US9530568B2 - Method of manufacturing conductive polymer microparticle dispersion and method of manufacturing electrolytic capacitor containing the conductive polymer microparticle dispersion - Google Patents

Method of manufacturing conductive polymer microparticle dispersion and method of manufacturing electrolytic capacitor containing the conductive polymer microparticle dispersion Download PDF

Info

Publication number
US9530568B2
US9530568B2 US14/122,247 US201314122247A US9530568B2 US 9530568 B2 US9530568 B2 US 9530568B2 US 201314122247 A US201314122247 A US 201314122247A US 9530568 B2 US9530568 B2 US 9530568B2
Authority
US
United States
Prior art keywords
conductive polymer
polyanion
polymer microparticle
microparticle dispersion
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active, expires
Application number
US14/122,247
Other versions
US20150187504A1 (en
Inventor
Kazuhiro Takatani
Tatsuji Aoyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Assigned to PANASONIC CORPORATION reassignment PANASONIC CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: AOYAMA, TATSUJI, TAKATANI, KAZUHIRO
Assigned to PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD. reassignment PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: PANASONIC CORPORATION
Publication of US20150187504A1 publication Critical patent/US20150187504A1/en
Application granted granted Critical
Publication of US9530568B2 publication Critical patent/US9530568B2/en
Assigned to PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD. reassignment PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD. CORRECTIVE ASSIGNMENT TO CORRECT THE ERRONEOUSLY FILED APPLICATION NUMBERS 13/384239, 13/498734, 14/116681 AND 14/301144 PREVIOUSLY RECORDED ON REEL 034194 FRAME 0143. ASSIGNOR(S) HEREBY CONFIRMS THE ASSIGNMENT. Assignors: PANASONIC CORPORATION
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/0029Processes of manufacture
    • H01G9/0036Formation of the solid electrolyte layer
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • C08G61/126Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds with a five-membered ring containing one sulfur atom in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/18Homopolymers or copolymers of aromatic monomers containing elements other than carbon and hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L65/00Compositions of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Compositions of derivatives of such polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/022Electrolytes; Absorbents
    • H01G9/025Solid electrolytes
    • H01G9/028Organic semiconducting electrolytes, e.g. TCNQ
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/15Solid electrolytic capacitors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/142Side-chains containing oxygen
    • C08G2261/1424Side-chains containing oxygen containing ether groups, including alkoxy
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/322Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed
    • C08G2261/3223Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed containing one or more sulfur atoms as the only heteroatom, e.g. thiophene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/70Post-treatment
    • C08G2261/79Post-treatment doping
    • C08G2261/794Post-treatment doping with polymeric dopants
    • H01G2009/0014

Definitions

  • the technical field relates to a method of manufacturing a conductive polymer microparticle dispersion applicable to an antistatic agent, a solid electrolyte for an electrolytic capacitor, a display element, etc., and the technical field also relates to a method of manufacturing an electrolytic capacitor using the conductive polymer microparticle dispersion.
  • Dopant-containing polymers having a ⁇ -conjugated structure are known to have high conductivity. Dopants are substances to develop conductivity. These polymers are used in antistatic agents, display elements, etc. because of their chemical and physical stability in addition to their high conductivity. They have also been suggested to be used in solid electrolytes for electrolytic capacitors.
  • One known process of manufacturing such a conductive polymer having a ⁇ -conjugated structure is to oxidatively polymerize a monomer with an oxidizing agent in the presence of a dopant.
  • a dopant for example, the use of 3,4-ethylenedioxythiophene as a monomer, and a polystyrene sulfonic acid as a dopant results in highly conductive poly3,4-ethylenedioxythiophene doped with the polystyrene sulfonic acid.
  • the poly3,4-ethylenedioxythiophene prepared by this method is in the form of microparticles dispersed in water.
  • the above-described method can prepare a conductive polymer microparticle dispersion (see, for example, Patent Literature 1).
  • Patent Literature 1 Japanese Unexamined Patent Publication No. 2008-222850
  • the method of manufacturing a conductive polymer microparticle dispersion according to the present invention includes the following steps:
  • the polyanion is a polystyrene sulfonic acid and/or its salt each having a Hazen color number in the range of 10 to 1000, inclusive.
  • the Hazen color number is determined by measuring the hue of a 2% aqueous solution of the polyanion by the American Public Health Association (APHA) method.
  • APHA American Public Health Association
  • the conductive polymer microparticle dispersion prepared by the above-described method can be used as a material of a solid electrolyte for an electrolytic capacitor to drastically reduce the ESR of the electrolytic capacitor.
  • FIG. 1 is a partially cutaway schematic perspective view of an electrolytic capacitor manufactured by using a conductive polymer microparticle dispersion prepared by the method according to an exemplary embodiment of the present invention.
  • FIG. 2 is a partial sectional view of a capacitor element contained in the electrolytic capacitor shown in FIG. 1 .
  • the electrolytic capacitor may have a high ESR depending on the method and conditions of forming a conductive polymer film. Therefore, when a conductive polymer microparticle dispersion having a ⁇ -conjugated structure is used as a solid electrolyte for an electrolytic capacitor, it is crucial to optimize the method and conditions of forming the conductive polymer film.
  • FIG. 1 is a partially cutaway perspective view of an electrolytic capacitor manufactured by using a conductive polymer microparticle dispersion prepared by the method according to the exemplary embodiment of the present invention.
  • FIG. 2 is a partial sectional view of a capacitor element contained in the electrolytic capacitor shown in FIG. 1 .
  • the electrolytic capacitor includes capacitor element 10 , metal case 14 , and sealing member 13 .
  • Case 14 houses capacitor element 10 , and sealing member 13 seals the opening of case 14 .
  • case 14 and sealing member 13 together form an outer body which seals capacitor element 10 .
  • capacitor element 10 includes positive electrode 1 , negative electrode 2 , separator 4 , and solid electrolyte layer 5 . Separator 4 and solid electrolyte layer 5 are interposed between positive electrode 1 and negative electrode 2 .
  • Positive electrode 1 is made of an aluminum foil whose surface is etched to roughen it first and then subjected to a chemical conversion treatment to form dielectric oxide film layer 3 .
  • Negative electrode 2 is also made of an aluminum foil whose surface is etched to roughen it.
  • Positive electrode 1 and negative electrode 2 are connected to lead terminals 11 and 12 , respectively, as shown in FIG. 1 . Lead terminals 11 and 12 are led out through sealing member 13 .
  • Capacitor element 10 includes positive electrode 1 and negative electrode 2 wound with separator 4 interposed therebetween. Capacitor element 10 is impregnated with an after-mentioned conductive polymer microparticle dispersion, and then dried to remove the solvent component. As a result, conductive polymer solid electrolyte layer 5 is formed between positive electrode 1 and negative electrode 2 .
  • a dispersion liquid is prepared by dispersing, in a solvent mainly composed of water, at least one monomer selected from thiophenes and their derivatives, and a polyanion as a dopant. Then, the dispersion liquid is mixed with an oxidizing agent so as to oxidatively polymerize the monomer. The result is a conductive polythiophene microparticle dispersion doped with the polyanion.
  • the polyanion is polystyrene sulfonic acid and/or its salt each having a Hazen color number in the range of 10 to 1000, inclusive.
  • the Hazen color number is determined by measuring the hue of a 2% aqueous solution of the polyanion by the APHA method.
  • a Hazen color number is determined by comparing the color of the solution under test with the color of a standard solution basically by human eyes.
  • a standard stock solution having a known Hazen color number is prepared and diluted into several different standard solutions.
  • a yellow standard stock solution APHA 500 (a Hazen color number of 500) is diluted into standard solutions having Hazen color numbers of 100, 50, and 10.
  • a certain amount (X ml) of the solution under test solution is weighed, and diluted with pure water until its color becomes the same as the color of a standard solution (Hazen color number: A) when visually compared with each other.
  • This standard solution seems to be paler than and be the closest to the target solution.
  • the amount of the pure water used for the dilution is assumed to be Y ml.
  • the dilution ratio (X+Y)/X of the solution under test is multiplied by Hazen color number A of the standard solution so as to obtain A ⁇ (X+Y)/X.
  • the Hazen color number of the target solution can be determined.
  • the thiophenes and their derivatives applicable as the monomer have a ⁇ -conjugated structure.
  • this monomer include the following: thiophene, 3-methylthiophene, 3-ethylthiophene, 3-propylthiophene, 3-butylthiophene, 3-hexylthiophene, 3-heptylthiophene, 3-octylthiophene, 3-nonylthiophene, 3-decylthiophene, 3-methoxythiophene, 3-ethoxythiophene, 3-butoxythiophene, 3-methyl-4-methoxythiophene, 3,4-ethylenedioxythiophene, benzothiophene, and benzodithiophene.
  • 3,4-ethylenedioxythiophene is especially preferable because it can be polymerized at a moderate rate and can also provide the resultant polymer with high heat resistance.
  • the polyanion that can be used as the dopant includes polystyrene sulfonic acid or its salts, which may be used alone or in combination of two or more. These polyanions are excellent in dispersibility and heat resistance.
  • the weight-average molecular weight of the polyanion is preferably 10000 to 400000, inclusive, more preferably 30000 to 200000, inclusive, and most preferably 50000 to 100000, inclusive.
  • the number-average molecular weight of the polyanion is preferably 1000 to 300000, inclusive, more preferably 10000 to 150000, inclusive, and most preferably 20000 to 100000, inclusive.
  • a first oxidizing agent may be used, which produces iron ions in a solvent.
  • the first oxidizing agent include iron salts of inorganic acid such as iron chloride (III), iron sulfate (III), and iron nitrate (III); and iron salts of organic acid such as iron methoxybenzenesulfonate and iron toluenesulfonate.
  • iron sulfate (III) is particularly preferable because the monomer can be polymerized at a moderate rate when using it and it can also provide the resultant polymer with high heat resistance.
  • Iron sulfate (III) is hereinafter referred to as ferric sulfate.
  • the first oxidizing agent is used together with a second oxidizing agent not producing iron ions in a solvent.
  • the second oxidizing agent include hydrogen peroxide, persulfate, permanganate, benzoyl peroxide, and ozone.
  • ammonium persulfate is especially preferable because of its following features: the monomer can be polymerized at a moderate rate when using it, it can be kept for a long period, be easy to care for, and provide the resultant polymer with high heat resistance.
  • the oxidizing agent is not limited to the first and second oxidizing agents mentioned above.
  • the water to be used as the solvent be ion exchange water or distilled water because of their low impurity content.
  • the solvent is mainly composed of water. This means that the solvent consists of about 95% or more of water and only trace amounts of impurities or additives.
  • the monomer and the polyanion are added at the same time to the water in a container under shear stress applied by a dispersing machine.
  • the monomer and the polyanion may be added sequentially to the water in the container under shear stress applied by a dispersing machine.
  • the monomer and the polyanion may be added to the water in the container first, and then be exposed to shear stress applied by a dispersing machine.
  • the dispersing machine include a homomixer and a high-pressure homogenizer.
  • Adding the monomer and the polyanion at the same time to the water takes less time for dispersion than adding them sequentially. Instead of adding the polyanion first and then the monomer, the monomer can be added first and then the polyanion. Furthermore, some of the water may be placed in the container before adding the monomer and the polyanion, and then the remaining water may be added in a plurality of batches during dispersion.
  • the objective of these operations is to disperse the monomer having a hydrophobic ⁇ -conjugated structure into water by making it in the form of microparticles, and these operations are not the only possible approaches.
  • a solid or viscous polyanion it can be dissolved or diluted in water and be used as an aqueous polyanion solution.
  • the preferable water content is 9 parts by weight or more with respect to 1 part by weight of the monomer.
  • the dispersion liquid may become too viscous during the polymerization, possibly making it impossible to obtain a uniform dispersion.
  • the preferable polyanion content is 1 to 5 parts by weight, inclusive, with respect to 1 part by weight of the monomer.
  • the polyanion content is less than 1 part by weight, the resultant conductive polymer has a low conductivity.
  • the polyanion content is more than 5 parts by weight, the conductivity of the resultant conductive polymer hardly increases. As a result, considering the material cost, it is preferable to use 5 parts by weight or less of the polyanion.
  • the monomer is oxidatively polymerized in the following manner.
  • An oxidizing agent is added to the above-prepared dispersion liquid under shear stress applied by a dispersing machine.
  • a solid or viscous oxidizing agent it can be dissolved or diluted in water and be used as an aqueous solution.
  • the monomer in a dispersed state is oxidatively polymerized to form a polymer (hereinafter, polythiophene) in the form of microparticles.
  • the monomer is kept under shear stress applied by the dispersing machine even after the oxidizing agent is added until the polymerization is over. As a result, a polythiophene dispersion doped with the polyanion is completed.
  • the dispersion liquid and the oxidizing agent may be put into separate devices.
  • how to oxidatively polymerize the monomer is not particularly limited as long as the dispersion liquid and the oxidizing agent are mixed with each other.
  • the polyanion is a polystyrene sulfonic acid and/or its salt each having a Hazen color number in the range of 10 to 1000, inclusive.
  • the Hazen color number is determined by measuring the hue of a 2% aqueous solution of the polyanion by the APHA method.
  • the degree of density of the three-dimensional molecular structure of a polystyrene sulfonic acid or its salt appears as the degree of lightness or darkness of the color of the aqueous solution thereof.
  • the conductive polymer having a ⁇ -conjugated structure and doped with the polyanion has a higher conductivity.
  • the conductivity tends to decrease. Consequently, in order to reduce the ESR of the electrolytic capacitor, the Hazen color number is limited to the range of 10 to 1000, inclusive, by measuring the hue of a 2% aqueous solution of the polyanion by the APHA method.
  • 3,4-ethylenedioxythiophene is added to distilled water in a container.
  • a 29.5% aqueous solution of a polystyrene sulfonic acid is added thereto.
  • the resultant mixture is exposed to shear stress applied by a homomixer for ten minutes.
  • a dispersion liquid of 3,4-ethylenedioxythiophene is completed.
  • the polyanion used here is a polystyrene sulfonic acid having a Hazen color number of 10 when a 2% aqueous solution thereof is measured by the APHA method.
  • the dispersion liquid is under shear stress applied by the homomixer, a 2.25% aqueous solution of a ferric sulfate is added as the first oxidizing agent, and then a 28.8% aqueous solution of an ammonium persulfate is added as the second oxidizing agent. After the addition of these oxidizing agents, shear stress is applied for 24 hours by the homomixer, and then the polymerization is terminated. As a result, the conductive polymer microparticle dispersion is completed.
  • Example 1 the following materials are used: 14.2 parts by weight of 3,4-ethylenedioxythiophene, 30.5 parts by weight of the polystyrene sulfonic acid, 13.0 parts by weight of ferric sulfate, 29.8 parts by weight of ammonium persulfate, and 1337 parts by weight of distilled water.
  • Examples 2, 3, 4, and 5 conductive polymer microparticle dispersions are prepared in the same manner as in Example 1 except for using polystyrene sulfonic acids having Hazen color numbers of 55, 110, 489, and 1000, respectively, when 2% aqueous solutions thereof are measured by the APHA method as in Example 1.
  • conductive polymer microparticle dispersions are prepared in the same manner as in Example 1 except for using, as the polyanion, ammonium polystyrene sulfonates having Hazen color numbers of 10, 318, 800, and 1000, respectively, when 2% aqueous solutions thereof are measured by the APHA method as in Example 1.
  • conductive polymer microparticle dispersions are prepared in the same manner as in Example 1 except for using, as the polyanion, sodium polystyrene sulfonates having Hazen color numbers of 10, 700, and 1000, respectively, when 2% aqueous solutions thereof are measured by the APHA method as in Example 1.
  • a conductive polymer microparticle dispersion is prepared in the same manner as in Example 1 except for using, as the polyanion, a lithium polystyrene sulfonate having a Hazen color number of 700 when a 2% aqueous solution thereof is measured by the APHA method as in Example 1.
  • conductive polymer microparticle dispersions are prepared in the same manner as in Example 1 except for using polystyrene sulfonic acids having Hazen color numbers of 8 and 1030, respectively, when 2% aqueous solutions thereof are measured by the APHA method as in Example 1.
  • conductive polymer microparticle dispersions are prepared in the same manner as in Example 1 except for using ammonium polystyrene sulfonates having Hazen color numbers of 5 and 1240, respectively, when 2% aqueous solutions thereof are measured by the APHA method as in Example 1.
  • a conductive polymer microparticle dispersion is prepared in the same manner as in Example 1 except for using, as the polyanion, a sodium polystyrene sulfonate having a Hazen color number of 1050, when a 2% aqueous solution thereof is measured by the APHA method as in Example 1.
  • a conductive polymer microparticle dispersion is prepared in the same manner as in Example 1 except for using, as the polyanion, a lithium polystyrene sulfonate having a Hazen color number of 8 when a 2% aqueous solution thereof is measured by the APHA method as in Example 1.
  • the conductive polymer microparticle dispersions prepared by the above-described procedures contain poly3,4-ethylenedioxythiophene doped with the polystyrene sulfonic acids, or the polystyrene sulfonate, respectively. These conductive polymer microparticle dispersions are washed and filtered with distilled water, and then the concentration of the poly3,4-ethylenedioxythiophene is adjusted to 2.5%. Next, each capacitor element 10 is impregnated with the corresponding dispersion to form solid electrolyte layer 5 , thereby preparing a wound electrolytic capacitor having a rated voltage of 35 V and a capacitance of 47 ⁇ F.
  • Table 1 shows the ESR values of the electrolytic capacitors manufactured with the conductive polymer microparticle dispersions of the Examples and the Comparative Examples.
  • Examples 1 to 5 use, as the polyanion, the polystyrene sulfonic acids having Hazen color numbers in the range of 10 to 1000, inclusive, when 2% aqueous solutions thereof are measured by the APHA method. As shown in Table 1, in Examples 1 to 5, the electrolytic capacitors have ESRs in the range of 28.5 to 32.0 m ⁇ .
  • Comparative Examples 1 and 2 use the polystyrene sulfonic acids having Hazen color numbers of 8 and 1030, respectively. As shown in Table 1, in Comparative Examples 1 and 2, the electrolytic capacitors have ESRs of 45.8 m ⁇ and 40.0 m ⁇ , respectively, which are much higher than those in Examples 1 to 5.
  • Examples 6 to 9 use, as the polyanion, the ammonium polystyrene sulfonates having Hazen color numbers in the range of 10 to 1000, inclusive, when 2% aqueous solutions thereof are measured by the APHA method. As shown in Table 1, in Examples 6 to 9, the electrolytic capacitors have ESRs in the range of 28.8 to 32.2 m ⁇ .
  • Comparative Examples 3 and 4 use the ammonium polystyrene sulfonates having Hazen color numbers of 5 and 1240, respectively. As shown in Table 1, in Comparative Examples 3 and 4, the electrolytic capacitors have ESRs of 47.0 m ⁇ and 43.4 m ⁇ , respectively, which are much higher than those in Examples 6 to 9.
  • Examples 10 to 12 use, as the polyanion, the sodium polystyrene sulfonates having Hazen color numbers in the range of 10 to 1000, inclusive, when 2% aqueous solutions thereof are measured by the APHA method. As shown in Table 1, in Examples 10 to 12, the electrolytic capacitors have ESRs in the range of 29.5 to 32.3 m ⁇ .
  • Comparative Example 5 uses the sodium polystyrene sulfonate having a Hazen color number of 1050. As shown in Table 1, in Comparative Example 5, the electrolytic capacitor has an ESR of 40.6 m ⁇ , which is much higher than those in Examples 10 to 12.
  • Example 13 uses, as the polyanion, the lithium polystyrene sulfonate having a Hazen color number of 700 when a 2% aqueous solution thereof is measured by the APHA method. As shown in Table 1, in Example 13, the electrolytic capacitor has an ESR of 29.7 m ⁇ .
  • Comparative Example 6 uses the lithium polystyrene sulfonate having a Hazen color number of 8. As shown in Table 1, in Comparative Example 6, the electrolytic capacitor has an ESR of 47.7 m ⁇ , which is much higher than that in Example 13.
  • the ESR of the electrolytic capacitor can be reduced by using, as polyanion, a polystyrene sulfonic acid or its salt each having a Hazen color number in the range of 10 to 1000, inclusive, when a 2% aqueous solution thereof is measured by the APHA method. It has also been found that in the case of using the salt as the polyanion, cation is not particularly limited.
  • the present exemplary embodiment has described a wound solid electrolytic capacitor containing an aluminum foil as an electrode, but the present invention is not limited to this configuration.
  • the conductive polymer microparticle dispersions manufactured according the method of the present exemplary embodiment can be applied, for example, to the following capacitors: a wound solid type including an electrode made of valve metal foil other than aluminum; a stacked type; a type including a positive electrode made of a sintered valve metal; and a hybrid type containing both a solid electrolyte and an electrolytic solution.
  • the present invention is useful for an electrolytic capacitor employing a conductive polymer microparticle dispersion.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Abstract

At least one monomer selected from thiophenes and their derivatives is oxidatively polymerized with an oxidizing agent in a solvent mainly composed of water in the presence of a polyanion as a dopant. This conductive polymer microparticle dispersion is manufactured by using, as the polyanion, a polystyrene sulfonic acid and/or its salt each having a Hazen color number in the range of 10 to 1000, inclusive, when the hue of a 2% aqueous solution thereof is measured by the APHA method.

Description

TECHNICAL FIELD
The technical field relates to a method of manufacturing a conductive polymer microparticle dispersion applicable to an antistatic agent, a solid electrolyte for an electrolytic capacitor, a display element, etc., and the technical field also relates to a method of manufacturing an electrolytic capacitor using the conductive polymer microparticle dispersion.
BACKGROUND ART
Dopant-containing polymers having a π-conjugated structure are known to have high conductivity. Dopants are substances to develop conductivity. These polymers are used in antistatic agents, display elements, etc. because of their chemical and physical stability in addition to their high conductivity. They have also been suggested to be used in solid electrolytes for electrolytic capacitors.
One known process of manufacturing such a conductive polymer having a π-conjugated structure is to oxidatively polymerize a monomer with an oxidizing agent in the presence of a dopant. For example, the use of 3,4-ethylenedioxythiophene as a monomer, and a polystyrene sulfonic acid as a dopant results in highly conductive poly3,4-ethylenedioxythiophene doped with the polystyrene sulfonic acid. The poly3,4-ethylenedioxythiophene prepared by this method is in the form of microparticles dispersed in water. Thus, the above-described method can prepare a conductive polymer microparticle dispersion (see, for example, Patent Literature 1).
CITATION LIST Patent Literature
Patent Literature 1: Japanese Unexamined Patent Publication No. 2008-222850
SUMMARY OF THE INVENTION
The method of manufacturing a conductive polymer microparticle dispersion according to the present invention includes the following steps:
(A) preparing a monomer dispersion liquid by dispersing, in a solvent mainly composed of water, at least one monomer selected from thiophenes and their derivatives, and a polyanion as a dopant; and
(B) preparing a conductive polythiophene microparticle dispersion doped with the polyanion by mixing the monomer dispersion liquid with an oxidizing agent so as to oxidatively polymerize the monomer.
The polyanion is a polystyrene sulfonic acid and/or its salt each having a Hazen color number in the range of 10 to 1000, inclusive. The Hazen color number is determined by measuring the hue of a 2% aqueous solution of the polyanion by the American Public Health Association (APHA) method.
The conductive polymer microparticle dispersion prepared by the above-described method can be used as a material of a solid electrolyte for an electrolytic capacitor to drastically reduce the ESR of the electrolytic capacitor.
BRIEF DESCRIPTION OF DRAWINGS
FIG. 1 is a partially cutaway schematic perspective view of an electrolytic capacitor manufactured by using a conductive polymer microparticle dispersion prepared by the method according to an exemplary embodiment of the present invention.
FIG. 2 is a partial sectional view of a capacitor element contained in the electrolytic capacitor shown in FIG. 1.
DESCRIPTION OF EMBODIMENT
It is possible to obtain a conductive polymer by removing the solvent component from the conductive polymer microparticle dispersion prepared by the above-described conventional method. However, when this conductive polymer is used as a solid electrolyte for an electrolytic capacitor, the electrolytic capacitor may have a high ESR depending on the method and conditions of forming a conductive polymer film. Therefore, when a conductive polymer microparticle dispersion having a π-conjugated structure is used as a solid electrolyte for an electrolytic capacitor, it is crucial to optimize the method and conditions of forming the conductive polymer film.
An exemplary embodiment of the present invention will now be described with reference to FIGS. 1 and 2. FIG. 1 is a partially cutaway perspective view of an electrolytic capacitor manufactured by using a conductive polymer microparticle dispersion prepared by the method according to the exemplary embodiment of the present invention. FIG. 2 is a partial sectional view of a capacitor element contained in the electrolytic capacitor shown in FIG. 1.
As shown in FIG. 1, the electrolytic capacitor includes capacitor element 10, metal case 14, and sealing member 13. Case 14 houses capacitor element 10, and sealing member 13 seals the opening of case 14. Thus, case 14 and sealing member 13 together form an outer body which seals capacitor element 10.
As shown in FIG. 2, capacitor element 10 includes positive electrode 1, negative electrode 2, separator 4, and solid electrolyte layer 5. Separator 4 and solid electrolyte layer 5 are interposed between positive electrode 1 and negative electrode 2. Positive electrode 1 is made of an aluminum foil whose surface is etched to roughen it first and then subjected to a chemical conversion treatment to form dielectric oxide film layer 3. Negative electrode 2 is also made of an aluminum foil whose surface is etched to roughen it. Positive electrode 1 and negative electrode 2 are connected to lead terminals 11 and 12, respectively, as shown in FIG. 1. Lead terminals 11 and 12 are led out through sealing member 13.
Capacitor element 10 includes positive electrode 1 and negative electrode 2 wound with separator 4 interposed therebetween. Capacitor element 10 is impregnated with an after-mentioned conductive polymer microparticle dispersion, and then dried to remove the solvent component. As a result, conductive polymer solid electrolyte layer 5 is formed between positive electrode 1 and negative electrode 2.
The following is a brief description of a method of manufacturing a conductive polymer microparticle dispersion (hereinafter, abbreviated as “dispersion”) used for solid electrolyte layer 5. First, a dispersion liquid is prepared by dispersing, in a solvent mainly composed of water, at least one monomer selected from thiophenes and their derivatives, and a polyanion as a dopant. Then, the dispersion liquid is mixed with an oxidizing agent so as to oxidatively polymerize the monomer. The result is a conductive polythiophene microparticle dispersion doped with the polyanion.
The polyanion is polystyrene sulfonic acid and/or its salt each having a Hazen color number in the range of 10 to 1000, inclusive. The Hazen color number is determined by measuring the hue of a 2% aqueous solution of the polyanion by the APHA method.
Herein, the APHA method is briefly described. According to the APHA method, a Hazen color number is determined by comparing the color of the solution under test with the color of a standard solution basically by human eyes.
First, a standard stock solution having a known Hazen color number is prepared and diluted into several different standard solutions. In the present exemplary embodiment, a yellow standard stock solution APHA 500 (a Hazen color number of 500) is diluted into standard solutions having Hazen color numbers of 100, 50, and 10. A standard solution, which is prepared by diluting a standard stock solution having a Hazen color number of 500 five times, has a Hazen color number of 100.
Next, a certain amount (X ml) of the solution under test solution is weighed, and diluted with pure water until its color becomes the same as the color of a standard solution (Hazen color number: A) when visually compared with each other. This standard solution seems to be paler than and be the closest to the target solution. The amount of the pure water used for the dilution is assumed to be Y ml. Then, the dilution ratio (X+Y)/X of the solution under test is multiplied by Hazen color number A of the standard solution so as to obtain A×(X+Y)/X. Thus, the Hazen color number of the target solution can be determined.
The thiophenes and their derivatives applicable as the monomer have a π-conjugated structure. Examples of this monomer include the following: thiophene, 3-methylthiophene, 3-ethylthiophene, 3-propylthiophene, 3-butylthiophene, 3-hexylthiophene, 3-heptylthiophene, 3-octylthiophene, 3-nonylthiophene, 3-decylthiophene, 3-methoxythiophene, 3-ethoxythiophene, 3-butoxythiophene, 3-methyl-4-methoxythiophene, 3,4-ethylenedioxythiophene, benzothiophene, and benzodithiophene. Among them, 3,4-ethylenedioxythiophene is especially preferable because it can be polymerized at a moderate rate and can also provide the resultant polymer with high heat resistance.
The polyanion that can be used as the dopant includes polystyrene sulfonic acid or its salts, which may be used alone or in combination of two or more. These polyanions are excellent in dispersibility and heat resistance.
The weight-average molecular weight of the polyanion is preferably 10000 to 400000, inclusive, more preferably 30000 to 200000, inclusive, and most preferably 50000 to 100000, inclusive. The number-average molecular weight of the polyanion is preferably 1000 to 300000, inclusive, more preferably 10000 to 150000, inclusive, and most preferably 20000 to 100000, inclusive.
As the oxidizing agent, a first oxidizing agent may be used, which produces iron ions in a solvent. Examples of the first oxidizing agent include iron salts of inorganic acid such as iron chloride (III), iron sulfate (III), and iron nitrate (III); and iron salts of organic acid such as iron methoxybenzenesulfonate and iron toluenesulfonate. Among them, iron sulfate (III) is particularly preferable because the monomer can be polymerized at a moderate rate when using it and it can also provide the resultant polymer with high heat resistance. Iron sulfate (III) is hereinafter referred to as ferric sulfate.
The first oxidizing agent is used together with a second oxidizing agent not producing iron ions in a solvent. Examples of the second oxidizing agent include hydrogen peroxide, persulfate, permanganate, benzoyl peroxide, and ozone. Among them, ammonium persulfate is especially preferable because of its following features: the monomer can be polymerized at a moderate rate when using it, it can be kept for a long period, be easy to care for, and provide the resultant polymer with high heat resistance. Note that the oxidizing agent is not limited to the first and second oxidizing agents mentioned above.
It is preferable that the water to be used as the solvent be ion exchange water or distilled water because of their low impurity content. The solvent is mainly composed of water. This means that the solvent consists of about 95% or more of water and only trace amounts of impurities or additives.
The following is a description of how to prepare the dispersion liquid. The monomer and the polyanion are added at the same time to the water in a container under shear stress applied by a dispersing machine. Alternatively, the monomer and the polyanion may be added sequentially to the water in the container under shear stress applied by a dispersing machine. Further alternatively, the monomer and the polyanion may be added to the water in the container first, and then be exposed to shear stress applied by a dispersing machine. Examples of the dispersing machine include a homomixer and a high-pressure homogenizer.
Adding the monomer and the polyanion at the same time to the water takes less time for dispersion than adding them sequentially. Instead of adding the polyanion first and then the monomer, the monomer can be added first and then the polyanion. Furthermore, some of the water may be placed in the container before adding the monomer and the polyanion, and then the remaining water may be added in a plurality of batches during dispersion.
The objective of these operations is to disperse the monomer having a hydrophobic π-conjugated structure into water by making it in the form of microparticles, and these operations are not the only possible approaches. In the case of using a solid or viscous polyanion, it can be dissolved or diluted in water and be used as an aqueous polyanion solution.
The preferable water content is 9 parts by weight or more with respect to 1 part by weight of the monomer. When the water content is less than this amount, the dispersion liquid may become too viscous during the polymerization, possibly making it impossible to obtain a uniform dispersion.
The preferable polyanion content is 1 to 5 parts by weight, inclusive, with respect to 1 part by weight of the monomer. When the polyanion content is less than 1 part by weight, the resultant conductive polymer has a low conductivity. When, on the other hand, the polyanion content is more than 5 parts by weight, the conductivity of the resultant conductive polymer hardly increases. As a result, considering the material cost, it is preferable to use 5 parts by weight or less of the polyanion.
The monomer is oxidatively polymerized in the following manner. An oxidizing agent is added to the above-prepared dispersion liquid under shear stress applied by a dispersing machine. In the case of using a solid or viscous oxidizing agent, it can be dissolved or diluted in water and be used as an aqueous solution. Thus, the monomer in a dispersed state is oxidatively polymerized to form a polymer (hereinafter, polythiophene) in the form of microparticles. The monomer is kept under shear stress applied by the dispersing machine even after the oxidizing agent is added until the polymerization is over. As a result, a polythiophene dispersion doped with the polyanion is completed. In oxidatively polymerizing the monomer, the dispersion liquid and the oxidizing agent may be put into separate devices. Thus, how to oxidatively polymerize the monomer is not particularly limited as long as the dispersion liquid and the oxidizing agent are mixed with each other.
As described above, the polyanion is a polystyrene sulfonic acid and/or its salt each having a Hazen color number in the range of 10 to 1000, inclusive. The Hazen color number is determined by measuring the hue of a 2% aqueous solution of the polyanion by the APHA method.
The degree of density of the three-dimensional molecular structure of a polystyrene sulfonic acid or its salt appears as the degree of lightness or darkness of the color of the aqueous solution thereof. As the three-dimensional structure becomes denser, the yellow to reddish brown tends to be deeper. Furthermore, as the three-dimensional molecular structure becomes denser, the conductive polymer having a π-conjugated structure and doped with the polyanion has a higher conductivity. On the other hand, when the three-dimensional structure is too dense, the conductivity tends to decrease. Consequently, in order to reduce the ESR of the electrolytic capacitor, the Hazen color number is limited to the range of 10 to 1000, inclusive, by measuring the hue of a 2% aqueous solution of the polyanion by the APHA method.
Advantageous effects of the present exemplary embodiment will now be described in specific examples.
EXAMPLES 1 TO 5
First, as a monomer having a π-conjugated structure, 3,4-ethylenedioxythiophene is added to distilled water in a container. Next, as a polyanion, a 29.5% aqueous solution of a polystyrene sulfonic acid is added thereto. Then, the resultant mixture is exposed to shear stress applied by a homomixer for ten minutes. As a result, a dispersion liquid of 3,4-ethylenedioxythiophene is completed.
The polyanion used here is a polystyrene sulfonic acid having a Hazen color number of 10 when a 2% aqueous solution thereof is measured by the APHA method.
While the dispersion liquid is under shear stress applied by the homomixer, a 2.25% aqueous solution of a ferric sulfate is added as the first oxidizing agent, and then a 28.8% aqueous solution of an ammonium persulfate is added as the second oxidizing agent. After the addition of these oxidizing agents, shear stress is applied for 24 hours by the homomixer, and then the polymerization is terminated. As a result, the conductive polymer microparticle dispersion is completed.
In Example 1, the following materials are used: 14.2 parts by weight of 3,4-ethylenedioxythiophene, 30.5 parts by weight of the polystyrene sulfonic acid, 13.0 parts by weight of ferric sulfate, 29.8 parts by weight of ammonium persulfate, and 1337 parts by weight of distilled water.
In Examples 2, 3, 4, and 5, conductive polymer microparticle dispersions are prepared in the same manner as in Example 1 except for using polystyrene sulfonic acids having Hazen color numbers of 55, 110, 489, and 1000, respectively, when 2% aqueous solutions thereof are measured by the APHA method as in Example 1.
EXAMPLES 6 TO 9
In Examples 6, 7, 8, and 9, conductive polymer microparticle dispersions are prepared in the same manner as in Example 1 except for using, as the polyanion, ammonium polystyrene sulfonates having Hazen color numbers of 10, 318, 800, and 1000, respectively, when 2% aqueous solutions thereof are measured by the APHA method as in Example 1.
EXAMPLES 10 TO 12
In Examples, 10, 11, and 12, conductive polymer microparticle dispersions are prepared in the same manner as in Example 1 except for using, as the polyanion, sodium polystyrene sulfonates having Hazen color numbers of 10, 700, and 1000, respectively, when 2% aqueous solutions thereof are measured by the APHA method as in Example 1.
EXAMPLE 13
A conductive polymer microparticle dispersion is prepared in the same manner as in Example 1 except for using, as the polyanion, a lithium polystyrene sulfonate having a Hazen color number of 700 when a 2% aqueous solution thereof is measured by the APHA method as in Example 1.
COMPARATIVE EXAMPLES 1 AND 2
In Comparative Examples 1 and 2, conductive polymer microparticle dispersions are prepared in the same manner as in Example 1 except for using polystyrene sulfonic acids having Hazen color numbers of 8 and 1030, respectively, when 2% aqueous solutions thereof are measured by the APHA method as in Example 1.
COMPARATIVE EXAMPLES 3 AND 4
In Comparative Examples 3 and 4, conductive polymer microparticle dispersions are prepared in the same manner as in Example 1 except for using ammonium polystyrene sulfonates having Hazen color numbers of 5 and 1240, respectively, when 2% aqueous solutions thereof are measured by the APHA method as in Example 1.
COMPARATIVE EXAMPLE 5
A conductive polymer microparticle dispersion is prepared in the same manner as in Example 1 except for using, as the polyanion, a sodium polystyrene sulfonate having a Hazen color number of 1050, when a 2% aqueous solution thereof is measured by the APHA method as in Example 1.
COMPARATIVE EXAMPLE 6
A conductive polymer microparticle dispersion is prepared in the same manner as in Example 1 except for using, as the polyanion, a lithium polystyrene sulfonate having a Hazen color number of 8 when a 2% aqueous solution thereof is measured by the APHA method as in Example 1.
The conductive polymer microparticle dispersions prepared by the above-described procedures contain poly3,4-ethylenedioxythiophene doped with the polystyrene sulfonic acids, or the polystyrene sulfonate, respectively. These conductive polymer microparticle dispersions are washed and filtered with distilled water, and then the concentration of the poly3,4-ethylenedioxythiophene is adjusted to 2.5%. Next, each capacitor element 10 is impregnated with the corresponding dispersion to form solid electrolyte layer 5, thereby preparing a wound electrolytic capacitor having a rated voltage of 35 V and a capacitance of 47 μF.
Table 1 shows the ESR values of the electrolytic capacitors manufactured with the conductive polymer microparticle dispersions of the Examples and the Comparative Examples.
TABLE 1
the hue of an aqueous ESR of electro-
solution of polyanion lytic capacitor
polyanion (Hazen color number) (mΩ)
Example 1 PSS 10 32.0
Example 2 PSS 55 28.5
Example 3 PSS 110 29.5
Example 4 PSS 489 30.5
Example 5 PSS 1000 32.0
Example 6 APSS 10 32.2
Example 7 APSS 318 28.8
Example 8 APSS 800 29.0
Example 9 APSS 1000 28.8
Example 10 SPSS 10 32.3
Example 11 SPSS 700 29.5
Example 12 SPSS 1000 30.0
Example 13 LPSS 700 29.7
Comparative PSS 8 45.8
Example 1
Comparative PSS 1030 40.0
Example 2
Comparative APSS 5 47.0
Example 3
Comparative APSS 1240 43.4
Example 4
Comparative SPSS 1050 40.6
Example 5
Comparative LPSS 8 47.7
Example 6
PSS: polystyrene sulfonic acid
APSS: ammonium polystyrene sulfonate
SPSS: sodium polystyrene sulfonate
LPSS: lithium polystyrene sulfonate
Examples 1 to 5 use, as the polyanion, the polystyrene sulfonic acids having Hazen color numbers in the range of 10 to 1000, inclusive, when 2% aqueous solutions thereof are measured by the APHA method. As shown in Table 1, in Examples 1 to 5, the electrolytic capacitors have ESRs in the range of 28.5 to 32.0 mΩ.
On the other hand, Comparative Examples 1 and 2 use the polystyrene sulfonic acids having Hazen color numbers of 8 and 1030, respectively. As shown in Table 1, in Comparative Examples 1 and 2, the electrolytic capacitors have ESRs of 45.8 mΩ and 40.0 mΩ, respectively, which are much higher than those in Examples 1 to 5.
Examples 6 to 9 use, as the polyanion, the ammonium polystyrene sulfonates having Hazen color numbers in the range of 10 to 1000, inclusive, when 2% aqueous solutions thereof are measured by the APHA method. As shown in Table 1, in Examples 6 to 9, the electrolytic capacitors have ESRs in the range of 28.8 to 32.2 mΩ.
On the other hand, Comparative Examples 3 and 4 use the ammonium polystyrene sulfonates having Hazen color numbers of 5 and 1240, respectively. As shown in Table 1, in Comparative Examples 3 and 4, the electrolytic capacitors have ESRs of 47.0 mΩ and 43.4 mΩ, respectively, which are much higher than those in Examples 6 to 9.
Examples 10 to 12 use, as the polyanion, the sodium polystyrene sulfonates having Hazen color numbers in the range of 10 to 1000, inclusive, when 2% aqueous solutions thereof are measured by the APHA method. As shown in Table 1, in Examples 10 to 12, the electrolytic capacitors have ESRs in the range of 29.5 to 32.3 mΩ.
On the other hand, Comparative Example 5 uses the sodium polystyrene sulfonate having a Hazen color number of 1050. As shown in Table 1, in Comparative Example 5, the electrolytic capacitor has an ESR of 40.6 mΩ, which is much higher than those in Examples 10 to 12.
Example 13 uses, as the polyanion, the lithium polystyrene sulfonate having a Hazen color number of 700 when a 2% aqueous solution thereof is measured by the APHA method. As shown in Table 1, in Example 13, the electrolytic capacitor has an ESR of 29.7 mΩ.
On the other hand, Comparative Example 6 uses the lithium polystyrene sulfonate having a Hazen color number of 8. As shown in Table 1, in Comparative Example 6, the electrolytic capacitor has an ESR of 47.7 mΩ, which is much higher than that in Example 13.
As described above, it has been found that the ESR of the electrolytic capacitor can be reduced by using, as polyanion, a polystyrene sulfonic acid or its salt each having a Hazen color number in the range of 10 to 1000, inclusive, when a 2% aqueous solution thereof is measured by the APHA method. It has also been found that in the case of using the salt as the polyanion, cation is not particularly limited.
The present exemplary embodiment has described a wound solid electrolytic capacitor containing an aluminum foil as an electrode, but the present invention is not limited to this configuration. The conductive polymer microparticle dispersions manufactured according the method of the present exemplary embodiment can be applied, for example, to the following capacitors: a wound solid type including an electrode made of valve metal foil other than aluminum; a stacked type; a type including a positive electrode made of a sintered valve metal; and a hybrid type containing both a solid electrolyte and an electrolytic solution.
The materials, manufacturing methods, and evaluation techniques described in Examples 1 to 13 are mere examples and do not limit the present invention thereto.
INDUSTRIAL APPLICABILITY
The present invention is useful for an electrolytic capacitor employing a conductive polymer microparticle dispersion.

Claims (3)

The invention claimed is:
1. A method of manufacturing a conductive polymer microparticle dispersion, the method comprising:
preparing a polyanion which is at least one of polystyrene sulfonic acids and polystyrene sulfonates each having a Hazen color number in a range of 10 to 1000, inclusive, when a hue of a 2% aqueous solution thereof is measured by American Public Health Association method;
preparing a dispersion liquid by dispersing, in a solvent mainly composed of water, at least one monomer selected from thiophenes and derivatives thereof, and the polyanion as a dopant; and
preparing a conductive polythiophene microparticle dispersion doped with the polyanion by mixing the dispersion liquid with an oxidizing agent so as to oxidatively polymerize the at least one monomer.
2. A method of manufacturing an electrolytic capacitor, the method comprising:
impregnating a capacitor element having a positive electrode formed with a dielectric layer thereon with the conductive polymer microparticle dispersion prepared by the method of claim 1; and
forming a conductive polymer solid electrolyte layer between the positive electrode and a negative electrode by removing a solvent component contained in the conductive polymer microparticle dispersion.
3. The method of manufacturing a conductive polymer microparticle dispersion according to claim 1, wherein a content of the polyanion with respect to 1 weight parts of the monomer falls within a range from 1 to 5 weight parts, inclusive, when preparing the dispersion liquid.
US14/122,247 2013-03-29 2013-03-29 Method of manufacturing conductive polymer microparticle dispersion and method of manufacturing electrolytic capacitor containing the conductive polymer microparticle dispersion Active 2033-08-14 US9530568B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/002155 WO2014155422A1 (en) 2013-03-29 2013-03-29 Method of producing conductive polymer particle dispersion, and method of producing electrolytic capacitor using said conductive polymer particle dispersion

Publications (2)

Publication Number Publication Date
US20150187504A1 US20150187504A1 (en) 2015-07-02
US9530568B2 true US9530568B2 (en) 2016-12-27

Family

ID=50749888

Family Applications (1)

Application Number Title Priority Date Filing Date
US14/122,247 Active 2033-08-14 US9530568B2 (en) 2013-03-29 2013-03-29 Method of manufacturing conductive polymer microparticle dispersion and method of manufacturing electrolytic capacitor containing the conductive polymer microparticle dispersion

Country Status (4)

Country Link
US (1) US9530568B2 (en)
JP (1) JP5476618B1 (en)
CN (1) CN104254568B (en)
WO (1) WO2014155422A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11114250B2 (en) 2018-08-10 2021-09-07 Avx Corporation Solid electrolytic capacitor formed from conductive polymer particles
US11183342B2 (en) 2018-08-10 2021-11-23 Avx Corporation Solid electrolytic capacitor containing polyaniline
US11462366B2 (en) 2018-08-10 2022-10-04 KYOCERA AVX Components Corporation Solid electrolytic capacitor containing an intrinsically conductive polymer
US11631548B2 (en) 2020-06-08 2023-04-18 KYOCERA AVX Components Corporation Solid electrolytic capacitor containing a moisture barrier
US11670461B2 (en) 2019-09-18 2023-06-06 KYOCERA AVX Components Corporation Solid electrolytic capacitor for use at high voltages
US11776759B2 (en) 2019-12-10 2023-10-03 KYOCER AVX Components Corporation Tantalum capacitor with increased stability
US11823846B2 (en) 2019-12-10 2023-11-21 KYOCERA AVX Components Corporation Solid electrolytic capacitor containing a pre-coat and intrinsically conductive polymer
US11955294B2 (en) 2018-12-11 2024-04-09 KYOCERA AVX Components Corporation Solid electrolytic capacitor containing an intrinsically conductive polymer

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9530568B2 (en) 2013-03-29 2016-12-27 Panasonic Intellectual Property Management Co., Ltd. Method of manufacturing conductive polymer microparticle dispersion and method of manufacturing electrolytic capacitor containing the conductive polymer microparticle dispersion
JP5948592B2 (en) * 2014-01-31 2016-07-06 パナソニックIpマネジメント株式会社 Method for producing conductive polymer fine particle dispersion and method for producing electrolytic capacitor using the conductive polymer fine particle dispersion
US10563020B2 (en) 2015-12-28 2020-02-18 Showa Denko K.K. Process for producing dispersion containing electroconductive polymer
CN105826076B (en) * 2016-05-10 2018-12-25 湖南艾华集团股份有限公司 A kind of solid-state capacitor and its production method
US10943742B2 (en) * 2017-10-18 2021-03-09 Kemet Electronics Corporation Conductive polymer dispersion for improved reliability
JP2020057665A (en) * 2018-09-28 2020-04-09 パナソニックIpマネジメント株式会社 Manufacturing method of electrolytic capacitor, and electrolytic capacitor

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05296838A (en) 1992-04-16 1993-11-12 Nippon Steel Chem Co Ltd Measuring method of hazen color number
US20040152832A1 (en) * 2002-07-26 2004-08-05 Stephan Kirchmeyer Aqueous dispersion containing a complex of poly(3,4-dialkoxythiophene) and a polyanion and method for producing the same
JP2008222850A (en) 2007-03-13 2008-09-25 Arakawa Chem Ind Co Ltd Electroconductive polymer/dopant complex organic solvent dispersion, electroconductive composition and coating agent composition
US20090099987A1 (en) 2007-10-15 2009-04-16 University Of Southern California Decomposed optimal bayesian stackelberg solver
US20090119239A1 (en) 2007-10-15 2009-05-07 University Of Southern California Agent security via approximate solvers
US20100118470A1 (en) * 2008-03-10 2010-05-13 Panasonic Corporation Solid electrolytic capacitor and method of manufacturing the same
JP2010541260A (en) 2007-10-08 2010-12-24 エイチ・シー・スタルク・クレビオス・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Method for manufacturing electrolytic capacitor having polymer intermediate layer
US20110102970A1 (en) 2009-09-30 2011-05-05 H.C. Starck Clevios Gmbh Monomers of selected colour numbers and capacitors prepared therefrom
US20110119879A1 (en) 2009-11-20 2011-05-26 Sanyo Electric Co., Ltd. Method of manufacturing solid electrolytic capacitor
WO2011068026A1 (en) 2009-12-04 2011-06-09 テイカ株式会社 Conductive polymer and solid-electrolyte capacitor including same as solid electrolyte
CN102510871A (en) 2010-08-19 2012-06-20 帝化株式会社 Oxidant/dopant solution for conductive polymer production, a conductive polymer and a solid electrolyte capacitor
JP2013005014A (en) 2011-06-13 2013-01-07 Nippon Telegr & Teleph Corp <Ntt> Optical receiving circuit
WO2013035548A1 (en) 2011-09-06 2013-03-14 テイカ株式会社 Dispersion of electrically conductive polymer, and electrically conductive polymer and use thereof
US20130273514A1 (en) 2007-10-15 2013-10-17 University Of Southern California Optimal Strategies in Security Games
JP2013249442A (en) 2012-06-04 2013-12-12 Jfe Chemical Corp Electroconductive polymer dispersion and method for producing the same
JP5476618B1 (en) 2013-03-29 2014-04-23 パナソニック株式会社 Method for producing conductive polymer fine particle dispersion and method for producing electrolytic capacitor using the conductive polymer fine particle dispersion

Patent Citations (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05296838A (en) 1992-04-16 1993-11-12 Nippon Steel Chem Co Ltd Measuring method of hazen color number
US20040152832A1 (en) * 2002-07-26 2004-08-05 Stephan Kirchmeyer Aqueous dispersion containing a complex of poly(3,4-dialkoxythiophene) and a polyanion and method for producing the same
JP2008222850A (en) 2007-03-13 2008-09-25 Arakawa Chem Ind Co Ltd Electroconductive polymer/dopant complex organic solvent dispersion, electroconductive composition and coating agent composition
JP2010541260A (en) 2007-10-08 2010-12-24 エイチ・シー・スタルク・クレビオス・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Method for manufacturing electrolytic capacitor having polymer intermediate layer
US20110019339A1 (en) 2007-10-08 2011-01-27 H.C. Starck Clevios Gmbh Method for the production of electrolyte capacitors with polymer intermediate layer
US20090099987A1 (en) 2007-10-15 2009-04-16 University Of Southern California Decomposed optimal bayesian stackelberg solver
US20090119239A1 (en) 2007-10-15 2009-05-07 University Of Southern California Agent security via approximate solvers
US20130273514A1 (en) 2007-10-15 2013-10-17 University Of Southern California Optimal Strategies in Security Games
US20120330727A1 (en) 2007-10-15 2012-12-27 University Of Southern California Agent security via approximate solvers
US20100118470A1 (en) * 2008-03-10 2010-05-13 Panasonic Corporation Solid electrolytic capacitor and method of manufacturing the same
JP2011124544A (en) 2009-09-30 2011-06-23 Hc Starck Clevios Gmbh Monomer of selected color number and capacitor prepared therefrom
US20110102970A1 (en) 2009-09-30 2011-05-05 H.C. Starck Clevios Gmbh Monomers of selected colour numbers and capacitors prepared therefrom
JP2011109024A (en) 2009-11-20 2011-06-02 Sanyo Electric Co Ltd Method of manufacturing solid electrolytic capacitor
US20110119879A1 (en) 2009-11-20 2011-05-26 Sanyo Electric Co., Ltd. Method of manufacturing solid electrolytic capacitor
US20140186520A1 (en) 2009-11-20 2014-07-03 Saga Sanyo Industries Co., Ltd. Method of manufacturing solid electrolytic capacitor
US20130202784A1 (en) 2009-11-20 2013-08-08 Saga Sanyo Industries Co., Ltd. Method of manufacturing solid electrolytic capacitor
US20120018662A1 (en) 2009-12-04 2012-01-26 Tayca Corporation Conductive polymer and a solid electrolytic capacitor using the same as a solid electrolyte
WO2011068026A1 (en) 2009-12-04 2011-06-09 テイカ株式会社 Conductive polymer and solid-electrolyte capacitor including same as solid electrolyte
CN102510871A (en) 2010-08-19 2012-06-20 帝化株式会社 Oxidant/dopant solution for conductive polymer production, a conductive polymer and a solid electrolyte capacitor
US20120165488A1 (en) 2010-08-19 2012-06-28 Tayca Corporation Oxidant and dopant solution for conductive polymer production, a conductive polymer and a solid electrolyte capacitor
JP2013005014A (en) 2011-06-13 2013-01-07 Nippon Telegr & Teleph Corp <Ntt> Optical receiving circuit
JP5252669B1 (en) 2011-09-06 2013-07-31 テイカ株式会社 Solid electrolytic capacitor
WO2013035548A1 (en) 2011-09-06 2013-03-14 テイカ株式会社 Dispersion of electrically conductive polymer, and electrically conductive polymer and use thereof
US20140211374A1 (en) 2011-09-06 2014-07-31 Tayca Corporation Dispersion of electrically conductive polymer, and electrically conductive polymer and use thereof
JP2013249442A (en) 2012-06-04 2013-12-12 Jfe Chemical Corp Electroconductive polymer dispersion and method for producing the same
JP5476618B1 (en) 2013-03-29 2014-04-23 パナソニック株式会社 Method for producing conductive polymer fine particle dispersion and method for producing electrolytic capacitor using the conductive polymer fine particle dispersion
US20150187504A1 (en) 2013-03-29 2015-07-02 Panasonic Corporation Method of manufacturing conductive polymer microparticle dispersion and method of manufacturing electrolytic capacitor containing the conductive polymer microparticle dispersion

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
English Translation of Chinese Search Report dated Mar. 30, 2015 for the related Chinese Patent Application No. 201380001487.9.
Japanese version of International Search Report of PCT Application No. PCT/JP2013/002155 dated Jun. 4, 2013.

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11114250B2 (en) 2018-08-10 2021-09-07 Avx Corporation Solid electrolytic capacitor formed from conductive polymer particles
US11183342B2 (en) 2018-08-10 2021-11-23 Avx Corporation Solid electrolytic capacitor containing polyaniline
US11462366B2 (en) 2018-08-10 2022-10-04 KYOCERA AVX Components Corporation Solid electrolytic capacitor containing an intrinsically conductive polymer
US11756746B2 (en) 2018-08-10 2023-09-12 KYOCERA AVX Components Corporation Solid electrolytic capacitor containing an intrinsically conductive polymer
US11791106B2 (en) 2018-08-10 2023-10-17 KYOCERA AVX Components Corporation Solid electrolytic capacitor containing polyaniline
US11955294B2 (en) 2018-12-11 2024-04-09 KYOCERA AVX Components Corporation Solid electrolytic capacitor containing an intrinsically conductive polymer
US11670461B2 (en) 2019-09-18 2023-06-06 KYOCERA AVX Components Corporation Solid electrolytic capacitor for use at high voltages
US11776759B2 (en) 2019-12-10 2023-10-03 KYOCER AVX Components Corporation Tantalum capacitor with increased stability
US11823846B2 (en) 2019-12-10 2023-11-21 KYOCERA AVX Components Corporation Solid electrolytic capacitor containing a pre-coat and intrinsically conductive polymer
US11631548B2 (en) 2020-06-08 2023-04-18 KYOCERA AVX Components Corporation Solid electrolytic capacitor containing a moisture barrier

Also Published As

Publication number Publication date
JPWO2014155422A1 (en) 2017-02-16
JP5476618B1 (en) 2014-04-23
CN104254568B (en) 2015-11-18
CN104254568A (en) 2014-12-31
WO2014155422A1 (en) 2014-10-02
US20150187504A1 (en) 2015-07-02

Similar Documents

Publication Publication Date Title
US9530568B2 (en) Method of manufacturing conductive polymer microparticle dispersion and method of manufacturing electrolytic capacitor containing the conductive polymer microparticle dispersion
US10147552B2 (en) Conductive polymer particle dispersion, electrolytic capacitor using same, and method of producing these
US9892859B2 (en) Method of producing conductive polymer particle dispersion, and method of producing electrolytic capacitor using conductive polymer particle dispersion
JP5948592B2 (en) Method for producing conductive polymer fine particle dispersion and method for producing electrolytic capacitor using the conductive polymer fine particle dispersion
US9472348B2 (en) Method of producing conductive polymer particle dispersion, and method of producing electrolytic capacitor using said conductive polymer particle dispersion
US9466432B2 (en) Process for producing solution having electrically conductive polymer dispersed therein, and electrolytic capacitor
US9455092B2 (en) Electric conductive polymer suspension and method for producing the same, electric conductive polymer material, and electrolytic capacitor and method for producing the same
US20100302714A1 (en) Conductive polymer suspension and method for producing the same, conductive polymer material, and solid electrolytic capacitor and method for producing the same
DE102012018976A1 (en) Use of mixtures of self-doped and externally doped conductive polymers in a capacitor
US10121599B2 (en) Method for producing electrolytic capacitor
JP2017045868A (en) Electrolytic capacitor
JP2016072284A (en) Solid electrolytic capacitor and method of manufacturing the same
CN107533920A (en) Electrolytic capacitor and its manufacture method
US20140022706A1 (en) Electric conductive polymer aqueous suspension and method for producing the same, electric conductive organic material, and solid electrolytic capacitor and method for producing the same
US10370485B2 (en) Method for producing conductive polymer and method for producing solid electrolyte capacitor
US9997298B2 (en) Conductive material formulation and use thereof
JP6433024B2 (en) Solid electrolytic capacitor and manufacturing method thereof
CN107731531A (en) Mixed polymerization solution, chip-type solid aluminium electrolutic capacitor and its hybrid polymerization technique
TWI836647B (en) Composition for electrolytic capacitor and electrolytic capacitor including the same
JP2021190654A (en) Manufacturing method of positive electrode for capacitor, and manufacturing method of capacitor
TWI597313B (en) Conductive composition and capacitor utilizing the same
JP2020047755A (en) Method for manufacturing solid electrolytic capacitor

Legal Events

Date Code Title Description
AS Assignment

Owner name: PANASONIC CORPORATION, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:TAKATANI, KAZUHIRO;AOYAMA, TATSUJI;REEL/FRAME:033309/0151

Effective date: 20131004

AS Assignment

Owner name: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD., JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:PANASONIC CORPORATION;REEL/FRAME:034194/0143

Effective date: 20141110

Owner name: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LT

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:PANASONIC CORPORATION;REEL/FRAME:034194/0143

Effective date: 20141110

STCF Information on status: patent grant

Free format text: PATENTED CASE

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 4

AS Assignment

Owner name: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD., JAPAN

Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE ERRONEOUSLY FILED APPLICATION NUMBERS 13/384239, 13/498734, 14/116681 AND 14/301144 PREVIOUSLY RECORDED ON REEL 034194 FRAME 0143. ASSIGNOR(S) HEREBY CONFIRMS THE ASSIGNMENT;ASSIGNOR:PANASONIC CORPORATION;REEL/FRAME:056788/0362

Effective date: 20141110