US6906910B1 - Structures for implementing integrated conductor and capacitor in SMD packaging - Google Patents

Structures for implementing integrated conductor and capacitor in SMD packaging Download PDF

Info

Publication number
US6906910B1
US6906910B1 US10/760,448 US76044804A US6906910B1 US 6906910 B1 US6906910 B1 US 6906910B1 US 76044804 A US76044804 A US 76044804A US 6906910 B1 US6906910 B1 US 6906910B1
Authority
US
United States
Prior art keywords
pair
capacitor
contacts
conductor
implementing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related, expires
Application number
US10/760,448
Inventor
Don Alan Gilliland
Dennis James Wurth
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
International Business Machines Corp
Original Assignee
International Business Machines Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by International Business Machines Corp filed Critical International Business Machines Corp
Priority to US10/760,448 priority Critical patent/US6906910B1/en
Assigned to INTERNATIONAL BUSINESS MACHINES CORPORATION reassignment INTERNATIONAL BUSINESS MACHINES CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: GILLILAND, DON ALAN, WURTH, DENNIS JAMES
Application granted granted Critical
Publication of US6906910B1 publication Critical patent/US6906910B1/en
Adjusted expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G2/00Details of capacitors not covered by a single one of groups H01G4/00-H01G11/00
    • H01G2/02Mountings
    • H01G2/06Mountings specially adapted for mounting on a printed-circuit support
    • H01G2/065Mountings specially adapted for mounting on a printed-circuit support for surface mounting, e.g. chip capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/38Multiple capacitors, i.e. structural combinations of fixed capacitors
    • H01G4/385Single unit multiple capacitors, e.g. dual capacitor in one coil
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/40Structural combinations of fixed capacitors with other electric elements, the structure mainly consisting of a capacitor, e.g. RC combinations
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/222Completing of printed circuits by adding non-printed jumper connections
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0216Reduction of cross-talk, noise or electromagnetic interference
    • H05K1/023Reduction of cross-talk, noise or electromagnetic interference using auxiliary mounted passive components or auxiliary substances
    • H05K1/0231Capacitors or dielectric substances
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10613Details of electrical connections of non-printed components, e.g. special leads
    • H05K2201/10621Components characterised by their electrical contacts
    • H05K2201/10636Leadless chip, e.g. chip capacitor or resistor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates generally to the electronic design automation field, and more particularly, relates to a structure for implementing an integrated conductor and capacitor in surface mounted device (SMD) packaging.
  • SMD surface mounted device
  • a serious electromagnetic emission occurs when a signal or conductor line switches references on a board by crossing split planes. This often occurs in a complex layout when a conductor crosses certain voltage domains, for example, 5V to 3.5V.
  • the best solution is to avoid crossing a, split and creating the radiating source. But, due to cost constraints, the number of layers, or wireability the choice may be made to cross the split.
  • a solution that is commonly implemented is to place a capacitor near the split thus providing a low frequency return path for the signal.
  • Another less popular solution is to place a decoupling capacitor from the referenced plane and ground on both sides of the split, for example, from 3.3V to Ground, and from 5V and Ground.
  • the problem with these solutions is that the return current does not take a well-behaved return path back to the source causing radiation and reflections.
  • SMD surface mounted device
  • Important aspects of the present invention are to provide a structure for implementing an integrated conductor and capacitor in surface mounted device (SMD) packaging.
  • Other important aspects of the present invention are to provide such structure for implementing an integrated conductor and capacitor in surface mounted device (SMD) packaging substantially without negative effect and that overcome some of the disadvantages of prior art arrangements.
  • structures are provided for implementing an integrated conductor and capacitor in a surface mounted device (SMD) package.
  • SMD surface mounted device
  • a first pair and a second pair of contacts contained within the SMD package respectively are provided in mating engagement with a first pair and a second pair of corresponding SMD package contacts.
  • a conductor extends between the first pair of contacts, contained within the SMD package.
  • a capacitor is defined between the second pair of contacts, contained within the SMD package.
  • an additional one or pair of integral capacitors optionally is provided for providing additional capacitance to ground to decouple common mode noise from the power planes.
  • FIG. 1 is diagram illustrating a side view of an exemplary integrated conductor and capacitor structure for use in surface mounted device (SMD) packaging in accordance with the preferred embodiment
  • FIG. 2 is a diagram illustrating a top view of the exemplary integrated conductor and capacitor structure of FIG. 1 in accordance with the preferred embodiment
  • FIG. 3 is a diagram illustrating an outside of an exemplary surface mounted device (SMD) packaging receiving the exemplary integrated conductor and capacitor structure of FIG. 1 in accordance with the preferred embodiment;
  • SMD surface mounted device
  • FIG. 4 is a diagram illustrating a side view of another exemplary integrated conductor and capacitor structure for use in surface mounted device (SMD) packaging in accordance with the preferred embodiment
  • FIG. 5 is a diagram illustrating an exemplary outside surface mounted device (SMD) packaging receiving the exemplary integrated conductor and capacitor structure of FIG. 4 in accordance with the preferred embodiment
  • FIG. 6 is a diagram illustrating the exemplary surface mounted device (SMD) packaging of FIG. 3 receiving the exemplary integrated conductor and capacitor structure of FIG. 1 for use with an exemplary portion of a circuit board in accordance with the preferred embodiment.
  • SMD surface mounted device
  • FIGS. 1 , and 2 there is shown an exemplary integrated conductor and capacitor structure generally designated by the reference character 100 for use in surface mounted device (SMD) packaging in accordance with one preferred embodiment.
  • SMD surface mounted device
  • the exemplary integrated conductor and capacitor structure 100 advantageously can improve or shorten the path length by integrating a cross of the split with a conductor generally designated by the reference character 102 integrated with a coupling capacitor generally designated by the reference character 104 .
  • the exemplary integrated conductor and capacitor structure 100 allows a common wiring technique in board layout to be used (i.e., crossing splits). This can be done by minimizing the return loop area and allowing current flow to return to the source across a well-controlled path.
  • simulations have shown that placing the signal conductor 102 and return path through the capacitor 104 proves a better response that what is presently available on the market.
  • the integrated surface mounted device (SMD) conductor and capacitor structure 100 forces the placement of a coupling capacitor with the cross of a split in one discrete component. Simulations have shown that once the normal signal reference is compromised then a return current is best returned by use of a capacitance between the new reference allowing the return current to return through a minimal loop area.
  • the internal construction of the exemplary integrated conductor and capacitor structure 100 can be set to match the characteristic impedance of the conductor within the board structure, for example, 50 ohms. Even a mismatch shows improvement over known conventional arrangements.
  • a conventional SMD package must be altered to allow additional board contacts, for example, two or four additional board contacts to formulate the appropriate structure.
  • the signal conductor 102 includes an elongated, generally U-shaped member 110 extending between a pair of outer contact pads 112 .
  • the capacitor 104 includes a pair of posts 114 , 116 respectively extending from a respective one of a pair of inner contact pads 118 .
  • the respective posts 114 , 116 of the capacitor 104 includes a respective pair of spaced apart parallel arms or plates 120 , 122 ; and 124 , 126 .
  • the respective spaced apart parallel plates 120 , 122 carried by post 114 respectively extend between and below the spaced apart parallel plates 124 , 126 carried by post 116 .
  • the integrated surface mounted device (SMD) conductor and capacitor structure 100 can be most economically implemented with a single dielectric material, such as NPO, X7R, X5R, C0G, YTV, and the like, surrounding all internal structures including the signal conductor 102 and capacitor 104 .
  • the dielectric material is a poor conductor of electricity, while an efficient supporter of electrostatic fields that can store energy and particularly useful in capacitor 104 .
  • the use of a single dielectric material is the same practice used today by manufacturers of surface mount ceramic capacitors. This use of a single dielectric material within the integrated surface mounted device (SMD) conductor and capacitor structure 100 is not only cost effective, it is acceptable for most circuit applications.
  • the signal conductor 102 of the integrated surface mounted device (SMD) conductor and capacitor structure 100 is surrounded with a dielectric material having similar properties to FR4, to maintain the proper signal impedance through the part.
  • the capacitor 104 of the integrated surface mounted device (SMD) conductor and capacitor structure 100 would be surrounded by a typical dielectric material, such as NPO, X7R, X5R, C0G, YTV, and the like, to create a hybrid component 100 made up of two types of dielectric materials.
  • Various conventional materials can be used to form the capacitor 104 of the integrated surface mounted device (SMD) conductor and capacitor structure 100 .
  • a ceramic material such as fired ceramic powders with various metallic titanates, plus modifier and shifters, or a glass frit material can be used to form the parallel plates 120 , 122 ; and 124 , 126 .
  • Electrodes formed of Palladium and silver or nickel can be used and capacitor terminations formed of silver and glass frit, copper and glass frit, nickel or tin can be used to form the capacitor 104 .
  • SMD package 300 receives the exemplary integrated conductor and capacitor structure 100 in accordance with the preferred embodiment.
  • SMD package 300 includes a generally rectangular enclosure 302 , a pair of outer contact pads 304 , and a pair of inner contact pads 306 .
  • FIGS. 1 and 2 show the internal configuration including the four pad contacts 112 , 118 for mating engagement with respective pairs of pad contacts 304 , 306 of the preferred SMD package 300 , as shown in FIG. 3 .
  • FIGS. 4 and 5 there is shown another exemplary integrated conductor and capacitor structure in accordance with the preferred embodiment generally designated by the reference character 400 in FIG. 4 and an exemplary outside surface mounted device (SMD) packaging generally designated by the reference character 500 or SMD package 500 receiving the exemplary integrated conductor and capacitor structure 400 is shown in FIG. 5 .
  • SMD surface mounted device
  • the integrated conductor and capacitor structure 400 similarly includes a signal conductor generally designated by 402 and return path through a capacitor generally designated by 404 .
  • the integrated conductor and capacitor structure 400 of the preferred embodiment includes an additional pair of integral capacitors generally designated by 406 , 408 providing additional capacitance to ground that is further added into the first configuration structure 100 , for example, to decouple common mode noise from the power planes, such as back to logic ground.
  • the signal conductor 402 includes an elongated, generally U-shaped member 410 extending between a pair of outer contact pads 412 .
  • the capacitor 404 includes a pair of posts 414 , 416 respectively extending from a respective one of a pair of inner contact pads 418 .
  • the respective posts 414 , 416 of the capacitor 404 includes a respective pair of spaced apart parallel arms or plates 420 , 422 ; and 424 , 426 .
  • the respective spaced apart parallel plates 420 , 422 carried by post 414 respectively extend between and below the spaced apart parallel plates 424 , 426 carried by post 416 .
  • a pair of spaced apart parallel plates 428 , 430 carried by post 414 below the upper parallel plates 420 , 422 is provided to form the decoupling capacitor 406 .
  • a L-shaped member 432 has a portion extending between the spaced apart parallel plates 428 , 430 form the decoupling capacitor 406 .
  • a pair of spaced apart parallel plates 434 , 436 carried by post 416 below the upper parallel plates 424 , 426 is provided to form the decoupling capacitor 408 .
  • a L-shaped member 438 has a portion extending between the spaced apart parallel plates 434 , 436 form the decoupling capacitor 408 .
  • a respective one of a pair of elongated pad contacts 440 respectively supports the respective L-shaped member 432 , 438 of the decoupling capacitor 406 , 408 .
  • SMD package 500 includes a generally rectangular enclosure 502 , a pair of outer contact pads 504 , and a first and second pair of inner contact pads 506 , and 508 .
  • FIG. 4 shows the internal configuration including the six pad contacts 412 , 418 , 440 for mating engagement with respective pairs of pad contacts 504 , 506 , 508 of the SMD package 500 , as shown in FIG. 5 .
  • the decoupling capacitors 406 , 408 of the integrated conductor and capacitor structure 400 are formed of selected materials as described above used to form the capacitor 104 .
  • the decoupling capacitors 406 , 408 of the integrated conductor and capacitor structure 400 are surrounded by a typical dielectric material, such as NPO, X7R, X5R, C0G, YTV, and the like, to create a unitary dielectric material component 400 or a hybrid component 400 made up of two types of dielectric materials with the conductor 402 surrounded by a different type of dielectric material, such as FR4.
  • FIG. 6 illustrates the exemplary SMD package 300 of FIG. 3 that receives the exemplary integrated conductor and capacitor structure 100 in use with an exemplary portion of a circuit board generally designated by the reference character 600 in accordance with the preferred embodiment.
  • Circuit board 600 includes a ground plane 602 , a voltage plane V 2 604 , and a voltage plane V 1 606 .
  • An incoming signal line 608 and an outgoing signal line 610 are respectively connected to the pair of outer contact pads 304 of the SMD package 300 and the signal conductor 102 by the pair of outer contact pads 112 of the integrated conductor and capacitor structure 100 .
  • a respective via 612 , 614 connects a respective inner contact pad 306 to the voltage plane V 2 604 , and the voltage plane V 1 606 .
  • the voltage, plane V 2 604 , and the voltage plane V 1 606 are connected to the capacitor 104 by the second pair of contacts pads 118 that are provided for mating engagement with to the corresponding inner contact pad 306 of the SMD package 300
  • the present invention is not limited to the illustrated arrangement of the contact pads 112 , 118 of the integrated conductor and capacitor structure 100 and corresponding mating contact pads 304 , 306 of the SMD package 300 .
  • various different shapes and sizes could be provided for the contact pads 112 , 118 and the corresponding mating contact pads 304 , 306 .

Abstract

Structures are provided for implementing an integrated conductor and capacitor in a surface mounted device (SMD) package. A first pair and a second pair of contacts contained within the SMD package respectively are provided in mating engagement with a first pair and a second pair of corresponding SMD package contacts. A conductor extends between the first pair of contacts, contained within the SMD package. A capacitor is defined between the second pair of contacts, contained within the SMD package. An additional one or pair of integral capacitors optionally is provided for providing additional capacitance to ground to decouple common mode noise from the power planes.

Description

FIELD OF THE INVENTION
The present invention relates generally to the electronic design automation field, and more particularly, relates to a structure for implementing an integrated conductor and capacitor in surface mounted device (SMD) packaging.
DESCRIPTION OF THE RELATED ART
A serious electromagnetic emission occurs when a signal or conductor line switches references on a board by crossing split planes. This often occurs in a complex layout when a conductor crosses certain voltage domains, for example, 5V to 3.5V. The best solution is to avoid crossing a, split and creating the radiating source. But, due to cost constraints, the number of layers, or wireability the choice may be made to cross the split.
A solution that is commonly implemented is to place a capacitor near the split thus providing a low frequency return path for the signal. Another less popular solution is to place a decoupling capacitor from the referenced plane and ground on both sides of the split, for example, from 3.3V to Ground, and from 5V and Ground. The problem with these solutions is that the return current does not take a well-behaved return path back to the source causing radiation and reflections.
A need exists for a mechanism to provide a well-behaved return current path in surface mounted device (SMD) packaging having a signal or conductor that switches references on a board by crossing split planes.
SUMMARY OF THE INVENTION
Important aspects of the present invention are to provide a structure for implementing an integrated conductor and capacitor in surface mounted device (SMD) packaging. Other important aspects of the present invention are to provide such structure for implementing an integrated conductor and capacitor in surface mounted device (SMD) packaging substantially without negative effect and that overcome some of the disadvantages of prior art arrangements.
In brief, structures are provided for implementing an integrated conductor and capacitor in a surface mounted device (SMD) package. A first pair and a second pair of contacts contained within the SMD package respectively are provided in mating engagement with a first pair and a second pair of corresponding SMD package contacts. A conductor extends between the first pair of contacts, contained within the SMD package. A capacitor is defined between the second pair of contacts, contained within the SMD package.
In accordance with features of the invention, an additional one or pair of integral capacitors optionally is provided for providing additional capacitance to ground to decouple common mode noise from the power planes.
BRIEF DESCRIPTION OF THE DRAWINGS
The present invention together with the above and other objects and advantages may best be understood from the following detailed description of the preferred embodiments of the invention illustrated in the drawings, wherein:
FIG. 1 is diagram illustrating a side view of an exemplary integrated conductor and capacitor structure for use in surface mounted device (SMD) packaging in accordance with the preferred embodiment;
FIG. 2 is a diagram illustrating a top view of the exemplary integrated conductor and capacitor structure of FIG. 1 in accordance with the preferred embodiment;
FIG. 3 is a diagram illustrating an outside of an exemplary surface mounted device (SMD) packaging receiving the exemplary integrated conductor and capacitor structure of FIG. 1 in accordance with the preferred embodiment;
FIG. 4 is a diagram illustrating a side view of another exemplary integrated conductor and capacitor structure for use in surface mounted device (SMD) packaging in accordance with the preferred embodiment;
FIG. 5 is a diagram illustrating an exemplary outside surface mounted device (SMD) packaging receiving the exemplary integrated conductor and capacitor structure of FIG. 4 in accordance with the preferred embodiment; and
FIG. 6 is a diagram illustrating the exemplary surface mounted device (SMD) packaging of FIG. 3 receiving the exemplary integrated conductor and capacitor structure of FIG. 1 for use with an exemplary portion of a circuit board in accordance with the preferred embodiment.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
Having reference now to the drawings, in FIGS. 1, and 2, there is shown an exemplary integrated conductor and capacitor structure generally designated by the reference character 100 for use in surface mounted device (SMD) packaging in accordance with one preferred embodiment.
The exemplary integrated conductor and capacitor structure 100 advantageously can improve or shorten the path length by integrating a cross of the split with a conductor generally designated by the reference character 102 integrated with a coupling capacitor generally designated by the reference character 104.
In accordance with features of the preferred embodiment, the exemplary integrated conductor and capacitor structure 100 allows a common wiring technique in board layout to be used (i.e., crossing splits). This can be done by minimizing the return loop area and allowing current flow to return to the source across a well-controlled path.
In accordance with features of the preferred embodiment, simulations have shown that placing the signal conductor 102 and return path through the capacitor 104 proves a better response that what is presently available on the market. The integrated surface mounted device (SMD) conductor and capacitor structure 100 forces the placement of a coupling capacitor with the cross of a split in one discrete component. Simulations have shown that once the normal signal reference is compromised then a return current is best returned by use of a capacitance between the new reference allowing the return current to return through a minimal loop area. Although not required, the internal construction of the exemplary integrated conductor and capacitor structure 100 can be set to match the characteristic impedance of the conductor within the board structure, for example, 50 ohms. Even a mismatch shows improvement over known conventional arrangements. A conventional SMD package must be altered to allow additional board contacts, for example, two or four additional board contacts to formulate the appropriate structure.
As shown in FIGS. 1 and 2, the signal conductor 102 includes an elongated, generally U-shaped member 110 extending between a pair of outer contact pads 112. The capacitor 104 includes a pair of posts 114, 116 respectively extending from a respective one of a pair of inner contact pads 118. The respective posts 114, 116 of the capacitor 104 includes a respective pair of spaced apart parallel arms or plates 120, 122; and 124, 126. The respective spaced apart parallel plates 120, 122 carried by post 114 respectively extend between and below the spaced apart parallel plates 124, 126 carried by post 116.
The integrated surface mounted device (SMD) conductor and capacitor structure 100 can be most economically implemented with a single dielectric material, such as NPO, X7R, X5R, C0G, YTV, and the like, surrounding all internal structures including the signal conductor 102 and capacitor 104. The dielectric material is a poor conductor of electricity, while an efficient supporter of electrostatic fields that can store energy and particularly useful in capacitor 104. The use of a single dielectric material is the same practice used today by manufacturers of surface mount ceramic capacitors. This use of a single dielectric material within the integrated surface mounted device (SMD) conductor and capacitor structure 100 is not only cost effective, it is acceptable for most circuit applications.
Alternatively, to provide strict impedance control, for example, for higher speed circuits, the signal conductor 102 of the integrated surface mounted device (SMD) conductor and capacitor structure 100 is surrounded with a dielectric material having similar properties to FR4, to maintain the proper signal impedance through the part. The capacitor 104 of the integrated surface mounted device (SMD) conductor and capacitor structure 100 would be surrounded by a typical dielectric material, such as NPO, X7R, X5R, C0G, YTV, and the like, to create a hybrid component 100 made up of two types of dielectric materials.
Various conventional materials can be used to form the capacitor 104 of the integrated surface mounted device (SMD) conductor and capacitor structure 100. For example, a ceramic material, such as fired ceramic powders with various metallic titanates, plus modifier and shifters, or a glass frit material can be used to form the parallel plates 120, 122; and 124, 126. Electrodes formed of Palladium and silver or nickel can be used and capacitor terminations formed of silver and glass frit, copper and glass frit, nickel or tin can be used to form the capacitor 104.
Referring now to FIG. 3, there is shown an outside of an exemplary surface mounted device (SMD) packaging generally designated by the reference character 300 receiving the exemplary integrated conductor and capacitor structure 100 in accordance with the preferred embodiment. SMD package 300 includes a generally rectangular enclosure 302, a pair of outer contact pads 304, and a pair of inner contact pads 306. FIGS. 1 and 2 show the internal configuration including the four pad contacts 112, 118 for mating engagement with respective pairs of pad contacts 304, 306 of the preferred SMD package 300, as shown in FIG. 3.
Referring now to FIGS. 4 and 5, there is shown another exemplary integrated conductor and capacitor structure in accordance with the preferred embodiment generally designated by the reference character 400 in FIG. 4 and an exemplary outside surface mounted device (SMD) packaging generally designated by the reference character 500 or SMD package 500 receiving the exemplary integrated conductor and capacitor structure 400 is shown in FIG. 5.
As compared to the structure 100, the integrated conductor and capacitor structure 400 similarly includes a signal conductor generally designated by 402 and return path through a capacitor generally designated by 404.
The integrated conductor and capacitor structure 400 of the preferred embodiment includes an additional pair of integral capacitors generally designated by 406, 408 providing additional capacitance to ground that is further added into the first configuration structure 100, for example, to decouple common mode noise from the power planes, such as back to logic ground.
As shown in FIG. 4, the signal conductor 402 includes an elongated, generally U-shaped member 410 extending between a pair of outer contact pads 412. The capacitor 404 includes a pair of posts 414, 416 respectively extending from a respective one of a pair of inner contact pads 418. The respective posts 414, 416 of the capacitor 404 includes a respective pair of spaced apart parallel arms or plates 420, 422; and 424, 426. The respective spaced apart parallel plates 420, 422 carried by post 414 respectively extend between and below the spaced apart parallel plates 424, 426 carried by post 416.
A pair of spaced apart parallel plates 428, 430 carried by post 414 below the upper parallel plates 420, 422 is provided to form the decoupling capacitor 406. A L-shaped member 432 has a portion extending between the spaced apart parallel plates 428, 430 form the decoupling capacitor 406.
Similarly, a pair of spaced apart parallel plates 434, 436 carried by post 416 below the upper parallel plates 424, 426 is provided to form the decoupling capacitor 408. A L-shaped member 438 has a portion extending between the spaced apart parallel plates 434, 436 form the decoupling capacitor 408.
A respective one of a pair of elongated pad contacts 440 respectively supports the respective L-shaped member 432, 438 of the decoupling capacitor 406, 408. SMD package 500 includes a generally rectangular enclosure 502, a pair of outer contact pads 504, and a first and second pair of inner contact pads 506, and 508. FIG. 4 shows the internal configuration including the six pad contacts 412, 418, 440 for mating engagement with respective pairs of pad contacts 504, 506, 508 of the SMD package 500, as shown in FIG. 5.
The decoupling capacitors 406, 408 of the integrated conductor and capacitor structure 400 are formed of selected materials as described above used to form the capacitor 104. The decoupling capacitors 406, 408 of the integrated conductor and capacitor structure 400 are surrounded by a typical dielectric material, such as NPO, X7R, X5R, C0G, YTV, and the like, to create a unitary dielectric material component 400 or a hybrid component 400 made up of two types of dielectric materials with the conductor 402 surrounded by a different type of dielectric material, such as FR4.
FIG. 6 illustrates the exemplary SMD package 300 of FIG. 3 that receives the exemplary integrated conductor and capacitor structure 100 in use with an exemplary portion of a circuit board generally designated by the reference character 600 in accordance with the preferred embodiment. Circuit board 600 includes a ground plane 602, a voltage plane V2 604, and a voltage plane V1 606. An incoming signal line 608 and an outgoing signal line 610 are respectively connected to the pair of outer contact pads 304 of the SMD package 300 and the signal conductor 102 by the pair of outer contact pads 112 of the integrated conductor and capacitor structure 100. As shown, a respective via 612, 614 connects a respective inner contact pad 306 to the voltage plane V2 604, and the voltage plane V1 606. The voltage, plane V2 604, and the voltage plane V1 606 are connected to the capacitor 104 by the second pair of contacts pads 118 that are provided for mating engagement with to the corresponding inner contact pad 306 of the SMD package 300.
It should be understood that the present invention is not limited to the illustrated arrangement of the contact pads 112, 118 of the integrated conductor and capacitor structure 100 and corresponding mating contact pads 304, 306 of the SMD package 300. For example, various different shapes and sizes could be provided for the contact pads 112, 118 and the corresponding mating contact pads 304, 306.
While the present invention has been described with reference to the details of the embodiments of the invention shown in the drawing, these details are not intended to limit the scope of the invention as claimed in the appended claims.

Claims (18)

1. A structure for implementing an integrated conductor and capacitor in a surface mounted device (SMD) package comprising:
a first pair of contacts contained within the SMD package for mating engagement with a first pair of corresponding SMD package contacts;
a second pair of contacts contained within the SMD package for mating engagement with a second pair of corresponding SMD package contacts;
a conductor extending between said first pair of contacts and contained within the SMD package; and
a capacitor defined between said second pair of contacts and contained within the SMD package.
2. A structure for implementing an integrated conductor and capacitor as recited in claim 1 further includes an additional one or pair of integral capacitors for providing additional capacitance to ground to decouple common mode noise from the power planes.
3. A structure for implementing an integrated conductor and capacitor as recited in claim 2 further includes an additional one or pair of third contacts contained within the SMD package for mating engagement with a corresponding SMD package third contact and wherein said additional one or pair of integral capacitors is defined between a respective one of said third contacts and one of said second pair of contacts and contained within the SMD package.
4. A structure for implementing an integrated conductor and capacitor as recited in claim 1 wherein said first pair of contacts are outer contacts and said second pair of contacts are inner contacts, located between said first pair of contacts.
5. A structure for implementing an integrated conductor and capacitor as recited in claim 4 wherein said conductor is a generally U-shaped member extending between said first pair of contacts and contained within the SMD package.
6. A structure for implementing an integrated conductor and capacitor as recited in claim 5 wherein said capacitor includes a pair of posts respectively supported by said second pair of contacts, each post including at least one outwardly extending plate; and said respective plates extending in parallel.
7. A structure for implementing an integrated conductor and capacitor as recited in claim 1 includes a dielectric material surrounding said conductor and said capacitor.
8. A structure for implementing an integrated conductor and capacitor as recited in claim 7 wherein said dielectric material includes a selected one of the group of dielectric materials including NPO, X7R, X5R, C0G, and YTV.
9. A structure for implementing an integrated conductor and capacitor as recited in claim 1 includes a first dielectric material surrounding said conductor and a second dielectric material surrounding said capacitor.
10. A structure for implementing an integrated conductor and capacitor as recited in claim 9 wherein said first dielectric material is a dielectric material having selected impedance properties for high speed operation and wherein said second dielectric material includes a selected one of the group of dielectric materials including NPO, X7R, X5R, C0G, and YTV.
11. A structure for implementing an integrated conductor and capacitor in a surface mounted device (SMD) package comprising:
a first outer pair of contacts contained within the SMD package for mating engagement with a first pair of corresponding SMD package contacts;
a second inner pair of contacts contained within the SMD package between said first outer pair of contacts for mating engagement with a second pair of corresponding SMD package contacts;
at least one third contact contained within the SMD package between said second inner pair of contacts for mating engagement with a respective corresponding third SMD package contact;
a conductor extending between said first pair of contacts and contained within the SMD package;
a first capacitor defined between said second pair of contacts and contained within the SMD package; and
a second capacitor defined between a respective one of said at least one third contact and one of said second pair of contacts and contained within the SMD package.
12. A structure for implementing an integrated conductor and capacitor as recited in claim 11 wherein said conductor is a generally U-shaped member extending between said first pair of contacts and contained within the SMD package.
13. A structure for implementing an integrated conductor and capacitor as recited in claim 11 wherein said first capacitor includes a pair of posts respectively supported by said second pair of contacts, each post including at least one outwardly extending plate; and said respective plates extending in parallel.
14. A structure for implementing an integrated conductor and capacitor as recited in claim 11 wherein said second capacitor includes at least one of said pair of posts respectively supported by said second pair of contacts including at least one additional spaced apart outwardly extending plate, and a generally L-shaped member supported by one said third contact having a portion extending in parallel with said at least one additional spaced apart outwardly extending plate.
15. A structure for implementing an integrated conductor and capacitor as recited in claim 11 includes a dielectric material surrounding said conductor and said first and second capacitors.
16. A structure for implementing an integrated conductor and capacitor as recited in claim 15 wherein said dielectric material includes a selected one of the group of dielectric materials including NPO, X7R, X5R, C0G, and YTV.
17. A structure for implementing an integrated conductor and capacitor as recited in claim 11 includes a first dielectric material surrounding said conductor and a second dielectric material surrounding said first and second capacitors.
18. A structure for implementing an integrated conductor and capacitor as recited in claim 17 wherein said first dielectric material is a dielectric material having selected impedance properties for high speed operation and wherein said second dielectric material includes a selected one of the group of dielectric materials including NPO, X7R, X5R, C0G, and, YTV.
US10/760,448 2004-01-20 2004-01-20 Structures for implementing integrated conductor and capacitor in SMD packaging Expired - Fee Related US6906910B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/760,448 US6906910B1 (en) 2004-01-20 2004-01-20 Structures for implementing integrated conductor and capacitor in SMD packaging

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US10/760,448 US6906910B1 (en) 2004-01-20 2004-01-20 Structures for implementing integrated conductor and capacitor in SMD packaging

Publications (1)

Publication Number Publication Date
US6906910B1 true US6906910B1 (en) 2005-06-14

Family

ID=34634553

Family Applications (1)

Application Number Title Priority Date Filing Date
US10/760,448 Expired - Fee Related US6906910B1 (en) 2004-01-20 2004-01-20 Structures for implementing integrated conductor and capacitor in SMD packaging

Country Status (1)

Country Link
US (1) US6906910B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060209492A1 (en) * 2005-03-18 2006-09-21 Tdk Corporation Multilayer capacitor
US20120188742A1 (en) * 2011-01-21 2012-07-26 International Business Machines Corporation Implementing surface mount components with symmetric reference balance
US20130333928A1 (en) * 2012-06-13 2013-12-19 International Business Machines Corporation Implementing feed-through and domain isolation using ferrite and containment barriers
US20140133065A1 (en) * 2012-11-15 2014-05-15 Euan Patrick Armstrong 3d capacitor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5590016A (en) * 1993-12-16 1996-12-31 Tdk Corporation Multilayer through type capacitor array
US6475607B2 (en) * 1999-01-26 2002-11-05 Murata Manufacturing Co., Ltd. Dielectric ceramic composition and multilayered ceramic substrate
US20030151471A1 (en) * 2000-06-27 2003-08-14 Toru Yamada Multilayer ceramic device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5590016A (en) * 1993-12-16 1996-12-31 Tdk Corporation Multilayer through type capacitor array
US6475607B2 (en) * 1999-01-26 2002-11-05 Murata Manufacturing Co., Ltd. Dielectric ceramic composition and multilayered ceramic substrate
US20030151471A1 (en) * 2000-06-27 2003-08-14 Toru Yamada Multilayer ceramic device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060209492A1 (en) * 2005-03-18 2006-09-21 Tdk Corporation Multilayer capacitor
US7251115B2 (en) * 2005-03-18 2007-07-31 Tdk Corporation Multilayer capacitor
US20120188742A1 (en) * 2011-01-21 2012-07-26 International Business Machines Corporation Implementing surface mount components with symmetric reference balance
US8482934B2 (en) * 2011-01-21 2013-07-09 International Business Machines Corporation Implementing surface mount components with symmetric reference balance
US20130333928A1 (en) * 2012-06-13 2013-12-19 International Business Machines Corporation Implementing feed-through and domain isolation using ferrite and containment barriers
US9204531B2 (en) * 2012-06-13 2015-12-01 International Business Machines Corporation Implementing feed-through and domain isolation using ferrite and containment barriers
US20140133065A1 (en) * 2012-11-15 2014-05-15 Euan Patrick Armstrong 3d capacitor
US9299498B2 (en) * 2012-11-15 2016-03-29 Eulex Corp. Miniature wire-bondable capacitor

Similar Documents

Publication Publication Date Title
TW473751B (en) Multi-layer capacitor, wiring board, and high-frequency circuit
TWI397089B (en) Capacitors, circuit having the same and integrated circuit substrate
EP1387431A1 (en) Transmission line type components
US7557445B2 (en) Multilayer substrate and the manufacturing method thereof
EP2779448A1 (en) Filter
US10916938B2 (en) ESD-protective surface-mount composite component
KR100543853B1 (en) Capacitor with extended surface lands and method of fabrication therefor
US7791896B1 (en) Providing an embedded capacitor in a circuit board
JP2000357960A (en) Ball grid array rc network having high density
JP2002359450A (en) Method of arranging decoupling capacitor
KR20070048266A (en) Split thin film capacitor for multiple voltages
JP4620528B2 (en) Methods and components for achieving EMC shield resonant damping
US20080169883A1 (en) LC resonant circuit
JPH09326334A (en) Tantalum/ceramic composite capacitor
US6906910B1 (en) Structures for implementing integrated conductor and capacitor in SMD packaging
EP1349271B1 (en) Electronic device for supplying DC power comprising a noise filter
JP2007129197A (en) Embedded capacitor device having common coupling area
US7176565B2 (en) Capacitors having separate terminals on three or more sides
CN209982452U (en) Filter circuit structure
TW200417140A (en) Dielectric component array
JP2017208531A (en) Capacitor module
CN111313856A (en) Chip integrated with DC coupling capacitor
CN111933614A (en) Semiconductor device, integrated circuit and electronic equipment
KR20170028700A (en) Multilayer electronic component, board having the same
JP2007173669A (en) Multilayered circuit board and integrated circuit package

Legal Events

Date Code Title Description
AS Assignment

Owner name: INTERNATIONAL BUSINESS MACHINES CORPORATION, NEW Y

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:GILLILAND, DON ALAN;WURTH, DENNIS JAMES;REEL/FRAME:014919/0313

Effective date: 20040116

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20090614