US7553978B2 - Process for the preparation of 1-naphthol mixed ethers and intermediates of crystalline forms of (+) and (−)-duloxetine - Google Patents

Process for the preparation of 1-naphthol mixed ethers and intermediates of crystalline forms of (+) and (−)-duloxetine Download PDF

Info

Publication number
US7553978B2
US7553978B2 US12/090,619 US9061906A US7553978B2 US 7553978 B2 US7553978 B2 US 7553978B2 US 9061906 A US9061906 A US 9061906A US 7553978 B2 US7553978 B2 US 7553978B2
Authority
US
United States
Prior art keywords
duloxetine
reaction
preparation
intermediates
dmpu
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
US12/090,619
Other versions
US20080287693A1 (en
Inventor
Samuele Frigoli
Claudio Fuganti
Roberta Pizzocaro
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Solmag SpA
Original Assignee
Solmag SpA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Solmag SpA filed Critical Solmag SpA
Assigned to SOLMAG S.P.A. reassignment SOLMAG S.P.A. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: FRIGOLI, SAMUELE, FUGANTI, CLAUDIO, PIZZOCARO, ROBERTA
Publication of US20080287693A1 publication Critical patent/US20080287693A1/en
Application granted granted Critical
Publication of US7553978B2 publication Critical patent/US7553978B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D333/00Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom
    • C07D333/02Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings
    • C07D333/04Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings not substituted on the ring sulphur atom
    • C07D333/06Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings not substituted on the ring sulphur atom with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to the ring carbon atoms
    • C07D333/14Radicals substituted by singly bound hetero atoms other than halogen
    • C07D333/20Radicals substituted by singly bound hetero atoms other than halogen by nitrogen atoms

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Heterocyclic Compounds Containing Sulfur Atoms (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Plural Heterocyclic Compounds (AREA)

Abstract

The invention relates to a process for the preparation of duloxetine (1a), comprising the reaction between 1-fluoronaphthalene and 3-N,N-dimethylamino-1-(2-thienyl)-propan-1-ol in the presence of 1,3-dimethyl-2-oxo-hexahydropyrimidine (DMPU) as the solvent; a method for the identification of duloxetine enantiomers and for the determination of its optical purity is also disclosed.
Figure US07553978-20090630-C00001

Description

CROSS-REFERENCE TO RELATED APPLICATION
This application is a National Stage entry of International Application No. PCT/EP2006/009912, filed Oct. 13, 2006, the entire specification and claims of which are incorporated herewith by reference.
FIELD OF THE INVENTION
The present invention relates to a process for the preparation of 1-naphthol mixed ethers, in particular of duloxetine 1a:
Figure US07553978-20090630-C00002
BACKGROUND OF THE INVENTION
The preparation of 1-naphthol mixed ethers raises remarkable interest, since it regards, for example, the synthesis of duloxetine 1a ((+)-(S)—N-methyl-γ-(1-naphthalenyloxy)-2-thiophenepropanamine), whose hydrochloride salt is used as antidepressant. EP 273 658 discloses two methods for the preparation of duloxetine or of its precursor 1b:
Figure US07553978-20090630-C00003
A first procedure comprises the use of 1-naphthol 3a
Figure US07553978-20090630-C00004
and of compounds of formula 2.
Figure US07553978-20090630-C00005
in particular compound 2a in which X═N(CH3)2.
The ether bond in compounds 1a and 1b forms through Mitsunobu reaction, which consists in the treatment in a ether solvent, for example tetrahydrofuran, of compounds 3a and 2 with equimolecular amounts of triphenylphosphine and of an azodicarboxylic acid ester (typically the diisopropyl ester). In this way the ether bond forms with inversion of configuration, obtaining as by-products equimolecular amounts of triphenylphosphine oxide and diisopropyl hydrazodicarboxylate, whose separation from the desired ether is troublesome. The X substituent in compounds 2 can be, further to —N(CH3)2, any good leaving group susceptible of being substituted with a nitrogen function which allows to obtain (+)-duloxetine 1a. The Mitsunobu reaction with compound 2a proceeds in more than 24 h. The equimolar ratio of the two reagents (triphenylphosphine and azodicarboxylate) with respect to compounds 2 and 3a and the prolonged reaction times make this synthetic procedure not very profitable, even if it proceeds with inversion of configuration at the oxygen-bearing carbon in compounds 2.
A method for the synthesis of duloxetine 1a that is preferred to the one reported above envisages the use of 1-fluoronaphthalene 3b
Figure US07553978-20090630-C00006
and 2a as substrates. Compound 2a is converted to the corresponding alkoxide by treatment with a strong base, for example NaH; the alkoxide replaces the fluorine at position 1 of 3b, leading to 1b. The substitution reaction of the fluorine on the aromatic ring is a particular reaction which involves an ionic intermediate (Meisenheimer intermediate) and which occurs, according to the state of the art, in N,N-dimethylacetamide and dimethylsulfoxide. When NaH is used as the base in DMSO, a temperature of 60-70° C. must not be exceeded. In particular, according to EP 273 658, compound 1b is obtained from 3b and 2a in N,N-dimethylacetamide, by treatment of 2 with sodium hydride, at a temperature of 70° C., to produce the alkoxide, followed by addition of 1-fluoronaphthalene 3b in equimolecular amount, heating at 110° C. for 60 min. The desired product 1b is recovered as crystalline oxalate in 76% yield.
DISCLOSURE OF THE INVENTION
It has now been found that the synthesis of duloxetine, in particular of its precursor 1b, can be carried out more conveniently from compounds 2 and 3b, if 1,3-dimethyl-2-oxo-hexahydropyrimidine (DMPU) is used as the solvent instead of dimethylacetamide.
Accordingly, the invention relates to a process for the preparation of duloxetine 1a:
Figure US07553978-20090630-C00007

which comprises the reaction between 1-fluoronaphthalene 3b
Figure US07553978-20090630-C00008

and 3-N,N-dimethylamino-1-(2-thienyl)-propan-1-ol 2a
Figure US07553978-20090630-C00009

to give ((+)-(S)—N,N-dimethyl-γ-(1-naphthalenyloxy)-2-thiophenepropanamine) 1b:
Figure US07553978-20090630-C00010

and the conversion of 1b to duloxetine 1a,
characterized in that the reaction between 2a and 3b is carried out in 1,3-dimethyl-2-oxo-hexahydropyrimidine (DMPU) as the solvent.
Typically, the reaction takes place at a temperature ranging from 70 to 120° C., for a time ranging from 45 min. to 8 hours.
Comparative experiments for the synthesis of 1b from 1-fluoronaphthalene 3b and 3-N,N-dimethylamino-1-(2-thienyl)-propan-1-ol 2a, carried out using DMPU and dimethylacetamide as solvents, proved that DMPU is economically more advantageous than dimethylacetamide, as it requires lower reaction temperatures, shorter reaction times and provides higher yields.
Typically, compound 1b is recovered as the oxalate, which is subsequently hydrolysed and subjected to fractional crystallization with tartaric acid; compound 1b is recovered again by hydrolysis and each enantiomer is demethylated to give duloxetine 1a. Duloxetine enantiomers are also separated by fractional crystallization of the respective oxalates, hydrolysis of the salts, conversion to hydrochloride and recrystallization from ethanol.
The invention is illustrated in greater detail in the following experimental section.
EXPERIMENTAL SECTION 1. Comparative Experiments Synthesis of (+)-(S)—N,N-dimethyl-γ-(1-naphthalenyloxy)-2-thiophenepropanamine) 1b either in dimethylacetamide or DMPU
Sodium hydride was suspended in either dimethylacetamide or DMPU in a slight molar excess with respect to alcohol 2a, which was added under stirring and nitrogen atmosphere. The mixture was heated to 70° C. for 30 min., thereafter 1-fluoronaphthalene 3b was slowly added, keeping again under stirring and nitrogen atmosphere, then the temperature was raised and maintained at 80 or 100° C. for the required time. After that, the mixture was cooled to room temperature, added with a few ml of ethanol to destroy any excess of NaH and poured in 2 volumes of ice, followed by three extractions with 2 volumes of ethyl ether. The ether phase was washed three times with 1 volume of water and once with a saturated NaCl solution. After drying over sodium sulfate, the solvent was evaporated off and the oily residue was taken up in three volumes of methanol and added in the cold with 1.3 molar equiv. of oxalic acid in methanol. The resulting mixture was evaporated to dryness and the solid residue was crystallized from either hot methanol or ethyl acetate/methanol. The crystalline oxalate recovered by filtration was dried and weighed.
1b Oxalate: 1H NMR (DMSO-d6) δ (8.27 (1H, m), 7.85 (1H, m), 7.53 (2H, m), 7.44 (2H, m), 7.33 (1H, t, J=7.9 Hz), 7.25 (1H, d, J=3.4 Hz), 7.04 (1H, d, J=7.7 Hz), 6.99 (1H, dd, J=3.5, 5.0 Hz), 6.02 (1H, dd, J=4.9, 7.7 Hz), 3.25 (1H, m), 3.15 (1H, m), 2.70 (6H, s), 2.58 (1H, m), 2.39 (1H, m).
The experiments were followed over time through GC/MS analysis of sample aliquots and the yield was determined on the weight of 1b oxalate recovered in crystalline pure form after completion of the reaction.
In particular, we calculated the yields in 1b resulting from the addition of 1.05 mol equiv. of 1-fluoronaphthalene 3b to 2a sodium salt, that had been obtained with 1.1 mols equiv. of NaH (60% suspension in oil) in DMPU and dimethylacetamide respectively at 70° C. for 30 min.
The results are reported hereinbelow.
1) At 100° C. and with 2% of 2a in DMPU, 2a completely disappeared after 50 min. and 1b as crystalline oxalate was obtained in 84% yield, whereas in dimethylacetamide after the same time 13% of 2a remained unreacted and the reaction terminated with complete disappearance of 2a (which is the limiting substrate) after 180 min.
2) At 100° C. and with 10% of 2a in DMPU, 3% of 2a remained unreacted after 50 min., whereas in dimethylacetamide the percentage of unreacted 2a was 14%. The reaction was complete in DMPU after 90 min. and in dimethylacetamide after 300 min. (2a concentration lower than 1%).
3) At 80° C. and with 2% of 2a in DMPU 2a completely disappeared after 50 min. and oxalate 1b was obtained in 85% yield, whereas in dimethylacetamide 4% of 2a was still unreacted after 300 min. If the reaction is interrupted at this time, the resulting oxalate 1b is contaminated by 2a. The separation of oxalates 2a and 1b through fractional crystallization is difficult and involves remarkable losses. In the present case, the reaction crude from this experiment led to oxalate 1b with a content in 2a lower than 0.5% after 3 crystallizations from ethyl acetate/methanol and with a final yield of 48%.
It is therefore of the utmost importance that upon completion of the reaction 1b is free from 2a, because the purification of the oxalates by fractional crystallization involves a remarkable decrease in yields.
2. Synthesis of (+) and (−)-duloxetine 1a
(+) And (−)-duloxetine 1a were obtained from racemic oxalate 1b according to a known method, hydrolysing 1b base from the oxalate by treatment with an excess of aqueous NaOH and extraction of the free base with ethyl ether. The free base was combined respectively with a non-natural and natural form of tartaric acid to give, after three crystallizations of the crystalline salt from absolute ethanol, the salts of (+) and (−) 1a. The free bases were recovered by treatment with an excess of aqueous base and extraction with an ether solvent. N-demethylation of (+) and (−) 1b was carried out by treatment with phenyl chloroformate in toluene under reflux and subsequent basic hydrolysis in a high-boiling solvent. (+) And (−)-duloxetine 1a were purified by crystallization of the corresponding oxalates and the free bases obtained as described above were converted to hydrochlorides by treatment with gaseous HCl in ethanol. The solutions were evaporated to dryness and the residue was crystallized from boiling ethanol. The enantiomeric excess of the products, determined by HPLC on a Chiracel OD column (hexane/isopropanol/triethylamine) was higher than 99.9%.
(+)-1a hydrochloride: 1H NMR (DMSO-d6) δ (8.26 (1H, m), 7.85 (1H, m), 7.52 (2H, m), 7.45 (2H, m), 7.34 (1H, t, J=8.0 Hz), 7.26 (1H, d, J=3.2 Hz), 7.06 (1H, d, J=7.6 Hz), 6.98 (1H, dd, J=3.7, 4.8 Hz), 6.14 (1H, dd, J=5.6, 7.3 Hz), 3.07 (2H, m), 2.55 (4H, m+s), 2.39 (1H, m); [α]D 20=+121 (c 1.00, methanol).

Claims (1)

1. A process for the preparation of duloxetine 1a:
Figure US07553978-20090630-C00011
comprising the reaction between 1-fluoronaphthalene 3b
Figure US07553978-20090630-C00012
and 3-N,N-dimethylamino-1-(2-thienyl)-propan-1-ol 2a
Figure US07553978-20090630-C00013
to give ((+)-(S)—N,N-dimethyl-γ-(1-naphthalenyloxy)-2-thiophenepropanamine) 1b:
Figure US07553978-20090630-C00014
and the conversion of 1b to duloxetine 1a,
characterized in that the reaction between 2a and 3b is carried out in 1,3-dimethyl-2-oxo-hexahydropyrimidine as the solvent.
US12/090,619 2005-10-18 2006-10-13 Process for the preparation of 1-naphthol mixed ethers and intermediates of crystalline forms of (+) and (−)-duloxetine Expired - Fee Related US7553978B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
IT001970A ITMI20051970A1 (en) 2005-10-18 2005-10-18 PROCESS FOR THE PREPARATION OF MIXED HETERENTS DERIVING FROM INHTHOLE AND INTERMEDIATES OF CRYSTALLINE FORMS DEFINED BY + E - DULOXETINE
ITMI2005A001970 2005-10-18
PCT/EP2006/009912 WO2007045405A1 (en) 2005-10-18 2006-10-13 Process for the preparation of duloxetine

Publications (2)

Publication Number Publication Date
US20080287693A1 US20080287693A1 (en) 2008-11-20
US7553978B2 true US7553978B2 (en) 2009-06-30

Family

ID=37622082

Family Applications (1)

Application Number Title Priority Date Filing Date
US12/090,619 Expired - Fee Related US7553978B2 (en) 2005-10-18 2006-10-13 Process for the preparation of 1-naphthol mixed ethers and intermediates of crystalline forms of (+) and (−)-duloxetine

Country Status (13)

Country Link
US (1) US7553978B2 (en)
EP (1) EP1937662B1 (en)
CN (1) CN101296918A (en)
CA (1) CA2626500A1 (en)
CY (1) CY1110066T1 (en)
DE (1) DE602006008022D1 (en)
DK (1) DK1937662T3 (en)
ES (1) ES2330479T3 (en)
IT (1) ITMI20051970A1 (en)
PL (1) PL1937662T3 (en)
PT (1) PT1937662E (en)
SI (1) SI1937662T1 (en)
WO (1) WO2007045405A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MX2008001079A (en) * 2006-05-23 2008-03-19 Teva Pharma Duloxetine hcl polymorphs.
US20100222601A1 (en) * 2006-12-12 2010-09-02 Basell Polyolefine Gmbh Synthesis of cyclopentadiene derivatives
US20100267968A1 (en) * 2007-12-26 2010-10-21 Orchid Chemicals & Pharmaceuticals Limited Method for the preparation of duloxetine hydrochloride
WO2011033366A2 (en) 2009-09-16 2011-03-24 Jubilant Life Sciences Limited Process for the preparation of duloxetine hydrochloride and its precursors
CN104230882B (en) * 2014-08-29 2017-03-08 宁波美诺华药业股份有限公司 A kind of preparation method of duloxetine hydrochloride impurity

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0273658B1 (en) 1986-12-22 1990-10-31 Eli Lilly And Company 3-aryloxy-3-substituted propanamines

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0273658B1 (en) 1986-12-22 1990-10-31 Eli Lilly And Company 3-aryloxy-3-substituted propanamines

Also Published As

Publication number Publication date
PT1937662E (en) 2009-10-27
DE602006008022D1 (en) 2009-09-03
WO2007045405A1 (en) 2007-04-26
PL1937662T3 (en) 2010-01-29
ITMI20051970A1 (en) 2007-04-19
EP1937662A1 (en) 2008-07-02
SI1937662T1 (en) 2010-01-29
DK1937662T3 (en) 2009-11-30
US20080287693A1 (en) 2008-11-20
EP1937662B1 (en) 2009-07-22
ES2330479T3 (en) 2009-12-10
CA2626500A1 (en) 2007-04-26
CN101296918A (en) 2008-10-29
CY1110066T1 (en) 2015-01-14

Similar Documents

Publication Publication Date Title
US8674121B2 (en) Process for the production of benzofurans
KR101821090B1 (en) Process for manufacture of n-acylbiphenyl alanine
US7553978B2 (en) Process for the preparation of 1-naphthol mixed ethers and intermediates of crystalline forms of (+) and (−)-duloxetine
USRE39755E1 (en) 3-(1-hydroxy-pentylidene)-5-nitro-3H-benzofuran-2-one a process for the preparation thereof and the use thereof
CA2644624A1 (en) A process for the preparation of (s)(+)-3-(aminomethyly)-5-methylhexanoic acid
JP2002544207A (en) 2,2-Dimethyl-1,3-dioxane intermediate salt and method for producing the same
EP0990647B1 (en) Process for producing quinolone derivatives
US7294744B2 (en) Process for manufacturing of enantiomerically pure 3-hydroxy-3-phenyl-propylamin
US8530691B2 (en) Process for the preparation of fesoterodine
US20130060031A1 (en) Process for the preparation of highly pure ambrisentan
JPH06199759A (en) Preparation of phenylacetic acid derivative
TWI500596B (en) Process for the synthesis of 3,4-dimethoxybicyclo(4.2.0)octa-1,3,5-triene-7-carbonitrile, and application in the synthesis of ivabradine and addition salts thereof with a pharmaceutically acceptable acid
US20040199002A1 (en) Process for producing(2-nitrophenyl)acetonitrile derivative and intermediate therefor
US8153823B2 (en) 2-alkenyl-3-aminothiophene derivative and process for producing thereof
JP4032861B2 (en) Process for producing β-oxonitrile derivative or alkali metal salt thereof
US7038091B2 (en) Process for producing acetylene compound
US7989645B2 (en) Process for preparation of citalopram and enantiomers
US10710972B2 (en) Method for preparing substituted 2,3-dihydro-1-benzofuran derivatives
JPWO2006083010A1 (en) Method for producing 4-acetylpyrimidine compound and crystal thereof
US6956132B2 (en) Process for producing 2-phenylacetophenone derivatives and precursors therefor
JP2003171359A (en) Method for producing 2-nitrophenylacetonitrile derivative, and its synthetic intermediate
JP2000327629A (en) Phenylacetic acid derivative, benzonitrile derivative and production thereof
JP5049067B2 (en) Method for producing fluorine-containing acyclic N, O-acetal compound
US20090082582A1 (en) Process For Preparing [2-(2,3- Dihydrobenzofuran - Or Benzofuran-7-Yloxy)Ethyl]-(3 -Cyclopent-1-Ylbenzyl)Amine Derivatives and Synthesis Intermediate
JPH0440355B2 (en)

Legal Events

Date Code Title Description
AS Assignment

Owner name: SOLMAG S.P.A., ITALY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:FRIGOLI, SAMUELE;FUGANTI, CLAUDIO;PIZZOCARO, ROBERTA;REEL/FRAME:021272/0381

Effective date: 20080630

FPAY Fee payment

Year of fee payment: 4

REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20170630