US5549285A - Wire rope isolator with crimp bar and method for making same - Google Patents

Wire rope isolator with crimp bar and method for making same Download PDF

Info

Publication number
US5549285A
US5549285A US08/426,059 US42605995A US5549285A US 5549285 A US5549285 A US 5549285A US 42605995 A US42605995 A US 42605995A US 5549285 A US5549285 A US 5549285A
Authority
US
United States
Prior art keywords
wire rope
coils
crimp
coil
bars
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US08/426,059
Inventor
Michael J. Collins
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ITT Enidine Inc
Original Assignee
Enidine Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Enidine Inc filed Critical Enidine Inc
Priority to US08/426,059 priority Critical patent/US5549285A/en
Assigned to ENIDINE, INC. reassignment ENIDINE, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: COLLINS, MICHAEL J.
Priority to PCT/US1996/005239 priority patent/WO1996033355A2/en
Application granted granted Critical
Publication of US5549285A publication Critical patent/US5549285A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F7/00Vibration-dampers; Shock-absorbers
    • F16F7/14Vibration-dampers; Shock-absorbers of cable support type, i.e. frictionally-engaged loop-forming cables
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49826Assembling or joining
    • Y10T29/49908Joining by deforming

Definitions

  • This invention relates in general to vibration isolators and, in particular, to wire rope vibration isolators. More specifically, but without restriction to the particular embodiment hereinafter described in accordance with the best mode of practice, this invention relates to wire rope vibration isolator employing a crimp bar to secure the wire rope therein.
  • Numerous mechanical systems require energy absorption devices for dissipating the kinetic energy of a component element in the system.
  • Such mechanical systems include, for example, shipping cases, skids and containers, shipboard electronics and navigational equipment, pumps, generators and compressors, chemical processing equipment, avionics, and various other such industrial systems. Shock and vibration affect the performance of all types of mechanical and electrical equipment contained in these industrial systems. If such shock and vibration are left uncontrolled, they can cause premature equipment failure and costly downtime.
  • shock absorbers Many energy absorption devices have been proposed for use in industrial applications where control or damping of shock and vibration are required.
  • One class of such energy absorption devices includes shock absorbers.
  • the typical shock absorber is provided with a sealed outer cylinder, an internal shock tube, a piston having a head portion and a rod portion for engaging the moving system component, and an accumulator for collecting fluid from the interior of the shock tube when the piston head moves into the tube.
  • the shock absorber also includes an orifice area that allows passage of fluid from the shock tube to the accumulator as the means for dissipating the energy received by the piston rod.
  • a system of check valves and return passageways is also commonly provided to allow repeated circulation of fluid between the shock tube and the accumulator.
  • the structure of this type of energy absorption device also requires various fluid seals to prevent leakage.
  • the shock absorbers in class of energy absorption devices have many useful industrial applications. This type of shock absorber is mechanically complex and is ideally employed within a restricted temperature range.
  • wire rope vibration isolators An alternative class of energy absorption devices includes wire rope vibration isolators. This type of device does not include any moving parts, circulating fluid, or fluid seals. The wire rope isolator is thus ideally suited for extreme temperature applications.
  • wire rope isolators typically include a coil of rope wire clamped between a pair of retainer blocks. The retainer blocks are secured against each other by a series of screws provided along the retainer blocks.
  • the vibration isolator proposed by R. E. Belfield et al. in U.S. Pat. No. 4,190,227 employs a method whereby the wire cable coils are molded in retainer block which is formed from a thermoplastic material such as polyvinyl chloride or polystyrene. While this type of device avoids costly machining associated with other types of prior wire rope isolators, it may fail under extremely heavy loads or temperatures. The manufacture of the molded retainer block also requires costly molds and complicated melting and curing operations. A structural disadvantage of the molded retainer block is that the bonded interface between the thermoplastic material and wire cable may fail due to cyclic fatigue.
  • Another object of this invention is to improve wire rope vibration isolators for use in industrial applications.
  • Still another object of the present invention is to avoid a bonded chemical interface between the bar member and wire coils of a wire rope vibration isolator.
  • Yet still another object of the present invention is to eliminate costly machining operations associated with securing retainer plates to the wire coils of a wire rope isolator.
  • An additional object of the present invention is to minimize the number of parts required to assemble a wire rope isolator for industrial applications.
  • Yet a further object of the present invention is to employ a mechanical bond between the bar member and wire coils of a wire rope vibration isolator so that the effects of cyclic fatigue on the bond are minimized.
  • Still yet another object of the present invention is to utilize a method with a minimum of process steps for manufacturing a variety of sizes of wire rope isolators.
  • a wire rope vibration isolator including a coil of wire rope having a predetermined number of individual consecutive coils, a first crimp bar, and a second crimp bar.
  • each of the crimp bars is rectangular in shape and has a pair of opposing side surfaces.
  • a series of lateral holes extending from one side surface to the other side surface of each of the bars is provided so that the predetermined number of individual consecutive coils may be threaded through the series of lateral holes of each of the bars.
  • FIG. 1 is a perspective view of one embodiment of a wire rope vibration isolator according to the present invention
  • FIG. 2 is a is a top view of the wire rope vibration isolator illustrated in FIG. 1;
  • FIG. 3 is a partially broken away side elevation view of the embodiment of the wire rope vibration isolator shown in FIGS. 1 and 2;
  • FIG. 3A is an enlarged cross-sectional isolation view taken along line 3A--3A of FIG. 2;
  • FIG. 4 is a partially broken away end view of the wire rope vibration isolator illustrated in FIG. 3;
  • FIG. 5 is a partially exploded perspective view of a multi-piece reaction bar employed by the method of the present invention.
  • FIG. 6 is a partially broken away side elevation view of a crimping press showing the isolator and reaction bar assembly positioned thereon in accordance with the method of the present;
  • FIG. 7 is a partially broken away front elevation view of the crimping press and isolator reaction bar assembly illustrated in FIG. 6;
  • the isolator 10 includes a substantially cylindrical coil of wire rope 12 which has a predetermined number of individual consecutive coils 14.
  • the number of coils 14 will vary depending on the load and required damping characteristics for a particular application. It is currently contemplated that the diameter of wire rope used to form the isolator 10 may vary between 1/16 and 11/4 of an inches.
  • the length of the isolator 10 will range from 3 to 24 inches, while the diameter thereof may vary from approximately an inch to 12 inches. It is thus proposed that the isolator 10 may have linear dimensions within these ranges and be designed with any one of a variety of damping characteristics.
  • the isolator 10 also includes a pair of blocks or crimp bars 16--16.
  • Each of the crimp bars 16 is preferably formed from a malleable material such as aluminum which is in the shape of a substantially rectangular bar with an opposing top surface 18 and bottom surface 20, opposing side surfaces 22, and two end surfaces 24.
  • the crimp bars 16 are not limited to being rectangular in shape, but may also be round, half-round, formed with a crescent or oval top surface, or formed with any other suitable geometry.
  • the isolator will be described in further detail.
  • the crimp bar 16 is provided with a series of lateral holes 26 formed therethrough from one side surface 22 to the other side surface 22 so that the individual consecutive coils 14 may be threaded through the lateral holes 26 of each of the crimp bars 16 to form the illustrated isolator 10.
  • Each of the individual coils 14 is secured in place by a crimp 28 at a point where each of the individual coils 14 passes through a respective crimp bar 16.
  • the individual coils 14 are thereby secured in a fixed position relative to one another while the cylindrical coil of wire rope 12 retains a spring-like quality for damping vibrational energy.
  • the crimps 28 are formed by exerting a crimping force in the desired location. The crimping force plastically deforms the immediately adjacent material and forms a mechanical bond between the wire rope and the crimp bar 16. This crimping or staking process will be described in further detail below in conjunction with the method of this invention.
  • the isolator 10 is attached to any number of different mechanical components in the selected working environment by use of bolts and mounting holes 30 provided in each of the crimp bars 16.
  • the ends of the wire rope forming the coil 12, are each covered with a protective end cap 29, FIGS. 1 and 2.
  • the end caps 29 are preferably formed from a durable shrink wrap plastic material so that they are not easily removed.
  • the lateral holes 26 are provided with a diameter that is slightly larger than the wire rope forming the individual coils 14.
  • the crimp 28 extends into the hole 26 and bonds the wire in place. In this manner, a gap 31 is maintained between the top of the wire rope and the circumference of the hole 26.
  • the individual coils 14 are thus secured over a relatively small area.
  • the lengths of wire rope leading into and out of the hole 26, are free to vibrate. Laboratory analysis has established that this vibration reduces cyclic fatigue of the coils 14 and the crimp bar 16 when compared to a design where the hole 26 is crimped along its entire side-to-side length.
  • FIG. 5 shows a reaction bar 32 used in accordance with the method of the present invention.
  • the reaction bar 32 is preferably a multi-piece reaction bar including a center block 34, a pair of side bars 36, and a pair of channeled slide bars 38.
  • Each of the slide bars 38 is provided with a channel 39 while the center block 34 has a pair of side surfaces 41.
  • These component elements of the reaction bar 32 are preferably machined from hardened steel.
  • the center block 34 is provided with two opposing slots 40 into each of which, a respective slide bar 38 may be placed. A close fit is provided between each of the slide bars 38 and their respective slot 40.
  • Each of the side bars 36 include a pair of end steps 42 which come in contact with a respective side surface 41.
  • the side bars 36 may be attached to the center block 34 by a lynch pin 44 insertable into corresponding holes 46 and 48 formed, respectively, in the side bar 36 and the center block 34.
  • a retainer hole 50 is provided near each end of the center block 34 and the slide bars 38.
  • the reaction bar 32 is assembled as described above with reference to FIG. 5.
  • a crimp bar 16 is then placed in each of the channels 39.
  • the retainer holes 50 of both the center block 34 and the slide bars 38, are positioned in register with the mounting holes 30 when a crimp bar 16 is loaded into the retainer bar 32.
  • the lateral holes 26 are located above the top edge of each of the slide bars 38 as best shown in FIG. 6.
  • the loaded reaction bar 32 is then positioned on a winding fixture (not shown) and a length of wire rope is threaded through the lateral holes 26 in a desired winding pattern.
  • the crimping aspect of the method of the present invention is now described with reference to FIGS. 6 and 7.
  • the crimping press 52 includes an extendable neck portion 54 connected to an upper shoe 56 and a lower shoe 58.
  • the upper shoe 56 is connected to an upper stripper 60 while the lower shoe 58 similarly includes a lower stripper 62.
  • the lower stripper 62 is provided with a pair of mounting pegs 63 best shown in FIG. 8. Each of the mounting pegs 63 extends through the corresponding mounting holes 30 and retainer holes 50 to secure the assembly to the crimping press 52.
  • Each of the shoe and stripper assemblies is provided with a series of crimping bits 64 each having a distal tip segment 66. As best shown in FIG. 7, each of the distal tip segments 66 of the crimping bits 64 is aligned at a point where each of the individual coils 14 passes through a respective crimp bar 16.
  • the crimp press 52 When the crimp press 52 is activated, the upper shoe 56 moves toward the lower shoe 58 and a crimping force is applied by the upper crimping bits 64 to the upper bar 16. A reaction force is transmitted through the reaction bar 32.
  • the press 52 continues to be activated until the crimps 28 are thereby formed.
  • the crimped reaction bar 32 and isolator 10 assembly is removed from the press 52 for disassembly of the reaction bar 32 from within the isolator 10.
  • this removal process includes first removing the reaction bar 32 and isolator assembly 10 away from the lower stripper 62 by lifting the assembly over the mounting pegs 63.
  • the lynch pin 44 is removed.
  • one of the two side bars 36 is urged forward until the end step 42 clears the end of the center block 34. This is done while the slide bars 38 and the center block 34 remain in position.
  • the other side bar 36 is removed in a similar manner.
  • the center block 34 is then urged forward so that is may slid out from between the slide bars 38. Once the center block 34 is removed in this manner, the slide bars 38 are carefully pulled away from their respective crimp bars 16 so that scratching or defacing of the malleable crimp bars 16 is avoided.
  • the center bar 34 may be slid out first, with the side bars 36 following, and then the slide bars 38 as described above.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Springs (AREA)

Abstract

A wire rope vibration isolator includes a coil of wire rope having a predetermined number of individual consecutive coils, a first crimp bar, and a second crimp bar. Each of the crimp bars is essentially rectangular in shape and has a pair of opposing side surfaces. A series of lateral holes extending from one side surface to the other side surface of each of the bars is provided so that the predetermined number of individual consecutive coils may be threaded through the series of lateral holes of each of the bars. A crimping force is applied to each of the two crimp bars at a point where each of the individual coils passes through a respective bar. The coils are thereby secured in a fixed position relative to one another while remaining elastically deformable. A spring-like quality is thus imparted to the coil of wire rope so that the first crimp bar and the second crimp bar may move relative to each other to dissipate vibrational energy.

Description

BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates in general to vibration isolators and, in particular, to wire rope vibration isolators. More specifically, but without restriction to the particular embodiment hereinafter described in accordance with the best mode of practice, this invention relates to wire rope vibration isolator employing a crimp bar to secure the wire rope therein.
2. Discussion of the Related Art
Numerous mechanical systems require energy absorption devices for dissipating the kinetic energy of a component element in the system. Such mechanical systems include, for example, shipping cases, skids and containers, shipboard electronics and navigational equipment, pumps, generators and compressors, chemical processing equipment, avionics, and various other such industrial systems. Shock and vibration affect the performance of all types of mechanical and electrical equipment contained in these industrial systems. If such shock and vibration are left uncontrolled, they can cause premature equipment failure and costly downtime.
Many energy absorption devices have been proposed for use in industrial applications where control or damping of shock and vibration are required. One class of such energy absorption devices includes shock absorbers. The typical shock absorber is provided with a sealed outer cylinder, an internal shock tube, a piston having a head portion and a rod portion for engaging the moving system component, and an accumulator for collecting fluid from the interior of the shock tube when the piston head moves into the tube. The shock absorber also includes an orifice area that allows passage of fluid from the shock tube to the accumulator as the means for dissipating the energy received by the piston rod. A system of check valves and return passageways is also commonly provided to allow repeated circulation of fluid between the shock tube and the accumulator. The structure of this type of energy absorption device also requires various fluid seals to prevent leakage. The shock absorbers in class of energy absorption devices have many useful industrial applications. This type of shock absorber is mechanically complex and is ideally employed within a restricted temperature range.
An alternative class of energy absorption devices includes wire rope vibration isolators. This type of device does not include any moving parts, circulating fluid, or fluid seals. The wire rope isolator is thus ideally suited for extreme temperature applications. Such wire rope isolators typically include a coil of rope wire clamped between a pair of retainer blocks. The retainer blocks are secured against each other by a series of screws provided along the retainer blocks.
The art of wire rope vibration isolators has been contributed to by a number of proposed devices including the metal cable absorber illustrated in U.S. Pat. No. 3,596,865 issued to C. Camossi, the isolator apparatus shown in U.S. Pat. No. 4,783,038 to C. L. Gilbert et al., and the vibration and shock absorber device discussed in U.S. Pat. No. 5,062,507 issued to A. Roche. All of these devices employ threaded fasteners to clamp two retainer blocks against each other with wire rope coils secured between the blocks. While this type of isolator has advantages, the machining of the threaded hole and complicated assembly require substantial time. In addition there is the possibility that the threaded fasteners become loose during the service life of the device. The vibration isolator proposed by R. E. Belfield et al. in U.S. Pat. No. 4,190,227 employs a method whereby the wire cable coils are molded in retainer block which is formed from a thermoplastic material such as polyvinyl chloride or polystyrene. While this type of device avoids costly machining associated with other types of prior wire rope isolators, it may fail under extremely heavy loads or temperatures. The manufacture of the molded retainer block also requires costly molds and complicated melting and curing operations. A structural disadvantage of the molded retainer block is that the bonded interface between the thermoplastic material and wire cable may fail due to cyclic fatigue.
OBJECTS AND SUMMARY OF THE INVENTION
It is, therefore, an object of the present invention to improve energy absorption devices.
Another object of this invention is to improve wire rope vibration isolators for use in industrial applications.
It is a further object of the present invention to utilize all metal components in a wire rope vibration isolator so that the isolator may function under extreme operating conditions such as temperature and load.
Still another object of the present invention is to avoid a bonded chemical interface between the bar member and wire coils of a wire rope vibration isolator.
It is yet a further object of the present invention to reduce the manufacturing time required to assemble a wire rope vibration isolator.
Yet still another object of the present invention is to eliminate costly machining operations associated with securing retainer plates to the wire coils of a wire rope isolator.
An additional object of the present invention is to minimize the number of parts required to assemble a wire rope isolator for industrial applications.
Yet a further object of the present invention is to employ a mechanical bond between the bar member and wire coils of a wire rope vibration isolator so that the effects of cyclic fatigue on the bond are minimized.
Still yet another object of the present invention is to utilize a method with a minimum of process steps for manufacturing a variety of sizes of wire rope isolators.
These and other objects are attained in accordance with the present invention wherein there is provided a wire rope vibration isolator including a coil of wire rope having a predetermined number of individual consecutive coils, a first crimp bar, and a second crimp bar. According to one aspect of this invention, each of the crimp bars is rectangular in shape and has a pair of opposing side surfaces. A series of lateral holes extending from one side surface to the other side surface of each of the bars is provided so that the predetermined number of individual consecutive coils may be threaded through the series of lateral holes of each of the bars. In this manner, when a crimping force is applied to each of the two crimp bars at a point where each of the individual coils passes through a respective bar, the coils are thereby secured in a fixed position relative to one another while remaining elastically deformable. A spring-like quality is thus imparted to the coil of wire rope so that the first crimp bar and the second crimp bar may move relative to each other to dissipate vibrational energy.
According to the method of the present invention, the isolator is manufactured by first forming a series of lateral holes through a first bar of malleable material, similarly forming a corresponding series of lateral holes through a second bar of malleable material. A length wire rope is then threaded consecutively through the series of lateral holes is the first and second bars of malleable material to thereby form a coil of wire rope having a predetermined number of individual coils with the bars extending along the length of the coil. In accordance with further aspects of the method of this invention, each of the first and second bars is crimped at a point where each of the individual coils passes through a respective bar. In this manner, the individual coils are thereby secured in their fixed position relative to one another to give a spring-like quality to the coil of wire rope.
BRIEF DESCRIPTION OF THE DRAWING
Further objects of the present invention together with additional features contributing thereto and advantages accruing therefrom will be apparent from the following description of a preferred embodiment of the invention which is shown in the accompanying drawing with like reference numerals indicating like components throughout, wherein:
FIG. 1 is a perspective view of one embodiment of a wire rope vibration isolator according to the present invention;
FIG. 2 is a is a top view of the wire rope vibration isolator illustrated in FIG. 1;
FIG. 3 is a partially broken away side elevation view of the embodiment of the wire rope vibration isolator shown in FIGS. 1 and 2;
FIG. 3A is an enlarged cross-sectional isolation view taken along line 3A--3A of FIG. 2;
FIG. 4 is a partially broken away end view of the wire rope vibration isolator illustrated in FIG. 3;
FIG. 5 is a partially exploded perspective view of a multi-piece reaction bar employed by the method of the present invention;
FIG. 6 is a partially broken away side elevation view of a crimping press showing the isolator and reaction bar assembly positioned thereon in accordance with the method of the present;
FIG. 7 is a partially broken away front elevation view of the crimping press and isolator reaction bar assembly illustrated in FIG. 6; and
FIG. 8 is a partially broken away isolated perspective view of the wire rope vibration isolator and multi-piece reaction bar assembly shown in FIGS. 6 and 7.
DETAILED DESCRIPTION OF A PREFERRED EMBODIMENT
Referring now to FIG. 1 there is shown a wire rope vibration isolator 10 in accordance with the present invention. The isolator 10 includes a substantially cylindrical coil of wire rope 12 which has a predetermined number of individual consecutive coils 14. The number of coils 14 will vary depending on the load and required damping characteristics for a particular application. It is currently contemplated that the diameter of wire rope used to form the isolator 10 may vary between 1/16 and 11/4 of an inches. The length of the isolator 10 will range from 3 to 24 inches, while the diameter thereof may vary from approximately an inch to 12 inches. It is thus proposed that the isolator 10 may have linear dimensions within these ranges and be designed with any one of a variety of damping characteristics. These ranges, however, are merely preferable size ranges identified by way of example, not limitation. Certain applications of the isolator 10 may require dimensions beyond the illustrative ranges discussed above. The isolator 10 also includes a pair of blocks or crimp bars 16--16. Each of the crimp bars 16 is preferably formed from a malleable material such as aluminum which is in the shape of a substantially rectangular bar with an opposing top surface 18 and bottom surface 20, opposing side surfaces 22, and two end surfaces 24. The crimp bars 16 are not limited to being rectangular in shape, but may also be round, half-round, formed with a crescent or oval top surface, or formed with any other suitable geometry.
With reference to FIGS. 2-4, the isolator will be described in further detail. For purposes of convenience, only one of the crimp bars 16 will be discussed since the two crimp bars are substantially identical. As illustrated in FIG. 3, the crimp bar 16 is provided with a series of lateral holes 26 formed therethrough from one side surface 22 to the other side surface 22 so that the individual consecutive coils 14 may be threaded through the lateral holes 26 of each of the crimp bars 16 to form the illustrated isolator 10. Each of the individual coils 14 is secured in place by a crimp 28 at a point where each of the individual coils 14 passes through a respective crimp bar 16. The individual coils 14 are thereby secured in a fixed position relative to one another while the cylindrical coil of wire rope 12 retains a spring-like quality for damping vibrational energy. The crimps 28 are formed by exerting a crimping force in the desired location. The crimping force plastically deforms the immediately adjacent material and forms a mechanical bond between the wire rope and the crimp bar 16. This crimping or staking process will be described in further detail below in conjunction with the method of this invention. The isolator 10 is attached to any number of different mechanical components in the selected working environment by use of bolts and mounting holes 30 provided in each of the crimp bars 16. The ends of the wire rope forming the coil 12, are each covered with a protective end cap 29, FIGS. 1 and 2. The end caps 29 are preferably formed from a durable shrink wrap plastic material so that they are not easily removed.
The cylindrical coil of wire rope 12 is preferably formed in the shape of two opposing coil springs as illustrated in FIGS. 1-3. In this embodiment of the cylindrical of wire rope 12, the coil includes a central U-shaped segment 32 with individual coils extending outwardly therefrom along the length of the isolator 10. The individual coils 14 will have a natural inclination from top to bottom-right or top to bottom-left as shown in FIG. 3. The wire coil 12 is preferably wound in this manner to create a symmetry about a central axis. This symmetry enables the isolator 10 to retain a preferred shape and provide a particular damping quality. The cylindrical coil of wire rope 12 may alternatively be wound in the shape of a conventional coil spring, or in any number of different winding patterns.
Referring now to FIGS. 3A and 4, it is illustrated that the lateral holes 26 are provided with a diameter that is slightly larger than the wire rope forming the individual coils 14. The crimp 28 extends into the hole 26 and bonds the wire in place. In this manner, a gap 31 is maintained between the top of the wire rope and the circumference of the hole 26. The individual coils 14 are thus secured over a relatively small area. The lengths of wire rope leading into and out of the hole 26, are free to vibrate. Laboratory analysis has established that this vibration reduces cyclic fatigue of the coils 14 and the crimp bar 16 when compared to a design where the hole 26 is crimped along its entire side-to-side length.
FIG. 5 shows a reaction bar 32 used in accordance with the method of the present invention. The reaction bar 32 is preferably a multi-piece reaction bar including a center block 34, a pair of side bars 36, and a pair of channeled slide bars 38. Each of the slide bars 38 is provided with a channel 39 while the center block 34 has a pair of side surfaces 41. These component elements of the reaction bar 32 are preferably machined from hardened steel. As illustrated in FIG. 5, the center block 34 is provided with two opposing slots 40 into each of which, a respective slide bar 38 may be placed. A close fit is provided between each of the slide bars 38 and their respective slot 40. Each of the side bars 36 include a pair of end steps 42 which come in contact with a respective side surface 41. The side bars 36 may be attached to the center block 34 by a lynch pin 44 insertable into corresponding holes 46 and 48 formed, respectively, in the side bar 36 and the center block 34. A retainer hole 50 is provided near each end of the center block 34 and the slide bars 38.
The method of the present invention will now be described in detail with particular reference to FIGS. 5-8. Upon assembly of the isolator 10, the reaction bar 32 is assembled as described above with reference to FIG. 5. A crimp bar 16 is then placed in each of the channels 39. The retainer holes 50 of both the center block 34 and the slide bars 38, are positioned in register with the mounting holes 30 when a crimp bar 16 is loaded into the retainer bar 32. The lateral holes 26 are located above the top edge of each of the slide bars 38 as best shown in FIG. 6. The loaded reaction bar 32 is then positioned on a winding fixture (not shown) and a length of wire rope is threaded through the lateral holes 26 in a desired winding pattern.
The crimping aspect of the method of the present invention is now described with reference to FIGS. 6 and 7. After the threading process described above, the reaction bar 32 and isolator 10 assembly is positioned on a crimping press 52. The crimping press 52 includes an extendable neck portion 54 connected to an upper shoe 56 and a lower shoe 58. The upper shoe 56 is connected to an upper stripper 60 while the lower shoe 58 similarly includes a lower stripper 62. The lower stripper 62 is provided with a pair of mounting pegs 63 best shown in FIG. 8. Each of the mounting pegs 63 extends through the corresponding mounting holes 30 and retainer holes 50 to secure the assembly to the crimping press 52. Each of the shoe and stripper assemblies is provided with a series of crimping bits 64 each having a distal tip segment 66. As best shown in FIG. 7, each of the distal tip segments 66 of the crimping bits 64 is aligned at a point where each of the individual coils 14 passes through a respective crimp bar 16. When the crimp press 52 is activated, the upper shoe 56 moves toward the lower shoe 58 and a crimping force is applied by the upper crimping bits 64 to the upper bar 16. A reaction force is transmitted through the reaction bar 32. The press 52 continues to be activated until the crimps 28 are thereby formed. The crimped reaction bar 32 and isolator 10 assembly is removed from the press 52 for disassembly of the reaction bar 32 from within the isolator 10.
With reference now to FIGS. 5 and 8, this removal process includes first removing the reaction bar 32 and isolator assembly 10 away from the lower stripper 62 by lifting the assembly over the mounting pegs 63. The lynch pin 44 is removed. Next, one of the two side bars 36 is urged forward until the end step 42 clears the end of the center block 34. This is done while the slide bars 38 and the center block 34 remain in position. The other side bar 36 is removed in a similar manner. The center block 34 is then urged forward so that is may slid out from between the slide bars 38. Once the center block 34 is removed in this manner, the slide bars 38 are carefully pulled away from their respective crimp bars 16 so that scratching or defacing of the malleable crimp bars 16 is avoided. Alternatively, the center bar 34 may be slid out first, with the side bars 36 following, and then the slide bars 38 as described above.
While this invention has been described in detail with reference to a certain preferred embodiment and a preferred method for making the illustrated embodiment, it should be appreciated that the present invention is not limited to those precise embodiments. Rather, in view of the present disclosure which describes the best mode for practicing the invention, many modifications and variations would present themselves to those of skill in the art without departing from the scope and spirit of this invention, as defined in the following claims.

Claims (12)

What is claimed is:
1. A wire rope vibration isolator, comprising:
a substantially cylindrical coil of wire rope having a predetermined number of individual consecutive coils; and
crimp means for securing each of said predetermined number of individual consecutive coils in a fixed position relative to one another while allowing the coils to flex so as to absorb vibrational energy, said crimp means extending longitudinally along the length of said substantially cylindrical coil of wire rope, said crimp means including two opposed blocks of material securing said predetermined number of individual consecutive coils by deforming said blocks of material into securing contact with said coils such that said coils are secured to said blocks by forming a mechanical bond between said coils and said blocks, without the use of any additional fasteners.
2. The wire rope vibration isolator according to claim 1 wherein said crimp means includes two crimp bars, each of said crimp bars being essentially rectangular in shape thereby having opposing top and bottom surfaces, opposing side surfaces, and two end surfaces, each of said crimp bars further having a series of lateral holes formed through the bar from one side surface to the other side surface thereof so that said predetermined number of individual consecutive coils may be threaded through said series of lateral holes of each of the bars whereby when a crimping force is applied to each of said two crimp bars at a point where each of said individual coils passes through a respective bar, said individual coils are thereby secured in said fixed position relative to one another.
3. The wire rope vibration isolator according to claim 2 wherein said substantially cylindrical coil of wire rope is formed in the shape of a coil spring.
4. The wire rope vibration isolator according to claim 2 wherein said substantially cylindrical coil of wire rope is formed in the shape of two opposing coil springs, said cylindrical coil having a central U-shaped segment and individual coils extending outwardly therefrom along the length of the coil.
5. A wire rope vibration isolator, comprising:
a substantially cylindrical coil of wire rope having a plurality of individual consecutive coils; and
at least one single block of material securing said plurality of individual consecutive coils in a fixed position relative to one another by deforming said block of material into securing contact with said coils such that said coils are secured to said blocks by forming a mechanical bond between said coils and said blocks, without the use of any additional fasteners so that said substantially cylindrical coil of wire rope acts as a damped spring for providing vibration isolation.
6. The wire rope vibration isolator according to claim 5 including two single blocks of material being opposingly positioned along the length of said substantially cylindrical coil of wire rope.
7. The wire rope vibration isolator according to claim 6 wherein each of said two single blocks of material are substantially rectangular in shape having opposing side surfaces, each of said single blocks further having a series of lateral holes formed through the block from one side surface to the other side surface thereof so that said plurality of individual consecutive coils may be threaded through said series of lateral holes of each of the blocks whereby when a crimping force is applied to each of said two single blocks of material at a point where each of said individual coils passes through a respective block, said individual coils are thereby secured in said fixed position relative to one another.
8. The wire rope vibration isolator according to claim 7 wherein said substantially cylindrical coil of wire rope is formed in the shape of a coil spring.
9. The wire rope vibration isolator according to claim 7 wherein said substantially cylindrical coil of wire rope is formed in the shape of two opposing coil springs, said cylindrical coil having a central U-shaped segment and individual coils extending outwardly therefrom along the length of the coil.
10. A wire rope vibration isolator, comprising:
a coil of wire rope having a predetermined number of individual consecutive coils; and
a first crimp bar and a second crimp bar, each of said crimp bars being essentially rectangular in shape thereby having opposing top and bottom surfaces, opposing side surfaces, and two end surfaces, each of said crimp bars further having a series of lateral holes formed through the bar from one side surface to the other side surface thereof so that said predetermined number of individual consecutive coils may be threaded through said series of lateral holes of each of the bars whereby when a crimping force is applied to each of said two crimp bars at a point where each of said individual coils passes through a respective bar to deform said bars into securing contact with said coils such that said coils are secured to said blocks by forming a mechanical bond between said coils and said block, without the use of any additional fasteners, such that said first crimp bar and a second crimp bar may move relative to each other to dissipate vibrational energy.
11. The wire rope vibration isolator according to claim 10 wherein said coil of wire rope is formed in the shape of a coil spring.
12. The wire rope vibration isolator according to claim 10 wherein said coil of wire rope is formed in the shape of two opposing coil springs, said cylindrical coil having a central U-shaped segment and individual coils extending outwardly therefrom along the length of the coil.
US08/426,059 1995-04-21 1995-04-21 Wire rope isolator with crimp bar and method for making same Expired - Lifetime US5549285A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US08/426,059 US5549285A (en) 1995-04-21 1995-04-21 Wire rope isolator with crimp bar and method for making same
PCT/US1996/005239 WO1996033355A2 (en) 1995-04-21 1996-04-15 Wire rope isolator with crimp bar and method for making same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US08/426,059 US5549285A (en) 1995-04-21 1995-04-21 Wire rope isolator with crimp bar and method for making same

Publications (1)

Publication Number Publication Date
US5549285A true US5549285A (en) 1996-08-27

Family

ID=23689112

Family Applications (1)

Application Number Title Priority Date Filing Date
US08/426,059 Expired - Lifetime US5549285A (en) 1995-04-21 1995-04-21 Wire rope isolator with crimp bar and method for making same

Country Status (2)

Country Link
US (1) US5549285A (en)
WO (1) WO1996033355A2 (en)

Cited By (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5791636A (en) * 1992-07-16 1998-08-11 Loziuk; Larry Compact profile wire cable isolator and energy absorbing restraint
US6120014A (en) * 1997-11-15 2000-09-19 Agency For Defense Development Twist-correcting device for wire rope isolator
US6151216A (en) * 1997-12-04 2000-11-21 Lockheed Martin Corporation Thermally conductive vibration isolators
US6244579B1 (en) 2000-02-02 2001-06-12 Enidine, Incorporated Light press manufactured (LPM) wire rope isolator and method of manufacture
EP1122458A1 (en) * 2000-02-02 2001-08-08 Enidine Incorporated Wire rope isolator with pinned bar and method for making same
US6290217B1 (en) * 2000-03-29 2001-09-18 Enidine Incorporated Asymmetric wire rope isolator
US6299150B1 (en) * 2000-02-01 2001-10-09 Lockheed Martin Corporation Composite spring mount shock absorber
US6427987B1 (en) * 1993-07-10 2002-08-06 Barry Campling Radially compressed elastic rope
US6530563B1 (en) * 2001-07-10 2003-03-11 Enidine, Incorporated Multi-axis shock and vibration isolation system
KR100559627B1 (en) * 2002-12-04 2006-03-10 기아자동차주식회사 Supporting apparatus of a missile launcher for vehicle
US20060060713A1 (en) * 2004-09-22 2006-03-23 Rafael-Armament Development Authority Ltd. Vibration damping pylon
US20060202398A1 (en) * 2005-03-11 2006-09-14 Enidine, Inc. Multi-axial base isolation system
US20070114707A1 (en) * 2005-11-18 2007-05-24 Shun-Hsu Tu Impact resistance vibration isolator
KR100783017B1 (en) * 2006-03-20 2007-12-07 용석필 Isolators absorber using wire rope
US20100252712A1 (en) * 2009-04-07 2010-10-07 Dong Seog Ha Wire shock mount having motion guide and article having the same
US20110017561A1 (en) * 2009-07-24 2011-01-27 Tanaka Seishin Kozo Laboratory Inc. Vibration damping apparatus
JP2011064244A (en) * 2009-09-16 2011-03-31 Fuji Latex Kk Helical isolator and manufacturing method thereof
JP2011163436A (en) * 2010-02-09 2011-08-25 Fuji Latex Kk Vibration control shock absorber
KR101134503B1 (en) 2011-12-23 2012-04-13 (주)서전기전 Compound spring apparatus with non-linear wire rope spring and non-liner polyurethane spring for chaos elastic mount for high or low voltage switchgear and other equipment
US20120097020A1 (en) * 2009-01-21 2012-04-26 Rafael Advanced Defense Systems Ltd. Damping suspension with an up-lift capability for an add-on armor system
WO2012152827A1 (en) * 2011-05-11 2012-11-15 Dcns Shock-filtering set-point resilient supporting system intended, in particular, for equipment suspension on board a vessel
US8613431B1 (en) * 2009-09-30 2013-12-24 Rockwell Collins, Inc. Vibration isolator with improved symmetry
KR101362924B1 (en) * 2012-12-05 2014-02-18 (주)엔에스브이 Wire rope isolator
KR101362926B1 (en) * 2012-12-05 2014-02-18 (주)엔에스브이 Wire rope isolator and vibration isolation system using the same
US8657250B2 (en) 2010-03-19 2014-02-25 Winegard Company Mount for a mobile satellite antenna system with vibration and shock isolation
WO2014172934A1 (en) * 2013-04-27 2014-10-30 中国人民解放军北京军区总医院 Vibration reduction platform and movable ct scanner vibration reduction system
US9200868B2 (en) 2011-05-11 2015-12-01 Dcns Vessel of the type comprising at least one shaft for receiving at least one missile-launching container
US9255399B2 (en) 2013-12-06 2016-02-09 Itt Manufacturing Enterprises Llc Seismic isolation assembly
CN106382329A (en) * 2016-10-19 2017-02-08 无锡市宏源弹性器材有限公司 Combined type high-precision reset vibration isolation platform device
EP3324071A1 (en) 2016-11-22 2018-05-23 Bell Helicopter Textron Inc. Damper assembly for an airframe and method for damping vibration of an airframe
US10005506B2 (en) * 2015-02-27 2018-06-26 Great Lakes Sound & Vibration, Inc. Suspension arrangements for vehicles
US20190360548A1 (en) * 2017-09-06 2019-11-28 Saes Getters S.P.A. Shock absorbing device
US10539204B2 (en) 2014-09-24 2020-01-21 Itt Manufacturing Enterprises Llc Damping and support device for electrical equipments
US10570984B1 (en) * 2017-06-28 2020-02-25 United Launch Alliance, L.L.C. Asymmetrically-shaped isolator
CN111503205A (en) * 2020-04-24 2020-08-07 无锡市江大隔振器有限公司 Novel steel wire rope vibration isolator and stamping manufacturing method thereof
EP3705744A1 (en) 2019-03-05 2020-09-09 Bell Helicopter Textron Inc. Damper
WO2021076225A1 (en) 2019-10-18 2021-04-22 Raytheon Company Multi-axial energy damping and displacement control
CN112833130A (en) * 2019-11-22 2021-05-25 北京广利核系统工程有限公司 Vibration isolator and disassembling assembly and disassembling method thereof
US11326661B2 (en) 2016-11-22 2022-05-10 Textron Innovations Inc. Damper
US11434737B2 (en) 2017-12-05 2022-09-06 U.S. Well Services, LLC High horsepower pumping configuration for an electric hydraulic fracturing system
US11451016B2 (en) 2012-11-16 2022-09-20 U.S. Well Services, LLC Switchgear load sharing for oil field equipment
US11449018B2 (en) 2012-11-16 2022-09-20 U.S. Well Services, LLC System and method for parallel power and blackout protection for electric powered hydraulic fracturing
US11454170B2 (en) 2012-11-16 2022-09-27 U.S. Well Services, LLC Turbine chilling for oil field power generation
US11454079B2 (en) 2018-09-14 2022-09-27 U.S. Well Services Llc Riser assist for wellsites
US11459863B2 (en) 2019-10-03 2022-10-04 U.S. Well Services, LLC Electric powered hydraulic fracturing pump system with single electric powered multi-plunger fracturing pump
US11476781B2 (en) 2012-11-16 2022-10-18 U.S. Well Services, LLC Wireline power supply during electric powered fracturing operations
US11506126B2 (en) 2019-06-10 2022-11-22 U.S. Well Services, LLC Integrated fuel gas heater for mobile fuel conditioning equipment
US11578577B2 (en) 2019-03-20 2023-02-14 U.S. Well Services, LLC Oversized switchgear trailer for electric hydraulic fracturing
US11674352B2 (en) 2012-11-16 2023-06-13 U.S. Well Services, LLC Slide out pump stand for hydraulic fracturing equipment
US11713661B2 (en) 2012-11-16 2023-08-01 U.S. Well Services, LLC Electric powered pump down
US11728709B2 (en) 2019-05-13 2023-08-15 U.S. Well Services, LLC Encoderless vector control for VFD in hydraulic fracturing applications
US11850563B2 (en) 2012-11-16 2023-12-26 U.S. Well Services, LLC Independent control of auger and hopper assembly in electric blender system
US11959533B2 (en) 2017-12-05 2024-04-16 U.S. Well Services Holdings, Llc Multi-plunger pumps and associated drive systems

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2010203102B1 (en) * 2010-07-21 2011-03-03 O H & S Engineering Services Pty Ltd Training apparatus
CN103851115B (en) * 2014-02-25 2016-05-25 江苏江海船舶设备制造有限公司 A kind of three-dimensional isolation device and air bottle thereof

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3044759A (en) * 1959-11-27 1962-07-17 Kerley Engineering Inc Cable type vibration isolator with captivating elements
US3065959A (en) * 1960-06-06 1962-11-27 Kerley Engineering Inc Shock and vibration isolator with saddle arrangement
US3204911A (en) * 1962-10-25 1965-09-07 Aeroflex Lab Inc Vibration damping and load-supporting apparatus
US3360225A (en) * 1963-04-11 1967-12-26 Camossi Carlo Process for manufacturing isolators of shock absorbers based on the principle of damping vibrations and/or shocks by means of multistrand cables
US3596865A (en) * 1967-05-26 1971-08-03 Carlo Camossi Metal cable absorber mounting system
US4190227A (en) * 1976-07-22 1980-02-26 Aeroflex Laboratories, Inc. Vibration isolator and method for manufacturing same
US4397069A (en) * 1979-06-20 1983-08-09 Carlo Camossi Device and process for the manufacture of vibration-damping and shockproof mountings incorporating at least one helically arranged metal cable and mounting thereby obtained
US4854556A (en) * 1986-09-12 1989-08-08 Societe Anonyme Dite: Intertechnique Device for damping shocks and vibrations
SU1634860A1 (en) * 1989-02-28 1991-03-15 Научно-производственный центр при Николаевском кораблестроительном институте им.адм.С.О.Макарова Cable vibration insulator
US5240232A (en) * 1991-12-16 1993-08-31 Abb Impell Corporation Pipe restraint
US5277394A (en) * 1992-11-02 1994-01-11 Arlo Slemmer Coaxial isolator device
US5360210A (en) * 1991-12-16 1994-11-01 Vectra Technologies, Inc. Pipe restraint

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1249600B (en) * 1962-12-03
FR1369294A (en) * 1963-03-09 1964-08-07 Elastic assembly capable of absorbing vibrations and shocks or of transmitting torques and moments, or of performing these two functions
FR2601739B1 (en) * 1986-07-15 1990-08-10 Commerce Internal Echanges Tec ANTI-SHOCK ANTI-VIBRATION DEVICE AND METHOD FOR MANUFACTURING SUCH A DEVICE
FR2616866A1 (en) * 1987-06-17 1988-12-23 Socitec Elastic coupling, articulation or support bearing structure with adaptable radial, axial, conical and/or torsional stiffnesses and coupling, articulation and support bearing including such a structure
US4783038A (en) * 1987-07-07 1988-11-08 Aeroflex International Incorporated Isolator apparatus
FR2636111B1 (en) * 1988-09-05 1990-11-16 Vibrachoc Sa SHOCK AND VIBRATION DAMPING DEVICE

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3044759A (en) * 1959-11-27 1962-07-17 Kerley Engineering Inc Cable type vibration isolator with captivating elements
US3065959A (en) * 1960-06-06 1962-11-27 Kerley Engineering Inc Shock and vibration isolator with saddle arrangement
US3204911A (en) * 1962-10-25 1965-09-07 Aeroflex Lab Inc Vibration damping and load-supporting apparatus
US3360225A (en) * 1963-04-11 1967-12-26 Camossi Carlo Process for manufacturing isolators of shock absorbers based on the principle of damping vibrations and/or shocks by means of multistrand cables
US3596865A (en) * 1967-05-26 1971-08-03 Carlo Camossi Metal cable absorber mounting system
US4190227A (en) * 1976-07-22 1980-02-26 Aeroflex Laboratories, Inc. Vibration isolator and method for manufacturing same
US4397069A (en) * 1979-06-20 1983-08-09 Carlo Camossi Device and process for the manufacture of vibration-damping and shockproof mountings incorporating at least one helically arranged metal cable and mounting thereby obtained
US4854556A (en) * 1986-09-12 1989-08-08 Societe Anonyme Dite: Intertechnique Device for damping shocks and vibrations
SU1634860A1 (en) * 1989-02-28 1991-03-15 Научно-производственный центр при Николаевском кораблестроительном институте им.адм.С.О.Макарова Cable vibration insulator
US5240232A (en) * 1991-12-16 1993-08-31 Abb Impell Corporation Pipe restraint
US5360210A (en) * 1991-12-16 1994-11-01 Vectra Technologies, Inc. Pipe restraint
US5277394A (en) * 1992-11-02 1994-01-11 Arlo Slemmer Coaxial isolator device

Cited By (72)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5791636A (en) * 1992-07-16 1998-08-11 Loziuk; Larry Compact profile wire cable isolator and energy absorbing restraint
US6427987B1 (en) * 1993-07-10 2002-08-06 Barry Campling Radially compressed elastic rope
US6120014A (en) * 1997-11-15 2000-09-19 Agency For Defense Development Twist-correcting device for wire rope isolator
US6151216A (en) * 1997-12-04 2000-11-21 Lockheed Martin Corporation Thermally conductive vibration isolators
US6299150B1 (en) * 2000-02-01 2001-10-09 Lockheed Martin Corporation Composite spring mount shock absorber
US6244579B1 (en) 2000-02-02 2001-06-12 Enidine, Incorporated Light press manufactured (LPM) wire rope isolator and method of manufacture
EP1122458A1 (en) * 2000-02-02 2001-08-08 Enidine Incorporated Wire rope isolator with pinned bar and method for making same
KR100652093B1 (en) * 2000-02-02 2006-11-30 에니딘 인코포레이티드 Light press manufacturedlpm wire rope isolator and method of manufacture
US6406011B1 (en) * 2000-02-02 2002-06-18 Enidine Incorporated Wire rope isolator with pinned bar and method for making same
EP1666760A3 (en) * 2000-03-29 2006-08-02 Enidine Incorporated Asymmetric wire rope isolator and method of manufacture
KR100741594B1 (en) * 2000-03-29 2007-07-20 에니딘 인코포레이티드 Asymmetric wire rope isolator and method of manufacture
EP1666760A2 (en) 2000-03-29 2006-06-07 Enidine Incorporated Asymmetric wire rope isolator and method of manufacture
US6290217B1 (en) * 2000-03-29 2001-09-18 Enidine Incorporated Asymmetric wire rope isolator
EP1138974A2 (en) 2000-03-29 2001-10-04 Enidine Incorporated Asymmetric wire rope isolator and method of manufacture
US6530563B1 (en) * 2001-07-10 2003-03-11 Enidine, Incorporated Multi-axis shock and vibration isolation system
KR100559627B1 (en) * 2002-12-04 2006-03-10 기아자동차주식회사 Supporting apparatus of a missile launcher for vehicle
US20060060713A1 (en) * 2004-09-22 2006-03-23 Rafael-Armament Development Authority Ltd. Vibration damping pylon
US7510147B2 (en) * 2004-09-22 2009-03-31 Rafael Advanced Defense Systems Ltd. Vibration damping pylon
US7325792B2 (en) 2005-03-11 2008-02-05 Enidine, Inc. Multi-axial base isolation system
US20060202398A1 (en) * 2005-03-11 2006-09-14 Enidine, Inc. Multi-axial base isolation system
US20070114707A1 (en) * 2005-11-18 2007-05-24 Shun-Hsu Tu Impact resistance vibration isolator
KR100783017B1 (en) * 2006-03-20 2007-12-07 용석필 Isolators absorber using wire rope
US20120097020A1 (en) * 2009-01-21 2012-04-26 Rafael Advanced Defense Systems Ltd. Damping suspension with an up-lift capability for an add-on armor system
US8640593B2 (en) * 2009-01-21 2014-02-04 Rafael Advanced Defense Systems Ltd. Damping suspension with an up-lift capability for an add-on armor system
US20100252712A1 (en) * 2009-04-07 2010-10-07 Dong Seog Ha Wire shock mount having motion guide and article having the same
US20110017561A1 (en) * 2009-07-24 2011-01-27 Tanaka Seishin Kozo Laboratory Inc. Vibration damping apparatus
JP2011027165A (en) * 2009-07-24 2011-02-10 Tanaka Seishin Kozo Kenkyusho:Kk Vibration damping apparatus
JP2011064244A (en) * 2009-09-16 2011-03-31 Fuji Latex Kk Helical isolator and manufacturing method thereof
US8613431B1 (en) * 2009-09-30 2013-12-24 Rockwell Collins, Inc. Vibration isolator with improved symmetry
JP2011163436A (en) * 2010-02-09 2011-08-25 Fuji Latex Kk Vibration control shock absorber
US8657250B2 (en) 2010-03-19 2014-02-25 Winegard Company Mount for a mobile satellite antenna system with vibration and shock isolation
US9200868B2 (en) 2011-05-11 2015-12-01 Dcns Vessel of the type comprising at least one shaft for receiving at least one missile-launching container
WO2012152827A1 (en) * 2011-05-11 2012-11-15 Dcns Shock-filtering set-point resilient supporting system intended, in particular, for equipment suspension on board a vessel
FR2975153A1 (en) * 2011-05-11 2012-11-16 Dcns ELASTIC SUPPORT SYSTEM WITH A SHOCK FILTRATION THRESHOLD, IN PARTICULAR FOR THE SUSPENSION OF EQUIPMENT ON BOARD A SHIP
KR101134503B1 (en) 2011-12-23 2012-04-13 (주)서전기전 Compound spring apparatus with non-linear wire rope spring and non-liner polyurethane spring for chaos elastic mount for high or low voltage switchgear and other equipment
US11476781B2 (en) 2012-11-16 2022-10-18 U.S. Well Services, LLC Wireline power supply during electric powered fracturing operations
US11451016B2 (en) 2012-11-16 2022-09-20 U.S. Well Services, LLC Switchgear load sharing for oil field equipment
US11449018B2 (en) 2012-11-16 2022-09-20 U.S. Well Services, LLC System and method for parallel power and blackout protection for electric powered hydraulic fracturing
US11850563B2 (en) 2012-11-16 2023-12-26 U.S. Well Services, LLC Independent control of auger and hopper assembly in electric blender system
US11454170B2 (en) 2012-11-16 2022-09-27 U.S. Well Services, LLC Turbine chilling for oil field power generation
US11713661B2 (en) 2012-11-16 2023-08-01 U.S. Well Services, LLC Electric powered pump down
US11674352B2 (en) 2012-11-16 2023-06-13 U.S. Well Services, LLC Slide out pump stand for hydraulic fracturing equipment
KR101362924B1 (en) * 2012-12-05 2014-02-18 (주)엔에스브이 Wire rope isolator
KR101362926B1 (en) * 2012-12-05 2014-02-18 (주)엔에스브이 Wire rope isolator and vibration isolation system using the same
WO2014172934A1 (en) * 2013-04-27 2014-10-30 中国人民解放军北京军区总医院 Vibration reduction platform and movable ct scanner vibration reduction system
US9809975B2 (en) 2013-12-06 2017-11-07 Itt Manufacturing Enterprises Llc Seismic isolation assembly
US9255399B2 (en) 2013-12-06 2016-02-09 Itt Manufacturing Enterprises Llc Seismic isolation assembly
US10539204B2 (en) 2014-09-24 2020-01-21 Itt Manufacturing Enterprises Llc Damping and support device for electrical equipments
US10005506B2 (en) * 2015-02-27 2018-06-26 Great Lakes Sound & Vibration, Inc. Suspension arrangements for vehicles
CN106382329A (en) * 2016-10-19 2017-02-08 无锡市宏源弹性器材有限公司 Combined type high-precision reset vibration isolation platform device
US11326661B2 (en) 2016-11-22 2022-05-10 Textron Innovations Inc. Damper
EP3324071A1 (en) 2016-11-22 2018-05-23 Bell Helicopter Textron Inc. Damper assembly for an airframe and method for damping vibration of an airframe
US10232936B2 (en) 2016-11-22 2019-03-19 Bell Helicopter Textron Inc. Damper
US10570984B1 (en) * 2017-06-28 2020-02-25 United Launch Alliance, L.L.C. Asymmetrically-shaped isolator
US11073192B1 (en) 2017-06-28 2021-07-27 United Launch Alliance, L.L.C. Asymmetrically-shaped isolator
US11686368B1 (en) 2017-06-28 2023-06-27 United Launch Alliance, L.L.C. Asymmetrically-shaped isolator
US10724595B2 (en) * 2017-09-06 2020-07-28 Saes Getters S.P.A. Shock absorbing device
US20190360548A1 (en) * 2017-09-06 2019-11-28 Saes Getters S.P.A. Shock absorbing device
US11959533B2 (en) 2017-12-05 2024-04-16 U.S. Well Services Holdings, Llc Multi-plunger pumps and associated drive systems
US11434737B2 (en) 2017-12-05 2022-09-06 U.S. Well Services, LLC High horsepower pumping configuration for an electric hydraulic fracturing system
US11454079B2 (en) 2018-09-14 2022-09-27 U.S. Well Services Llc Riser assist for wellsites
EP3705744A1 (en) 2019-03-05 2020-09-09 Bell Helicopter Textron Inc. Damper
US11578577B2 (en) 2019-03-20 2023-02-14 U.S. Well Services, LLC Oversized switchgear trailer for electric hydraulic fracturing
US11728709B2 (en) 2019-05-13 2023-08-15 U.S. Well Services, LLC Encoderless vector control for VFD in hydraulic fracturing applications
US11506126B2 (en) 2019-06-10 2022-11-22 U.S. Well Services, LLC Integrated fuel gas heater for mobile fuel conditioning equipment
US11459863B2 (en) 2019-10-03 2022-10-04 U.S. Well Services, LLC Electric powered hydraulic fracturing pump system with single electric powered multi-plunger fracturing pump
US11905806B2 (en) 2019-10-03 2024-02-20 U.S. Well Services, LLC Electric powered hydraulic fracturing pump system with single electric powered multi-plunger fracturing pump
WO2021076225A1 (en) 2019-10-18 2021-04-22 Raytheon Company Multi-axial energy damping and displacement control
US11236791B2 (en) 2019-10-18 2022-02-01 Raytheon Company Multi-axial energy damping and displacement control
CN112833130B (en) * 2019-11-22 2022-09-13 北京广利核系统工程有限公司 Vibration isolator and disassembling assembly and disassembling method thereof
CN112833130A (en) * 2019-11-22 2021-05-25 北京广利核系统工程有限公司 Vibration isolator and disassembling assembly and disassembling method thereof
CN111503205A (en) * 2020-04-24 2020-08-07 无锡市江大隔振器有限公司 Novel steel wire rope vibration isolator and stamping manufacturing method thereof

Also Published As

Publication number Publication date
WO1996033355A2 (en) 1996-10-24
WO1996033355A3 (en) 1996-11-28

Similar Documents

Publication Publication Date Title
US5549285A (en) Wire rope isolator with crimp bar and method for making same
EP1122458A1 (en) Wire rope isolator with pinned bar and method for making same
EP1666760B1 (en) Asymmetric wire rope isolator
US5169110A (en) Force-damping energy-removing isolator
US6530563B1 (en) Multi-axis shock and vibration isolation system
US5791636A (en) Compact profile wire cable isolator and energy absorbing restraint
EP3361121B1 (en) Coupling
US4470180A (en) Device for restraining an object or objects therein
US4854556A (en) Device for damping shocks and vibrations
US20040119216A1 (en) Antivibration element
KR970062463A (en) Flanged pipe unit and its manufacturing method
WO1996033355B1 (en) Wire rope isolator with crimp bar and method for making same
WO2005026685A2 (en) Method and apparatus for fatigue testing
US9353825B2 (en) Vibration absorbing apparatus
KR20010077897A (en) Light press manufactured(lpm) wire rope isolator and method of manufacture
US20010032763A1 (en) Damper, piston assembly and method for making
US3371895A (en) Vibration-damping and loadsupporting apparatus
CA2141700A1 (en) Shock and vibration damping mount
DE102017004126B4 (en) Torsional vibration damper
JPS63502532A (en) spacer
GB2317432A (en) Coil spring
US10309480B2 (en) Hydraulic damper for a mount assembly
EP3093965B1 (en) Short stroke linear motor
CA2125968A1 (en) Pipe restraint
DE19958928A1 (en) Vibration damping device has two spaced apart baseplates between which are installed paired coil springs in which are fitted cylindrically constructed elastomer guide elements

Legal Events

Date Code Title Description
AS Assignment

Owner name: ENIDINE, INC., NEW YORK

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:COLLINS, MICHAEL J.;REEL/FRAME:007549/0324

Effective date: 19950420

STCF Information on status: patent grant

Free format text: PATENTED CASE

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

REMI Maintenance fee reminder mailed
FPAY Fee payment

Year of fee payment: 12