US6514221B2 - Blood-brain barrier opening - Google Patents

Blood-brain barrier opening Download PDF

Info

Publication number
US6514221B2
US6514221B2 US09/915,599 US91559901A US6514221B2 US 6514221 B2 US6514221 B2 US 6514221B2 US 91559901 A US91559901 A US 91559901A US 6514221 B2 US6514221 B2 US 6514221B2
Authority
US
United States
Prior art keywords
brain
blood
subject
barrier
exogenous agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US09/915,599
Other versions
US20020038086A1 (en
Inventor
Kullervo H. Hynynen
Nathan J. McDannold
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Brigham and Womens Hospital Inc
Original Assignee
Brigham and Womens Hospital Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Brigham and Womens Hospital Inc filed Critical Brigham and Womens Hospital Inc
Priority to US09/915,599 priority Critical patent/US6514221B2/en
Priority to PCT/US2001/023643 priority patent/WO2002009608A2/en
Priority to AU2001279042A priority patent/AU2001279042A1/en
Assigned to BRIGHAM & WOMEN'S HOSPITAL, INC. reassignment BRIGHAM & WOMEN'S HOSPITAL, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HYNYNEN, KULLERVO H., MCDANNOLD, NATHAN J.
Publication of US20020038086A1 publication Critical patent/US20020038086A1/en
Application granted granted Critical
Publication of US6514221B2 publication Critical patent/US6514221B2/en
Assigned to NATIONAL INSTITUTES OF HEALTH (NIH), U.S. DEPT. OF HEALTH AND HUMAN SERVICES (DHHS), U.S. GOVERNMENT reassignment NATIONAL INSTITUTES OF HEALTH (NIH), U.S. DEPT. OF HEALTH AND HUMAN SERVICES (DHHS), U.S. GOVERNMENT CONFIRMATORY LICENSE (SEE DOCUMENT FOR DETAILS). Assignors: BRIGHAM AND WOMEN'S HOSPITAL
Assigned to NATIONAL INSTITUTES OF HEALTH (NIH), U.S. DEPT. OF HEALTH AND HUMAN SERVICES (DHHS), U.S. GOVERNMENT reassignment NATIONAL INSTITUTES OF HEALTH (NIH), U.S. DEPT. OF HEALTH AND HUMAN SERVICES (DHHS), U.S. GOVERNMENT CONFIRMATORY LICENSE (SEE DOCUMENT FOR DETAILS). Assignors: BRIGHAM AND WOMEN'S HOSPITAL
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M37/00Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin
    • A61M37/0092Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin using ultrasonic, sonic or infrasonic vibrations, e.g. phonophoresis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/08Detecting organic movements or changes, e.g. tumours, cysts, swellings
    • A61B8/0808Detecting organic movements or changes, e.g. tumours, cysts, swellings for diagnosis of the brain
    • A61B8/0816Detecting organic movements or changes, e.g. tumours, cysts, swellings for diagnosis of the brain using echo-encephalography
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N7/00Ultrasound therapy
    • A61N2007/0056Beam shaping elements
    • A61N2007/006Lenses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N7/00Ultrasound therapy
    • A61N2007/0078Ultrasound therapy with multiple treatment transducers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N7/00Ultrasound therapy
    • A61N2007/0086Beam steering
    • A61N2007/0095Beam steering by modifying an excitation signal

Definitions

  • the invention relates to opening of the blood-brain barrier, and more particularly to noninvasive techniques for doing so.
  • Ultrasound systems transmit energy at ultrasound frequencies into a desired subject.
  • the signals can be detected and processed to produce images of the subject.
  • the signals can also be concentrated or focused in such a way as to ablate, or induce cavitation in, a selected region of the subject.
  • an array of transducers is often used to provide the signals, and to focus the ultrasound energy in a desired manner to either image the subject or to ablate or otherwise provide ultrasound therapy to the subject.
  • regions of a patient's body can be imaged or treated in a noninvasive manner, reducing cost and risk to the patient, especially when imaging or treating sensitive areas of the patient such as the brain.
  • the blood vessels in the brain include endothelial cells connected by “tight junctions” in what is known as the Blood-Brain Barrier (BBB).
  • BBB Blood-Brain Barrier
  • the BBB inhibits substances in the blood flow of a subject from entering the subject's brain. While this is often desirable, e.g., by reducing illness, it is often a nuisance, e.g., by inhibiting delivery of drugs to the brain to help, not hinder, the subject.
  • BBB Blood-Brain Barrier
  • the BBB is a major limitation for genetherapy in the brain. Some other organs also contain tight junctions that limit drug delivery. Thus, the body contains multiple blood-organ barriers.
  • ⁇ оловки ⁇ оло ⁇ ователи can be made to penetrate the BBB, e.g., by making the drugs lipophilic, or by using carriers such as amino acid and peptide carriers. Another option is to physically open the BBB tight junctions temporarily. Chemicals can be administered to the brain to open the tight junctions of the BBB. For example, osmotic opening is possible using an intra-carotid arterial injection of hypertonic solution to shrink the endothelial cells and open the tight junctions. Drug “cocktails” may also open the BBB, and may do so in a more time-controlled manner than osmotic opening. In both the osmotic and chemical opening techniques, an intra-arterial catheter insertion is used and the BBB in the whole brain opens. More localized opening can be achieved by inserting a catheter into the brain and infusing an opening agent directly to a targeted area.
  • the invention provides a method of opening a blood-organ barrier of a subject.
  • the method includes providing an exogenous agent configured to facilitate opening of the blood-organ barrier, administering the exogenous agent to a desired region of the subject, and applying energy to the desired region of the subject while the exogenous agent is present in the desired region, the energy being in a blood-organ-barrier-opening amount sufficient to induce opening of the blood-organ barrier of the subject with the exogenous agent present and below a damage amount sufficient to induce thermal damage to tissue in the absence of the exogenous agent.
  • Implementations of the invention may include one or more of the following features.
  • the energy applied is ultrasound energy and the exogenous agent contains at least one of gaseous bubbles, a high concentration of gas, solid particles configured to vaporize in response to body temperature, solid particles configured to vaporize in response to the ultrasound energy, liquid configured to vaporize in response to body temperature, liquid configured to vaporize in response to the ultrasound energy, micro particles configured to act as cavitation sites, solid particles having higher acoustic impedance than tissue in the desired region, and liquid with a high acoustic absorption coefficient.
  • the blood-organ-barrier-opening amount is less than approximately one order of magnitude lower than the damage amount.
  • the blood-organ-barrier-opening amount is less than approximately two orders of magnitude lower than the damage amount.
  • Implementations of the invention may further include one or more of the following features.
  • the exogenous agent is administered to the subject without penetrating a skull of the subject.
  • the exogenous agent is administered through a vasculature of the subject.
  • the administering includes waiting for the exogenous agent to reach the desired region via the vasculature.
  • Implementations of the invention may further include one or more of the following features.
  • the method further includes imaging at least the desired region of the subject and determining if the blood-organ barrier has opened in the desired region using results of the imaging.
  • the applying includes adjusting at least one characteristic of the ultrasound energy to apply at least the blood-organ-barrier-opening amount to the desired region.
  • Implementations of the invention may further include one or more of the following features.
  • the exogenous agent contains preformed bubbles that have a mean diameter less than an upper size limit for being able to pass through a capillary bed of the subject.
  • the exogenous agent has a concentration of bubbles high enough such that the blood-organ barrier will open in response to the applied energy.
  • the invention provides a method of opening a blood-brain barrier of a subject.
  • the method includes providing an exogenous agent configured to facilitate opening of the blood-organ barrier, administering the exogenous agent to a desired region of a brain of the subject, and applying ultrasound energy to the desired region of the brain of the subject while the exogenous agent is present in the desired region, the ultrasound energy being in a blood-brain-barrier-opening amount sufficient to induce opening of the blood-brain barrier of the subject with the exogenous agent present, the blood-brain-barrier-opening amount being below a damage amount sufficient to induce thermal damage to brain tissue of the subject, and the exogenous agent being administered to the subject in a non-invasive manner relative to a skull of the subject.
  • the blood-brain-barrier-opening amount is less than approximately two orders of magnitude lower than the damage amount.
  • the exogenous agent contains preformed gaseous bubbles.
  • the energy applied is ultrasound energy and the exogenous agent contains at least one of a high concentration of gas, solid particles configured to vaporize in response to body temperature, solid particles configured to vaporize in response to the ultrasound energy, liquid configured to vaporize in response to body temperature, liquid configured to vaporize in response to the ultrasound energy, micro particles configured to act as cavitation sites, solid particles having higher acoustic impedance than tissue in the desired region, and liquid with a high ultrasound absorption coefficient.
  • the invention provides a method of opening a blood-brain barrier of a subject, the method including providing an exogenous agent containing gaseous bubbles, administering the exogenous agent to a desired region of a brain of the subject, applying ultrasound energy to the desired region of the brain of the subject while the exogenous agent is present in the desired region, the ultrasound energy being in a blood-brain-barrier-opening amount sufficient to induce opening of the blood-brain barrier of the subject with the exogenous agent present, imaging at least the desired region of the brain of the subject, and determining if the blood-brain barrier has opened in the desired region using results of the imaging, the blood-brain-barrier-opening amount is below a damage amount sufficient to induce thermal damage to brain tissue of the subject, and the exogenous agent is administered to the subject in a non-invasive manner relative to a skull of the subject.
  • Ultrasound can be used to produce consistent focal blood-brain barrier opening leakage substantially without damage to surrounding brain tissue while using noninvasive image guidance and monitoring.
  • Temporal average spatial peak powers of approximately two orders of magnitude below the level required for thermal damage of the brain tissue can be used while opening the blood-brain barrier (BBB).
  • BBB blood-brain barrier
  • Local noninvasive targeted drug delivery, cell transplantation, gene therapy, or delivery of other substances with therapeutic or diagnostic use can be achieved in the brain or other organs in which drug delivery via the vasculature is limited. Undesired effects to non-targeted issues may be reduced and/or eliminated.
  • FIG. 2 is a block flow diagram of a process using the arrangement shown in FIG. 1 .
  • FIG. 5 is a graph of percentage of focal locations that showed neuronal damage as a function of pressure amplitude of sonication.
  • FIGS. 6-7 are schematic diagrams showing alternative sonication arrangements.
  • a noninvasive BBB-opening system 10 includes an imaging system 12 such as a Magnetic Resonance Imaging (MRI) or CT scanner, an enclosure 14 containing a coupling medium (such as water) 16 and an ultrasound transducer array 18 , a Radio Frequency (RF) amplifier 22 , and a controller 24 such as a personal computer.
  • an imaging system 12 such as a Magnetic Resonance Imaging (MRI) or CT scanner
  • an enclosure 14 containing a coupling medium (such as water) 16 and an ultrasound transducer array 18
  • RF Radio Frequency
  • the imaging system 12 is an MRI
  • the BBB-opening system 10 will also include an MRI coil 20 .
  • the system 10 can be used to provide noninvasive therapy to a subject 26 (with only the subject's skull shown in FIG. 1 ).
  • the therapy could be to open the BBB in a brain 28 of the subject 26 .
  • the imaging system 12 can provide MRI images of the subject's brain 28 noninvasively, specifically in an image plane 31 .
  • the imaging system 12 can be, e.g., a standard 1.5 Tesla Signa MRI system (made by General Electric Medical Systems, of Milwaukee, Wis.).
  • the MRI coil 20 has a diameter such that the coil 20 can be placed around the subject's head to improve signal-to-noise ratio of the MRI scanner. Different coil designs or arrays of coils can also be used.
  • the temperature-dependent proton resonant frequency shift can be estimated using a fast spoiled gradient echo sequence (FSPGR) or fast gradient echo (FGRASS).
  • FSPGR fast spoiled gradient echo sequence
  • FGRASS fast gradient echo
  • Ultrasound energy is provided by an ultrasound subsystem including the array 18 , the RF amplifier 22 (including a frequency generator, a phase and amplitude control unit, and a multi-channel RF-amplifier), and the controller 24 .
  • the ultrasound array 18 is configured to transmit ultrasound energy, and to have that energy focus in a desired region 30 .
  • Each element of the array 18 is driven with a similar but separate RF signal produced by the multi-channel amplifier 22 under control of the controller 24 .
  • the controller 24 regulates the amplitude, phase, and pattern of the signal (e.g., continuous, pulsed, etc.).
  • the RF signals from the elements of the array 18 can have relative phases and amplitudes such that skull-induced distortions are compensated for to induce a single focus at a desired location.
  • the array 18 can be mounted on a positioning device 32 that can be adjusted to change the location of the focused ultrasound energy. Alternatively, the focus location can be adjusted electronically using different relative phase excitations of the array elements.
  • a syringe 34 contains an ultrasound contrast agent 36 to be injected into the subject 26 .
  • the agent 36 includes material that facilitates cavitation under low ultrasound energy levels that are insufficient to induce thermal damage to soft tissue, e.g., brain tissue (although not necessarily any soft tissue).
  • the agent 36 can contain preformed microbubbles of various sizes and in various concentrations.
  • bubbles preferably have a mean diameter lower than an upper limit that can pass through the capillary bed, this upper limit being approximately 1 ⁇ 10 ⁇ 5 m.
  • Some bubbles may exceed the upper size limit, but preferably enough bubbles are sized lower than the upper limit such that the agent 36 can effectively assist with opening the BBB.
  • the agent 36 can be Optison, made by Mallinckrodt Inc. of St. Louis, Mo., 63042, that contains micro bubbles.
  • the micro bubbles of this agent have a mean diameter of 2.0 ⁇ 10 ⁇ 6 m to 4.5 ⁇ 10 ⁇ 6 m and a concentration of 5 ⁇ 10 8 bubbles/ml to 8 ⁇ 10 8 bubbles/ml.
  • Concentrations of injected agent 36 of about 2.5 ⁇ 10 8 bubbles/ml to about 16 ⁇ 10 8 bubbles/ml have also proven effective. Concentrations preferably are high enough to assist with opening the BBB and low enough such that the agent 36 can be safely delivered via blood vessels, and low enough to avoid unacceptable amounts of bubbles combining are avoided or other effects that would inhibit performance of the agent 36 .
  • the agent 36 can have characteristics other than preformed bubbles.
  • the agent 36 can be a liquid containing preformed gas bubbles, or solid particles, or liquid droplets that contain a fluid, with a low enough vaporizing point that the solid particles or fluid will vaporize from body heat or due to the pressure or temperature effects caused by the ultrasound.
  • the agent 36 may also be a liquid with high gas concentration or micro particles that can act as cavitation sites.
  • the agent 36 may also be a liquid with solid particles that have a significantly different, higher, acoustic impedance than that of soft tissue.
  • the agent 36 may also be a liquid with a high acoustic, e.g., ultrasound, absorption coefficient.
  • a process 40 of opening the BBB in the subject 26 uses the system 10 to apply focused ultrasound energy to the desired region 30 of the subject 26 containing the exogenous agent 36 , for example, with the preformed micro-bubbles. It is believed that the. acoustic energy provided by the ultrasound subsystem to the micro bubbles in the exogenous contrast agent injected into the subject's blood stream induces cavitation inside of blood vessels. It is further believed that this cavitation induces mechanical stresses that cause a transient increase in transmission of matter through the capillary wall in the brain 28 , and thus a transient opening of the BBB.
  • the exogenous agent is provided and administered to the subject 26 .
  • the agent 36 contains micro bubbles, or material that can form bubbles in the blood stream under ultrasound exposure or body heat, or other material to interact with the ultrasound energy to help open the BBB.
  • the agent 36 is administered at stage 44 by injection into the subject's vasculature using the syringe 34 .
  • the syringe 34 can be inserted into a vein in the subject's arm, thus being noninvasive relative to the subject's skull.
  • the agent 36 could also be injected via a catheter into a subject's artery. A sufficient time is allowed to pass for the agent 36 to travel through the subject's vasculature to reach the desired region 30 in the subject's brain 28 .
  • ultrasound energy is applied by the ultrasound subsystem, to the subject 26 , and preferably to the desired region 30 of the subject's brain 28 .
  • This energy is applied without opening the subject's skull.
  • the controller 24 indicates to the amplifier 22 energy to provide to the array 18 , including how much, and in what pattern (e.g., frequency, phase, amplitude, number of cycles, duty cycle) to provide energy using the array 18 to the subject 26 .
  • the amplifier 22 conveys energy to the array 18 .
  • the acoustic energy from the array 18 is of an amount, e.g., an average amount, that will induce opening of the BBB, but not cause thermal or other damage to the subject's brain tissue (although the energy amount provided could be sufficient induce thermal damage if it is desirable to do so).
  • the temporal average spatial peak power can be approximately two orders of magnitude below a level that will induce thermal damage to the subject's brain tissue, or lower.
  • the array 18 transmits the energy as acoustic energy through the subject's skull and into the subject's brain 28 . Relative excitations of the portions of the array 18 , as well as physical characteristics of the subject's skull and brain 28 , determine where the ultrasound energy from the array 18 will focus.
  • the subject 26 is imaged and it is determined whether the ultrasound subsystem properly focused sufficient ultrasound energy to open the BBB of the subject 26 in the desired region 30 .
  • Whether the BBB opened is determined by evaluating the signal intensity change in the MRI signal during the sonication or contrast enhancement in the desired region 30 caused by an MRI or CT contrast agent that is injected in the blood stream, with significant enhancement indicating BBB opening. It may also be possible to perform opening of the BBB without image monitoring based on predetermined sonication parameters.
  • additional agent 36 is provided as appropriate and the energy applied by the ultrasound subsystem is adjusted as appropriate to open the BBB in the desired region 30 .
  • Various parameters of the energy applied can be adjusted. For example, the focus of the energy can be changed, e.g., by altering the relative phase excitations of the portion of the array 18 .
  • amounts of energy can be adjusted, e.g., frequency, burst length, peak pressure, average power, duty cycle of a pulse train, number of bursts, and/or repetition frequency of bursts.
  • Stages 46 , 48 , and 50 can be repeated, or performed concurrently with stages 52 and 54 , so that these adjustments are made in conjunction with stages 46 , 48 , and 50 to obtain BBB opening in the desired region 30 .
  • Ultrasound fields were generated by a spherical sixteen sector focused, piezoelectric transducer with a 100-mm diameter, an 80-mm radius of curvature, and a resonant frequency of 1.63 MHz as the array 18 .
  • Each sector was driven with an identical but separate RF signal generated by the multi-channel driving system 22 under control of a computer.
  • the RF signals were in phase and equal in amplitude.
  • the properties of the transducer were measured in a separate apparatus.
  • the acoustic power output as a function of applied RF power was measured using a radiation force technique.
  • the ultrasound field distributions were measured using a needle hydrophone (0.075 mm in diameter, made by Precision Acoustics, of Dorchester, UK).
  • the absolute intensity in water was measured using a PVDF (polyvinylidene fluoride) coplanar shielded membrane hydrophone (made by GEC-Marconi Research Center, of Chelmsford, England) with an active area of 0.5 mm in diameter. This hydrophone was calibrated by the National Physics Laboratory, Teddington, Middlesex, England.
  • Sonications were performed under MRI guidance and monitoring.
  • the transducer array 18 was mounted on an experimental positioning device (made by TxSonics, Inc, of Haifa, Israel) integrated in the MRI scanner table. For these experiments, the positioning system was used only to move the transducer. Sonication-related aspects were executed by an external PC that controlled the sonications via the multi-channel amplifier system 22 .
  • New Zealand white rabbits had there BBBs opened using the setup described above. Eleven New Zealand white rabbits (approximately 4 kg, males) were anesthetized by a mix of 40 mg/kg ketamine (made by Aveco Co, Inc, of Fort Dodge, Iowa), and 10 mg/kg of xylazine (made by Lloyd Laboratories, of Shenandoah, Iowa). A piece of skull (approximately 15 ⁇ 15 mm) was removed, and the skin was replaced over the craniotomy. The brain sonications were executed after the wound healed and all of the air was dissolved (a minimum of 10 days after the surgery). The bone was removed to simplify the experiments. If the bone was in place, the array 18 would be excited to compensate for the bone.
  • the animals were placed on their backs on a water blanket that circulated temperature controlled water to maintain the body temperature of the animal.
  • the head was fixed in the treatment position by an acrylic holder.
  • the skin (hair removed) on the top of the head was coupled to the water bath that contained the transducers with a degassed water bag 19 (FIG. 1 ).
  • T2-weighted images were obtained to localize the craniotomy and to confirm a clear beam path to the desired target depth.
  • the focal spot was visible in all cases and could be compared to the target location. Often a small (typically less than 1 mm) correction was performed to align the target location with the focus of the ultrasound energy. After alignment, four or six locations were sonicated with the focus aimed at 10 mm deep in the brain 28 at different peak power levels that ranged from 0.2 to 11.5 W (acoustic power).
  • the injected volume was selected to be 0.05 ml/kg, which is in the range (0.5 ml-5 ml) recommended for human use by the manufacturer.
  • the bolus was flushed from tubing of an injection device by injecting approximately 1 ml of saline. The sonications in different locations with new injections were performed with 5-10 min. delays that allowed the bubbles to clear from the circulation of the rabbit.
  • the animals were sacrificed between 4 hours and 7 days after the sonication and the brains were fixed in formalin.
  • Whole-brain evaluation was conducted by sectioning the brain 28 and performing a microscopic investigation. The brain 28 was sectioned at 6 micrometers (across the beam direction; parallel to the MRI slices), and every 20 th section (interval of 0.4 mm) was stained by hematoxylin and eosin.
  • the MRI scanner was a standard 1.5 Tesla Signa system (made by General Electric Medical Systems, of Milwaukee, Wis.). A 7.5 cm diameter surface coil was placed under the head to improve the signal-to-noise ratio.
  • FSPGR fast spoiled gradient echo sequence
  • FGRASS fast gradient echo
  • the bandwidth helped with controlling the TE in the product sequence and thus, the imaging time in the FSPGR sequence.
  • the TE was selected so that adequate temporal sampling of the temperature elevation during the sonication could be achieved. Twenty images were obtained in a series with the total acquisition time of 80 s. The first image was triggered 4 s prior to the start of the contrast injection sonication. The scanner was programmed to reconstruct the magnitude, real and imaginary images for each of these time points. The real and imaginary parts were used to calculate the phase difference between the two time points. The scan plane was located across the focus at the focal depth.
  • T1-weighted images were obtained by using a Fast Spin Echo (FSE) pulse sequence.
  • FSE Fast Spin Echo
  • TR 500 ms
  • TE 17 ms
  • echo train length 4
  • MAGNEVIST gadopentetate dimeglumine contrast agent
  • TR 2000 ms
  • slice thickness 1.5 mm.
  • the follow up MRI studies were repeated two days after the sonications in most cases. In one case, imaging was also performed at one day, and in two cases the imaging was performed at seven days.
  • the level of contrast enhancement was measured in the focal spot by averaging the signal intensity over a 3 ⁇ 3 set of voxels (1.17 ⁇ 1.17 mm) and normalizing the value to the baseline value before contrast injection. The signal also was averaged outside of the sonicated location to obtain control values.
  • Pulsed sonication produced focal BBB opening without damage to the tissue in the beam path as determined by contrast enhanced MRI scans.
  • the signal intensity (SI) change in the T1-weighted images caused by leakage of the contrast agent into the brain was dependent on the applied acoustic pressure amplitude as shown in FIG. 3 .
  • the BBB opening did not appear to be burst-length or average-acoustic-power dependent as the sonications with 10 ms and 1 ms bursts (i.e. 10% and 1% duty cycle) produced approximately equal enhancement.
  • the SPGR magnitude images acquired during the sonications showed a reduction in the SI at the focal location.
  • the average maximum temperature elevations measured during the sonications by the temperature sensitive phase imaging were 4.8+/ ⁇ 1.7° C., 3.4+/ ⁇ 0.9° C., and 2.3+/ ⁇ 0.8° C. for 11.5, 5.8, and 2.7 W peak acoustic power respectively. These temperature elevations are below the threshold for thermal tissue damage.
  • the BBB was consistently opened with the sonications except about half of the sonications with the lowest power level.
  • the contrast-enhanced imaging was repeated up to six hours after the sonication during the day of the sonication (six locations) and the BBB was still open at that point. No contrast enhancement, however, was evident in the rabbit imaged 1 day after the sonications. Similarly, the contrast enhancement was not present at 2 or 7 days except in a few of the high power sonications that produced neuron damage.
  • the histology evaluation showed damage to the neurons in approximately 60% of the sonicated locations at the highest power level used as shown in FIG. 5 .
  • the percentage of the neuron damage was approximately 20%.
  • the sonicated locations showed red blood cells in the brain tissue outside of the blood vessels, indicating vascular damage.
  • the brains examined after 7 days survival did not show any tissue damage.
  • the experiments demonstrate that focused ultrasound can be used to produce consistent focal BBB leakage without, or substantially without, damage to the surrounding brain tissue while using noninvasive image guidance and monitoring.
  • the above-described experiments were able to produce the BBB opening consistently by using an ultrasound contrast agent with gas bubbles as cavitation sites.
  • the temporal average spatial peak powers used were approximately two orders of magnitude below the level that induces thermal damage of the brain tissue. These power levels can be reached through the skull by using phased array applicators that compensate for skull induced distortions.
  • the BBB opening allowed an MRI contrast agent with molecular weight 928 to enter into the brain.
  • many of the chemotherapeutic agents usable for brain tumor treatments (molecular weight between 200 and 1200) could enter into the brain through the ultrasound-induced deficit.
  • the maximum temperature elevation from the pulsed sonication at the highest power level used was approximately 5° C. with the ultrasound contrast agent and undetectable without it. This indicates that cavitation events increase the local temperature elevation.
  • the lowest temporal average acoustic power level that consistently produced BBB opening was approximately 200 times lower than the highest power used.
  • MRI temperature measurements did not show any temperature rise for these sonications, indicating that it would be less than the 1-2° C. noise level of the MRI thermometry used in the experiments. If the temperature elevation is linearly proportional to the applied acoustic power, then the temperature elevation was approximately 0.025° C. during these low power sonications.
  • the correlation between reduction in the signal intensity of an SPGR sequence and the opening of the BBB can be used to perform on-line monitoring of the exposures. Since the SI change remained visible over the course of the sonications (up to 60 min.) it was not caused by temperature elevation, but could be due to a susceptibility change induced by extravascularized red blood cells.
  • the lowest pressure amplitude level used was less than 0.7 MPa, indicating that similar events may be detected by using diagnostic ultrasound exposures. This may be a safety concern when brain imaging is performed using ultrasound contrast agents containing microbubbles.
  • another noninvasive BBB-opening system 80 includes similar features as that of FIG. 1, with the array 18 split into multiple portions. As shown, the array 18 has two portions physically separated and directing energy to the common desired region 30 . Other features, such as the positioning device 32 and coupling medium 19 are modified accordingly.
  • the array 18 is approximately hemispherical and partially encloses/surrounds the subject's head.
  • the ultrasound can also de delivered via interstitial or intravascular catheters, or applicators used during surgery. Non-focused ultrasound fields may also be used if BBB opening of a large region is desired.
  • Focusing can also be achieved by pulsing the ultrasound sources with predetermined delays such that the pressure pulses will interfere and produce a focus in the desired location.
  • the ultrasound can also be delivered from an ultrasound system designed for diagnostic or other purposes.
  • the ultrasound waves used can be of one or multiple frequencies.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Public Health (AREA)
  • Medical Informatics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Hematology (AREA)
  • Anesthesiology (AREA)
  • Neurology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Dermatology (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Surgical Instruments (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

A method of opening a blood-organ barrier of a subject includes providing an exogenous agent configured to facilitate opening of the blood-organ barrier, administering the exogenous agent to a desired region of the subject, and applying energy to the desired region of the subject while the exogenous agent is present in the desired region, the energy being in a blood-organ-barrier-opening amount sufficient to induce opening of the blood-organ barrier of the subject with the exogenous agent present and below a damage amount sufficient to induce thermal damage to tissue in the absence of the exogenous agent.

Description

CROSS-REFERENCE TO RELATED ACTIONS
This application claims the benefit of U.S. Provisional Application Ser. No. 60/221,064 filed Jul. 27, 2000 and entitled “Noninvasive Image-Guided Opening of Blood Brain Barrier.”
STATEMENT AS TO FEDERALLY-SPONSORED RESEARCH
This invention was made at least in part with Government support under Grant No. CA 76550, awarded by the National Institutes of Health. The Government has certain rights in this invention.
FIELD OF THE INVENTION
The invention relates to opening of the blood-brain barrier, and more particularly to noninvasive techniques for doing so.
BACKGROUND OF THE INVENTION
Ultrasound systems transmit energy at ultrasound frequencies into a desired subject. The signals can be detected and processed to produce images of the subject. The signals can also be concentrated or focused in such a way as to ablate, or induce cavitation in, a selected region of the subject. For any of these uses, an array of transducers is often used to provide the signals, and to focus the ultrasound energy in a desired manner to either image the subject or to ablate or otherwise provide ultrasound therapy to the subject. By using ultrasound, regions of a patient's body can be imaged or treated in a noninvasive manner, reducing cost and risk to the patient, especially when imaging or treating sensitive areas of the patient such as the brain.
The blood vessels in the brain include endothelial cells connected by “tight junctions” in what is known as the Blood-Brain Barrier (BBB). The BBB inhibits substances in the blood flow of a subject from entering the subject's brain. While this is often desirable, e.g., by reducing illness, it is often a nuisance, e.g., by inhibiting delivery of drugs to the brain to help, not hinder, the subject. For example, in spite of a large number of very potent drugs, many central nervous system diseases are difficult to treat due to the inability of these substances to penetrate the BBB. Similarly, the BBB is a major limitation for genetherapy in the brain. Some other organs also contain tight junctions that limit drug delivery. Thus, the body contains multiple blood-organ barriers.
Various options for opening the BBB are available. Drugs can be made to penetrate the BBB, e.g., by making the drugs lipophilic, or by using carriers such as amino acid and peptide carriers. Another option is to physically open the BBB tight junctions temporarily. Chemicals can be administered to the brain to open the tight junctions of the BBB. For example, osmotic opening is possible using an intra-carotid arterial injection of hypertonic solution to shrink the endothelial cells and open the tight junctions. Drug “cocktails” may also open the BBB, and may do so in a more time-controlled manner than osmotic opening. In both the osmotic and chemical opening techniques, an intra-arterial catheter insertion is used and the BBB in the whole brain opens. More localized opening can be achieved by inserting a catheter into the brain and infusing an opening agent directly to a targeted area.
SUMMARY OF THE INVENTION
In general, in an aspect, the invention provides a method of opening a blood-organ barrier of a subject. The method includes providing an exogenous agent configured to facilitate opening of the blood-organ barrier, administering the exogenous agent to a desired region of the subject, and applying energy to the desired region of the subject while the exogenous agent is present in the desired region, the energy being in a blood-organ-barrier-opening amount sufficient to induce opening of the blood-organ barrier of the subject with the exogenous agent present and below a damage amount sufficient to induce thermal damage to tissue in the absence of the exogenous agent.
Implementations of the invention may include one or more of the following features. The energy applied is ultrasound energy and the exogenous agent contains at least one of gaseous bubbles, a high concentration of gas, solid particles configured to vaporize in response to body temperature, solid particles configured to vaporize in response to the ultrasound energy, liquid configured to vaporize in response to body temperature, liquid configured to vaporize in response to the ultrasound energy, micro particles configured to act as cavitation sites, solid particles having higher acoustic impedance than tissue in the desired region, and liquid with a high acoustic absorption coefficient. The blood-organ-barrier-opening amount is less than approximately one order of magnitude lower than the damage amount. The blood-organ-barrier-opening amount is less than approximately two orders of magnitude lower than the damage amount.
Implementations of the invention may further include one or more of the following features. The exogenous agent is administered to the subject without penetrating a skull of the subject. The exogenous agent is administered through a vasculature of the subject. The administering includes waiting for the exogenous agent to reach the desired region via the vasculature.
Implementations of the invention may further include one or more of the following features. The method further includes imaging at least the desired region of the subject and determining if the blood-organ barrier has opened in the desired region using results of the imaging. The applying includes adjusting at least one characteristic of the ultrasound energy to apply at least the blood-organ-barrier-opening amount to the desired region.
Implementations of the invention may further include one or more of the following features. The exogenous agent contains preformed bubbles that have a mean diameter less than an upper size limit for being able to pass through a capillary bed of the subject. The exogenous agent has a concentration of bubbles high enough such that the blood-organ barrier will open in response to the applied energy.
In general, in another aspect, the invention provides a method of opening a blood-brain barrier of a subject. The method includes providing an exogenous agent configured to facilitate opening of the blood-organ barrier, administering the exogenous agent to a desired region of a brain of the subject, and applying ultrasound energy to the desired region of the brain of the subject while the exogenous agent is present in the desired region, the ultrasound energy being in a blood-brain-barrier-opening amount sufficient to induce opening of the blood-brain barrier of the subject with the exogenous agent present, the blood-brain-barrier-opening amount being below a damage amount sufficient to induce thermal damage to brain tissue of the subject, and the exogenous agent being administered to the subject in a non-invasive manner relative to a skull of the subject.
Implementations of the invention may include one or more of the following features. The blood-brain-barrier-opening amount is less than approximately two orders of magnitude lower than the damage amount. The exogenous agent contains preformed gaseous bubbles. The energy applied is ultrasound energy and the exogenous agent contains at least one of a high concentration of gas, solid particles configured to vaporize in response to body temperature, solid particles configured to vaporize in response to the ultrasound energy, liquid configured to vaporize in response to body temperature, liquid configured to vaporize in response to the ultrasound energy, micro particles configured to act as cavitation sites, solid particles having higher acoustic impedance than tissue in the desired region, and liquid with a high ultrasound absorption coefficient.
In general, in another aspect, the invention provides a method of opening a blood-brain barrier of a subject, the method including providing an exogenous agent containing gaseous bubbles, administering the exogenous agent to a desired region of a brain of the subject, applying ultrasound energy to the desired region of the brain of the subject while the exogenous agent is present in the desired region, the ultrasound energy being in a blood-brain-barrier-opening amount sufficient to induce opening of the blood-brain barrier of the subject with the exogenous agent present, imaging at least the desired region of the brain of the subject, and determining if the blood-brain barrier has opened in the desired region using results of the imaging, the blood-brain-barrier-opening amount is below a damage amount sufficient to induce thermal damage to brain tissue of the subject, and the exogenous agent is administered to the subject in a non-invasive manner relative to a skull of the subject.
Implementations of the invention may include one or more of the following features. The applying includes adjusting at least one characteristic of the ultrasound energy to apply at least the blood-brain-barrier-opening amount to the desired region. The blood-brain-barrier-opening amount is less than approximately two orders of magnitude lower than the damage amount. The exogenous agent contains preformed bubbles that have a mean diameter less than an upper size limit for being able to pass through a capillary bed of the subject. The exogenous agent has a concentration of bubbles high enough such that the blood-brain barrier will open in response to the applied energy.
Various aspects of the invention may provide one or more of the following advantages. Ultrasound can be used to produce consistent focal blood-brain barrier opening leakage substantially without damage to surrounding brain tissue while using noninvasive image guidance and monitoring. Temporal average spatial peak powers of approximately two orders of magnitude below the level required for thermal damage of the brain tissue can be used while opening the blood-brain barrier (BBB). Local noninvasive targeted drug delivery, cell transplantation, gene therapy, or delivery of other substances with therapeutic or diagnostic use can be achieved in the brain or other organs in which drug delivery via the vasculature is limited. Undesired effects to non-targeted issues may be reduced and/or eliminated.
These and other advantages of the invention, along with the invention itself, will be more fully understood after a review of the following figures, detailed description, and claims.
BRIEF DESCRIPTION OF THE FIGURES
FIG. 1 is a schematic diagram showing a sonication arrangement.
FIG. 2 is a block flow diagram of a process using the arrangement shown in FIG. 1.
FIG. 3 is a graph of normalized signal intensity (SI) change at focal volumes in a rabbit brain after a last sonication, using the arrangement shown in FIG. 1, as a function of pressure amplitude during 100 ms ultrasound bursts.
FIG. 4 is a graph of normalized signal intensity increase caused by contrast injections at a sonicated location vs. normalized signal intensity of an SPGR sequence during sonication.
FIG. 5 is a graph of percentage of focal locations that showed neuronal damage as a function of pressure amplitude of sonication.
FIGS. 6-7 are schematic diagrams showing alternative sonication arrangements.
DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS
Referring to FIG. 1, a noninvasive BBB-opening system 10 includes an imaging system 12 such as a Magnetic Resonance Imaging (MRI) or CT scanner, an enclosure 14 containing a coupling medium (such as water) 16 and an ultrasound transducer array 18, a Radio Frequency (RF) amplifier 22, and a controller 24 such as a personal computer. If the imaging system 12 is an MRI, then the BBB-opening system 10 will also include an MRI coil 20. The system 10 can be used to provide noninvasive therapy to a subject 26 (with only the subject's skull shown in FIG. 1). For example, the therapy could be to open the BBB in a brain 28 of the subject 26.
The imaging system 12 can provide MRI images of the subject's brain 28 noninvasively, specifically in an image plane 31. The imaging system 12 can be, e.g., a standard 1.5 Tesla Signa MRI system (made by General Electric Medical Systems, of Milwaukee, Wis.). The MRI coil 20 has a diameter such that the coil 20 can be placed around the subject's head to improve signal-to-noise ratio of the MRI scanner. Different coil designs or arrays of coils can also be used. The temperature-dependent proton resonant frequency shift can be estimated using a fast spoiled gradient echo sequence (FSPGR) or fast gradient echo (FGRASS). The imaging time is such that adequate temporal sampling of the temperature elevation during sonication of the subject 26 using the array 18 can be achieved.
Ultrasound energy is provided by an ultrasound subsystem including the array 18, the RF amplifier 22 (including a frequency generator, a phase and amplitude control unit, and a multi-channel RF-amplifier), and the controller 24. The ultrasound array 18 is configured to transmit ultrasound energy, and to have that energy focus in a desired region 30. Each element of the array 18 is driven with a similar but separate RF signal produced by the multi-channel amplifier 22 under control of the controller 24. The controller 24 regulates the amplitude, phase, and pattern of the signal (e.g., continuous, pulsed, etc.). For example, the RF signals from the elements of the array 18 can have relative phases and amplitudes such that skull-induced distortions are compensated for to induce a single focus at a desired location. The array 18 can be mounted on a positioning device 32 that can be adjusted to change the location of the focused ultrasound energy. Alternatively, the focus location can be adjusted electronically using different relative phase excitations of the array elements.
A syringe 34 contains an ultrasound contrast agent 36 to be injected into the subject 26. The agent 36 includes material that facilitates cavitation under low ultrasound energy levels that are insufficient to induce thermal damage to soft tissue, e.g., brain tissue (although not necessarily any soft tissue).
The agent 36 can contain preformed microbubbles of various sizes and in various concentrations. For example, bubbles preferably have a mean diameter lower than an upper limit that can pass through the capillary bed, this upper limit being approximately 1×10−5 m. Some bubbles may exceed the upper size limit, but preferably enough bubbles are sized lower than the upper limit such that the agent 36 can effectively assist with opening the BBB. For example, the agent 36 can be Optison, made by Mallinckrodt Inc. of St. Louis, Mo., 63042, that contains micro bubbles. The micro bubbles of this agent have a mean diameter of 2.0×10−6 m to 4.5×10−6 m and a concentration of 5×108 bubbles/ml to 8×108 bubbles/ml. Concentrations of injected agent 36 of about 2.5×108 bubbles/ml to about 16×108 bubbles/ml have also proven effective. Concentrations preferably are high enough to assist with opening the BBB and low enough such that the agent 36 can be safely delivered via blood vessels, and low enough to avoid unacceptable amounts of bubbles combining are avoided or other effects that would inhibit performance of the agent 36.
The agent 36 can have characteristics other than preformed bubbles. The agent 36 can be a liquid containing preformed gas bubbles, or solid particles, or liquid droplets that contain a fluid, with a low enough vaporizing point that the solid particles or fluid will vaporize from body heat or due to the pressure or temperature effects caused by the ultrasound. The agent 36 may also be a liquid with high gas concentration or micro particles that can act as cavitation sites. The agent 36 may also be a liquid with solid particles that have a significantly different, higher, acoustic impedance than that of soft tissue. The agent 36 may also be a liquid with a high acoustic, e.g., ultrasound, absorption coefficient.
Referring to FIG. 2, with further reference to FIG. 1, a process 40 of opening the BBB in the subject 26 uses the system 10 to apply focused ultrasound energy to the desired region 30 of the subject 26 containing the exogenous agent 36, for example, with the preformed micro-bubbles. It is believed that the. acoustic energy provided by the ultrasound subsystem to the micro bubbles in the exogenous contrast agent injected into the subject's blood stream induces cavitation inside of blood vessels. It is further believed that this cavitation induces mechanical stresses that cause a transient increase in transmission of matter through the capillary wall in the brain 28, and thus a transient opening of the BBB.
At stages 42 and 44, the exogenous agent is provided and administered to the subject 26. The agent 36 contains micro bubbles, or material that can form bubbles in the blood stream under ultrasound exposure or body heat, or other material to interact with the ultrasound energy to help open the BBB. The agent 36 is administered at stage 44 by injection into the subject's vasculature using the syringe 34. For example, the syringe 34. can be inserted into a vein in the subject's arm, thus being noninvasive relative to the subject's skull. The agent 36 could also be injected via a catheter into a subject's artery. A sufficient time is allowed to pass for the agent 36 to travel through the subject's vasculature to reach the desired region 30 in the subject's brain 28.
At stage 46, ultrasound energy is applied by the ultrasound subsystem, to the subject 26, and preferably to the desired region 30 of the subject's brain 28. This energy is applied without opening the subject's skull. The controller 24 indicates to the amplifier 22 energy to provide to the array 18, including how much, and in what pattern (e.g., frequency, phase, amplitude, number of cycles, duty cycle) to provide energy using the array 18 to the subject 26. In response to the indications from the controller 24, the amplifier 22 conveys energy to the array 18. Preferably, the acoustic energy from the array 18 is of an amount, e.g., an average amount, that will induce opening of the BBB, but not cause thermal or other damage to the subject's brain tissue (although the energy amount provided could be sufficient induce thermal damage if it is desirable to do so). For example, the temporal average spatial peak power can be approximately two orders of magnitude below a level that will induce thermal damage to the subject's brain tissue, or lower.
The array 18 transmits the energy as acoustic energy through the subject's skull and into the subject's brain 28. Relative excitations of the portions of the array 18, as well as physical characteristics of the subject's skull and brain 28, determine where the ultrasound energy from the array 18 will focus.
At stages 48 and 50, the subject 26 is imaged and it is determined whether the ultrasound subsystem properly focused sufficient ultrasound energy to open the BBB of the subject 26 in the desired region 30. Whether the BBB opened is determined by evaluating the signal intensity change in the MRI signal during the sonication or contrast enhancement in the desired region 30 caused by an MRI or CT contrast agent that is injected in the blood stream, with significant enhancement indicating BBB opening. It may also be possible to perform opening of the BBB without image monitoring based on predetermined sonication parameters.
At stages 52 and 54, additional agent 36 is provided as appropriate and the energy applied by the ultrasound subsystem is adjusted as appropriate to open the BBB in the desired region 30. Various parameters of the energy applied can be adjusted. For example, the focus of the energy can be changed, e.g., by altering the relative phase excitations of the portion of the array 18. Also, amounts of energy can be adjusted, e.g., frequency, burst length, peak pressure, average power, duty cycle of a pulse train, number of bursts, and/or repetition frequency of bursts. Stages 46, 48, and 50 can be repeated, or performed concurrently with stages 52 and 54, so that these adjustments are made in conjunction with stages 46, 48, and 50 to obtain BBB opening in the desired region 30.
Experimental Implementation
Ultrasound Equipment
Ultrasound fields were generated by a spherical sixteen sector focused, piezoelectric transducer with a 100-mm diameter, an 80-mm radius of curvature, and a resonant frequency of 1.63 MHz as the array 18. Each sector was driven with an identical but separate RF signal generated by the multi-channel driving system 22 under control of a computer. For these experiments, the RF signals were in phase and equal in amplitude.
The properties of the transducer were measured in a separate apparatus. The acoustic power output as a function of applied RF power was measured using a radiation force technique. The ultrasound field distributions were measured using a needle hydrophone (0.075 mm in diameter, made by Precision Acoustics, of Dorchester, UK). The absolute intensity in water was measured using a PVDF (polyvinylidene fluoride) coplanar shielded membrane hydrophone (made by GEC-Marconi Research Center, of Chelmsford, England) with an active area of 0.5 mm in diameter. This hydrophone was calibrated by the National Physics Laboratory, Teddington, Middlesex, England. These measurements were performed in water at the two lowest pressure amplitude values available from the amplifier system and then extrapolated based on the measured acoustic power. Estimates for the pressure amplitude in the brain 28 were obtained by decreasing the measured water values by a factor of 0.85, based on ultrasound attenuation through 10 mm of brain with an average attenuation coefficient of 5 Np/m/MHz.
Sonications were performed under MRI guidance and monitoring. The transducer array 18 was mounted on an experimental positioning device (made by TxSonics, Inc, of Haifa, Israel) integrated in the MRI scanner table. For these experiments, the positioning system was used only to move the transducer. Sonication-related aspects were executed by an external PC that controlled the sonications via the multi-channel amplifier system 22.
Animals
New Zealand white rabbits had there BBBs opened using the setup described above. Eleven New Zealand white rabbits (approximately 4 kg, males) were anesthetized by a mix of 40 mg/kg ketamine (made by Aveco Co, Inc, of Fort Dodge, Iowa), and 10 mg/kg of xylazine (made by Lloyd Laboratories, of Shenandoah, Iowa). A piece of skull (approximately 15×15 mm) was removed, and the skin was replaced over the craniotomy. The brain sonications were executed after the wound healed and all of the air was dissolved (a minimum of 10 days after the surgery). The bone was removed to simplify the experiments. If the bone was in place, the array 18 would be excited to compensate for the bone. The animals were placed on their backs on a water blanket that circulated temperature controlled water to maintain the body temperature of the animal. The head was fixed in the treatment position by an acrylic holder. The skin (hair removed) on the top of the head was coupled to the water bath that contained the transducers with a degassed water bag 19 (FIG. 1).
Sonications
T2-weighted images were obtained to localize the craniotomy and to confirm a clear beam path to the desired target depth. Before the experimental sonications, a low power (acoustic power=1.1 W) continuous wave sonication for 10 s was executed while obtaining MRI thermometry. This is about 40% of the power shown necessary to produce brain damage in the same experimental conditions. The focal spot was visible in all cases and could be compared to the target location. Often a small (typically less than 1 mm) correction was performed to align the target location with the focus of the ultrasound energy. After alignment, four or six locations were sonicated with the focus aimed at 10 mm deep in the brain 28 at different peak power levels that ranged from 0.2 to 11.5 W (acoustic power). These levels translate to an acoustic temporal and spatial peak intensity range of 14 to 590 W/cm2. The sonications were pulsed with burst lengths of 10 or 100 ms with a repetition frequency of 1 Hz. Thus, the temporal average power (directly proportional to the temperature elevation in the tissue) during the sonication was {fraction (1/10)} or {fraction (1/100)} of the peak acoustic power. The duration of the whole sonication was 20 s. These parameters were based on preliminary in vivo experiments that searched for controlled, focal opening of the BBB.
Approximately 10 s prior to the start of the sonication, a bolus of ultrasound contrast agent (Optison, made by Mallinckrodt Inc. of St. Louis, Mo., 63042) that contained micro bubbles (mean diameter=2.0-4.5×10−6 m; concentration=5-8×108 bubbles/ml) was injected in the ear vein of each rabbit. The injected volume was selected to be 0.05 ml/kg, which is in the range (0.5 ml-5 ml) recommended for human use by the manufacturer. The bolus was flushed from tubing of an injection device by injecting approximately 1 ml of saline. The sonications in different locations with new injections were performed with 5-10 min. delays that allowed the bubbles to clear from the circulation of the rabbit.
The animals were sacrificed between 4 hours and 7 days after the sonication and the brains were fixed in formalin. Whole-brain evaluation was conducted by sectioning the brain 28 and performing a microscopic investigation. The brain 28 was sectioned at 6 micrometers (across the beam direction; parallel to the MRI slices), and every 20th section (interval of 0.4 mm) was stained by hematoxylin and eosin.
MRI
The MRI scanner was a standard 1.5 Tesla Signa system (made by General Electric Medical Systems, of Milwaukee, Wis.). A 7.5 cm diameter surface coil was placed under the head to improve the signal-to-noise ratio. The temperature dependent proton resonant frequency shift (18) was estimated using a fast spoiled gradient echo sequence (FSPGR) or fast gradient echo (FGRASS) with the following imaging parameters: repetition time (TR)=40.9 ms, echo time (TE)=19.9 ms, flip angle=30°, bandwidth (BW)=3.57 kHz, resolution 256×128, field of view (FOV)=12 cm×9 cm, slice thickness=3 mm. The bandwidth helped with controlling the TE in the product sequence and thus, the imaging time in the FSPGR sequence. The TE was selected so that adequate temporal sampling of the temperature elevation during the sonication could be achieved. Twenty images were obtained in a series with the total acquisition time of 80 s. The first image was triggered 4 s prior to the start of the contrast injection sonication. The scanner was programmed to reconstruct the magnitude, real and imaginary images for each of these time points. The real and imaginary parts were used to calculate the phase difference between the two time points. The scan plane was located across the focus at the focal depth.
After the sonications, T1-weighted images were obtained by using a Fast Spin Echo (FSE) pulse sequence. For these images, the following parameters were used: TR=500 ms, TE=17 ms, echo train length=4, three data acquisition, field of view=10 cm and matrix size of 256×256, slice thickness of 1.5 mm interleaved, BW=16 kHz. These scans were repeated after a bolus of gadopentetate dimeglumine contrast agent (MAGNEVIST, made by Berlex Laboratories Inc, of Wayne, N.J.) (molecular weight of 928) was injected into the ear veins of the rabbits (dose 0.125 mmol/kg) to evaluate the BBB opening. A T2-weighted FSE sequence was used to determine edema in the brain tissue with the following parameters: TR=2000 ms, TE=17 and 115 ms, echo train length=8, 2 data acquisitions, field of view=10 cm, slice thickness=1.5 mm. The follow up MRI studies were repeated two days after the sonications in most cases. In one case, imaging was also performed at one day, and in two cases the imaging was performed at seven days.
Signal Analysis
The level of contrast enhancement was measured in the focal spot by averaging the signal intensity over a 3×3 set of voxels (1.17×1.17 mm) and normalizing the value to the baseline value before contrast injection. The signal also was averaged outside of the sonicated location to obtain control values.
Results
Pulsed sonication produced focal BBB opening without damage to the tissue in the beam path as determined by contrast enhanced MRI scans. The signal intensity (SI) change in the T1-weighted images caused by leakage of the contrast agent into the brain was dependent on the applied acoustic pressure amplitude as shown in FIG. 3. The BBB opening, however, did not appear to be burst-length or average-acoustic-power dependent as the sonications with 10 ms and 1 ms bursts (i.e. 10% and 1% duty cycle) produced approximately equal enhancement. The SPGR magnitude images acquired during the sonications showed a reduction in the SI at the focal location. This reduction remained after the sonication and was pressure-amplitude dependent and correlated with the contrast enhancement observed after the sonications as shown in FIG. 4. The normalized signal intensity increased at the sonicated locations after an MRI contrast injection vs. the normalized signal intensity in the FSPGR acquired during the sonications. The signal intensity decrease in the FSPGR images acquired during the sonications decreased proportionally to the signal intensity increase after the MRI contrast injections. Thus, it correlated with the BBB opening. Thus, online imaging may be used to determine when the BBB is open or perhaps even to quantify the opening during the sonications. The average maximum temperature elevations measured during the sonications by the temperature sensitive phase imaging were 4.8+/−1.7° C., 3.4+/−0.9° C., and 2.3+/−0.8° C. for 11.5, 5.8, and 2.7 W peak acoustic power respectively. These temperature elevations are below the threshold for thermal tissue damage.
The BBB was consistently opened with the sonications except about half of the sonications with the lowest power level. The contrast-enhanced imaging was repeated up to six hours after the sonication during the day of the sonication (six locations) and the BBB was still open at that point. No contrast enhancement, however, was evident in the rabbit imaged 1 day after the sonications. Similarly, the contrast enhancement was not present at 2 or 7 days except in a few of the high power sonications that produced neuron damage.
The histology evaluation showed damage to the neurons in approximately 60% of the sonicated locations at the highest power level used as shown in FIG. 5. At pressure amplitudes between 2-3 MPa, the percentage of the neuron damage was approximately 20%. There was no neuron damage at the lowest three exposure levels. In many cases, however, the sonicated locations showed red blood cells in the brain tissue outside of the blood vessels, indicating vascular damage. The brains examined after 7 days survival did not show any tissue damage.
Discussion
The experiments demonstrate that focused ultrasound can be used to produce consistent focal BBB leakage without, or substantially without, damage to the surrounding brain tissue while using noninvasive image guidance and monitoring. The above-described experiments were able to produce the BBB opening consistently by using an ultrasound contrast agent with gas bubbles as cavitation sites. The temporal average spatial peak powers used were approximately two orders of magnitude below the level that induces thermal damage of the brain tissue. These power levels can be reached through the skull by using phased array applicators that compensate for skull induced distortions.
The BBB opening allowed an MRI contrast agent with molecular weight 928 to enter into the brain. Thus, many of the chemotherapeutic agents usable for brain tumor treatments (molecular weight between 200 and 1200) could enter into the brain through the ultrasound-induced deficit.
In the exemplary experiments, the maximum temperature elevation from the pulsed sonication at the highest power level used was approximately 5° C. with the ultrasound contrast agent and undetectable without it. This indicates that cavitation events increase the local temperature elevation. In the exemplary experiments, the lowest temporal average acoustic power level that consistently produced BBB opening was approximately 200 times lower than the highest power used. MRI temperature measurements did not show any temperature rise for these sonications, indicating that it would be less than the 1-2° C. noise level of the MRI thermometry used in the experiments. If the temperature elevation is linearly proportional to the applied acoustic power, then the temperature elevation was approximately 0.025° C. during these low power sonications.
The correlation between reduction in the signal intensity of an SPGR sequence and the opening of the BBB can be used to perform on-line monitoring of the exposures. Since the SI change remained visible over the course of the sonications (up to 60 min.) it was not caused by temperature elevation, but could be due to a susceptibility change induced by extravascularized red blood cells.
The lowest pressure amplitude level used was less than 0.7 MPa, indicating that similar events may be detected by using diagnostic ultrasound exposures. This may be a safety concern when brain imaging is performed using ultrasound contrast agents containing microbubbles.
Other embodiments are within the scope and spirit of the appended claims. For example, different apparatus, e.g., the ultrasound array 18, than used for the experiments described above can be used in the setup of FIG. 1. Also, the process shown in FIG. 2 can be altered, e.g., by having stages added, removed, or rearranged. The experiments conducted are exemplary and not limiting. Thus, maxima and/or minima described are not necessarily the achievable maxima and/or minima using the invention. Although the BBB is referred to predominantly above, the invention may be applied to other blood-organ barriers.
Other arrangements for the array 18 than that shown in FIG. 1 are acceptable. Referring to FIG. 6, another noninvasive BBB-opening system 80 includes similar features as that of FIG. 1, with the array 18 split into multiple portions. As shown, the array 18 has two portions physically separated and directing energy to the common desired region 30. Other features, such as the positioning device 32 and coupling medium 19 are modified accordingly. Referring to FIG. 7, in another noninvasive BBB-opening system 90, the array 18 is approximately hemispherical and partially encloses/surrounds the subject's head. The ultrasound can also de delivered via interstitial or intravascular catheters, or applicators used during surgery. Non-focused ultrasound fields may also be used if BBB opening of a large region is desired. These fields can be produced with transducer arrays or with single element applicators. Focusing can also be achieved by pulsing the ultrasound sources with predetermined delays such that the pressure pulses will interfere and produce a focus in the desired location. The ultrasound can also be delivered from an ultrasound system designed for diagnostic or other purposes. The ultrasound waves used can be of one or multiple frequencies.

Claims (26)

What is claimed is:
1. A method of opening a blood-brain barrier of a subject, the method comprising:
providing an exogenous agent configured to facilitate opening of the blood-brain barrier;
administering the exogenous agent to a desired region of the brain; and
applying energy to the desired region of the subject while the exogenous agent is present in the desired region, the energy being in a blood-brain-barrier-opening amount that will induce opening of the blood-brain barrier of the subject with the exogenous agent present and the blood-brain-barrier-opening amount being below a damage amount that will induce thermal damage to tissue.
2. The method of claim 1 wherein the energy applied is ultrasound energy; and
wherein the exogenous agent contains at least one of gaseous bubbles, a high concentration of gas, solid particles configured to vaporize in response to body temperature, solid particles configured to vaporize in response to the ultrasound energy, liquid configured to vaporize in response to body temperature, liquid configured to vaporize in response to the ultrasound energy, micro particles configured to act as cavitation sites, solid particles having higher acoustic impedance than tissue in the desired region, and liquid with a high acoustic absorption coefficient.
3. The method of claim 1 wherein the blood-brain-barrier-opening amount is less than approximately ten times lower than an amount that will induce damage to tissue in the absence of the exogenous agent.
4. The method of claim 3 wherein the blood-brain-barrier-opening amount is less than approximately one hundred times lower than an amount that will induce damage to tissue in the absence of the exogenous agent.
5. The method of claim 3 wherein the blood-brain-barrier-opening amount is a temporal average power.
6. The method of claim 5 wherein the blood-brain-barrier-opening amount is less than approximately 200 times lower than an amount that will induce damage to tissue in the absence of the exogenous agent.
7. The method of claim 1 wherein the exogenous agent is administered to the subject without penetrating a skull of the subject.
8. The method of claim 7 wherein the exogenous agent is administered through a vasculature of the subject.
9. The method of claim 8 wherein the administering includes waiting for the exogenous agent to reach the desired region via the vasculature.
10. The method of claim 1 further comprising imaging at least the desired region of the subject and determining if the blood-brain barrier has opened in the desired region using results of the imaging.
11. The method of claim 10 wherein the applying includes adjusting at least one characteristic of the ultrasound energy to apply at least the blood-brain-barrier-opening amount to the desired region.
12. The method of claim 1 wherein the exogenous agent contains preformed bubbles that have a mean diameter less than an upper size limit for being able to pass through a capillary bed of the subject.
13. The method of claim 1 wherein the exogenous agent has a concentration of bubbles high enough such that the blood-brain barrier will open in response to the applied energy.
14. A method of opening a blood-brain barrier of a subject, the method comprising:
providing an exogenous agent configured to facilitate opening of the blood-brain barrier;
administering the exogenous agent to a desired region of a brain of the subject; and
applying ultrasound energy to the desired region of the brain of the subject while the exogenous agent is present in the desired region, the ultrasound energy being in a blood-brain-barrier-opening amount that will induce opening of the blood-brain barrier of the subject with the exogenous agent present;
wherein the blood-brain-barrier-opening amount is below a damage amount that will induce thermal damage to brain tissue of the subject; and
wherein the exogenous agent is administered to the subject in a non-invasive manner relative to a skull of the subject.
15. The method of claim 14 wherein the blood-brain-barrier-opening amount is less than approximately one hundred times lower than an amount that will induce damage to tissue in the absence of the exogenous agent.
16. The method of claim 15 wherein the blood-brain-barrier-opening amount is a temporal average power.
17. The method of claim 16 wherein the blood-brain-barrier-opening amount is less than approximately 200 times lower than an amount that will induce damage to tissue in the absence of the exogenous agent.
18. The method of claim 14 wherein the exogenous agent contains performed gaseous bubbles.
19. The method of claim 14 wherein the energy applied is ultrasound energy; and
wherein the exogenous agent contains at least one of a high concentration of gas, solid particles configured to vaporize in response to body temperature, solid particles configured to vaporize in response to the ultrasound energy, liquid configured to vaporize in response to body temperature, liquid configured to vaporize in response to the. ultrasound energy, micro particles configured to act as cavitation sites, solid particles having higher acoustic impedance than tissue in the desired region, and liquid with a high ultrasound absorption coefficient.
20. A method of opening a blood-brain barrier of a subject, the method comprising:
providing an exogenous agent containing gaseous bubbles;
administering the exogenous agent to a desired region of a brain of the subject;
applying ultrasound energy to the desired region of the brain of the subject while the exogenous agent is present in the desired region, the ultrasound energy being in a blood-brain-barrier-opening amount that will induce opening of the blood-brain barrier of the subject with the exogenous agent present;
imaging at least the desired region of the brain of the subject; and
determining if the blood-brain barrier has opened in the desired region using results of the imaging;
wherein the blood-brain-barrier-opening amount is below a damage amount that will induce thermal damage to brain tissue of the subject; and
wherein the exogenous agent is administered to the subject in a non-invasive manner relative to a skull of the subject.
21. The method of claim 20 wherein the applying includes adjusting at least one characteristic of the ultrasound energy to apply at least the blood-brain-barrier-opening amount to the desired region.
22. The method of claim 21 wherein the blood-brain-barrier-opening amount is less than approximately two orders of magnitude lower than the damage amount.
23. The method of claim 22 wherein the exogenous agent contains preformed bubbles that have a mean diameter less than an upper size limit for being able to pass through a capillary bed of the subject.
24. The method of claim 23 wherein the exogenous agent has a concentration of bubbles high enough such that the blood-brain barrier will open in response to the applied energy.
25. The method of claim 22 wherein the blood-brain-barrier-opening amount is a temporal average power.
26. The method of claim 25 wherein the blood-brain-barrier-opening amount is less than approximately 200 times lower than an amount that will induce damage to tissue in the absence of the exogenous agent.
US09/915,599 2000-07-27 2001-07-26 Blood-brain barrier opening Expired - Lifetime US6514221B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US09/915,599 US6514221B2 (en) 2000-07-27 2001-07-26 Blood-brain barrier opening
PCT/US2001/023643 WO2002009608A2 (en) 2000-07-27 2001-07-27 Blood-organ barrier opening
AU2001279042A AU2001279042A1 (en) 2000-07-27 2001-07-27 Blood-organ barrier opening

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US22106400P 2000-07-27 2000-07-27
US09/915,599 US6514221B2 (en) 2000-07-27 2001-07-26 Blood-brain barrier opening

Publications (2)

Publication Number Publication Date
US20020038086A1 US20020038086A1 (en) 2002-03-28
US6514221B2 true US6514221B2 (en) 2003-02-04

Family

ID=26915461

Family Applications (1)

Application Number Title Priority Date Filing Date
US09/915,599 Expired - Lifetime US6514221B2 (en) 2000-07-27 2001-07-26 Blood-brain barrier opening

Country Status (3)

Country Link
US (1) US6514221B2 (en)
AU (1) AU2001279042A1 (en)
WO (1) WO2002009608A2 (en)

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040049134A1 (en) * 2002-07-02 2004-03-11 Tosaya Carol A. System and methods for treatment of alzheimer's and other deposition-related disorders of the brain
US20050020945A1 (en) * 2002-07-02 2005-01-27 Tosaya Carol A. Acoustically-aided cerebrospinal-fluid manipulation for neurodegenerative disease therapy
US20050074506A1 (en) * 2003-10-02 2005-04-07 Brainsgate Ltd. Targeted release of nitric oxide in the CNS circulation for modulating the BBB and treating disorders
WO2006096755A2 (en) * 2005-03-07 2006-09-14 The Brigham And Women's Hospital, Inc. Adaptive ultrasound delivery system
US20070016040A1 (en) * 2005-06-24 2007-01-18 Henry Nita Methods and apparatus for intracranial ultrasound delivery
US7896821B1 (en) * 2003-11-14 2011-03-01 Perfusion Technology, LLC Low intensity directed ultrasound (LODUS) mediated blood brain barrier disruption
US20110064792A1 (en) * 2007-10-12 2011-03-17 Peter Humphries Method for Opening Tight Junctions
US20110092880A1 (en) * 2009-10-12 2011-04-21 Michael Gertner Energetic modulation of nerves
US20110092781A1 (en) * 2009-10-12 2011-04-21 Michael Gertner Energetic modulation of nerves
US20110118600A1 (en) * 2009-11-16 2011-05-19 Michael Gertner External Autonomic Modulation
US20110160246A1 (en) * 2003-07-30 2011-06-30 Graef Isabella A Neurodegenerative Protein Aggregation Inhibition Methods and Compounds
US20110295105A1 (en) * 2008-09-10 2011-12-01 The Trustees Of Columbia University In The City Of New York Systems and methods for opening a tissue
US8353853B1 (en) * 2003-01-24 2013-01-15 Boston Scientific Scimed, Inc. Encephalic insonication
US8469904B2 (en) 2009-10-12 2013-06-25 Kona Medical, Inc. Energetic modulation of nerves
US8517962B2 (en) 2009-10-12 2013-08-27 Kona Medical, Inc. Energetic modulation of nerves
US8715209B2 (en) 2009-10-12 2014-05-06 Kona Medical, Inc. Methods and devices to modulate the autonomic nervous system with ultrasound
DE102012222778A1 (en) * 2012-12-11 2014-06-12 Siemens Aktiengesellschaft Intravascular ultrasound source for reversible overcoming of blood-brain barrier in e.g. human, has catheter to move source through blood vessel to place within skull of human or animal, so as to locally overcome blood-brain barrier
US8986231B2 (en) 2009-10-12 2015-03-24 Kona Medical, Inc. Energetic modulation of nerves
US8986211B2 (en) 2009-10-12 2015-03-24 Kona Medical, Inc. Energetic modulation of nerves
US8992447B2 (en) * 2009-10-12 2015-03-31 Kona Medical, Inc. Energetic modulation of nerves
US9358023B2 (en) 2008-03-19 2016-06-07 The Trustees Of Columbia University In The City Of New York Systems and methods for opening of a tissue barrier
US9598485B2 (en) 2013-03-15 2017-03-21 Ac Immune S.A. Anti-tau antibodies and methods of use
US9657091B2 (en) 2012-04-05 2017-05-23 Ac Immune S.A. Humanized tau antibody
US10028723B2 (en) 2013-09-03 2018-07-24 The Trustees Of Columbia University In The City Of New York Systems and methods for real-time, transcranial monitoring of blood-brain barrier opening
US10322178B2 (en) 2013-08-09 2019-06-18 The Trustees Of Columbia University In The City Of New York Systems and methods for targeted drug delivery
US10441820B2 (en) 2011-05-26 2019-10-15 The Trustees Of Columbia University In The City Of New York Systems and methods for opening of a tissue barrier in primates
US10517564B2 (en) 2012-10-10 2019-12-31 The Trustees Of Columbia University In The City Of New York Systems and methods for mechanical mapping of cardiac rhythm
US10687785B2 (en) 2005-05-12 2020-06-23 The Trustees Of Columbia Univeristy In The City Of New York System and method for electromechanical activation of arrhythmias
US10772681B2 (en) 2009-10-12 2020-09-15 Utsuka Medical Devices Co., Ltd. Energy delivery to intraparenchymal regions of the kidney
US10925579B2 (en) 2014-11-05 2021-02-23 Otsuka Medical Devices Co., Ltd. Systems and methods for real-time tracking of a target tissue using imaging before and during therapy delivery
US11369809B2 (en) 2014-06-20 2022-06-28 The University Of Queensland Neurodegenerative disease treatment
US11554267B2 (en) 2018-10-05 2023-01-17 Synaptec Network, Inc. Systems and methods for delivering therapeutic agents to the brain using TMS

Families Citing this family (138)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7641660B2 (en) * 2004-03-08 2010-01-05 Biomet Manufacturing Corporation Method, apparatus, and system for image guided bone cutting
WO2006044997A2 (en) * 2004-10-15 2006-04-27 The Trustees Of Columbia University In The City Of New York System and method for localized measurement and imaging of viscosity of tissues
WO2006044996A2 (en) * 2004-10-15 2006-04-27 The Trustees Of Columbia University In The City Of New York System and method for automated boundary detection of body structures
WO2006124603A2 (en) * 2005-05-12 2006-11-23 The Trustees Of Columbia University In The City Of New York System and method for electromechanical wave imaging of body structures
EP1937151A4 (en) * 2005-09-19 2011-07-06 Univ Columbia Systems and methods for opening of the blood-brain barrier of a subject using ultrasound
US20090221916A1 (en) * 2005-12-09 2009-09-03 The Trustees Of Columbia University In The City Of New York Systems and Methods for Elastography Imaging
WO2007120334A2 (en) 2005-12-15 2007-10-25 Genentech, Inc. Methods and compositions for targeting polyubiquitin
CN101479295A (en) 2006-05-04 2009-07-08 健泰科生物技术公司 Methods and compositions relating to ZPA polypeptides
AU2007275467B2 (en) 2006-07-14 2013-12-05 Ac Immune S.A. Humanized antibody against amyloid beta
ES2661562T3 (en) 2006-07-14 2018-04-02 Ac Immune S.A.  Humanized antibody against beta amyloid
WO2008027520A2 (en) * 2006-08-30 2008-03-06 The Trustees Of Columbia University In The City Of New York Systems and methods for composite elastography and wave imaging
US7960139B2 (en) 2007-03-23 2011-06-14 Academia Sinica Alkynyl sugar analogs for the labeling and visualization of glycoconjugates in cells
TWI453217B (en) 2007-06-12 2014-09-21 Ac Immune Sa Monoclonal anti-beta-amyloid antibody
RS53793B1 (en) 2007-06-12 2015-06-30 Ac Immune S.A. Humanized antibodies to amyloid beta
BRPI0818623A2 (en) 2007-10-05 2017-05-23 Ac Immune Sa pharmaceutical composition, and methods for reducing plaque burden in an animal's retinal ganglion cell layer, for reducing the amount of plaque in an animal's retinal ganglion cell layer, for decreasing the total amount of soluble beta-amyloid retinal ganglion cell layer of an animal to prevent, treat and / or alleviate the effects of eye disease associated with pathological abnormalities / changes in visual system tissue, to monitor minimal residual eye disease associated with pathological abnormalities / changes in visual system tissues, to predict a patient's responsiveness, and to retain or decrease eye pressure in an animal's eyes
TWI580694B (en) 2007-11-30 2017-05-01 建南德克公司 Anti-vegf antibodies
ES2442024T3 (en) 2008-07-15 2014-02-07 Academia Sinica Glucan matrices on glass slides coated with PTFE type aluminum and related methods
WO2010014977A1 (en) * 2008-08-01 2010-02-04 The Trustees Of Columbia University In The City Of New York Systems and methods for matching and imaging tissue characteristics
US20100098730A1 (en) 2008-10-14 2010-04-22 Lowman Henry B Immunoglobulin variants and uses thereof
JP5851838B2 (en) 2008-10-22 2016-02-03 ジェネンテック, インコーポレイテッド Regulation of axonal degeneration
US20120009182A1 (en) 2008-12-23 2012-01-12 Genentech, Inc. Immunoglobulin variants with altered binding to protein a
ES2599076T3 (en) 2009-09-02 2017-01-31 Genentech, Inc. Smoothened mutant and methods of use thereof
CA2778483A1 (en) 2009-10-22 2011-04-28 Genentech, Inc. Modulation of axon degeneration
US11377485B2 (en) 2009-12-02 2022-07-05 Academia Sinica Methods for modifying human antibodies by glycan engineering
US10087236B2 (en) 2009-12-02 2018-10-02 Academia Sinica Methods for modifying human antibodies by glycan engineering
ES2565208T3 (en) 2009-12-11 2016-04-01 F. Hoffmann-La Roche Ag Anti-VEGF-C antibodies and methods of use thereof
KR20120107503A (en) 2009-12-23 2012-10-02 제넨테크, 인크. Anti-bv8 antibodies and uses thereof
WO2011130332A1 (en) 2010-04-12 2011-10-20 Academia Sinica Glycan arrays for high throughput screening of viruses
CA2835489C (en) 2010-05-10 2018-03-06 Chi-Huey Wong Zanamivir phosphonate congeners with anti-influenza activity and determining oseltamivir susceptibility of influenza viruses
WO2012016173A2 (en) 2010-07-30 2012-02-02 Ac Immune S.A. Safe and functional humanized antibodies
EP2603233A1 (en) 2010-08-12 2013-06-19 AC Immune S.A. Vaccine engineering
CA2813738A1 (en) 2010-10-05 2012-04-12 Genentech, Inc. Mutant smoothened and methods of using the same
US9304138B2 (en) 2010-10-07 2016-04-05 Katholieke Universiteit Leuven Pharmaceutical composition
AR083561A1 (en) 2010-10-26 2013-03-06 Ac Immune Sa PREPARATION OF AN ANTIGENIC CONSTRUCTION
MX346500B (en) 2010-11-10 2017-03-22 Genentech Inc * Methods and compositions for neural disease immunotherapy.
US9320491B2 (en) 2011-04-18 2016-04-26 The Trustees Of Columbia University In The City Of New York Ultrasound devices methods and systems
EP3135689B1 (en) 2011-10-07 2018-12-19 AC Immune S.A. Phosphospecific antibodies recognising tau
CA2850514A1 (en) 2011-10-14 2013-04-18 Genentech, Inc. Peptide inhibitors of bace1
CN103930568A (en) 2011-11-10 2014-07-16 霍夫曼-拉罗奇有限公司 Methods for treating, diagnosing and monitoring Alzheimer 's disease
US10130714B2 (en) 2012-04-14 2018-11-20 Academia Sinica Enhanced anti-influenza agents conjugated with anti-inflammatory activity
US8952169B2 (en) 2012-05-22 2015-02-10 Xenon Pharmaceuticals Inc. N-substituted benzamides and methods of use thereof
KR20150023445A (en) 2012-05-22 2015-03-05 에프. 호프만-라 로슈 아게 Substituted dipyridylamines and uses thereof
BR112015000187A2 (en) 2012-07-06 2017-06-27 Genentech Inc benzamides substituted with n and methods of use thereof
AU2013306098A1 (en) 2012-08-18 2015-02-12 Academia Sinica Cell-permeable probes for identification and imaging of sialidases
EP2888238A4 (en) 2012-08-21 2016-01-27 Academia Sinica Benzocyclooctyne compounds and uses thereof
GB2505740A (en) * 2012-09-05 2014-03-12 Surf Technology As Instrument and method for ultrasound mediated drug delivery
WO2014049047A1 (en) 2012-09-27 2014-04-03 F. Hoffmann-La Roche Ag Substituted sulfonamide compounds
AU2013204200B2 (en) 2012-10-11 2016-10-20 Brandeis University Treatment of amyotrophic lateral sclerosis
JP6199991B2 (en) 2013-01-18 2017-09-20 エフ.ホフマン−ラ ロシュ アーゲーF. Hoffmann−La Roche Aktiengesellschaft Trisubstituted pyrazoles and use as DLK inhibitors
JP6096370B2 (en) 2013-03-14 2017-03-15 ジェネンテック, インコーポレイテッド Substituted triazolopyridines and methods of use
KR20160002850A (en) 2013-05-01 2016-01-08 에프. 호프만-라 로슈 아게 C-linked heterocycloalkyl substituted pyrimidines and their uses
MX2015015130A (en) 2013-05-01 2016-02-18 Hoffmann La Roche Biheteroaryl compounds and uses thereof.
US9247921B2 (en) 2013-06-07 2016-02-02 The Trustees Of Columbia University In The City Of New York Systems and methods of high frame rate streaming for treatment monitoring
WO2014210397A1 (en) 2013-06-26 2014-12-31 Academia Sinica Rm2 antigens and use thereof
US9981030B2 (en) 2013-06-27 2018-05-29 Academia Sinica Glycan conjugates and use thereof
JP6486368B2 (en) 2013-09-06 2019-03-20 アカデミア シニカAcademia Sinica Activation of human iNKT cells using glycolipids containing modified glycosyl groups
ES2713323T3 (en) 2013-10-11 2019-05-21 Hoffmann La Roche Substituted heterocyclic sulfonamide compounds useful as trpa1 modulators
MX2016008110A (en) 2013-12-20 2016-08-19 Hoffmann La Roche Pyrazole derivatives and uses thereof as inhibitors of dlk.
EP3094352B1 (en) 2014-01-16 2020-09-23 Academia Sinica Compositions and methods for treatment and detection of cancers
WO2016114819A1 (en) 2015-01-16 2016-07-21 Academia Sinica Compositions and methods for treatment and detection of cancers
US10150818B2 (en) 2014-01-16 2018-12-11 Academia Sinica Compositions and methods for treatment and detection of cancers
DK3102197T3 (en) 2014-02-04 2018-11-19 Genentech Inc Smoothened mutant and methods for its use
TWI687428B (en) 2014-03-27 2020-03-11 中央研究院 Reactive labelling compounds and uses thereof
WO2015179258A2 (en) * 2014-05-17 2015-11-26 The Johns Hopkins University Mri-guided intraarterial catheter-based method for predicting territory of local blood brain barrier opening
JP6894239B2 (en) 2014-05-27 2021-06-30 アカデミア シニカAcademia Sinica Compositions and methods for universal glycoforms for enhanced antibody efficacy
TWI670078B (en) 2014-05-27 2019-09-01 中央研究院 Anti-cd20 glycoantibodies and uses thereof
US10118969B2 (en) 2014-05-27 2018-11-06 Academia Sinica Compositions and methods relating to universal glycoforms for enhanced antibody efficacy
WO2015184002A1 (en) 2014-05-27 2015-12-03 Academia Sinica Anti-her2 glycoantibodies and uses thereof
AU2015267044A1 (en) 2014-05-28 2016-12-15 Academia Sinica Anti-TNF-alpha glycoantibodies and uses thereof
EP3166939B1 (en) 2014-07-07 2019-06-05 Genentech, Inc. Therapeutic compounds and methods of use thereof
EP3191500A4 (en) 2014-09-08 2018-04-11 Academia Sinica HUMAN iNKT CELL ACTIVATION USING GLYCOLIPIDS
EP3786182A1 (en) 2014-11-19 2021-03-03 Axon Neuroscience SE Humanized tau antibodies in alzheimer's disease
WO2016081639A1 (en) 2014-11-19 2016-05-26 Genentech, Inc. Antibodies against bace1 and use thereof for neural disease immunotherapy
IL252957B (en) 2014-12-19 2022-07-01 Univ Sorbonne Implantable ultrasound generating treating device for brain treatment, apparatus comprising such device and method implementing such device
US9975965B2 (en) 2015-01-16 2018-05-22 Academia Sinica Compositions and methods for treatment and detection of cancers
US10495645B2 (en) 2015-01-16 2019-12-03 Academia Sinica Cancer markers and methods of use thereof
EP3789766A1 (en) 2015-01-24 2021-03-10 Academia Sinica Novel glycan conjugates and methods of use thereof
EP3248013B1 (en) 2015-01-24 2020-07-15 Academia Sinica Cancer markers and methods of use thereof
WO2016123591A2 (en) 2015-01-30 2016-08-04 Academia Sinica Compositions and methods for treatment and detection of cancers
EP3253784B1 (en) 2015-02-04 2020-05-06 Genentech, Inc. Mutant smoothened and methods of using the same
CN107406462B (en) 2015-03-09 2020-11-10 豪夫迈·罗氏有限公司 Tricyclic DLK inhibitors and uses thereof
WO2016191312A1 (en) 2015-05-22 2016-12-01 Genentech, Inc. Substituted benzamides and methods of use thereof
WO2017035271A1 (en) 2015-08-27 2017-03-02 Genentech, Inc. Therapeutic compounds and methods of use thereof
WO2017041027A1 (en) 2015-09-04 2017-03-09 Obi Pharma, Inc. Glycan arrays and method of use
CN108495851A (en) 2015-11-25 2018-09-04 基因泰克公司 Substituted benzamide and its application method
EP3411396A1 (en) 2016-02-04 2018-12-12 Curis, Inc. Mutant smoothened and methods of using the same
US10336784B2 (en) 2016-03-08 2019-07-02 Academia Sinica Methods for modular synthesis of N-glycans and arrays thereof
JP6772288B2 (en) 2016-03-11 2020-10-21 ソルボンヌ・ユニヴェルシテSorbonne Universite An extracorporeal ultrasound generation therapy device for the treatment of the spinal cord and spinal nerves, a device equipped with the device, and a method using the device.
CA3016001C (en) 2016-03-11 2023-08-15 Sorbonne Universite Implantable ultrasound generating treating device for spinal cord and/or spinal nerve treatment, apparatus comprising such device and method
WO2017172990A1 (en) 2016-03-29 2017-10-05 Obi Pharma, Inc. Antibodies, pharmaceutical compositions and methods
US10980894B2 (en) 2016-03-29 2021-04-20 Obi Pharma, Inc. Antibodies, pharmaceutical compositions and methods
JP2019513714A (en) 2016-03-30 2019-05-30 ジェネンテック, インコーポレイテッド Substituted benzamides and methods of use thereof
MY200886A (en) 2016-04-22 2024-01-22 Obi Pharma Inc Cancer Immunotherapy by Immune Activation or Immune Modulation Via Globo Series Antigens
JP7043483B2 (en) 2016-07-20 2022-03-29 エフ.ホフマン-ラ ロシュ アーゲー Bicyclic proline compound
EP3487849A1 (en) 2016-07-20 2019-05-29 H. Hoffnabb-La Roche Ag Sulfonylcycloalkyl carboxamide compounds as trpa1 modulators
AU2017302038B2 (en) 2016-07-27 2024-03-21 Obi Pharma, Inc. Immunogenic/therapeutic glycan compositions and uses thereof
KR102528998B1 (en) 2016-07-29 2023-05-03 오비아이 파머 인코퍼레이티드 Human Antibodies, Pharmaceutical Compositions and Methods
JP7071959B2 (en) 2016-08-12 2022-05-19 エフ.ホフマン-ラ ロシュ アーゲー Sulfonylpyridyl TRP inhibitor
US10538592B2 (en) 2016-08-22 2020-01-21 Cho Pharma, Inc. Antibodies, binding fragments, and methods of use
WO2018073193A1 (en) 2016-10-17 2018-04-26 F. Hoffmann-La Roche Ag Bicyclic pyridone lactams and methods of use thereof
TWI767959B (en) 2016-11-21 2022-06-21 台灣浩鼎生技股份有限公司 Conjugated biological molecules, pharmaceutical compositions and methods
CN110225911B (en) 2016-11-28 2022-04-05 豪夫迈·罗氏有限公司 Oxadiazolone transient receptor potential channel inhibitors
US11071721B2 (en) 2016-12-02 2021-07-27 Genentech, Inc. Bicyclic amide compounds and methods of use thereof
US11072607B2 (en) 2016-12-16 2021-07-27 Genentech, Inc. Inhibitors of RIP1 kinase and methods of use thereof
WO2018162607A1 (en) 2017-03-07 2018-09-13 F. Hoffmann-La Roche Ag Oxadiazole transient receptor potential channel inhibitors
EP3601273B1 (en) 2017-03-24 2021-12-01 Genentech, Inc. 4-piperidin-n-(pyrimidin-4-yl)chroman-7-sulfonamide derivatives as sodium channel inhibitors
AU2018300043B2 (en) 2017-07-14 2021-04-01 F. Hoffmann-La Roche Ag Bicyclic ketone compounds and methods of use thereof
EP3460057A1 (en) 2017-09-22 2019-03-27 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. Kdac variants and uses thereof
AU2018348930A1 (en) 2017-10-11 2020-03-26 F. Hoffmann-La Roche Ag Bicyclic compounds for use as RIP 1 kinase inhibitors
CN111278809A (en) 2017-10-31 2020-06-12 豪夫迈·罗氏有限公司 Bicyclic sulfones and sulfoxides, and methods of use thereof
EP4295916A3 (en) 2017-11-30 2024-03-20 Hanmi Pharm. Co., Ltd. Salts of 4-amino-n-(1-((3-chloro-2-fluorophenyl)amino)-6-methylisoquinolin-5-yl)thieno[3,2-d]pyrimidine-7-carboxamide, and crystalline forms thereof
WO2019164778A1 (en) 2018-02-20 2019-08-29 Genentech, Inc. Process for preparing 1-arylsulfonyl-pyrrolidine-2-carboxamide transient receptor potential channel antagonist compounds and crystalline forms thereof
TW202000651A (en) 2018-02-26 2020-01-01 美商建南德克公司 Therapeutic compounds and methods of use thereof
US10710994B2 (en) 2018-03-19 2020-07-14 Genentech, Inc. Oxadiazole transient receptor potential channel inhibitors
BR112020018868A2 (en) 2018-03-28 2021-01-26 Axon Neuroscience Se antibody-based methods to detect and treat alzheimer's disease
EP3774801A1 (en) 2018-03-30 2021-02-17 F. Hoffmann-La Roche AG Fused ring hydro-pyrido compounds as sodium channel inhibitors
JP7398391B2 (en) 2018-04-20 2023-12-14 エフ. ホフマン-ラ ロシュ アーゲー N-[4-oxo-2,3-dihydro-1,5-benzoxazepin-3-yl]-5,6-dihydro-4H-pyrrolo[1,2-b]pyrazole-2-carboxamide derivative and Related compounds as RIP1 kinase inhibitors, for example to treat irritable bowel syndrome (IBS)
TW202003490A (en) 2018-05-22 2020-01-16 瑞士商赫孚孟拉羅股份公司 Therapeutic compounds and methods of use thereof
WO2020006176A1 (en) 2018-06-27 2020-01-02 Obi Pharma, Inc. Glycosynthase variants for glycoprotein engineering and methods of use
CN112805267B (en) 2018-09-03 2024-03-08 豪夫迈·罗氏有限公司 Carboxamide and sulfonamide derivatives as TEAD modulators
CA3217998A1 (en) * 2018-10-04 2020-04-09 Synaptec Network, Inc. Systems and methods for delivering exosomes through the blood-brain barrier
WO2020077380A1 (en) * 2018-10-17 2020-04-23 The University Of Queensland Methods and compositions for treating tauopathies
WO2020146615A1 (en) 2019-01-11 2020-07-16 Genentech, Inc. Bicyclic pyrrolotriazolr ketone compounds and methods of use thereof
CA3128067A1 (en) 2019-02-13 2020-08-20 Alpheus Medical, Inc. Non-invasive sonodynamic therapy
CR20220207A (en) 2019-11-13 2022-06-06 Genentech Inc Therapeutic compounds and methods of use
KR20220110539A (en) 2019-12-04 2022-08-08 에이씨 이뮨 에스에이 Novel molecules for therapeutic and diagnostic use
US11787775B2 (en) 2020-07-24 2023-10-17 Genentech, Inc. Therapeutic compounds and methods of use
CN116615452A (en) 2020-08-14 2023-08-18 Ac免疫有限公司 Humanized anti-TDP-43 binding molecules and uses thereof
JP2023544037A (en) 2020-10-02 2023-10-19 ジェネンテック, インコーポレイテッド Methods for preparing biheteroaryl compounds and their crystalline forms
WO2022079297A1 (en) 2020-10-16 2022-04-21 Ac Immune Sa Antibodies binding to alpha-synuclein for therapy and diagnosis
WO2022265611A1 (en) * 2021-06-17 2022-12-22 Aselsan Elektroni̇k Sanayi̇ Ve Ti̇caret Anoni̇m Şi̇rketi̇ An arrangement for vaporizing nanoagents suitable for therapy inside the human body and a device comprising this arrangement
WO2023028077A1 (en) 2021-08-24 2023-03-02 Genentech, Inc. Sodium channel inhibitors and methods of designing same
WO2023028056A1 (en) 2021-08-24 2023-03-02 Genentech, Inc. 3-amino piperidyl sodium channel inhibitors
WO2023097194A2 (en) 2021-11-24 2023-06-01 Genentech, Inc. Therapeutic compounds and methods of use
US20230202984A1 (en) 2021-11-24 2023-06-29 Genentech, Inc. Therapeutic compounds and methods of use
WO2023156549A1 (en) 2022-02-16 2023-08-24 Ac Immune Sa Humanized anti-tdp-43 binding molecules and uses thereof
WO2023194565A1 (en) 2022-04-08 2023-10-12 Ac Immune Sa Anti-tdp-43 binding molecules
WO2024079662A1 (en) 2022-10-11 2024-04-18 Meiragtx Uk Ii Limited Upf1 expression constructs

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5149319A (en) * 1990-09-11 1992-09-22 Unger Evan C Methods for providing localized therapeutic heat to biological tissues and fluids
US5540909A (en) * 1994-09-28 1996-07-30 Alliance Pharmaceutical Corp. Harmonic ultrasound imaging with microbubbles
US5752515A (en) * 1996-08-21 1998-05-19 Brigham & Women's Hospital Methods and apparatus for image-guided ultrasound delivery of compounds through the blood-brain barrier
US6066123A (en) * 1998-04-09 2000-05-23 The Board Of Trustees Of The Leland Stanford Junior University Enhancement of bioavailability by use of focused energy delivery to a target tissue
US6135976A (en) * 1998-09-25 2000-10-24 Ekos Corporation Method, device and kit for performing gene therapy
USRE36939E (en) * 1991-03-22 2000-10-31 Ekos Corporation Composition for therapy of diseases with ultrasonic and pharmaceutical liquid composition containing the same
US6264917B1 (en) * 1996-10-28 2001-07-24 Nycomed Imaging As Targeted ultrasound contrast agents
US6346098B1 (en) * 2000-03-07 2002-02-12 The Board Of Trustees Of The Leland Stanford Junior University Methods and kits for locally administering an active agent to an interstitial space of a host
US6416740B1 (en) * 1997-05-13 2002-07-09 Bristol-Myers Squibb Medical Imaging, Inc. Acoustically active drug delivery systems

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5149319A (en) * 1990-09-11 1992-09-22 Unger Evan C Methods for providing localized therapeutic heat to biological tissues and fluids
USRE36939E (en) * 1991-03-22 2000-10-31 Ekos Corporation Composition for therapy of diseases with ultrasonic and pharmaceutical liquid composition containing the same
US5540909A (en) * 1994-09-28 1996-07-30 Alliance Pharmaceutical Corp. Harmonic ultrasound imaging with microbubbles
US5752515A (en) * 1996-08-21 1998-05-19 Brigham & Women's Hospital Methods and apparatus for image-guided ultrasound delivery of compounds through the blood-brain barrier
US6264917B1 (en) * 1996-10-28 2001-07-24 Nycomed Imaging As Targeted ultrasound contrast agents
US6416740B1 (en) * 1997-05-13 2002-07-09 Bristol-Myers Squibb Medical Imaging, Inc. Acoustically active drug delivery systems
US6066123A (en) * 1998-04-09 2000-05-23 The Board Of Trustees Of The Leland Stanford Junior University Enhancement of bioavailability by use of focused energy delivery to a target tissue
US6135976A (en) * 1998-09-25 2000-10-24 Ekos Corporation Method, device and kit for performing gene therapy
US6346098B1 (en) * 2000-03-07 2002-02-12 The Board Of Trustees Of The Leland Stanford Junior University Methods and kits for locally administering an active agent to an interstitial space of a host

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Kullervo Hynynen, Review of Ultrasound Therapy, IEEE Ultrasonics Symposium, 1997, p. 1305-1313. *

Cited By (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050020945A1 (en) * 2002-07-02 2005-01-27 Tosaya Carol A. Acoustically-aided cerebrospinal-fluid manipulation for neurodegenerative disease therapy
US20040049134A1 (en) * 2002-07-02 2004-03-11 Tosaya Carol A. System and methods for treatment of alzheimer's and other deposition-related disorders of the brain
US8353853B1 (en) * 2003-01-24 2013-01-15 Boston Scientific Scimed, Inc. Encephalic insonication
US20110160246A1 (en) * 2003-07-30 2011-06-30 Graef Isabella A Neurodegenerative Protein Aggregation Inhibition Methods and Compounds
US20050074506A1 (en) * 2003-10-02 2005-04-07 Brainsgate Ltd. Targeted release of nitric oxide in the CNS circulation for modulating the BBB and treating disorders
WO2005030118A2 (en) * 2003-10-02 2005-04-07 Brainsgate Ltd Targeted release of nitric oxide in the cns circulation for modulating the bbb and treating disorders
WO2005030118A3 (en) * 2003-10-02 2006-08-31 Brainsgate Ltd Targeted release of nitric oxide in the cns circulation for modulating the bbb and treating disorders
US7896821B1 (en) * 2003-11-14 2011-03-01 Perfusion Technology, LLC Low intensity directed ultrasound (LODUS) mediated blood brain barrier disruption
US7674229B2 (en) 2005-03-07 2010-03-09 The Brigham And Women's Hospital, Inc. Adaptive ultrasound delivery system
WO2006096755A3 (en) * 2005-03-07 2006-11-23 Brigham & Womens Hospital Adaptive ultrasound delivery system
WO2006096755A2 (en) * 2005-03-07 2006-09-14 The Brigham And Women's Hospital, Inc. Adaptive ultrasound delivery system
US20060241529A1 (en) * 2005-03-07 2006-10-26 Kullervo Hynynen Adaptive ultrasound delivery system
US10687785B2 (en) 2005-05-12 2020-06-23 The Trustees Of Columbia Univeristy In The City Of New York System and method for electromechanical activation of arrhythmias
US20070016040A1 (en) * 2005-06-24 2007-01-18 Henry Nita Methods and apparatus for intracranial ultrasound delivery
US9540649B2 (en) * 2007-10-12 2017-01-10 The Provost, Fellows And Scholars Of The College Of The Holy And Undivided Trinity Of Queen Elizabeth Near Dublin Method for opening tight junctions
US20110064792A1 (en) * 2007-10-12 2011-03-17 Peter Humphries Method for Opening Tight Junctions
US10166379B2 (en) 2008-03-19 2019-01-01 The Trustees Of Columbia University In The City Of New York Systems and methods for opening of a tissue barrier
US9358023B2 (en) 2008-03-19 2016-06-07 The Trustees Of Columbia University In The City Of New York Systems and methods for opening of a tissue barrier
US20160287856A1 (en) * 2008-09-10 2016-10-06 The Trustees Of Columbia University In The City Of New York Systems and methods for opening a tissue
US9302124B2 (en) * 2008-09-10 2016-04-05 The Trustees Of Columbia University In The City Of New York Systems and methods for opening a tissue
US20110295105A1 (en) * 2008-09-10 2011-12-01 The Trustees Of Columbia University In The City Of New York Systems and methods for opening a tissue
US20110137149A1 (en) * 2009-10-12 2011-06-09 Michael Gertner Nerve treatment system
US20110172529A1 (en) * 2009-10-12 2011-07-14 Michael Gertner Flow directed heating of nervous structures
US8469904B2 (en) 2009-10-12 2013-06-25 Kona Medical, Inc. Energetic modulation of nerves
US8512262B2 (en) 2009-10-12 2013-08-20 Kona Medical, Inc. Energetic modulation of nerves
US8517962B2 (en) 2009-10-12 2013-08-27 Kona Medical, Inc. Energetic modulation of nerves
US8556834B2 (en) 2009-10-12 2013-10-15 Kona Medical, Inc. Flow directed heating of nervous structures
US8715209B2 (en) 2009-10-12 2014-05-06 Kona Medical, Inc. Methods and devices to modulate the autonomic nervous system with ultrasound
US11154356B2 (en) 2009-10-12 2021-10-26 Otsuka Medical Devices Co., Ltd. Intravascular energy delivery
US8986231B2 (en) 2009-10-12 2015-03-24 Kona Medical, Inc. Energetic modulation of nerves
US8986211B2 (en) 2009-10-12 2015-03-24 Kona Medical, Inc. Energetic modulation of nerves
US8992447B2 (en) * 2009-10-12 2015-03-31 Kona Medical, Inc. Energetic modulation of nerves
US9005143B2 (en) 2009-10-12 2015-04-14 Kona Medical, Inc. External autonomic modulation
US9119952B2 (en) 2009-10-12 2015-09-01 Kona Medical, Inc. Methods and devices to modulate the autonomic nervous system via the carotid body or carotid sinus
US9119951B2 (en) 2009-10-12 2015-09-01 Kona Medical, Inc. Energetic modulation of nerves
US9125642B2 (en) 2009-10-12 2015-09-08 Kona Medical, Inc. External autonomic modulation
US9174065B2 (en) 2009-10-12 2015-11-03 Kona Medical, Inc. Energetic modulation of nerves
US9199097B2 (en) 2009-10-12 2015-12-01 Kona Medical, Inc. Energetic modulation of nerves
US20110172527A1 (en) * 2009-10-12 2011-07-14 Michael Gertner Systems for externally delivered energy to modulate neural structures
US9352171B2 (en) 2009-10-12 2016-05-31 Kona Medical, Inc. Nerve treatment system
US8374674B2 (en) 2009-10-12 2013-02-12 Kona Medical, Inc. Nerve treatment system
US9358401B2 (en) 2009-10-12 2016-06-07 Kona Medical, Inc. Intravascular catheter to deliver unfocused energy to nerves surrounding a blood vessel
US20110172528A1 (en) * 2009-10-12 2011-07-14 Michael Gertner Systems and methods for treatment using ultrasonic energy
US10772681B2 (en) 2009-10-12 2020-09-15 Utsuka Medical Devices Co., Ltd. Energy delivery to intraparenchymal regions of the kidney
US9579518B2 (en) 2009-10-12 2017-02-28 Kona Medical, Inc. Nerve treatment system
US20110092880A1 (en) * 2009-10-12 2011-04-21 Michael Gertner Energetic modulation of nerves
US20110092781A1 (en) * 2009-10-12 2011-04-21 Michael Gertner Energetic modulation of nerves
US20110118600A1 (en) * 2009-11-16 2011-05-19 Michael Gertner External Autonomic Modulation
US10441820B2 (en) 2011-05-26 2019-10-15 The Trustees Of Columbia University In The City Of New York Systems and methods for opening of a tissue barrier in primates
US11273329B2 (en) 2011-05-26 2022-03-15 The Trustees Of Columbia University In The City Of New York Systems and methods for opening of a tissue barrier in primates
US9657091B2 (en) 2012-04-05 2017-05-23 Ac Immune S.A. Humanized tau antibody
US10517564B2 (en) 2012-10-10 2019-12-31 The Trustees Of Columbia University In The City Of New York Systems and methods for mechanical mapping of cardiac rhythm
DE102012222778A1 (en) * 2012-12-11 2014-06-12 Siemens Aktiengesellschaft Intravascular ultrasound source for reversible overcoming of blood-brain barrier in e.g. human, has catheter to move source through blood vessel to place within skull of human or animal, so as to locally overcome blood-brain barrier
US9598485B2 (en) 2013-03-15 2017-03-21 Ac Immune S.A. Anti-tau antibodies and methods of use
US10322178B2 (en) 2013-08-09 2019-06-18 The Trustees Of Columbia University In The City Of New York Systems and methods for targeted drug delivery
US10028723B2 (en) 2013-09-03 2018-07-24 The Trustees Of Columbia University In The City Of New York Systems and methods for real-time, transcranial monitoring of blood-brain barrier opening
US11369809B2 (en) 2014-06-20 2022-06-28 The University Of Queensland Neurodegenerative disease treatment
US10925579B2 (en) 2014-11-05 2021-02-23 Otsuka Medical Devices Co., Ltd. Systems and methods for real-time tracking of a target tissue using imaging before and during therapy delivery
US11554267B2 (en) 2018-10-05 2023-01-17 Synaptec Network, Inc. Systems and methods for delivering therapeutic agents to the brain using TMS

Also Published As

Publication number Publication date
AU2001279042A1 (en) 2002-02-13
WO2002009608A2 (en) 2002-02-07
US20020038086A1 (en) 2002-03-28

Similar Documents

Publication Publication Date Title
US6514221B2 (en) Blood-brain barrier opening
Arvanitis et al. Cavitation-enhanced nonthermal ablation in deep brain targets: feasibility in a large animal model
McDannold et al. Targeted disruption of the blood–brain barrier with focused ultrasound: association with cavitation activity
McDannold et al. MRI-guided targeted blood-brain barrier disruption with focused ultrasound: histological findings in rabbits
Shin et al. Focused ultrasound–mediated noninvasive blood-brain barrier modulation: preclinical examination of efficacy and safety in various sonication parameters
Hynynen et al. Non-invasive opening of BBB by focused ultrasound
Hynynen et al. Demonstration of potential noninvasive ultrasound brain therapy through an intact skull
McDannold et al. Effects of acoustic parameters and ultrasound contrast agent dose on focused-ultrasound induced blood-brain barrier disruption
McDannold et al. Blood-brain barrier disruption induced by focused ultrasound and circulating preformed microbubbles appears to be characterized by the mechanical index
Rabkin et al. Biological and physical mechanisms of HIFU-induced hyperecho in ultrasound images
O'Reilly et al. The impact of standing wave effects on transcranial focused ultrasound disruption of the blood–brain barrier in a rat model
Hynynen MRI-guided focused ultrasound treatments
Magnin et al. Magnetic resonance-guided motorized transcranial ultrasound system for blood-brain barrier permeabilization along arbitrary trajectories in rodents
Beccaria et al. Opening of the blood-brain barrier with an unfocused ultrasound device in rabbits
US20090005711A1 (en) Systems and methods for opening of the blood-brain barrier of a subject using ultrasound
McDannold et al. Nonthermal ablation with microbubble-enhanced focused ultrasound close to the optic tract without affecting nerve function
US20100143241A1 (en) Method and apparatus for delivery of agents across the blood brain barrier
Goertz et al. Contrast agent kinetics in the rabbit brain during exposure to therapeutic ultrasound
Vykhodtseva et al. Induction of apoptosis in vivo in the rabbit brain with focused ultrasound and Optison®
US20130096595A1 (en) Methods and systems for inducing hyperthermia
Lu et al. Transcranial MR-guided histotripsy system
Alkins et al. Cavitation-based third ventriculostomy using MRI-guided focused ultrasound
Liu et al. Design and implementation of a transmit/receive ultrasound phased array for brain applications
McDannold et al. Nonthermal ablation in the rat brain using focused ultrasound and an ultrasound contrast agent: long-term effects
Lu et al. Transcranial magnetic resonance-guided histotripsy for brain surgery: pre-clinical investigation

Legal Events

Date Code Title Description
AS Assignment

Owner name: BRIGHAM & WOMEN'S HOSPITAL, INC., MASSACHUSETTS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HYNYNEN, KULLERVO H.;MCDANNOLD, NATHAN J.;REEL/FRAME:012353/0112

Effective date: 20011022

STCF Information on status: patent grant

Free format text: PATENTED CASE

CC Certificate of correction
FPAY Fee payment

Year of fee payment: 4

AS Assignment

Owner name: NATIONAL INSTITUTES OF HEALTH (NIH), U.S. DEPT. OF

Free format text: CONFIRMATORY LICENSE;ASSIGNOR:BRIGHAM AND WOMEN'S HOSPITAL;REEL/FRAME:022768/0485

Effective date: 20090515

AS Assignment

Owner name: NATIONAL INSTITUTES OF HEALTH (NIH), U.S. DEPT. OF

Free format text: CONFIRMATORY LICENSE;ASSIGNOR:BRIGHAM AND WOMEN'S HOSPITAL;REEL/FRAME:024263/0124

Effective date: 20100405

FPAY Fee payment

Year of fee payment: 8

FPAY Fee payment

Year of fee payment: 12