US6435892B1 - Electrical connector with a supporting mechanism - Google Patents

Electrical connector with a supporting mechanism Download PDF

Info

Publication number
US6435892B1
US6435892B1 US09/893,810 US89381001A US6435892B1 US 6435892 B1 US6435892 B1 US 6435892B1 US 89381001 A US89381001 A US 89381001A US 6435892 B1 US6435892 B1 US 6435892B1
Authority
US
United States
Prior art keywords
housing
terminal module
cavity
electrical connector
pivot lug
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
US09/893,810
Inventor
Timothy B. Billman
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hon Hai Precision Industry Co Ltd
Original Assignee
Hon Hai Precision Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hon Hai Precision Industry Co Ltd filed Critical Hon Hai Precision Industry Co Ltd
Priority to US09/893,810 priority Critical patent/US6435892B1/en
Assigned to HON HAI PRECISION IND. CO., LTD. reassignment HON HAI PRECISION IND. CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BILLMAN, TIMOTHY B.
Priority to TW090219629U priority patent/TW517883U/en
Priority to CN02231360U priority patent/CN2548286Y/en
Application granted granted Critical
Publication of US6435892B1 publication Critical patent/US6435892B1/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R12/00Structural associations of a plurality of mutually-insulated electrical connecting elements, specially adapted for printed circuits, e.g. printed circuit boards [PCB], flat or ribbon cables, or like generally planar structures, e.g. terminal strips, terminal blocks; Coupling devices specially adapted for printed circuits, flat or ribbon cables, or like generally planar structures; Terminals specially adapted for contact with, or insertion into, printed circuits, flat or ribbon cables, or like generally planar structures
    • H01R12/70Coupling devices
    • H01R12/71Coupling devices for rigid printing circuits or like structures
    • H01R12/72Coupling devices for rigid printing circuits or like structures coupling with the edge of the rigid printed circuits or like structures
    • H01R12/721Coupling devices for rigid printing circuits or like structures coupling with the edge of the rigid printed circuits or like structures cooperating directly with the edge of the rigid printed circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R12/00Structural associations of a plurality of mutually-insulated electrical connecting elements, specially adapted for printed circuits, e.g. printed circuit boards [PCB], flat or ribbon cables, or like generally planar structures, e.g. terminal strips, terminal blocks; Coupling devices specially adapted for printed circuits, flat or ribbon cables, or like generally planar structures; Terminals specially adapted for contact with, or insertion into, printed circuits, flat or ribbon cables, or like generally planar structures
    • H01R12/70Coupling devices
    • H01R12/82Coupling devices connected with low or zero insertion force
    • H01R12/85Coupling devices connected with low or zero insertion force contact pressure producing means, contacts activated after insertion of printed circuits or like structures
    • H01R12/88Coupling devices connected with low or zero insertion force contact pressure producing means, contacts activated after insertion of printed circuits or like structures acting manually by rotating or pivoting connector housing parts

Definitions

  • the present invention relates to an electrical connector, and particularly to an electrical connector which is provided with a supporting mechanism for supporting a swivelable terminal module thereof in a dielectric housing thereof.
  • the backplane connector is adapted for electrically and mechanically connecting or disconnecting two PCBs which are oriented essentially perpendicularly with respect to each other.
  • One of the two PCBs is a first insert card which is perpendicularly plugged with respect to the other second board named as a backplane to motherboard.
  • a backplnae connector disclosed therein has a dielectric housing and two connector halves retained in the housing.
  • the connector halves can be swiveled toward each other and away from each other about a pivot lug which is retained in a recessed section defined in the housing. In a mounting position, they are swiveled away from each other, the connector halves allow the insertion of the first insert card. In a connected position, the connector halves are swiveled toward each other to connect the insert card to the second backplane on which the connector is mounted.
  • a main object of the present invention is to provide an electrical connector having a supporting mechanism adapted for securely supporting a terminal module thereof in a dielectric housing of the connector;
  • a minor object of the present invention is to provide an electrical connector having a supporting mechanism which is easy to manufacture and low in cost.
  • an electrical connector in accordance with the present invention is adapted for establishing an electrical connection between two PCBs which are oriented essentially perpendicularly with respect to each other.
  • the electrical connector comprises an insulative housing which defines a cavity and a plurality of passageways communicating with the cavity both extending through a bottom face thereof, a rotatable terminal module and a plurality of conductive contacts respectively accommodated into the cavity and the passageways from underside of the housing.
  • the terminal module is formed with at least one pivot lug to be retained in a receiving slot defined in the housing.
  • the terminal module is swivelable about the pivot lug toward or away from the contacts inserted in the housing for connecting or disconnecting with the two PCBs.
  • a supporting mechanism is a “U” shaped metal plate and is formed with a pair of retaining arms defining an opening therebetween to be engageble with the pivot lug.
  • Each retaining arm forms a retaining ear and a retaining tab extending in opposite directions from opposite ends thereof for interferingly abutting against two opposite side faces of the receiving slot, thereby securely supporting the pivot lug in a predetermined position during its swiveling.
  • FIG. 1 is an exploded perspective view of an electrical connector in accordance with the present invention
  • FIG. 2 is an enlarged view taken on a circle identified by reference number 2 in FIG. 1;
  • FIG. 3 is a partial cross-sectional assembled view of FIG. 1 view
  • FIG. 4 is an assembled view of FIG. 1;
  • FIG. 5 is a cross-sectional view of FIG. 4 with two PCBs being assembled thereto.
  • an electrical connector 1 generally named as a backplane connector in accordance with the present invention is shown.
  • the electrical connector 1 is provided for an electrical and mechanical connection between two PCBs that are oriented essentially perpendicularly with respect to each other.
  • One of the two PCBs is a first insert board 2 which is plugged perpendicularly onto a second backplane board 3 (see FIG. 5 ).
  • the electrical connector 1 comprises a main dielectric housing 10 , a swivelable terminal module 20 and a plurality of conductive contacts 30 accommodated into the housing 10 , and a pair of supporting mechanisms 40 .
  • the dielectric housing 10 defines a cavity 12 extending through a bottom face 19 thereof for receiving the terminal module 20 therein.
  • An opening 15 is defined in a top face 17 of the housing 12 and is communicated with the cavity 12 for insertion of the first board 2 .
  • a plurality of longitudinal slits 14 are defined in an inner face 112 of one side wall 11 of the housing 12 .
  • the other side wall 13 opposite to the side wall 11 forms a plurality of passageways 16 communicated with the cavity 12 for insertion of the conductive contacts 30 .
  • the bottom face 19 further defines a pair of receiving slots 18 at opposite ends of the cavity 12 .
  • Each receiving slot 18 defines a recessed section 182 in an outer side face 183 thereof and an opening 184 communicating with the cavity 12 in an inner side face 185 thereof.
  • the terminal module 20 comprises a dielectric body 22 and two rows of first upper and lower conductive terminals 24 retained in the dielectric body 22 for transmitting high speed signals between the two boards 2 , 3 .
  • Each terminal 24 comprises a retaining portion 242 retained in a corresponding channel 23 defined in the dielectric body 22 and first and second contact portions 244 , 246 extending out of the dielectric body 22 from opposite ends of the retaining portion 242 for conductively contacting signal pads (not shown) on one side surface 22 of the first board 2 and a top face 301 of the second board 3 , respectively.
  • a metal grounding plate 25 is covered on the dielectric body 22 and forms two rows of upper and lower contacting tabs 252 for conductively contacting grounding pads (not shown) of the first board 2 .
  • a plurality of grounding terminals 50 are retained in the corresponding slits 14 of the housing 10 and each forms a grounding contact portion 52 for conductively contacting the grounding plate 25 and a press-fit tail 54 press-fitted into a corresponding first hole 302 of the second board 3 , thereby establishing a grounding circuit between the two boards 2 and 3 .
  • the dielectric body 22 further forms a pair of pivot lugs 28 (only one shown) about which the terminal module 20 is rotatable toward or away from the first board 2 .
  • the pivot lugs 28 extend outward from lower portions of opposite ends of the body 22 to be retained in corresponding recessed sections 182 of the receiving slots 18 of the main housing 10 .
  • the conductive contacts 30 are disposed in series alongside one another for transmitting low speed signals between the two boards 2 and 3 .
  • Each contact 30 is formed with a retaining section 322 retained in the passageway 16 .
  • a curved contact section 324 extends from an upper end of the retaining section 322 into the cavity 12 for conductively contacting signal pads (not shown) on the other side surface 24 opposite to the side surface 22 of the first board 2 .
  • a press-fit tail section 326 extends from a lower end of the retaining section 322 for insertion into a corresponding second hole 304 of the second board 3 .
  • the pair of supporting mechanisms 40 are made of metal material with predetermined resiliency and have symmetric structures with respect to each other, and thus only one is described below.
  • the supporting mechanism 40 has a “U” shape and is formed with a pair of retaining arms 42 defining a central opening 43 therebetween for interferingly receiving the corresponding pivot lug 28 of the terminal module 20 , as best seen in FIG. 3.
  • a pair of retaining ears 44 extend outward from upper portions of the retaining arms 42 and a pair of retaining tabs 46 extend inward opposite to the retaining ears 44 from lower portions of the retaining arms 42 .
  • the width between the retaining ears 44 and the retaining tabs 46 are slightly larger than the distance between the opposite outer and inner side faces 183 , 185 of the receiving slot 18 .
  • the terminal module 20 and the conductive contacts 30 are inserted into the cavity 12 and the passageways 16 from the underside of the housing 10 , respectively.
  • the pivot lugs 28 of the terminal module 20 are interferingly inserted into the recessed sections 182 of the corresponding receiving slots 18 .
  • the grounding terminals 50 are then inserted into corresponding slits 14 from the underside of the housing 10 .
  • Each supporting mechanisms 40 is interferingly inserted into a corresponding receiving slot 18 from the underside of the housing 10 due to its resiliency, and the opening 43 thereof is fitted with a corresponding pivot lug 28 of the terminal module 20 .
  • the retaining ears 44 and tabs 46 of the supporting mechanism 40 are interferingly abutted against the outer and inner side faces 183 and 185 of the receiving slot 18 , respectively.
  • the supporting mechanisms 40 securely retain the pivot lugs 28 of the terminal module 20 in the predetermined position without any offset or movement during its rotating, thereby ensuring an effective mechanical and electrical connection between the two PCBs 2 , 3 .
  • the housing may optionally form an inverse U-configuration 187 around the receiving slot 18 to restrict upward movement of the pivot lug 28 in the housing 10 .

Landscapes

  • Connector Housings Or Holding Contact Members (AREA)
  • Details Of Connecting Devices For Male And Female Coupling (AREA)

Abstract

An electrical connector (1) is adapted for establishing an electrical and mechanical connection between two PCBs (2, 3) and comprises an insulative housing (10) defining a cavity (12) and a number of passageways (16), a terminal module (20) and a number of conductive contacts (30) accommodated into the cavity and the passageways from underside of the housing, respectively. The terminal module forms at least one pivot lug (28) to be received in a receiving slot (18) defined in the housing, and is swivelable about the pivot lug toward or away from the contacts inserted into the housing for connecting or disconnecting the two PCBs. A metal supporting mechanism (40) defines a central opening (43) to receive the pivot lug and forms a pair of retaining arms (42) to be interferingly engaged with the receiving slot, thereby securely supporting the pivot lug in a predetermined position during its swiveling.

Description

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to an electrical connector, and particularly to an electrical connector which is provided with a supporting mechanism for supporting a swivelable terminal module thereof in a dielectric housing thereof.
2. Description of Prior Art
With the development trend in computers, connectors which are designed for transmitting high speed signals or logics, such as backplane connectors, serial ATA connectors and so on, are becoming more and more popular, and industry businesses are developing such electrical connectors to meet this requirement. The backplane connector is adapted for electrically and mechanically connecting or disconnecting two PCBs which are oriented essentially perpendicularly with respect to each other. One of the two PCBs is a first insert card which is perpendicularly plugged with respect to the other second board named as a backplane to motherboard.
Referring to U.S. Pat. No. 6,206,713 B1, a backplnae connector disclosed therein has a dielectric housing and two connector halves retained in the housing. The connector halves can be swiveled toward each other and away from each other about a pivot lug which is retained in a recessed section defined in the housing. In a mounting position, they are swiveled away from each other, the connector halves allow the insertion of the first insert card. In a connected position, the connector halves are swiveled toward each other to connect the insert card to the second backplane on which the connector is mounted. Therefore, how to securely support the pivot lug in a predetermined position so as to steadily rotate the connector halves is an important issue, otherwise the pivot lugs will be slide or offset during swiveling, thereby adversely effecting electrical and mechanical connection between the two PCBs. However, the above-mentioned invention does not disclose an effective means to support the pivot lug in a predetermined position. Hence, a backplane connector having an improved supporting mechanism for supporting the pivot lug in a predetermined position is desired to overcome the disadvantage of the prior art.
BRIEF SUMMARY OF THE INVENTION
A main object of the present invention is to provide an electrical connector having a supporting mechanism adapted for securely supporting a terminal module thereof in a dielectric housing of the connector;
A minor object of the present invention is to provide an electrical connector having a supporting mechanism which is easy to manufacture and low in cost.
To fulfill the above-mentioned objects, an electrical connector in accordance with the present invention is adapted for establishing an electrical connection between two PCBs which are oriented essentially perpendicularly with respect to each other. The electrical connector comprises an insulative housing which defines a cavity and a plurality of passageways communicating with the cavity both extending through a bottom face thereof, a rotatable terminal module and a plurality of conductive contacts respectively accommodated into the cavity and the passageways from underside of the housing. The terminal module is formed with at least one pivot lug to be retained in a receiving slot defined in the housing. The terminal module is swivelable about the pivot lug toward or away from the contacts inserted in the housing for connecting or disconnecting with the two PCBs. A supporting mechanism is a “U” shaped metal plate and is formed with a pair of retaining arms defining an opening therebetween to be engageble with the pivot lug. Each retaining arm forms a retaining ear and a retaining tab extending in opposite directions from opposite ends thereof for interferingly abutting against two opposite side faces of the receiving slot, thereby securely supporting the pivot lug in a predetermined position during its swiveling.
Other objects, advantages and novel features of the invention will become more apparent from the following detailed description of the present embodiment when taken in conjunction with the accompanying drawings.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is an exploded perspective view of an electrical connector in accordance with the present invention;
FIG. 2 is an enlarged view taken on a circle identified by reference number 2 in FIG. 1;
FIG. 3 is a partial cross-sectional assembled view of FIG. 1 view;
FIG. 4 is an assembled view of FIG. 1; and
FIG. 5 is a cross-sectional view of FIG. 4 with two PCBs being assembled thereto.
DETAILED DESCRIPTION OF THE INVENTION
Referring now to the figures of the drawings in detail and first, particularly to FIG. 1 thereof, an electrical connector 1, generally named as a backplane connector in accordance with the present invention is shown. The electrical connector 1 is provided for an electrical and mechanical connection between two PCBs that are oriented essentially perpendicularly with respect to each other. One of the two PCBs is a first insert board 2 which is plugged perpendicularly onto a second backplane board 3 (see FIG. 5). The electrical connector 1 comprises a main dielectric housing 10, a swivelable terminal module 20 and a plurality of conductive contacts 30 accommodated into the housing 10, and a pair of supporting mechanisms 40.
Referring to FIGS. 1 and 5, the dielectric housing 10 defines a cavity 12 extending through a bottom face 19 thereof for receiving the terminal module 20 therein. An opening 15 is defined in a top face 17 of the housing 12 and is communicated with the cavity 12 for insertion of the first board 2. A plurality of longitudinal slits 14 are defined in an inner face 112 of one side wall 11 of the housing 12. The other side wall 13 opposite to the side wall 11 forms a plurality of passageways 16 communicated with the cavity 12 for insertion of the conductive contacts 30. Additionally, the bottom face 19 further defines a pair of receiving slots 18 at opposite ends of the cavity 12. Each receiving slot 18 defines a recessed section 182 in an outer side face 183 thereof and an opening 184 communicating with the cavity 12 in an inner side face 185 thereof.
Referring again to FIGS. 1 and 5, the terminal module 20 is swivelable about a pivot lug 28 thereof between a mounting or relaxed position and a connected position. In the mounting or relaxed position, in which the terminal module 20 is swiveled away from the conductive contacts 30 inserted in the housing 10, the first board 2 is allowed to be inserted between the terminal module 20 and the conductive contacts 30 inserted in the housing 10. In the connected position, in which the terminal module 20 is swiveled toward the conductive contacts 30, the terminal module 20 and the contacts 30 will make an electrical and mechanical connection between the two boards 2, 3. The terminal module 20 comprises a dielectric body 22 and two rows of first upper and lower conductive terminals 24 retained in the dielectric body 22 for transmitting high speed signals between the two boards 2, 3. Each terminal 24 comprises a retaining portion 242 retained in a corresponding channel 23 defined in the dielectric body 22 and first and second contact portions 244, 246 extending out of the dielectric body 22 from opposite ends of the retaining portion 242 for conductively contacting signal pads (not shown) on one side surface 22 of the first board 2 and a top face 301 of the second board 3, respectively. A metal grounding plate 25 is covered on the dielectric body 22 and forms two rows of upper and lower contacting tabs 252 for conductively contacting grounding pads (not shown) of the first board 2. Furthermore, a plurality of grounding terminals 50 are retained in the corresponding slits 14 of the housing 10 and each forms a grounding contact portion 52 for conductively contacting the grounding plate 25 and a press-fit tail 54 press-fitted into a corresponding first hole 302 of the second board 3, thereby establishing a grounding circuit between the two boards 2 and 3. The dielectric body 22 further forms a pair of pivot lugs 28 (only one shown) about which the terminal module 20 is rotatable toward or away from the first board 2. The pivot lugs 28 extend outward from lower portions of opposite ends of the body 22 to be retained in corresponding recessed sections 182 of the receiving slots 18 of the main housing 10.
The conductive contacts 30 are disposed in series alongside one another for transmitting low speed signals between the two boards 2 and 3. Each contact 30 is formed with a retaining section 322 retained in the passageway 16. A curved contact section 324 extends from an upper end of the retaining section 322 into the cavity 12 for conductively contacting signal pads (not shown) on the other side surface 24 opposite to the side surface 22 of the first board 2. A press-fit tail section 326 extends from a lower end of the retaining section 322 for insertion into a corresponding second hole 304 of the second board 3.
Referring to FIG. 2, the pair of supporting mechanisms 40 are made of metal material with predetermined resiliency and have symmetric structures with respect to each other, and thus only one is described below. The supporting mechanism 40 has a “U” shape and is formed with a pair of retaining arms 42 defining a central opening 43 therebetween for interferingly receiving the corresponding pivot lug 28 of the terminal module 20, as best seen in FIG. 3. A pair of retaining ears 44 extend outward from upper portions of the retaining arms 42 and a pair of retaining tabs 46 extend inward opposite to the retaining ears 44 from lower portions of the retaining arms 42. The width between the retaining ears 44 and the retaining tabs 46 are slightly larger than the distance between the opposite outer and inner side faces 183, 185 of the receiving slot 18.
In assembly, referring to FIGS. 1 to 5, the terminal module 20 and the conductive contacts 30 are inserted into the cavity 12 and the passageways 16 from the underside of the housing 10, respectively. At the same time, the pivot lugs 28 of the terminal module 20 are interferingly inserted into the recessed sections 182 of the corresponding receiving slots 18. The grounding terminals 50 are then inserted into corresponding slits 14 from the underside of the housing 10. Each supporting mechanisms 40 is interferingly inserted into a corresponding receiving slot 18 from the underside of the housing 10 due to its resiliency, and the opening 43 thereof is fitted with a corresponding pivot lug 28 of the terminal module 20. Also, the retaining ears 44 and tabs 46 of the supporting mechanism 40 are interferingly abutted against the outer and inner side faces 183 and 185 of the receiving slot 18, respectively. With this design, the supporting mechanisms 40 securely retain the pivot lugs 28 of the terminal module 20 in the predetermined position without any offset or movement during its rotating, thereby ensuring an effective mechanical and electrical connection between the two PCBs 2, 3. Understandably, the housing may optionally form an inverse U-configuration 187 around the receiving slot 18 to restrict upward movement of the pivot lug 28 in the housing 10.
It is to be understood, however, that even though numerous characteristics and advantages of the present invention have been set forth in the foregoing description, together with details of the structure and function of the invention, the disclosure is illustrative only, and changes may be made in detail, especially in matters of shape, size, and arrangement of parts within the principles of the invention to the full extent indicated by the broad general meaning of the terms in which the appended claims are expressed.

Claims (1)

What is claimed is:
1. An electrical connector for electrically connecting a first printed circuit board (PCB) to a second PCB, said electrical connector comprising:
an insulative housing defining a cavity, a plurality of passageways communicating with the cavity and a pair of receiving slots at opposite ends of the cavity;
a terminal module and a plurality of second conductive contacts being accommodated into the cavity and corresponding passageways of the housing, respectively, the terminal module having a dielectric body and a plurality of conductive terminals retained in the dielectric body, each of the conductive terminals and the conductive contacts having two opposite contact sections for conductively contacting the first and second PCBs, respectively, the terminal module being formed with a pair of pivot lugs about which the terminal module is swivelable toward or away from the conductive contacts inserted in the housing; and
at least one supporting mechanism being interferingly retained in the receiving slot and defining an opening engageble with a corresponding pivot lug for swivelably supporting the terminal module.
US09/893,810 2001-06-27 2001-06-27 Electrical connector with a supporting mechanism Expired - Fee Related US6435892B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US09/893,810 US6435892B1 (en) 2001-06-27 2001-06-27 Electrical connector with a supporting mechanism
TW090219629U TW517883U (en) 2001-06-27 2001-11-15 Electrical connector with a supporting mechanism
CN02231360U CN2548286Y (en) 2001-06-27 2002-04-30 Electric connector with support structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US09/893,810 US6435892B1 (en) 2001-06-27 2001-06-27 Electrical connector with a supporting mechanism

Publications (1)

Publication Number Publication Date
US6435892B1 true US6435892B1 (en) 2002-08-20

Family

ID=25402136

Family Applications (1)

Application Number Title Priority Date Filing Date
US09/893,810 Expired - Fee Related US6435892B1 (en) 2001-06-27 2001-06-27 Electrical connector with a supporting mechanism

Country Status (3)

Country Link
US (1) US6435892B1 (en)
CN (1) CN2548286Y (en)
TW (1) TW517883U (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040127078A1 (en) * 2002-07-22 2004-07-01 Tondreault Robert J Electronic connector for a cable
WO2006026036A1 (en) * 2004-08-31 2006-03-09 Molex Incorporated Flat circuit connector
US20100197150A1 (en) * 2009-02-02 2010-08-05 Dalibor Smejtek Printed circuit assembly
US20110281456A1 (en) * 2008-12-19 2011-11-17 Andreas Simmel Contacting plug as well as contacting plug-in connection
US20150011130A1 (en) * 2013-07-05 2015-01-08 Cheng Uei Precision Industry Co., Ltd. Electrical connector
US20150229081A1 (en) * 2014-02-12 2015-08-13 Cheng Uei Precision Industry Co., Ltd. Electrical connector
US20220224066A1 (en) * 2019-05-13 2022-07-14 Nec Platforms, Ltd. Contactor rotary connector

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200529497A (en) * 2004-02-24 2005-09-01 Hon Hai Prec Ind Co Ltd Method for interconnecting multiple printed circuit boards
CN103972697B (en) * 2013-02-05 2016-04-27 康而富控股股份有限公司 Electric connector
JP6443433B2 (en) * 2016-12-22 2018-12-26 第一精工株式会社 Connector and connector manufacturing method
US10355383B2 (en) * 2017-03-13 2019-07-16 Te Connectivity Corporation Circuit card assemblies for a communication system
CN114665306B (en) * 2022-03-25 2024-02-20 鹤山市得润电子科技有限公司 Connector and electronic equipment

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3130351A (en) * 1961-09-14 1964-04-21 George J Giel Modular circuitry apparatus
US3665370A (en) * 1971-02-08 1972-05-23 Amp Inc Zero-insertion force connector
US4556268A (en) * 1983-11-23 1985-12-03 Burndy Corporation Circuit board connector system having independent contact segments

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3130351A (en) * 1961-09-14 1964-04-21 George J Giel Modular circuitry apparatus
US3665370A (en) * 1971-02-08 1972-05-23 Amp Inc Zero-insertion force connector
US4556268A (en) * 1983-11-23 1985-12-03 Burndy Corporation Circuit board connector system having independent contact segments

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6951477B2 (en) 2002-07-22 2005-10-04 Rapid Conn, Inc. Electronic connector for a cable
US20040127078A1 (en) * 2002-07-22 2004-07-01 Tondreault Robert J Electronic connector for a cable
WO2006026036A1 (en) * 2004-08-31 2006-03-09 Molex Incorporated Flat circuit connector
US20080261422A1 (en) * 2004-08-31 2008-10-23 Molex Incorporated Flat Circuit Connector
US7695295B2 (en) 2004-08-31 2010-04-13 Molex Incorporated Flat circuit connector
US20110281456A1 (en) * 2008-12-19 2011-11-17 Andreas Simmel Contacting plug as well as contacting plug-in connection
US8398423B2 (en) * 2008-12-19 2013-03-19 Robert Bosch Gmbh Contacting plug as well as contacting plug-in connection
US7972143B2 (en) 2009-02-02 2011-07-05 Tyco Electronics Corporation Printed circuit assembly
US20100197150A1 (en) * 2009-02-02 2010-08-05 Dalibor Smejtek Printed circuit assembly
US20150011130A1 (en) * 2013-07-05 2015-01-08 Cheng Uei Precision Industry Co., Ltd. Electrical connector
US8956171B2 (en) * 2013-07-05 2015-02-17 Cheng Uei Precision Industry Co., Ltd. Electrical connector
US20150229081A1 (en) * 2014-02-12 2015-08-13 Cheng Uei Precision Industry Co., Ltd. Electrical connector
US9197022B2 (en) * 2014-02-12 2015-11-24 Cheng Uei Precision Industry Co., Ltd. Electrical connector
US20220224066A1 (en) * 2019-05-13 2022-07-14 Nec Platforms, Ltd. Contactor rotary connector

Also Published As

Publication number Publication date
CN2548286Y (en) 2003-04-30
TW517883U (en) 2003-01-11

Similar Documents

Publication Publication Date Title
US7070423B2 (en) Electrical connector with improved terminals
US6464515B1 (en) High-speed board-to-board electrical connector
US7654866B2 (en) Upright electrical connector
JP2591579Y2 (en) Connector device
US6592407B2 (en) High-speed card edge connector
US6086418A (en) Electrical connector
US6475005B2 (en) Electrical card connector
US6524130B1 (en) Electrical connector assembly
US6435892B1 (en) Electrical connector with a supporting mechanism
US6371790B1 (en) Electrical assembly having anti-mismating device
US6508661B1 (en) Flexible printed circuit connector
US7112067B1 (en) Connector assembly for printed circuit board interconnection
US6010367A (en) Electrical connector having modular components
US6447307B1 (en) Electrical connector having spacer
US6210174B1 (en) Electrical connection assembly
US6261106B1 (en) IC card connector apparatus
US5820390A (en) Substrate mounted connector assembly for interconnecting external circuits and the substrate
US7241160B2 (en) Shielded electrical connector for camera module
US6645009B1 (en) High density electrical connector with lead-in device
US7699627B2 (en) Electrical connector with improved contacts retaining mechanism
US20040224564A1 (en) Electrical connector assembly with low crosstalk
US7753736B2 (en) Electrical connector confitured by upper and lower units
US6994591B2 (en) Electrical connector for use with flexible printed circuit
US6634908B1 (en) High density electrical connector with improved grounding bus
US20030232517A1 (en) Electrical connector assembly

Legal Events

Date Code Title Description
AS Assignment

Owner name: HON HAI PRECISION IND. CO., LTD., TAIWAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:BILLMAN, TIMOTHY B.;REEL/FRAME:011946/0487

Effective date: 20010424

FPAY Fee payment

Year of fee payment: 4

REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20100820