

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:GU, EUN KYUNG;REEL/FRAME:036116/0814

Effective date: 20150618

STCF Information on status: patent grant

Free format text: PATENTED CASE

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 4